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Abstract  

The increasing global prevalence of cardiovascular and metabolic diseases necessitates the 

development of more effective therapeutic strategies that, in turn, require a greater understanding of 

the regulatory networks involved. Research over the last decade has increased our appreciation of 

the key role of the adiponectin axis as a major regulator of metabolic, cardiovascular and 

inflammatory tone, thereby establishing it as a province of therapeutic opportunity. The receptors 

for adiponectin, AdipoR1 and AdipoR2, are distant relatives of the largest single class of drug 

targets, the G-protein coupled receptor (GPCR) family. However, unlike GPCRs they have 

intracellular N-termini and extracellular C-termini and signal via atypical pathways. Our current 

understanding of AdipoR1 and AdipoR2 is rudimentary, constraining our ability to target these 

receptors effectively. The aim of this thesis was to characterise molecular features of AdipoR1 and 

AdipoR2 that facilitate adiponectin signal transduction to advance our understanding and identify 

strategies to enhance adiponectin’s beneficial effects. 

We have begun to characterise basic properties of AdipoR1 and AdipoR2, focusing on molecular 

factors that drive cell-surface expression (CSE) of the receptors using a range of C-terminal, 

epitope-tagged AdipoR1 and AdipoR2 constructs. Surprisingly, under steady-state conditions (no 

serum starvation) only AdipoR1 was readily detected on the cell-surface (cell-surface ratio of 

AdipoR1 vs AdipoR2 is 0.6±0.1 vs 0.15±0.1, p<0.05). Generation and characterisation of a series of 

chimeric and truncated constructs demonstrated that a non-conserved, intracellular, N-terminal 

region of AdipoR2 (R2(1-81)) restricted its CSE whilst the same region in AdipoR1 (R1(1-70)) 

promoted its CSE. We also confirmed that AdipoR1 and AdipoR2 form heterodimer and that co-

expression of these receptors increase the CSE of AdipoR2. Subsequently, we provided evidence 

that the subcellular localisation of AdipoR1 and AdipoR2 is governed by multiple motifs across 

their non-conserved and conserved cytoplasmic domains. For instance, two highly conserved 

motifs, an ER exit motif (FxxxFxxxF) and Di-Leucine motif (DxxxLL), in the conserved N-

terminal domain are required for the proper CSE of both AdipoR1 and AdipoR2, whilst different 

parts of the non-conserved domain of AdipoR2 inhibits its CSE.  

Moreover, we demonstrated that in HEK-293 cells over-expressing AdipoR1 adiponectin activated 

downstream signalling networks (AMPK, AKT, ERK & P38MAPK) acutely (peaking at 15 min) 

whereas signal transduction via AdipoR2 was relatively chronic (peaking at 24 h). This difference 

was also underpinned by the non-conserved N-terminal domains of AdipoR1 and AdipoR2. We also 

demonstrated that a number of conserved and non-conserved cysteines in the N-terminal domain of 
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AdipoR1 and AdipoR2 are subject to palmitoylation and that palmitoylation of a conserved 

cysteine, situated in the juxta-membrane region of the N-termini of AdipoR1 and AdipoR2 in a 

position analogous to that observed in GPCRs, plays a key role in the CSE of both receptors.   

Mutation of these sites inhibits CSE and signal transduction of full-length receptors in vitro and in 

vivo. Furthermore, palmitoylation of these ‘canonical cysteines’ promotes enrichment of N-

terminal, cytoplasmic AdipoR1(R1(1-127)) and AdipoR2 (R2(1-138)) constructs under the PM. Our 

further investigation revealed the differential effects of electrotransfer-mediated overexpression of 

AdipoR1 or AdipoR2 in the Tibialis Anterior (TA) muscle of lean (chow) or obese (10 wk HFD) 

mice (n=6/group). In lean mice, overexpression of AdipoR1 or AdipoR2 increased phosphorylation 

of downstream effectors AMPK, Akt and ERK (all p<0.05), but not p38MAPK.  The magnitude of 

these effects was reduced in obese mice; consistent with the development of adiponectin resistance 

(circulating adiponectin was not reduced after 10 wk HFD). Both AdipoR1 and AdipoR2 increased 

glut-4 mRNA (2-fold, p<0.05) and this was also affected by obesity.  In contrast, only AdipoR2 

increased pparα and a downstream target gene Acox1 (all p<0.05) and this effect was blunted by 

obesity.  Surprisingly, exclusive overexpression of AdipoR2 in TA muscle of obese mice resulted in 

marked systemic effects which included increased circulating adiponectin levels, decreased body 

weight gain and reduced epididymal fat mass and markers of adipose tissue inflammation (all 

p<0.05). 

Collectively these results indicate that there are (i) fundamental differences between AdipoR1 and 

AdipoR2 and demonstrate that (ii) there are specific motifs in the intracellular N-terminal region of 

both AdipoR1 and AdipoR2 regulating the subcellular trafficking, (iii) both receptors need 

palmitoylation for efficient cell-surface expression and signal transduction. Also (iiii) Muscle-

specific overexpression of AdipoR1 or AdipoR2 gives rise to differential local and systemic effects. 

Further studies are required to extend these novel observations and elaborate the complex 

mechanisms governing AdipoR trafficking and signalling to determine whether alterations in these 

processes contribute to the aetiology of human disease and or can be targeted therapeutically. 
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Chapter One: 

General Introduction 
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1.1 Obesity 

Obesity, abnormal or excessive fat accumulation that may impair health1, is one of today’s most 

challenging public health problems which threatens to overwhelm health systems in both developed 

and developing countries. According to the World Health Organization (WHO), in 1995 there were 

an estimated 200 million obese adults worldwide. As of 2000, the number of obese adults has 

increased to over 300 million2, 3. In Australia, adult obesity rose from 7.1% in 1980 to 

approximately 65% for men and 50% for women in 20114. 

Obesity is a complex condition which can lead to a wide range of cardiometabolic disorders 

including coronary heart disease, hypertension and stroke, type-2 diabetes, dyslipidaemia, certain 

types of cancer,  gallbladder disease, osteoarthritis, gout and pulmonary diseases including sleep 

apnoea2. 

Adipose tissue, which was considered as a simple fat store, is now known to be a highly 

metabolically active endocrine organ that secretes hormones and cytokines collectively termed 

adipokines5. Adiponectin is one of the most intensively investigated adipokine. It has anti-diabetic 

(insulin sensitising), anti-inflammatory, anti-atherogenic, cardio-protective and anti-cancer 

properties, regulating glucose and fatty acid metabolism.  
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1.2 Adiponectin   

In 1995, Scherer et al. identified a novel adipokine which they named Acrp30 (adipocyte 

complement-related protein of 30 kDa) due to its structure and weight6. Three independent groups 

each identified the same protein and named it Apm1 (adipose most abundant gene transcript 1)7, 

AdipoQ8 and GBP28 (gelatin-binding protein of 28 kDa)9 respectively. It is now called 

adiponectin10.  

1.2.1 Structure and multimerisation  

Human adiponectin is a protein of approximately 28 kDa (244 amino acids) which belongs to the 

complement factor C1q family of proteins. It is made up of four domains including: an amino-

terminal signal peptide; a variable region with no homology to other known proteins; a collagenous 

domain involved in triple-helix formation; and the carboxyl-terminus comprising the globular 

domain which shows sequence homology with the C1q subunit of complement protein and the 

globular domains of collagens type VIII and X11-13 (Figure 1.1A).  Adiponectin is synthesised in 

monomeric form which oligomerises to form a variety of stable multimeric forms including trimers 

and hexamers, known as low molecular weight (LMW) multimers and larger complexes up to 18-

mers, termed as high molecular weight (HMW) multimers.   

Generation of trimers occur upon the formation of a triple helix by hydrophobic interaction within 

the collagenous domains14. Further multimerisation of adiponectin depends upon a series of post 

translational modification (PTMs)15, 16 and is important for the pleiotropic biological functions of 

adiponectin. Early studies demonstrated the role of a conserved cysteine 36 (Cys 39 in mouse 

adiponectin) in the formation of disulphide bond, which is essential for the stable generation of 

multimers larger than trimers17-19. A number of conserved proline (shown to be hydroxylated) and 

five conserved lysine (subject to hydroxylation and subsequent glycosylation) residues situated in 

the collagenous domain of adiponectin also play a significant role in the formation of trimers and 

efficient production and secretion of HMW multimers respectively19, 20 (Figure 1.1B). 

Consequently, given that bacteria are unable to perform PTMs (with the exception of disulphide 

bonds), bacterially produced adiponectin contain only trimers and hexamers21.  
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Figure 1.1.  Adiponectin Post Translational Modifications and Multimerisation. (A) Adiponectin 

domains and post translational modification of the collagenous domain involved in multimerisation. (B) 

Adiponectin multimerisation and secreted forms. Adapted from (Richards et al., 2006 and Richards et al., 

2010)19, 22 

 

1.2.2 Adiponectin expression and its association with disease 

Adiponectin is produced almost exclusively by adipocytes and is present in the circulation at a 

concentration of 2-30 ug/ml in human23. Although the adipocyte is the primary site of production, 

low levels of adiponectin, both at the mRNA and protein level, have been detected in other cell 

types such as osteoblasts24, hepatocytes25, 26 and myotubes27 following treatment with inflammatory 

cytokines or other stressors. However, such ‘ectopic’ adiponectin production is unlikely to affect 

the circulating levels, due to the relatively low levels, and is proposed to act in an 

autocrine/paracrine manner12.  In serum, adiponectin circulates as trimers, hexamers and HMW 

complexes18. In disease states such as obesity and type-2 diabetes, despite increased fat mass, 

circulating adiponectin levels decrease28-30 with a selective reduction in HMW multimers31, 32. 
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Similar reduction in adiponectin levels have been observed in other obesity-related cardiometabolic 

disorders such as cerebrovascular33 and coronary artery disease34, 35. In patients with type-2 diabetes 

a reduction in adiponectin glycosylation has been also observed36, providing further support of the 

importance and role of hydroxylation and glycosylation of conserved lysine residues in the 

formation and secretion of HMW multimers. Beside disease states, population studies demonstrated 

that adiponectin levels are higher in females than males37 and increases by age in both genders38. 

Finally, in obesity and other related disorders elevated levels of pro-inflammatory cytokines have 

been observed and these cytokines have been shown to reduce adiponectin mRNA expression and 

protein secretion39. Overexpression of adiponectin from adipose tissue results in improved systemic 

insulin sensitivity and fatty acid oxidation40, 41 whereas loss of function of adiponectin or its 

receptors results in decreased insulin sensitivity. Support for this contention comes from studies 

demonstrating adiponectin resistance at the level of the adiponectin receptors42-46. Collectively, 

these observations demonstrate that processes regulating adiponectin expression, multimerisation 

and secretion represent potential therapeutic targets.  

1.3 Adiponectin Receptors  

As described above, adiponectin has several beneficial properties such as insulin sensitising, anti-

diabetes and cardioprotective effects. Adiponectin signalling networks appear to be complex and 

cell-type specific, however, a large body of evidence supports the view that most of adiponectin’s 

pleiotropic effects are mediated through two cognate receptors termed AdipoR1 and AdipoR247 

which represent the main focus of this project.  Two additional adiponectin binding proteins, T-

cadherin and PAQR3, will also be briefly described. 

1.3.1 AdipoR1 and AdipoR2  

In 2003, Kadowaki and colleagues performed a functional screen of a cDNA library from human 

skeletal muscle to identify proteins that bound globular adiponectin48. The isolated cDNA encoded 

for a protein termed AdipoR1 that showed 96.8% homology between human and mouse. A second, 

homologous reading frame was identified using bioinformatics and the gene product was also 

shown to bind adiponectin. The encoded protein exhibited 68% identity to AdipoR1 and was named 

AdipoR2.  Further, independent structural/bioinformatics studies established AdipoR1 and AdipoR2 

as prototypical members of the progestin and AdipoQ receptor (PAQR) superfamily of receptors 

that is unified by (predicted) structural homology.  All PAQR members are predicted to have at 

least seven transmembrane domains (TMD), an ExxNxxxH motif that precedes TM1, an SxxxHxnD 

motif that spans the end of TM2 and the beginning of TM3, and an HxxxH motif that precedes 
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TM7. So far 11 members of human PAQR family are defined by UPF0073 motif which can identify 

PAQR proteins but cannot conjugate to other proteins49. Based on the sequence comparisons, the 

PAQR family is grouped to three main subclasses and AdipoR1 and AdipoR2 belong to the class I 

subfamily49, 50.  More detailed discussion of the key features of AdipoR1 and AdipoR2 are 

discussed below, following the brief sections on T-cadherin and PAQR3.  

1.3.2 T-cadherin 

In 2004, Lodish and colleagues reported that T-cadherin, a member of the large family of cadherin 

cell surface proteins, bound hexameric and high molecular weight adiponectin multimers51. 

Cadherins are a class of cell adhesion molecule involved in calcium-dependent cell-cell 

interactions. T-cadherin is a unique member of this family as it lacks transmembrane and 

intracellular domains. It is anchored to the plasma membrane (PM) via a glycosyl phosphatidyl 

inositol (GPI) anchor52. T-cadherin is highly expressed in the vasculature and has been shown to be 

critical for adiponectin-mediated cardioprotection in mice demonstrating physiological relevance 

and a positive role53. In addition, expression of T-cadherin is upregulated in parallel with 

adiponectin accumulation at the sites of vascular injury54. Only hexamer and HMW adiponectin 

binds to T-cadherin which further demonstrate the importance of multimerisation and, indirectly, 

the post translational modifications (PTMs) that are required to facilitate hexamer/HMW multimer 

formation51, 55. Additional studies supported the interaction of adiponectin and T-cadherin, showing 

adiponectin in mammary tumours from wild-type (T-cadherin expressing) mice but not in T-

cadherin deficient mice56. Beside the mentioned studies highlighting a positive role for T-cadherin, 

there is evidence to support a negative role. For instance, it is demonstrated that reduction of T-

cadherin mRNA, using siRNA, increased adiponectin stimulated phosphorylation of extracellular 

signal-regulated kinases 1 and 2 (ERK1/2)57. However, this could reflect limitations of the in vitro 

system such as differences between cell types and still support that T-cadherin plays a role 

mediating adiponectin effects. Furthermore, several genomic studies suggest that changes in T-

cadherin, encoded by Cdh13, are associated with variation in circulating adiponectin levels in 

humans and a propensity to develop or be protected from cardiovascular and metabolic disease56, 58-

60. Although T-cadherin lacks the intracellular domain needed for signal transduction, it can 

participate in intracellular signalling cascade by competing with AdipoR1 and AdipoR2 for 

adiponectin binding57. Little information is available concerning the regulation of T-cadherin 

expression. However, it has been demonstrated that the addition of progesterone and epidermal 

growth factor to human osteosarcoma cells results in an increase in T-cadherin mRNA expression61. 
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Given that T-cadherin, directly or indirectly, mediates adiponectin specific actions many people 

consider T-cadherin to be an adiponectin receptor.  

1.3.3 PAQR3 

In 2009 Garitaonandia et al implicated PAQR3 or Raf Kinase Trapping to Golgi (RKTG), a 

member of the class I PAQR superfamily, as another adiponectin receptor50. They showed that wild 

type yeast did not respond to adiponectin but expression of PAQR3 conferred adiponectin 

sensitivity. In this study a functional assay was performed in yeast Saccharomyces cerevisiae that 

showed when PAQR receptors, from diverse sources, were heterologously expressed in yeast, they 

could activate the same downstream signal transduction pathway that repressed FET3-lacZ 

expression in response to their respective agonist ligands. It is demonstrated that addition of 100 

pM adiponectin caused the repression of FET3-lacZ in cells expressing AdipoR1, AdipoR2, and 

PAQR3 but not the other members of the PAQR family such as PAQR450.  

PAQR3 is a Golgi-localized membrane protein that modulates intracellular signalling by 

sequestering proteins onto the Golgi apparatus through spatial regulation of Raf kinase and G- 

subunit of G protein coupled receptors62-64. Given that PAQR3 is intracellular may explain why it 

was not recognized in earlier studies that used classical (binding) screening approaches48, 51. 

Overexpression of PAQR3 causes it to interact with Raf-1 kinase and sequesters Raf-1 kinase in the 

Golgi leading to suppression of carcinogenesis50. It was also showed that PAQR3 has a tumour 

suppressor activity in the development of colorectal cancers65. These data have led the author to the 

suggestion that the anticancer effects of adiponectin may be through effects on Raf-1 kinase via 

regulation of PAQR3. However, there is no evidence supporting that adiponectin modulates raf-1 

kinase.  Recently Wang et al. demonstrated that mice with deletion of PAQR3 are resistant to HFD-

induced obesity and hepatic steatosis66. This study revealed that PAQR3 deletion in HFD mice 

improves insulin signalling, accompanied by increased energy expenditure and physical activity. 

Moreover, overexpression of PAQR3 reduced leptin signalling while down-regulation of PAQR3 

enhanced leptin signalling in the hypothalamus66. There is evidence showing that PAQR3 regulates 

insulin signalling by tethering the p110α subunit of PI3K to the Golgi apparatus to modulate insulin 

sensitivity67. 

Collectively, it is demonstrated that PAQR3 plays an important role in regulating obesity and 

energy homeostasis accompanied by modulation of leptin signalling. Also there is evidence 

showing that PAQR3 has anti-cancer properties. However, the mechanism of its action and putative 

links with adiponectin remain obscure and require further study. 
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1.3.4 Adiponectin receptor structure  

Human AdipoR1 is located on chromosome 1 (q32.1) and encodes a protein (AdipoR1) of 375 

amino acids with a molecular weight of 42 kDa. Human AdipoR2 is located on chromosome 12 

(p13.33) and encodes a protein (AdipoR2) of 386 amino acids with a molecular weight of 43 kDa. 

AdipoR1 and AdipoR2 are conserved across species, but they show no or very limited homology to 

other proteins at the primary amino acid level, with homology restricted to the PAQR family 

members49, 68. AdipoR1 and AdipoR2 are predicted to have 7 transmembrane (7TM) domains. 

Experimental findings demonstrate that AdipoR1 and AdipoR2 have intracellular N-termini and 

extracellular C-termini48, 69 which are reverse to most other 7TM proteins, including the GPCRs. 

Overall amino acid homology across AdipoR1 and AdipoR2 is 68%.  However, the first 70/81 

amino acids of AdipoR1 and AdipoR2 show only 17% homology70 whilst the rest of the sequences 

are 95% identical (Figure 1.2).   

Recently, Kadowaki and colleagues71 generated and solved the crystal structure of human 

adiponectin receptors71. In this study truncated form of AdipoR1 and AdipoR2 was used (residues 

89-375 and 100-386 respectively). This means that the non-conserved and part of the conserved N-

terminal domains were deleted and it was suggested that the truncated forms exhibited better 

expression and purification and displayed the same extents of adiponectin-stimulated downstream 

signalling71.  However, it is well known that APPL1, the best characterised interacting protein for 

AdipoR1 and AdipoR272, and other interacting proteins70, 73, 74 mediate most of the downstream 

signalling through interaction with the cytoplasmic domain of AdipoR1 and AdipoR2 (Detailed 

introduction of interacting proteins in section 1.3.4). It was demonstrated that the truncated form of 

AdipoR1 and AdipoR2 (residues 89-375 and 100-386 respectively) contains a short intracellular 

helix (residues 121-129; helix 0), seven transmembrane domain (helices 1-7), three intracellular 

loops (ICL 1-3) and three extracellular loops (ECL 1-3)71. Furthermore, it was demonstrated that the 

seven transmembrane domains form an enclosed large cavity where three conserved histidine 

residues coordinate a zinc ion71. Further functional studies indicated that the zinc-binding structure 

plays a role in adiponectin-stimulated AMPK phosphorylation and uncoupling protein 2 (UCP2) 

upregulation71. It was demonstrated that if the zinc-binding domain was compromised/mutated the 

receptor’s capacity to transduce the adiponectin signalling, including AMPK activation and UCP2 

expression, was reduced71.  
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Figure 1.2.  Schematic representations of AdipoR1 and AdipoR2 structure. Non-conserved N-terminal 

domain (NC-NTD) and conserved N-terminal domain (C-NTD).  

 

1.3.5 Adiponectin receptor expression and regulation 

Given the scarcity of good quality commercial antibodies for adiponectin receptors early studies 

reporting adiponectin receptor expression levels were based upon mRNA expression, which does 

not always correlate with protein levels. Indeed, diversity between expression of adiponectin 

receptor proteins and corresponding mRNA in monocytes of type 2 diabetic patients has been 

shown75. The studies exploring AdipoR1 and AdipoR2 expression demonstrated that they are fairly 

ubiquitously expressed with high levels in metabolically active tissues such as skeletal muscle48, 76, 

77 liver48, 77, 78, heart79-81 and adipose tissue82, 83. They are also expressed in other adiponectin 

responsive cells and tissues such as osteoblasts84, pancreas85, 86, leukocytes75, 87 and the brain88. 

AdipoR1 is more highly expressed than AdipoR2 in all tissues except the liver in mice48, however 
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such differences were less marked in human tissues with AdipoR2 mRNA being more ubiquitously 

expressed in human compared to mice48. The relative protein level in the various tissues, which is 

arguably more useful information, is currently unknown.  Emerging evidence indicates that obesity-

related diseases are characterised not only by hypoadiponectinemia but also by adiponectin 

resistance at the level of the adiponectin receptors 42-46. In several mouse models of insulin-

resistance, reduced AdipoR1 and AdipoR2 mRNA expression has been reported89, 90. Levels of free 

fatty acids and insulin are elevated in states of obesity and insulin-resistance and both have a 

negative effect on AdipoR1 and AdipoR2 expression, providing a potential explanation76, 78, 83, 89, 91. 

Reduced AdipoR1 and AdipoR2 mRNA is also observed in healthy humans with a family history of 

type-2 diabetes92  who are predisposed to type-2 diabetes.  This reduction in AdipoR1 and AdipoR2 

expression may be, at least partly, one of the reasons for being predisposed to type-2 diabetes. 

Therapeutic treatments for insulin-resistance, like metformin and fibrates, increase adiponectin 

receptor expression87, 93, 94. Finally, up-regulation of AdipoR2, but not AdipoR1, has been 

demonstrated with growth hormone82 while long-term exercise can specifically up-regulate 

AdipoR1 expression95, 96. The latter could contribute to enhanced insulin sensitivity in response to 

exercise97, while the concentration of circulating adiponectin does not change following exercise98.  

1.3.6 Adiponectin receptor signalling 

Adiponectin is thought to transduce many of its pleiotropic effects via AdipoR1 and AdipoR2 

through the activation of a number of intracellular kinases including adenosine monophosphate 

(AMP)-activated protein kinase (AMPK), p38 mitogen-activated protein kinase (p38MAPK) as 

well as activation of Peroxisome proliferator-activated receptor α transcription factor (PPARα)99  

(Figure 1.3). Early studies, involving suppression of AdipoR1 and AdipoR2 expression using 

siRNA suggested that AdipoR1 is a high-affinity receptor for globular adiponectin and low-affinity 

receptor for full-length adiponectin, whereas AdipoR2 has intermediate affinity for both the 

globular and full-length adiponectin48. However in these studies recombinant forms of adiponectin 

were used which does not resemble endogenous adiponectin.  Our understanding of the molecular 

pathways connecting adiponectin receptors to their downstream effectors was increased with the 

discovery of adaptor protein containing pleckstrin homology domain, phosphotyrosine binding 

(PTB) domain and leucine zipper motif (APPL1) as a key signalling intermediate100.  APPL1 is an 

adaptor protein of 79 kDa and is composed of multiple domains. The protein includes an N-terminal 

Bin–Amphiphysin–Rvs (BAR) domain, a pleckstrin homology (PH) domain and a phosphotyrosine 

binding (PTB) domain101.  The interaction of APPL1 with AdipoR1 and AdipoR2 is constitutive, is 

increased around two-fold upon adiponectin treatment, and is mediated by the PTB domain of 
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APPL1, interacting with the cytoplasmic domains of AdipoR1 and AdipoR2, although this appears to 

be independent of any tyrosine phosphorylation events82,83. The C-terminal containing PTB domain has 

also been shown to be critical for binding of APPL1 to a number of other proteins including 

oncoprotein-serine/threonine kinase (AKT2)102, follicle stimulating hormone receptor (FSHR) and the 

tumour suppressor Deleted in Colorectal Carcinoma (DCC), and these interactions are also tyrosine 

phosphorylation independent103. 

APPL1 is a key mediator of adiponectin’s effects as demonstrated in siRNA knockdown and 

overexpression studies72. APPL1 is required for adiponectin-induced activation of AMPK, Acetyl-

CoA carboxylase (ACC) and p38MAPK72. Moreover, APPL1 lacking the PTB domain cannot 

interact with the AdipoR1 and AdipoR2 and caused a reduction in adiponectin- and insulin-

stimulated glucose transporter type-4 (GLUT4) translocation72. It was suggested that the 

APPL1ΔPTB
 mutant may function as a dominant negative inhibitor of adiponectin-mediated 

downstream events, probably by interaction and sequestration of endogenous APPL172. As 

mentioned, APPL1 interacts with AKT2 and also with the p110 catalytic subunit of Phosphatidylinositol 

3-kinase (PI3K)102. These two molecules are key elements in the insulin signalling pathway leading to 

the suggestion that APPL1 represents a link between adiponectin and insulin signalling72. The N 

terminal-BAR domain of APPL1 has been shown to interact with the GTP-bound (active) form of 

Rab572, a key regulator of endocytosis101. Interestingly, adiponectin-induced GLUT4 translocation in L6 

myoblasts was blocked by overexpression of Rab5 and this was associated with a selective inhibition of 

p38MAPK activation72 (Figure 1.3). 

Endoplasmic reticulum protein 46 (ERp46; also called endo-protein disulphide isomerase (EndoPDI), 

plasma cell thioredoxin-related protein (PC-TRP) and Thioredoxin domain containing protein 5 

precursors (TXVDC5)104) was identified as an AdipoR1-specific interacting protein70. ERp46 was 

shown to interact with amino acids 1-70 in the N-terminus of AdipoR1, which is highly conserved in 

AdipoR1 across species but non-conserved with AdipoR270. ERp46 is a member of the thioredoxin 

family of proteins.  It has thioreductase activity and is expressed in a range of tissues and cell-types 

including liver104, plasma and endothelial cells105.  It was originally identified in 3 proteomic 

screens104-106, one of which demonstrated considerable enrichment in the ER104.  Knockdown of 

ERp46 affected the distribution of AdipoR1, and AdipoR2, and adiponectin signalling with 

increased AdipoR1 and AdipoR2 levels at the PM and increased adiponectin-stimulated AMPK 

phosphorylation but reduced adiponectin-stimulated p38MAPK phosphorylation70.  

As mentioned above, adiponectin mediates its beneficial effects by activating a number of key 

signalling molecules such as AMPK, which plays a prominent role. AMPK is a ubiquitously 
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expressed intracellular energy sensor which regulates glucose and lipid homeostasis, body weight 

and food intake by responding to hormonal and nutrient signals and is activated by an increase in 

the intracellular AMP/adenosine triphosphate (ATP) ratio107. AMPK is a heterotrimer consisting of 

a catalytic α-subunit and regulatory β and γ subunits, each with different isoforms. Both AMP and 

ADP activate AMPK after binding to its γ-subunit108-110, however, reversible phosphorylation at 

Threonine 172 within the activation loop of the α-subunit by upstream kinases is the most potent 

activator of AMPK 107, 111, 112.  

AMPK activates mechanisms to increase production of ATP while reducing ATP-consumption. 

Once AMPK is phosphorylated by upstream kinases, AMPK phosphorylates ACC. Phosphorylation 

off ACC results in reduced malonyl CoA production and consequently inhibits carnitine 

palmitoyltransferase 1 (CPT-1), an enzyme controlling the transfer of long chain fatty acids to the 

mitochondria for their subsequent oxidation. Therefore, by phosphorylation of ACC more long 

chain fatty acids will be transferred to mitochondria thereby fatty acid oxidation increases113. 

Furthermore, AMPK promotes fatty acid uptake and oxidation by increasing the expression of 

genes regulated by PPARα such as CPTs and uncoupling protein 2 (UCP2) and 3 (UPC3)113. 

AMPK also reduces the expression of enzymes involved in the production of fatty acid, such as 

fatty acid synthase, thus reducing the accumulation of fatty acids in the liver114.  

AMPK also plays a critical role in glucose homeostasis by increasing glucose uptake through 

glucose transporters (GLUT4 and GLUT1) in muscle115 and adipocytes116 as well as decreasing 

expression of genes involved in the gluconeogenic pathway and consequently reducing hepatic 

glucose production117.  

The liver expresses both AdipoR1 and AdipoR2, whereas skeletal muscle expresses predominantly 

AdipoR148. Importantly, obesity decreases not only plasma adiponectin but also AdipoR1 and 

AdipoR2 in liver and skeletal muscle to cause adiponectin resistance118 and overexpression of 

AdipoR1 and AdipoR2 improves insulin resistance90. In 2007, Kadowaki and colleagues 

demonstrated that adenovirus-mediated restoration of AdipoR1 increased the activation of AMPK 

in the liver by adiponectin, whereas overexpression of AdipoR2 did not. However, overexpression 

of AdipoR2 significantly increases the expression of gene encoding PPARα itself as well as its 

target genes in the liver. These results suggested that in the liver, AdipoR1 is more involved in the 

activation of AMPK and subsequently reduces the expression of genes encoding hepatic 

gluconeogenic enzymes and therefore suppresses gluconeogenesis and lipogenesis. Conversely, 
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AdipoR2 activates the PPARα pathway to stimulate fatty acid oxidation and suppress inflammation 

and oxidative stress90.  

In skeletal muscle, insulin resistance has been reported to be associated with mitochondrial 

dysfunction119. In 2010, Kadowaki and colleagues used AdipoR1-knockout (muscle-R1KO) mice to 

determine whether decreased adiponectin/AdipoR1 signalling results in mitochondrial 

dysfunction120. Phosphorylation of AMPK was decreased in muscle-R1KO mice as were the levels 

of molecules involved in mitochondrial biogenesis, such as Peroxisome proliferator-activated 

receptor gamma coactivator 1-alpha (PGC-1α), at both mRNA and protein level. Further 

investigations, in C2C12 myocytes, revealed that adiponectin induces Ca2+ influx by AdipoR1, 

thereby activating CaMKKβ, which lead to increased PGC-1α expression. On the other hand, 

adiponectin/AdipoR1 activates AMPK and Sirtuin 1 (SIRT1), by this means inducing PGC1-α 

deacetylation and activation. Collectively these results indicate that adiponectin and AdipoR1 

stimulate increases in both the expression and activation of PGC1-α, in a similar fashion to exercise, 

and decreased adiponectin/AdipoR1 signals in muscle in pathophysiological conditions such as 

obesity and type-2 diabetes may have roles in the development of PGC1-α dysregulation and 

mitochondrial dysfunction120.   

Aside from key metabolic target organs of liver and muscle, adiponectin also activates signalling 

pathways in a range of other tissues and cell lines. Adiponectin activates c-Jun N-terminal kinases 

(JNK) and p38MAPK pathways in human osteoblasts to stimulate proliferation and 

differentiation121. Such actions are mediated by AdipoR1 because suppression of AdipoR1 by 

siRNA leads to decreased effects of adiponectin on proliferation and differentiation. It has also been 

reported that proliferation of 3T3-L1 cells is stimulated by adiponectin and these cells only express 

AdipoR124. In synovial fibroblasts the sequential activation of AMPK and p38MAPK has been 

demonstrated to be mediated by AdipoR1122. Also, in the hypothalamus AdipoR1 knockdown 

inhibits adiponectin-mediated phosphorylation of Insulin receptor substrate 1 (IRS1), IRS2, AKT 

and Forkhead box protein O1 (Foxo1) as well as phosphorylation of JAK2 and Signal transducer 

and activator of transcription 3 (STAT3)88. Furthermore, globular adiponectin acts through 

AdipoR1 to inhibit leptin-induced proliferation of an oesophageal adenocarcinoma cell line123. One 

of the important effects of adiponectin appears to be to stimulate production of nitric oxide (NO) in 

endothelial cells which contributes to vasodilation124. It also reduces rupturing of atherosclerotic 

plaques in vessel walls23. These data provide evidence that adiponectin has various effects on a 

number of cell types and that these are typically mediated by AdipoR1. Adiponectin stimulates 

ERK1/2 phosphorylation in primary vascular smooth muscle, vascular endothelial cells, hepatocytes 
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and Human Embryonic Kidney 293 (HEK 293) cells through a Src/Ras-dependent pathway57. 

Interestingly, by downregulation of AdipoR1 and AdipoR2 it was demonstrated that, at least in 

HEK 293 cells, either receptor is sufficient to mediate the stimulation of ERK1/2 by adiponectin57.   

Recently, an orally active small-molecule was synthesised by Kadowaki and colleagues125 as 

AdipoR agonist named AdipoRon. AdipoRon binds to both AdipoR1 and AdipoR2 in vitro and 

shows very similar effects to adiponectin in muscle and liver, activates AMPK and PPARα 

pathways, and ameliorates insulin resistance and glucose intolerance in high fat diet fed mice125. 

Other groups also generated different peptides which mimic adiponectin actions126, 127. Collectively, 

these findings provide promising novel therapeutic approach for treating obesity-related disorders. 

 

 

Figure 1.3.  Schematic presentation of adiponectin signal transduction pathway. Both AdipoR1 and 

AdipoR2 interact with APPL1 via their intracellular N-terminal domain. Only AdipoR1 interacts with 

ERP46 through its non-conserved N-terminal domain. AdipoR1 and AdipoR2 activate various signalling 

pathways such as AMPK, p38 MAPK, PPARα, PI3K, Akt, and ERK1/2. Adopted and modified from 

(Brochu-Gaudreau et al. 2010)128. 
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1.3.7 Adiponectin receptors trafficking 

Subcellular localisation, trafficking and degradation of many receptors have been shown to affect 

function and signalling. Thus, the function and signalling of the AdipoR1 and AdipoR2 is also 

likely to be regulated through changes in subcellular localisation (see above). Although GPCRs 

have opposite topology and employ different signal transduction pathways to the adiponectin 

receptors, we have used understanding gained from extensive studies of the GPCRs to provide a 

framework to study mechanisms regulating the subcellular localisation and trafficking of AdipoR1 

and AdipoR2.  As such, I will provide some background to the GPCRs, which represent the largest 

family of drug targets and support the rationale of understanding molecular details of the 

adiponectin receptors, may reveal novel therapeutic strategies. 

1.3.8 G protein-coupled receptors (GPCRs) 

GPCRs are divided into 6 classes (A-F) based on their sequence homology and functional 

similarity129. Each GPCR is also composed of a number of functional domains that control receptor 

properties such as subcellular localisation, agonist binding and endocytosis. Chimeric, truncated and 

mutant receptors have been employed to identify and investigate the functions of these domains. It 

is apparent from these studies that while GPCR proteins possess the same overall TM topology, 

similar domains may perform different functions in different receptors. For example, the list of 

functions assigned to the intracellular carboxyl terminal (C-terminal) tail of GPCRs is extensive. 

Deletion of this entire C-terminal tail in the histamine H2 receptor demonstrated a potential role in 

determining cell surface expression130 while in the angiotensin II and the Bradykinin B2 receptors, 

C-terminal truncations did not affect cell surface expression but compromised the internalisation of 

each receptor131, 132. The C-terminal tail has also been implicated in agonist-induced receptor 

phosphorylation in GPCRs such as the delta opioid receptor and the α1B-Adrenergic receptor133, 134  

and may also function in agonist induced receptor desensitisation as shown for the α1B-Adrenergic 

receptor133. Moreover, the intracellular C-terminus mediates binding of G-proteins and accessory 

proteins to GPCRs such as the angiotensin II receptor and rhodopsin135, 136. The C-terminus, 

however, is not the only intracellular domain of GPCRs involved in G-protein coupling and the 

binding of non-G-proteins. Binding can also occur in the intracellular loops as demonstrated in the 

angiotensin II and dopamine D2 receptors135, 137. Proteins found to interact with these loops in 

GPCRs include those of cytoskeletal-associated proteins and calcium-binding proteins which have 

been shown to regulate PM trafficking and G-protein activation, respectively135. Extracellular 

domains of GPCRs, encompassing both the amino terminal tail and the extracellular loops also 
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participate in a range of functions. In class B GPCRs (including the calcitonin and parathyroid 

hormone receptor), correct translocation of the receptor to the PM is governed by the extreme N-

terminal signal sequence138. In contrast, other GPCRs (such as the formyl peptide receptor and 

angiotensin I receptor) rely upon N-glycosylation modifications of ectodomain asparagine residues 

for correct protein folding and cell surface expression139, 140. Not surprisingly, the ectodomains of 

GPCRs mediate ligand binding although the exact site is receptor specific. In some GPCRs, ligand 

binding occurs in either the 1st, 2nd or 3rd
 extracellular loops (ECL1, ECL2 and ECL3, 

respectively)141-143, whereas in Class C GPCRs, binding occurs via the Venus flytrap structure in 

their large extracellular amino terminus144. Studies have also shown that ligand binding is not only 

determined by extracellular domains but may also depend upon receptor-specific residues buried in 

TM domains. The binding of nicotinic acid to its receptor, for example, occurs via the ECL1 and 

ECL2 however, site-directed mutagenesis and chimeras with a closely related receptor have 

identified residues in the 3rd and 7th
 TM domains that are critical for binding143. Studies 

investigating ligand binding in the angiotensin II receptor identified critical residues in the ECL2 as 

well as in the 7th
 TM domain145. In fact, these studies led the authors to propose that the ligand 

(angiotensin II) orients itself in such a way that its N-terminus interacts with the ECL2 while its C-

terminus interacts with specific residues in the 7th TM domain. Therefore, the binding of ligands to 

some GPCRs may not only depend upon the ectodomains but may require interaction with specific 

residues that are buried in the membrane layer. In 2006 it was demonstrated that there is no exact 

binding site for adiponectin in the C-terminal of AdipoR1 and AdipoR2 and a region which 

includes transmembrane and extracellular domains interacts with adiponectin72. Recently, crystal 

structure analysis of AdipoR1 and AdipoR2 revealed that the three extracellular loops and the final 

13-residues of the adiponectin receptors are required for adiponectin binding and subsequent signal 

transduction of AdipoR1 and AdipoR271. Collectively, these suggest that the receptors bind 

adiponectin deep within the membrane, with the interaction involving several of the TM domains. 

1.3.9 Receptor dimerisation 

For a long time, it was generally accepted that GPCRs existed as monomers. However, this dogma 

has been superseded and current understanding favours the concept that most GPCRs exist and 

function as either dimers or oligomers146. Several observations indicate that GPCR dimerisation 

occurs in the early stages of the biosynthetic process, most likely in the ER147. Since the ER plays a 

central role in the quality control of protein synthesis, dimerisation or oligomerisation148 might be a 

common requirement for GPCRs to pass the quality control checkpoints149.  Receptor-receptor 

interactions may be mediated by covalent and/or non-covalent interactions between extracellular 
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domains, intracellular domains and the transmembrane domains. Several motifs have been 

described to be involved in the dimerisation of GPCRs. For instance, the glycophorin A like GxxxG 

motif has been identified in a range of GPCRs and it is shown that mutation of this motif can reduce 

the dimerisation of neurotransmitter transporter proteins150 and yeast pheromone receptors147. 

Dimerisation of adiponectin receptors is well established48, 70, 151. In 2010 it was demonstrated that a 

GxxxG in the 5th TM of R1 is required for the dimerisation. Using bimolecular fluorescence 

complementation (BiFC) it was shown that mutation of two glycine residues to glutamic acid in the 

cell membrane (G269E and G273E) leads to intracellular accumulation of the receptor leading to 

the suggestion that dimerization of AdipoR1 is critical for correct plasma membrane delivery151. 

Using BiFC it was also suggested that adiponectin treatment prevents the formation of dimers151. A 

limitation of this approach is that the acute effects of adiponectin treatment were not determined. 

However, the effect of adiponectin on receptors dimerisation was confirmed later in 2013 by 

Almabouada et al. which demonstrated that 30 min treatment with adiponectin resulted in reduced 

AdipoR1 and AdipoR2 oligomerisation152.  

1.3.10 Receptors intracellular trafficking and cell surface expression 

Intracellular trafficking and precise targeting to the functional destinations of GPCRs plays a crucial 

role in controlling the physiological functions of the receptors. It has been known that cell-surface 

expression of GPCRs is coordinated by many regulatory factors. First, GPCR export to the cell 

surface is regulated by multiple proteins, such as receptor activity modifying proteins (RAMPs), ER 

chaperones, and accessory proteins. These proteins may stabilise receptor conformation, facilitate 

receptor maturation, and promote receptor delivery to the plasma membrane153-155. Second, recent 

studies have indicated that the exit of GPCRs from the ER may be directed by specific motifs 

embedded within the receptors155-158. Third, post-translational modifications, such as N-linked 

glycosylation, have long been known to be required for the delivery of some GPCRs to the cell 

surface159. Fourth, GPCR cell-surface targeting depends on the microtubule networks160 and GPCRs 

may directly interact with tubulin to control their cell-surface movement161. Fifth, GPCR 

dimerisation may influence proper receptor folding/assembly and the ability of receptors to pass 

through the ER quality-control system162. There are a number of known specific motifs for protein 

export from the ER to Golgi and from Golgi to plasma membrane such as, tyrosine based motifs 

(NPxY and YxxxØ, where x can be any residue and Ø is a hydrophobic residue), di-leucine-based 

motifs ([D/E]xxxL[L/I] and DxxLL)158, 163 and motifs composed of hydrophobic amino acids such 

as F(x)3F(x)3F, F(x)6LL and FN(x)2LL(x)3L164-166.  During the course of this project Beck-Sickinger 

and colleagues demonstrated that two different motifs in the intracellular domain of AdipoR1 play a 
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significant role in the proper cell surface targeting of this receptor167. They demonstrated that 

although these two motifs (F(x)3F(x)3F and D(x)3LL) have different roles, both regulate the 

expression of AdipoR1 on the plasma membrane167. In this study the effects of these motifs, which 

are highly conserved, were not investigated because preliminary studies suggested that AdipoR2 

was not expressed at the cell surface168, 169.        

1.3.11 Receptor palmitoylation 

Palmitoylation is a post-translational lipid modification in receptors, and many other proteins, 

which regulates diverse aspects of protein trafficking and function. Palmitoylation is a reversible 

addition of saturated 16-carbon palmitic acid to specific cysteine residues through the formation of 

a labile thioester bond170. Palmitoylation increases the hydrophobicity of the protein that typically 

facilitates membrane interaction and trafficking and may also regulate protein-protein interactions 

and/or enzymatic activity. Furthermore, palmitoylation may help anchor a protein into a membrane 

and increase its stability171. Two mechanisms have been proposed with regards the mechanism of 

protein palmitoylation. The first is through the action of an enzyme generally referred to as protein 

acyl-transferase (PAT). The second mechanism is non-enzymatic involving spontaneous auto-

acylation in the presence of long-chain acyl-coenzyme As (CoAs)172-174.  Many GPCRs are 

palmitoylated. Palmitoylation normally occurs at a conserved cysteine residue in the cytoplasmic C-

terminal tail, 13-14 amino acids distal to the 7th TM domain. Other, additional cysteine residues, 

including some situated in intracellular loops, may also be palmitoylated175.  As described above, 

palmitoylation may affect localisation, function and signalling of the GPCRs176-178. 

1.3.12 Receptors endocytosis 

Following the cell surface expression, some signal may occur while receptors are at the PM, whilst 

some other signalling happens following internalisation. Therefore, some receptors internalise in 

response to agonist stimulation to transduce specific signals. An important role for β-arrestin 1 and 

2 in mediating internalisation of some GPCRs has been established177, 179. In 2008, overexpressed 

tagged AdipoR1 and AdipoR2 was used to demonstrate the endocytosis of adiponectin receptors168. 

It was identified that Rab5, a member of GTPase large family that regulate vesicle transport in 

cell180, is involved in the endocytosis of AdipoR1168.    

Collectively, our understanding of AdipoR1 and AdipoR2 is rudimentary relative to other 7TM 

proteins.  So far understanding gained from other 7TM proteins such as GPCRs has led to some 
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insights about the adiponectin receptors.  Further investigations will help to define key features of 

AdipoR1 and AdipoR2 and may reveal possible therapeutic opportunities.   
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1.4 Project aims 

AdipoR1 and AdipoR2 are members of a 7TM receptor family, PAQR, of which little is known. 

Evidence suggests that adiponectin mostly, if not totally, exerts its beneficial effects such as insulin 

sensitizing and cardio-protection through these two receptors. Considering the importance of 

adiponectin as a therapeutic target, it is critical to understand receptor function at both a molecular 

and physiological level to combat obesity and associated disorders. The in vivo models have 

provided contradictory results regarding the potential therapeutic benefits of targeting AdipoR1 

and/or AdipoR2 and the in vitro data, particularly for AdipoR2, does little to help explain these 

discordant findings. Understanding the structure and factors regulating the subcellular localisation 

and signal transduction of AdipoR1 and AdipoR2 will increase our knowledge and help to facilitate 

targeted therapeutic strategies. 

1.4.1 Specific hypothesises and aims:  

1- Hypothesis: The subcellular localisation and temporal signal transduction of the adiponectin 

receptors, AdipoR1 and AdipoR2, is different, and these differences are underpinned by 

non-conserved N-terminal domain (NC-NTD). 

Aim 1-1: Compare the subcellular localisation of AdipoR1 and AdipoR2, particularly the 

cell surface expression.  

Aim 1-2: Establish whether the non-conserved N-terminal domains are responsible for 

different expression at the cell surface by generating and characterising cell surface 

expression of chimeric receptors (combining the intracellular N-terminal domain of 

AdipoR1 with the transmembrane and extracellular C terminal domain of AdipoR2, and vice 

versa).  

Aim 1-3: Compare the temporal signalling profile of AdipoR1 and AdipoR2 (and chimeric 

constructs) by examining adiponectin stimulated signalling pathways.  

2- Hypothesis: AdipoR1 and AdipoR2 are subjected to palmitoylation and palmitoylation is 

required for CSE and function of AdipoR1 and AdipoR2. 

Aim 2-1: Determine the palmitoylation of AdipoR1 and AdipoR2 and discover the potential 

palmitoylation sites by generation of different cysteine mutants.  

Aim 2-2: Examine the effects of palmitoylation on AdipoR1 and AdipoR2 CSE and function 

using wild-type and palmitoylation mutant receptors.  
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3- Hypothesis: Muscle specific overexpression of AdipoR1 and AdipoR2 enhance adiponectin 

signalling in vivo. 

Aim 3-1: Identify the effects of overexpression of AdipoR1 and AdipoR2 in mouse skeletal 

muscle using in vivo electrotransfer system.  
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Chapter Two: 

“Characterisation of the adiponectin receptors:                      

The non-conserved N-terminal region of AdipoR2 prevents its 

expression at the cell-surface” 
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2.1 Introduction to this publication 

This Chapter was published as an original article in Biochemical and Biophysical Research 

Communications journal. In this study, we demonstrate that: 

• There are fundamental differences between AdipoR1 and AdipoR2, with only the former 

showing constitutive cell-surface expression.   

• The non-conserved, N-terminal residues of AdipoR2 (residues 1-81) act as a ‘brake’, 

restricting its cell-surface expression.   

• We also show (in line with previous reports) that AdipoR1 and AdipoR2 can homo- and 

hetero-dimerise.  The latter is important as we demonstrate that co-expression of AdipoR1 

with AdipoR2 results in cell-surface expression of both AdipoR1 and AdipoR2.  

Collectively these results demonstrate that there are fundamental differences between AdipoR1 and 

AdipoR2 and suggest that the trafficking and signalling properties of AdipoRs are likely to be 

determined by receptor composition (homo- or hetero-dimer/oligomer) and interacting proteins. 

 

Keshvari, S., Rose, F. J., Charlton, H. K., Scheiber, N. L., Webster, J., Kim, Y. H., Ng, C. Parton, 

R. G., Whitehead, J. P., Characterisation of the adiponectin receptors: The non-conserved N-

terminal region of AdipoR2 prevents its expression at the cell-surface. Biochem Biophys Res 

Commun, 2013. 432(1): p. 28-33. 
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2.2 Abstract  

Adiponectin is a beneficial adipokine with insulin-sensitizing, anti-inflammatory and anti-

atherogenic effects. These effects are mediated by two poorly characterised, closely related, atypical 

seven-transmembrane receptors. In the current report we have used C-terminal, epitope-tagged 

AdipoR1 and AdipoR2 constructs to monitor cell-surface expression by indirect 

immunofluorescence microscopy and quantitative plate-based analysis. We demonstrate that only 

AdipoR1 is constitutively expressed on the cell-surface. Further investigations, involving 

characterisation of a number of chimeric and truncated constructs, show the non-conserved region 

of AdipoR2 (residues 1–81) restricts its cell-surface expression. Introduction or deletion of this 

region, into AdipoR1 or AdipoR2, resulted in inhibition or promotion of cell-surface expression, 

respectively. We also confirmed that AdipoR1 and AdipoR2 can form heterodimers when co-

expressed and that co-expression leads to the cell-surface expression of AdipoR2. Collectively these 

studies demonstrate that the non-conserved region of AdipoR2 restricts its cell-surface expression 

and raise the possibility that the majority of cell-surface AdipoR2 may be present in the form of 

heterodimers. 
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2.3 Introduction 

Since their discovery in 200348 the adiponectin receptors, AdipoR1 and AdipoR2, have been the 

subject of extensive investigations.  A large body of evidence has accumulated which indicates that 

these receptors mediate many of the salutary effects of adiponectin, a key adipokine produced by 

adipocytes12, and thereby defining them as attractive therapeutic targets181.  Early characterisation 

suggested the receptors represented an atypical form of seven-transmembrane domain receptor 

(7TMR) that showed reverse topology to the classic GPCRs, with intracellular and extracellular N-

termini and C-termini respectively48.   They were subsequently recognised as prototypical members 

of a 7TMR family, termed the PAQR family, that show conserved structural and topological 

organisation with some, albeit limited, invariant intracellular amino acids49.  Recent evidence 

suggests the receptors may have intrinsic ceramidase activity182. 

Classic loss and gain of function studies showed AdipoR1 and AdipoR2 transduce the effects of 

adiponectin to activate a number of intracellular signalling networks including AMPK and 

PPARα48, 90.  Evidence from knockout mice suggests that both receptors are important for metabolic 

homeostasis however there are striking differences between the different mouse lines generated by 

three independent groups making detailed mechanistic interpretation difficult90, 183, 184. 

Perhaps surprisingly our understanding of the basic biology of AdipoR1 and AdipoR2 is relatively 

limited.   Like GPCRs185, they have been reported to form homo- and hetero-dimers48, 57, 151 

although the functional and physiological significance of this is unclear.  A dimerization motif 

(G(X)3G) has been identified in the fifth transmembrane domain of AdipoR1151 and a recent report 

has also identified two motifs (D(X)3LL and F(X)3F(X)3F) within the intracellular N-terminal 

region of AdipoR1 that are required for anterograde trafficking to the cell-surface167.  Interestingly, 

all three motifs are conserved in AdipoR2.  In addition, a number of proteins have been shown to 

interact with the intracellular N-terminal regions of AdipoR1 and or AdipoR2 and modulate signal 

transduction186.  The best characterised of these is APPL172, which interacts with both AdipoR1 and 

AdipoR2100. We recently identified ERp46 as an AdipoR1-specific interacting protein and 

demonstrated that knockdown of ERp46 increased the enrichment of AdipoR1, and AdipoR2, in the 

plasma membrane (PM) and altered adiponectin signalling70.  In the current report we have 

extended these studies by further characterisation of AdipoR1 and AdipoR2 at the level of cell-

surface expression. 
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2.4 Materials and Methods 

2.4.1 Reagents and antibodies 

Reagents were from Sigma-Aldrich (Castle Hill, Australia) unless otherwise stated. Tissue culture 

reagents were from Invitrogen (Mount Waverley, Australia).  Primary antibodies against FLAG 

(Sigma Aldrich), HA (Covance), and Calnexin (Affinity Bioreagents) were from the indicated 

suppliers.  AdipoR1 and AdipoR2 antibodies were as described70.  Secondary antibodies were from 

Molecular Probes (Invitrogen) or Rockland (PA, USA).  Molecular biology reagents were from 

New England Biolabs (Ipswich, NA, USA) or Promega Corporation (Madison, WA, USA). 

2.4.2 Molecular biology 

Original constructs encoding C-terminally epitope-tagged (HA or FLAG) human AdipoR1 and 

AdipoR2 were as described70.  Standard PCR-based approaches were used to generate chimeric and 

truncated receptor constructs.  Integrity of all constructs was confirmed by direct sequencing.  

Chinese Hamster Ovary (CHO) cells or Human Embryonic Kidney (HEK) cells were transfected 

using Lipofectamine PLUS (Invitrogen) according to the manufacturer’s instructions.  Cells were 

typically analysed 24 h after transfection. 

2.4.3 Generation of plasma membrane (PM) and ER fractions 

Preparation of cell lysates for biochemical analysis of the subcellular distribution of AdipoR1 and 

AdipoR2 was essentially as described70. 

2 4.4 Immunofluorescence microscopy 

Immunofluorescence microscopy of permeabilised cells was performed as described19.  For 

microscopy of non-permeabilised cells, cells were washed in ice-cold PBS then blocked in 0.2% 

BSA and 0.2% fish skin gelatin in CO2-independent medium for 35 min on ice.  Cells were 

incubated with primary antibody in blocking solution for 45 min followed by 4 x 5 min washes in 

PBS on ice.  After washing, cells were fixed in 4% PFA in PBS on ice for 20 min and quenched in 

0.3M glycine for 15 min.  Following this step cells were processed as described19.  The percentage 

of cells expressing detectable levels of total or cell-surface expression of AdipoR1 or AdipoR2 was 

determined by scoring HA-positive permeabilised (total) or non-permeabilised (cell-surface) cells 

respectively.  For each independent experiment at least 100 cells were counted per condition. 
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2.4.5 Plate-based determination of cell-surface expression of AdipoR1 and AdipoR2 

Quantitative measurement of total and cell-surface expression of AdipoR1 and AdipoR2 was 

performed using a plate-based assay, which was based on the methods outlined above for 

immunofluorescence microscopy.  Signals were detected using the Odyssey infrared imaging 

system (LICOR). 

2.4.6 Electron Microscopy 

CHO cells were fixed with 0.2% glutaraldehyde / 2% PFA  in 0.1 M phosphate buffer and 

processed for EM as described187.  Sections were labelled with α-HA antibodies followed by 10 nm 

protein A-gold. 

2.4.7 Statistical analysis 

Data are presented as mean ± SEM.  Significance was determined using a Student’s t test with 

statistical significance defined as p<0.05. 

2.5 Results  

2.5.1 AdipoR1 but not AdipoR2 is expressed at the cell-surface 

We previously observed that the biochemical subcellular fractionation properties of AdipoR1 and 

AdipoR2 differ, with the bulk of AdipoR1 resident in the PM whilst the majority of AdipoR2 is 

present in the ER in HeLa cells70.  We confirmed this differential subcellular distribution following 

subcellular fractionation of HEK cells (Figure 2.1A), suggesting this is a general phenomenon. 

In order to investigate this further we employed indirect immunofluorescence microscopy.  

Attempts to detect total cellular and cell-surface expression of endogenous AdipoR1 and AdipoR2 

proved unsuccessful in a range of cell types and this probably reflects the relatively low levels of 

expression of these proteins.  To circumvent this problem and allow detailed mechanistic studies we 

performed experiments involving transient transfection of C-terminal, HA-tagged AdipoR1 and 

AdipoR2 constructs (Figure 2.1B).  Cell-surface expression of the C-terminal-tagged constructs 

results in exposure of the epitope-tag, providing a straightforward method for determination of cell-

surface expression.  In permeabilised cells, the distribution of AdipoR1-HA and AdipoR2-HA 

appeared similar, with both showing reticular staining patterns characteristic of the ER (Figure 

2.1C).  Immunoelectron microscopy also revealed similar intracellular distribution profiles for 

AdipoR1-HA and AdipoR2-HA, with both proteins found in the rough ER as well as a range of 
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morphologically-diverse membranous structures including tubular and vesicular profiles (Figure 

2.1E). In contrast, in non-permeabilised cells AdipoR1-HA was readily detected at the cell-surface 

but AdipoR2-HA was undetectable (Figure 2.1C).  Semi-quantitative analysis was performed by 

scoring cells expressing detectable total (permeabilised) or cell-surface (non-permeabilised) 

expression of AdipoR1-HA or AdipoR2-HA.  Around 50% of cells expressed detectable levels of 

AdipoR1-HA or AdipoR2-HA (Figure 2.1D).  Cell-surface expression of AdipoR1-HA was evident 

in around 45% of cells (Figure 2.1D).  A plate-based assay was employed to provide more 

quantitative analysis (Figure 2.1F & G).  This approach revealed that around 50% of AdipoR1-HA 

was present at the cell-surface, whilst cell-surface AdipoR2-HA was undetectable (Figure 2.1F & 

G).  These complementary approaches indicate that around 90% of cells expressing AdipoR1-HA 

have readily detectable cell-surface expression and that this represents around 50% of total cellular 

AdipoR1-HA.  Similar results were obtained using AdipoR1-FLAG and AdipoR2-FLAG tagged 

constructs (data not shown).  These results reveal a surprising difference in steady-state, cell-surface 

expression of AdipoR1 and AdipoR2. 

2.5.2 Characterisation of adiponectin receptor chimera suggests a key role for the non-conserved 

N-terminal region of the AdipoRs. 

We next sought to determine the molecular basis for the observed differences.  AdipoR1 and 

AdipoR2 share 68% identity at the amino acid level.  However, the cytoplasmic domains can be 

split into two regions that differ in their degree of sequence homology.  The N-terminal regions, 

consisting of AdipoR1(1–70) and AdipoR2(1–81), show only 17% homology whilst the remaining 

sequences, comprising AdipoR1(71–136) and AdipoR2(82–147), show 95% homology (Figure 2.2A).  To 

test whether the non-conserved, N-terminal regions underpinned the differences between the 

AdipoRs we generated two chimeras, swapping the non-conserved, N-terminal domains to produce 

an AdipoR2(1–81)/R1(71–375)-HA chimera (R2/R1) and an AdipoR1(1–70)/R2(82–386)-HA chimera 

(R1/R2) that expressed at similar levels (Figure 2.2B).  Semi-quantitative microscopy indicated that 

40-45% of permeabilised cells expressed detectable levels of the two chimeras but only the R1/R2-

HA chimera was detectable at the cell-surface, and this was present in around 40% of cells (Figure 

2.2C).  Quantitative plate-based analysis confirmed these results, with around 40% of total cellular 

R1/R2-HA detected at the cell-surface (Figure 2.2D).  These results indicate that the difference in 

cell-surface expression of AdipoR1 and AdipoR2 can be explained entirely by the non-conserved, 

N-terminal regions. 
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Figure 2.1.  Differences in cell-surface expression of AdipoR1 and AdipoR2. (A) HEK cells were 

fractionated and the distribution of endogenous AdipoR1, AdipoR2 and Calnexin in the ER and PM fractions 

was determined by Western blot. (B) Western blot of CHO cells transiently transfected with AdipoR1-HA or 

AdipoR2-HA probed with α-HA antibody. (C) Immunofluorescence microscopy of transiently expressed 

AdipoR1-HA or AdipoR2-HA constructs in permeabilised and non-permeabilised CHO cells.  Nuclei are 

counterstained with DAPI.  (D) Semi-quantitative analysis of CHO cells expressing detectable receptors in 

non-permeabilised and permeabilised cells (data are from four independent experiments with ≥ 100 cells 

counted for each condition, per experiment; *p<0.05). (E)  Immunogold localization showing intracellular 

distribution of transiently expressed AdipoR1-HA (i, ii, iv & v) and AdipoR2-HA (iii). Note the labelling of 

the RER as well as a range of morphologically-diverse membranous structures including tubular and 

vesicular profiles (arrows); inset shows higher magnification of labelled elements in panel i).  PM, plasma 

membrane; N, nucleus. Bars, 100 nm. (F)  Plate-based analysis of cell-surface (non-permeabilised) and total 

(permeabilised) receptor expression.  (G) Quantitation of plate-based analysis from four independent 

experiments (*p<0.05). 
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2.5.3 Characterisation of truncated adiponectin receptors demonstrates that AdipoR2(1-81) inhibits 

cell-surface expression. 

We next examined whether AdipoR1(1-70) drives expression at the cell-surface or  AdipoR2(1-81) 

prevents cell-surface expression by generating and characterising truncated receptors lacking the 

non-conserved regions, (Δ 1-70)AdipoR1-HA (ΔR1) and (Δ 1-81)AdipoR2-HA (ΔR2).  Western blot 

showed the truncated constructs were expressed at similar levels (Figure 2.2E).  Semi-quantitative 

microscopy and quantitative plate-based analysis demonstrated that ΔR1 and ΔR2 expressed at the 

cell-surface with similar efficiency (Figure 2.2F & G).  These results indicate that residues 1-81 in 

AdipoR2 interfere with cell-surface expression.  It is also noteworthy that the efficiency of cell-

surface expression of ΔR1 and ΔR2 was lower than that observed for full-length AdipoR1-HA, or 

the R1/R2-HA chimera, at around 20% of total cellular ΔR1 and ΔR2.  This may reflect a positive 

role for residues 1-70 of AdipoR1 or simply a limitation of the truncation approach (akin to an 

artefact).  Further truncation of the entire cytoplasmic domains (Δ1-127)AdipoR1 or (Δ1-138)AdipoR2 

abolished cell-surface expression of either construct (data not shown).   

2.5.4 Co-expression of AdipoR1 with AdipoR2 promotes cell-surface expression of AdipoR2 

Next we investigated the effects of co-expression of AdipoR1 and AdipoR2 on cell-surface 

expression.  Co-transfection followed by co-immunoprecipitation demonstrated that AdipoR1 and 

AdipoR2 can form homo- and hetero-oligomers (Figure 2.3A), consistent with previous reports48, 57, 

151.   Around 50% of AdipoR2 was present in hetero-oligomers when co-expressed with AdipoR1.  

Control experiments, where lysates of singly transfected cells were mixed prior to 

immunoprecipitation, indicated that formation of such oligomers was dependent on co-expression 

and did not reflect an artefact of the approach. Cell-surface expression of AdipoR1-HA was 

unaffected by co-expression with either AdipoR1-FLAG or AdipoR2-FLAG (Figure 2.3B).  

Importantly, cell-surface expression of AdipoR2-FLAG was readily detected in cells co-transfected 

with AdipoR1-HA (Figure 2.3B) demonstrating that co-expression of AdipoR1 promotes cell-

surface expression of AdipoR2. 
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Figure 2.2.  Characterisation of cell-surface expression of AdipoR1 and AdipoR2 chimera and 

truncated constructs. (A) Alignment of the cytoplasmic, N-terminal domains of AdipoR1 and AdipoR2 

showing the non-conserved (residues 1-70 and 1-81) and conserved regions (residues 71-136 and 82-147) 

respectively. The recently described anterograde trafficking motifs (D(X)3LL and F(X)3F(X)3F) are 

highlighted. (B) Western blot of transiently expressed AdipoR2(1–81)/R1(71–375)-HA chimera (R2/R1) or 

AdipoR1(1–70)/R2(82–386)-HA chimera (R1/R2).  (C)  Semi-quantitative analysis of CHO cells expressing 

detectable receptors in non-permeabilised and permeabilised cells (data are from four independent 

experiments with ≥ 100 cells counted for each condition, per experiment; *p<0.05).  (D) Quantitative, plate-

based analysis of cell-surface (non-permeabilised) and total (permeabilised) receptor expression from four 
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independent experiments (*p<0.05).  (E) Western blot of transiently expressed (Δ1-70)AdipoR1-HA (ΔR1) or 

(Δ1-81)AdipoR2-HA (ΔR2).  (F)  Semi-quantitative analysis of CHO cells expressing detectable receptors in 

non-permeabilised and permeabilised cells (data are from four independent experiments with ≥ 100 cells 

counted for each condition, per experiment).  (G) Quantitative, plate-based analysis of cell-surface (non-

permeabilised) and total (permeabilised) receptor expression from four independent experiments (*p<0.05). 

 

 

Figure 2.3.   Co-expression of AdipoR1 promotes cell-surface expression of AdipoR2.  (A) CHO cells 

were either co-transfected or singly transfected with AdipoR constructs as indicated and lysates were 

immunoprecipitated using α-FLAG antibody.  Western blots show AdipoRs in starting material (pre), 

immunopreciptated material (IP) and post-IP supernatant (post) probed with α-FLAG (F) and α-HA 

antibodies respectively.  (B) Cells were co-transfected with AdipoR1-HA and either AdipoR1-FLAG (F) or 

AdipoR2-F.  Cell-surface (non-permeabilised) and total (permeabilised) AdipoR1-HA and AdipoR1-F or 

AdipoR2-F were measured using quantitative, plate-based analysis.  The graph shows results from four 

independent experiments (*p<0.05). 
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2.6 Discussion 

This report establishes major differences in the steady-state, cell-surface levels of the adiponectin 

receptors, AdipoR1 and AdipoR2, and indicates that these differences can be explained entirely by 

differences in the non-conserved, N-terminal cytoplasmic domains.  Cell-surface expression of 

AdipoR2 is restricted by amino acids 1-81.  Co-expression with AdipoR1 can overcome this.  These 

findings have major implications, in particular when considering cell-surface accessibility of the 

receptors and the potential for enhancing adiponectin sensitivity by increasing cell-surface 

expression of AdipoR2. 

Our observations showing restricted cell-surface expression of AdipoR2 under steady-state 

conditions may appear somewhat surprising.  However, it has been proposed that the AdipoRs and 

PAQR3 may be derived from a shared evolutionary protein49, 169.  PAQR3, which has been reported 

to bind adiponectin and referred to as AdipoR350, 188, is also known as Raf kinase trapping to Golgi 

(RKTG) and is a Golgi-resident membrane protein with a cytoplasmic N-terminus that is known to 

interact with, and provide spatial regulation of, Raf kinase63, 189.  Collectively, these findings 

highlight our limited understanding of the basic biology of the AdipoRs.  Although the original 

description and preliminary characterisation of transiently expressed AdipoR1 and AdipoR2 

proteins suggested both receptors presented at the PM with exposed C-termini48, subsequent 

anecdotal evidence from independent groups suggested AdipoR2 may not be expressed at the cell-

surface168, 169.  We have shown that endogenous AdipoR1 and AdipoR2 display different subcellular 

fractionation properties, with AdipoR1 enriched in the PM and AdipoR2 enriched in the ER in HEK 

cells (in this report) and in HeLa cells70.  Moreover, in this study we have provided rigorous 

quantitative assessment of cell-surface expression of transiently expressed, epitope-tagged AdipoR1 

and AdipoR2 and a range of chimeric and truncated constructs which provide evidence that the cell-

surface expression of AdipoR2 is restricted by the non-conserved residues 1-81.  Indeed, our 

observations showing cell-surface expression of a (Δ1-81)AdipoR2-HA (ΔR2) construct are entirely 

consistent with those from the original report by Kadowaki and colleagues, who inadvertently 

characterised a truncated form of AdipoR2 lacking this N-terminal region48, 49.  

We also demonstrated that co-expression of AdipoR1 with AdipoR2 results in increased cell-

surface expression of AdipoR2.  Several groups have shown that AdipoR1 and AdipoR2 can form 

homo and hetero-dimers48, 57, 151.  Our data suggests that formation of hetero-oligomers occurs with 

the expected frequency (around 50%) when AdipoR1 and AdipoR2 are co-expressed, prompting us 

to speculate that the appearance of AdipoR2 at the cell-surface when co-expressed with AdipoR1 
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reflects the cell-surface expression of AdipoR1/AdipoR2 dimers.  Such a model is also consistent 

with our previous observations, showing that ERp46 restricts the localisation of endogenous 

AdipoR1 and AdipoR2 at the PM70.  ERp46 interacts specifically with AdipoR1, via the non-

conserved, N-terminal region of AdipoR170, suggesting that this interaction precludes the 

AdipoR1/AdipoR2 interaction.  Thus, knockdown of ERp46 would be expected to facilitate 

increased interactions between endogenous AdipoR1 and AdipoR2, hence increased cell-surface 

expression of both receptors.  The importance of dimerization, particularly hetero-dimerization, and 

interacting proteins in the regulation of GPCR trafficking and signalling is now widely 

recognised185, 190, 191 and it seems likely that similar principles will apply to the AdipoRs. 

A major determinant of the extent of hetero-dimerization is the relative expression levels of 

AdipoR1 and AdipoR2, as well as other modulators such as ERp46.  Current information detailing 

the relative levels of AdipoR1 and AdipoR2 is restricted to mRNA.  Whilst this is a clear limitation, 

such information provides a basis to estimate the likely extent of hetero-dimerization in different 

tissues.  For example, in mice the mRNA levels of AdipoR1 are 5-6 fold higher than AdipoR2 in 

skeletal muscle whereas expression of the two receptors is comparable in liver89.  Although it would 

follow that a greater proportion of AdipoR2 would be present in hetero-dimers in muscle, the 

hetero-dimers would still represent a minor species in this tissue where AdipoR1 appears to be 

functionally dominant120.  In contrast, the hetero-dimers represent a potentially major species in the 

liver, and macrophages, where AdipoR2 has been shown to be of functional importance192, 193.  

Intriguingly, recent evidence suggests the formation of AdipoR1 dimers is reduced by 

adiponectin151.  Considering the above, future, more-comprehensive studies to characterise the 

effects of adiponectin on the dynamics of both homo- and hetero-AdipoR dimers are warranted. 

Emerging evidence supports the notion that adiponectin resistance contributes to the aetiology of 

obesity related disease12, 89.  Increasing cell-surface expression of the receptors, most notably 

AdipoR2, may provide a novel therapeutic approach to help improve adiponectin sensitivity.  

Indeed, several lines of evidence suggest that increased transduction of the adiponectin signal from 

the PM leads to enhanced coupling to AMPK70, 72, 168, which itself represents a major target for 

therapeutic intervention194. 

The current report reveals fundamental differences between AdipoR1 and AdipoR2 and, in 

combination with earlier studies of AdipoRs and GPCRs, suggest that the trafficking and signalling 

properties of AdipoRs are likely to be determined by receptor composition (homo- or hetero-

dimer/oligomer) and interacting proteins.  Our current findings suggest that the majority of cell-
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surface AdipoR2 may be present in the form of hetero-dimers, which are likely to have unique 

characteristics when compared with AdipoR1 or AdipoR2 homo-dimers respectively.  Increased 

understanding may provide new opportunities to selectively enhance adiponectin’s key, beneficial 

effects. 
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Chapter Three: 

“Characterisation of the adiponectin receptors:         

Differential cell-surface expression and temporal signalling 

profiles of AdipoR1 and AdipoR2 are regulated by the non-

conserved N-terminal trunks” 
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3.1 Introduction to this publication 

This chapter was published in Molecular and Cellular Endocrinology Journal as an original 

investigation.  

In this report we confirm and extend our previous report showing that the differential cell-surface 

expression of AdipoR1 and AdipoR2 is determined by the non-conserved, N terminal domains of 

AdipoR1 and AdipoR2 (residues 1-70 and 1-81 respectively) and demonstrate that: 

• serum starvation increases cell-surface expression of both receptors 

• both receptors display ligand-dependent internalisation 

• the non-conserved, N-terminal trunks contain multiple regions that have positive and 

negative effects on cell-surface expression 

• AdipoR1 and AdipoR2 display different temporal signalling profiles 

• AdipoR1 mediates effects acutely (peak at 15 min) 

• AdipoR2 mediates effects more chronically (peak at 24 h) 

• the non-conserved, N-terminal trunks determine the temporal signalling profiles of AdipoR1 

and AdipoR2 

Collectively these results highlight the importance of the non-conserved, N-terminal trunks of these 

atypical 7TM receptors.  This is the first report to compare the signalling properties of full-length 

AdipoR1 and AdipoR2 and, hence, the first to identify such fundamental differences.  As discussed 

in the manuscript, Yamauchi et al, Nature, 2003, cited > 1500 times, performed somewhat similar 

experiments but the results and conclusions are compromised because they inadvertently used a 

truncated form of AdipoR2 that lacks the non-conserved, N-terminal trunk of AdipoR2. 

 

Keshvari, S. and Whitehead J.P., Characterisation of the adiponectin receptors: Differential cell-

surface expression and temporal signalling profiles of AdipoR1 and AdipoR2 are regulated by the 
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3.2 Abstract 

The adiponectin axis regulates cardiometabolic and inflammatory tone making it an attractive 

therapeutic focus.  Rudimentary understanding of the adiponectin receptors, AdipoR1 and AdipoR2, 

constrains our ability to target these atypical seven trans-membrane proteins.  Here, we aimed to 

further elaborate the molecular details governing cell-surface expression and signal transduction by 

transient expression of AdipoR1 or AdipoR2 in HEK293 cells.  Following serum starvation, 

adiponectin reduced cell-surface expression of both receptors, consistent with internalisation, and 

promoted phosphorylation of downstream effectors.  Temporal phosphorylation profiles differed 

with AdipoR1 and AdipoR2 transduced signals peaking at 15 min and 24 h.  Analysis of receptor 

chimeras showed that the non-conserved N-terminal trunks (AdipoR1(1-70) and AdipoR2(1-81)) define 

the temporal signalling profiles and contain multiple regions that promote or inhibit cell-surface 

expression, respectively.  These findings highlight the importance of the non-conserved N-terminal 

trunks and demonstrate that cell-surface expression of AdipoR1 and AdipoR2 is required for 

effective coupling to downstream effectors. 
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3.3 Introduction 

Adiponectin is a key adipokine with demonstrated anti-diabetic, anti-inflammatory and anti-

atherogenic properties195.  Adiponectin’s pleiotropic effects are mediated through two atypical 7 

transmembrane (7TM) domain receptors termed AdipoR1 and AdipoR212, 48.  Empirical evidence 

demonstrates that AdipoR1 and AdipoR2 have intracellular N-termini and extracellular C-termini48 

unlike most other 7TM proteins including the G-protein coupled receptors (GPCRs).  In vivo and in 

vitro studies have demonstrated that AdipoR1 and AdipoR2 mediate the effects of adiponectin via 

activation of a number of signalling molecules such as AMPK, PPARα, ERK and P38MAPK90, 100, 

196-198.  Coupling to these downstream effectors has been shown to be modulated by proteins that 

interact with the cytoplasmic, N-terminal domains of both AdipoR1 and AdipoR2, such as APPL1, 

RACK and protein kinase CK273, 74, 100, or with the non-conserved N-terminal trunk of AdipoR1, 

namely ERp4670.   

Emerging evidence indicates that obesity-related diseases are characterised not only by 

hypoadiponectinemia but also by adiponectin resistance at the level of the adiponectin receptors42-46, 

199.  Thus, a greater understanding of the molecular processes required to facilitate efficient 

adiponectin receptor coupling to intracellular signalling pathways may be expected to provide new 

insights into pathophysiological events and the identification of novel therapeutic approaches.   

We recently reported that under steady-state conditions (no serum starvation) the cell-surface 

expression of AdipoR1 and AdipoR2 differs.  AdipoR1 is enriched in the plasma membrane whilst 

AdipoR2 is more abundant in the ER200.  We also demonstrated that this difference is due to the 

non-conserved N-terminal trunks of AdipoR1 and AdipoR2200.  In the current report we have 

extended these studies by performing further characterisation of the molecular features governing 

the cell-surface expression and subsequent coupling to downstream signalling effectors of AdipoR1 

and AdipoR2.  Our results demonstrate that the non-conserved N-terminal trunks dictate the cell-

surface expression and temporal signalling profiles of AdipoR1 and AdipoR2. 

3.4 Materials and methods 

3.4.1 Reagents and antibodies 

Reagents were from Sigma–Aldrich (Castle Hill, Australia) unless otherwise stated.  Tissue culture 

reagents were from Invitrogen (Mount Waverley, Australia).  Primary antibodies against HA and 

Sodium Potassium ATPase were from Covance (Washington, USA) and Abcam (Melbourne, 

Australia) respectively.  Primary antibodies against AdipoR1 and AdipoR2 were as described70.  
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Secondary antibodies were from Life Technology (Invitrogen).  Molecular biology reagents were 

from New England Biolabs (Ipswich, NA, USA) or Promega Corporation (Madison, WA, USA).  

Serum from adult WT and adiponectin knockout mice 201 was collected in accordance with ethics 

approval from the animal ethics committee of the University of Queensland. 

3.4.2 Molecular biology 

Original constructs encoding C-terminally epitope-tagged (HA) human AdipoR1 and AdipoR2 were 

as described70.  Chimeric and truncated receptor constructs were generated as described200.  

AdipoR1 and AdipoR2 mutants were generated by QuikChange site-directed mutagenesis (Agilent 

Technology, CA, USA).  Mutations were confirmed by DNA sequencing (Sanger method).  

Chinese Hamster Ovary (CHO) cells or Human Embryonic Kidney 293 (HEK293) cells were 

transfected using Lipofectamine PLUS (Invitrogen) according to the manufacturer’s instructions.  

Transfection efficiency was typically around 70% and cells were analysed 24-48 h post-

transfection.   

3.4.3 Flow cytometry analysis 

Flow cytometry was performed to determine the percentage of transfected cells that were 

expressing AdipoR1 or AdipoR2 at the cell-surface.  Flow cytometry was carried out using a 

CyAn™ ADP Analyser (Beckman Coulter, Sydney, Australia) and FlowJo software.  Briefly, 

HEK293 cells were washed with cold PBS and stained with HA antibody.  For analysis of 

permeabilised cells, cells were incubated in 0.1% Saponin for 15 min prior to blocking.  After 

washing with PBS, cells were stained with an AlexaFluor 488-conjugated secondary antibody 

(Invitrogen).  Cells were then lifted non-enzymatically and 80,000 events were analysed by flow 

cytometer.  For all experiments, mean fluorescence intensity (MFI) values were calculated by 

subtracting secondary only staining from specific anti-HA staining.   

3.4.4  Plate-based determination of cell-surface expression of AdipoR1 and AdipoR2 

Quantitative measurement of total and cell-surface expression of AdipoR1 and AdipoR2 was 

performed, in permeabilised and non-permeabilised cells respectively, using a plate-based assay as 

described200.  Briefly, parental HEK293 cells or transfected HEK293 cells were incubated in either 

the presence or absence of serum at 37°C overnight.  Cells were incubated in 100% ice-cold 

methanol for 5 min to permeabilise (for measurement of total receptor levels) or left non-

permeabilised (for determination of receptors at the cell-surface).  Cells were then stained with HA 

antibody followed by fixation with 4% Paraformaldehyde.  Cells were stained with an AlexaFluor 
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488-conjugated secondary antibody.  Signals were detected using the POLARstar Omega plate-

reader (BMG Labtech, Offenburg, Germany).    

3.4.5 Immunofluorescence microscopy 

Immunofluorescence microscopy of permeabilised and non-permeabilised cells was performed as 

described200 affording details of the subcellular distribution  of the receptors and the cell-surface 

expression respectively.  Images were taken using a Delta Vision OMX microscope (Applied 

Precision, GE Healthcare, Washington, USA).   

3.4.6 Akt, ERK and p38MAPK phosphorylation assays 

Parental HEK293 cells or transfected HEK293 cells were serum-starved overnight then stimulated 

with recombinant human globular adiponectin (Prospec Protein Specialists, USA) or vehicle for 15 

min, 1 h or 24 h.  Phosphorylation of Akt, ERK and p38MAPK was measured using AlphaScreen 

SureFire kits essentially as described (PerkinElmer Life and Analytical Sciences, Waltham, MA, 

USA).  Plates were read using a POLARstar Omega plate reader.  Background signals were 

determined by treatment of cells with the Akt1/2 kinase inhibitor, U0126 (ERK inhibitor) or 

SB203580 (p38MAPK inhibitor) and were subtracted to give specific phospho-signals for Akt, 

ERK and p38MAPK respectively. 

3.4.7 SDS-PAGE/Western blotting of AdipoR1 and AdipoR2 

Western blotting of particulate fractions (enriched for the ER and PM that contain greater than 90% 

of total cellular AdipoR1 and AdipoR2) was performed on parental and transfected cells as 

described70. 

3.4.8 Statistical analysis 

Data are presented as mean ± SEM.  Significance was determined using one way ANOVA followed 

by Tukeys test with statistical significance defined as p < 0.05. 

3.5 Results 

3.5.1 Serum starvation increases the cell-surface expression of AdipoR1 and AdipoR2. 

We previously reported that under steady-state conditions the subcellular localisation of AdipoR1 

and AdipoR2 differed with around 50% of AdipoR1 present on the cell-surface whilst AdipoR2 was 

localised predominantly at the ER200.  We subsequently demonstrated that the non-conserved, N-
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terminal trunks of AdipoR1(1-70) and AdipoR2(1-81) underpinned these differences200.  To extend 

these studies we first examined the cell-surface expression of transiently expressed, C-terminally 

HA-tagged AdipoR1 and AdipoR2200 in serum-starved or non-starved HEK cells using flow 

cytometry and plate-based assays as well as high resolution microscopy.  Flow cytometry was used 

to determine the number of cells with detectable cell-surface expression of AdipoR1 or AdipoR2.  

Serum starvation did not affect the number of cells with AdipoR1 on the cell-surface however the 

number of cells with detectable cell-surface expression of AdipoR2 was significantly increased 

following serum starvation (Figure 3.1A).  A complementary plate-based assay was used to 

determine total and cell-surface levels of AdipoR1 and AdipoR2.  This approach revealed 

significantly increased cell-surface expression of both AdipoR1 and AdipoR2 following serum 

starvation (Figure 3.1B).  Finally, qualitative analysis by high resolution confocal microscopy 

suggested that the cell-surface expression of AdipoR1 was increased in cells following serum 

starvation.  We were unable to detect cell-surface expression of AdipoR2 in non-permeabilised cells 

in steady-state or serum-starved cells which probably reflects a limitation of this approach (Figure 

3.1G-J).  These results extend our previous findings200 by showing that serum starvation results in 

an increase in the proportion of AdipoR1 or AdipoR2 that is expressed on the cell-surface with the 

latter resulting in an increase in the number of cells with detectable cell-surface levels of AdipoR2.   

Notwithstanding, the levels of AdipoR2 on the cell-surface of serum starved cells are still relatively 

limited compared to those of AdipoR1. 

3.5.2 Adiponectin reduces cell-surface expression of AdipoR1 and AdipoR2. 

We next went on to investigate the effect of serum, and more specifically adiponectin, on receptor 

cell-surface expression.  Following overnight serum starvation cells overexpressing either AdipoR1 

or AdipoR2 were incubated with 10% fetal bovine serum (FC) for 30, 60, 90, 120 and 240 min.  

Analysis by flow cytometry (Figure 3.2A-B) and microscopy (Figure 3.2C-J) indicated that cell-

surface expression of both AdipoR1 and AdipoR2 was reduced by 60% and 90% after 30 min.  To 

investigate the role of adiponectin more specifically we then used serum from wild-type (WT) or 

adiponectin knockout (Adn-/-) mice.  Serum from WT mice promoted similar effects as the FC, 

whilst serum from Adn-/- mice was without effect (Figure 3.2A-B).  Similar results were obtained 

following treatment with 2.5 µg/ml globular adiponectin (gAd) (Figure 3.2A-B).  These results are 

consistent with the adiponectin-mediated internalisation of AdipoR1 and AdipoR2 reported 

previously152, and suggest this is a specific, ligand-mediated event. 
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Figure 3.1.  Effects of serum starvation on cell surface expression of AdipoR1 and AdipoR2.  (A) Flow 

cytometry and (B) plate-based analysis of HEK293 cells transiently expressing AdipoR1-HA and AdipoR2-

HA constructs.  The cell-surface expression (CSE) ratio shows the (A) percentage of transfected cells 
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expressing AdipoR1 or AdipoR2 at the cell-surface and (B) the ratio of cell-surface to total receptor levels   

Results are from four independent experiments (*p<0.05).  (C-J) immunofluorescent microscopy of 

transiently expressed AdipoR1-HA or AdipoR2-HA constructs (green) in permeabilised or non-

permeabilised CHO cells with or without 16 h serum starvation.  Plasma membrane is counterstained with 

sodium potassium ATPase antibody (red) and nuclei with DAPI (blue). 

 

3.5.3 Overexpression of AdipoR1 and AdipoR2 enhances adiponectin stimulated Akt, ERK and 

P38MAPK phosphorylation. 

We next examined the effects of AdipoR1 and AdipoR2 overexpression on adiponectin-stimulated 

phosphorylation of key signalling molecules implicated in mediating adiponectin’s effects, namely 

Akt198, 202, ERK57, 198 and P38MAPK70, 122.  In the parental HEK293 cells endogenous levels of 

AdipoR1 and AdipoR2 were undetectable by standard Western blot whereas transfected AdipoR1 

and AdipoR2 were readily detected (Figure 3.3A & B).  Parental cells or cells overexpressing 

AdipoR1 or AdipoR2 were treated with recombinant gAd for 15 min or 24 h (based on preliminary 

timecourse experiments - data not shown) to determine acute and long-term effects.  Under these 

experimental conditions there was no detectable adiponectin-stimulated phosphorylation of Akt, 

ERK, or p38MAPK in the parental cells.  However, significant and maximal phosphorylation of 

Akt, ERK, and p38MAPK occurred after 15 min in AdipoR1 expressing cells, and after 24 h in 

AdipoR2 overexpressing cells (Figure 3.3C-E).  We then went on to perform dose response studies, 

treating cells with increasing concentrations of gAd (0.5 – 5.0 µg/ml) for either 15 min or 24 h.  

After 15 min, the phospho-Akt dose response was similar in AdipoR1 and AdipoR2 overexpressing 

cells (Figure 3.3F), although AdipoR1 typically mediated 10-20% higher phosphorylation than 

AdipoR2.  However, after 24 h the phospho-Akt dose response was markedly different.  AdipoR2 

promoted robust Akt phosphorylation with as little as 0.5 µg/ml gAd whilst AdipoR1 was without 

effect at concentrations up to 1.5 µg/ml gAd (Figure 3.3I).  Coupling to ERK and p38 MAPK also 

showed different characteristics with AdipoR1 exhibiting greater transduction than AdipoR2 at 15 

min, especially at gAd concentrations of 2.0 µg/ml or higher (Figure 3.3G & H).  These differences 

became less marked after 24 h (Figure 3.3J & K) with phosphorylation of P38MAPK being 

constitutively higher in AdipoR2 cells compared with AdipoR1 cells (Figure 3.3K).  Collectively 

these results provide evidence that there are fundamental differences between signalling emanating 

from AdipoR1 and adipoR2, most notably the difference in temporal profiles with AdipoR1 acting 

more acutely than AdipoR2.  
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Figure 3.2.  Adiponectin reduces the cell-surface expression of AdipoR1 and AdipoR2.  Flow cytometry 

analysis of cell-surface expression ratio of HEK293 cells transiently transfected with (A) AdipoR1-HA or 

(B) AdipoR2-HA.  Cells were incubated with fetal bovine serum (FC) for 0, 30, 60, 120, 240 min or with 

serum from wild-type mice (WT) or serum from adiponectin knockout mice (KO) or with gAd (2.5 µg/ml) 

for 30 min.  The % MAX represents receptor cell-surface expression in cells without any addition and was 

set to 100% for AdipoR1 and AdipoR2 respectively.  Results are from four independent experiments 

(*p<0.05).  (C-J) immunofluorescent microscopy of AdipoR1-HA and AdipoR2-HA constructs transiently 

expressed in CHO cells following 0, 30, 60 or 120 min treatment with serum.  Plasma membrane is 

counterstained with sodium potassium ATPase antibody (red) and nuclei with DAPI (blue). 

3.5.4 The subcellular localisation of AdipoR1 and AdipoR2 is governed by multiple domains. 

We previously reported that the non-conserved N-terminal trunks of AdipoR1(1-70) and AdipoR2(1-81)  

underpinned the observed differences in cell-surface expression200.  To investigate this further we 

generated and characterised the cell-surface expression of a number of chimera (Figure 3.4A).  

Analysis by flow cytometry demonstrated a striking profile, with increasing inclusion of the non-

conserved trunk of AdipoR2 reducing cell-surface expression whilst the converse was observed 

upon increasing content of the non-conserved trunk of AdipoR1 (Figure 3.4B).  These findings 

suggest there is not a single region or motif within the non-conserved trunks that underpins the 

different cell-surface expression profiles of AdipoR1 and AdipoR2 but that multiple regions 

contribute to these differences. 

Next we characterised the signalling properties of the two chimera in which the entire non-

conserved N-terminal trunks had been swapped (termed R1(70)R2 and R2(81)R1, respectively) 

(Figure 3.4A).  In cells overexpressing R2(81)R1 chimera the temporal profiles of Akt, ERK and 

p38MAPK phosphorylation showed peak phosphorylation at 24 h whereas in cells overexpressing 

R1(70)R2 chimera phosphorylation peaked at 15 min (Figure 3.4C-E).  These profiles closely 

resembled those of AdipoR2 and AdipoR1 respectively (see Figure 3.3A-C), indicating that key 

differences in the temporal signalling profiles of AdipoR1 and AdipoR2 are dictated by the non-

conserved N-terminal trunks.   
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Figure 3.3.  AdipoR1 and AdipoR2 exhibit different temporal activation profiles.  Western blot showing 

levels of (A) AdipoR1 and (B) AdipoR2 in transfected and parental (non-transfected) HEK293 cells.  

Alphascreen analysis of (C) Akt, (D) ERK and (E) P38MAPK phosphorylation in HEK cells transiently 

expressing AdipoR1 or AdipoR2 constructs incubated with 2.5 µg/ml globular adiponectin (gAd) for 0, 15 

min or 24 h.  Alphascreen analysis of Akt, ERK and P38MAPK phosphorylation in HEK cells transiently 

expressing AdipoR1 or AdipoR2 constructs incubated with increasing concentrations of gAd (0 to 5 µg/ml) 

for 15 min (F-H) or 24 h (I-K).  Results are from at least four independent experiments.  In graphs C-E: 

*p<0.05, **p<0.01, ***p<0.001, comparing AdipoR1 or AdipoR2 at different timepoints; #p<0.05, ##p<0.01, 
###p<0.001, comparing AdipoR1 vs AdipoR2 at the same timepoint;  @p<0.05, comparing AdipoR1 vs 

parental cells at the same timepoint.  In graphs F-I: *p<0.05, **p<0.01, ***p<0.001 comparing AdipoR1 vs 

AdipoR2.
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Figure 3.4.  The non-conserved, N-terminal domain of AdipoR1 and AdipoR2 regulates cell-surface 

expression and signal transduction.  (A) schematic representation of generated chimeric constructs. (B) 

Flow cytometry analysis of cell-surface expression ratio in HEK cells transiently expressing WT AdipoR1-

HA,  AdipoR2-HA and chimeric constructs, (AdipoR2(1–43)/R1(32–375)-HA, AdipoR2(1–69)/R1(58–375)-HA, 

AdipoR2(1–81)/R1(71–375)-HA, AdipoR1(1–31)/R2(44–386)-HA, AdipoR1(1–57)/R2(70–386)-HA and AdipoR1(1–70)/R2(82–

386)-HA).  Alphascreen analysis of (C) Akt, (D) ERK and (E) p38MAPK phosphorylation in HEK cells 

transiently expressing chimeric AdipoR2(1–81)/R1(71–375)-HA (R2/R1) or AdipoR1(1–70)/R2(82–386)-HA (R1/R2) 

constructs incubated with 2.5 µg/ml globular adiponectin (gAd) for 0, 15 min or 24 h.  Results are from at 

least four independent experiments (*p<0.05).  #comparing different genes, same timepoint.  $comparing 

selected gene and parental cells, same timepoint. 
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3.5.5 Cell-surface expression and downstream signalling of AdipoR1 and AdipoR2 is regulated by 

conserved F(x)3F(x)3F and D(x)3LL motifs.   

Two different motifs within the intracellular N-terminal trunk of AdipoR1 have been shown to be 

essential for its efficient cell-surface expression167.  Mutation of an acidic di-leucine motif 

(106D(x)3LL) or a putative ER exit motif (121F(x)3F(x)3F), which are known to regulate trafficking of 

GPCRs164, 203, resulted in inhibition of cell-surface expression of AdipoR1167.  Alignment of the 

primary amino acid sequence of AdipoR1 and AdipoR2 from multiple species revealed 

conservation of these motifs between AdipoR1 and AdipoR2 (Figure 3.5A) leading us to speculate 

that these motifs would also be required for efficient cell-surface expression of AdipoR2.  To test 

this we generated and characterised the expression of AdipoR2, and AdipoR1, mutants in which the 

key residues were mutated to alanine (termed R1/R2-FFF or R1/2-DLL where each of the residues 

was mutated to A).  Flow cytometry of serum starved cells revealed a significant reduction in the 

cell-surface expression of AdipoR1-FFF and AdipoR1-DLL as well as AdipoR2-FFF and AdipoR2-

DLL constructs compared to the WT receptors (Figure 3.5B & F).  Furthermore, these constructs 

exhibited reduced adiponectin-stimulated phosphorylation of Akt (Figure 3.5C&G), ERK (Figure 

3.5D&H) and P38MAPK (Figure 3.5E&I).  These results indicate that efficient cell-surface 

expression of AdipoR1 and AdipoR2 is required for adiponectin signal transduction. 
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Figure 3.5.  F(x)3F(x)3F and D(x)3LL motifs are required for efficient cell surface expression and 

signal transduction via AdipoR1 and AdipoR2.  (A) Sequence alignment of the cytoplasmic N-terminal 

trunk of AdipoR1 and AdipoR2.  Conserved F(x)3F(x)3F and D(x)3LL motifs are highlighted (in grey).  (B) 

Flow cytometry analysis of cell-surface expression ratio in HEK293 cells transiently expressing WT 

AdipoR1, the F 121, 125, 129A (R1-FFF) and D106, L110, L111A (R1-DLL) mutants.  Alphascreen 

analysis of (C) Akt, (D) ERK and (E) p38MAPK phosphorylation in HEK cells transiently expressing WT 

AdipoR1, R1-FFF or R1-DLL constructs incubated with 2.5 ug/ml gAd for 15 min.  (F) Flow cytometry 

analysis of cell-surface expression ratio in HEK293 cells transiently expressing WT AdipoR2, the F 132, 

136, 140A (R2-FFF) and D117, L121, L122A (R2-DLL) mutants.  Alphascreen analysis of (G) Akt, (H) 

ERK and (I) P38MAPK phosphorylation in HEK293 cells transiently expressing WT AdipoR2, R2-FFF or 

R2-DLL constructs incubated with 2.5 ug/ml gAd for 24 h.  Results are from at least four independent 

experiments (*** p<0.001). 
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3.6 Discussion 

In the current report we have elaborated the molecular details governing differential cell-surface 

expression and downstream coupling of the adiponectin receptors, AdipoR1 and AdipoR2.  We 

show that serum starvation increases cell-surface expression of both AdipoR1 and AdipoR2 and 

that, in contrast to serum from WT mice, serum from mice lacking adiponectin fails to reduce 

receptor cell-surface expression consistent with receptor internalisation.  We also demonstrate that 

the temporal signal transduction profiles differ for AdipoR1 and AdipoR2.  Furthermore, we show 

that these differences are intrinsically coupled to their cell-surface expression profiles and their non-

conserved, N-terminal trunks which appear to contain multiple regions that promote or reduce cell-

surface expression respectively. 

Previously, we reported that AdipoR1, but not AdipoR2, interacted with ERp46 via its non-

conserved N-terminal trunk70.  Further investigations revealed that the non-conserved N-terminal 

trunks of AdipoR1 and AdipoR2 also dictated the cell-surface expression of AdipoR1 and 

AdipoR2, with robust cell-surface expression of AdipoR1 but not AdipoR2 observed under steady-

state conditions in CHO cells200.  To address the impact of this difference on coupling to 

downstream signalling events we first characterised the effects of serum starvation followed by 

serum replacement on cell-surface expression of the receptors.  Serum withdrawal resulted in 

increased expression of both AdipoR1 and AdipoR2 although AdipoR2 still exhibited significantly 

lower cell-surface expression than AdipoR1.  The addition of serum or gAd reduced cell-surface 

expression of both receptors and microscopy suggested that this decrease reflected classic ligand-

dependent internalisation consistent with a previous report152.  Our findings using serum from wild-

type and adiponectin KO mice suggest that, at least under these experimental conditions, no other 

circulating factors, such as members of the CTRP family204, are able to promote internalisation of 

the adiponectin receptors.   

Since the seminal discovery of the adiponectin receptors by Kadowaki and colleagues48 a large 

body of evidence has accumulated which indicates that adiponectin-stimulated activation of 

intracellular signalling pathways via the adiponectin receptors is highly variable across cell-types 

and tissues12.  The precise mechanisms for this variability remain relatively poorly understood but a 

number of factors are likely to contribute.  For example, the expression levels of AdipoR1 and 

AdipoR2 differ across tissues and cell-types48 as do the expression levels of proteins that have been 

shown to interact with the receptors and modulate downstream signalling169.  Moreover, the 

adiponectin receptors exhibit different binding properties48 and investigators have used a range of 
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different recombinant multimeric or globular forms of adiponectin12.  Whilst all of these factors are 

likely to contribute to differential activation of intracellular signalling pathways it is also 

noteworthy that relatively few studies have characterised signalling emanating specifically from 

AdipoR1 and AdipoR2 under tightly controlled conditions making this an area where our 

understanding remains particularly rudimentary.  Moreover, inspection of the literature reveals 

several major caveats.  For example, in the original report from Yamauchi and colleagues AdipoR2 

was identified by sequence homology to AdipoR1 and this probably explains why a truncated form 

lacking the non-conserved N-terminal trunk was cloned and characterised48.  We previously 

reported that a similar truncated construct exhibits increased cell-surface expression, compared with 

full-length AdipoR2200, and, in light of the current findings, we predict that it would also show 

altered signalling profiles although this remains to be determined. 

In the present report we used gAd to investigate signalling mediated via AdipoR1 or AdipoR2 

constructs in HEK293 cells.  This recombinant form of adiponectin has been used widely by others, 

as it represents a more homogenous, less variable product than full-length multimeric adiponectin 12 

whilst HEK293 cells have been shown to be a suitable cell model for investigations into adiponectin 

signalling57.  Interestingly, and in contrast to the findings from Lee and colleagues57, we were 

unable to detect endogenous adiponectin receptors in our parental (non-transfected) HEK293 cells 

and, consistent with this, we did not observe any response upon treatment with gAd in the parental 

cells.  As expected however, transfection of AdipoR1 or AdipoR2 conferred sensitivity to gAd.  We 

found that acute (15 min) coupling to Akt was similar between AdipoR1 and AdipoR2 under 

conditions where cell-surface expression of AdipoR1 was typically three-fold higher than for 

AdipoR2.  Moreover, sensitivity of AdipoR2-mediated Akt phosphorylation was significantly 

greater than that for AdipoR1 after chronic (24 h) treatment, indicating far-greater longevity of the 

AdipoR2 signal.   These results were, at least to some extent, recapitulated when coupling to ERK 

and p38MAPK was analysed.  For both, AdipoR1-mediated phosphorylation peaked at 15 min 

whilst AdipoR2-mediated phosphorylation peaked at 24 h.  To our knowledge, this is the first time 

such differences in the temporal profiles of adiponectin signalling emanating from AdipoR1 and 

AdipoR2 have been described.   

Detailed analysis of a series of chimeric receptors revealed that the differential cell-surface 

expression of AdipoR1 and AdipoR2 was defined by multiple regions within the non-conserved N-

terminal trunks indicating that no single motif underpinned the observed differences.  Moreover, 

functional investigations revealed that the temporal signalling profiles were also determined by 

these non-conserved N-terminal trunks. 
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Two motifs (D(x)3LL and F(x)3F(x)3F) were previously reported to play a role in anterograde 

trafficking of AdipoR1167.  We demonstrated that these motifs are conserved within the 

juxtamembrane region of AdipoR2 and are required for the efficient cell-surface expression of both 

receptors.  We found that mutation of either of these motifs inhibited cell-surface expression and 

adiponectin-stimulated phosphorylation of Akt, ERK and p38MAPK.  These data further highlight 

the importance of efficient cell-surface expression of AdipoR1 and AdipoR2 for efficient 

downstream signalling and the complexity of adiponectin receptor trafficking.  Further work is 

required to elaborate the molecular details governing the contribution of the non-conserved N-

terminal trunks and the conserved sequence motifs (including D(x)3LL and F(x)3F(x)3F) and how 

these, in turn, contribute to the temporal signalling profiles of AdipoR1 and AdipoR2 respectively. 

Adiponectin and its receptors are recognised as attractive potential targets for the treatment of 

cardiometabolic disease12.  In the current report we have increased our understanding of processes 

governing cell-surface expression of the adiponectin receptors and demonstrate that efficient cell-

surface expression is required to afford sensitivity to adiponectin.  We have established that the 

non-conserved, N-terminal trunks of AdipoR1 and AdipoR2 serve as key determinants of the cell-

surface expression and signalling profiles of the receptors.  This work provides a foundation for 

future studies that may aim to enhance adiponectin sensitivity by increasing cell-surface expression 

of the receptors, particularly AdipoR2. 
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Chapter Four: 

“Palmitoylation of the adiponectin receptors, AdipoR1 and 

AdipoR2, is essential for function.” 
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4.1 Introduction to this chapter 

This chapter was submitted to Proceedings of the National Academy of Sciences Journal as an 

original investigation.  

In the current report we demonstrated a pivotal role for palmitoylation of the adiponectin receptors 

in receptor function and demonstrated that: 

• Both AdipoR1 and AdipoR2 are palmitoylated. 

• Palmitoylation of a conserved ‘canonical’ site (common to GPCRs) in the juxta-membrane 

region of both receptors is essential for efficient cell-surface expression of both receptors. 

• Palmitoylation of the canonical site is required for adiponectin-stimulated phosphorylation 

of downstream effectors AMPK, AKT, ERK and p38MAPK. 

• Overexpression of WT AdipoR1 or AdipoR2 in mouse skeletal muscle resulted in increased 

phosphorylation of downstream effectors whilst the palmitoylation-defective mutants were 

without effect. 

• Palmitoylation of non-conserved cysteines in AdipoR2 contribute to the maintenance of 

AdipoR2 stability. 

Collectively, these findings provided direct biochemical evidence that human AdipoR1 and 

AdipoR2 are palmitoylated at multiple sites and provide the first evidence of an important role for 

post-translational modification of the adiponectin receptors in receptor homeostasis and function 

and hence activity of the adiponectin axis. 
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4.2 Abstract 

Dysregulation of the adiponectin axis contributes to obesity-related cardiometabolic disorders 

making it an attractive therapeutic target. However, our understanding of the adiponectin receptors, 

AdipoR1 and AdipoR2, two atypical seven transmembrane domain (7TMD) proteins that have 

inverted membrane orientation compared with other 7TMD receptors such as GPCRs, is 

rudimentary restricting therapeutic opportunities. Here, we have begun to elaborate the dynamic 

molecular mechanisms that contribute to AdipoR1 and AdipoR2 function using in-silico, in vitro 

and in vivo approaches. Bioinformatics analysis revealed several putative palmitoylation sites 

including a conserved ‘canonical’ site (common to GPCRs) in the juxta-membrane region of both 

receptors as well as additional non-conserved sites. Palmitoylation of these sites was confirmed 

using acyl-biotinyl exchange chemistry and site-directed mutagenesis which also revealed rapid 

turnover of palmitoylation. Cell-based characterization of palmitoylation-defective receptor 

mutants, AdipoR1(C124A) or AdipoR2(C135A), demonstrated that palmitoylation of the canonical site is 

essential for efficient cell-surface expression (CSE) of both receptors and also for adiponectin-

stimulated phosphorylation of downstream effectors AMPK, AKT, ERK and p38MAPK. Finally, 

we extended these investigations into a more physiological setting by employing in vivo 

electrotransfer (IVE) to examine the effects of overexpression of wild-type (WT) or palmitoylation-

defective AdipoR1 or AdipoR2 constructs on downstream effectors in mouse skeletal muscle. 

Overexpression of WT AdipoR1 or AdipoR2 resulted in increased phosphorylation of downstream 

effectors whilst the palmitoylation-defective mutants were without effect. Collectively, these 

findings establish adiponectin receptor palmitoylation as a key regulator of receptor function, hence 

activity of the adiponectin axis. 
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Significance Statement 

The adiponectin axis represents a therapeutic target for treatment of cardiometabolic disease. 

Evidence of adiponectin resistance is accumulating but rudimentary understanding of the 

adiponectin receptors R1 and R2 constrains therapeutic opportunities. Here we demonstrate a 

pivotal role for palmitoylation of the adiponectin receptors in receptor function. Deletion of a single 

highly conserved palmitoylation site resulted in failure of the receptors to express at the cell surface 

and transduce the adiponectin signal establishing receptor palmitoylation as a key determinant of 

adiponectin sensitivity. Future work is required to determine whether reduced receptor 

palmitoylation contributes to the development of adiponectin resistance and progression of 

cardiometabolic disease and or whether manipulating adiponectin receptor palmitoylation may 

serve as a means to enhance adiponectin sensitivity. 
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4.3 Introduction 

The adiponectin axis represents an attractive therapeutic target. Adiponectin is an adipocyte-derived 

hormone that exhibits a range of predominantly beneficial cardiometabolic properties6, 205. 

Moreover, circulating levels of adiponectin are reduced in obesity and such hypoadiponectinemia is 

implicated in the aetiology of obesity-related diseases including type 2 diabetes and cardiovascular 

disease205. Adiponectin mediates many of its pleiotropic effects via two receptors, R1 and R248. 

These receptors are atypical 7TMD receptors that are structurally distinct from the G-protein 

coupled receptor (GPCR) family, with intracellular N-termini and extracellular C-termini that 

couple to a number of intracellular downstream effectors including AMPK, AKT, ERK and 

p38MAPK48, 71, 90. Emerging evidence indicates that, in addition to the hypoadiponectinemia 

mentioned above, adiponectin resistance also contributes to the aetiology of cardiometabolic 

diseases42, 43, 45, 46. Thus, pharmacological approaches to increase circulating adiponectin levels and 

or enhance adiponectin sensitivity are of therapeutic potential. 

Increased understanding of the molecular mechanisms that regulate the cellular properties of the 

adiponectin receptors will identify a framework to explore possible pathophysiological events and 

potential therapeutic approaches. Several studies have identified a number of adiponectin receptor-

interacting proteins that modulate adiponectin coupling to intracellular signaling pathways206. The 

best characterized of these being APPL1, which interacts with both R1 and R2 to facilitate 

adiponectin signaling72. In addition, primary amino acid sequences and motifs that determine key 

cellular and functional characteristics including cell-surface expression and temporal signaling 

profiles have been identified within R1 and R2167, 200, 207. In contrast, our understanding of the role 

of post-translational modifications (PTMs) in the biology of the adiponectin receptors is limited. It 

was recently reported that induction of myocardial infarction (MI) promoted phosphorylation of R1, 

which was not phosphorylated in the normal heart, via GPCR kinase 2 which resulted in 

adiponectin resistance208. This finding highlights the potential pathophysiological relevance of PTM 

of the adiponectin receptors. 

In the current study we set out to investigate the putative role of a ‘housekeeping’ PTM, S-

palmitoylation, which has been shown to influence the cellular homeostasis and regulation of a 

variety of proteins and receptors at multiple levels209, 210. S-palmitoylation is a reversible lipid 

modification involving the addition of a saturated 16-carbon palmitate moiety to specific cysteines 

via a thioester linkage that may, like phosphorylation or ubiquitination, act as a switch. 

Palmitoylation of GPCRs commonly occurs on one or more cysteines found 10 to 14 residues 
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following the seventh TMD211 and has diverse effects including regulation of cellular trafficking 

and downstream signaling177, 209, 210. Here we demonstrate that R1 and R2 are constitutively 

palmitoylated and that palmitoylation of a conserved ‘canonical’ cysteine, 13 amino acids prior to 

the first TMD, is required for efficient CSE and adiponectin-mediated activation of downstream 

effectors. 

4.4 Materials and methods 

4.4.1 Mice.  

All experimental procedures were approved by the Alfred Medical Research Education Precinct 

Animal Ethics Committee. Male WT C57Bl/6 mice (AMREP AS, Melbourne, VIC, Australia) were 

used for all experiments and commenced when mice were 16 weeks of age. Animals were 

maintained at 22.0±0.5°C under a 12-h day, 12-h night cycle and fed standard chow diet containing 

5% of total energy from fat (Specialty Feeds, Glen Forrest, WA, Australia). 

4.4.2 Reagents and antibodies.  

Reagents were from Sigma–Aldrich (Castle Hill, Australia) unless otherwise stated. Tissue culture 

reagents were from Invitrogen (Mount Waverley, Australia). Primary antibodies against HA and 

Flag were from Covance (Washington, USA) and primary antibody against Sodium Potassium 

ATPase (Nak) was from Abcam (Melbourne, Australia). Secondary antibodies were from Life 

Technology (Invitrogen). Molecular biology reagents were from New England Biolabs (Ipswich, 

NA, USA) or Promega Corporation (Madison, WA, USA). 

4.4.3 Molecular biology. 

 Original constructs encoding C-terminally epitope-tagged (HA) human R1 and R2 were as 

described70. R1 and R2 mutants were generated by QuikChange site-directed mutagenesis (Agilent 

Technology, CA, USA). Mutations were confirmed by DNA sequencing (Sanger method). Chinese 

Hamster Ovary (CHO), Human Embryonic Kidney 293 (HEK293) and INS-1 cells were transfected 

using Lipofectamine PLUS (Invitrogen) according to the manufacturer’s instructions. Cells were 

routinely transfected with 200 ng of plasmid and analyzed 24 h post-transfection. 

4.4.4 Real-time PCR.  

Gene expression levels were quantified using real-time PCR. Mice tibialis anterior muscles were 

powdered under liquid nitrogen and homogenized using Fast prep-24 (MP Biomedicals, NSW, 
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Australia) in Trizol (Invitrogen, Australia). Total RNA was extracted as per the manufacturer’s 

instructions and cDNA was synthesized from 1 mg total RNA. RT-PCR was performed using the 

SYBR Hi-ROX kit (Bioline) on a 7900HT Fast Real-time PCR system (Ambion Life 

Technologies). Results were normalized using mRNA for TATA box. 

4.4.5 Flow cytometry.  

Flow cytometry was carried out as previously described207. A CyAn™ ADP Analyser (Beckman 

Coulter, Sydney, Australia) and FlowJo software were used to determine the number of cells 

expressing HA-tagged R1 or R2 at the cell-surface relative to the total number of cells expressing 

these receptors in permeabilised cells.  

4.4.6 Detection of palmitoylation.  

ABE methodology was performed essentially as described177. To prevent protein palmitoylation, 

cells were incubated with 2-bromopalmitate (2BP) for 1 or 4 h prior to collection of crude 

membrane. Following the indicated treatments/transfections, cells were washed with cold PBS and 

lysed in lysis buffer (5 mM Tris, 0.5 mM EDTA, 10 mM NaF and 10mM Na3Vo4) containing 

protease inhibitor cocktail (Roche). Lysis was improved by repeated passaging through a 26 gauge 

needle. For enrichment of membranes, lysates were depleted of nuclei via centrifugation at 800 g 

for 10 min. The supernatant was then centrifuged at 257,000 g for 1 h, and the pellet was 

resuspended in lysis buffer containing 1% Triton X-100. Total protein was quantified with a 

bicinchononic acid (BCA) assay (Pierce) using BSA as the standard. After undergoing a freeze-

thaw cycle, the membrane fraction was incubated with 10mM N-Ethyl Malemide (NEM) for four 

hours to block free thiols followed by Chloroform-Methanol precipitation to purify the protein. 

Next, samples were incubated with a buffer containing hydroxylamine (0.7 M) and EZ-link HPDP-

biotin (1 mM) for 1h for cleavage of thioester linkages, and capture of nascent thiols by biotin. 

Unreacted biotin was removed by Chloroform-Methanol precipitations. Biotinylated proteins were 

affinity purified using streptavidin beads (Pierce) by incubation at 4uC for 1 h. For immunoblot 

analysis, elution was performed and samples were separated via SDS-PAGE on a Mini-Gel 

apparatus (Bio-Rad). Palmitoylated AdipoR1 and AdipoR2 was detected by anti-HA Western blot 

analysis. 

4.4.7 In vivo electrotransfer (IVE).  

IVE was performed as described212.  
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4.4.8 Microscopy.  

Indirect immunofluorescence microscopy was performed as described207. 

4.4.9 Determination of AMPK phosphorylation.  

Phospho-AMPK in INS-1 cells or in TAM was measured using PathScan Phospho-AMPKα 

(Thr172) Sandwich ELISA (Cell-Signaling technology, Danvers, Massachusetts) according to 

manufacturer’s instruction. Parental/transfected INS-1 cells were serum-starved overnight then 

stimulated with human globular adiponectin (Prospec Protein Specialists, USA) or vehicle for 15 

min or 24 h.  

4.4.10 Measurement of AKT, ERK and p38MAPK phosphorylation.  

Phospho-AKT, ERK and p38MAPK were determined using AlphaScreen SureFire kits 

(PerkinElmer Life and Analytical Sciences, Waltham, MA, USA) as described207.  

 

4.4.11 Statistical analysis.  

Data are presented as mean ± SEM. Significance was determined using one way ANOVA followed 

by Tukeys test with statistical significance defined as p < 0.05. 

4.5 Results 

4.5.1 R1 and R2 are palmitoylated.  

Using the CSS-palm v4.0 palmitoylation prediction algorithm213 we identified a number of putative 

palmitoylation sites (based on prediction score and location) that were situated within the 

intracellular N-terminus of both R1 and R2. These included a highly conserved ‘canonical’ site 

located 13 amino acids prior to the first predicted TMD in R1 (R1C124) and R2 (R2C135) (Figure 

4.1A), which mirrors the typical palmitoylation site found 10-14 amino acids after the seventh TMD 

in several GPCRs. In addition, there was one further site in R1 (R1C54) and two in R2 (R2C11 & 

R2C96) that were not conserved between R1 and R2 but were conserved across species (Figure 

4.1A). Subsequently, we used acyl-biotinyl exchange (ABE) to examine the palmitoylation status of 

transiently expressed C-terminally HA-tagged R1 and R2 in quiescent CHO and HEK293 cells 

treated with vehicle or an inhibitor of palmitoylation, 2-Bromo Palmitate (2BP). Our results 

indicated that both R1 and R2 were palmitoylated in control cells (Figure 4.1B & C) whilst 
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treatment with 2BP was sufficient to reduce palmitoylation of both by ≥ 95% after 1 h in CHO cells 

(Figure 4.1B) and ≥ 80% after 4 h in HEK cells (Figure 4.1C). These results show that both R1 and 

R2 are palmitoylated and suggest palmitoylation has a relatively high rate of turnover that exhibits 

variability across cell-types. 

Palmitoylation of R1 and R2 is required for cell surface expression (CSE).  

Having previously reported that CSE of R1 and R2 is around 60% and 20% in quiescent cells 200 we 

next sought to investigate a role for palmitoylation in modulation of CSE of R1 and R2, given the 

recognized role of palmitoylation in regulation of receptor trafficking209. We used flow cytometry to 

determine CSE of the receptors expressed transiently in CHO and HEK293 cells as above. 

Quantitative analysis revealed that treatment with 2BP significantly reduced the CSE of both R1 

and R2 in a timeline consistent with the effects on palmitoylation (Figure 4.1D & E). These results 

suggest palmitoylation of the receptors is required for their efficient CSE. 

To rule out the possibility that 2BP inhibited CSE of the receptors by an indirect effect and 

investigate the potential contribution of palmitoylation at each site more specifically we generated a  
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Figure 4.1. R1 and R2 are palmitoylated and palmitoylation is required for CSE. (A) Upper panel - 

Schematic representation of adiponectin receptors with the non-conserved N-terminal domain colored mauve 

and the conserved N-terminal region in green. Lower panel - Sequence alignment of the cytoplasmic N-

terminal trunk of R1 and R2. Putative palmitoylation sites are highlighted in yellow. Western blots (using 

anti-HA) showing the expression (upper panel) and palmitoylation (lower panel) of transiently expressed C-

terminal HA-tagged R1 or R2 in (B) CHO and (C) HEK 293 cells following treatment with either vehicle or 

2BP. Protein expression levels (%) are shown beneath the top panel (Input) and normalized to control 

(without 2BP).  Palmitoylation values are shown beneath the lower panel (Palm) and presented as the ratio of 

palmitoylation/protein (Pal/In (%)) normalized to the control (without 2BP).  Flow cytometry analysis of (D) 

CHO and (E) HEK 293 cells transiently expressing R1 or R2.  The % of CSE represents the percentage of 

cells exhibiting CSE of the receptors (non-permeabilised cells) relative to the total number of cells 

expressing the receptors (permeabilised cells) after treatment with vehicle or 2BP. Results are from 4 

independent experiments (***p<0.001). 
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series of constructs where each of the cysteine residues was replaced by alanine (R1C54A, R1C124A, 

R2C11A, R2C96A and R2C135A) and characterized them following transient expression in CHO cells. 

Analysis of R1C124A revealed mutation of the canonical cysteine in R1 lead to a complete loss of 

palmitoylation and CSE (Figure 4.2A & B). In contrast mutation of the R1-specific cysteine, 

R1C54A, reduced palmitoylation by around 50% whilst CSE was unaltered (Figure 4.2A & B). 

Mutation of the canonical cysteine in R2, R2C135A, reduced palmitoylation relatively modestly, by 

only 30%, but significantly reduced CSE (Figure 4.2C & D). In contrast, mutation of either of the 

R2-specific cysteines, R2C11A & R2C96A, reduced palmitoylation by around 60% but had no 

significant effect on CSE (Figure 4.2C & D). Interestingly, the expression levels of R2C11A and 

R2C96A were also markedly reduced (Figure 4.2C - upper panel). There are several potential 

explanations for these observations. In the case of R1 it seems reasonable to propose that 

palmitoylation at the canonical site is required for both CSE and subsequent palmitoylation at the 

non-conserved site. Palmitoylation of the canonical site in R2 appears to be a prerequisite for CSE 

but not for palmitoylation at the R2-specific sites. Moreover, palmitoylation at R2C11A and R2C96A 

appears necessary for the stability of R2. In support of this, it is noteworthy that treatment with 2BP 

resulted in reduced expression of R2, but not R1 (see Figure 4.1B & C). 

To investigate the effect of deletion of the canonical palmitoylation site on subcellular distribution 

in more detail we employed high resolution (OMX) immunofluorescence microscopy. Compared to 

the WT receptors, both R1C124A and R2C135A exhibited altered subcellular distribution patterns 

showing reduced proximity to the plasma membrane as well as a loss of staining around the nucleus 

(Figure 4.2E). 

Palmitoylation of the canonical cysteine promotes enrichment of the N-terminal cytoplasmic 

domain of R1 or R2 to the PM. To further examine the role of palmitoylation at the canonical sites 

we generated truncated WT and mutant constructs that encompassed the N-terminal cytoplasmic 

domains of R1 and R2 (spanning amino acids 1-127 and 1-138 respectively) termed NR1WT, 

NR1C124A, NR2WT & NR2C135A. Palmitoylation of WT constructs and reduced palmitoylation of the 

NR1C124A and NR2C135A constructs was confirmed by ABE (Figure 4.3A). Immunofluorescence 

microscopy revealed striking enrichment of both the NR1WT and NR2WT constructs underneath the 

PM (Figure 4.3B). This was absent for the NR1C124A construct and reduced for the NR2C135A 

construct, both of which showed a more regular, diffuse distribution extending throughout the 

cytoplasm. Consistent with this altered distribution, biochemical analysis of subcellular fractions 

revealed enrichment of the WT constructs in the PM relative to the NR1C124A and NR2C135A 
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constructs which were more enriched in the ER (Figure 4.3C). These results provide further 

evidence of an important role for palmitoylation of the canonical sites regulating the subcellular 

distribution of R1 and R2. 

 

Figure 4.2. Deletion of the canonical palmitoylation site prevents CSE. (A & C) Western blots (using 

anti-HA) showing the expression (top panel) and palmitoylation (lower panel) of C-terminally HA-tagged 

receptor transiently expressed in CHO cells. Protein expression levels (%) are shown beneath the top panel 

(Input) and normalized to the WT control.  Palmitoylation values are shown beneath the lower panel (Palm) 

and presented as the ratio of palmitoylation/protein (Pal/In (%)) normalized to the WT control. (B & D) Flow 

cytometry analysis of HEK cells transiently expressing receptor constructs as indicated. The % of CSE 

shows the percentage of cells exhibiting CSE of the receptors (non-permeabilised) relative to the total 

number of cells exhibiting receptor expression (permeabilised). Results are from 4 independent experiments 

(***p<0.001). (E) Immunofluorescent microscopy of R1WT, R1C124A, R2WT and R2C135A constructs transiently 

expressed in CHO cells. The PM is counterstained with sodium potassium ATPase antibody (red) and nuclei 

with DAPI (blue). 
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Figure 4.3. Palmitoylation of the canonical cysteine promotes enrichment of the N-terminal 

cytoplasmic domains with the PM. (A) Western blots (using αFlag) showing expression (top panel) and 

palmitoylation (lower panel) of N-terminally Flag-tagged receptor constructs NR1WT, NR1C124A, NR2WT and 

NR2C135A transiently expressed in CHO cells. Protein expression levels (%) are shown beneath the top panel 

(Input) and normalized to the WT control.  Palmitoylation values are shown beneath the lower panel (Palm) 

and presented as the ratio of palmitoylation/protein (Pal/In (%)) normalized to the WT control. (B) 

Immunofluorescent microscopy of NR1WT, NR1C124A, NR2WT and NR2C135A constructs transiently expressed 

in CHO cells. The PM is counterstained with sodium potassium ATPase antibody (red) and nuclei with 

DAPI (blue). (C) Western blot showing distribution of NR1WT, NR1C124A, NR2WT and NR2C135A constructs 

following transient expression in HEK 293 cells and subcellular fractionation. Calnexin (Caln) serves as an 

ER marker to demonstrate the lack of contamination of the PM with ER. 
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Palmitoylation of R1 and R2 is required for downstream signaling. 

Having established that deletion of canonical palmitoylation interfered with the CSE of both R1 and 

R2 we hypothesized that this would also result in compromised adiponectin-stimulated activation of 

downstream effectors implicated in mediating adiponectin’s effects, namely AMPK, AKT, ERK 

and p38MAPK198, 214. We previously reported that R1 and R2 display different temporal signaling 

profiles207, hence we analyzed adiponectin-stimulated phosphorylation of downstream effectors in 

HEK293 cells transiently expressing R1 or R2 constructs after 15 min or 24 h respectively. 

Overexpression of R1WT or R1C54A promoted a similar increase in adiponectin-stimulated 

phosphorylation of AKT, ERK and p38MAPK relative to parental cells (Figure 4.4A,C & E). In 

contrast, overexpression of R1C124A failed to enhance adiponectin-stimulated phosphorylation 

(Figure 4.4A, C & E). Similar results were seen in cells overexpressing R2 constructs, with R2WT, 

R2C11A and R2C96A all showing enhanced adiponectin-stimulated phosphorylation relative to 

parental cells which were indistinguishable from cells overexpressing the R2C135A construct (Figure 

4.4B, D & F). Surprisingly, overexpression of the receptors failed to promote adiponectin-

stimulated AMPK phosphorylation in the HEK293 cells or in CHO cells (data not shown). 

However, overexpression of the WT receptors in INS-1 cells did result in a significant increase in 

adiponectin-stimulated AMPK phosphorylation (Figure 4.4G & H). As before, deletion of the 

canonical palmitoylation site inhibited this effect. The R2C96A construct also failed to promote a 

significant increase in AMPK phosphorylation (Figure 4.4H).  Indeed, it was surprising that the 

R2C11A and R2C96A constructs enhanced adiponectin-stimulated phosphorylation of AKT, ERK and 

p38MAPK to a similar level as R2WT given they were expressed at only 20-25% of R2WT. To 

address the possibility that this reflected receptor redundancy due to high levels of overexpression 

we performed a titration experiment, transfecting HEK293 cells with increasing amounts of R2WT 

or R2C96A constructs and assessing receptor expression levels (Figure 4.4I) and adiponectin-

stimulated AKT phosphorylation (Figure 4.4J). Our results confirmed that R2WT was expressed 

around 4-fold higher than R2C96A (with comparable expression observed at 50 ng and 200 ng 

respectively) and that coupling to AKT phosphorylation showed a similar relationship, peaking with 

50 ng of R2WT and 200 ng of R2C96A respectively (Figure 4.4I & J). Collectively, these data 

demonstrate that deletion of canonical palmitoylation blocks the ability of R1 or R2 to transduce the 

adiponectin signal and also suggests that reduced palmitoylation of the non-canonical sites, 

particularly in R2, may compromise receptor function as a result of reduced stability. 
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Figure 4.4. Deletion of the canonical palmitoylation site abolishes signal transduction in vitro. 

Alphascreen analysis of (A-B) AKT, (C-D) ERK and (E-F) p38MAPK phosphorylation in HEK cells 

transiently expressing R1WT, R1C54A and R1C124A incubated with 2.5 μg/ml globular adiponectin (gAd) for 15 

min (A,C and E) and R2WT, R2C11A, R2C96A and R2C135A incubated with 2.5 μg/ml gAd for 24 h (B,D and F). 

ELISA demonstrating AMPK phosphorylation in INS-1 cells transiently expressing (G) R1WT, R1C54A and 

R1C124A treated with 2.5 μg/ml gAd for 15 min and (H) R2WT, R2C11A, R2C96A and R2C135A incubated with 2.5 

μg/ml gAd for 24 h. Parental INS-1 cells were used as control. Results are from 4 independent experiments 

(*p < 0.05, **p < 0.01, ***p < 0.001). (I) Western blots (using αHA) and (J) pAKT Alphascreen show levels 

of HA-tagged R2WT and R2C11A protein (sodium/potassium ATPase (NaK) serves as a loading control) and 
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adiponectin-stimulated phosphor-AKT following transient transfection of HEK293 cells with increasing 

concentrations of plasmid (200 ng was used for routine transfection). 

Palmitoylation of the canonical cysteine in R1 and R2 is required in vivo. 

To investigate the requirement for adiponectin receptor palmitoylation in a more physiological 

setting we employed in vivo electrotransfer (IVE) 212, 215 to characterize the effects of 

overexpression of WT or canonical palmitoylation defective constructs, namely R1C124A & R2C135A 

constructs, in the tibialis anterior (TA) muscle of C57BL/6 mice. Receptor constructs were 

introduced into the right TA whilst the left TA served as control (transduced with empty plasmid). 

Muscles were harvested after two weeks and analysis of mRNA levels confirmed comparable 

expression of each of the receptor constructs (Figure 4.5A & B). Phosphorylation of downstream 

signaling effectors AKT, ERK and AMPK were all increased by approximately 2-fold in muscles 

expressing the WT receptors (Figure 4.5C-H). This effect was lost in muscles expressing the 

R1C124A or R2C135A receptors. Overall, these results demonstrate that palmitoylation of the 

adiponectin receptors at a highly-conserved canonical site is a prerequisite for function in vitro and 

in vivo. 

 

 

Figure 4.5. Deletion of the canonical palmitoylation site abolishes signal transduction in vivo. Graphs 

show mRNA expression of (A) R1WT and R1C124A or (B) R2WT and R2C135A in left (-) and right (+) tibialis 

anterior muscle. Graphs show phosphorylation of (C-D) AKT, (E-F) ERK and (G-H) AMPK in muscles 

transduced with constructs as indicated.  (n=6/group)(*p < 0.05, **p < 0.01, ***p < 0.001). 
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4.6 Discussion 

In the current investigation we have provided the first evidence of an important role for PTM of the 

adiponectin receptors in receptor homeostasis and function. We provided direct biochemical 

evidence that human R1 and R2 are palmitoylated at multiple sites within the N-terminal, 

cytoplasmic domains and these events regulate receptor trafficking and stability. In particular, we 

demonstrated that palmitoylation of a highly conserved canonical cysteine, situated 13 residues 

prior to the first TMD, was essential for CSE of both receptors and deletion was sufficient to block 

adiponectin-stimulated signal transduction via R1 and R2 both in vitro and in vivo. These findings 

identify a new layer of regulation of the adiponectin axis and establish adiponectin receptor 

palmitoylation as a potential therapeutic target. 

The importance of extensive PTM of adiponectin for its efficient production has been well 

characterized216 however our appreciation of the role of PTM in the regulation of the adiponectin 

receptors is in its infancy. The study of protein palmitoylation has advanced rapidly in line with the 

development of relatively straightforward, non-radioactive approaches to determine palmitoylation 

status209 which, aligned with mass-spectrometry approaches, have revealed the extensive nature of 

protein palmitoylation with a recent estimate suggesting ≥ 10% of proteins are palmitoylated217. The 

adiponectin receptors have not been identified in these large-scale proteomic investigations217. This 

may reflect a limitation of the approaches which typically under-represent the palmitoylome209. In 

the case of transmembrane proteins the direct effects of palmitoylation may include alterations in 

protein conformation, regulation of protein-protein or protein-membrane interactions that may in 

turn affect protein localization, stability and or activity210. 

Given the above we set out to determine whether the adiponectin receptors were palmitoylated and, 

if so, define the molecular details. An in silico search for putative palmitoylation sites213 revealed 

two and three putative sites in the N-terminal cytoplasmic domains of R1 and R2 respectively and 

we subsequently demonstrated that both receptors were palmitoylated using ABE. Palmitoylation 

status reflects a balance between addition and removal with the former performed by a family of 

palmitoyl acyltransferases (PATs) whilst the latter is carried out by protein thioesterases218, 219. 

Treatment of cells with 2BP, a widely used pharmacological inhibitor of the acyltransferases177, 220, 

abolished palmitoylation of both receptors. Interestingly, whilst the temporal effects of 2BP on 

receptor palmitoylation were similar for R1 and R2 they differed across cell-types as 1 h was 

sufficient to inhibit palmitoylation in CHO but not HEK293 cells, where 4 h treatment was 

required. One possibility is that activity of the thioesterase(s) responsible for receptor 
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depalmitoylation is higher in the former. Regardless, this observation highlights the potential for 

cell and tissue specific differences in the dynamics of adiponectin receptor palmitoylation. 

A large body of evidence has demonstrated that palmitoylation regulates the trafficking and 

subcellular localization of a range of proteins221, 222 including the insulin-responsive glucose 

transporter GLUT4223 and associated regulatory proteins224 as well as numerous GPCRs177, 220. 

GPCRs, such as the protease-activated receptor-2, the D2 dopamine receptor and the α2A and β2-

adrenergic receptors, are typically palmitoylated on one or more cysteine residues situated close to 

the seventh TMD177, 220, 225. Moreover, targeted inhibition of this palmitoylation event by 

mutagenesis of the key cysteine(s) results in impaired receptor trafficking and CSE177, 220. 

Interestingly, we observed similar results when we deleted the canonical palmitoylation site in R1 

(C124) and R2 (C135) but not when we deleted the less-conserved R1- or R2-specific sites. We also 

observed marked staining around the nucleus in cells expressing WT receptor constructs but not 

constructs lacking the canonical palmitoylation site. Similar palmitoylation-dependent localization 

of the ER chaperone calnexin to the nuclear envelope has been reported, with further investigation 

revealing a direct interaction between calnexin and the ribosome-translocon complex of the rough 

ER226. Collectively these observations highlight a role for palmitoylation of the canonical sites in 

the regulation of subcellular localization and CSE. 

The importance of the canonical palmitoylation events was further highlighted by our 

characterization of the intracellular N-terminal domains of R1 and R2 (that lacked the 7TMDs). The 

truncated WT constructs exhibited clear morphological and biochemical enrichment with the PM 

relative to the canonical palmitoylation deficient mutants. Deletion of the canonical palmitoylation 

site in the truncated R1 construct resulted in a complete loss of palmitoylation, consistent with our 

observations of full-length R1, and had a greater impact on the distribution and fractionation 

properties than deletion of the canonical palmitoylation site in the truncated R2 construct, which 

retained palmitoylation. These findings are consistent with the requirement of a dual-lipid anchor to 

mediate stable attachment of soluble proteins with the PM209. 

Consistent with our earlier reports200, 207 we demonstrated that CSE of R2 was relatively modest 

(20%) compared with that of R1 (60%). Molecular investigations revealed these differences, as well 

as differences in temporal signaling profiles, were underpinned by the non-conserved, cytoplasmic 

N-terminal trunks of R1 (1-70) and R2 (1-81)200, 207. Thus, it was surprising that the intracellular N-

terminal domains characterized here, comprising both the non-conserved and conserved regions 

(spanning residues 1-127 and 1-138 in R1 and R2) showed similar subcellular distribution profiles. 
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One possible explanation is that these contrasting observations may reflect the effects of 

intramolecular interactions between the intracellular N-terminal domains and the 7TMDs. Indeed, 

the recently solved crystal structures of R1 and R2 support such a model71. Although the crystals 

lacked the entire non-conserved N-terminal trunks and a portion of the conserved domains 

(spanning residues 1-88 and 1-99) the remaining intracellular N-terminal regions were closely 

juxtaposed to a large internal cavity postulated to be involved in receptor activity71. Moreover, these 

intracellular N-terminal regions contain a short intracellular helix (spanning residues 121-129 and 

132-140)71 that includes the canonical palmitoylation site and an ER exit motif, F(x)3F(x)3F, 

required for efficient CSE of both adiponectin receptors167, 207. This complex arrangement is also 

found in some GPCRs, where the helix is referred to as helix 8, and steroid hormones220, 227. 

Localization of the helix is often regulated by palmitoylation. Hence it is tempting to speculate 

palmitoylation, particularly at the canonical site, may modulate interactions between the 

intracellular-N-terminal domains and the 7TMD to alter accessibility of motifs in R1 or R2 and or 

interactions affecting the position of the intracellular N-terminal domain. Whilst such modulation 

may also be expected to affect activity, we feel that palmitoylation at the non-conserved site(s) is 

unlikely to affect receptor activity per se, given the comparable, albeit right-shifted, adiponectin-

stimulated AKT phosphorylation dose-response of R2C11A compared with R2WT. It is also 

noteworthy that the helix containing the canonical palmitoylation site also constitutes an ER exit 

motif, F(x)3F(x)3F, required for efficient CSE of both adiponectin receptors167, 207. Palmitoylation of 

a cysteine located within an F(x)6LL ER exit motif (FxxCxxxLL) within the human estrogen 

receptor α (ERα) promotes membrane localization and signaling and, as for other proteins, 

facilitates the association with caveolin-1227. Emerging evidence supports an important role for an 

interaction between R1 and caveolins 1 and 3228-230. Thus, canonical palmitoylation of the 

adiponectin receptors is likely to have multilayered effects that require further, comprehensive 

investigations to elaborate the molecular details. 

Deletion of the canonical palmitoylation event abolished CSE of both receptors and, consistent with 

this, adiponectin-mediated phosphorylation of downstream signaling effectors was similarly lost in 

cell-based assays. We attempted to extend these observations and demonstrate the physiological 

significance of adiponectin receptor palmitoylation by performing ABE on a range of tissue 

samples however we were unable to detect palmitoylation of the endogenous receptors. This likely 

reflects a combination of the low level of expression of the receptors and intrinsic limitations of the 

approach209. Thus, we employed an alternate approach to address the physiological significance by 

characterizing the effect of overexpression of WT and canonical palmitoylation defective receptor 
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constructs in mouse skeletal muscle212, 215. Overexpression of the WT receptors for two weeks 

resulted in a constitutive increase in phosphorylation of AMPK, AKT and ERK. This effect was not 

observed in muscles overexpressing the mutant receptors. These observations strongly support the 

notion that canonical palmitoylation of the receptors is a strict requirement for physiological 

function. 

Deletion of the canonical palmitoylation event did not affect protein receptor levels. In contrast, 

deletion of either of the R2-specific cysteines resulted in reduced protein levels indicating a strict 

requirement for palmitoylation of both cysteines to maintain R2 stability. A role for palmitoylation 

in maintenance of protein stability is well established, with numerous studies demonstrating that 

inhibition of palmitoylation results in increased ubiquitin-mediated degradation209, 210, 220. Further 

studies are required to determine whether such mechanisms explain the observed reduction in 

R2C11A and R2C96A protein levels. As mentioned above, the ability of these mutant receptors to 

transduce the adiponectin-signal across the membrane appears largely intact. Whilst this suggests a 

relatively limited impact on receptor function per se, at physiological levels of expression any 

reduction in receptor levels may be expected to contribute to decreased adiponectin sensitivity. 

Indeed, our titration experiments highlight the high levels of overexpression achieved in transient 

transfection systems employed both here and elsewhere71 provide a level of redundancy that make it 

likely that subtle, but potentially important, differences in receptor function may be overlooked. 

A role for dysregulation of palmitoylation contributing to human diseases is well established217. 

More specifically, obesity has been shown to alter the palmitoylation status of key metabolic 

proteins such as GLUT4224 whilst altered palmitoylation has been implicated in endothelial 

dysfunction231, lipid-induced ER stress and β-cell death 232, and modulation of TNFα activity 233. 

Having established that adiponectin receptor function is dependent on palmitoylation it remains to 

be determined whether altered palmitoylation of R1 and R2 may compromise the adiponectin axis 

and play a role in human disease. Elucidation of the molecular details governing adiponectin 

receptor palmitoylation may identify new strategies to ameliorate adiponectin resistance and 

improve cardiometabolic outcomes. 
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Chapter Five: 

“Muscle-specific overexpression of AdipoR1 or AdipoR2 gives 

rise to common and discrete local effects whilst AdipoR2 

promotes additional systemic effects.” 
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5.1 introduction to this chapter 

This chapter was submitted to Scientific Reports Journal as an original investigation.  

In the current report we have compared the effects of overexpression of AdipoR1 or AdipoR2 in 

skeletal muscle (tibaialis anterior muscle – TAM) of lean or obese mice. 

We report the following key observations: 

• In lean mice, TAM-specific overexpression of AdipoR1 or AdipoR2 increased 

phosphorylation of downstream signalling effectors (AMPK, AKT and ERK) and 

expression of the insulin responsive glucose transporter glut4.   

• Only TAM-specific overexpression of AdipoR2 increased pparα and a target gene acox1.   

• These local effects were decreased in obese mice, despite no reduction in circulating 

adiponectin levels, consistent with the existence of adiponectin resistance.    

• TAM-specific overexpression of AdipoR2 increased expression of adipoQ in TAM and this 

was unaffected by obesity.   

• TAM-specific overexpression of AdipoR2 in obese mice promoted systemic effects 

including decreased weight gain, reduced epididymal fat mass and inflammation, increased 

epididymal adipoQ expression and increased circulating adiponectin.  

Collectively, these results demonstrate that AdipoR1 and AdipoR2 exhibit overlapping and distinct 

effects in skeletal muscle consistent with enhanced adiponectin sensitivity but these appear 

insufficient to ameliorate established obesity-induced adiponectin resistance. They also provide 

evidence of unexpected systemic effects of muscle-specific overexpression of AdipoR2 in obese 

mice.   
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5.2 Abstract 

Hypoadiponectinemia and adiponectin resistance are implicated in the aetiology of obesity-related 

cardiometabolic disorders, hence represent a potential therapeutic axis.  Here we characterised the 

effects of in vivo electrotransfer-mediated overexpression of the adiponectin receptors, AdipoR1 or 

AdipoR2, into tibialis anterior muscle (TAM) of lean or obese mice. In lean mice, TAM-specific 

overexpression of AdipoR1 (TAMR1) or AdipoR2 (TAMR2) increased phosphorylation of AMPK, 

AKT and ERK and expression of the insulin responsive glucose transporter glut4.  In contrast, only 
TAMR2 increased pparα and a target gene acox1.  These effects were decreased in obese mice 

despite no reduction in circulating adiponectin levels.   TAMR2 also increased expression of adipoQ 

in TAM of lean and obese mice.  Furthermore, in obese mice TAMR2 promoted systemic effects 

including; decreased weight gain; reduced epididymal fat mass and inflammation; increased 

epididymal adipoQ expression; increased circulating adiponectin. Collectively, these results 

demonstrate that AdipoR1 and AdipoR2 exhibit overlapping and distinct effects in skeletal muscle 

consistent with enhanced adiponectin sensitivity but these appear insufficient to ameliorate 

established obesity-induced adiponectin resistance.  We also identify systemic effects upon TAMR2 

in obese mice and postulate these are mediated by altered myokine production.  Further studies are 

warranted to investigate this possibility which may reveal novel therapeutic approaches. 
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5.3 Introduction 

Adiponectin is a key adipokine that displays a variety of beneficial effects to reduce diabetes, 

atherosclerosis and cardiometabolic disease205.  Adiponectin regulates carbohydrate and lipid 

metabolism, reducing hepatic glucose production and enhancing fatty acid oxidation in skeletal 

muscle205.  In contrast to most other adipokines, circulating adiponectin levels are typically reduced 

in obesity, type 2 diabetes and associated conditions205.  Moreover, mice lacking adiponectin or 

humans with polymorphisms that compromise adiponectin production develop metabolic 

dysfunction and or type 2 diabetes12.  Hence, therapeutic strategies to reverse hypoadiponectinaemia 

are attractive.  Increasing evidence indicates that adiponectin resistance also contributes to the 

development of metabolic and cardiovascular diseases42, 43, 45, 46, 208, 234-237.  While the molecular 

mechanisms that give rise to adiponectin resistance are poorly defined strategies to overcome 

adiponectin resistance are also of therapeutic potential. 

The beneficial effects of adiponectin are mediated primarily via the action of two atypical seven-

transmembrane domain (7TMD) receptors, AdipoR1 and AdipoR248.  These receptors are 

structurally and functionally distinct from other 7TMD receptors, having intracellular N-termini and 

extracellular C-termini, and couple adiponectin to a range of downstream effectors including 

AMPK, PPARα, AKT and ERK by mechanisms that are incompletely understood48, 71, 182, 238.  

Molecular and cellular studies have revealed differences between AdipoR1 and AdipoR2 that 

include different binding properties48, cell surface expression168, 200, 206 and temporal signaling 

profiles152, 207.  Furthermore, investigations in mice have demonstrated contrasting expression 

profiles, with AdipoR1 expressed relatively ubiquitously compared with AdipoR248, and activation 

of alternate signaling pathways90.  For example, studies in knockout mice indicate that in liver 

activation of AMPK is mediated primarily by AdipoR1 whilst PPARα appears to be downstream of 

AdipoR290.   

In the current study we aimed to extend our cell-based investigations demonstrating differences 

between AdipoR1 and AdipoR2200, 207 to compare the effects of overexpression of either AdipoR1 

or AdipoR2 in skeletal muscle in lean and obese mice.  Overexpression was achieved by in vivo 

electrotransfer (IVE) of the tibialis anterior muscle (TAM) that allowed characterization of local, 

TAM-specific changes in phosphorylation of downstream signaling effectors and expression of 

genes involved in glucose and lipid metabolism as well as determination of somewhat unexpected 

systemic effects in response to overexpression of AdipoR2. 
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5.4 Materials and methods 

5.4.1 Animals  

All experimental procedures were approved by the Alfred Medical Research Education Precinct 

(AMREP) Animal Ethics Committee or the University of Queensland Animal Ethics Unit. Male 

WT C57Bl/6 mice (AMREP AS, Melbourne, VIC, Australia or University of Queensland 

Biological Resource, Brisbane, QLD, Australia) were used for all experiments and commenced 

when mice were 8 weeks of age. Animals were maintained at 22.0±0.5°C under a 12-h day, 12-h 

night cycle and fed standard chow diet containing 5% of total energy from fat.  At 8 weeks of age, 

animals were divided into two groups. Half kept on standard chow diet and the rest were fed high 

fat diet containing 43% of total calories from fat (lard) (Specialty Feeds, Glen Forrest, WA, 

Australia) for 8 weeks before in vivo electrotransfer.  

5.4.2 Reagents and antibodies 

Reagents were from Sigma–Aldrich (Castle Hill, Australia) unless otherwise stated.  Primary 

antibodies against HA and Sodium Potassium ATPase were from Covance (Washington, USA) and 

Abcam (Melbourne, Australia) respectively.  AdipoR2 antibody has been described previously70.  

Secondary antibodies were from Life Technology (Invitrogen).   

5.4.3 Molecular biology 

Original constructs encoding C-terminally epitope-tagged (HA) human AdipoR1 and AdipoR2 were 

as described70.  Plasmid DNA was prepared using a Plasmid Purification Gigaprep kit (Qiagen, 

Valencia, CA, USA) according to the manufacturer's specifications. The DNA concentration was 

quantified using a Nanodrop ND-1000 Spectrophotometer (Biolab, Scoresby, VIC, Australia) and 

the DNA dissolved in saline (154 mmol/l NaCl) to a final concentration of 4 μg/μl. 

5.4.4 In vivo Electrotransfer 

IVE was performed as described212. Briefly, mice were anaesthetised with isoflurane, their hind 

limbs were shaved and TA muscles were injected with 30 μl of 0.5 U/μl hyaluronidase. Two hours 

later mice were again anaesthetised with isoflurane and 100 μg empty vector, GFP, HA-tagged 

AdipoR1 or HA-tagged AdipoR2 (in 25 μl saline) was injected into the right TA muscle. The left 

TA muscle was injected with 25 μl empty vector. Stainless steel electrodes attached to an ECM-830 

electroporator (BTX, Holliston, MA) were placed on the muscle and square-wave electrical pulses 



83 

 

(200 V/cm) were applied eight times with an electrical pulse generator at a rate of 1 pulse/s, with 

each pulse being of 20 ms duration. Two weeks later muscles and other tissues were dissected, snap 

frozen in liquid nitrogen and stored at -80°C.  

5.4.5 Real-time PCR 

Gene expression levels were quantified using real-time PCR assay. Mice tibialis anterior muscles 

were powdered under liquid nitrogen and homogenized using Fast prep-24 (MP Biomedicals, NSW, 

Australia) in Trizol (Invitrogen, Australia). Epididymal and subcutaneous adipose tissue and liver 

were homogenized using Fast prep-24 (MP Biomedicals, NSW, Australia) in Trizol (Invitrogen, 

Australia). Total RNA was then extracted as per the manufacturer’s instructions and resuspended in 

nuclease-free water. Genomic DNA contamination of RNA preparations was eliminated by 

digestion with DNase I amplification grade (Invitrogen, Australia). cDNA was synthesized from 1 

mg total RNA using cDNA synthesis kit (Bioline, NSW, Australia) and RT-PCR was performed 

using the SYBR Hi-ROX kit (Bioline) on a 7900HT Fast Real-time PCR system (Ambion Life 

Technologies). Results are quoted to the mRNA level compared to TATA box, the expression of 

which was unchanged by the treatments. 

5.4.6 Western blot  

Mice tibialis anterior muscles were powdered under liquid nitrogen and homogenized using Fast 

prep-24 (MP Biomedicals, NSW, Australia) in lysis buffer.  Lysates were depleted of nuclei via 

centrifugation at 800 g for 10 min. The supernatant was then centrifuged at 257,000 g for 1 h, and 

the pellet (HSP containing membrane) was resuspended in lysis buffer and protein concentration 

was determined by bicinchononic acid (BCA) assay (Pierce) using BSA as the standard. 60μg 

protein was then loaded and resolved by SDS-PAGE on polyacrylamide gels, transferred to 

membranes and blocked with 5% BSA. The immunoreactive proteins were detected with enhanced 

chemiluminescence after incubation with appropriate primary and secondary antibodies. 

5.4.7 Total adiponectin ELISA 

Total circulating adiponectin was measured using adiponectin ELISA (R&D Systems, Minneapolis, 

MN, USA) according to manufacturer’s instruction. 
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5.4.8 AMPK phosphorylation ELISA 

TA muscles were powdered under liquid nitrogen and homogenized using Fast prep-24 (MP 

Biomedicals, NSW, Australia) in lysis buffer.  Phosphorylation of AMPK in TA muscle was 

measured using PathScan Phospho-AMPKα (Thr172) Sandwich ELISA (Cell-Signaling technology, 

Danvers, Massachusetts) according to manufacturer’s instruction. 

5.4.9 Akt and ERK phosphorylation assays 

Alphascreen analysis was performed as previously described207. TA muscles were powdered under 

liquid nitrogen and homogenized using Fast prep-24 (MP Biomedicals, NSW, Australia) in 

Alphascreen lysis buffer. Phosphorylation of Akt and ERK was measured using AlphaScreen 

SureFire kits essentially as described (PerkinElmer Life and Analytical Sciences, Waltham, MA, 

USA).  Plates were read using a POLARstar Omega plate reader.   

5.4.10 Statistical analysis 

Data are presented as mean ± SEM.  Significance was determined using paired t test to compare 

control and test TAM and two-way ANOVA followed by Tukey’s multiple comparison test with 

statistical significance defined as p < 0.05. 

5.5 Results 

5.5.1 Overexpression of AdipoR2 in TAM of obese mice has unexpected systemic effects. 

Using in vitro, cell-based systems we previously demonstrated that acute treatment with globular 

adiponectin resulted in different temporal signaling profiles in cells overexpressing AdipoR1 or 

AdipoR2, with the former promoting relatively acute activation (peaking at 15 min) and the latter 

more chronic activation (peaking after 24 h) respectively207. In the present study we have employed 

in vivo electrotransfer (IVE) to extend these observations and determine the effects of short-term 

(14 day) overexpression of AdipoR1 and AdipoR2 in mouse tibialis anterior muscle (TAM) of lean 

(chow fed) and obese mice fed a high fat diet (HFD) for 8 weeks.   

IVE is a powerful experimental approach that allows manipulation of the gene of interest in the test 

leg and comparison with the control leg in the same animal212, 215.  Here, we first used IVE to 

introduce a plasmid encoding GFP into the right TAM (test) and empty plasmid into the left TAM 

(control) of 16 week old lean or obese C57BL/6 mice.  After 14 days mice were sacrificed and GFP 

expression was examined visually and by qRT-PCR.  Visual inspection revealed robust GFP 
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expression throughout the entire target muscle and none in neighbouring muscles (Figure 5.1A).  

GFP expression in the test TAM, but not the control TAM, was also confirmed by qRT-PCR 

(Figure 5.1 B). 

Having confirmed the efficacy and specificity of the IVE protocol we then went on to perform 

experiments to characterise the effects of TAM-specific overexpression of AdipoR1 (TAMR1) or 

AdipoR2 (TAMR2) in lean (average body weight 29.85 g) and obese mice (average body weight 

40.75 g).  Following IVE of AdipoR1 or AdipoR2 into the test TAM and empty plasmid into the 

control TAM mice were maintained on chow or HFD for a further 14 days then sacrificed for 

analysis.  To our surprise in obese mice TAMR2 resulted in significantly reduced weight gain and 

elevated circulating adiponectin levels compared with TAMR1 obese mice (weight gain: -0.6±0.3 vs 

1.3±0.3 g, p=0.001; adiponectin: 3.0±0.3 vs 1.8±0.2 µg/ml, p<0.01; n=6/group). 

 

 

 

 

 

 

Figure 5.1. IVE-mediated expression of GFP. (A) GFP protein expression in TAM at the time of tissue 

collection (B) GFP expression in test TAM (T) compared to control TAM (C) in lean and obese mice; *p < 

0.05; n=3 in each group. 
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5.5.2 HFD induced obesity does not alter AdipoR1 or AdipoR2 expression in TAM. 

The effects on weight gain and circulating adiponectin levels were not anticipated and prompted us 

to redesign the study to include lean and obese control (sham) groups that were transduced with 

empty plasmid in both the left and right TAMs in parallel to the AdipoR1 or AdipoR2 transduced 

mice to allow direct comparison across groups.   The extent of TAMR1 or TAMR2 was determined 14 

days post IVE.  Expression of both endogenous and exogenous genes was determined using primers 

specific for either mouse or human receptors respectively.  The expression of endogenous receptors 

was unaffected by either IVE or diet (Figure 5.2A & B), with adipoR1 expressed at levels 10-fold 

higher than adipoR2.  Human AdipoR1 and AdipoR2 were only detected in the test TAM and were 

expressed at similar levels in lean and obese mice (Figure 5.2C & D).  Western blot analysis was 

performed to characterise overexpression at the protein level.  Western blot using HA-antibody 

confirmed expression of the exogenous HA-tagged proteins in only the test TAM and demonstrated 

that AdipoR1 and AdipoR2 proteins were expressed at similar levels in lean and obese mice (Figure 

5.2E & F).  Western blot with a validated AdipoR2 antibody (that recognises both human and 

mouse AdipoR270) revealed a 2-fold increase in total AdipoR2 in TAM from the test leg compared 

to the control leg.  Unfortunately we were unable to perform a similar analysis of AdipoR1 protein 

due to the lack of a suitable, validated antibody that recognised both human and mouse AdipoR1 

efficiently. Nevertheless, these results demonstrated the success and efficiency of the IVE approach 

and also showed that expression of the endogenous or exogenous receptors was not affected by 

HFD-induced obesity. 

5.5.3 TAMR1 or TAMR2 promotes activation of proximal signaling events and these effects are 

reduced in HFD-induced obesity. 

We next sought to examine the local effects of TAMR1 or TAMR2 at the level of proximal 

phosphorylation events using ELISA or Alphascreen technology.  Phosphorylation of AMPK was 

increased around 2-fold in response to overexpression of either receptor in TAM of lean mice 

(Figure 5.3A).  Overexpression of either receptor also significantly increased AMPK 

phosphorylation in obese mice however the magnitude of this effect was less than that observed in 

lean mice.  Similar results were seen for AKT phosphorylation. TAMR1 or TAMR2 increased AKT 

phosphorylation in TAM by around 50%, whilst the magnitude of this effect was reduced by around 

20% in obese mice (Figure 5.3B).  In lean mice, phosphorylation of ERK was increased 3-fold by 
TAMR1 and 2-fold by TAMR2 (Figure 5.3C).  The magnitude of these effects was reduced by 55% 
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and 45% in obese mice such that overexpression of AdipoR1 or AdipoR2 no-longer resulted in a 

significant increase in test verses control TAM (Figure 5.3C).  These results show that, at least 

under these experimental conditions, overexpression of AdipoR1 or AdipoR2 have similar effects 

on proximal signaling effectors and also suggest the development of HFD-obesity induced 

adiponectin resistance.  

 

 

Figure 5.2.  IVE-mediated Overexpression of AdipoR1 and AdipoR2. qRT-PCR analysis of (A) 

endogenous adipoR1, (B) endogenous adipoR2, (C)  R1-HA and (D) R2-HA expression in right vs left TAM 

of control (sham) and test (T) vs control (C) TAM of TAMR1 (R1) and TAMR2 (R2) mice. Data are expressed 

as mean±SEM; ****p < 0.0001; n=6 in each group. (E) Representative western blot analysis of HSP 

(membrane fractions) of TAM lysates derived from TAMR1 mice probed with HA antibody (top panel) and 

NaK ATPase antibody (lower panel). (F) Immunoblotting of HSP (membrane fractions) of TAM lysates 
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derived from TAMR2 mice probed with HA antibody (top panel), in-house R2 antibody (middle panel) and 

NaK ATPase antibody (lower panel); n=3 in each group of lean and obese mice. 

 

 

Figure 5.3. TAMR1 and TAMR2 activate proximal signalling pathways. (A) ELISA demonstrating AMPK 

phosphorylation of TAM lysates of control (sham), TAMR1 (R1) and TAMR2 (R2) mice. Alphascreen analysis 

of (B) Akt and (C) ERK phosphorylation in TAM lysates of sham, R1 and R2 groups. Data are expressed as 

mean±SEM; *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001; n=6 in each group; significant difference 

of test TAM (T) compared to control TAM (C) in lean and obese mice. 

 

 

 



89 

 

5.5.4 TAMR2, but not TAMR1, promotes increased expression of genes involved in lipid metabolism 

and these effects are reduced in HFD-induced obesity. 

We then investigated the effects of overexpression of the receptors on expression of key genes 

involved in glucose and lipid metabolism.  Overexpression of AdipoR1 or AdipoR2 resulted in a 2-

fold increase in expression of the insulin-responsive glucose transporter glut4 in lean mice but this 

effect was not observed in obese mice (Figure 5.4A).  In contrast to the effects described above that 

were common to both AdipoR1 and AdipoR2, only the latter effected changes in genes involved in 

lipid metabolism, pparα and acox1.  Indeed, in lean but not obese TAMR2 mice pparα and a 

downstream target gene acox1 (encoding acyl-CoA oxidase) were both increased around 2-fold 

(Figure 5.4B & C).  These results demonstrate different effects on local gene expression following 
TAMR1 or TAMR2 and also provide further evidence of adiponectin resistance in the face of HFD-

induced obesity. 

 

 

 

Figure 5.4. TAMR1 and TAMR2 increase expression of glut4 but only the latter increase the expression of 

adipoQ and genes involved in lipid metabolism. qRT-PCR analysis of  (A) glut4, (B) pparα, (C) acox1 

(D) adipoQ expression in control (sham), TAMR1 (R1) and TAMR2 (R2) mice. Data are expressed as 

mean±SEM; *p < 0.05, **p < 0.01, ****p < 0.0001; n=6 in each group; significant difference of test TAM 

(T) compared to control TAM (C) in lean and obese mice. 
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5.5.5 TAMR2, but not TAMR1, promotes increased expression of adipoQ in TAM from lean and obese 

mice. 

Next, we examined expression of adipoQ (encoding adiponectin) in test and control TAM.  As 

expected, expression of adipoQ was relatively low in control muscle from lean mice (1000-fold less 

than in epididymal fat).  Obesity increased adipoQ expression 2.2-fold (n=18/group; p=0.001), 

consistent with previous reports239, whilst TAMR2 increased adipoQ levels 6-7 fold in TAM from 

both lean and obese mice respectively (Figure 5.4D). 

5.5.6 TAMR2 in obese mice reduces HFD-induced weight gain, adipose tissue mass and 

inflammation, and increases circulating adiponectin levels. 

Consistent with the findings in our pilot study (see above) we again observed a significant decrease 

in weight gain in TAMR2 obese mice compared with obese control mice (transduced with empty 

plasmid in both legs) or TAMR1 obese mice (Figure 5.5A).  The latter also promoted a modest but 

significant reduction in weight gain compared with the obese control group (Figure 5.5A).  To 

address this further we measured epididymal and subcutaneous fat pad weights.  Consistent with the 

reduced weight gain, fat pad weights were also significantly reduced in the TAMR2 obese mice 

(Figure 5.5B & C).  In light of these surprising observations we performed qRT-PCR on the 

epididymal and subcutaneous fat pads (and liver) using primers specific for human AdipoR2 to rule 

out the possibility that these effects may reflect leaky expression of AdipoR2 in tissues other than 

the test TAM.  In all cases we were unable to detect human AdipoR2 expression (data not shown) 

leaving us to conclude that these effects are most likely mediated indirectly via the increased 

expression of AdipoR2 in TAM.  Having established this, we performed further characterisation of 

the epididymal fat pads aiming to define the impact on the inflammatory signature.  As expected, 

HFD-induced obesity resulted in a significant increase in expression of inflammatory markers 

including the pro-inflammatory cytokine TNFα240, the chemokine monocyte chemoattractant 

protein (MCP)-1241, and the monocyte/macrophage markers CD68, CD11b and F4/80 242 (Figure 

5.6A-E).  TAMR1 or TAMR2 had no effect on inflammatory gene expression in lean mice.  However, 

in TAMR2 obese mice there was a significant reduction in the expression of all inflammatory 

markers, such that expression levels were comparable to those in lean mice (Figure 5.6A-E).  

Moreover, TAMR1 obese mice presented an intermediate profile with significant reductions in mcp1, 

cd11b, cd68 and f4/80 compared with obese sham mice (Figure 5.6A-E).  We also determined the 

effects of diet and gene transduction on adipoQ expression.  All groups showed similar expression 

except for the TAMR2 obese mice, where adipoQ expression was significantly elevated (Figure 
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5.6F).  To investigate this further we measured circulating adiponectin levels.  Consistent with the 

gene expression, and our pilot study, circulating adiponectin levels were significantly increased in 
TAMR2 obese mice (Figure 5.6G). We performed a similar analysis of the subcutaneous adipose 

tissue which revealed a more modest inflammatory response in the face of HFD-induced obesity 

and no effect of TAMR1 or TAMR2 (Figure 5.7A-E).  Surprisingly, adipoQ expression was 

significantly increased by obesity in this depot (Figure 5.7F).  Collectively, these results suggest 

that TAM-specific overexpression of AdipoR2, and to a lesser extent AdipoR1, results in reduced 

HFD-induced weight gain concomitant with amelioration of HFD-induced adipose inflammation in 

epididymal fat pads, increased adiponectin expression and increased circulating adiponectin. 

 
 

 

Figure 5.5. TAMR2 reduces weight gain and fat pad weight.  (A) Average weight gain over two weeks 

following IVE. (B) Epididymal fat and (C) subcutaneous fat pad weight. Data are expressed as mean±SEM; 

*p < 0.05, **p < 0.01, ****p < 0.0001; n=6 in each group; significant difference compared to control (sham) 

group of same diet. 
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Figure 5.6.  TAMR2 improves HFD induced inflammation in epididymal fat pad of obese mice and 

increases circulating adiponectin levels. qRT-PCR analysis of  (A) tnfα (B) mcp1 (C) cd11b (D) cd68 and 

(E) f4/80 and (F) adipoQ expression in epididymal fat pad. (G) ELISA analysis of serum total circulating 

adiponectin. Values are presented as mean±SEM; *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001; 

significant difference compared to control (sham) of same diet. #p < 0.05, ##p < 0.01, ###p < 0.001, ####p < 

0.0001; significant comparison of lean vs obese mice in same group; n=6 in each group.  



93 

 

 

 

Figure 5.7.  TAMR1 or TAMR2 do not affect diet induced inflammation in subcutaneous fat pad. qRT-

PCR analysis of (A) tnfa (B) mcp1 (C) cd11b (D) cd68 and (E) f4/80 and (F) adipoQ expression in 

subcutaneous fat pad. Data are presented as mean±SEM; #p < 0.05, ##p < 0.01, ###p < 0.001, ####p < 

0.0001; significant comparison of lean vs obese mice in same group; n=6 in each group. 
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5.6 Discussion 

In the current study we aimed to extend molecular and cellular studies by comparing the effects of 

overexpression of AdipoR1 or AdipoR2 in skeletal muscle in lean and obese mice.     We employed 

IVE to mediate overexpression of AdipoR1 or AdipoR2 in TAM of lean or HFD-induced obese 

mice.  In lean mice TAM-specific overexpression of either receptor resulted in increased 

phosphorylation of downstream effectors and elevated expression of the insulin responsive glucose 

transporter glut4.  In contrast, only overexpression of AdipoR2 resulted in increased expression of 

pparα and the target gene acox1.  In obese mice the magnitude of all of these effects was reduced 

even though receptor expression and circulating adiponectin levels were maintained or increased.  

Surprisingly, TAMR2 in obese mice resulted in a significant decrease in weight gain, adipose tissue 

mass and inflammation and a significant increase in circulating adiponectin levels.  Collectively, 

these results identify overlapping effects of AdipoR1 and AdipoR2 as well as additional, distinct 

effects of the latter that provide a foundation for further investigations aimed at reducing obesity-

related complications. 

Investigations at the molecular and cellular level have provided clear evidence that AdipoR1 and 

AdipoR2 display different properties in terms of adiponectin binding48, cell surface expression, 

oligomerization and signaling152, 193, 200, 207.  Consistent with this scenario, whole animal studies, 

predominantly involving characterization of AdipoR1 or AdipoR2 knockout mice, have 

demonstrated different signaling outputs, such as coupling of hepatic AMPK and PPARα activity to 

AdipoR1 and AdipoR2 respectively90, and phenotypic consequences following deletion of either 

receptor90, 183, 184, 243.  Whilst informative, there are caveats to this loss of function approach given 

oligomerization of AdipoR1 and AdipoR248, 57, 152 has been shown to alter properties of the receptor 

complex and downstream signaling outputs152, 200.  For example, our observations that under 

physiological conditions (no serum withdrawal) cell surface expression of AdipoR2 is limited 

unless it is co-expressed with AdipoR1200 has clear implications when considering the impact of 

AdipoR1 deletion, which is also likely to compromise AdipoR2 function.  Furthermore, adiponectin 

receptor interacting proteins such as ERp46 have been shown to modulate receptor oligomerization, 

cell surface expression and downstream signaling70.  Thus, a gain of function approach may be 

expected to provide important complementary information.  Typically such studies have tended to 

focus on the effects of overexpression of either AdipoR1 or AdipoR2.  For example, overexpression 

of AdipoR1 in rat skeletal muscle was reported to improve insulin sensitivity215 whilst 

overexpression of AdipoR2 in liver increased PPARα and protected against progression of 
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NASH192.  To the best of our knowledge there are no examples where such studies have been 

compared the effects of overexpression of AdipoR1 or AdipoR2 in vivo. 

Skeletal muscle is a recognized target of adiponectin action, with adiponectin increasing fatty acid 

oxidation and glucose uptake and enhancing insulin sensitivity by activation of pathways involving 

AMPK and PPARα205, 239, 244.  In addition, numerous studies have provided evidence of adiponectin 

resistance in skeletal muscle from rodents40, 45, 234, 235 and humans42, 43, 236.  Whilst muscle-specific 

deletion of AdipoR1 has established a key role for AdipoR1120 this does not preclude a role for 

AdipoR2 in mediating the beneficial effects of adiponectin in skeletal muscle or the potential of 

AdipoR2-based therapies.  Thus, in the current study we used IVE to compare the effects of 

overexpression of AdipoR1 or AdipoR2 in TAM of lean or HFD-induced obese mice. 

Neither IVE nor HFD-induced obesity affected expression of endogenous receptors at the mRNA 

level and endogenous adipoR1 was expressed around 10-fold higher than adipoR2, consistent with a 

previous report48.  Measurement of both gene and protein (HA) indicated that the exogenous human 

receptors were expressed at similar levels, with IVE increasing total AdipoR2 levels in TAM by 

around 100%.  Unfortunately we were unable to determine the impact of AdipoR1 overexpression 

on total levels due to the lack of a suitable antibody.  Nevertheless, similar levels of overexpression 

of AdipoR1 and AdipoR2 in TAM of lean mice resulted in comparable elevation of phosphorylation 

events including AMPK, AKT and ERK as well as increased glut4 expression suggesting that, at 

least under these conditions, they mediate similar effects consistent with enhanced adiponectin and 

insulin sensitivity.  Furthermore, these beneficial effects were reduced in the context of HFD-

induced obesity by 20-60%.  Given circulating adiponectin levels were not decreased these findings 

are consistent with the development of adiponectin resistance, at a level distal to receptor 

expression. 

Only overexpression of AdipoR2 resulted in increased expression of pparα and acox1.  This is 

consistent with the findings of impaired hepatic PPARα activity in AdipoR2 knockout mice 90 but 

contrasts with observations in endothelial cells, where overexpression of either AdipoR1 or 

AdipoR2 was sufficient to mediate PPARα activation245.  Once again, these effects were blunted in 

obesity providing further evidence of adiponectin resistance. 

Emerging evidence suggests adiponectin is produced by skeletal muscle and that this is increased in 

response to obesity or inflammation27, 239, 246.  Consistent with these observations, we observed a 2-

fold increase in adipoQ levels in TAM from obese mice.  Intriguingly, overexpression of AdipoR2 

promoted increased expression of adipoQ in both lean and obese mice.  The molecular basis for this 
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effect is unclear, particularly given that all other local effects of TAMR2 were diminished in obese 

mice.  Further investigations are warranted to elaborate the underlying mechanisms, which may 

reveal novel strategies to induce adiponectin expression more globally. 

Perhaps the most surprising observations in this study relate to the effects of TAMR2 reducing weight 

gain in obese mice.  Indeed, weight gain in HFD-fed obese mice transduced with AdipoR2 was 

indistinguishable from that in the lean, chow-fed mice.  This effect was also reflected by a modest 

but significant reduction in epididymal and subcutaneous fat pad weights, compared with those 

from obese sham or TAMR1 mice, and a striking resolution of adipose tissue inflammation in the 

epididymal fat pad.   Moreover, adipoQ expression was significantly elevated in the epididymal fat 

pad from the obese TAMR2 mice as were circulating levels of adiponectin.  It is noteworthy that 

these observations (reduced weight gain and elevated adiponectin) are consistent across two 

independent studies, performed in two distinct research facilities, using different sets of reagents 

with different mouse cohorts.  Whilst unexpected, evidence from the literature supports the notion 

that overexpression of either AdipoR1 or AdipoR2 may prevent weight gain.  Hydrodynamic 

delivery of AdipoR2 to the liver resulted in reduced diet-induced weight gain and adipose tissue 

mass247 whilst global or macrophage-specific overexpression of AdipoR1 were also sufficient to 

reduce diet-induced weight gain248, 249.  Whilst it remains possible that the IVE approach employed 

in the current study may have resulted in transduction of cells other than the TAM we were unable 

to detect evidence of such leaky expression in epididymal or subcutaneous fat pads or in liver.  

Thus, we propose that overexpression of AdipoR2 in skeletal muscle results in altered expression of 

a circulating factor, possibly a myokine in a manner similar to that detailed for adipoQ, and that this 

underpins the reduced weight gain and associated improvements.  Clearly, further studies are 

required to investigate this intriguing hypothesis. 

In summary, we have demonstrated that overexpression of AdipoR1 or AdipoR2 in mouse skeletal 

muscle promote similar effects at the level of proximal signaling events and glut4 expression whilst 

only AdipoR2 promotes activation of the PPARα axis.  All of these effects were blunted in the face 

of obesity, consistent with the development of adiponectin resistance at the level of skeletal muscle.  

Finally, muscle-specific overexpression of AdipoR2 gave rise to several unexpected local and 

systemic effects that included increased expression of adipoQ in muscle and epididymal adipose as 

well as increased circulating levels of adiponectin, and reduced HFD-induced weight gain, adipose 

tissue mass and inflammation.  However, these effects appeared unable to ameliorate muscle 

adiponectin resistance.  Future studies, investigating the effects of more global muscle-specific 
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overexpression of AdipoR2 may provide further insights into the underlying mechanisms which 

may provide novel strategies to reverse hypoadiponectinemia and or adiponectin resistance. 
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Chapter Six: 

General Discussion 
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6.1 Overview 

The global increase in prevalence of cardiovascular and metabolic diseases and comorbidities has 

had profound implications on public health systems.  Thus, there is a need for the development of 

more effective therapeutics. Adiponectin and its receptors are considered promising therapeutic 

targets for cardiometabolic disorders12. Population-based studies had documented that circulating 

adiponectin levels correlate inversely with metabolic complications such as hypertension, insulin 

resistance and the incidence of some cancers10, 30, 250-252. Pre-clinical studies, principally in mouse 

models, had demonstrated that adiponectin administration40, 41, and more importantly increased 

HMW adiponectin253, was able to alleviate most of these associated complications. Since the 

discovery of AdipoR1 and AdipoR2 in 200348, they were demonstrated as main receptors for 

adiponectin and mediating its beneficial effects. AdipoR1 and AdipoR2 are predicted to be seven 

transmembrane domain proteins and, importantly, are shown to have opposite topology to GPCRs 

and function through atypical pathways48. In addition to adiponectin expression, accumulating 

evidence demonstrates adiponectin resistance at the level of the adiponectin receptors in 

cardiometabolic disorders. For instance, pre-clinical studies demonstrated that adiponectin failed to 

stimulate glucose uptake and fatty acid oxidation in insulin sensitive organs of obese, diabetic and 

hypertensive rats despite increased or unchanged AdipoR1 and AdipoR2 mRNA expression43, 46. 

Thus understanding the processes that promote receptor function will provide opportunities to 

define mechanisms that give rise to adiponectin dysfunction. 

This thesis investigated the molecular characterisation governing the subcellular localisation and 

signal transduction of AdipoR1 and AdipoR2. Key findings are outlined below: 

1- Under steady-state conditions (no serum starvation) AdipoR1 exhibits robust (50%) cell-

surface expression, whereas AdipoR2 is predominantly restricted to the ER and it is 

undetectable at the cell-surface 200. 

2- The non-conserved, intracellular, N-terminal region of AdipoR2 (AdipoR21-81) restricted 

cell-surface expression, whilst the same region in AdipoR1 (AdipoR11-70) promoted cell-

surface expression200.  

3- Co-expression of AdipoR1 with AdipoR2 leads to the formation of hetero-dimers and 

promotes the cell-surface expression of AdipoR2200. 

4- 16 h of serum starvation promoted cell-surface expression of AdipoR2 (to 20%) but had no 

discernible effect on the cell-surface expression of AdipoR1207.   
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5- Two conserved motifs proximal to the first transmembrane domain, an ER exit motif 

(FxxxFxxxF) and Di-Leucine motif (DxxxLL), are required for efficient cell-surface 

expression of AdipoR1 and AdipoR2207.   

6- Overexpression of AdipoR1 resulted in acute adiponectin-stimulated activation of 

downstream signalling networks (Akt, ERK & P38MAPK) whereas overexpression of 

AdipoR2 promoted more chronic activation (peaking at 15 min and 24 h respectively)207. 

7- Difference in the temporal signalling profiles of AdipoR1 and AdipoR2 is also underpinned 

by the non-conserved N-terminal domain (AdipoR11-70 and AdipoR21-81)207. 

8- AdipoR1 and AdipoR2 are both palmitoylated at multiple sites in the N-terminal domain 

(AdipoR1(C54 & 124) and AdipoR2(C11, 96 & 135). 

9- Palmitoylation of the conserved cysteine in the juxta-membrane region of AdipoR1(C124) 

and AdipoR2(C135) is required for efficient cell-surface expression and signal transduction 

of AdipoR1 and AdipoR2 (both in vitro and in vivo). 

10- Palmitoylation of non-conserved cysteines in AdipoR2 (C11 and C96) contribute to the 

maintenance of AdipoR2 stability. 

11- Muscle-specific overexpression of AdipoR1 or AdipoR2 in vivo enhances downstream 

signalling (AMPK, Akt & ERK) and regulated glucose uptake, but activation of the PPARα 

axis and fatty acid oxidation is specific to AdipoR2. 

12- Diet-induced obesity in mice results in adiponectin resistance.  

13- Over-expression of AdipoR2 in TA muscle prevents HFD induced weight gain and regulates 

adiponectin secretion. 

14- Overexpression of AdipoR2 in TA muscle of obese mice resulted in marked systemic effects 

including reduced fat mass and markers of adipose tissue inflammation. 

6.2 General discussion and future directions 

6.2.1 Characterisation of the non-conserved N-terminal domains (NC-NTD) 

During the course of this thesis we demonstrated that despite highly conserved sequences, there are 

fundamental differences between AdipoR1 and AdipoR2.  

In the early chapters of this thesis, we established major differences in the cell-surface expression 

(CSE) of the adiponectin receptors. Examining the subcellular localisation of the endogenous 

receptors revealed that AdipoR1 is predominantly located in the PM; however, AdipoR2 is mainly 

localised in the ER. Using cell biology approaches we further investigated the subcellular 

localisation of adiponectin receptors and we demonstrated that CSE of AdipoR2 was undetectable 
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by semi-quantitative approaches such as microscopy and plate-based assay. Due to the highest 

sensitivity, flow cytometry was then used to accurately investigate the number of cells expressing 

receptors at the cells surface. Results revealed that under steady state only 10-15% of the cells 

transiently transfected with AdipoR2 are expressing it at the cell-surface, whilst 50-60% CSE was 

detected for AdipoR1200, 207. By generating chimeric and truncated receptors we demonstrated that 

the difference in the subcellular localisation of AdipoR1 and AdipoR2 is underpinned by the NC-

NTD200 (figure 6.1). Our results showed that CSE of AdipoR2 is restricted by amino acids 1–81 

whilst same region in AdipoR1 (amino acids 1-70) promoted cell-surface expression. These 

observations are consistent with those from the original study by Kadowaki and colleagues, who 

characterised a truncated form of AdipoR2 that lacked the N-terminal region and was localised at 

the cell-surface48. In chapter 4 of this thesis however, we showed enriched localisation of the 

cytoplasmic domain of both AdipoR1 and AdipoR2 under the PM. These constructs contain NC-

NTD and conserved N-terminal domains (C-NTD) (figure 6.1) without the transmembrane region. 

However, our previous results suggested that the NC-NTD of AdipoR2 inhibits CSE. One 

explanation for this difference is that the AdipoR2 NC-NTD may interact with one or more of the 

intracellular loops to inhibit CSE. Therefore, future studies are required to investigate the exact role 

of NC-NTD in AdipoR2. So far different groups investigated adiponectin receptors properties. 

Some groups reported that AdipoR2 is not expressing at the cell-surface and therefore AdipoR1 was 

the main focus of most of the studies168, 169. In contrast, a group demonstrated that both receptors 

were expressed at the cell-surface to same extent152. In this study, recombinant AdipoR1 and 

AdipoR2 with a series of phrGFP, ECFP, Venus-YFP, and DsRed tags on the cytoplasmic N-

terminal region of the receptors were used and co-localisation of the receptors with a membrane 

marker was shown152. One explanation for cell-surface localisation of AdipoR2 in this study is the 

addition of a large tag (> 200 amino acids) on the N-terminus which may prevent the NC-NTD 

acting as a brake, possibly via interference of the proposed interaction of the NC-NTD with 

intracellular loops (see above) or other interacting proteins.  

In accordance with previous investigations on different CSE of AdipoR1 and AdipoR2, we 

identified that the temporal signal profile of AdipoR1 and AdipoR2 also differs 207. We showed that 

AdipoR1 increases the adiponectin stimulated downstream signalling pathways acutely (15 min), 

whilst, AdipoR2 acts chronically (24 h). This was also shown to be underpinned by the NC-NTD of 

the receptors. Interestingly, although CSE of AdipoR2 is relatively limited, its ability to activate 

downstream effectors is comparable with AdipoR1 and CSE is necessary for AdipoR2 downstream 
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signalling.  This could be explained by AdipoR2 redundancy after overexpression as it was 

demonstrated in chapter 4, figure 4.4.  

During the course of this thesis the crystal structure of adiponectin receptors was reported by 

Kadowaki and colleagues71. In this study a truncated form of AdipoR1 and AdipoR2 was used and 

it was suggested that the deletion of the non-conserved and part of the conserved N-terminal 

domain of the receptors does not affect their function and signalling71. However, our investigations 

provided the evidence that the NC-NTD underpinned the different cell-surface expression200 and 

temporal signalling profile207 of AdipoR1 and AdipoR2. Previous studies from the host lab also 

demonstrated that ERP46, the first AdipoR1-specific interacting protein, interacts with the NC-

NTD of AdipoR1 and modulates adiponectin signalling. It is also well established that the C-NTD 

of AdipoR1 and AdipoR2 interacts with APPL1, the best characterised interacting protein for 

AdipoR1 and AdipoR272, 100, and other interacting proteins such as RACK and protein kinase 

CK273, 74. All these interacting proteins have been shown to play important roles in mediating 

adiponectin signalling raising some concerns about the validity of the recent findings from the 

Kadowaki group71.  

6.2.2 Dimerisation effect on receptor CSE  

Further characterisation of adiponectin receptors during this thesis demonstrated that co-expression 

of AdipoR1 with AdipoR2 increases the cell-surface expression of AdipoR2200. It is well 

established that AdipoR1 and AdipoR2 form homo and hetero dimers48, 57, 169. Previously it was 

reported that a motif consisting of two conserved glycine (GxxxG) in the fifth transmembrane 

domain is responsible for dimerisation of AdipoR1151 (figure 6.1). This motif provides a flat 

interaction surface for receptor dimerisation, as described for several transmembrane proteins 

including some GPCRs254, 255.  Later in 2012, it was demonstrated that dimerisation of both 

AdipoR1 and AdipoR2 occurs mainly in the plasma membrane and less in the ER suggesting that 

dimerisation of the receptors may regulate CSE of the receptors152. This is the case for some of the 

GPCRs where dimerisation is essential for their efficient CSE147, 162. It was demonstrated by both 

groups that adiponectin treatment reduces dimerisation of the receptors151, 152 suggesting that 

dimerisation facilitates the CSE and that these complexes dissociate in response to ligand binding. 

Our observations suggest that in organs such as the liver where AdipoR1 and AdipoR2 expression 

at least at the mRNA level 89 is comparable, it seems likely that the major species is AdipoR1/R2 

heterodimer. Given that CSE expression of AdipoR1 and AdipoR2 is required to activate 

downstream signalling and considering limited CSE of AdipoR2 homodimer, this question may rise 
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whether AdipoR2 homodimer plays a major role serving as classic receptor.  However, future 

studies are required to characterise the role of AdipoR2 homo dimerisation. 

 

 

 

Figure 6.1.  Schematic representation of AdipoR1 and AdipoR2 structure, palmitoylation and 

dimerisation sites. Non-conserved N-terminal domain (NC-NTD) is shown in red for AdipoR2 (inhibit 

CSE) and green for AdipoR1 (promote CSE). Conserved N-terminal domain (C-NTD) of AdipoR1 and 

AdipoR2 is highlighted with grey line.  Palmitoylation sites for AdipoR1 (C54 & C124) and AdipoR2 (C11, 

C96 &C124) are shown in yellow. Dimerisation site in the fifth transmembrane domain is highlighted by 

dark blue boxes.  
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6.2.3 Characterisation of the C-NTD 

Beside the NC-NTD which causes the differences, the C-NTD however, drives important parallel 

facets of AdipoR1 and AdipoR2.  In 2012, two motifs known as ER exit motif (FxxxFxxxF) and 

Di-Leucine motif (DxxxLL) was identified as modulators of AdipoR1 anterograde trafficking167. 

Given that these motifs are identical between AdipoR1 and AdipoR2, we demonstrated that they are 

required for CSE of both AdipoR1 and AdipoR2 and subsequently essential for their downstream 

signalling207.  

6.2.4 Identification and characterisation of receptor palmitoylation 

A major finding of this thesis was investigating the palmitoylation of AdipoR1 and AdipoR2. The 

important role of post-translational modification for the stability176, 256, localisation177, 220, 257, 258 and 

function233, 259 of GPCRs is well recognised. However, not many studies have focused on 

characterising the properties that govern adiponectin receptor function other than a recent study 

demonstrating the phosphorylation of AdipoR1 in post-myocardial infarction heart failure in pre-

clinical models208. Our investigations provided the first direct biochemical and molecular evidence 

showing that AdipoR1 and AdipoR2 are palmitoylated.  We identified that a conserved cysteine in 

the juxtamembrane region of AdipoR1 and AdipoR2, which is a classical palmitoylation site in 

many of the 7-transmembrane GPCRs177, 220, 225, is subjected to palmitoylation. Further 

investigations revealed that palmitoylation of the mentioned ‘canonical’ cysteines are essential for 

efficient cell-surface expression and therefore are required for downstream signalling of AdipoR1 

and AdipoR2. We also identified two additional cysteines in the cytoplasmic domain of AdipoR2 

which are subjected to palmitoylation. These cysteines are not conserved between AdipoR1 and 

AdipoR2 but conserved within species. We demonstrated that palmitoylation of these cysteines is 

required for the stability of AdipoR2. Interestingly, we did not see such effect in AdipoR1 

suggesting that only AdipoR2 stability is palmitoylation dependent.  

As mentioned before, adiponectin resistance has been reported in cardiometabolic disorders such as 

obesity and type-2 diabetes. In these studies, despite reduced signalling, increased or unchanged 

mRNA expression of AdipoR1 and AdipoR2 was demonstrated 43, 46. The protein expression of the 

receptors was not reported in these studies. However, reported reduced signalling could be, at least 

partly, explained by reduced protein expression and/or impaired CSE which was reported by 

another group in overweight patients with coronary heart disease34. On the other hand, reduced 

palmitoylation of other proteins such as LIM domain only 4 (LMO4), an inhibitor of Protein 

tyrosine phosphatase 1B (PTP1B) activity, has been reported in metabolic stresses such as 
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obesity260. To this end, we attempted to examine the level of AdipoR1 and AdipoR2 palmitoylation 

in the muscle and liver of lean and obese pre-clinical mouse models to further investigate the 

physiological effects of palmitoylation. Unfortunately, we were unable to detect palmitoylation of 

the endogenous receptors.  This probably reflects limitations of the acyl-biotinyl exchange assay, in 

terms of sensitivity, combined with the low levels of expression of the adiponectin receptors and 

high number of other palmitoylated proteins. Notwithstanding, to extend our cell-based 

observations to a more physiological setting we used in vivo electrotransfer (IVE) to overexpress 

the receptors in mouse skeletal muscle. Our studies revealed that disruption of palmitoylation of the 

canonical cysteines impairs the ability of AdipoR1 and AdipoR2 to activate downstream signalling 

pathways.  

6.2.5 IVE-mediated overexpression of AdipoR1 and AdipoR2 in skeletal muscle 

Another purpose of IVE study was to examine the effects of overexpression of wild-type AdipoR1 

and AdipoR2 in mouse tibialis anterior muscle (TAM). Adenovirus-mediated overexpression of 

AdipoR1 and AdipoR2 in mouse liver was reported to activate AMPK phosphorylation and PPARα 

pathway respectively90. The IVE system on the other hand, gives the opportunity to examine the 

local effect of receptors overexpression compared to an internal control (test leg vs. control leg in 

same animal). TAM specific overexpression of AdipoR1 in rats was also reported to amplify local 

insulin sensitivity215. However, the effect of AdipoR2 overexpression in muscle which is not a 

primary organ for AdipoR2 was not examined before. Our study revealed that TAM-specific 

overexpression of either AdipoR1 or AdipoR2 may be enough to activate downstream signalling 

pathways including phosphorylation of AMPK, Akt and ERK. Overexpression of both AdipoR1 

and AdipoR2 also increased Glut4 expression, which would be consistent with increased insulin or 

exercise stimulated glucose uptake in muscle. However, activation of fatty acid oxidation pathways 

is specific to AdipoR2. Given the limited CSE of AdipoR2 it seems unlikely that overexpression of 

AdipoR2 alone is responsible for such effects.  A plausible explanation is that exogenous AdipoR2 

forms heterodimers with endogenous AdipoR1 and that these mediate many of the downstream 

effects. This may suggest that both AdipoR1 homodimers and AdipoR1/R2 heterodimers stimulate 

downstream signalling pathways, whilst only AdipoR1/R2 heterodimers stimulate fatty acid 

oxidation pathways. As mentioned before, due to its limited CSE, the role and function of AdipoR2 

homodimer is questionable. Further studies are required to identify the presence and function of 

homo/hetero dimers after AdipoR1 and AdipoR2 IVE. The most striking finding in this study was 

the systemic effects we observed after overexpressing AdipoR2 in the skeletal muscle of obese 

mice. We observed increased circulating adiponectin and decreased body weight gain following 
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overexpression of AdipoR2. Interestingly these effects were unchanged in the absence of canonical 

cysteine palmitoylation suggesting that CSE of AdipoR2 is not required to stimulate these effects. 

Whilst unexpected, it has been previously reported that overexpression of either AdipoR1 or 

AdipoR2 may prevent weight gain.  Hydrodynamic delivery of AdipoR2 to the liver resulted in 

reduced diet-induced weight gain and adipose tissue mass 247 whilst global or macrophage-specific 

overexpression of AdipoR1 were also sufficient to reduce diet-induced weight gain 248, 249.  

Although, it remains possible that the IVE approach may have resulted in transduction of cells other 

than the TAM we were unable to detect evidence of such exogenous AdipoR2 expression in iother 

organs such as epididymal or subcutaneous fat pads or in liver.  Therefore, we propose that 

overexpression of AdipoR2 in skeletal muscle results in altered expression of a circulating factor, 

possibly a myokine in a manner similar to that detailed for adipoQ, and that this underpins the 

reduced weight gain and associated improvements.  Clearly, further investigations are required to 

identify the mechanism by which TAM-specific overexpression of AdipoR2 regulates adiponectin 

secretion and improves diet-induced inflammation. 
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6.3 Conclusions 

Adiponectin and its receptors are recognised attractive potential targets for treatment of metabolic 

complications. Nevertheless, therapeutic strategies are constrained by a rudimentary understanding 

of the adiponectin receptors and therefore greater understandings of how the AdipoR1 and AdipoR2 

mediate adiponectin’s beneficial effects are essential. In this project we demonstrated (i) 

fundamental differences between AdipoR1 and AdipoR2, highlighting the importance of the 

cytoplasmic domains, (ii) post-translational regulation (palmitoylation) of the receptors and its 

significance for cell-surface expression, signal transduction and stability and (iii) overlapping and 

discrete local and systemic effects of AdipoR1 and AdipoR2. This work provides a foundation for 

future studies that promise to extend our knowledge of adiponectin receptors biology. Such studies 

are likely to contribute to the development of much needed therapeutics for cardiometabolic 

disorders. 
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