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Abstract: With more photovoltaic (PV) systems being integrated into distribution 28 

networks, power utilities are facing many challenges in both planning and operation. 29 

Network operators are concerned with PV variability and associated necessity of voltage 30 

regulation, control coordination, reserve adequacy and dispatch constraints. While to 31 
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address the obligatory connection agreement, it is vital for PV farm owners to accurately 32 

estimate PV variability and then provide the most cost-effective compensation method. In 33 

the literature, PV variability of different scales has been investigated over the last 20 34 

years. However, little has focused on output fluctuations of PV systems with long-term 35 

and high-resolution recorded data at a low-voltage distribution feeder level where voltage 36 

regulation has become a serious issue. This is particularly true in Australia, where PV 37 

penetration is growing in many states and is expected to grow further in the near future. 38 

This paper utilizes the data of a distributed 1.2MWp PV system in the University of 39 

Queensland recorded over the last 3 years with 1-min resolution to analyse the statistical 40 

characteristics of PV power variability. The results from this study will provide very 41 

useful information for both power utilities and solar farm owners regarding network 42 

operation and future PV system development. 43 

 44 

Keywords: PV output variability, PV integration, large-scale PV, PV data processing. 45 

 46 

1. Introduction 47 

Grid tied solar photovoltaic (PV) installation has substantially increased over the 48 

last decade in Australia, from around 10MWp in 2006 to 4,177MWp by March 2015 [1]. 49 

In the sunshine state – Queensland, the installed PV capacity has risen from less than 50 

500kWp in 2006 [2] to 1,325MWp by March 2015 [1]. This generally accounts for nearly 51 

15% of the total demand in Queensland [1]. As PV becomes a significant generation 52 

source, power system operators are considering its power output variability and 53 

subsequent impacts on network management and security. At the same time, PV owners 54 

(especially large-scale PV system owners) also express their concerns on PV power 55 
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variation and its resultant compensation requirement for meeting their connection 56 

agreement. 57 

Firstly the owners of PV farms with more than 30kWp normally need to negotiate 58 

with local utilities for terms and conditions of the connection agreement according to the 59 

Australia Standard – AS 4777 [3]. Typically, distribution utilities require a PV farm to 60 

comply with a certain voltage band, ramp rate limits, and reverse power flow constraints 61 

regarding the time of a day; otherwise the PV farm can be disconnected and may be 62 

penalized. Therefore, the owners need to know PV output variability in order to select the 63 

correct type and sufficient size of reactive power compensation devices while considering 64 

cost and benefit [4, 5]. For example, if a power variation of 90% PV system rating 65 

statistically only occurs once every 3 years, the owner will first weigh the cost of 66 

compensation devices and the penalty of voltage violation. Then a decision can be made 67 

to fully compensate PV variability of 90% or a lower level with less cost for voltage 68 

regulation. 69 

Secondly, for distribution utilities, it is also crucial to understand PV power 70 

variability of small PV systems collectively in a feeder or a large PV farm at a single 71 

location in order to plan for the required additional compensation devices [4-6]. 72 

Moreover, necessary control coordination between network compensators, PV plants and 73 

loads can be accordingly designed [5]. This will help to avoid negative interactions 74 

between different controllers and undesirable impacts on network security. 75 

Lastly, for independent system operators (ISOs), it is essential to comprehend PV 76 

output variability of a single large PV farm and all PV plants in a region or in a state or in 77 

the whole network. This will provide useful information for a better ancillary service plan 78 
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and power dispatch, and it is also helpful for improving network operation stability and 79 

reliability. 80 

Therefore, PV power variability is of a particular interest of PV farm owners, 81 

distribution utilities and ISOs. The related studies have been conducted over more than 82 

two decades with some early attempts starting from late 1980s. The paper presented by 83 

Jewell in 1987 [7] is one of the earliest studies on PV variability over the areas with 84 

different sizes – from 10km2 to 100,000km2. This research concluded the tendency of 85 

declination in the percentage of PV power fluctuations as a result of geographic diversity 86 

– as known as the smoothing effect. Because of availability of data at that time, it could 87 

only use simulated solar irradiance data instead of measured data. After Jewell, many 88 

papers [8-19] had addressed the PV variability modelling and the smoothing effect for a 89 

number of locations in different countries. Based on the suggestions from Suehrcke in 90 

1989 [20] and Gansler in 1995 [21], researchers had a tendency of using instantaneously 91 

measured high resolution data (normally from 10s to 5min) rather than the average hourly 92 

data. Many of them had utilized both irradiance and PV power measurement. However, 93 

due to the different data recording resolutions, area sizes and weather patterns, a variety 94 

of PV variability had been reported ranging from a few percent to several tens of percent 95 

per minute (or per hour).  96 

Murata in 2009 [22] investigated the geographic correlation between PV output 97 

fluctuations in different places in Japan and found PV variability depends on data 98 

recording interval and physical distance between PV units. Larger space with higher data 99 

resolution will result in lower variability correlation. Hoff [23] and Mills [24] in 2010 100 

expanded the relationship developed by Murata [22] by including the number of PV 101 
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systems and dispersion factor, and formulated them into equations for PV output 102 

variability prediction. 103 

At the same time, the purposes of the PV variability studies have never been left 104 

behind – power engineers are concerned about the implications of PV generation 105 

uncertainty on the related cost associated to additional regulation necessity, power 106 

ramping requirement, and reserve adequacy [15, 25]. Many papers had explored these 107 

issues since 1980s [12, 17, 24-32]. The main finding was that the rise of PV penetration 108 

requires increase of extra compensation, ramp rate and capacity of dispatchable 109 

generators while the subsequent cost and constraints may limit further PV development. 110 

In the literature, there is a lack of studies focusing on a relatively small area which 111 

is close to the size of a residential feeder with PV generation data recorded in high 112 

resolution for multiple years. Especially in Australia, such research has not yet been 113 

reported. In this paper, the University of Queensland (UQ) 1.2MWp PV system with 1-114 

min data resolution over the last three years is utilized for PV power variability analysis. 115 

The output of different PV sites is recorded with synchronized instantaneous 116 

measurement. The whole system is situated in an approximate 700m  150m area which 117 

is similar to a range of a typical residential feeder. With more PV being connected to 118 

distribution networks, this study will certainly provide valuable statistical information to 119 

both distribution utilities and PV owners for coordinating regulation and determining 120 

compensation for either large-scale or distributed small-scale PV system development. 121 

2. UQ 1.2MWp PV System 122 

The UQ 1.2MWp PV system is installed on the rooftop of 4 buildings across the 123 

UQ St. Lucia Campus (Brisbane, Australia) – Multilevel Car Parks (98A and 98B), Sir 124 

LIew Edward (14) and UQ Center (27A) [33]. It consists of 5,004 polycrystalline PV 125 
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panels (TSM-PC05, 240Wp [34]). The PV systems of two Car Parks (98A and 98B) are 126 

identical – 338.9kWp (1412 panels) each. Building 14 has a much smaller PV capacity of 127 

89.9kWp (374 panels), and the largest system is on Building 27A with 433.4kWp (1806 128 

panels).  129 

The four PV sites are distributed over an area around 700m x 150m as shown in 130 

Figure 1. This dimension is comparable to a long low-voltage residential feeder with high 131 

PV penetration or a several MW level solar facility situated at one location (such as the 132 

UQ Gatton campus 3.4MWp PV system to be presented in Section 5); therefore, the 133 

percentage variability of this PV system should reasonably represent power fluctuation of 134 

distributed PV at a residential feeder level as well as output variability of a multi-MW 135 

solar farm. This is the main reason why the UQ PV system can provide meaningful 136 

statistical information to both solar farm owners and distribution utilities for tackling PV 137 

induced voltage regulation issues. 138 

98A98B

27A

14

North

50m

338.9kWp × 2

89.8kWp
433.4kWp

 139 

Figure 1 Dimension and capacity of UQ 1.2MWp PV system [35] 140 
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All PV sites were brought to normal operation by the end of July 2011, and this 141 

study covers a 3-year period from August 2011 to July 2014. The data logging system 142 

synchronizes the clock of all sites and instantaneously collects measured data with 1-min 143 

resolution (PV power). 144 

3. Overview of PV Generation and Analysis 145 

3.1 Overall PV Power Generation 146 

The overall PV power output over the 3-year period is illustrated in Figure 2(a). 147 

The seasonal effect can be clearly observed. The whole system generated more power 148 

which was close to the 1.2MW rating during the summer (December to February in 149 

Australia), and produced much less during the winter (June to August). Therefore, it is 150 

evident that the majority of the most severe cloud induced PV power fluctuations should 151 

occur between late spring to early autumn. However, it is hard to visualize PV output 152 

variability from Figure 2(a). To give a clear picture of PV power variation, a sample 153 

week in January 2013 is demonstrated in Figure 2(b). It can be seen that the PV system in 154 

six out of seven days was heavily affected by cloud movement. 155 

The monthly energy yield over three years is depicted in Figure 2(c), which 156 

provides useful information to solar PV plant owners. The PV energy generation in 157 

winter months can be as low as a half of energy production in summer months. It can be 158 

seen that the tendency of the overall energy profile coincides with that of the power 159 

profile in Figure 2(a). 160 

3.2 Definitions and Approaches for PV Power Variability 161 

Eq. (1) calculates variations in PV power over ‘x’ minute (x-min) intervals, where 162 

x-min may be 1-min, 2-min or 5-min in this study. 𝑃𝑝𝑣(𝑡) is the instantaneous power 163 

generation from the UQ PV system at time t, measured at a resolution of once per minute. 164 
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For each time interval (1-min, 2-min or 5-min), Eq. (1) is evaluated at every reading. 165 

Application of this method has the advantages of providing all possible PV variations 166 

[∆𝑃𝑝𝑣 𝑥−𝑚𝑖𝑛(𝑡)] within each interval, better representing extreme changes in PV power, 167 

and providing a uniform base for each of the time resolutions studied in this research.  168 

                                          ∆𝑃𝑝𝑣 𝑥−𝑚𝑖𝑛(𝑡) = 𝑃𝑝𝑣(𝑡) − 𝑃𝑝𝑣(𝑡 − 𝑥)                                    (1) 169 

Based on the definition by Eq. (1), ∆𝑃𝑝𝑣 > 0 means power rise, while ∆𝑃𝑝𝑣 < 0 170 

means power drop. To better present the scale of changes, per unit system (equivalent to 171 

percentage) is utilized. For PV power, the UQ PV system ratings of overall and 172 

individual sites are chosen as bases for per unit (pu) calculation. 173 

(a) UQ PV power recorded over three years with 1-min resolution 174 

 175 
 176 

(b) UQ PV power – a sample week in summer (1st – 7th Jan, 2013) 177 
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  178 
 179 

                      (c) UQ PV monthly energy generation recorded over three years 180 

 181 
Figure 2 PV Power output and Energy generation 182 

 183 

In order to study PV power variability in a statistical sense, a number of methods 184 

are applied for examining the tendency of PV output fluctuations, including distribution 185 

of the number of events, Quantile-Quantile Plot, Cumulative Distribution and variation 186 

correlation. These techniques and their analyses are presented in the next section. 187 
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4.1 Distribution of the Number of Events 189 

4.1.1 Overall System 190 

Distribution of the number of events (all ∆𝑃𝑝𝑣  calculation) for the overall PV 191 

system is shown in Figure 3(a). It can be noted that the majority of variations are centred 192 

on 0 with a very small standard deviation, and the deviations get a little bit larger (a wider 193 

base) for longer observation intervals. This means PV power variations are mainly slow 194 

and smooth in nature. However, occasionally they can become very significant, 195 

sometimes more than 80% of the rated power, due to movement of fast and thick clouds 196 

over the area [Figure 3(b)].  197 

Table 1 has listed all events in which PV output has changed more than 80% of its 198 

rating. For both 1-min and 2-min intervals, ∆𝑃𝑝𝑣 ≥ 80% has only happened once each in 199 

the same day (2012-10-23 late spring), however, there were more chances for such event 200 

in a 5-min scale (8 incidents). This is mainly due to the smoothing effect of the 201 

geographically distributed PV systems. It really requires rare and special (thick and fast) 202 

clouds to cover the area within 1-min or 2-min, however, in the 5-min scale a total 203 

coverage by thick clouds becomes more probable. It can be noted that most of these 204 

events happened during later spring, summer and early autumn (except two incidents in 205 

one particular day in winter – 2011-08-23), and all of them occurred during the peak solar 206 

radiation window from 10:30am to 14:30pm. It can also be seen that the power 207 

fluctuation for the overall PV system over the 3-year period has never been greater than 208 

85%. 209 
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 210 

                            (a) All events                           (b) Focusing on the large variation events 211 

Figure 3 Distribution of the number of events for the overall system over three years 212 

 213 

 214 

 215 

 216 

Table 1 Significant PV Power Variation Events for Overall System – |∆Ppv| ≥ 80% 217 

 218 

Time Interval Date (yyyy-mm-dd) Time (hh:mm) ∆Ppv (%) 

1-min 2012-10-23 10:44 81.5 

2-min 2012-10-23 10:50 82.2 

5-min 

2011-08-23 11:41 -80.6 

2011-08-23 11:42 -84.0 

2012-10-23 10:45 -83.5 

2012-10-23 10:50 81.4 

2013-01-30 10:54 82.5 

2013-11-24 14:13 81.4 

2013-11-24 14:14 82.7 

2014-03-13 12:22 -80.3 

 219 

4.1.2 Summary of the Number of Significant Events for All Sites 220 

Very detailed information can be presented using the approaches such as Figure 3 221 

and Table 1 in the last sub-section; however, this will become very complicated when 222 

comparing between different locations. Since the significant events (large PV 223 
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fluctuations) should be the focus, a summary of the number of such events over a 3-year 224 

period is listed in Table 2. The following are the observations made from this table.  225 

(1) The event of 75% < ∆𝑃𝑝𝑣 < 80%  happened far more frequently than that of 226 

∆𝑃𝑝𝑣 ≥ 80% at all time-resolution levels 227 

(2) Due to the smoothing effect, there were more incidents for significant power 228 

variations in a longer time-resolution scale than a shorter one. 229 

(3) For the individual sites (27A, 98A, 98B and 14), although the PV area coverage 230 

of building 14 is the smallest (Figure 1), it does not mean more severe incidents 231 

could be observed than others. On the contrary, the statistics show that most of 232 

them are more or less at the same level. This is potentially due to the relatively 233 

small-scale of each site, and 1-min resolution may be too long for such a scale, 234 

which makes little difference in terms of full cloud coverage. 235 

 236 

Table 2 Summary of the Number of Significant Events Over Three Years 237 

 238 

PV Site ∆Ppv Time Interval 
Power Drop 

∆Ppv < 0 

Power Rise 

∆Ppv > 0 

27A 

≥ 80% 

1-min 1 7 

2-min 4 15 

5-min 19 43 

75%-80% 

1-min 32 59 

2-min 74 144 

5-min 159 257 

98A 

≥ 80% 

1-min 2 8 

2-min 3 18 

5-min 28 37 

75%-80% 

1-min 29 89 

2-min 73 169 

5-min 187 334 

98B 

≥ 80% 

1-min 2 9 

2-min 2 18 

5-min 25 23 

75%-80% 
1-min 27 69 

2-min 55 137 
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5-min 167 298 

14 

≥ 80% 

1-min 4 6 

2-min 7 11 

5-min 23 32 

75%-80% 

1-min 41 64 

2-min 79 139 

5-min 159 244 

Overall 

≥ 80% 

1-min 0 1 

2-min 0 1 

5-min 4 4 

75%-80% 

1-min 4 2 

2-min 4 19 

5-min 24 77 
   239 
 240 

             241 

 242 

(4) The overall system had considerably fewer events at all time-resolution levels 243 

than the individual sites. This has further supported the spatial smoothing effect 244 

and the appropriateness of applying 1-min resolution to such an area for 245 

investigating the smoothing effect. 246 

(5) More significant power rise (∆𝑃𝑝𝑣 > 0) events have been observed than the 247 

power drop (∆𝑃𝑝𝑣 < 0) ones for almost all sites and the overall system at any 248 

time-resolution levels. This may be due to the characteristics of PV panels. 249 

 PV temperature effect: When clouds cover a PV system, the PV power will 250 

decrease. During this period, with less sunlight radiation and power generation, 251 

the PV array temperature will decline, which makes the PV panels more 252 

efficient. Therefore, after the clouds move away, for the same solar irradiance 253 

the PV system will be able to produce more power than that of before the 254 

cloud coverage.  255 

4.2 Probability Density Distribution 256 

The distribution of PV power variations visually looks like a normal distribution 257 

by observing Figure 3(a). However, it is actually very different from the normal 258 
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distribution. This can be best analyzed by Quantile-Quantile Plot (Q-Q Plot) of PV output 259 

variations over 3 years with 5-min resolution as shown in Figure 4(a).  260 

                                                (a) Quantile-Quantile Plot of ∆𝑃𝑝𝑣 261 

 262 
 263 

       (b) Occurrence of ∆𝑃𝑝𝑣 > 75% 264 

 265 
 266 

             (c) Occurrence of ∆𝑃𝑝𝑣 < −75% 267 
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 268 
Figure 4 Quantile-Quantile Plot of PV output variations over 3 years (5-min resolution) 269 

 270 

Firstly, the probability of occurrence of PV power drop (∆𝑃𝑝𝑣 < 0) is almost 0.5, 271 

which clearly indicates the overall numbers of PV power drops and rises are 272 

approximately the same. Secondly, the region of low power variations does resemble the 273 

normal distribution as this part of the contour (blue “+”) closely coincides with the 274 

normal distribution curve (red dash-dot). Thirdly, the tendency of the medium to high PV 275 

power variations has significantly deviated from the normal distribution. This is 276 

illustrated as a heavy-tailed distribution suggesting that the probability for an incident 277 

occurring far away from the mean value is much more than that in a normal distribution. 278 

Such a distribution curve tends to have large value of standard deviation. Finally, a close 279 

observation around the tail part on each end also shows the number of significant power 280 

rises is far more than that of the PV power drops and clearly the most significant PV 281 

power fluctuation has never been greater than 85% [Figures 4 (b-c)]. 282 
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4.3 Cumulative Distribution 283 

4.3.1 Individual Sites and Overall System 284 

Cumulative Distribution (CD) is another great tool that can be utilized for 285 

analyzing the tendency of PV power variability with statistical confidence. The CDs of 286 

the individual PV sites and the overall system are calculated and compared in Figures 5 287 

and 6. If a cumulative distribution curve (say Curve CD-1) shifts toward the left-hand 288 

side or lies on top of another cumulative distribution curve (say Curve CD-2), it means 289 

the realizations of the PV power variations that are below a certain value (say ∆𝑃𝑝𝑣 ≤290 

0.4𝑝𝑢) from CD-1 are more likely than those from the Curve CD-2. In another word, the 291 

realizations of the high PV power variations (e.g. ∆𝑃𝑝𝑣 > 0.4𝑝𝑢) from the Curve CD-2 292 

are more probable than those from the Curve CD-1. From Figures 5 and 6, the 293 

observations from Section 4.1.2 can be further evidenced, and the conclusions are made 294 

as follows: 295 

(1) All three graphs in Figure 5 show that a shorter time-resolution curve is located 296 

on the left/top position of a longer time-resolution curve, which provides 297 

evidence that PV power variations over a longer time intervals are more likely 298 

to exceed those over a shorter time intervals – Observations (1) and (2) in 299 

Section 4.1.2. 300 

(2) Figures 5 (b) and (c) illustrate despite the size of the individual PV sites their 301 

CD curves show very similar ∆𝑃𝑝𝑣 distributions at each time-resolution level, 302 

which is aligned with Observation (3) in Section 4.1.2. 303 

(3) All CD curves of the overall system in Figure 5 (a) are on the left/top place of 304 

those of the individual sites in Figures 5 (b) and (c), and this further supports 305 

Observation (4) in Section 4.1.2 – the smoothing effect. 306 
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 307 

Figure 5 Cumulative distributions (95th-100th percentiles) of PV power changes of 308 

individual sites and the overall system over three years 309 

(4) When CD curves of the power drop and power rise in all individual sites and the 310 

overall system are compared in Figure 6 (a), it is found that the power drop CD 311 

curves are situated to the right/bottom position of the power rise CD curves for 312 

the low to medium PV power variation range (approximately |∆𝑃𝑝𝑣| < 40%). 313 

However, the reverse is true for the medium to high variation range based on 314 

Figure 6 (b), which supports Observation (5) in Section 4.1.2. The reasons are 315 

explained in the last section as the PV temperature effect. Since the total power 316 

drop and rise incidents were almost equal, a relatively larger number of power 317 

rising events in the medium to high variation range certainly lead to marginally 318 
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fewer power rising events in the low to medium variation range. However, it 319 

should be pointed out that the difference between power rise and power drop is 320 

very small. Whether it is statistically significant will be up to further 321 

observations and justification in the future. 322 

 323 

Figure 6 Cumulative distributions (99th-100th percentiles) of PV power changes of 324 

individual sites and the overall system over three years 325 

4.3.2 Yearly Comparison 326 

Annual cumulative distributions of PV power variations are shown in Figure 7(a). 327 

There is no substantial difference between the yearly tendencies of the CD curves for 328 

each time-resolution scale. It can also be noted that from 2011-2012 to 2013-2014, the 329 

CD curves were slightly moving toward the right/bottom position. This means there were 330 

more significant PV power variation incidents in 2013-2014 than those in 2011-2012. 331 

Moreover, Figure 7(a) also indicates the yearly statistical results are very close at all 332 
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time-resolution levels, so annual statistics should be able to provide a fairly good 333 

overview of the studied PV system. 334 

The yearly PV power variability can also be evaluated based on the Smoothing 335 

Factor – an index for measuring PV power fluctuations. The Smoothing Factor (S) can be 336 

calculated by (2) [36]. 337 

                             𝑆 =
𝜎98𝐴+𝜎98𝐵+𝜎27𝐴+𝜎14 

𝜎𝑜𝑣𝑒𝑟𝑎𝑙𝑙
                                              (2) 338 

where “σ” represents the standard deviation of the daily PV output changes for a 339 

particular PV site or the overall site. For a perfectly sunny day or a totally overcast day 340 

when PV power variations of all sites are slow and occur at the same time, there is nearly 341 

no smoothing effect for the overall system. In this case, the common Smoothing Factor is 342 

around 1.0~1.2. While for a partially cloudy day when the smoothing effect is observed, 343 

the typical Smoothing Factor is generally above 1.2. Therefore, a higher value of the 344 

Smoothing Factor means a greater smoothing effect.  345 

Figure 7(b) shows the frequency of occurrence of the Smoothing Factor during 346 

the years 2011-12, 2012-13 and 2013-14. It can be observed that the frequency of 347 

occurrence has a very similar profile for each year, which is in agreement with the results 348 

of the cumulative distribution analysis as in Figure 7(a). Further, it can also be seen that a 349 

noticeable dip of the Smoothing Factor occurred for the year 2013-14 in the range of 350 

1.1~1.2, which implies relatively fewer incidents with low smoothing effect have 351 

happened. While the Smoothing Factor of the year 2013-14 in higher ranges (1.3-1.7) is 352 

marginally larger than that of the previous years. This potentially indicates there were 353 

more significant PV power variations in this year, which also aligns with the observation 354 

from Figure 7(a).  355 
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4.4 Correlation of PV Power Output Variation  356 

Correlation coefficient is a measure of strength and direction of the linear 357 

relationship between two variables [37]. A superior positive coefficient of correlation 358 

between two variables indicates that if the value of one of the variables is changed then 359 

the probability of change in the same direction for the second variable is greater. In this 360 

research, correlation coefficient has been utilized to investigate the relationship between 361 

two different PV sites. A larger correlation between the output variations of the two PV 362 

generators implies that if one of them is affected by the cloud movement, then the 363 

probability of the other one which is also influenced by the same factor becomes higher. 364 

In this paper, the correlation coefficient between two PV sites (27A and 98A) on 365 

power fluctuations is examined at three different time resolution levels, and the results 366 

are listed in Table 3. It can be seen that the correlation coefficients increase with time 367 

resolution intervals, and this means the two PV sites are more correlated with a longer 368 

period of time. It is due to the fact that the clouds are more likely to shade or clear the 369 

area coverage of these PV sites at the 5-min resolution level rather than at the 1-min level, 370 

which again is an indication of the smoothing effect. 371 

(a) Cumulative Distribution of PV power output change 372 
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 373 
       (b) Smoothing Factor for all 3 years 374 

                    375 
     Figure 7 Comparison of yearly variability 376 

 377 

Table 3 Mean value of correlation coefficient for three different time resolutions 378 

 379 

Time Resolution 
Annual mean of correlation coefficient 

2011-12 2012-13 2013-14 

1-min 0.41 0.42 0.41 

2-min 0.49 0.50 0.49 

5-min 0.59 0.60 0.59 

 380 
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The correlation is also examined with respect to cloudiness, which is classified to 381 

four different levels – clear-sky, partly-cloudy (with infrequent transient clouds), 382 

extremely-cloudy (with frequent transient clouds) and overcast (totally cloudy or rainy 383 

without transient clouds). The mean values of correlation coefficients for different 384 

cloudiness are summarized in Table 4. Surely, the smoothing effect can again be 385 

observed from the tendency of the correlation values with different time intervals. 386 

However, more importantly the correlation in the horizontal direction shows an 387 

increasing trend with a sequence of extremely-cloudy, partly-cloudy, clear-sky and 388 

overcast. This indicates that when there are more frequent transient clouds, the 389 

correlation between two distanced PV sites becomes weaker, which is in turn also an 390 

evidence of the smoothing effect. It should be pointed out that the differences in 391 

correlation between clear-sky and overcast categories are probably due to small PV 392 

variability from low PV power generation in overcast days when comparing to that in 393 

clear-sky days. Therefore, the overcast set has the highest correlation coefficient. 394 

Table 4 Mean value of correlation coefficient for different cloudiness 395 

 396 

Time 

Resolution 

Mean of correlation coefficient for different cloudiness 

Clear-sky Partly-cloudy Extremely-cloudy Overcast 

1-min 0.46 0.41 0.28 0.70 

2-min 0.59 0.48 0.36 0.77 

5-min 0.75 0.58 0.46 0.86 

 397 

5. An Application Example 398 

To further demonstrate the value of the statistical analysis provided in this paper, 399 

an example of its application is presented in this section. In late 2013, the University of 400 

Queensland was granted to complete a 3.4MWp PV plant in UQ Gatton campus, which 401 

has an approximate area of 700m  300m (slightly bigger than that in Figure 1). The local 402 
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power network structure is shown in Figure 8 [38]. The Gatton substation transforms grid 403 

voltage from 33kV to 11kV, and then the 11kV network stretches around 7.5km to serve 404 

UQ campus load, which normally ranges from 1MW to 3MW [39]. The line voltage is 405 

traditionally supported by a step voltage regulator (SVR), which has an action time delay 406 

of 2-min according to the regulation rules. The PV system, which is formed by 5 identical 407 

684kWp array blocks in parallel, was planned to be connected to the 11kV level. Based 408 

on the connection agreement [40], the voltage fluctuation limits are summarized in Table 409 

5. 410 

The focus was once to determine the size of the inverter (e.g. SMA 411 

630kVA/720kVA/760kVA/800kVA … [41]) that can guarantee there is enough reactive 412 

power capacity to quickly compensate PV real power variations, therefore, the 413 

corresponding voltage fluctuations can be controlled well within the limits in Table 5. 414 

According to the connection agreement with the local distributor, the number of 4% 415 

(0.04pu) voltage fluctuations cannot be more than once per hour, and 3% (0.03pu) 416 

voltage fluctuations cannot be more than 10 times per hour. Surely, such estimation was 417 

conducted before the construction of the Gatton PV plant, and only the sunlight radiation 418 

data from a single station was available over a limited period. As a result, it is assumed 419 

that PV power generation proportionally varies with sunlight radiation, which also 420 

implies a linear relationship between PV power variations and radiation changes Next, 421 

the emission evaluation of voltage fluctuation is conducted. Without any knowledge of 422 

PV variability of such a scale, 90%/min power variation of the rated PV capacity was 423 

concluded based on the recorded radiation profile at a single spot. However, 80%/min is 424 

found to be more realistic for the dimension of this PV system as evidenced in previous 425 

sections, and a comparison study will be presented next to show the importance of the 426 
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knowledge of PV variability. The quasi-static time-series method [39] was applied with 427 

reactive power control suppressing voltage fluctuations [42] during investigation as 428 

shown in Figure 9. 429 

 430 

Figure 8 UQ Gatton power network and PV connection map [38] 431 

Table 5 Emission limits of voltage fluctuations [40] 432 

 433 

Repetition frequency r (hour-1) 
∆V/VN (%) 

MV (11/33kV) 

r ≤ 1 4 

1 < r ≤ 10 3 

 434 

The overall results are summarized in Table 6. Firstly, without any reactive power 435 

compensation (2nd and 3rd columns), the voltage fluctuations will become a serious 436 

concern for UQ to fulfill the connection agreement. Secondly, if such evaluation is 437 

conducted with an assumption of maximum 90%/min for ∆𝑃𝑝𝑣, the more expensive SMA 438 

760kVA inverter would have been chosen rather than the SMA 720kVA inverter when 439 

considering to leave a certain safety margin. However, with certain knowledge of PV 440 
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variability of such a dimension (around 80%/min), the SMA 720kVA inverter was found 441 

to be sufficient for this application, which reduces the cost of the project. 442 

 443 

Figure 9 Simulation results with Quasi-Static Time-Series method (720kVA inverter) 444 

 445 

Table 6 Evaluation results 446 

 447 

 Repetition frequency (maximum times per hour) 

∆Ppv_max 80% 90% 80% 90% 90% 

Sinverter No Q No Q 720kVA 720kVA 760kVA 

∆V > 4% 1 4 0 1 0 

∆V = 3-4% 4 3 0 2 0 

∆V = 2-3% 6 6 1 3 0 

 448 

6. Conclusions 449 

This paper utilizes the recorded data over a 3-year period of a distributed PV 450 

system in the University of Queensland in Brisbane and performs statistical analyses for 451 

PV power variability. It has been observed that PV power variation in the studied time-452 
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resolution scale (1-min, 2-min and 5-min) has never exceeded 85% from August 2011 to 453 

July 2014. The smoothing effect has a significant impact on the dispersed PV system of 454 

the studied scale (a 700m  150m area), and this effect has been evidenced via different 455 

approaches, such as distribution of the number of events, cumulative distribution and 456 

correlation coefficient. Moreover, the results suggest that PV power rise has happened 457 

more frequently than power drop for significant power fluctuation events (approximately 458 

|∆𝑃𝑝𝑣| > 50%) due to potential PV temperature effect. This has been supported through a 459 

few methods including distribution of the number of events, Quantile-Quantile Plot and 460 

cumulative distribution. An application example has been presented to show the value of 461 

statistical analysis. The information in this study will provide valuable statistics to current 462 

and potential PV farm owners and power utilities for evaluating voltage regulation 463 

requirement, determining compensation devices, and developing future network plans.  464 

 465 
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