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Closure to "Minimum Specific Energy and Transcritical Flow in 

Unsteady Open Channel Flow" 

 

Oscar Castro-Orgaz and Hubert Chanson 

 

The Authors thank the Discussers for their interest in the original paper, and the comments offered. During 

the inspection of the Discussers' assertions, it was found that most of them were unsupported by hydraulic 

analysis. Below a detailed reply to each comment is ellaborated. Bullets are used to differentiate between 

specific items to be presented. 

 

General 

 

• First, we clarify, contrary to the Discussers' opening statements, that the paper explored the validity of the 

steady backwater equation, or gradually-varied flow equation, at the critical depth. The validity of the 

equation was checked using an unsteady mathematical model, namely the Saint Venant equations, as well as 

experiments. The backwater equation is obtained simplyfying the differential form of Saint Venant equations 

to steady state conditions (Montes 1998), namely 
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where h is the flow depth, q the discharge and zb = zb(x) the bottom profile. Comparison of the solution the 

backwater equation, and the solution of the integral form of Saint Venant equations, after establishment of a 

steady state, gave identical results [see Fig. 3 of the original paper]. Comparison of Saint Venant equations 

with experimental data in Fig. 5b of the original paper gave good results. The analytical solution for the free 

surface slope at the critical point is 
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This equation was compared and verified with the experiments of Wilkinson (1974) in Fig. 4 of the original 

paper. Using the unsteady flow results from Saint Venant equations, the free surface slope at a section was 

computed from the finite-difference approximation 
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At the weir crest (x = 0) it was found that the steady-state free surface slope obtained from the unsteady 

solution of Saint-Venant equation perfectly matched Eq. (2), e.g. 
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This result was also included in Fig. 4 of the original paper. Therefore, the validity of the steady state 

equations (backwater equation, singular point equation) was verified in the original paper, using both general 

unsteady mathematical solutions, and laboratory observations. To clearly highlight this fact, the computed 

free surface profile using Eq. (1), obtained from the Runge-Kutta method, is presented in Fig. 1a [see Fig. 5b 

of the original paper]. The boundary condition at the weir crest section, x = 0, is h(0) = hc = (q2/g)1/3. The free 

surface slope at that section is given by Eq. (2). Subcritical and supercritical profiles were computed from x 

= 0 in the up- and downstream directions, respectively. Fig. 1a reveals that the accuracy of the computation 

is good. That Saint Venant theory is mathematically valid at the critical depth means that for the weir flow 

case investigated in the original paper, mathematical solutions are obtained for arbitray values of Emin/R. 

Consequently, limits to the theory should be set based on experimental observations. This was acomplished 

in the original paper on the basis of the computation presented in Fig. 5b (current Fig. 1a). The mathematical 

prediction based on the backwater equation is good if the curvature is small, as in Fig.1a, where Emin/R = 

0.253. The experimental verification of Eq. (2) is presented in the current Fig. 1b, based on Fig. 4 of the 

original paper. This analytical solution is seen to be in excellent agreement with experiments up to −hc 

d2zb(x)/dx2 ≈ 0.15, or Emin/R ≈ 3/2∙0.15 = 0.225. Therefore, the solution of the backwater Eq. (1), including 

Eq. (2), are in full agreement with the more general solution of Saint Venant equations, and these solutions 

are verified to be physically good if the curvature is small, e.g. for Emin/R < 0.25.  
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Figure 1. Validity of gradually-varied flow theory and singular point method  (a) free surface profile 

computed applying the singular point method to the backwater equation, for a test case of Sivakumaran et al. 

(1983) with Emin/R = 0.253 and q = 0.0359 m2/s, (b) experimental verification of the free surface slope at a 

control section computed using the singular point method 

 

• For steady, frictionless flow over a weir, Eq. (1) is equivalent to the differential form of 
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It means that based on Eq.(5) smooth mathematical solutions for transcritical flow over a weir are obtained 

(Fig. 1a). Equation (1) is consistent with the formation of steady singular points, asymptotically, during an 

unsteady flow computation based on the Saint Venant equations 
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Here U is the vector of conserved variables, F is the flux vector and S the source term vector, given by 
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where U is the depth-averaged velocity. Results in Figs. 3 and 4 of the original paper indicated that both 

results almost perfectly match, thereby indicating that the unsteady flow over a weir produces a singular 

point asymptotically in the crest section as the steady state is approached.  

 

• The Discussers used the terminology "Singular Point Theory", which is not adequate. There is not such a 

theory. What is under debate is the "Singular point Method", as correctly named by the Authors in the 

original paper and by Chow (1959, pages 237-242), among others. The singular point method is a 

mathematical technique used to solve indeterminations in ordinary differential equations. Therefore, it is a 

mathematical method that can be applied to different theories. It is a very common tool in applied 

mathematics (see e.g. von Kármán 1940) used to model dynamic systems in physics and engineering. 

 

• The normal depth concept is not used in the original paper, given that flow over a weir crest can be 

considered a potential flow, as verified experimentally (Montes 1998). 

 

• Broad-crested weirs are not considered in the original paper, contrary to what the Discussers suggested. We 

considered flow over a weir crest, where zb(x), dzb(x)/dx and d2zb(x)/dx2 are smooth and continous. 

 

• In their experimental setup, the Discussers found various singular points. To determine the actual flow 

profile, sub- and supercritical profiles are computed from each singular point. Between each pair of singular 

points, a supercritical flow profile computed from the singular point upstream, must be ensembled with a 

subcritical flow profile computed from the singular point downstream, studying the formation of a hydraulic 

jump. If a jump is formed, both singular points acts as controls. If a jump is not formed, only one singular 

point will be an active control section, and the profile betwen the two singular points will be fully subcritical 

or supercritical. We recall that a characteristic feature of a singular point is the possibility of transcritical 

flow profiles across them, when it acts as a control, and the variety of profile in its vicinity, not crossing it. 

The number of possible cases is long, and there is no space for a detailed description in this closure paper. 

We advice the Discussers to consult the work of Iwasa (1958). 
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Hydrostatic modelling 

 

• The Discussers asserted that " there is no reason for both numerator and denominator, each different 

functions of x and h, going to zero at the same point in (x, h) space", with reference to the simgular point of 

Eq. (1). We give mathematical proof as follows. Let us write Eq. (1) in the alternative form 
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Let us define the function of (x, h) space 
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Any point of the (x, h) space that produces the following identity 
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is by definition a solution of the ODE given by Eq. (8). Now, let us consider a point x = xo where dzb(x)/dx = 

0. Solutions of the ODE at this point must verify, therefore, the identity 
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Based on Eq. (11), the following solutions (S1, S2, S3) are possible at x = xo 
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The 3 solutions given in Eqs. (12) are mathematically possible, but the physical implication of each one is 

unclear. To depict physically what each mathematical stament in Eq. (12) indicates, let us differentiate Eq. 

(8) with respect to x, to get 
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There is nothing assumed to get Eq. (13), just a differential of Eq. (8) was determined. Now, conditions 

given by each solution (S1, S2, S3) in Eqs. (12) are complemented with the application of Eq. (13) to yield 
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Based on the mathematical results in Eqs. (14): 

(i) Solution S1 implies a subcritical (F < 1), or supercritical (F > 1), flow at the weir crest [dzb(x)/dx = 0], 

with zero free surface slope. This is the well-known case of a whole subcritical, or supercritical profile, over 

a hump [see e.g. Jain (2001), page 98].  

 

(ii) Solution S2 implies a critical flow (F = 1) at the weir crest [dzb(x)/dx = 0], with the free surface slope 

given by Eq. (2). To get a physical solution, the condition d2zb(x)/dx2 < 0 is required, that is, a critical flow 

section is formed only in weir flow (convex bottom profile). 

 

(iii) Solution S3 implies a critical flow (F = 1) with dzb(x)/dx = 0 and d2zb(x)/dx2 = 0. This is the theoretical 

case of critical, frictionless flow over a horizontal bottom.  

 

The present development is a generalization of a mathematical development by Henderson (1966, pages 40-

42). Solution S2 is a general mathematical solution of Eq. (8), and, thus of Eq. (1). Therefore, there is not 

fortuitous occurence of dzb(x)/dx = 0 and F = 1. The critical depth, with finite free surface slope, is one of the 

possibles solutions of the backwater equation. Inclusion of the friction slope is simple [see e.g. Hager (2010), 

pages 142-149)], and it is not repeated here. 
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• Shock capturing finite volume solutions using the Godunov upwind method assisted by robust Riemann 

solvers, as used in the original paper, yields accurate solutions of shallow-water flows (Toro 2002). The 

integral form of Eq. (6) over a control volume is (Toro 2002) 

   d d d
A

A
t 


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  
U

n F S      (15) 

where Ω is the control volume, A the cell boundary area and n the outward unit vector normal to A. Equation 

(15) was solved in the original paper using a high-resolution finite volume scheme, where details of the 

numerical scheme are extensively described. An important aspect that should be clearly understood is that 

that the integral Eq. (15) is able to describe both continous and discontinous solutions for U(x, t), without any 

specific treatment as the flow crosses the critical depth. In the weir flow simulations presented in the original 

paper, the smooth solution at the weir crest was a mathematical result, found to be in perfect agreement with 

the singular point method applied to Eq. (1). In weir flow, steady transcritical solutions from F <1 to F > 1 

with dh/dx → ∞ are not possible. However, these are possible in unsteady flow during the propagation of a 

shock wave [see Fig. 6 of the original paper]. In contrast, steady transcritical solutions from F >1 to F < 1 

with dh/dx → ∞ are possible in the form of a hydraulic jump. All these cases of transcritical flow can be 

obtained from Eq. (15) without any specific treatment, using a high-resolution Godunov-type numerical 

scheme. 

 

• The discussers asserted that "To describe general problems of transitional fow it is necessary to use, at 

least, Boussinesq equations". The Saint Venant equations provide very accurate solutions for some 

transitional flows. To demonstrate that, we have selected two extreme transcritical test cases, widely used in 

open channel flows (e.g. Khan and Lai 2014, pages 65-69). In Fig. 2, a dam break wave in a dry, rectangular, 

horizontal flume is considered. The flume is 0.093 m in width, 0.08 m in height, and 20 m in length. The 

dam was located at coordinate x = 10 m, and the removal was considered instantaneous. The tailwater 

portion of the flume was initially dry, and the water depth in the dam 0.074 m. Experimental measurements 

conducted by Schoklitsch (1917) for two times after removal of the dam, namely t = 3.4s and t = 9.4 s, are 

plotted in Fig. 2a. The flow was modelled using Eq. (15) and the numerical scheme of the original paper, 

introducing Manning's equation with n = 0.009 s/m1/3 (Khan and Lai 2014). The effect of the friction slope 



CASTRO-ORGAZ, O., and CHANSON, H. (2016). "Minimum Specific Energy and Transcritical Flow in Unsteady 
Open-Channel Flow. Closure" Journal of Irrigation and Drainage Engineering, ASCE, Vol. 142, No. 10, Paper 
07016015, 7 pages (DOI: 10.1061/(ASCE)IR.1943-4774.0001076) (ISSN 0733-9437 [Print]; ISSN: 1943-4774 
[online]). 
 

 8 

was introduced implicitly in the numerical model to increasy stability near the wet-dry front. A positivity 

preserving computational algorithm was coded for the wet-dry front treatment (Khan and Lai 2014). As 

demonstrated in Fig. 2a, Saint Venant equation can model transcritical open channel flow with great 

accuracy. In Fig. 2b, we plotted the computed free surface profile at t = 9.4, with indication of the position of 

the critical flow section, where F = U/(gh)1/2 = 1. It can be observed that it is not located at the dam axis. 

Computations for ideal fluid flow (Sf = 0) yields a result identical to the parabolic, analytical solution by 

Ritter (Montes 1998) 

      1 2 1 2

dam 3 2 ox x t gh gh         (16) 

where ho is the upstream water depth ( = 0.074 m) and the dam coordinate xdam = 10 m. For Ritter's solution, 

the flow is exactly critical at the dam axis [see e.g. Jain (2001), page 215]. Therefore, the displacement of the 

critical point due to friction is seen to be small, and the main effect is confined to the shape of the front. 

Resort to Boussinesq equations in this case is not needed, therefore. 
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Figure 2. Validity of Saint Venant equations for transcritical flow in a dry-bed dam break wave (a) 

Comparison of computed and measured (Schoklitsch 1917) instantaneous free surface profiles (b) 

Comparison of ideal and real fluid flow solutions at t = 9.4 s, and position of critical points (, ) 

 

   

Figure 3. Validity of Saint Venant equations for transcritical flow in a hydraulic jump : Comparison of 

computed and measured (Gharangik and Chaudhry 1991) steady free surface profiles 

 

A second test of Saint Venant equations for transcritical flow is presented in Fig. 3, where a hydraulic jump 

measured by Gharangik and Chaudhry (1991) is included. The channel is 14 m long, horizontal, and 0.46 m 

wide. The Manning's roughness coefficient is n = 0.008 s/m1/3 (Khan and Lai 2014). The upstream boundary 

conditions for the supecritical flow are a water depth of 0.031 m, with a discharge of 0.118 m2/s. At the 

downstream, subcritical section, only one boundary condition is set, namely the experimentally measured 

water depth of 0.265 m. The initial free surface profile in the numerical model was taken as a static water 

layer of 0.031 m. The tailwater level was gradually increased from 0.031 m to 0.265 m in 50s in the 

numerical model. Computational results obtained at t = 350 s, once a steady-state was reached, are displayed 

in Fig. 3. It can be seen that Saint Venant equations produce a good transcritical flow simulation, and resort 

to Boussinesq equations in this test case is not needed. 

 

Non-hydrostatic modelling 

 

• The Discussers presented in their Fig. 1 experiments for flow over a broad-crested weir, and a simulation 

unexplained. The lack of any detail in the discussion stating what equation was solved, and the fact that 
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reference to unpublished results was done, made impossible to elaborate a comment on this test and the 

Discussers' theoretical results. They made reference to a "finite slope" Boussinesq theory, which could not be 

precisely understood by the Authors what the Disscussers means with that. They also made reference to the 

Boussinesq theory by Matthew (1991), used by Castro-Orgaz and Hager (2009). Below, we elaborate a 

detailed reply to explain Boussinesq theory for flows where the bottom slope is finite. 

 

• We resort to the problem of flows from a horizontal to a steep slope. Figure 4 considers one test by Hasumi 

(1931) for a slope transition composed by a horizontal reach followed by a circular-shaped transition profile 

of R = 0.1 m that finishes in a steep slope reach of 45º inclination. The discharge is 0.987 m2/s (hc = 0.10 m). 

The measured free surface and piezometric bottom pressure head are plotted in the figure. The flow in open 

channel transitions, including a slope break, can be approximately modeled with the equations of an inviscid 

and irrotational flow (Montes 1998). The flow problem presented in Fig. 4 was modelled using the Laplacian 

for z as a function of the pair of variables (ψ, x) 
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  (17) 

where ψ is the stream function. The numerical model developed by Montes (1994) was applied, that is not 

further described here, therefore. The up- and downstream boundary sections were located at x/hc = ±3. 

Twenty streamlines were used to model this flow, and the energy level on the horizontal reach was set to 

H/hc = 1.5. The 2D computational results displayed in Fig. 4 show that the ideal fluid flow computation in 

the slope break problem produces good results. The potential flow approximation is shown, therefore, to be 

an acceptable approximation. 

 

• To avoid the solution of the full 2D problem, as described above, approximate 1D models for potential flow 

are desirable. Matthew (1991) developed an approximate Boussinesq theory, where the extended energy 

equation reads 
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where hx = dh/dx, hxx = d2h/dx2, zbx = dzb/dx and zbxx = d2zb/dx2. The bottom pressure head of Matthew's theory 

is (Castro-Orgaz and Hager 2009) 

    
2

2
2

2 2
2

b
bxx xx x bx x

p q
h hz hh h z h

gh
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Based on Eqs. (18) and (19), the following observations are made: (i) The theory consider the effect of the 

curvature of the free surface and the bottom, accounted for by the inclusion of hxx = d2h/dx2 and zbxx = 

d2zb/dx2; (i) The theory consider the effect of the slope of the free surface and the bottom, accounted for by 

the inclusion of hx = dh/dx and zbx = dzb/dx. The values of these slopes and curvatures are not necessarily 

small ones. Therefore, Matthew (1991) theory, used by Castro-Orgaz and Hager (2009), is an approximate 

potential flow model that includes the effects of finite curvatures and slopes. Friction is not included, 

however. This limit the application of Matthew's theory to a computational domain where the energy-slope 

can be taken horizontally, as done by Montes (1994) and Castro-Orgaz and Hager (2009). Results of Castro-

Orgaz and Hager (2009) solving Eq. (18) were in good agreement with Eq. (17), and with experimental 

observations. 

 

   

Figure 4. Slope break problem: Comparison of 2D potential flow solution, experimental data (Hasumi 1931), 

and 1D, potential, gradually-varied flow solution 
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• Castro-Orgaz and Hager (2009) analyzed the limits of the singular point theory for a slope break. They 

applied this method to Eq. (1) for slope breaks involving highly curved flows, and concluded that a model 

based on Eq. (1) can not be applied where the curvature is strong, e.g. in the vicinity of the slope break. This 

is in full agreement with the original paper, where it was demonstrated that the singular point method applied 

to Eq. (1) produces good results where the curvature is weak, e.g., see Fig. 1a. Both works are, therefore, in 

full agreement. 

 

• Castro-Orgaz (2009) found that, despite Eq. (1) can not be applied at the crest zone, given the highly-

curved flow, it is a good approximation in the downstream slope for x/hc > 1. Consider for illustrative 

purposes flows away from the crest, where streamline curvature effects can be neglected. The flow is 

gradually-varied, meaning that the variation of h with x is small (an hypothesis confirmed by the 

experimental results plotted in Fig. 4). For these flows, it can be assumned that hx
2 ≈ hxx ≈ 0. Further, on the 

slope, the bed is flat, resulting zbxx = 0. On this slope, however, the term zbx is finite, and equal to unity in this 

case. Therefore, despite hx will be small, the product (hx∙zbx) remains finite. Therefore, Eqs. (18) and (19) for 

gradually-varied, 1D potential flow on a finite slope reads 

     
2

2
2

1
2b bx

q
H z h z

gh
        (20) 

     
2

2
2

2
b

bx x

p q
h z h

gh
      (21) 

Castro-Orgaz and Hager (2009) differentiated Eq. (20), producing for large F the ODE 

    

 
2

2
3

d

d
1

bx

bx

zh

qx
z

gh




     (22) 

For the horizontal slope reach, the solution of Eq. (22) involving critical flow is solution S3 in Eq. (12). 

Therefore, the theoretical flow profile is a horizontal line composed of an infinite number of critical points 

(Castro-Orgaz and Hager 2009). Taking as boundary condition the critical point at the beginning of the slope 

break, the analytical solution of Eq. (22) for a finite slope is (Castro-Orgaz and Hager 2009) 
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1 2

2

2
1

1
bx

c bx c

zh x

h z h


 

   
    (23) 

Inserting Eq. (22) into Eq. (21) the bottom pressure head is 

   
22

2 2 2
2 1

2 1 1
b bx

bx x
bx bx

p zq h
h z h h

gh z z
 

       
   (24) 

Equation (24) is the "finite slope" approximation for gradually-varied flows, to which the Discussers made 

reference quoting Fenton (2014). Therefore, based on potential, gradually-varied flow, finite slopes are 

accounted for both in free surface and bottom pressure head computations. The results of the computations 

based on Eqs. (23) and (24) are plotted in Fig. 4, for x/hc > 1, as recommended by Castro-Orgaz and Hager 

(2009). It can be observed that the results are in excellent agreement with experiments, and with the 2D 

numerical solution. 

 

• If application of a Boussinesq model with friction is found to be necessary, resort to the development by 

Khan and Steffler (1996) can be made. The Boussinesq version of their theory, for steady flow, reads 

   2d

d 2
b b b bp p zh

U h
x x


  

  
      

    (25) 

    
2

2 2 2
2

b
b xx x x bx bxx b

zU
p gh hh h h z hz

x
   

     


 (26) 

where τb is the bed shear stress. Equations (25) and (26) can be coupled to produce an ODE. 

 

• To show the general applicability of the singular point method, at the time that it is further demonstrated 

that Boussinesq equations are not the only model that can produce good transcritical flow simulations, we 

consider here Dressler (1978) theory fow flow over curved beds. For steady flow, the theory gives the 

following ODE (Sivakumaran and Yevjevich 1987), after re-arrangement, 

 

   
   
 

   

 
 

2

3

1

2
3 2

3

ln 1d
sin 1

d 1 ln 1 Φd
ln 1 1d Φ

cos
1 ln 1

b bb
b b b

b b

b
b b

b b

N Nq
N

g N N N ,N
N N ,q

g N N

   
   

  
 

 
  

    
 


   

 (27) 
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Here ξ is the bottom-fitted coordinate, κb = κb(ξ) the curvature of the bottom profile, θb is the local inclination 

angle of the bottom profile, zb(ξ) with the horizontal plane, and the distance from the channel bottom to the 

free surface is N, measured orthogonally outward from the bottom curve. Using the same mathematical 

development presented with Eqs. (8)-(14), it can be demonstrated that at a weir crest the flow is critical, and 

Eq. (27) indeterminate. The critical depth is computed setting to zero the denominator of Eq. (27) (Dressler 

1978) 

     
   

2
3

2 3

ln 1 1
Φ cos 0

1 ln 1

b c
c b b

b c b c

Nq
N ,

g N N


  

 

 
  

   
  (28) 

The solution of the non-linear Eq. (28) by the Newton-Raphson method gave the crest flow depth. Equation 

(27) was then integrated using the Runge-Kutta method in the up- and downstream directions, starting at the 

crest. The free surface slope at the crest was found to be, after removal of the indetermination at the weir 

crest (c), 

    

1 2

1

1 2

2

Φ

d

d Φ
c

c

c

N

N




 
      
   

  

     (29) 

where 

     1Φ
1b b c

c

N 


 
    

    (30) 

   
     
   

2
2 4

2
4

ln 1 5 6 11 36Φ
 3

1 ln 1

b cb

c b c b c

Nq

N g N N



 

            
  (31) 

Figure 5a displays the experimental data of Sivakumaran et al. (1983) for a symmetrical hump of shape zb = 

20exp[−0.5(x/24)2] (cm). The unit discharge is 0.11197 m2/s (hc = 0.1085 m). Computational results are 

displayed in Fig. 5a, showing good agreement with experimental measurements. The bottom pressure profile 

pb was computed from (Dressler 1978) 

  
   

2 2

2 2

1
cos 1

12 ln 1
b

b b

bb

q
p gN

NN

  


 
   

     
  (32) 
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showing again good agreement with observations in Fig. 5a. These results demonstrate that the singular point 

method is a mathematical technique that can be applied to different theories, and that transcritical flow 

problems can also be tackled with other approximations different from Boussinesq equations. Equation (27) 

was alternatively solved in Fig. 5b taking as starting point the experimentally measured water depth 

upstream of the hump. Computational results of Fig. 5b reveals that a subcritical flow profile along the entire 

hump is formed, as found by Sivakumaran et al. (1983). A supercritical flow profile can also be determined. 

This solution was forced by the upstream experimental water depth, which is not permitting the flow to pass 

across the critical depth.  

   

Figure 5. Flow over a hump (a) application of the singular point method to compute transcritical flow using 

Dressler theory. Simulations are conducted without using any experimental measurement (b) solution of 

Dressler theory based on the upstream experimental measurement 

 

Concluding remarks and recommendation 

 



CASTRO-ORGAZ, O., and CHANSON, H. (2016). "Minimum Specific Energy and Transcritical Flow in Unsteady 
Open-Channel Flow. Closure" Journal of Irrigation and Drainage Engineering, ASCE, Vol. 142, No. 10, Paper 
07016015, 7 pages (DOI: 10.1061/(ASCE)IR.1943-4774.0001076) (ISSN 0733-9437 [Print]; ISSN: 1943-4774 
[online]). 
 

 16 

• The singular point method is a useful tool, to be used when needed. As to which model should be proposed 

to compute transcritical flows, common sense dictates the path to follow. Saint Venant equations are a good 

model in most cases, like for the computation of the flood inundation area in river flows. If the computation 

of bed pressures is the main concern, then resort to Boussinesq equations is needed, e.g., for the 

determination of cavitation risk in a dam spillway crest. Between these two extremes are intermediate 

options, like use of Dressler theory.  

 

• Since the pioneering work of Bélanger (1828), a number of scholars added to the general body of 

knowledge today at our hands in the field of open channel hydraulics. We suggest modellers and researches 

to keep in mind all these computational tools, including the singular point method, to continue advances in 

this fascinating field of research. 
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