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Abstract

Actigraphy is increasingly used to non-invasively estimate sleep quality in children with a

suspected sleep disorder. Commercial actigraphs summarise wrist movement, conventionally

measured with a uni-axial accelerometer, within a fixed epoch (typically 30s). Wake is subse-

quently identified as epochs of increased activity and sleep is identified as epochs of inactivity.

This classification framework has some distinct limitations: actigraphy misclassifies activity

during sleep as wake, and inactivity during wake (i.e. quiet rest) as sleep. In this thesis we will

address these limitations by investigating three hypotheses. Firstly, uni-axial accelerometry

measured solely at the wrist restricts prediction accuracy, since movements orthogonal to the

measurement axis, or occurring elsewhere on the body, cannot be detected. Utilising multisite

tri-axial accelerometry may consequently improve sleep and wake prediction. Secondly, there

are movement characteristics that can di↵erentiate sleep from wake because the physiological

nature of these movements di↵er. Identifying these characteristics may reduce false wake detec-

tions. Finally, physiological and pathological events such as apnoeas, hypopneas and transient

arousals may be associated with sleep movements that contribute to false wake detections.

Exploring this association may consequently explain the presence of some sleep movements.

In order to address the hypotheses, 38 participants (27 male, aged 5 � 16 years) were re-

cruited from children attending the sleep laboratory for suspected sleep-disordered breathing.

These children were studied concurrently with polysomnography and a custom system (syn-

chronised to within 0.1s) that recorded raw tri-axial accelerometry data (8�bit, 100Hz, ±2G)

simultaneously at the left index fingertip, left wrist, upper thorax, left ankle and left great toe.

The first analysis compared the accuracy of predicting sleep and wake epochs with uni-

axial, tri-axial, and multisite accelerometry. Tri-axial versions of the conventional 30s epoch

summaries were derived and compared to conventional uni-axial accelerometry. Multisite data

were explored and verified using two feature selection algorithms with the tri-axial summaries

for each accelerometer. Classification performance was significantly improved when incorporat-

ing additional accelerometers, and measuring movement with tri-axial accelerometry (Kappa

agreement for multisite, tri-axial and uni-axial accelerometry: 0.565(0.231), 0.402(0.141) and

0.268(0.210), p < 0.05). Tri-axial accelerometry has clear benefits with no increase in cost or

invasiveness. Although multisite accelerometry provides additional performance benefits, these

benefits come at the expense of system complexity and patient discomfort.
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Moving away from epoch-by-epoch predictions, the second analysis assessed wake detec-

tion on a movement-by-movement basis. Localised spectral characteristics of raw segmented

wrist movements were identified using the discrete wavelet transform. Characteristics that

significantly di↵ered between sleep and wake movements were then used to predict wake on

a movement-by-movement basis. In general, short-duration wake movements had regions of

increased spectral energy, were more vigorous, and consistently had spectral content character-

istic of limb positional changes. However, predicting wake on a movement-by-movement basis

had similar performance to the 30s activity counts (area under the receiver operating char-

acteristics curve: 63.9(6.7)% vs. 69.7(7.9)% respectively). The similar performance of these

distinctly di↵erent approaches, together with the consistently average predictive performance

seen throughout the analyses, shows that movement information cannot accurately estimate

sleep in a generalised classification model.

The final analysis explored possible causes of the confounding sleep movements by analysing

the temporal association with transient arousals, apnoeas and hypopneas manually scored from

polysomnography. On average, 21.4% of apnoeas, 40.8% of hypopneas and 67.5% of arousals

coincided with wrist movement. However, the prevalence and corresponding associations varied

considerably across the cohort. Arousals during sleep that were associated with movement

were generally longer than other arousals (12.2s vs. 7.9s, p < 0.01). Similarly, movements that

occurred during an arousal were longer than other sleep movements (9.56s vs. 2.35s, p < 0.01).

The association between lengthy arousals and lengthy sleep movements suggests that these

longer arousals contribute to false wake detections. Although actigraphy cannot predict all

arousals, it can likely predict the lengthier arousals that disrupt sleep.

We can conclude from the analyses in this thesis that multisite tri-axial accelerometry o↵ers

distinct performance benefits for sleep assessment; however, the associated practical compro-

mise from additional accelerometers may not be appealing for a device targeted at home-based

sleep assessment. Transient arousals are strongly associated with the lengthier sleep movements

that confound sleep estimates with commercial actigraphy. Considering that these arousals are

characteristic of sleep disturbance, and actigraphy likely detects these events, incorporating the

detection of these longer sleep movements into the actigraphy scoring routine may capture the

severity of sleep disturbance associated with a sleep disorder. Existing actigraphy systems only

estimate sleep quality; however, future actigraphy systems will likely benefit from identifying

signs indicative of sleep disorder severity.
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1
Introduction

“Sleep exists for the preservation of animals, and the waking state is its

final cause and purpose.”

— Parva Naturalia, Aristoteles, Philosopher, 384 - 322 BC 1

Sleep is an essential process for maintaining general health and facilitating daily function. It

is considered vital for memory consolidation, muscle restoration, and general quality of life [2, 3].

Among many other detrimental factors, disrupted sleep often manifests as poor temperament,

fatigue, decreased motor function and decreased cognitive ability. Sleep disorders are disruptive

to sleep because they impair vital physiological processes, incite unwanted movements, or incite

involuntary speech [4, 5]. One such sleep disorder is obstructive sleep apnoea syndrome (OSA),

which a↵ects approximately 2 � 4% of children [6, 7]. These children experience a complete

cessation (apnoea) or partial restriction (hypopnea) of breathing throughout the night. Airway

obstructions are often, but not always, caused by enlarged tonsils and/or adenoids [7]. These

respiratory obstructions are cleared by subconscious physiological processes that often cause

either abnormal periods of wake or transient arousals. In addition to indirectly disrupting sleep,

respiratory obstructions reduce blood oxygen levels [8], which inhibits brain development and

limits general cognitive ability [9, 10]. If left untreated, OSA persists into adulthood, where

the health consequences can be more severe [11]. Therefore, it is essential for development and

general well-being that children are diagnosed and treated early.

1Philosophy on sleep and dreaming detailed in Aristoteles and Hammond [1].
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Chapter 1. Introduction

The advancement of technology in the 1900s facilitated the development of sleep disorder

diagnostic systems. Since Smith [12] first observed distinct changes in brain activity during the

transition from wake to sleep in the 1930s, the electroencephalogram (EEG) was increasingly

used to assess sleep architecture. EEG was progressively refined and combined with other

sensors that monitor physiological processes during sleep: including, but not limited to, heart

rhythm, blood oxygenation, respiratory e↵ort, and muscle activation. This collection of sensors

has evolved into polysomnography: the current ‘gold standard’ for sleep assessment. The

various sensors ensure that polysomnography accurately monitors the relevant physiological

processes [13, 14]. But, this results in an invasive system that can cause poor sleep or abnormal

sleep behaviour. Therefore, the estimated sleep behaviour may not accurately represent the

child’s actual sleep behaviour. Polysomnography also requires a trained sleep technician to

configure and continually monitor the system in a dedicated sleep laboratory. These facilities

are commonly located in major cities, which is particularly problematic in sparsely populated

countries such as Australia. The limitations of polysomnography motivate the development

of alternative sleep disorder diagnostic systems that are ideally non-invasive, inexpensive and

user-friendly.

Alternative diagnostic methods typically measure a subset of the physiological signals avail-

able with polysomnography. These methods include qualitative techniques such as sleep diaries

and questionnaires, as well as quantitative techniques such as blood oxygenation, respiratory

e↵ort, oxygen desaturation, and body movement. Unfortunately, the most e↵ective systems are

typically the most invasive and complex. The non-invasive alternatives generally only describe

one aspect of OSA: respiratory cessations or sleep quality. Actigraphy, an existing method

for estimating sleep quality using body movement, has the potential to describe both aspects.

Actigraphy currently detects wake on the basis of increased activity. In addition to this, it may

be possible to detect respiratory cessations or physiological events characteristic of OSA if they

are associated with movement. Actigraphy is also non-invasive, inexpensive, and user-friendly.

However, actigraphy has distinct technical limitations that impact the accuracy of predicted

sleep and wake regions.

Sleep actigraphy systems conventionally detect wrist movement using a uni-axial accelerom-

eter, and summarise fixed epochs (typically 30s) of movement as ‘activity counts’ [15]. Essen-

tially, epochs of activity are identified as ‘wake’ and epochs of inactivity are identified as ‘sleep’.

This framework misidentifies sleep epochs with high activity as ‘wake’, and wake epochs with

low activity as ‘sleep’; consequently, existing actigraphs have distinct limitations when monitor-

ing patients with disorders that cause movement (i.e. OSA), or extended regions of quiet wake

(i.e. insomnia). Several studies have attempted to address these confounding regions [16, 17].

Despite known relationships between specific movements and sleep stages [18, 19], these at-

tempts have focused on optimising filter coe�cients for post-processing activity counts (doc-

umented in Fig. 1.2). The filter combines movement information from surrounding epochs,
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1.1. Research rationale

e↵ectively smoothing large epochs into surrounding epochs. This smoothing process has two

main e↵ects: ‘peaky’ movements during sleep are attenuated, increasing the likelihood of iso-

lated high-activity sleep epochs correctly scoring as sleep; and extended movements during

wake are distributed into surrounding epochs, increasing the likelihood of isolated low-activity

wake epochs correctly scoring as wake. However, passively smoothing epochs introduces errors

by reducing activity in wake epochs with neighbouring epochs of low-activity, and increasing

activity in sleep epochs with neighbouring epochs of high-activity. Another limitation of activ-

ity counts is the inadequate temporal resolution for detecting specific movements or isolating

specific characteristics.

1.1 Research rationale

Movement during sleep and wake is conventionally represented using a summary of movement

within a fixed epoch, termed ‘activity counts’. Regions of wake are classified as epochs of high

activity, and regions of sleep are classified as epochs of low activity. The major limitation

of this framework is summarised in Fig. 1.1, which shows the distribution of activity counts

during sleep and wake: low-activity epochs occur during wake, and high-activity epochs occur

during sleep. This results in overlapping distributions that cause classification errors when the

standard threshold-classifier is applied. In order to address the limitations of actigraphy in

sleep assessment (detailed in Fig. 1.2), we will consider the two key error types (highlighted in

Fig. 1.1 and summarised in Fig. 1.3):

Error 1. False negatives: wake epochs with no observed movement are incorrectly

identified as ‘sleep’.

False sleep detections may be caused by suboptimal sensor configuration: existing actig-

raphy systems use a single accelerometer (most often located on the dominant or non-

dominant wrist) to measure movement. A single accelerometer cannot detect movements

in other limbs. Incorporating additional accelerometers to detect these movements may

reduce the risk that wake movements are missed. In addition to this, existing systems

likely still employ uni-axial movement representation techniques. Monitoring movement

with a single axis would increase the risk that genuine movements are not detected. There-

fore, representing movement with techniques that summarise tri-axial motion may further

reduce false sleep detections.

It is possible for actual regions of no movement to occur during wake (i.e. where the patient

is awake but laying still). Since these epochs are likely surrounded by epochs of activity,

the conventional smoothing filter will reduce these false sleep detections.
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Figure 1.1: Histogram of activity during sleep (red) and wake (blue) for 24 patients using the conventional
activity counts derived using the zero-crossing method.

Error 2. False positives: sleep epochs with observed movement are incorrectly

identified as ‘wake’.

False wake detections may be caused by inadequate movement representations: wrist ac-

tivity is typically summarised within fixed 30s epochs using a time-series technique with

uni-axial data. Representing movement in this way limits the ability to discriminate be-

tween sleep and wake movements because physiologically di↵erent movements can result

in a similar activity value, and some movements cannot be detected altogether. Therefore,

measuring movement with tri-axial multisite accelerometry, and identifying characteris-

tic di↵erences between sleep and wake movements, may reduce false wake detections by

providing a better movement descriptor than the conventional techniques.

Movements during physical activity or associated with physiological disorders are well de-

fined [20, 21]; however, descriptions of movements during sleep are currently lacking. The
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Effect 1. Introduces neighbouring epochs of movement, where otherwise there was none. This can
bridge epochs with movement that were previously separated by epochs with no movement, which
increases the likelihood of scoring as wake.

Effect 2. Reduces the peak value of epochs containing short-duration movements, which increases the
likelihood of these epochs being scored as sleep, as these activity counts may then move below the
threshold.

Epochs with small movement and neighbouring epochs with no movement:

Commercial Solution

Smoothing filter applied to activity counts distributes movement into 
neighbouring epochs

Post-Smoothing

Likely scored as 
Wake

Epochs with no movement and neighbouring epochs with movement:

Prior-Smoothing

Likely scored as 
Sleep

Post-Smoothing

Likely scored as 
Wake

Prior-Smoothing

Likely scored as 
Sleep

Actual Sleep

Movement not 
detectable with 

commercial actigraphy

Genuinely no 
movement

Wake epochs with no observed movement

Incorrectly identified as 
Sleep

Sleep epochs with observed movement

Incorrectly identified as 
Wake

Actual Wake

Post-Smoothing

Likely scored as 
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Prior-Smoothing
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Post-Smoothing

Likely scored as 
Sleep

Prior-Smoothing

Likely scored as 
Wake

Actual Sleep Actual Wake

Misclassified Epochs using Commercial Actigraphy in Sleep Assessment

Error 1. Error 2.

Figure 1.2: Typical process used by commercial actigraphy systems to address the limitations of actigraphy in
sleep assessment.
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Figure 1.3: Proposed solution for addressing the limitations of actigraphy in sleep assessment.
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1.2. Overall aims and outline of thesis

conventional summaries of movement persist throughout sleep literature, despite evidence

of movement characteristics specific to certain sleep stages [22], di↵erences in muscle ac-

tivation e↵ort between sleep and wake [23], and di↵erences in movement coherence [18].

Considering that literature highlights these di↵erences between movements during sleep and

wake, there are likely technically di↵erentiable characteristics. The conventional activity

summaries are simple to implement and are used throughout commercial systems. Since

existing systems likely still employ uni-axial movement representations, despite incorporat-

ing tri-axial accelerometers, the range of detectable movements is limited. Incorporating

tri-axial movement representations and identifying di↵erentiable characteristics using the

common summary techniques will provide the greatest short-term gain with negligible

changes to existing systems.

The conventional movement summaries are unable to identify short-duration movements,

or identify specific characteristics because they have low temporal resolution (in the order

of 30s). Although using these summaries is ideal for integration into existing systems,

analysing characteristics on a movement-basis with raw high-resolution data is likely to

provide greater performance benefits by facilitating the discrimination of sleep and wake

movements of varying durations. Raw data also allows time-varying spectral characteris-

tics to be considered. Localised spectral techniques may isolate physiologically di↵erent

characteristics of sleep and wake movements, which consequently may reduce false wake

detections.

Actigraphy in sleep assessment is used to estimate sleep quality by identifying sleep and

wake epochs. Literature questions the accuracy of these estimates, partly because of

the confounding sleep movements. However, it is possible that these confounding move-

ments correlate with physiological or pathological events (such as transient arousal or ap-

noea/hypopnea) associated with sleep disorders. Instead of confounding wake estimates,

these movements may provide an avenue for identifying signs indicative of sleep disorder

severity.

1.2 Overall aims and outline of thesis

The overarching goal of this thesis is to explore the utility of an improved actigraphy system

for assessing paediatric sleep disorders in the home environment. To achieve this, the two

primary limitations of actigraphy in sleep assessment will be addressed. Chapter 4 addresses

the first limitation (wake epochs with no observed movement) by investigating if adopting tri-

axial/multisite accelerometry reduces the number of wake epochs with no movement. Chapter 5

and Chapter 6 address the second limitation (sleep epochs with movement resulting in activ-

ity values similar to wake epochs). Chapter 5 identifies movement characteristics that di↵er
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Chapter 1. Introduction

between sleep and wake, and predicts sleep and wake on a movement-by-movement basis. Chap-

ter 6 identifies causes of some of the confounding sleep movements by analysing the correlation

with physiological and pathological events associated with sleep disorders. The overview of

each chapter is outlined below.

C
ha

pt
er

 2

• Introduces obstructive sleep apnoea syndrome and the relevant diagnostic techniques;
• Introduces the clinical and technical concepts required for data analysis; and
• Discusses the technical limitations of actigraphy for identifying sleep issues associated with sleep apnoea.

C
ha

pt
er

 3 • Outlines the patient characteristics;
• Outlines the clinical study design;
• Documents the post-processing procedure for the accelerometry data and the statistical analysis
procedures;

• Outlines the final data set formats for analysis; and
• Describes the general outcome measures of the thesis.

Overview of sleep assessment

Experimental methodology and materials

C
ha

pt
er

 4 • Compares the effectiveness of predicting sleep and wake using the conventional representations of
movement with a custom accelerometry system;

• Compares the performance of uni-axial and tri-axial accelerometry for summarising movement associated
with sleep and wake; and

• Compares the sleep and wake discrimination ability and the sleep and wake predictive performance of
multiple accelerometer placements across the body using time-series representations.

Conventional representations of tri-axial multisite accelerometry

C
ha

pt
er

 5 • Identifies and explores the effect of movements specific to restless sleep on conventional activity counts;
• Identifies discriminatory localised spectral characteristics of sleep movements and wake movements;
• Determines the sleep and wake predictive performance of the identified time-frequency characteristics;
and

• Explores the effectiveness of detecting regions of sleep and wake on a movement-by-movement basis,
rather than the conventional 30s activity summaries.

Differentiating sleep and wake movements

C
ha
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 6

• Explores the association between transient arousal and movement, and thereby identifies if arousals
confound conventional actigraphy-derived wake scores and if actigraphy can predict arousal events; and

• Explores the association between apnoeic events and movement and thereby identifies if sleep movements
predict apnoeic events.

Physiological associations with sleep movements
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 7

• Discusses the thesis contributions to the field of actigraphy in sleep assessment;
• Discusses the clinical implications of the results in this thesis;
• Identifies the limitation of the analyses; and
• Identifies areas for future research.

Summary
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2
Overview of sleep assessment

Approximately 400 BC, Plato considered sleep to be caused by rising di-

gestive stomach vapours that block the sensory pores in the brain, discon-

necting it from the body, and thereby inducing sleep. Despite discussing

why or how we sleep, Plato thought it neither necessary for soul nor

body; ‘indeed, asleep we have no more value than a dead person’.

— Plato, Philosopher, 428 - 348 BC 1

Sleep is an essential process that contributes to quality of life [2]. Unfortunately, for many

people sleep is often disrupted throughout the night by one of many sleep-related disorders.

These disorders range from narcolepsy (the seemingly spontaneous onset of sleep) and insomnia

(the inability to sleep) to parasomnias and breathing disorders [8]. Although all of these

disorders impact health and daily functioning, we will focus on the issues surrounding diagnosing

obstructive sleep apnoea syndrome (OSA).

This chapter introduces the clinical and technical background behind sleep assessment for

diagnosing OSA in children. We will start by introducing the theory and clinical practice

behind sleep scoring and OSA. We will then discuss the techniques currently used to assess

OSA and their associated limitations. Finally, we will identify techniques that may improve

these limitations.

1Historical information gathered from literature studies detailed in Wiedemann and Dowden [24].
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Chapter 2. Overview of sleep assessment

2.1 Introduction to sleep

2.1.1 Sleep and scoring

Sleep is a complex process that is essential for healthy functioning [25]. Sleep is characterised,

relative to wake, by an altered consciousness and a restriction of sensory intake and volun-

tary muscular control. Since Aserinsky and Kleitman [26] first observed rapid eye movements

during sleep in 1953, researchers have sought to determine the role of sleep. This observation

launched sleep research because, before then, it was considered that no great physiological pro-

cess happened while our bodies were asleep; sleep was thought as merely a cessation of brain

activity [23]. There are many theories as to why we sleep; however, this is still an on-going

discussion. Currently, it is thought that sleep may:

• aid with memory consolidation [27, 28, 29];

• allow brain cells to repair [23, 27];

• aid with maintaining the integrity of the brain region responsible for sustained atten-

tion [27]; and/or

• aid in body restoration and energy conservation [30].

Since each of these processes are required for maintaining healthy functioning, it is essential

that sleep is unimpaired and regularly achieved.

The required amount of sleep di↵ers from infancy through to adulthood and old-age. Ap-

proximately 60% of each day (14.5 hours) is required for sleep during infancy, 40% (9.5 hours)

during adolescence and 33% (8 hours) during adulthood [31]. The required sleep duration

steadily reduces throughout adulthood. Sleep is greatly influenced by the environment, partic-

ularly light and darkness (i.e. circadian rhythm). Indeed, sleep is commonly impaired when

changing between daylight savings and standard time [32, 33]. An extreme example of this

influence is the significant phase shift in circadian rhythm experienced by those living in the

Arctic region, who are exposed to full days of sunlight in summer, and next to no sunlight in

winter [34]. This influence is also often experienced as jet-lag by world-wide travellers, flight

attendants and pilots [8, 33].

Sleep is comprised of six recognised stages (as defined by the American Academy of Sleep

Medicine (AASM) [38]): wake, rapid eye movement (REM), non-REM sleep stage 1 (N1), non-

REM sleep stage 2 (N2), non-REM sleep stage 3 (N3), and non-REM sleep stage 4 (N4). In

healthy adults and children, these stages cycle sequentially through N1, N2, N3, N4 and REM

every 90� 110 minutes throughout the night [35, 39], with the occasional arousal to the wake

stage (as illustrated by an example of a child’s typical sleep cycle in Fig 2.1). Each sleep stage

exhibits di↵erent physiological characteristics, ranging from brain activity, eye movements, and

muscle tone to dream intensity and frequency. The proportion and characteristics of each stage

are specified in Fig. 2.2.
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2.1. Introduction to sleep
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Figure 2.1: Example hypnogram (sleep architecture) of ‘normal’ sleep cycles across a single night (shown as
hours since lights o↵).

The physiological di↵erences in the sleep stages led to characterisation and consequently the

development of scoring rules for each stage. These rules were first defined by Rechtscha↵en and

Kales [40] in 1968, commonly termed the R&K scoring guidelines. The scoring criteria di↵ers for

infants (< 2 months of age), children (2 months to 18 years) and adults. Table 2.1 outlines the

scoring criteria for each sleep stage for children [40, 13, 41]. The R&K scoring guidelines have

been updated by the AASM in 2007 [38] and again in 2013 [42] to address and reflect changes in

the sleep research field within the 40 years since the release of the original R&K guidelines. The

Australian Sleep Technologists Association (ASTA) and Australian Sleep Association (ASA)

have also provided suggestions for amendments to the AASM scoring criteria [43, 44]. These

suggestions are also noted in Table 2.1.

Child is lightly aware of their
environment and is most
easily awoken by external
noises or foreign physical
stimuli.

Child moves deeper into
unconsciousness and requires
louder or more vigorous
stimulus to cause wakefulness.

N
3

Child is deeply asleep and
requires a much larger
external stimulus to cause
wakefulness.

Child is very deeply asleep.
It is very difficult to
awaken a child within this
stage.

Slow-wave sleep

R
EM

Child experiences muscle
atonia and intense, vivid
dreams.

Some muscle movement
can be observed in the form
of muscle twitches, termed
myoclonic twitches, which
last for less than 2s.

REM

N1

N2

N3

N4

* The duration proportion of each sleep 
stage differs across the night;

- Slow-wave sleep is more 
prevalent in the first half of the 
night, and is slowly replaced by 
N2; and

- The prevalence of REM sleep 
increases as the night 
progresses.

N
4

N
1

N
2

Figure 2.2: Proportion, sequence and physiological characteristics of each sleep stage across the night [8, 35, 36,
37, 22].
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Chapter 2. Overview of sleep assessment

Table 2.1: ASA/ASTA recommendations for scoring paediatric sleep [40, 43, 44]

Sleep Stage Description

Wake, W Electroencephalogram (EEG) characterised by low amplitude, high fre-

quency waves. When preparing for sleep, EEG alpha activity (8 � 13Hz)

is prominent. Electroculogram (EOG) shows voluntary eye movement. Elec-

tromyogram (EMG) shows tonic muscle activity related to voluntary move-

ments.

Non-REM sleep, N1 Loss of alpha activity, replaced by mixed-frequency EEG activity with mostly

theta activity (3� 7Hz). EOG shows slow and rolling eye movements. EMG

shows relaxed muscle tone. Sudden muscle contractions can occur.

Non-REM sleep, N2 Appearance of K-complexes (high-amplitude negative sharp wave followed

by a slow wave) and sleep spindles (oscillations of 12 � 15Hz of 1 second in

duration that occur 5� 10 times a minute) in the EEG recording.

ASTA/ASA amendment: the end of NREM Stage 2 is identified as occurring

when there is either a transition to a di↵erent sleep stage or if the majority

of the epoch meets N1 criteria, and a cortical arousal and/or major body

movement occurs.

Non-REM sleep, N3 Slow delta waves (< 2Hz) in the EEG recording. No eye movements and

reduced EMG activity.

Non-REM sleep, N4 Similar to N3.

REM sleep, REM EEG activity similar to wake or N1. Loss of muscle tone and increased

myoclonic twitches.

Each sleep stage is important for e↵ective daily functioning. If deprived of one of the

sleep stages, or if awakened at set intervals throughout a normal sleep period, daytime sleepi-

ness, fatigue and increased emotional instability will often be reported the following day [45].

Physiologically, sleep deprivation impairs temperature control, dietary metabolism and immune

function [46]. Prolonged sleep deprivation can, in extreme cases, lead to death [25]. In children,

sleep deprivation negatively impacts cognitive and emotional behaviour and can cause hyper-

activity or aggression [47, 48]. If not addressed early, the e↵ects of prolonged sleep impairment

can lead to permanent deficiencies [27]. As well as external stimulus, sleep deprivation is com-

monly instigated by some sleep-related disorder or by an abnormally high number of arousal

events.

2.1.2 Transient arousals

Arousals can occur as a response to unwanted sleep abnormalities: cortical arousals can occur

from external stimuli (e.g. unfamiliar noise, environment disruptions and pain) and respiratory-
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2.1. Introduction to sleep

Table 2.2: Arousal scoring criteria for children [42, 43, 44]

Arousal

According to the AASM, to score an arousal event,

• there must be at least 10 continuous seconds of any stage of sleep prior to an arousal;

• the EEG frequency shift must be greater than 3 seconds in duration;

• NREM: arousals may occur without EMG amplitude increase; and

• REM: arousals must be accompanied by EMG amplitude increase.

ASTA/ASA amendments:

In addition to the AASM criteria,

• a movement-related arousal is scored if there is 0.5s between the cessation of limb

movement and an AASM arousal event; and

• a respiratory-related arousal is scored if it occurs less than 5s or two respiratory cycles

after the termination of a respiratory event.

related events (e.g. after a certain level of inspiratory e↵ort or airway pressure is achieved) [49,

4]. Arousals transitioning to wake, or to a lighter sleep stage, can either occur briefly (commonly

termed ‘transient arousal’) or completely, leading to extended periods of wake. There are two

distinct arousal types: spontaneous and respiratory-related arousals. Respiratory e↵ort-related

arousal (RERA) is defined as an arousal that occurs closely after airflow restrictions (i.e. apnoea

or hypopnea). Spontaneous arousals are those that are not caused by any stimuli such as

respiratory events, limb movements, snoring, etc. These arousals occur spontaneously, lending

themselves as a natural process of sleep.

Similar to sleep staging, arousal events are scored using the AASM manual [38, 42]. In 1968

Rechtscha↵en and Kales [40] outlined movement arousals in the R&K Scoring Manual as an

intended aid to scoring stages. However, there was no mention of concurrent EEG scoring. An

increased interest in the correlation of arousals and daytime sleepiness motivated the need to

standardise arousal scoring [50]. In 1992, the ASDA [51] developed criteria for scoring arousals,

independent of the Rechtscha↵en and Kales [40] sleep scoring criteria. In addition to this,

the ASTA/ASA have suggested amendments to the AASM scoring criteria for some arousal

events [43, 44]. The AASM scoring rules for arousals and the ASTA/ASA amendments are

detailed in Table 2.2.

Frequent arousals contribute to increased sleep disruption throughout the night, and are

consequently detrimental to general health [13, 52]. Arousals can coincide with events related
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Chapter 2. Overview of sleep assessment

to some sleeping disorders, such as OSA [52]. These disorders also severely a↵ect sleep quality

and will be described in the following section.

2.1.3 Sleeping disorders in children

Many children experience di�culties during sleep; from parasomnias (e.g. night terrors and

sleep walking) to insomnia or sleep apnoea. These sleep problems disrupt the restorative

quality of sleep and often negatively a↵ect the child’s daily functioning and general health.

Sleep-related disorders in children range from sleep talking, enuresis and night terrors to restless

leg syndrome and sleep apnoea [2]. Although all sleeping disorders are detrimental to general

health and well-being, sleep apnoea is relatively common in children, requires treatment and

requires complex and expensive procedures for diagnosis (discussed in Section 2.2). For these

reasons, in this thesis we will focus on aiding the detection of OSA in children. Although OSA

will be the focus, the techniques developed in this thesis may be extended to other disorders.

OSA is a sleep-related breathing disorder where breathing is restricted at intervals through-

out the night. In addition to the e↵ects of disrupted sleep, sleep-related breathing disorders,

such as OSA, can permanently reduce cognitive function [53, 54, 55]. One theory for this impair-

ment is hypoxia (i.e. reduced blood oxygenation) that is caused by a cessation or abnormality

in respiration [30]. Other causes may be arousals that coincide with apnoeic events, or con-

siderable expenditure of energy required to regain respiration. In extreme cases, children have

presented with permanent brain damage, temporary neurological dysfunction, hypertension,

heart failure and respiratory failure [56]. Death can also occur; however, it is uncommon [9].

Unfortunately, parents can dismiss the symptoms of sleep breathing disorders in children as

general behavioural problems [57, 7]. In these cases, these disorders will go undetected and the

e↵ects of disturbed sleep and/or restricted airflow can worsen and continue into adulthood.

OSA is common in childhood, with 2 � 4% of children a↵ected (approximately one third

that of asthma) [58, 59]. An obstructive event occurs when the upper airways are partially or

completely obstructed throughout the night [60]. The leading causes of OSA in children are

adenotonsillar hypertrophy and obesity [61, 62]. Enlarged tonsils and adenoids in the upper

airways restrict the ability to breathe. An example of an airflow obstruction caused by enlarged

tonsils and adenoids is shown in Fig. 2.3. Similar to adenotonsillar hypertrophy, the additional

fat deposits in the neck region that are common in obese children can cause respiratory muscle

collapse [62]. Airflow can also be restricted by pharyngeal muscle relaxation from atonia during

REM sleep [63]. These restrictions can be partial (hypopnea: > 30 � 50% fall in respiratory

signal amplitude relative to baseline) or complete (apnoea: > 90% fall in respiratory signal

amplitude relative to baseline) [38].

Apnoea and hypopnea events are categorised as obstructive, central or mixed, using the

AASM criteria outlined in the ‘AASM Manual for the Scoring of Sleep and Associated Events’.

The criteria are summarised in Table 2.3 [42]. Children are scored di↵erently to adults because
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2.2. Diagnostic methods for obstructive sleep apnoea

their respiratory characteristics and physiology di↵er. The scoring rules for children are used

for infants (> 2 months of age) and children less than 18 years of age. The adult scoring rules

can be used, at the discretion of the sleep technician, for children aged 13 � 18 years of age.

The severity of the disorder is described by the number of apnoea and/or hypopnea events per

hour: the apnoea hypopnea index (AHI) or respiratory disturbance index (RDI).

Other than the consequences of disturbed sleep, the most recognised symptom for OSA in

children is snoring [48, 60]; however, OSA can occur without the presence of snoring [56], and

snoring can occur in patients that do not have OSA. Indeed, snoring occurs in approximately

10 � 20% of children [60], where OSA is present in only approximately 2% [59]. Therefore,

the presence of snoring cannot be used to identify the presence of OSA in children. OSA is

characterised by blood de-oxygenation, a decrease in nasal pressure, increased respiratory e↵ort

and/or restlessness during sleep. Therefore, a subset of these signals could be used to identify

the disorder. There are devices with varying degrees of e↵ectiveness that use these biological

signals to detect OSA in children. These are outlined below.

2.2 Diagnostic methods for obstructive sleep apnoea

Polysomnography, the recognised gold standard for diagnosing sleeping disorders [65], has lim-

itations that motivate diagnostic methods that can be conducted in the home environment.

These methods include both qualitative questionnaires and quantitative devices. Many ques-

tionnaires have been developed and used to identify sleep-related breathing disorders. Question-

naires are often subjective and require patient integrity to be e↵ective. As such, these techniques

are di�cult to validate and standardise [60]. There are quantitative methods currently used

Normal 
airflow

Tongue

Adenoids
Tonsil

Blocked 
airflow

Enlarged 
adenoids

Enlarged 
tonsils

Normal Airflow Blocked Airflow

Figure 2.3: Normal airway anatomy prior to inflammation of the adenoids and/or tonsils (left), and post-
inflammation (right). Image courtesy of [64].
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Chapter 2. Overview of sleep assessment

Table 2.3: Apnoea and hypopnea scoring criteria for children [42]

Apnoea

Drop in peak flow signal excursion of � 90% from pre-event baseline and

meets any of the following duration and respiratory criteria.

Obstructive Additionally: duration of at least 2 breaths and there is respiratory e↵ort

during the period of absent airflow.

Central Additionally: absent inspiratory e↵ort and one or more of;

• duration of at least 20 seconds; or

• at least 2 breaths with an arousal or � 3% arterial desaturation; or

• decrease in heart rate to < 50 beats per minute for at least 5 seconds.

Mixed Additionally: duration of at least 2 breaths and associated with absent respi-

ratory e↵ort in a portion of the event with the presence of inspiratory e↵ort

in another portion.

Hypopnea

Drop in peak flow signal by � 30% of pre-event baseline, duration of drop

lasts for � 2 breaths, � 3% oxygen desaturation from pre-event baseline of

association with an arousal, and meets any of the following criteria.

Obstructive Additionally: one or more of;

• snoring; or

• increased respiratory flattening of nasal pressure or flow signal com-

pared to baseline breathing; or

• occurrence of thoracoabdominal paradox during event but not during

pre-event breathing.

Central Additionally: none of the obstructive criteria.

to identify sleep in a non-laboratory setting, which will be discussed in Section 2.2.2. Since

these devices are developed to be non-invasive and relatively simple to operate without clinical

guidance, they only measure a small subset of relevant biological signals. Polysomnography

and these home-based techniques will be discussed in this section.

2.2.1 Polysomnography

Polysomnography (PSG) monitors various physiological changes during sleep, such as brain

activity (electroencephalography), heart rhythm (electrocardiography), airflow, blood oxygena-

tion, eye movements (electrooculography) and muscle activity (electromyography) [71, 13, 30].
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2.2. Diagnostic methods for obstructive sleep apnoea

The polysomnography signals are analysed post-study and sleep stages (as defined by the pae-

diatric criteria outlined in the AASM Manual for Scoring Sleep and Associated Events [38] and

detailed in Section 2.1.1) are manually scored on a 30 second epoch basis. Polysomnography

identifies OSA-related respiratory events by changes in chest and abdominal motion, airflow

and arterial oxygen saturation [14]. Polysomnography also provides a summary of the child’s

sleep architecture. From this, the severity of sleep disturbance can be estimated.

There are some common criticisms for the e↵ectiveness of polysomnography, particularly

concerning the clinical significance of abnormalities, the impact of polysomnography on the

child’s natural sleep behaviour and the validity of performing full sleep studies on each child

symptomatic of OSA [14]. These criticisms stem from the cost, availability and complex-

ity of polysomnography. Fig. 2.5 illustrates the limitations of polysomnography in Australia,

particularly with respect to geographical availability. The location of sleep laboratories (cir-

cles represent those in capital cities and triangles represent those in regional areas) is scattered

throughout high-density areas (represented by the shading within each state), and the majority

of sleep laboratories are located in capital cities. In Australia, this means that approximately 4%

of the population (920,000 out of 23,000,000 people) are further than 1000 km from the nearest

laboratory, and approximately 50% of the population (12,000,000 people) are further than 200

km from a sleep laboratory (illustrated by the population per m2 shaded regions in Fig. 2.5). A

diagnostic polysomnogram is also expensive, representing approximately 0.32% (approximately

$AUD59.3 million) of the Australian government Medicare budget [68]. Polysomnography is

considered e↵ective for diagnosis, because it acquires very detailed measurements. However,

this supposed advantage may be detrimental to the accuracy of the measured sleep architecture.

That is, the numerous sensors required for gathering detailed measurements may cause the pa-

Figure 2.4: Example polysomnogram on child. Image courtesy of [66].
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Expensive:

Limited to major hospitals in population-dense states 
& Limited number of beds:

• Polysomnography costs $500-$1300 AUD per day 
(2012), 3 reimbursed per annum for each patient by 
Medicare

• Polysomnography represents 0.32% ($AUD59.3 million) 
of the Australian Medicare budget (total $AUD18.5 
billion) 

• Demand increase of 10,128 per year, at approximately 
100,000 PSG studies nation-wide in 2012 (paediatric and 
adult)

• Approximately 950 beds available nation-wide

• 1-16 months waiting time

• Approximately 4% of Australia need to travel > 1000km 
to attend PSG study

• Many sleep laboratories will not perform paediatric 
studies

Limitations

Location of sleep clinics according to http://www.sleepoz.org.au/all-clinics
Population according to http://www.abs.gov.au/ausstats/
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Figure 2.5: Limitations of full diagnostic sleep studies with polysomnography in Australia [67, 68, 69, 70].
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2.2. Diagnostic methods for obstructive sleep apnoea

tient to sleep poorly or di↵erently to their normal behaviour. For this reason, the estimated

sleep behaviour may not be indicative of the patients actual sleep behaviour.

In addition to the intrusive e↵ect of the sensors, the laboratory environment may hinder

sleep quality because it is unfamiliar and intimidating for children. Indeed, the accuracy of home

polysomnography has been compared to laboratory polysomnography and the measures of sleep

behaviour did di↵er [72, 73]. This di↵erence may be due to patient discomfort and/or patient

awareness of the study [74]. This is a well known trait of polysomnography, termed the ‘first-

night e↵ect’ [75], whereby the emotional and physical discomfort of polysomnography alters

sleep behaviour [76]. The altered sleep behaviour, as well as the cost and limited availability

of polysomnography, have motivated the development of diagnostic techniques that are less

invasive and can be used in a non-clinical setting.

2.2.2 Home-based diagnostic techniques

Many relatively non-invasive devices have been developed to remotely measure sleep behaviour.

The most commonly used for OSA are respiratory polygraphy, pulse oximetry and actigraphy.

Respiratory Polygraphy

Respiratory polygraphy is a scaled-down polysomnogram that is developed for use in a non-

laboratory setting. Respiratory polygraphy combines sensors that monitor cardiorespiratory

signals. In addition to this, a camera is occasionally used for recording sleep behaviour [73]. The

cardiorespiratory signals summarise pulse rate and waveform, oxygen saturation, heart rhythm

and thoracic and abdominal excursions. Unlike in adults, monitoring facial signals (such as EEG

or EOG) is avoided in children so as to minimise strangulation risk and reduce invasiveness,

thereby mitigating any alteration of the child’s natural sleeping behaviour. Although home

polygraphy has been found to have high concordance with laboratory polysomnography [73],

it su↵ers from complexity. This is a great limitation in the home environment where parents

are likely to be responsible for configuring and/or monitoring the system. For this reason, it

is important to consider techniques that are both simple to use and accurately estimate sleep

architecture.

Pulse Oximetry

Pulse oximetry is one of the most common non-invasive quantitative methods used to measure

blood oxygenation [79, 80, 81, 82] (illustrated in Fig. 2.6). The cessation of respiration caused

by an OSA event can cause blood oxygen desaturation. Pulse oximetry attempts to identify

these desaturations and thereby detect apnoeic events. Although pulse oximetry has been found

an e↵ective tool (validated positive predictive rate of 97% [80]), a major constraint is that it

can only identify patients with more severe OSA. One reason for this is that arousals from sleep
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Chapter 2. Overview of sleep assessment

(a)

(b)

Figure 2.6: Example pulse oximeter setup on child (a) and device (b). Images courtesy of [77, 78].

can occur without significant oxygen desaturation [6]. These arousals contribute to disturbed

sleep, but are unidentifiable with pulse oximetry.

Actigraphy

Actigraphy conventionally estimates sleep and wake by measuring wrist activity. Identified

activity during the night likely corresponds with periods of wake. Actigraphy uses this prin-

ciple to identify the severity of sleep disturbance across the night, which in turn aids with

identification of a particular sleep disorder [15]. Although actigraphy has good agreement with

the polysomnography (approximately 90% [83, 84]), it has limitations that impact its e↵ec-

tiveness at identifying disorders where the patient moves while asleep, or remains still while

awake. In particular, activity that occurs while the patient is asleep will often be misidentified

as occurring during wake. Similarly, regions of no activity during wake will be misidentified

as regions of sleep. Although there are currently technical limitations that a↵ect the accuracy
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2.3. Technical overview of commercial actigraphy

Figure 2.7: Example actigraph: MiniMitter Philips Actiwatch 2. Image courtesy of [85].

of estimating sleep architecture with actigraphy, there are distinct advantages that make it an

attractive choice for assessing sleep in a non-laboratory setting. Actigraphy is durable, rela-

tively cost-e↵ective, and easily configured without clinical guidance; wearing an actigraph is as

invasive and complex as wearing a wrist watch (illustrated in Fig. 2.7).

Respiratory polygraphy, pulse oximetry and actigraphy monitor physiological signals that

allow identification of events related to obstructive sleep apnoea. Respiratory polygraphy of-

fers high concordance with polysomnography; however, it is still greatly invasive, costly and

complex to configure and/or monitor. Although pulse oximetry o↵ers a relatively non-invasive

and e↵ective method for identifying oxygen desaturation caused by a respiratory-related event

(common in OSA), it is unable to identify arousals from sleep that are not respiratory-related.

These arousals may be important for identifying the severity of sleep disturbance. Furthermore,

pulse oximetry cannot estimate sleep architecture and thereby any measure of sleep e�ciency

or disturbance.

In contrast to pulse oximetry, actigraphy is able to noninvasively identify any event that

causes movement, such as an arousal, apnoea, or disturbed sleep. Actigraphy is currently used

to assess sleep quality; however, the technical limitations hinder sleep estimation accuracy.

Considering that actigraphy appears an ideal candidate for detecting the severity of sleep

disturbance, there is considerable motivation to address the specific technical limitations. For

this reason, this thesis will focus on improving the e�cacy of actigraphy for identifying sleep

disturbance in children.

2.3 Technical overview of commercial actigraphy

Commercial sleep actigraphy systems generally consist of a uni-, bi- or tri-axial accelerometer

that quantifies movement as a summarised ‘activity count’ per time period or epoch [83], com-

monly at 30 seconds. Actigraphy in sleep assessment typically classifies epochs with movement

as wake and epochs with no movement as sleep. These movements are quantified using one of

several common time-series techniques. Time-series techniques are favoured because they are

easily interpretable and realisable with simple hardware. However, this simplicity comes with

a trade-o↵ against accuracy, which will be discussed in Section 2.3.1.
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Chapter 2. Overview of sleep assessment

Despite achieving relatively high agreement with polysomnography, actigraphy currently

su↵ers from poor sleep specificity; actigraphy often misidentifies movement during sleep as

‘wake’; and regions of quiet wake as ‘sleep’. This misidentification may be due to technical

limitations of commercial systems, such as the sensor type and placement, the movement rep-

resentation and/or the sleep/wake classification method. Actigraph placement and movement

representations di↵er between commercial systems and within published literature. Unsurpris-

ingly, there is much discussion concerning the choice of single accelerometer placement and

activity count derivation technique. There have been many validation studies with actigraphy

against sleep questionnaires, sleep diaries and polysomnography. Table 2.4 summarises the

concordance of actigraphy with the various validation devices for paediatric sleep assessment.

Where possible, the sensitivity and specificity have been noted, otherwise the agreement or

concordance with the validation metric is noted.

Table 2.4: Actigraphy validation history for childrena

Year Author/s Subjects Actigraph AC

Methodb
Locationc Validation

Methodd
Reported

Performancee

1989 Sadeh et al.

[86]

13, 3-13 years unspecified,

Ambulatory

Monitoring

ZC Wrist PSG ⇢: 0.813

1991 Sadeh et al.

[87]

11, 12-48 mo,

4M

unspecified,

Ambulatory

Monitoring

ZC Left leg PSG Se: 87.7%

Sp: 76.9%

Ag: 85.3%

1994 Sadeh [88] 50, 9-24 mo,

28M

unspecified,

Ambulatory

Monitoring

n.d. n.d. SD TST: 585(60) mins

vs. 598(49) mins

SE: 81.2(6.2)%

vs. 92.4(6.8)%

1995 Sadeh et al.

[89]

41, 3-12 mo AMA-32,

Ambulatory

Monitoring

ZC Left ankle CBO Ag: 95.6%

1996 Sadeh [90] 66, 7-26 mo,

46M

AMA-16,

Ambulatory

Monitoring

n.d. Leg SD TST: ⇢ 0.74

SE: ⇢ 0.41

2002 Gnidovec

et al. [91]

10, 1-6 mo,

6M

Z80, Gaehwiler

Electronics

n.d. Left leg CBO Ag: 87-95%

2004 Sazonov

et al. [92]

26, infants

(CHIME)

Custom, uni-axial max,

var, ZC

Waist PSG Ag: 77-92%

2005 Acebo et al.

[93]

169, 1-5 years,

84M

AMA-32 Mini,

Ambulatory

Monitoring

ZC Left ankle

(<36mo)

ND Wrist

(> 36mo)

SD TST: 582(36) mins

vs. 624(36) mins

2005 So et al. [94] 22, <6 mo,

4M

Actiwatch AW64,

Mini-Mitter

Company Inc.

n.d. Mid-right

Calf

PSG Se: 87.5%

Sp: 63.5%

Ag: 86.5%

2007 Hyde et al.

[95]

45, 1-12 years,

29M

Actiwatch AW64,

Mini-Mitter

Company Inc.

n.d. ND Wrist PSG Se: 93.9%

Sp: 59.0%

Ag: 87.3%
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2.3. Technical overview of commercial actigraphy

Table 2.4: Actigraphy validation history for childrena (continued)

Year Author/s Subjects Actigraph AC

Methodb
Locationc Validation

Methodd
Reported

Performancee

2007 Johnson

et al. [96]

181, 12-16

years, 910M

Octagonal Sleep

Watch 2.01,

Ambulatory

Monitoring Inc.

ZC,

TAT,

DI

Wrist PSG TST ICC —

ZC: 0.32

TAT: 0.41

DI: 0.34

2008 Werner et al.

[97]

50, 4-7 years,

28M

Actiwatch + AW4,

Cambridge

Neurotechnology

n.d. ND Wrist SD TST: 505(22) mins

vs. 614(18) mins

2008 Sitnick et al.

[98]

58, 4-6 years,

29M

Actiwatch AW64,

Mini Mitter

Company Inc.

n.d. ND Ankle VSG Se: 97.6%

Sp: 24.3%

Ag: 94.6%

2009 Sung et al.

[99]

10, 6-9 mo,

8M

Actiwatch AW64,

Mini Mitter

Company Inc.

n.d. Mid-right

Calf

CBO Se: 88.7%

Sp: 55.0%

Ag: 85.1%

2010 O’Driscoll

et al. [100]

130, 2-18

years, 85M

Actiwatch AW64,

Mini Mitter

Company Inc.

n.d. ND Wrist PSG Se: 82.2%

Sp: 50.9%

Ag: 66.9%

2010 Holley et al.

[101]

91, 6-12 years,

44M

Basic Mini

Motionlogger,

Ambulatory

Monitoring Inc.

ZC ND Wrist CSHQ n.d.

2010 Insana et al.

[102]

22, 13-15 mo,

12M

Actiwatch AW64,

Mini Mitter

Company Inc.

n.d. Ankle PSG Se: 91.2%

Sp: 58.9%

Ag: 89.6%

2010 Weiss et al.

[103]

30, 16-18

years, 19M

Sleepwatch (SW),

Ambulatory Monitoring Inc.

Actiwatch (AW), Respironics

Actical (AC), Respironics

n.d. ND Wrist PSG ⇢ for TST:

SW: 0.822

AW: 0.836

AC: 0.722

2011 Gregory

et al. [104]

122, 7-17

years, 48M

Octagonal Basic

Motionlogger

Actigraph,

Ambulatory

Monitoring

n.d. ND Wrist PSG TWT: ⇢ -0.18

SE: ⇢ -0.11

2011 Spruyt et al.

[105]

149, 4.1-8.8

years, 62M

Actiwatch AW64,

Mini Mitter

Company Inc.

n.d. ND Wrist PSG TST: 460(38) mins

vs. 492(41) mins

WASO: 50(27) mins

vs. 24(25) mins

2011 Dayyat et al.

[106]

327, 3-10

years, 169M

Actiwatch AW64,

Mini Mitter

Company Inc.

n.d. ND Wrist SD SOL: 21.8(0.8) mins

vs. 23.7(4.5) mins

2012 Short et al.

[107]

385, 13-18

years, 231M

MicroMotionlogger,

Ambulatory

Monitoring

ZC ND Wrist SD TST: 468(28) mins

vs. 508(30) mins

WASO: 26(20) mins

vs. 11(8) mins

2012 Ward et al.

[108]

71, 9-11 years,

29M

Actiwatch AW64,

Mini Mitter

Company Inc.

DI ND Wrist PSG Se: 90%

Sp: 77%

Ag: 87%
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Chapter 2. Overview of sleep assessment

Table 2.4: Actigraphy validation history for childrena (continued)

Year Author/s Subjects Actigraph AC

Methodb
Locationc Validation

Methodd
Reported

Performancee

2012 Meltzer

et al. [84]

115, 3-18

years, 56M

Motionlogger (ML), AMI

Actiwatch-2 (AW),

Mini Mitter

ML: ZC

AW: n.d.

ND wrist PSG ML —

Se: 89%

Sp: 73%

Ag: 87%

AW —

Se: 93%

Sp: 69%

Ag: 89%

2013 Boyne et al.

[109]

10, 19-17

years

Actiwatch 16/64,

Respironics

ZC ND Wrist PSG SOL: ⇢ 0.911

TST: ⇢ 0.536

an.d. signifies that the associated data was not disclosed.
bZC, DI and TAT refer to the zero crossing, digital integration and time above threshold representation

methods.
cND refers to the non-dominant limb position.
dPSG refers to polysomnography, SD refers to sleep diary, CBO refers to clinical behavioural observations

and CSHQ refers to Children’s Sleep Habits Questionnaire [110].
eValues shown as actigraphy vs. validation method. ⇢ refers to the correlation coe�cient, Se, Sp and Ag

refer to sensitivity, specificity and agreement respectively, TST refers to total sleep time, TWT refers to total
time awake, SOL refers to sleep onset latency, SE refers to sleep e�ciency, and ICC refers to the inter-correlation
coe�cient.

2.3.1 Detecting wake in the presence of movement

Commercial actigraphy systems identify wake by first isolating large movements that are as-

sumed to occur solely during wake. They then often apply a smoothing procedure, or a re-

scoring algorithm, that remove short periods of quiet wake. The techniques used to quantify

movement and then re-score wake are described below.

Quantifying movement

Accelerometers measure both dynamic activity and static positions (i.e. positions with respect

to gravity) [111]. Until recently, commercial systems have used uni-axial accelerometers to

monitor motion. Although simple, uni-axial accelerometers only measure motion along one

axis of movement. The consequence of this is that movement that occurs in other axes will

be attenuated or not detected at all, as illustrated by three example vectors of movement in

Fig. 2.8: illustrating the ideal case, c is completely along the axis of measurement u, which

means that all of the magnitude is measured; a is at a 0.873 rad, or 50 deg, angle to the primary

axis of measurement u, which means that only cos(0.873), or 64.3%, of the magnitude of a is

measured along axis u; finally, in the least ideal case, b is at a ⇡

2 rad, or 90 deg, angle to u,

which means that none of the magnitude of b is measured along the axis u. For this reason,

commercial systems employing tri-axial accelerometry have recently been released.
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Figure 2.8: Limitations of uni-axial accelerometry for detecting movement.

The standard approach for representing movements for both uni- and tri-axial systems is a

time-series summary within a fixed time frame, or epoch (typically 30s) [83]. The most com-

mon time-series methods for summarising movement are time above threshold (TAT), digital

integration (DI) and zero crossing (ZC). TAT represents movement by summarising the time a

signal a is above a defined threshold T ,

TAT =
N ·fsX

n=1

{ka[n]k > T}, (2.1)

where N represents the epoch length (typically 30s), f
s

represents the sampling rate and

represents the indicator function. DI represents movement by summarising the amount of

movement within the time frame,

DI =
N ·fsX

n=1

ka[n]k. (2.2)

ZC represents movement by counting the number of times the movement signal crosses a defined

threshold within the time frame,

ZC =
N ·fsX

n=1

{(ka[n]k � T ) · (ka[n� 1]k � T ) < 0}. (2.3)

As shown in Fig. 2.9, TAT and DI are e↵ective summaries of total movement. However, they

are unable to e↵ectively represent high-energy movements of short duration (e.g. limb twitches).

TAT is unable to represent oscillatory movements because they will register above the threshold

for a short time, regardless of the magnitude, and small movements will likely remain below the

threshold and be missed altogether. DI is unable to accurately represent oscillatory movement

and short-duration movements because the signal often returns to baseline, restricting the area

under the signal. Converse to TAT and DI, ZC is e↵ective at representing oscillatory motion,

but is unable to e↵ectively represent high-energy movements that are long in duration and do

not oscillate about the threshold. Since ZC counts the number of times the signal crosses the
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Chapter 2. Overview of sleep assessment

threshold, movements that do not oscillate will cross the threshold a small number of times,

despite being significant movements. These movements will give small summary values, which

can be misidentified as ‘no movement’. In addition to these limitations, TAT and DI do not

describe the spectral nature of any movement because they are solely time-series approaches. ZC

only provides a superficial indication of the spectral content of movement because it describes

the frequency with which movement crosses a threshold.

Actigraphs, or raw accelerometry, are often used in literature and clinical settings to quantify

movement for gait analysis, physical activity [21], seizure detection [112], and fall detection in

the elderly [113, 114]. These applications often use spectral representations within each epoch
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Figure 2.9: Limitations of the conventional time-series representations for detecting movement.
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2.3. Technical overview of commercial actigraphy

to identify these events [115, 116]. Such windowed spectral representations can be categorised

as a time-frequency representation. Following from this, a more suitable approach is likely

wavelet analysis because this indicates the prevalent frequency components for varying window

sizes. Indeed, wavelet analysis has successfully been applied to identify single occurrences of

di↵erent activities in physical activity [115, 117, 118, 119].

Wavelet analysis identifies localised temporal instances where there is a change in frequency

content; for example, the temporal instance when a positional change occurs within an epoch.

An advantage of wavelets over other time-frequency representations is that wavelets allow vari-

able frequency and temporal resolution (illustrated in Fig. 2.10), whereas typical spectral repre-

sentations only allow variable frequency resolution or time resolution (represented by the Short-

Time Fourier Transform in Fig. 2.10), but not both (commonly known as the ‘Heisenberg-Gabor

limit’ or the ‘Gabor limit’ [120]). Temporal resolution is useful in this application because the

frequency content of movement is likely to change over time. This technique also allows tem-

poral isolation of particular movement types or postural changes. This resolution may aid in

improving the poor specificity of actigraphy for sleep assessment by providing an avenue for

e↵ectively discriminating sleep/wake movements.

Movement during sleep appears to be more sporadic and less periodic than movement during

physical activity (e.g. walking or stair climbing). As such, the windowed nature of wavelet

analysis seems particularly suited to analysing movements during sleep. Movements during

sleep are also likely to di↵er in duration, which further supports the viability of the varied

window lengths in the wavelet transform. While this approach seems particularly suited to this

application, it has not previously been applied to actigraphy in sleep assessment.

Sleep scoring algorithms

One limitation of actigraphy in sleep assessment is the inability to accurately detect when

a patient is immobile but awake [15]. Several algorithms have been developed for di↵erent

commercial actigraphy systems in an attempt to improve this limitation. These algorithms

apply a weighted function over the movement representations and score sleep or wake if the

algorithm produces a result above or below a certain threshold (detailed in Table 2.5). These

algorithms e↵ectively smooth the movement and thereby reduce the rate at which quiet wake

is scored as ‘sleep’. Various algorithms have been previously developed using regression and/or

optimisation techniques (summarised in Table 2.5). Smoothing movement during sleep reduces

‘peaky’ movement, making it likely to fall below the wake threshold. Similarly, smoothing

movement during wake spreads the distribution of movement across epochs, making it more

likely that short periods of quiet wake between movements will correctly be scored as wake.

These e↵ects somewhat improve the specificity, albeit only by a small amount.
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Figure 2.10: Spectral representations (such as the Short-Time Fourier Transform (STFT)) only allow either
good frequency-resolution or good time-resolution because they are restricted to a fixed window size. The wavelet
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2.3. Technical overview of commercial actigraphy

Table 2.5: Smoothing algorithms developed for commercial actigraphy

Year Author/s Actigraph Algorithm Reported

Performancea

1982 Webster

et al.

[121]

Medilog,

Ambulatory

Monitoring Inc.

PWake = 0.036(0.07A[�5] + 0.08A[�4] + . . .

0.10A[�3] + 0.11A[�2] + 0.12A[�1] + 0.14A[0] + . . .

0.09A[1] + 0.09A[2] + 0.09A[3] + 0.10A[4]) � 1,

where A[n] represents the maximum 2 second epoch

value within minute n for dominant wrist

movement.

Ag: 94.46%

1989 Sadeh

et al.

[86]

Unspecified model,

Ambulatory

Monitoring Inc.

PSleep = 4.532� 0.06828XO � 0.0385�[�5]� . . .

0.0299�[�2]� 0.038�[9] + 0.0298µ[2] � 0,

where XO represents the number of zero crossings

of the current 1 minute epoch for non-dominant

wrist movement, and µ[n] and �[n] represent the

mean and standard deviation of epoch n relative to

the current epoch.

Nominal —

Sp: 63.54% -

76.18%

Insomnia or

OSAb — Sp:

48.48%,

56.47%

1992 Cole

et al.

[122]

Motionlogger,

Ambulatory

Monitoring Inc.

PWake = 0.00001(404A[�4]+598A[�3]+326A[�2]+. . .

441A[�1] + 1408A[0] + 508A[1] + 350A[2]) � 1.

where A[n] represents the average 2s zero-crossing

activity for minute n for wrist movement.

Ag: 87.05%

1994 Sadeh

et al.

[89]

AMA-32,

Ambulatory

Monitoring Inc.

PSleep = 7.601� 0.065MeanW5min � . . .

1.08NAT � 0.056�last6min � 0.703LOGAct > 0.

where NAT represents the number of epochs with

(zero-crossing) activity, A, 50 � A  100 within an

11 minute window (±5 minutes) , W5min is the

average number of activity counts during a 5

minute window surrounding the current epoch, and

ACT is the number of activity counts during the

scored (and the next) epoch. Epochs were scored in

1 minute intervals.

Ag: 93% -

98%
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Table 2.5: Smoothing algorithms developed for commercial actigraphya (continued)

Year Author/s Actigraph Algorithm Reported

Performancea

1997 Oakley

[123]

Actiwatch,

MiniMitter Co.,

Inc.

PWake = 0.04A[�4]+0.04A[�3]+0.20A[�1]+2A[0]+. . .

0.20A[1] + 0.20A[2] + 0.04A[3] + 0.04A[4] > T.

where A[n] represents 30s zero-crossing activity for

epoch n for non-dominant wrist movement.

Sp: 28% -

48%

2001 Kushida

et al.

[124]

AW4, MiniMitter

Co., Inc.

Varying

disorders —

Ag: 73% -

84% Se: 92%

- 99% Sp:

24% - 63%

aSe, Sp and Ag refer to sensitivity, specificity and agreement respectively.
bOSA refers to obstructive sleep apnoea syndrome.

2.3.2 Detecting wake in the absence of movement

The smoothing algorithms in the previous section help detect periods of restful wake that occur

between periods of movement. Another approach to this problem is a heuristic developed by

Webster et al. [121] in 1982, which assumes that quiet wake will always follow periods of active

wake. That is, it dilates identified wake periods in an attempt to correctly identify quiet wake.

The following heuristic is applied to the predicted sleep stages:

Data: Epoch scoring from actigraph

Result: Re-scored epochs as sleep or wake

repeat

if previous 4 minutes scored as wake then
re-score next minute as wake;

else if previous 10 minutes scored as wake then
re-score next 3 minutes as wake;

else if previous 15 minutes scored as wake then
re-score next 4 minutes as wake;

if 6 minutes of sleep is surrounded by 10 minutes of wake then
re-score 6 minutes of sleep as wake;

else if 10 minutes of sleep is surrounded by 20 minutes of wake then
re-score 10 minutes of sleep as wake;

until all epochs are checked ;

repeat one consecutive epoch loop until stop;
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This heuristic has been used in literature and gave an approximate 1% performance improve-

ment [121, 122]. This improvement, as well as the smoothing algorithms in the previous sec-

tion, suggests that there is often actual wake within a short time after detected wake periods.

Smoothing the regions surrounding wake does indeed improve specificity. Although these ap-

proaches successfully identify some regions of quiet wake, they are not without limitations.

Each of these methods make the assumption that there will always be a set time before and/or

after wake where the patient will always remain awake. This assumption will sometimes in-

correctly identify regions of actual sleep as wake, thereby contributing to the poor specificity.

There are also short periods of quiet wake amongst sleep epochs (e.g. sleep fragmentation) that

this heuristic will not identify.

2.4 Problem statement

Obstructive sleep apnoea syndrome (OSA) in children is not as well studied as in adults, even

though, as discussed in Section 2.1.3, it is greatly detrimental to the child’s general health,

behavioural functioning and cognitive ability. OSA in children often goes undetected due to a

combination of parental oversight and limited availability of diagnostic methods, specifically de-

tailed in Fig. 2.5. In addition to this, when the child is able to attend a diagnostic sleep study

with polysomnography — the current gold standard for diagnosing OSA — their measured

sleep behaviour may be inaccurate. As discussed in Section 2.2.1, these inaccuracies are often

caused by the large number of sensors required for polysomnography and the unfamiliar labo-

ratory environment. These inaccuracies can be mitigated by performing multiple studies over

consecutive nights; however, multiple studies increase both cost and inconvenience. Therefore,

there is motivation for developing mobile diagnostic tools that are non-invasive, cost-e↵ective

and can easily be configured and monitored by the child’s parents in the home environment.

Actigraphy, introduced in Section 2.3, is inexpensive, non-invasive, and easily configurable.

Actigraphy provides an estimate of sleep quality and a potential avenue for identifying sleep-

ing disorders (either on its own, or in combination with other tools such as pulse oximetry

or respiratory polygraphy). However, actigraphy is not without limitation: as discussed in

Section 2.3.1, actigraphy cannot identify when a patient is immobile, but awake, or mobile,

but asleep. For this reason, actigraphy often su↵ers from poor specificity (highlighted in the

validation studies in Table 2.4), which limits the ability to accurately assess sleep, particularly

for patients with a sleep disorder. In this thesis, it is proposed that the misclassification of sleep

stages may be caused, in part, by technical restrictions of early actigraphy models. Actigraphy

systems were first developed for sleep assessment in the 1980s. The majority of developmental

increments and technical exploration studies were consequently performed within the decade

or two following this. However, technology has advanced since these studies, particularly with

the introduction of micro electro-mechanical systems (MEMS) technology and the increase of
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Chapter 2. Overview of sleep assessment

general processing power. Although the accelerometer configuration, conventional time-series

representations and simplistic classification rules were required when processing power was

limited, they may be somewhat responsible for the poor specificity of current models.

Actigraphy is conventionally placed on the wrist when assessing sleep quality. Restricting

movement detection to a single placement on the body prevents detection of movement from

other areas of the body. Improving the ability to detect movements may allow actigraphy to

identify regions of wake that would not be detected by wrist movement alone. Furthermore, the

incidence of certain movements may di↵er between sleep and wake. Identifying characteristics

that are exclusive to movements during sleep, or wake, would allow actigraphy to correctly

identify regions of restless sleep as ‘sleep’, thereby improving specificity. Despite this, multisite

accelerometry has not previously been explored in sleep assessment. Another limitation of

historical commercial actigraphs for assessing sleep is the use of uni-axial accelerometers. Uni-

axial accelerometers are unable to detect movement that occurs orthogonal to the measurement

axis, as illustrated in Fig. 2.8. Although recent commercial systems have employed tri-axial

accelerometry, there have been no direct comparisons of the tri-axial movement representation

techniques initially developed for uni-axial devices. Therefore, it is unclear if the advantages of

tri-axial accelerometry are fully exploited.

The conventional time-series representations provide a summary of movement within a fixed

period of time. As discussed in Section 2.3.1, the limitations of these summaries vary between

the representations. However, each conventional representation cannot summarise movements

with particular characteristics, as illustrated in Fig. 2.9; for example, zero crossing (ZC) can-

not provide a suitable representation of non-oscillatory movement, such as postural changes,

because these movements will not oscillate about the threshold. These limitations restrict

detection of significant movements, which then cannot contribute to wake detection. The con-

ventional time-series representations can only provide a vague summary of the spectral charac-

teristics of movement. However, these characteristics are likely important because the spectral

content is unique for di↵erent movements. Finally, there may be specific localised spectral

characteristics of movements that di↵er between sleep and wake. These di↵ering characteris-

tics would enable correct identification of sleep state, which would further improve specificity.

Despite this, as noted in Section 2.3.1, there has been no attempt to apply spectral techniques

to movement information for assessing sleep.

In addition to the conventional movement representations, the procedure for identifying

wake has distinct limitations. Each commercial system identifies wake using a simple threshold,

i.e. activity above a pre-defined threshold is identified as wake. However, as noted above, this

rule incorrectly identifies vigorous movement during periods of sleep as wake, and regions of

no movement during periods of wake as sleep. Existing systems attempt to address this by

applying a smoothing filter, outlined in Section 2.3.1, or a re-scoring algorithm, outlined in

Section 2.3.2, to the identified sleep stages. As highlighted in Figure 1.2, these approaches are
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only partially successful because they are generally e↵ective only for extreme cases. Further to

this, although these approaches successfully identify regions of quiet wake near identified regions

of active wake, they incorrectly assume that wake will always be preceded and/or followed by

a fixed period of quiet wake. For these reasons, as argued in Section 2.3.2, these approaches

can worsen the specificity.

In this thesis, we will be identifying improvements to the utility of actigraphy in paediatric

sleep assessment by addressing three hypotheses:

I Uni-axial accelerometry measured solely at the wrist limits sleep and wake

prediction accuracy because movements orthogonal to the measurement axis,

or occurring elsewhere on the body, cannot be detected.

Exploring multisite tri-axial accelerometry may consequently improve sleep and wake pre-

diction by more accurately representing movement: tri-axial accelerometry will capture

more movement information, and multisite accelerometry will capture more movements in

general. Incorporating these hardware modifications may detect di↵erentiable movements

between sleep and wake, which would reduce false wake detections.

II Movement characteristics can di↵erentiate sleep from wake because the physi-

ological nature of these movements di↵er.

Identifying physiological characteristics that di↵er between sleep and wake movements may

improve sleep and wake predictions by producing feature distributions that do not overlap,

at least as much as the conventional techniques. Exploring localised spectral characteristics

of segmented movements may identify di↵erentiable characteristics, which would reduce

false wake detections.

Predicting sleep and wake on a movement-by-movement basis may improve sleep and wake

predictions by assessing movement-specific information, rather than a summary of activity

within a fixed period of time. Estimating sleep on a movement-basis would allow incorpo-

ration of specific di↵erentiable movement characteristics into the scoring routine.

III Physiological and pathological events characteristic of sleep disorders (e.g. ap-

noeas, hypopneas and transient arousals) cause sleep movements that con-

tribute to false wake detections.

Exploring the association between pathological and physiological events characteristic of

sleep disorders may consequently explain the presence of some sleep movements. This as-

sociation may provide an avenue for capturing the severity of ‘sleep disturbance’ associated

with a sleep disorder using actigraphy, rather than an estimate of sleep and wake regions.
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It is therefore proposed that actigraphy in sleep assessment may be improved by:

• detecting movement with tri-axial accelerometry,

• incorporating accelerometry from di↵erent locations on the body,

• movement representations that adequately summarise temporal and spectral characteris-

tics, and/or

• sleep and wake classification on a movement-by-movement basis.

We will investigate the performance benefits of implementing each of these suggestions on a

custom accelerometry system (detailed in Section 3.1.3). The performance will be compared to

a commercial system and the conventional epoch-by-epoch time-series representations.

We will improve the utility of actigraphy in sleep assessment by:

1. Reducing false sleep detections.

False sleep detections may be caused by some wake movements going undetected with the

conventional actigraphy framework. We will explore techniques to increase the number of

detected wake movements (Chapter 4). We will explore:

• Tri-axial movement representations; and

• Incorporation of movements from multiple locations on the body into the scoring

routine.

2. Reducing false wake detections.

False wake detections may be caused by the inability of the conventional framework to

di↵erentiate sleep and wake movements. We will identify di↵erentiable physiological char-

acteristics between sleep and wake movements (Chapter 5). In particular, we will:

• Identify movements specific to restless sleep and explore the e↵ect of removing these

movements from the raw accelerometry data as a pre-processing step to activity count

derivations;

• Identify di↵erentiable localised spectral characteristics of sleep/wake movements; and

• Predict sleep and wake on a movement-by-movement basis.

3. Identifying whether sleep movements are indicative of ‘sleep disturbance’.

We will explore potential physiological processes associated with sleep disorders that may

cause sleep movements (Chapter 6). In particular, we will explore:

• The temporal association between movement and transient arousal; and

• The temporal association between movement and apnoeic events.
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3
Experimental methodology and materials

This chapter outlines the experimental methodology and clinical study design that is com-

mon to each experiment in this thesis. The general data acquisition and processing framework

that were applied consistently throughout the analyses will be described. Finally, the general

clinical study design and technical procedures for all experiments in this thesis will be outlined.

3.1 Sleep study cohort, recordings and clinical procedure

The study was approved by the Mater health services HREC approval number ref. 1498C.

3.1.1 Participant recruitment and inclusion/exclusion criteria

Patients were recruited from the Mater Children’s Hospital in Brisbane, Australia. Children

undertaking full diagnostic polysomnography for a sleep-related breathing disorder were in-

vited to participate. Patients were recruited if they provided verbal assent, and their parental

guardian provided written consent.

Inclusion Criteria:

5� 16 years of age;

Symptomatic of sleep-disordered breathing; and

Otherwise healthy.
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Exclusion Criteria:

Experiencing any neuromuscular disorder or weakness; and

Presenting with a co-morbid disorder that a↵ects craniofacial structure or breathing control.

3.1.2 Patient characteristics

In total, 38 patients were recruited for analysis. Table 3.1.3 details the gender, age, body

mass characteristics, apnoea hypopnea index (AHI) and summary sleep characteristics for each

patient. Also shown is whether data is available for Continuous Multisite Accelerometry Sys-

tem (CMAS) and/or the commercial actigraph, Actiwatch, for that patient. Patients shown

in darker shading are those that the custom accelerometry system, CMAS, stopped recording

or recorded extended regions, or an entire study, of a constant value (indicating sensor mal-

function). Of the other patients, one had moderate (patient 5, AHI 5.1) and one had severe

(patient 21, AHI 16.9) OSA. All other patients had less than moderate AHI.

3.1.3 Accelerometry devices used in analysis

Two accelerometry systems were used in the analyses to record movements during sleep: a

commercial system (Actiwatch Mini,CamNTech for patients 1 to 30 and Actiwatch 2, Philips

for patients 30 to 38) and a custom Continuous Multisite Accelerometry System (CMAS). The

Actiwatch Mini records uni-axial activity counts in 2s epochs using the ZC method. Fig. 3.1

shows an example of the recorded data from the Actiwatch Mini. After technical limitations

and device discontinuation, the Actiwatch 2 replaced the Actiwatch Mini. However, data from

the Actiwatch 2 were not used in the analyses because only 8 patients wore the Actiwatch 2,

which limits the statistical power of the analysis [125].

The custom accelerometry system was designed and developed at the University of Queens-

land by the research group prior to the commencement of this thesis. CMAS records raw

tri-axial 8�bit accelerometry data (range ±2G) at 100Hz from five locations on the body

(modules shown in Fig. 3.2):

• Left wrist with an auxiliary sensor on the left fingertip;

• Upper thorax; and

• Left ankle with an auxiliary sensor on the left great toe.

CMAS records temporal data, a saw-tooth timing signal and the x�, y� and z�axis ac-

celerometry data in a text file on a personal computer (PC), separate to the polysomnography

recording. The CMAS modules wirelessly send a packet of data to the receiver unit at 10Hz

(i.e. every 100ms) with each packet containing 10 accelerometry samples, sampled every 10ms.

Temporal data was identified using the local time on the computer connected to the CMAS
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3.1. Sleep study cohort, recordings and clinical procedure

Table 3.1: Full patient characteristicsa

# Gender

(M/F)

Age

(years)

Height

(m)

Weight

(kg)

BMIb Weight

Categoryb
AHI SE

(%)

TST

(mins)

REM

(%)

CMAS Actiwatchc

1 M 13 1.53 49.45 21.12 Normal 7.7 79 414.5 27 No No

2 M 13 - - - - 0.5 71 364.5 22 Yes Yes - Mini

3 M 9 1.31 27.60 16.08 Normal 1.1 82 429.8 12 Yes Yes - Mini

4 M 12 1.49 41.40 18.65 Normal 1.5 57 315.5 8 Yes Yes - Mini

5 F 7 1.30 29.85 17.66 Normal 0.7 95 534.5 26 Yes Yes - Mini

6 M 11 1.41 42.60 21.43 Overweight 5.1 70 396.5 19 Yes Yes - Mini

7 M 9 1.56 50.25 20.65 Overweight 1.3 80 457.4 21 Yes No

8 F 8 1.32 27.30 15.67 Normal 0.4 75 426.5 19 Yes No

9 M 16 1.78 129.00 40.72 Obese 1.4 80 335.5 18 Yes No

10 M 16 1.70 55.30 19.14 Normal 0.0 73 362.5 12 Yes No

11 M 6 1.16 19.85 14.75 Normal 0.7 71 417.0 16 Yes Yes - Mini

12 M 7 1.28 41.80 25.51 Obese 2.7 91 547.7 21 Yes Yes - Mini

13 M 9 1.39 31.75 16.43 Normal 0.0 87 460.0 27 No Yes - Mini

14 F 5 1.16 21.96 16.32 Normal 4.4 91 531.2 35 No Yes - Mini

15 F 6 1.11 22.85 18.55 Overweight 3.4 96 512.4 26 Yes Yes - Mini

16 M 6 1.20 20.80 14.44 Normal 0.4 83 502.7 26 No Yes - Mini

17 M 15 1.73 109.00 36.42 Obese 0.4 87 418.0 16 No Yes - Mini

18 M 6 1.16 21.20 15.76 Normal 0.5 97 552.2 23 No Yes - Mini

19 M 15 1.72 58.85 19.89 Normal 1.2 89 403.5 29 Yes Yes - Mini

20 M 7 1.27 24.75 15.35 Normal 0.8 88 459.5 32 Yes Yes - Mini

21 F 13 1.57 133.20 54.04 Obese 16.9 81 425.5 35 Yes No

22 M 12 - - - - 1.3 88 503.0 21 Yes Yes - Mini

23 M 12 1.50 54.00 24.00 Overweight 0.0 83 474.5 22 Yes No

24 M 12 1.58 42.10 16.86 Normal 1.6 86 468.8 24 Yes Yes - Mini

25 M 6 1.28 32.50 19.84 Obese 2.6 70 420.0 22 Yes Yes - Mini

26 F 6 1.24 25.70 16.71 Normal 0.0 83 480.4 29 No Yes - Mini

27 M 7 1.34 30.35 16.90 Normal 0.0 70 352.0 23 Yes Yes - Mini

28 F 9 1.34 32.32 18.00 Normal 1.5 87 468.6 33 Yes No

29 F 15 1.49 48.95 22.05 Normal 0.2 76 492.6 19 Yes Yes - 2

30 F 10 1.51 45.50 19.96 Overweight 0.0 64 290.0 14 Yes Yes - 2

31 F 7 1.30 26.75 15.83 Normal 0.7 94 443.5 21 Yes Yes - 2

32 M 12 1.59 59.35 23.48 Overweight 0.8 87 444.5 26 Yes Yes - 2

33 M 6 1.16 20.30 15.09 Normal 0.4 81 415.5 31 Yes Yes - 2

34 M 7 1.28 27.50 16.79 Normal 0.4 85 407.5 20 Yes Yes - 2

35 M 16 1.82 69.15 20.88 Normal 3.0 88 444.0 33 Yes Yes - 2

36 M 12 1.39 45.35 23.47 Overweight 6.0 85 420.5 20 No Yes - 2

37 F 9 1.36 44.70 24.17 Obese 2.7 75 402.5 19 Yes Yes - 2

38 M 8 1.43 45.10 22.06 Obese 0.4 93 481.9 28 Yes Yes - 2

µ 27M 9 1.38 41.60 18.89 Normal 0.8 83 436.7 22

aShaded regions highlight patients that cannot be used in any analysis, due to issues with CMAS
bBMI is calculated based on the charts developed by Cole et al. [126] and Cole et al. [127]
cDue to technical issues and device discontinuation, the Actiwatch Mini, CamNTech, was replaced with the

Actiwatch 2, Philips, mid-way through data gathering
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Figure 3.1: Example of 20mins of an Actiwatch recording.

receiver unit. Before the sleep study, the CMAS computer was manually synchronised with

the computer recording the polysomnography data (illustrated in Fig. 3.5). For greater time-

resolution, each CMAS module also recorded a time step (in milliseconds) for each sent packet

using the internal oscillator in the micro-controller. The saw-tooth values allow missing packets

to be identified post-study. A saw-tooth value is sent per packet of CMAS data (cycling from

1 � 255). An example of 80ms and 50s of a CMAS recording is shown in Fig. 3.3. To facil-

itate temporal synchronisation between CMAS and polysomnography, the raw accelerometry

and sawtooth data for both the ankle CMAS module were recorded in the polysomnography

montage.

3.1.4 Data collection and clinical study procedure

Three devices were used to record data for each patient: Actiwatch, CMAS and polysomnogra-

phy. The Actiwatch and CMAS both record accelerometry data (see Section 3.1.3). Polysomnog-

raphy measures various physiological signals: brain activity, eye movement, muscle tone and

movement, respiratory rate, blood oxygenation and others. Fig. 3.4 provides a detailed list of

sensors used in the study. The polysomnographic sleep studies in this thesis were conducted

using an EMBLA acquisition system (Embla N7000 Bedside Unit, Natus Medical Inc.) and

Somnologica software (Somnologica Version 3.3.2 Build 1559). This montage included elec-

troencephalogram (EEG) referential F4-A1, C4-A1 and O2-A1, which sampled at 200Hz with a

16�bit resolution. All procedures were completed between 2010 and 2014, and were compliant

with the Thoracic Society of Australia and New Zealand recommendations for paediatric sleep

laboratories [128].
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Figure 3.3: Example CMAS data showing the sawtooth and raw tri-axial accelerometry.

The studies were performed at the Mater Children’s Hospital Sleep Unit in Brisbane, Aus-

tralia between approximately 4pm and 8am, as illustrated in the timeline in Fig. 3.6. The

manual sleep-scoring was performed by sleep technicians at approximately 11am of the day

post-study. The sleep unit at the Mater Children’s Hospital followed the recommendations

by the Australian Sleep Association (ASA) and Australian Sleep Technologists Association

(ASTA) commentary and addendum to the American Academy of Sleep Medicine (AASM)
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CMAS, Left middle 
finger

CMAS, sternal notch

CMAS, left wrist

CMAS, Left Ankle

CMAS, Left great toe

Actiwatch, left wrist

Accelerometry
Actiwatch Mini, CamNTech

- 2 second epochs;
- Uni-axial accelerometry; and
- Zero crossing (ZC) representation method.

Continuous Multisite Accelerometry System (CMAS) 
- Raw 8-bit accelerometry, sampled at 100Hz;
- Tri-axial accelerometry;
- Multi-site capabilities (finger, wrist, upper thorax, ankle and toe); and
- Capabilities for any representation method (including TAT, DI and ZC). 

Polysomnography, Somnologica
Brain activity with electroencephalography (EEG)

- Referential F4-A1 (200Hz);
- Referential C4-A1 (200Hz); and
- Referential O2-A1 (200Hz).

Eye movement with electrooculography (EOC)
- Left & Right (200Hz).

Heart rhythm with electrocardiography (ECG) (200Hz)
Muscle activity with electromyography (EMG)

- Left & Right legs (200Hz);
- Submental Chin (200Hz); and
- Diaphragm (200Hz).

Oxygen flow
- Flow subnasal with a pressure sensor (20Hz);
- Flow subnasal & oral with a thermistor sensor (20Hz); and
- Chest & abdominal respiratory inductance plethysmography (RIP) (10Hz).

Blood oxygenation and heart rate
- Sp02 and heart rate (Masimo Radical) oximeter (10Hz); and
- TcpC02 (Radiometer TCM CombiM) (2Hz).

Snoring or sleep talking with an external microphone

Figure 3.4: Sensors used to measure movement and sleep characteristics.

guidelines [38, 43, 44], as outlined in Table 2.1 in Section 2.1.1.

The Actiwatch and CMAS receiver unit and individual modules were typically charged on

the morning of the study. The CMAS receiver unit and modules were configured and connected

to the polysomnogram computer prior to the patient’s arrival at the hospital. The receiver unit

was taped to a wall inside the study room and the USB cable was used to connect the receiver

unit to the polysomnogram computer located outside of the room. Once the hardware was

configured, the CMAS recording software on the CMAS PC was initiated. This also checked

that data transmission from the CMAS modules was working. The patient’s polysomnography

file was then configured using Somnologica Studio (Embla). Additional traces were added to

the polysomnography montage to record raw accelerometry data and a timing channel from

CMAS.

Upon arrival at the hospital, the child and parent would be presented with information

pertaining to the study. If the child and parent agreed to undertake the study they would then

sign the consent forms. The child and parent would then often leave the hospital for dinner,

etc. When the child was ready for sleep, a full diagnostic polysomnogram was configured on

the child by a trained paediatric sleep nurse or by the research scientist. The CMAS modules

were connected to the left index fingertip, left wrist, upper thorax, left ankle and left great

toe using a combination of tape and hospital bands. The CMAS modules were taped twice to
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Figure 3.5: Relative study configuration for Actiwatch, CMAS and polysomnography. The polysomnography
diagnostic configuration is detailed in Fig. 3.4.

ensure that the housing did not get removed while the patient slept, exposing cell batteries and

electronics. The Actiwatch was also configured on the patient’s left wrist. The child slept in

their own clothing and a parent was normally present during the study. During the study, the

CMAS accelerometry data was logged and stored on the CMAS PC with the study ID and date

as the folder name. The CMAS ankle and toe modules were also logged in the polysomnogram

montage with the other physiological signals.

After the study, the sleep stages (rapid eye movement (REM), non-REM 1:3 and WAKE)

and physiological events (sleeping position, arousal, and central or obstructive apnoea or hy-

popnea) were manually scored by a sleep technician according to the AASM guidelines (detailed

below). The physiological recordings in the polysomnogram montage were exported to the Eu-

ropean Data Format (.edf), which was then de-identified and stored in the patients study folder
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Figure 3.6: Timeline of general sleep study routine.

for post-processing and analysis. The hypnogram and events were exported from Somnologica

and stored as text files. The Actiwatch data was downloaded from the Actiwatch and stored

in the patient’s study folder.

3.2 Post-study processing

The MATLAB (v.R2014b, The MathWorks Inc.TM) environment was used to perform all pro-

cessing and analysis in this thesis. Data were manually processed post-study to ensure that

the three devices (Actiwatch, CMAS and polysomnography) were temporally aligned. With-

out this, it is di�cult to analyse the relationships of movements and their corresponding sleep

stages and/or association with physiological and pathological events, as the sampling rate of

the di↵erent devices di↵er: CMAS records raw accelerometry at 100Hz (every 0.01s), Actiwatch

records activity counts at 0.5Hz (every 2s) and polysomnography produces scored sleep stages

at 0.033Hz (every 30s). The methods for synchronising the recordings are detailed in the fol-

lowing sections. CMAS transmits data from the modules wirelessly to the receiver unit and can

consequently lose data packets. The techniques used to account for missing data and process

the CMAS signals are also detailed below.

3.2.1 Synchronisation of the polysomnogram and accelerometers

The CMAS and polysomnography recordings were often temporally misaligned because they

logged data on separate computers with di↵erent on-board clocks. Furthermore, the di↵erent

devices were often started at di↵erent times. Both of these o↵sets were removed to ensure that

movements during sleep and wake were accurately analysed.

To account for the di↵erent system clocks, the CMAS receiver unit logged the ankle ac-

celerometry data and the saw-tooth timing channel as additional traces in the polysomnography

montage. A custom software graphical user interface (GUI) (developed in MATLAB) was used

post-study to display and manually align the CMAS traces and the corresponding CMAS raw

recordings. As illustrated in Fig. 3.7a, the temporal o↵set between the CMAS recordings and

the recorded accelerometry traces in the polysomnography montage can easily be seen in the
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custom GUI. Synchronisation was performed in two steps: at a low temporal resolution, signif-

icant regions of movement were aligned using the ankle and toe accelerometry recordings; and,

once these were approximately aligned, the software module was zoomed-in to display data at

a greater temporal resolution to then align the saw-tooth recordings (shown in Fig. 3.7b). This

o↵set was used to permanently shift the CMAS signals. The synchronised CMAS recordings

were saved in the corresponding patient file upon exiting the custom software module.

Next, the start of the polysomnography sleep scores and the CMAS recordings were tempo-

rally aligned. A heuristic was applied to each of the recordings to determine the time of the first

sleep score: if the polysomnography data occurred first, then the sleep scores were discarded

until the first CMAS data sample that aligned with a 30s sleep score, otherwise CMAS samples

were discarded until the first 30s sleep score that aligned with the CMAS data.

To allow for sample-by-sample analysis, the manual sleep scoring was re-sampled to 100Hz:

each manual sleep score was duplicated every 100 times within each second for each 30s sleep

score (resulting in 3000 duplications for each sleep score). This ensured that every CMAS

sample had a corresponding sleep score, while retaining the 30s resolution of the manual sleep

scores.

3.2.2 Representation of sleep scoring from polysomnography

The sleep staging from polysomnography was manually scored into REM, non-REM 1:3 and

WAKE stages for each child. The manual sleep scores were exported into a text file using the

Somnologica Suite. This text file was then imported into MATLAB where the sleep stages

were extracted and stored as a matrix within the corresponding patient study file. To fully

encapsulate the appropriate sleep data, the matrix stores the time-stamp, a representation of

the sleep stage and whether the sleep stage corresponds to sleep or wake. The sleep stages are

represented as:

Representation
Sleep Stage

Stage Sleep/Wake Flag

WAKE 5 1

REM 4 0

non-REM sleep stage 1 (N1) 3 0

non-REM sleep stage 2 (N2) 2 0

non-REM sleep stage 3 (N3) 1 0

where all sleep stages are flagged as 0 and the wake stage is flagged as 1. This flag was mostly

used during the analyses because movements during all sleep (REM and all non-REM stages,

flag 0) and wake (flag 1) were primarily analysed. Movement during REM (flag 4), all non-REM

stages (flags 1� 3) and wake (flag 5) were used when specifically stratifying events into those

occurring during non-rapid eye movement (NREM) and REM sleep.
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not temporally 
synchronised

(a)

Align sawtooth 
values

(b)

Figure 3.7: Custom MATLAB graphical user interface for synchronising polysomnography with CMAS, (a) prior
and (b) post synchronisation alignment.
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Figure 3.8: Movement detection using the t-test to isolate changes in sample mean. Top shows a full nights
study of (x, y, z)�axis wrist movement. Bottom shows a segment with four detected movements. The black
sections show the regions of detected movement. See Fig. 3.10 for the accuracy.

3.2.3 Movement segmentation algorithm

Movements were segmented to analyse specific characteristics in Chapter 5 and temporally

compare movements with physiological and pathological events in Chapter 6. The movements

for these experiments were segmented using the procedure outlined below.

The location of movements in the raw accelerometry data was determined using a t-test at a

0.01% significance level on a 1s sliding window of data. The t-test compares the 1s window with

the next 0.25s of raw data and returns a 1 if the means di↵er and a 0 if the means do not di↵er.

This method results in a binary value at each sample location, indicating the occurrence of a

movement. A 0.5s dilation was performed on the detected regions to smooth any transitions

and to ensure that the movement bounds are well within the detected region. An example of

the applied process is shown in Fig. 3.8.

The start temporal location of each movement was aligned to ensure that characteristics

can be compared accurately. The start of a movement was defined when the gradient change of

the signal to noise ratio (SNR) of the signal ˙
SNR is greater than the N = 25 samples (0.25s)

prior to the detected region. This 0.25s prior to the detected region primarily contained noise

because the 0.5s dilation expanded the detected region outside of movement, as illustrated in

Fig. 3.9. The gradient change of the SNR was determined by,

˙
SNR[n] = 100

����
d

dt

✓
n+NX

i=n

| SNR(x, y, z)[i] |
◆����. (3.1)
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Figure 3.9: Process for segmenting movement regions from raw tri-axial accelerometry.

The end temporal location of each movement is defined as when the SNR of the gradient

change drops below a threshold for the final time within the detected region. This process

ensured that the movement segments were consistently defined. After segmenting movements,

detected movements that occurred within 2s of each other were considered to belong to a single

movement. The process is illustrated in Fig. 3.9. After segmenting movements, the segments

and their corresponding sleep stage label were extracted.

The accuracy of this algorithm was determined using a custom MATLAB graphical user

interface (see Appendix D) with 10 patients (6�13 years, median 8.5 years, 5M/5F, AHI range

0 � 16.9, median 1.4). Of the 91% of actual movements that were detected by the algorithm,

only 6% did not contain movement. The confusion matrix is shown in Fig. 3.10.

3.2.4 Pre-processing procedure and data representation of accelerometry signals

CMAS records 8�bit accelerometry data into a text file for each module. This text file is

imported into MATLAB and saved into the patient’s study data as a single matrix for each

T F

T 2051 206

F 134

A
ct

ua
l 

M
ov

em
en

ts

Detected
Movements

Sensitivity: 
PPV:

0.91
0.94

Figure 3.10: Confusion matrix for assessing the accuracy of the automated movement detection algorithm on
10 patients.
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3.3. Overview of final data set format for analysis

module. The accelerometry matrix for each module records the time-stamp, saw-tooth value

and the x�, y�, and z�axis samples (an example of a CMAS data matrix is shown in Fig. 3.12).

CMAS accelerometry packets can be lost due to the wireless transmission between the

CMAS modules and the receiver unit. For regions of missing data that were less than 2s (200

samples) in duration, the missing samples of each axis for each CMAS module were interpolated

using cubic interpolation. The restriction in duration ensured that the interpolation procedure

did not create any artificial movement artefacts. Regions of missing data greater than this

duration were represented as NaNs (i.e. missing data).

Chapter 4 derives the conventional movement representations (described in Section 2.3.1)

using the CMAS accelerometry data. A band-pass filter (BPF) and a low-pass filter (LPF) were

used to isolate the high-frequency and low-frequency spectral content necessary for deriving

these representations using the CMAS raw accelerometry data. The high-frequency content

was used to derive ZC, time above threshold (TAT) and digital integration (DI), and the

low-frequency content was used to derive integrated angle of posture change (SUMPST) and

maximum magnitude of acceleration (MAXACT) (described in Section 4.1.1). As shown by

the frequency responses in Fig. 3.11, the characteristics of the filters were:

• 10th order (5 up, 5 down) band-pass Butterworth filter with cut-o↵ frequencies 2Hz and

12Hz; and

• 5th order low-pass Butterworth filter with a cut-o↵ frequency of 2Hz.

A zero-phase Butterworth filter was chosen because it gives minimal signal distortion in the

pass-band and linearly rolls o↵ in the stop-band. Zero-phase is required so that the charac-

teristics of movements (e.g. postural changes) in the accelerometry signals are not a↵ected by

the filtering process [129]. The higher-order term was chosen to account for the relatively slow

roll-o↵ that is characteristic of Butterworth filters (with a roll-o↵ of 100dB/decade only 10% of

the original signal amplitude is present at 2.2Hz for the LPF, and 1.8Hz and 14Hz for the BPF).

The cut-o↵ frequencies were chosen on the basis of sample spectral analysis of raw accelerometry

during typical movements, which indicated that information content predominantly occurred

at frequencies lower than 12Hz.

3.3 Overview of final data set format for analysis

The final data set consists of the CMAS time-stamp, saw-tooth, and x�, y�, and z�axis
data, the Actiwatch activity counts and the polysomnography time-stamp, sleep stage flag and

sleep/wake flag. These are shown in Fig. 3.12.
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Figure 3.11: Filter response for the (a) low-pass filter and (b) band-pass filter.
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···

Timestamp
(datenum
format)

Sawtooth 
Value x y z

···

Timestamp
(datenum
format)

Sleep/Wake 
Flag

Sleep 
Stage

······

Activity 
Count

······
CMAS PSG ActiWatch

Figure 3.12: CMAS, polysomnography and Actiwatch data format for analysis in MATLAB.

3.4 Outcome measures

Chapter 4 and Chapter 5 seek to predict binary class labels (i.e. sleep and wake). Throughout

these analyses, the classification performance will be compared using receiver operating char-

acteristics (ROC) analysis. The di↵erent metrics derived from this technique are described in

Fig. 3.13. The ROC curve represents the predictive performance for all possible classification

thresholds 0  T  max(data). For most classification problems in this thesis we will be

analysing the area under the receiver operating characteristics curve (AUC), sensitivity and

specificity (defined below). The AUC represents the ability to rank a randomly chosen positive

instance higher than a randomly chosen negative instance. Therefore, AUC represents the abil-

ity of the techniques to discriminate between the binary classification states (sleep/wake) [130].

An advantage of analysing AUC is that, unlike measures like agreement rates, it is prior prob-

ability invariant. This is particularly important for sleep analysis because the prior probability

of sleep and wake di↵ers between each patient.

The ability to accurately detect sleep is represented by the sensitivity of a method. Sen-

sitivity is defined as the percentage of actual sleep epochs or samples (as identified with gold

standard or manual classification) correctly predicted as ‘sleep’,

Sensitivity =
TP

TP + FN

. (3.2)

Similarly, the ability to accurately detect wake is represented by the specificity. Specificity is

defined as the percentage of wake epochs or samples correctly predicted as ‘wake’,

Specificity =
TN

TN + FP

. (3.3)
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3.5. Statistical procedure for combining distributions

Considering that specificity is a major limitation of conventional actigraphy (detailed in Sec-

tion 2.3), it is one of the main outcome measures throughout this thesis. The specificity at a

fixed sensitivity and the identified operating point will often be compared.

An ROC curve indicative of the average performance across the population will often be

used to illustrate the generalised performance. An example is shown in Fig. 3.14. All sensitivity

values corresponding to each specificity value are grouped across the population. These values

are then averaged and plotted as an average ROC curve. The solid line represents a fitted line

to the median sensitivity value for each specificity value. The shaded region represents the 75th

and 25th percentiles of the grouped sensitivity values. This graphical representation takes the

average of all ROC curves across the population. If an individual ROC curve finishes before

the top-right corner, the rest of the curve is linearly interpolated. As explained in Fig. 3.13,

this would occur if the spread of activity is bimodal; i.e all epoch activity values are high-range,

but there still exists many epochs of 0 activity. Reducing the threshold beyond the minimal

activity value (i.e. moving the threshold towards the top-right corner of the curve) would not

a↵ect predictions because the activity values (excluding 0) cannot fall below the threshold. A

set of di↵erent incomplete ROC curves means that it is possible for the median sensitivity value

to be lower than a previous value, and the average curve will not be monotonically increasing,

which is expected of a typical ROC curve. This graphical representation is not intended as a

quantitative analytical tool, but as an indication of the general performance across the cohort.

The final outcome measure is the agreement with manually scored polysomnography. Both

standard agreement and Cohen’s Kappa () [131] are used to compare the accuracy of the

di↵erent techniques. Kappa adjusts the agreement for chance and is consequently considered

a more accurate metric than standard agreement. However, standard agreement will be noted

for comparison with literature. Kappa agreement is defined as:

 =
p

o

� p

e

1� p

e

. (3.4)

where p

o

is the relative observed agreement, and p

e

is the hypothetical probability of chance

agreement derived from the class prior-probabilities [132]. It is important to note that only

one technician manually scored the sleep-related events. Despite the scoring guidelines, the

identification and temporal boundaries of events can di↵er between scorers. Considering events

where there is some consensus from multiple scorers would provide additional confidence in the

‘ground truth’ scores; however, this is not always practical in a clinical setting.

3.5 Statistical procedure for combining distributions

Within Chapter 5 and Chapter 6, multiple distributions were combined using meta-analysis

techniques to form a resulting averaged pooled distribution [133]. Meta-analysis techniques

are often used to integrate results of independent studies that measure the same variable [134].
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Figure 3.14: Combining ROC curves: (a) individual ROC curves, (b) individual ROC curves overlaid with
the average representation, and (c) average ROC curve used to illustrate the performance across the cohort
throughout this thesis.
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3.6. Outline of research process

Results for each study are weighted to ensure that large studies have more e↵ect on the resulting

distribution than smaller studies. This is done to reduce estimate error that is caused by chance

because estimates with a small sample size are more influenced by chance than estimates with

a large sample size. The weights w
n

represent how much each patient n contributes to the final

combined result. The combined mean µ̂ and variance �̂2 is given by [133],

µ̂ =

P
N

n=1 wn

µ

nP
N

n=1 wn

, w

n

=
1

�

2
n

, (3.5)

�̂

2 =
NX

n=1

�

2
n

N

, (3.6)

where N is the total number of patients in the meta-analysis, and µ

n

and �2
n

are the mean and

variance of the sample distribution respectively for patient n.

3.6 Outline of research process

The general outline of the study procedure and common pre-processing techniques between

each analysis are outlined in Fig. 3.15.
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• Actiwatch recording
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Figure 3.15: Outline of general methodology common to each analysis.
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4
Conventional representations of tri-axial

multisite accelerometry

 

In 1891, Sir Francis Galton invented a device for

measuring the rate of limb movement using the

momentum of an excited ivory bead. The ivory

bead (E), threaded on a string (T), sat freely on a

stopper (CD). Movement of the limb (attached to the

string (T)) caused tension in the string, which then

excited the bead. A rubber band (AB) provided the

backwards momentum from the excitation. A scale

(feet per second) was used to measure the velocity

of the ivory bead (and thereby the limb movement)

as the position on the scale where the bead reached

zero velocity (at the vertex of the trajectory) before

falling back to the stopper (CD). This measurement

was not mechanically recorded, but noted by an

observer.

— Sir Francis Galton, F.R.S, 1822 - 19111

1Description of measurement device detailed in [135].
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Chapter 4. Conventional representations of tri-axial multisite accelerometry

Conventional actigraphy identifies wake as regions of increased activity and sleep as regions

of low activity. As discussed in Chapter 1, and again in Section 2.3, one of the main limitations

of this technique is that regions of no activity will always be classified as sleep. This is a

limitation because there are often epochs of low activity during wake. These low-activity epochs

can be due to inadequate sensor configurations: uni-axial accelerometry measured at the wrist

cannot detect movements that are orthogonal to the measurement axis, or that occur elsewhere

on the body. Actigraphy will misclassify low-activity wake periods as sleep, resulting in an

increased number of false negatives. Therefore, the accuracy of actigraphy-based estimates of

wake is dependent on e↵ectively detecting wake periods. In this chapter we seek to reduce false

sleep detections by evaluating multisite tri-axial accelerometry.

Commercial systems conventionally use time-series techniques to summarise movement as

‘activity counts’ (detailed in Section 2.3.1). These methods have been extensively validated in

literature across di↵erent devices (see Table 2.4). Activity counts are calculated using one of

three common methods: zero crossing (ZC), time above threshold (TAT), or digital integration

(DI) (see Section 2.3.1) [83]. There are some distinct limitations to these methods that may

impact the ability of actigraphy to e↵ectively represent movement: TAT and ZC ignore the

amplitude of the acceleration signal because they only determine the time spent above, or

the number of times the acceleration signal crosses, a set acceleration value; and DI is unable

to di↵erentiate many high amplitude, short-duration motions from a low amplitude, long-

duration motion because DI identifies the total ‘area’ of acceleration that occurs within an

epoch. Although these methods are commonly used to derive activity counts for di↵erent

commercial devices, the method employed is often not documented; only ‘activity counts’ are

reported. This makes it di�cult to compare the performance of actigraphy in di↵erent studies.

Furthermore, direct comparisons of the di↵erent techniques on the same clinical data have not

been performed in literature.

It is likely that some of the shortcomings of conventional actigraphy are related to the

inherent hardware limitations of previously validated systems. Initial actigraphs measured

movement with uni-axial accelerometers because, until recently, the cost of additional axes

was not worth the performance benefits [121, 136]. However, uni-axial accelerometers are

unable to detect movements that are orthogonal to the monitored axis. In addition to the

limited movement detection of uni-axial accelerometers, activity counts may not accurately

represent movement. This, in turn, limits the number of wake movements that are detected

with conventional actigraphy. In addition to this, actigraphy in sleep assessment typically only

measures wrist movement. However, movement from other limbs may occur predominantly

during wake. Detecting these movements would reduce the number of wake epochs with low

activity, consequently reducing false sleep detections.

There have been some studies in sleep literature that have investigated the implications

of replacing the conventional wrist accelerometer with shoulder, thorax or hip accelerometers.
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These studies found high correlation between waist and non-dominant wrist accelerometers

for children [137, 138]; however, the waist accelerometer overestimated total sleep time and

sleep e�ciency. This suggests that while the waist placement is e↵ective at detecting large

movements associated with sleep (such as body positional changes from supine to right or

left lateral), it is unable to detect small movements (such as hand twitches) that may occur

during short periods of wake. Other literature has compared the shoulder placement to the wrist

placement in children [139, 140]. The findings in these studies suggest that the shoulder may be

over-sensitive to noise or movements. These studies were performed on children on the autism

spectrum because of their inability to tolerate the conventional wrist placement. As such, these

conclusions may not be extended to children without these disorders. These studies indicate

that other accelerometer placements can be substituted for the conventional wrist placement in

sleep assessment. However, each placement has its own limitation and it is unclear in literature

if combining data from each accelerometer counters the individual limitations.

Analysis of combining multiple accelerometers has been performed in physical activity as-

sessment and task identification. Gjoreski et al. [141] found that combining accelerometers

improved the accuracy of posture-identification in the elderly. This finding is consistent with

literature on task detection, which reports that multiple accelerometers aid with discriminating

di↵erent activities [116]. Despite these results, literature that combines data from multiple

accelerometers to predict sleep and wake is lacking.

This chapter specifically addresses the first limitation of actigraphy, discussed in Chapter 1 and

illustrated in Fig. 4.1:

False negatives: wake epochs with no observed movement are incorrectly identified

as ‘sleep’.

This chapter will address the hypothesis:

Uni-axial accelerometry measured solely at the wrist limits sleep and wake prediction

accuracy because movements orthogonal to the measurement axis, or occurring else-

where on the body, cannot be detected.

In this chapter we will identify if incorporating tri-axial multisite accelerometry into the con-

ventional actigraphy framework improves false sleep detections by increasing the number of de-

tectable wake movements. We will first compare movement measured with tri-axial accelerom-

eters to the conventional uni-axial accelerometers, and explore additional time-series movement

representations. We will then explore the e↵ect of incorporating additional accelerometers on

sleep and wake estimates.
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Chapter 4. Conventional representations of tri-axial multisite accelerometry

This analysis will be implemented in two sections:

Tri-axial movement representations

Section 4.1 aims to directly compare the conventional movement representations using the same

data; and explore the accuracy of sleep and wake predictions when representing movement with

tri-axial techniques, relative to the conventional uni-axial representations.

Accelerometer placements

Section 4.2 aims to identify the performance benefits and clinical implications of incorporating

multiple accelerometer placements into the actigraphy scoring routine.
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Figure 4.1: Histogram of activity during sleep (red) and wake (blue) for 24 patients using the conventional activity
counts derived using the zero-crossing method. Highlighted region shows the source of the false negatives.
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4.1. Tri-axial movement representations

4.1 Tri-axial movement representations

Activity counts are widely used throughout literature; however, there are re-occurring prob-

lems when estimating the sleep quality of patients who have atypical sleeping behaviour (as

previously discussed in Section 2.3). Existing actigraphy systems su↵er from false sleep de-

tections because of wake epochs occurring with ‘no activity’. As discussed in Section 2.3 and

specifically highlighted in Fig. 2.8, monitoring movement with tri-axial accelerometry detects a

larger range of movement, which increases the amount of representable activity. Incorporating

tri-axial accelerometry may consequently reduce the number of wake epochs with no activity.

This section will explore improvements to false sleep detections by representing movement with

tri-axial information.

In this section we will:

1. Evaluate and compare the ability of the conventional movement representations to di↵er-

entiate sleep and wake periods using the same data;

2. Compare the performance of the conventional representations derived from uni-axial data

with representations derived from tri-axial data; and

3. Evaluate the performance of two novel time-series movement representations that exploit

tri-axial accelerometry.

4.1.1 Method

Each patient underwent the study procedure outlined in Section 3.1.4 of Chapter 3. The

full methodology for this analysis is summarised in Fig. 4.2. The conventional movement

representations were derived for the x�axis of the Continuous Multisite Accelerometry System

(CMAS) wrist accelerometer. These representations were compared to the uni-axial commercial

actigraph, Actiwatch Mini (CamNTech)2. The Actiwatch Mini was set to record raw activity

in 2s epochs, which were cumulatively combined post-study to form 30s epochs. This was done

to allow direct comparison with the 30s manual scoring from polysomnography. This process

was performed prior to applying any weighting function; a raw activity count is not reliant on

its surrounding epochs. Oakley [123]’s weighted moving average filter was then applied to the

uni-axial activity counts (see Section 2.3.1 for more details). Custom weighted moving average

filters were developed for the tri-axial activity counts (detailed below).

2Actiwatch Mini, CamNTech, http://www.camntech.co.uk/files/Actiwatch_Mini_Insert.pdf. While
the Actiwatch Mini is now marketed for veterinary use, it was initially developed for paediatric research as it is
small and lightweight. For these reasons, and because it was readily available in our sleep laboratory at initial
data collection, the Actiwatch Mini was chosen for use.
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Figure 4.2: Methodology for analysing and comparing the utility of the conventional activity count derivation
techniques for uni-axial and tri-axial data. WMA refers to ‘weighted moving average’ filters. *The Actiwatch
weighted moving average filter is detailed in Section 2.3.1 and in [123].

Patient characteristics

The full analysis in this section used data from the full 30 patients detailed in Table 3.1.3 (i.e.

eight patients in Table 3.1.3 were excluded due to technical issues). The comparison with the

Actiwatch used data from 14 patients (patients 2� 6, 11� 12, 15, 19� 20, 22, 24� 25, and 27)

aged 6 � 15 years (median 8 years, 14 male) with obstructive sleep apnoea syndrome (OSA)

severity ranging from healthy to moderate (median apnoea hypopnea index (AHI) 1.15, range

0�5.1). Seven patients aged 8�16 years (median 12 years, 4 male) with OSA severity ranging

from healthy to severe (median AHI 1.3, range 0� 16.9) (patients 7� 10, 21, 23 and 28) were

used for training custom filters. To ensure that there was no bias in the results, these patients

were not used in the main analysis.

Derivation of the conventional movement representations

A number of pre-processing steps were required before deriving the movement representations

from the CMAS data. Firstly, the raw CMAS data was filtered to remove high-frequency noise

and the DC o↵set caused by the gravitational component of acceleration. To determine the

general frequency bounds of movement during sleep and wake, spectral analysis of a sample
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4.1. Tri-axial movement representations

window of movement was conducted. This process is described in Section 3.2.4 and illustrated

in Fig 3.11 in Chapter 3. ZC, TAT and DI were derived using the band-pass filtered data.

As discussed in Section 2.3 and illustrated by Fig. 2.8, the projection of a movement vector

onto the x�, y� and z� axes di↵er. The derived movement representations would consequently

di↵er between these axes. However, the limitation of uni-axial accelerometry (i.e. the inability

to detect movements orthogonal to that axis) applies, regardless of the chosen axis. Therefore,

the x�axis was used to derive the conventional uni-axial representations. The band-pass filter

(documented in Section 3.2.4 and illustrated in Fig. 3.11b) was applied to isolate the higher-

frequency signal from the x�axis. The conventional representations were derived using the

process described in Section 2.3.1. Henceforth, the uni-axial representations are termed ZC

UNI

,

TAT

UNI

and DI

UNI

.

The tri-axial movement representation derivation process was the same as for the uni-axial

data; however, the Euclidean norm operation was applied to the band-pass filtered tri-axial

data ka
B

k prior to deriving the representations. Similar to the uni-axial representations, the

tri-axial representations are termed ZC

TRI

, TAT
TRI

and DI

TRI

.

The tri-axial representations are defined similarly to the uni-axial representations (detailed

in Section 2.3):

TAT

TRI

=
N ·fsX

n=1

{ka
B

[n]k > T}, (4.1)

DI

TRI

=
N ·fsX

n=1

ka
B

[n]k, (4.2)

ZC

TRI

=
N ·fsX

n=1

{(ka
B

[n]k � T ) · (ka
B

[n� 1]k � T ) < 0}, (4.3)

where N = 30s represents the window size, f
s

= 100Hz represents the sampling rate, T repre-

sents a threshold and represents the indicator function (i.e. a function that has a value of 1

if the condition is satisfied, otherwise 0) .

In order to exploit the nature of tri-axial accelerometry, two novel representations were also

extracted from CMAS: maximum magnitude of acceleration (MAXACT) and integrated angle

of posture change (SUMPST). Although the maximum magnitude has been used in physical

activity literature [142, 143], it is not a conventional method for representing movement during

sleep. As such, MAXACT is a somewhat novel representation for sleep analysis. MAXACT

represents high intensity movements by measuring the maximum acceleration within an epoch,

MAXACT = max(8n 2 N · f
s

: ||a
B

[n]||). (4.4)
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Figure 4.3: Procedure for generating the weighted average filters for the tri-axial activity counts using the
adaptive normalised least mean squares (NLMS) filter approach.

The second novel method, SUMPST, is an approximation of the total postural change within

an epoch. SUMPST represents limb postural changes and slow motion by approximating the

angular displacement of the limb between consecutive samples, relative to gravity. SUMPST is

derived using the low-pass filtered data a
L

,

SUMPST =
N ·fsX

n=1

��� arccos
⇣ a

L

[n]a
L

[n+ 1]

||a
L

[n]|| · ||a
L

[n+ 1]||

⌘���. (4.5)

Weighted moving average filter development for the tri-axial representations

The Actiwatch uses a weighted moving average filter to combine activity counts between con-

secutive epochs [123] (see Section 2.3.1 for a detailed description of the algorithms). For con-

sistency with the literature, this weighted moving average filter was also applied to TAT

UNI

,

ZC

UNI

and DI

UNI

. To ensure consistent comparisons of all representations, weighted moving

average filters were developed for the tri-axial activity counts. These filters were developed

using a NLMS adaptive filter. In this application, the NLMS filter creates a weighted function

that attempts to maximise the agreement between the activity counts and the manually scored

sleep and wake stages from polysomnography for a training patient set. A separate set of pa-

tients (detailed in ‘Patient characteristics’ above) that had missing Actiwatch data were used

to determine the filter size and corresponding coe�cients for the tri-axial activity counts. The

process is shown in Fig 4.3. A filter was generated for varying filter lengths, ranging from 3�25

epochs. The area under the receiver operating characteristics curve (AUC) was then generated

for each representation and filter size for all patients. The filter length that gave the greatest

AUC was selected as the appropriate size (illustrated by the larger data points in Fig 4.4). The

resulting filters are shown in Fig 4.5.
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Figure 4.5: Resulting weighted average filters for tri-axial activity counts.

Validation procedure

A threshold classifier was used to analyse the sleep and wake predictive performance of the uni-

axial and tri-axial activity counts in a leave-one-out cross-validation design on patients. The

threshold was defined as the operating point in the receiver operating characteristics (ROC)

analysis that gave the maximum Kappa agreement for the training set in the cross-validation.

The predictive performance of the test set at each fold of the cross-validation was quantified

using the outcome measures outlined in Section 3.4 in Chapter 3 and documented in Fig 4.2.
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Chapter 4. Conventional representations of tri-axial multisite accelerometry

To ensure that a meaningful performance comparison between the Actiwatch and CMAS can

be made, the standard thresholds for the commercial Actiwatch were not used in this analysis.

The threshold for the Actiwatch was defined using the ROC analysis described above. Two-

way analysis of variance (ANOVA) was used to assess the statistical significance where metrics

exhibited equal variance (as defined by the Brown-Forsythe test). Post-hoc Tukey’s honest

significant di↵erence test (HSD) test was then used to compare the means of any significant

di↵erences as found by the ANOVA. The non-parametric Welch’s t-test was used where unequal

variance was observed.

4.1.2 Results

Table 4.1 summarises the performance metrics for the uni-axial and tri-axial activity counts.

The sleep and wake predictive performance improved significantly when moving from uni-

axial to tri-axial activity counts ( of 0.402 vs. 0.268 for tri-axial vs. uni-axial accelerometry

respectively, p < 0.05). The discrimination ability (i.e. AUC) was also improved from 81.5%

to 86.2%, as illustrated by the greater area under curve for the tri-axial activity counts in

Fig. 4.6a. Within the tri-axial representations, the novel representations tended to give better

discrimination and predictive performance than ZC, DI or TAT. Table 4.2 shows that there

were no significant di↵erence in the performance metrics between CMAS and the Actiwatch.

Table 4.1: Class discrimination ability and predictive performance of the conventional activity counts for uni-
axial and tri-axial wrist movement

Activity Count Method Sp [%] (at
85% Se)

AUC [%] Agreement
[%]



Zero-Crossing, ZC

Uni-axial 68.5 (27.5) 81.5 (14.6) 80.8 (11.8) 0.268 (0.210)

Tri-axial 73.3 (23.8) 86.2 (9.6) 85.1 (10.3) 0.402 (0.141)a

Time Above Threshold, TAT

Uni-axial 72.5 (26.4) 84.1 (11.6) 83.9 (8.3) 0.405 (0.239)

Tri-axial 72.3 (22.1) 85.7 (10.5) 84.1 (9.8) 0.393 (0.158)

Digital Integration, DI

Uni-axial 71.3 (27.0) 81.4 (11.8) 83.2 (8.5) 0.359 (0.169)

Tri-axial 74.8 (16.9) 82.4 (10.7) 85.6 (11.9) 0.361 (0.332)

Other tri-axial methods

Maximum Acceleration, MAXACT 72.3 (28.9) 85.2 (11.4) 82.2 (6.8) 0.422 (0.181)a

Total Posture Change, SUMPST 74.8 (20.8) 83.5 (15.3) 85.6 (9.5) 0.439 (0.290)a

Values are shown as median (IQR)
a
p < 0.05, greater than ZC uni-axial
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Table 4.2: Class discrimination ability and predictive performance of the conventional activity counts for uni-
axial and tri-axial wrist movement, comparison with the Actiwatch

Activity Count Method Sp [%] (at
85% Se)

AUC [%] Agreement
[%]



Actiwatch, ZC 69.1 (19.6) 85.8 (13.5) 85.0 (19.8) 0.445 (0.276)

Uni-axial

Zero-Crossing, ZC 67.8 (19.6) 81.5 (13.5) 82.7 (19.8) 0.272 (0.276)

Time Above Threshold, TAT 70.0 (24.0) 82.5 (12.3) 85.0 (11.0) 0.421 (0.275)

Digital Integration, DI 72.2 (24.1) 80.2 (8.3) 84.4 (14.1) 0.410 (0.177)

Tri-axial

Zero-Crossing, ZC 69.9 (21.1) 86.4 (9.9) 86.3 (10.0) 0.403 (0.269)

Time Above Threshold, TAT 69.2 (21.5) 85.7 (11.6) 85.6 (10.0) 0.376 (0.269)

Digital Integration, DI 71.5 (15.6) 79.6 (8.8) 85.7 (20.8) 0.328 (0.230)

Maximum Acceleration, MAXACT 71.8 (28.9) 83.4 (11.4) 84.3 (8.6) 0.369 (0.196)

Total Posture Change, SUMPST 72.9 (17.1) 80.6 (10.9) 88.1 (14.4) 0.421 (0.238)

Analysis performed on the 14 patients that had Actiwatch data (detailed in Table 3.1.3)
Values are shown as median (IQR)

4.1.3 Discussion

The objective of this section was to explore the e�cacy of the conventional activity counts for

estimating sleep and wake, particularly for children with atypical sleeping behaviour. Although

the tri-axial data appeared to improve the predictive performance, it was only statistically

significant for one of the representations (i.e. ZC). It is likely that any advantages of tri-axial

accelerometry are lost when generating the activity count.

E↵ectiveness of the conventional activity counts

As shown in Table 4.1, the performance did not significantly di↵er between the activity count

derivation techniques. Any discriminatory movement information is lost when summarising

within large epochs. The conventional activity counts do not have adequate resolution for

di↵erentiating movement types.

The novel representations, MAXACT and SUMPST, summarise movements that are large

in magnitude or result in a positional change. From Table 4.1, these representations had

significantly greater predictive performance than ZC, TAT and DI. It is likely then that the

maximum acceleration and positional change di↵er between movements that occur during sleep
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Figure 4.6: Median ROC curves for the full population used in this analysis for (a) the Actiwatch and compar-
ative CMAS activity counts, and the (b) uni-axial activity counts. Note that the analysis for (a) was performed
on a subset of 14 patients.
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Figure 4.7: Median ROC curves for the full population used in this analysis for the (a) conventional and (b)
CMAS tri-axial activity counts.
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Chapter 4. Conventional representations of tri-axial multisite accelerometry

and those that occur during wake. However, as already discussed, any significance is lost when

summarising the motion over the 30s epoch.

For consistency, the published Actiwatch weighted moving average filter was applied to

the uni-axial activity counts. This filter has been optimised for the Actiwatch and not for

the derived uni-axial activity counts in this analysis. This explains the performance disparity

between the Actiwatch and CMAS ZC

uni

.

Information gain from tri-axial accelerometry

Tri-axial data is expected to improve the performance of actigraphy by capturing movement

in all three axes, rather than a single axis. In contrast to uni-axial accelerometry that cannot

detect movements orthogonal to the measurement axis, capturing movement in all three axes

ensures that no movement can go undetected. As expected, the performance of the tri-axial

versions of the conventional movement representations were generally superior to the corre-

sponding uni-axial representations. There is evidence then that movement components do

occur in the other axes of movement and contribute to detecting sleep and wake. Therefore, all

three axes of measurement need to be considered when characterising movement during sleep

and wake.

4.2 Accelerometer placements3

We have explored uni-axial accelerometry as a limitation of conventional actigraphy for sleep

assessment. Another limitation is the use of a single accelerometer. Commercial sleep actig-

raphy systems typically only measure movement at the wrist. As a consequence of this, wrist

movement may be misidentified as whole body movements and movements that occur elsewhere

on the body may be missed entirely. This limitation likely contributes to the poor specificity

inherent in conventional actigraphy, as some movements during wake may go undetected, result-

ing in false sleep detections. Therefore, this section will explore the sleep and wake predictive

performance when combining data from multiple limbs.

4.2.1 Method

Each patient underwent the study procedure outlined in Section 3.1.4 of Chapter 3. The

methodology is summarised in Fig. 4.8 and described in detail below. The data was pre-

processed using the procedure outlined in Section 3.2.4 and movement was quantified using each

time-series method described in Section 4.1.1 for tri-axial data. Two feature selection techniques

were used to select a restricted combination of movement representations and accelerometer

placements.

3This work has been published in Physiological Measurement: “Multisite accelerometry for sleep and wake
classification in children” [144]
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Figure 4.8: Methodology for generating and comparing selected movement representations for two di↵erent
selection techniques.

Patient characteristics

The full 30 participants detailed in Table 3.1.3 were used in this analysis.

Identifying placement importance

Two well established feature selection techniques were used to judge the reliability and gen-

eralisability of the selected movement representations: a sequential forward selection search

optimising for partial receiver operating characteristic area under curve (PAUC) [145]; and

minimum redundancy maximum relevancy (mRMR) [146]. Forward selection search was used

because it is a simple starting point in the feature search. This technique aims to maximise

the area under the ROC curve above 60% specificity. Restricting the search in this way ensures

that only representations that perform well at a high specificity will be selected. However, it

is possible that redundant information can be introduced, which may limit the performance

when restricting the number of representations [147]. The second method addresses this by

minimising the redundancy in the selected representations, while maximising the relevancy to

sleep and wake. The methods are described in more detail below. Each selection method uses

leave-one-out cross-validation on patients to select the final set of movement representations.

Sequential forward search with partial AUC

Sequential forward selection search performs a greedy search for representations that improve

a performance metric [148]. The search finishes when the metric is no longer improved by

69



Chapter 4. Conventional representations of tri-axial multisite accelerometry

additional representations. The performance metric used in this analysis was the PAUC, which

attempts to maximise the sleep/wake discrimination ability while ensuring that the specificity

cannot fall below a set value. In this analysis, PAUC is defined as the AUC above a specificity

of 60%. AUC represents the ability of a set of representations to rank a randomly chosen posi-

tive instance (wake) higher than a randomly chosen negative instance (sleep) [130]. Therefore,

maximising AUC above a specificity of 60% ensures that only a set of representations that

have good discriminatory power at a relatively high specificity will be chosen. Similar selection

techniques have been used in literature. Thiemjarus et al. [149] perform feature and sensor re-

duction using a Bayesian framework for detecting activities with accelerometers placed on many

areas on the body. They rank features based on the cumulative AUC when combining multiple

accelerometers. Their search is stopped when the AUC is no longer increasing. It is unclear

if this method takes into account redundancy. The selected features and/or placements may

also di↵er with a di↵erent starting point. The sequential forward search specifically attempts

to improve the low specificity of sleep actigraphy systems. However, it is possible that redun-

dant representations can be selected. Reducing redundancy in the selected representations can

improve how well they generalise [150, 147]. This is addressed by the next method.

Minimum redundancy maximum relevancy

The second selection approach uses mutual information to determine the relevancy and re-

dundancy of each representation with respect to sleep and wake [151]. Minimum redundancy

maximum relevancy is a supervised selection technique that seeks to minimise the redundancy

between representations, while maximising the relevancy to the class label [146]. This method

avoids the case where features are highly relevant to the class label, but redundant, resulting

in a larger subset than necessary [152]. mRMR has been validated in a number of studies

ranging from gene expressions [153] to drug interactions [154]. mRMR is particularly suited

to analysing movements with accelerometry, since it is likely that some accelerometer locations

or movement representations will result in redundancy. A similar method to Peng et al. [151]

is used here to define and optimise the redundancy and relevancy of each representation. The

redundancy Ru of a set of representations is defined as the mean mutual information I between

each representation f

n

within that set s,

Ru =
1

|s|2
X

f1,f22s

I(f1; f2), (4.6)

where mutual information is defined by Hutter [155],

I(s; y) =
X

y2Y

X

f2s

log

✓
p(f, y)

p(f) · p(y)

◆
, (4.7)

where p(f, y) is the joint probability distribution function of the class y and the feature f ,
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and p(f) and p(y) are the marginal probability distribution functions of the feature and the

class respectively. Mutual information quantifies both the contribution of each representation

to wake prediction and the similarity between each representation. Similar to the redundancy,

the relevancy Re is defined as the mean mutual information I between each representation f

within a set s and the class label c,

Re =
1

|s|
X

f2s

I(f ; c). (4.8)

A simple approach to optimise for maximum relevancy and minimum redundancy is to maximise

the di↵erence between the two metrics,

mRMR = max(Re�Ru). (4.9)

Validation procedure

The sleep and wake predictive performance of the selected representations was determined

using quadratic discriminant analysis (QDA), with a binomial distribution in a leave-one-out

cross-validation design on patients. QDA was used because the variability of the accelerometry

data for sleep and wake di↵ers, which violates the assumptions for a linear discriminant [156].

The probability of the predicted sleep stages given by the discriminant analysis was compared

to the actual sleep stages using ROC curve analysis. The ability of the predictor to discrim-

inate between sleep and wake was summarised by the AUC. The predictive performance at

each fold of the cross-validation was quantified using standard and Kappa agreement  with

polysomnography [131], where wake was defined as a predictive probability greater than the

threshold that gave the maximum Kappa agreement in the ROC analysis. Specificity at 85%

sensitivity was also reported. The Wilcoxon rank sum test was used to assess the significance

of the class prediction from the QDA because the performance distributions were not normally

distributed (as defined by the Kolmogorov-Smirnov test).

4.2.2 Results

The ROC analysis and agreement with polysomnography are summarised for the best N repre-

sentations of each of the methods in Table 4.3 and for the commercial actigraph and CMAS in

Table 4.4. Similar to Section 4.1, tri-axial accelerometry improved the performance when com-

pared to uni-axial accelerometry (specificity at 85% sensitivity: 72.0(22.9)% vs. 66.1(32.8)%,

p < 0.05). These values di↵er slightly from Section 4.1 as the full 30 patients were used

here, whereas Section 4.1 only used 23. Combining data from the accelerometers significantly

improved the ranking performance and agreement when compared to the single wrist accelerom-

eter (AUC for five characteristics: 92.2(9.5)% vs. 84.6(13.6)%, p < 0.05; Kappa agreement:
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Chapter 4. Conventional representations of tri-axial multisite accelerometry

Table 4.3: Class discrimination ability and predictive performance for the N best representations of each selection
method.

N Selected Characteristics Sp [%] (at
85% Se)

AUC [%] Agreement
[%]



Uni-axial, WristZC 66.1 (32.8) 79.9 (11.3) 84.4 (9.8) 0.440 (0.258)

1 Tri-axial, WristZC 72.0 (22.9)a 84.6 (13.6) 85.0 (10.3) 0.488 (0.257)

Multivariate Locations, Forward Selection with PAUC

2 WristZC, ToeZC 78.1 (29.6)b 88.2 (11.3)b 87.2 (12.5) 0.548 (0.230)

3 WristZC, ToeZC, ToeTAT 78.8 (30.2)b 87.9 (11.4)b 86.6 (11.7) 0.551 (0.244)

5 WristZC, ToeZC, ToeTAT, AnkleDI,
ToeMAXACT

83.5 (17.4)bc 92.2 (9.5)bc 87.2 (12.2) 0.565 (0.231)a

Multivariate Locations, mRMR

2 WristZC, ToeZC 78.1 (29.6)b 88.2 (11.3)b 87.2 (12.5) 0.548 (0.230)

3 WristZC, ToeZC, FingerDI 76.3 (26.5)a 87.2 (12.8)b 88.2 (12.8) 0.600 (0.209)a

5 WristZC, ToeZC, FingerDI, ToeDI,
WristTAT

81.9 (22.2)b 90.0 (10.1)b 86.4 (13.1) 0.545 (0.218)a

Values are shown as median (IQR)
a
p < 0.05, b

p < 0.01, greater than uni-axial wrist placement
c
p < 0.05 greater than single tri-axial wrist placement

Table 4.4: Class discrimination ability and predictive performance of the Actiwatch and the CMAS uni-axial
and tri-axial wrist accelerometers.

Selected Characteristics Sp [%] (at
85% Se)

AUC [%] Agreement
[%]



Actiwatch 78.2 (14.0) 86.4 (9.2) 88.0 (7.2) 0.464 (0.429)

Uni-axial, WristZC 52.0 (30.1) 80.0 (11.2) 84.6 (11.7) 0.471 (0.268)

Tri-axial, WristZC 73.7 (19.2) 85.6 (7.6) 87.3 (12.6) 0.461 (0.271)

Commercial actigraphy system: Actiwatch Mini, CamNTech, using the zero-crossing mode.
Analysis performed on the 14 patients that had Actiwatch data (detailed in Table 3.1.3)
Values are shown as median (IQR)

0.565(0.231) vs. 0.488(0.257), p < 0.05). This trend in improvement was consistent across

all metrics. The selection algorithms (mRMR and forward selection search) selected similar

characteristics and yielded consistent performance metrics. We can therefore be confident that

these results are not an artefact of a specific selection algorithm.
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4.2.3 Discussion

The objective of this section was to determine if combining data from multiple accelerometers

improved the ability to detect sleep and wake in children. Combining accelerometry data

improved the sleep and wake discrimination performance and agreement with polysomnography.

In this analysis, the predictive performance of the single wrist accelerometer di↵ered slightly

to the performance seen in Section 4.1. This is likely due to the chosen operating point from

the di↵erent representations in the di↵erent analyses: Section 4.1 identified the operating point

from the raw activity counts; and Section 4.2 identified the operating point from the probability

output of QDA with the raw activity counts, which will have additional constant, scalar and/or

quadratic terms.

Impact of additional accelerometers

Combining data from multiple accelerometers showed a trending performance improvement,

which was significant for the Kappa agreement and sleep and wake discrimination ability (an

example of comparative ROC curves is illustrated in Fig. 4.9). This improvement suggests that
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Figure 4.9: Median ROC curves for the full population used in this analysis for multi-site activity counts.
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combining movement information from multiple accelerometers improves the ability to detect

sleep movements. As evidenced by the improvement in performance when incorporating addi-

tional accelerometers, the wrist accelerometer alone is not su�cient for accurately measuring

movement. This improvement in performance also suggests that there are some physiologically

di↵erent movements between sleep and wake that are captured using multiple accelerometers.

Although there is a slight performance benefit to measuring movement with multiple accelerom-

eters, additional accelerometers negatively impacts the usability of the system in a non-clinical

environment: system complexity, cost and patient discomfort are all impacted by incorporating

additional accelerometers into the actigraphy hardware framework.

Significance of selected representations and accelerometer placements

The wrist placement was consistently selected first, suggesting that the wrist accelerometer

captures more wake movements than the other accelerometers. Although we can observe some

improvement when combining data from additional accelerometers, it was only significant with

five features. Supporting the findings in Section 4.1, this suggests that the conventional activity

counts do not adequately summarise movement, and that they can be improved by including

activity from other representations (for example, including ZC and TAT activity counts for

toe movement in Table 4.3). Analysing the relationships between the representations showed

that, in general, summaries of total movement within an epoch (TAT, DI, SUMPST) were

complementary to those that summarise abrupt movements (ZC, MAXACT) and were often

selected together. Conversely, representations that summarise similar movements at the same

location on the body were seldom selected together.

Despite being highly relevant to wake, there was considerable redundancy found between

wrist and finger movement, suggesting that the finger and wrist accelerometers may be in-

terchangeable. Although the finger placement is commonly used for devices such as pulse

oximeters, it is considered unfavourable for children because of comfort dependencies (e.g.

thumb-sucking or self-soothing) and it may distract from sleeping [157]. Information from the

ankle and toe accelerometers were also found to be redundant. Interestingly, the upper thorax

was seldom selected in the search, indicating that the chest o↵ers little additional useful infor-

mation. Indeed, this agrees with previous literature that has shown that 90% of variation in

chest movement is summarised by the ankle (or toe) movement [158], which was often selected.

4.3 Summary

In this chapter we explored techniques to reduce the number of false sleep detections. We hy-

pothesised that these false sleep detections are caused by inaccurate movement representations;

some wake movements cannot be detected with the conventional actigraphy framework. There-

fore, in this chapter we explored tri-axial multisite accelerometry. In Section 4.1 we explored
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4.3. Summary

sleep and wake classification performance using movement information from tri-axial summary

techniques. We then incorporated tri-axial representations of movement measured from mul-

tiple accelerometers on the body in Section 4.2 and assessed the sleep and wake predictive

performance.

The analysis performed in Section 4.1 shows that tri-axial accelerometry does improve pre-

dictive performance when compared to uni-axial accelerometry. We identified that this is likely

due to improved movement detection from monitoring additional axes. The analyses in Sec-

tion 4.1 and Section 4.2 highlighted a significant limitation of the conventional activity counts;

activity counts are unable to provide adequate resolution to detect specific characteristics of

movements, which we saw is required for improving sleep estimates. It is likely then that iden-

tifying these characteristics, and detecting sleep and wake on a movement-by-movement basis

(instead of the conventional epoch-by-epoch summaries), may improve the sleep estimates.

Incorporating data from accelerometers at di↵erent locations on the body in Section 4.2

improved the discrimination ability and predictive performance when compared to the conven-

tional wrist placement. However, including additional accelerometers in the actigraphy routine

increases the cost, system complexity and patient discomfort, all of which we are trying to

minimise; the limitations of additional accelerometers impact the usability of actigraphy in a

non-clinical environment, and may impact the measured sleep behaviour. For these reasons, the

performance benefits of multisite accelerometry will need to be considered against the practical

limitations.

In this chapter we conclude that:

• Tri-axial accelerometry significantly improves sleep and wake detection when compared

to uni-axial accelerometry;

• Incorporating additional accelerometers at di↵erent locations on the body improves dis-

crimination ability and predictive performance for detecting wake; and

• The conventional activity counts are unable to accurately quantify di↵ering characteristics

between movements associated with sleep and those associated with wake, as epoch-by-

epoch quantification does not provide adequate resolution.

In the next chapter, we will address the second limitation of actigraphy: false wake detec-

tions caused by movements during sleep. We will isolate and remove the e↵ect of some of these

sleep movements, and identify di↵erentiable characteristics between sleep and wake movements.

We will move away from representing movement as a summarised activity count by and explore

sleep and wake detection on a movement-by-movement basis. In Chapter 6 we will identify the

association between sleep movements and pathological and physiological events related to sleep

disorders.

75



Chapter 4. Conventional representations of tri-axial multisite accelerometry

76



5
Di↵erentiating sleep and wake movements

“... sleep ... is a seizure of the primary sense-organ, rendering it unable

to actualize its powers; arising of necessity (for it is impossible for an

animal to exist if the conditions which render it an animal be not ful-

filled), i.e. for the sake of its conservation; since remission of movement

tends to the conservation of animals.”

— Aristotle, Philosopher, 384 - 322 BC

Since the early 1900s, movement has been considered a method of detecting sleep [159];

sleep onset was measured at the point of complete muscle control loss as visually observed.

Although näıve, this theory has persisted and evolved to include specific movements during

the di↵erent sleep stages. These movements include the sharp limb twitches that are often

observed during rapid eye movement (REM) sleep [160], movements caused by parasomnias

during non-rapid eye movement (NREM) sleep [19], or general sleep positional changes. Since

the conventional actigraphy classification framework identifies ‘wake’ as regions of increased

activity, these movements can confound wake predictions if they correspond with an activity

reading that is above the classification threshold: as illustrated in Fig. 5.1, high-activity epochs

during sleep will result in false wake detections. Di↵erentiating sleep movements from wake

movements would consequently improve this limitation. However, a distinct limitation of rep-

resenting movement as activity counts that we observed in Chapter 4 was that the temporal

resolution of activity counts can cause characteristically di↵erent movements to have the same
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Figure 5.1: Histogram of activity during sleep (red) and wake (blue) for 24 patients using the conventional
activity counts derived using the zero-crossing method. Highlighted region shows the source of the false positives.

numerical activity count value; i.e. multiple short-duration movements will appear identical to

a single lengthy movement within an epoch. Therefore, the accuracy of actigraphy-based wake

estimates is dependent on accurately di↵erentiating these active sleep epochs from active wake

epochs. In this chapter we seek to reduce false wake detections by identifying if movement

characteristics during wake are characteristically di↵erent to those during sleep. We will first

explore heuristic identification of movements specific to sleep as a pre-processing step on the

raw accelerometry data. We will then explore specific characteristics that di↵er between sleep

and wake movements, segmented from high-resolution raw accelerometry data. Finally, we will

compare sleep and wake predictions on a movement-by-movement basis to the conventional

fixed epochs.

The brain deliberately inhibits motor activity during sleep, reducing muscle tone and im-

pacting the nature of sleep movements. As a consequence of this atonia, we can speculate
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that the physiological characteristics of sleep movements di↵er to the deliberate movements

of wake. The body of literature for sleep movement exploration has focused on identifying

movements during sleep that are associated with specific disorders (such as bruxism [161] and

epilepsy [162]); there have been few attempts to specifically di↵erentiate restless sleep (i.e. re-

gions of activity during sleep) from wake. Although some studies have observed that the general

prevalence [163, 164, 165] and coherence [18, 17] of movement during sleep di↵ers to wake, spe-

cific movement characteristics have not explicitly been explored. As detailed in Section 2.3.1,

conventional actigraphy uses time-series methods to represent movement. These representa-

tions have distinct limitations which were specifically explored in Chapter 4. We saw that the

conventional activity counts have inadequate temporal resolution to identify single movements,

and time-series methods cannot capture all movement information. Time-frequency analysis

is a useful tool for analysing non-stationary signals like sleep and wake movements because it

summarises both spectral and temporal information [166, 167]. Given that the spectral content

of non-stationary movement typically varies over time, the combined spectral and temporal

information is particularly important for characterising non-periodic movement measured with

accelerometry. For this reason, we will focus on identifying localised spectral characteristics

that di↵er between sleep and wake movements. There are two common approaches for analysing

this in literature: template matching and wavelet transform co-e�cient analysis.

The wavelet transform provides an overview of the similarity of the signal with a wavelet

or basis function [115]. In template matching, prior knowledge of movement patterns are

exploited to identify movements by matching the pattern with a basis function. This is a

common approach for identifying movements that conform to a certain pattern or behaviour,

such as seizures and tremors [112, 168, 169]. Nijsen et al. [168] developed a model to detect

motor activity from epileptic patients at night. Using this model, they then identified temporal

and spectral characteristics of epileptic movements for accurate event detection [112]. Geman

et al. [169] also used template matching to identify tremors for early detection of Parkinson’s

disease. They compared the coe�cients of di↵erent basis functions to optimise tremor detection.

These approaches are e↵ective at identifying movements where the characteristics conform

to some pattern. Although some movements during sleep may match a template (for example,

limb twitches during REM sleep) we can hypothesise that the majority of movements are

likely to be stochastic in nature because of the inhibited muscle control [170, 8] and identified

incoherent nature [18, 17]. For this reason, pattern matching may not be e↵ective for identifying

characteristic di↵erences between movements during sleep and wake. The wavelet transform

can detect localised regions of high spectral power for di↵erent frequencies. This application

is often adopted for identifying periodic activities [21, 116, 115, 171]. Although movements

during sleep are not likely to be periodic, there will be localised regions of high spectral power

at varying frequencies that the wavelet transform can isolate. Excluding tremors and myoclonic

twitches, the literature has not explored spectral characteristics of movements during sleep.
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Chapter 5. Di↵erentiating sleep and wake movements

This chapter specifically addresses the second limitation of actigraphy, discussed in Chapter 1

and illustrated in Fig. 5.1:

False positives: sleep epochs with observed movement are incorrectly identified as

‘wake’.

This chapter will address the hypothesis:

Movement characteristics can di↵erentiate sleep from wake because the physiological

nature of these movements di↵er.

In this chapter we will manually identify movements specific to sleep and explore the e↵ect of

removing these movements as a pre-processing step on the raw accelerometry data. We will

then explore localised spectral characteristics of movements that are specific to sleep or wake.

Using these characteristics, we will compare the accuracy of predicting wake on a movement-

by-movement basis to the conventional epoch-by-epoch summaries.

This exploration will be performed in three sections:

Heuristic removal of restless sleep

Section 5.1 aims to reduce false wake detections by identifying and removing the e↵ect of move-

ments specific to sleep on the conventional activity counts.

Di↵erentiable spectral movement characteristics

Section 5.2 aims to identify di↵erentiable spectral characteristics between sleep and wake move-

ments.

Sleep/wake prediction on a movement-by-movement basis

Section 5.3 aims to explore the e�cacy of predicting sleep and wake regions on a movement-by-

movement basis.
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5.1. Heuristic removal of restless sleep

5.1 Heuristic removal of restless sleep1

A significant limitation of the conventional actigraphy framework is the inability to accurately

di↵erentiate regions of activity during sleep from wake. As we observed in Section 4.1, this

limitation may be due to the poor temporal resolution of activity counts. Since activity counts

are restricted to large epochs (commonly 30s), activity counts are unable to determine specific

characteristics or types of individual movements; activity counts can only indicate the occur-

rence of movement, or provide a measure of the intensity of movement within the epoch. For

this reason, activity counts are unable to isolate a single movement, as movements are likely to

last for a fraction of 30s (particularly for sleep where myoclonic and incoherent movements are

common [22, 17]). Literature has focussed on detecting periods of ‘activity’ and ‘inactivity’.

However, manually analysing finger, wrist, chest, ankle and toe accelerometry data concurrently

with 6-hour video segments of 10 sleeping patients (5 male, aged 6� 15, patients 15, 19� 22,

26 and 30� 33 in Table 3.1.3) using custom software (see Appendix C) showed that there are

characteristics of movements that di↵er between sleep and wake.

The observations of particular note were:

(a) children are likely to completely change their hand positions during sleep;

(b) children are likely to slightly shift their body during sleep;

(c) ‘bursty’ movements during sleep are likely to be short in duration (< 2s);

(d) movements such as face scratching and full sleeping position changes (e.g. supine to left

or right lateral) are likely to occur during both sleep and wake; and

(e) movements associated with wake are likely to have a longer duration than movements

during sleep.

Identifying the observed sleep characteristics (a)-(c) may reduce false wake detections because

these characteristics are specific to sleep. Therefore, this section heuristically identifies and

removes the influence of these characteristics as a pre-processing step on the raw accelerometry

data. The standard activity counts (calculated as described in Chapter 4) are then generated

and the sleep and wake prediction accuracy is then comparatively assessed, pre- and post-

heuristic.

5.1.1 Method

Each patient underwent the study procedure outlined in Section 3.1.4 of Chapter 3. The

methodology is summarised in Fig. 5.3 and described in detail below. The heuristic was applied

1This work has been published in Physiological Measurement: “Multisite accelerometry for sleep and wake
classification in children” [144]
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Figure 5.2: Example of the observed movements used to derive the heuristic: hand movement with a positional
change, ‘bursty’ movements and body movements with no positional changes.

to the raw accelerometry data prior to the standard pre-processing procedure outlined in Sec-

tion 3.2.4. Movement was quantified using each time-series method described in Section 4.1.1

for tri-axial data. The sleep and wake predictive performance of the multisite combination

that gave the greatest performance in Section 4.2 was compared prior to, and after, applying

the heuristic using QDA. Similar to Section 4.2, QDA was used because the variability of the

accelerometry data for sleep and wake di↵ers.

Patient characteristics

The full 30 participants detailed in Table 3.1.3 were used in this analysis.
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Figure 5.3: Methodology for identifying the e↵ect of heuristically removing movements specific to sleep.

Heuristic procedure

A heuristic was developed to identify and quantify the observed di↵erentiable characteristics

(described as (a)-(c) above). This heuristic attempts to negate the influence of the sleep charac-

teristics on wake detection by setting the accelerometry signal to zero when these characteristics

are identified. This ensures that the predictor will identify that region as ‘no movement’ and

consequently correctly classify that region as ‘sleep’. The characteristics of movements that

were observed during sleep are defined technically as:

(a) hand position change: wrist movement with a final DC o↵set;

(b) body shift: wrist, ankle and chest movement with no chest DC o↵set; and

(c) ‘bursty’ movement: any movement of less than 2s in duration.

The procedure for negating the e↵ects of these movements is described in Fig. 5.4 and the

algorithm is detailed in Appendix A. Movements are detected from the raw accelerometry data
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Figure 5.4: Procedure for removing movements associated with sleep from the raw accelerometry data.
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Figure 5.5: Example of the e↵ect of applying the heuristic to the raw accelerometry data, prior to generating
the features. Sleep (defined as REM and all non-REM stages) and wake (shaded) periods are shown. Movement
is represented by wrist ZCTRI .

as any data point above the noise floor. Since the magnitude of the noise is consistent across

the raw signal, the noise floor is defined as the median of the absolute magnitude of the high-

pass filtered accelerometry data across each full study. The duration of movement is defined as

the start of movement until there is no movement for a minimum of 7s. This is to ensure that

movements with transitional properties are detected as a single movement, which is particularly

important for movements such as sleeping position changes (e.g. supine to left or right lateral).

An example of the e↵ect of removing di↵erentiable sleep movements is illustrated in Fig. 5.5.

The heuristic removed movement associated with restless sleep (shown in regions A, B and C).

The heuristic also removed some movements associated with wake (shown in region D) because

there is a likelihood that some wake movements may appear similar to movements character-

istic of restless sleep (as defined by the heuristic). We can see from Fig. 5.5 that removing

sleep characteristics (a)-(c) reduces the number of large activity counts during sleep, without

significantly a↵ecting the activity counts during wake. After applying the heuristic to the

raw accelerometry data, the conventional time-series features were derived for each accelerom-

eter. Since the heuristic required the assessment of movements from each accelerometer, the

best multisite feature set selected from Section 4.2 was then used to classify sleep and wake

using QDA. The performance was then compared to the feature set with data that was not

pre-processed with the heuristic.

Leave-one-out cross-validation on patients was used to assess the performance of the con-

ventional wrist placement and the feature set prior- and post-heuristic removal of restless sleep

movements. The predictive performance at each fold of the cross-validation was quantified us-

ing standard and Kappa agreement  with polysomnography [131], where wake was defined as

a predictive probability greater than the threshold that gave the maximum Kappa agreement in

the ROC analysis. The Wilcoxon rank sum test was used to assess the significance of the class

prediction from the QDA because the performance distributions were not normally distributed

(as defined by the Kolmogorov-Smirnov test). AUC and the specificity at 85% sensitivity was

also reported.
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Table 5.1: Class discrimination ability and predictive performance for tri-axial multisite accelerometry, pre- and
post-removal of movement characteristics specific to sleep.

Selected Characteristics Sp [%] (at 85%
Se)

AUC [%] Agreement
[%]



Single accelerometer, WristZC

Pre-heuristic 72.0 (22.9) 84.6 (13.6) 85.0 (10.3) 0.488 (0.257)

Post-heuristic 70.2 (28.1) 85.1 (14.0) 87.1 (12.8) 0.557 (0.261)

Multiple accelerometers, WristZC, ToeZC, ToeTAT, AnkleDI, ToeMAXACT

Pre-heuristic 83.5 (17.4)a 92.2 (9.5)a 87.2 (12.2) 0.565 (0.231)

Post-heuristic 85.6 (16.3)b 93.2 (6.6)b 90.6 (10.8) 0.630 (0.292)b

Values are shown as median (IQR)
a
p < 0.05, b

p < 0.01, greater than standard tri-axial wrist placement (no heuristic pre-processing)

5.1.2 Results

The ROC analysis and agreement with polysomnography are summarised for the conventional

tri-axial wrist accelerometer placement and for multisite accelerometry pre- and post-removal

of movements specific to sleep in Table 5.1. Applying the heuristic improved predictive perfor-

mance with multisite accelerometry when compared to the conventional single wrist accelerom-

eter (specificity at 85% sensitivity: 85.6(16.3)% vs. 72.0(22.9)%, p < 0.01; Kappa agreement:

0.630(0.292) vs. 0.488(0.257), p < 0.01). The heuristic appeared to generally improve the

predictive performance for the conventional wrist placement, however it was not statistically

significant.

5.1.3 Discussion

The objective of this section was to determine if removing the influence of movements asso-

ciated with restless sleep significantly improved the predictive performance by reducing false

wake detections. Predicting sleep and wake regions with activity counts generated from the

heuristically pre-processed raw accelerometry data generally predicted sleep and wake better

than standard activity counts (illustrated by comparative ROC curves in Fig. 5.6); however, the

improvement was not statistically significant. Using the heuristic to preliminarily remove the

influence of movements associated with sleep significantly improved the predictive performance

when compared to the conventional single wrist accelerometer placement. This improvement

demonstrates that some movements associated with sleep can be successfully isolated and dif-

ferentiated from movements associated with wake. Similar to Chapter 4, the heuristic indicates

that activity counts are unable to distinguish activity during sleep from wake because they
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Figure 5.6: Median ROC curves for the full population used in this analysis for (a) the conventional wrist
accelerometer placement and (b) multisite accelerometry, pre- and post-heuristic.
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5.2. Di↵erentiating movements on the basis of spectral characteristics

summarise movement within a fixed epoch. Therefore, activity counts cannot determine the

type of activity or specific characteristics of the activity, which heuristically pre-processing the

high-resolution raw accelerometry data has demonstrated is likely to aid in improving the poor

specificity.

5.2 Di↵erentiating movements on the basis of spectral characteristics2

Section 5.1 demonstrated that there are characteristic movements that appear only in sleep, and,

together with Chapter 4, verified that activity counts do not have the resolution to specifically

identify movements or movement characteristics. Therefore, in this section we will identify

localised spectral characteristics that di↵er between segmented high-resolution wrist movements

during sleep and wake. To minimise system complexity, we will restrain analysis to a single

accelerometer placement. Considering that the wrist placement was identified as the single

most e↵ective sensor in Section 4.2, and that wrist movement appeared in each of the heuristic

definitions in Section 5.1, we will only analyse wrist movements.

In this section we will:

1. Characterise the spectral properties of movements segmented from high-resolution, raw

tri-axial accelerometry; and

2. Identify spectral characteristics that significantly di↵erentiate sleep movements from wake

movements.

5.2.1 Method

The spectral characteristics of wrist movement during sleep and wake were analysed using the

discrete wavelet transform. Movements were segmented using a custom algorithm (described

in Section 3.2.3), and separated into bins based on duration (< 2s, 2 � 5s, 5 � 10s, 10 � 15s

and > 15s). A spectrogram was derived for each axis of movement using the over complete

discrete wavelet transform (OCDWT) [173]. The OCDWT was used to ensure shift-invariance

(i.e. the response remains the same, regardless of when it occurs temporally), while retaining

computational e�ciency [173, 174, 175]. Eight scales were used for the decomposition, repre-

senting 0.78 � 1.56Hz, 1.56 � 3.13Hz, 3.13 � 6.25Hz, 6.25 � 12.5Hz, 12.5 � 25Hz, 25 � 50Hz,

and 50 � 100Hz. The Mallat algorithm (i.e. sub-sampling by 2) was applied to the first two

scales of the decomposition (25 � 50Hz and 50 � 100Hz), and the à trous algorithm (i.e. no

sub-sampling) was applied to the remaining six scales [175]. We will ignore scales 1 = 25�50Hz
and 2 = 50 � 100Hz in the analysis because of the shift-variant nature of these scales, and as

2This work has been published in the 36th Annual International Conference of the IEEE Engineering in
Medicince and Biology Society: “Characterization of Movements during Restless Sleep in Children: A Pilot
Study” [172]
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Figure 5.7: Methodology for exploring the time-frequency characteristics of movement during sleep and wake for
16 patients.

discussed in Section 3.2.4 in Chapter 3, movements in sleep assessment are not likely to occur

in these frequency ranges. The phase and magnitude di↵erence between wavelet coe�cients at

each scale was then determined at a scale-dependent temporal o↵set (described below). Di↵er-

ing spectral characteristics were identified by comparing an average sleep and wake spectrogram

within each temporal bin. Sixteen patients were used to derive these spectrograms (detailed

below). Considering that the significant regions in the di↵erence OCDWT spectrograms were

manually extracted, it is not feasible to describe these regions using a cross-validation design.

Section 5.3 requires the remaining patient set to test the predictive performance of a model

that uses these characteristics. The process for deriving the di↵erentiable characteristics is

illustrated in Fig. 5.7 and described in detail below.

Patient characteristics

A subset of 16 patients (3�12, 15, 21, and 28�31 in Table 3.1.3) were used to identify spectral

characteristics that di↵ered between sleep and wake movements. The patients were manually

selected based on a generalised spread of characteristics: i.e. aged 6�16 years (median 9 years,

8M/8F) with an AHI range of mild to severe (range 0� 16.9, median 1.2). This set of patients

was used to identify significantly di↵erent movement characteristics that are representative of

the cohort.

Representing movement in the 3-dimensional plane

Tri-axial accelerometers have been used to e↵ectively estimate body positions using the math-

ematical framework of inclinometry [176]. Inclinometers measure position changes relative to
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the line of gravity. Unlike inclinometers, accelerometers can only measure position changes

relative to the orientation of the acceleration vector. As such, these systems rely on reference

positions to determine the angle and azimuth of postural changes. Here we are interested in

measuring the relative movement di↵erences and so reference positions are not necessary. The

magnitude and phase di↵erence between consecutive samples of the tri-axial accelerometry data

were used to summarise movement in three dimensions, similar to [176]. The magnitude and

phase di↵erence were calculated from the wavelet decomposition of each x�, y� and z�axis of
each movement (described below). Fig. 5.8 illustrates two vectors, Ã and B̃, in three dimen-

sions and their projections onto the X � Y and X � Z planes (Ã and B̃ represent consecutive

samples of the tri-axial accelerometry data).

The phase di↵erence represents an approximation of the phase change between the vectors

in the X � Y (↵) and X � Z (�) planes, illustrated in Fig. 5.8b and Fig. 5.8c, and is found

using the dot product rule,

↵

AB

= arccos

✓
ÃXY · B̃XY

kÃXYkkB̃XYk

◆
,

�

AB

= arccos

✓
ÃXZ · B̃XZ

kÃXZkkB̃XZk

◆
. (5.1)

The angle given by the dot product in (5.1) represents the angle between the vectors from 0 rad

to ⇡ rad. As this is an absolute value, it is unable to di↵erentiate a coherent phase change

from vector oscillations around a point in the unit circle. To detect these vector oscillations, a

heuristic identified when the accelerometry vector returned past the previous vector. However,

as the data is sampled every 0.01s, any phase changes will be minute. If every sample is

compared, it is also di�cult to detect large phase changes that occur over a period of time. For

this reason, the phase di↵erence between time-delayed samples was analysed. The time-delay

for each scale was defined as 25% of the minimum period present in that scale. Since this

satisfies the Nyquist criterion, the 25% scaling avoids any aliasing e↵ects. The dynamic time-

delay also ensures that high frequency signals have a shorter time-delay than lower frequency

signals. For example, the second scale (25� 50Hz) has a period range of T = 0.02� 0.04s. The

time delay in this band is 25% of the minimum period, � = 0.005s. The time delay � for each

scale  is given by,

� =
2 �1

4F
s

.

The direction of the phase change was identified and used to di↵erentiate coherent phase

changes from vector oscillations. That is, if a vector moved to the opposing quadrant of the

previous vector, the phase change ↵, � was represented as a negative phase; otherwise it was

represented as a positive phase. Since the phase change is additive, a negative phase change
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Chapter 5. Di↵erentiating sleep and wake movements

(a)

(b) (c)

Figure 5.8: Representation of two example movement vectors in three dimensions. Vectors Ã, B̃ and the
di↵erence between them, � is shown in (a). The projection onto the (b) X � Y , and the (c) X � Z planes are
also shown.

(representing an oscillation) is cancelled. The second previous vector is referred to here as the

‘reference vector’. The current movement vector was identified as an oscillation if the di↵erence

between the angle of the reference vector ✓
n�2� and the current vector ✓

n

had a di↵erent sign

than the di↵erence between the angle of the reference vector and the previous vector ✓
n��;

↵

AB

, �

AB

=

8
>>><

>>>:

��
ABn if sign(✓

n�2� � ✓n) 6= sign(✓
n�2� � ✓n��)

and ✓
n�� 6= ✓

n�2�,

�
ABn otherwise,

(5.2)

where �
n

and �
n�1 represent the phase between the reference vector and the current and
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previous vectors respectively, given by (5.1). ✓

n

, ✓

n�� and ✓n�2� represent the angles of the

current, previous and reference vectors respectively, given by the atan2 function. This algorithm

presents problems if all vectors lay in the ⇡/2! ⇡ and �⇡/2! �⇡ quadrants. To work around

this, the angle ✓ of any vectors in the �⇡/2! �⇡ quadrant is transformed to the range 0! 2⇡;

✓ =

8
<

:
2⇡ � |✓| if �⇡  ✓  �⇡/2,

✓ otherwise.

We are interested in the phase with the greatest coherence within either the X � Y plane or

the X � Z plane. As such, the phase � between the vectors was identified as the maximum

angle di↵erence from either the X � Y plane or the X � Z plane,

�� = max(↵
AB

, �

AB

), (5.3)

where ↵ and � were found using (5.2). Taking the maximum phase ensures that any vector

oscillation in an axis of movement is ignored when presented with a coherent phase shift in the

other axis. To ignore small oscillations caused by noise, the phase di↵erence was only calculated

if the magnitude of the vector was within the top 90% of magnitude values within the transform

coe�cients. The last piece of information to capture was the change in magnitude between the

accelerometry vectors,

�� = |kÃk � kB̃k|. (5.4)

The final feature vector represents the change in angular displacement (5.3) and magnitude

(5.4). This is referred to here as the ‘di↵erential feature vector’ �f

✓

,

�f

✓

=

"
��

��

#
. (5.5)

Although the e↵ects of gravity influence the magnitude of acceleration, studies have shown

that the small benefits of removing this influence from the appropriate axis are not worth the

complexity of estimating the gravitational component for un-calibrated accelerometers [177].

For this reason, the gravity component was not removed from the acceleration vector.

Movement representation development

The over-complete discrete wavelet transform (OCDWT) with two critically sampled levels was

used to represent the varying spectral characteristics for the x, y and z�axes separately [173].

Performing the decomposition on the individual axes of movement prior to generating the

summary representations ensures that all movements can be represented in the spectral domain;

the decomposition is performed on the raw movement, not on a summary metric such as

magnitude or phase. Performing the decomposition on a raw axis of movement occurs in
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Figure 5.9: Process for the over-complete discrete wavelet decomposition (OCDWT) for representing movement
during sleep and wake [173]. The OCDWT is performed separately for each axis of movement (x, y, z) and
the magnitude di↵erence �� and coherence of the phase di↵erence �� at each level of the decomposition are
calculated from the (x, y, z) wavelet decompositions. # 2 indicates critical sub-sampling.

physical activity assessment [117]. Since movement analysis in Section 3.2.4 found that we are

not interested in frequencies above 25Hz, the two critically sampled levels correspond to the

25� 50Hz and 50� 100Hz frequency bands. These sub-bands were subsequently ignored. The

magnitude and phase di↵erence were then calculated at each scale of the wavelet decomposition.

The average coe�cients for each movement were analysed for sleep and wake. This procedure

is illustrated in Fig. 5.9, and the Gaussian averaging technique is described in Section 3.5.

The median wavelet coe�cient at each temporal position for each scale was then found for the

magnitude and phase di↵erence of each movement category (illustrated in Fig 5.10). The final

average spectrogram of sleep and wake movements was analysed, and the predominant spectral

characteristics that di↵ered between sleep and wake were identified.

Statistical analysis

The distribution of wavelet coe�cients within each temporal bin for sleep and wake movements

was compared using Welch’s t-test because the number of coe�cients between the sleep and
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Figure 5.10: Procedure for combining discrete wavelet decompositions for each labelled movement DWTn within
each category. The wavelet coe�cients for the median spectrogram DWTmedian are found by calculating the
median coe�cient at each time position within each scale from each decomposition within that category.

wake spectrograms di↵ered. A spectrogram representative of the statistical significance given

by the p�value from Welch’s t-test was generated for each comparison.

5.2.2 Results

There were regions of significant di↵erences for movements 2�5s and 5�10s in duration, detailed

below and summarised in Table 5.2. There were no statistically significant di↵erences in spectral

characteristics for wrist movements less than 2s in duration, or greater than 10s in duration.

The white regions in the p�value di↵erence spectrogram (bottom of Fig. 5.11) for movements

2� 5s in duration illustrate the spectral characteristics that significantly di↵ered between sleep

and wake. The energy of the magnitude di↵erence was significantly greater (p < 0.01) for

wake movements of 0.781� 3.13Hz between 0.2� 1s and 1.2� 2s, and 0.781� 1.56Hz between

3.5 � 4.5s. The phase di↵erence was significantly greater (p < 0.01) for wake movements

of 0.781 � 1.56Hz between 0.5 � 1s and 2.3 � 2.6s, and 1.56 � 3.13Hz between 1 � 1.2s and

1.7 � 1.9s. There were other regions of significant di↵erences; however, these were too short

in duration and too scattered throughout the movement to be of practical significance. Unlike

short-duration movements (shown in Fig. 5.11), the spectral characteristics of wrist movements

5 � 10s in duration did not generally di↵er. As illustrated in Fig. 5.12, the energy was only

significantly greater for the magnitude di↵erence of 0.781 � 1.56Hz movements during sleep

at 4 � 4.1s, p < 0.01. Longer-duration sleep and wake movements had similar low-frequency

spectral content.
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Figure 5.11: Spectrogram of the magnitude and phase di↵erence of wrist movement during sleep and wake for a
duration of 2�5s. The di↵erence spectrograms display the statistical significance of each time-frequency location
(p < 0.05 blue, p < 0.01 light blue, and p < 0.001 white).

Figure 5.12: Spectrogram of the magnitude and phase di↵erence of wrist movement during sleep and wake for
a duration of 5 � 10s. The di↵erence spectrograms display the statistical significance of each time-frequency
location (p < 0.05 blue, p < 0.01 light blue, and p < 0.001 white).

5.2.3 Discussion

The objective of this section was to identify spectral characteristics that di↵er between sleep and

wake movements. We identified some temporal segments of short-duration (2� 5s) movements
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5.2. Di↵erentiating movements on the basis of spectral characteristics

where there was significantly greater spectral energy for wake movements. The reduced spectral

energy of sleep movements is likely due to inhibited muscle tone during sleep [8]. As illustrated

by the greater average wavelet coe�cients in Fig. 5.11, short-duration wake movements are

generally more vigorous than short-duration sleep movements.

As previously discussed, movements during wake are a conscious process and are conse-

quently coherent in nature. This is reflected in the grouped average wavelet coe�cients in

Fig. 5.11: short-duration movements during wake were fairly consistent in nature, whereas the

average sleep coe�cients were widely spread. Supporting this finding, Domingues et al. [18]

analysed the nature of wake movements and report a high degree of autocorrelation. Consider-

ing that the characteristics were fairly consistent across the movements, characteristics that are

specific to wake are likely to be e↵ective for a generalised classification model. However, sleep

characteristics are irregular and vary across the movements. This is consistent with the be-

haviour of activity counts seen in Chapter 4: wake movements commonly produce large activity

values, whereas sleep movements result in a spread of activity values. Some sleep movements

will consequently appear as ‘wake’ movements and will always impact the accuracy of wake

predictions.

Movements 5 � 10s in duration had predominantly low-frequency spectral content during

both sleep and wake. As expected, the low-frequency spectral content indicates that these

lengthier movements are positional changes, rather than limb or muscle twitches. Characteris-

tics of positional changes are unlikely to significantly di↵er between sleep and wake. Indeed, we

saw this in the di↵erence spectrogram in Fig. 5.12, where the low-frequency scales had similar

Table 5.2: Time-frequency characteristic features and their corresponding descriptions

Featurea Representation Frequency Range Temporal Location Description

�W1 �� 0.781� 3.13Hz 0.2� 1s Wake energy > sleep energy

�W2 �� 0.781� 3.13Hz 1.2� 2s Wake energy > sleep energy

�W3 �� 0.781� 1.56Hz 3.5� 4.5s Wake energy > sleep energy

�W4 �� 0.781� 1.56Hz 0.5� 1s Wake energy > sleep energy

�W5 �� 0.781� 1.56Hz 2.3� 2.6s Wake energy > sleep energy

�W6 �� 1.56� 3.13Hz 1� 1.2s Wake energy > sleep energy

�W7 �� 1.56� 3.13Hz 1.7� 1.9s Wake energy > sleep energy

�S1 �� 0.781� 1.56Hz 4� 4.1s Sleep energy > wake energy

a Features are descriptions of the large significant regions from the di↵erence spectrogram illustrated in Fig. 5.11.
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coe�cients for both sleep and wake, and the di↵erence spectrogram was not significant. As ev-

idenced by the greater wavelet coe�cients, short-duration wake movements generally appeared

more vigorous than similar sleep movements. Therefore, characteristics indicative of vigorous

movement are likely to have high discrimination ability between sleep and wake movements.

Indeed, we saw in Chapter 4 that the zero-crossing method (representative of vigorous move-

ment by counting the number of times the acceleration vector crosses a threshold) generally

out-performed all other time-series methods. This is unsurprising as sleep and wake detection

with actigraphy works on the principle that wake corresponds to regions of increased activity.

The greater energy in the lower frequency scales is indicative of positional and/or postural

changes, which are represented by angle approximations (such as SUMPST in Chapter 4).

Section 5.1 identified that ‘bursty’ movements (i.e. movements < 2s in duration) and hand

movements with positional changes were more common during sleep. Although the relative

prevalence of these movements were not assessed in this section, we saw that the spectral

characteristics of these movements di↵ered between sleep and wake. Di↵ering characteristics

further validate the sleep and wake di↵erentiation ability of the heuristic. The analysis in

Chapter 4 found that the temporal resolution of the standard 30s epochs e↵ectively averaged

movement information, reducing characteristically di↵erent movements to the same activity

count. This analysis has shown that there is movement information that may significantly

di↵erentiate sleep and wake on a movement-by-movement basis. The vigorous movements and

postural changes prevalent in wake movements suggest that features representative of these

characteristics should be explored within a sleep and wake classification model. This will be

explored in the next section.

5.3 Sleep/wake prediction on a movement-by-movement basis

In the previous section we explored the spectral content of movements to identify characteristics

that di↵erentiate sleep from wake. In this analysis, we concluded that there were indeed

characteristics that could be exploited to classify segmented movements as occurring during

‘sleep’ or ‘wake’. However, as we saw in Chapter 4, conventional actigraphy is unable to

di↵erentiate sleep movements from wake movements; sleep and wake movements can produce

the same activity count over a fixed epoch of time, and fixed epochs cannot segment specific

movements. Detecting sleep and wake periods on a movement-by-movement basis may improve

the predictive performance because it analyses characteristics of each movement, rather than

fixed epochs of data that may intersect or combine multiple movements. However, there have

been no known attempts in the literature to predict sleep and wake with segmented movements.

We have seen in Section 5.2 that characteristics representative of vigorous activity or pos-

tural changes are much more common in short-duration wake movements. It is likely then that
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these characteristics can di↵erentiate wake movements from sleep movements. Since these met-

rics are movement-dependent, this analysis cannot be performed with fixed epochs. The aim of

this section is to identify if predicting wake on a movement-by-movement basis has improved

accuracy over the conventional fixed epoch time-series summary method.

In this section we will:

1. Develop a regression model that predicts wake on a movement-by-movement basis using

the spectral characteristics identified in Section 5.2; and

2. Compare the predictive performance of the movement-by-movement regression model to

the conventional zero-crossing threshold method.

5.3.1 Method

All 30 patients were used in this analysis: 15 patients that were characteristically representative

of the full cohort (2� 10, 15, 21, 27, and 30� 32 in Table 3.1.3, 10 male, median 9 years, range

6 � 16 years) formed the training dataset for the regression model, and the other 15 patients

(11� 12, 19� 20, 22, 23� 25, 28� 29, 33� 35 and 37� 38 in Table 3.1.3, 12 male, median 9

years, range 6� 15 years), were used to test the model using leave-one-out cross-validation on

patients.

Movements during sleep and wake were segmented from the raw tri-axial wrist accelerom-

etry data for each patient in the training dataset using the process detailed in Section 3.2.3.

The spectral characteristics identified in Section 5.2 (detailed below) were extracted for each

movement. These spectral characteristics, together with temporal characteristics that describe

vigorous movement and postural changes, formed the final feature set for training the linear

regression model. This regression model was applied to the patients in the test dataset. The

predictive performance of this model was then identified and compared to the conventional

zero-crossing threshold method using ROC analysis. ROC analysis was used to identify the

threshold for classification; i.e. the threshold that gave the greatest Kappa agreement in the

cross-validation training set within each fold. ROC analysis was performed on the raw zero-

crossing data and on the scaled wake likelihood given by the regression model.

The regression model was assessed on a movement-by-movement basis and also translated

into a time-series representation. The movement-by-movement regression model only considers

the sleep and wake regions that correspond with movement. Translating the prediction scores

into a time-series signal also considers both sleep and wake regions that do not coincide with

movement. Essentially, the regression model provides a ‘summary’ value (i.e. a likelihood of

coinciding with wake) for each movement. Time-indices with no detected movements are given

a value of 0. This process is described in more detail below and illustrated in Fig. 5.13. The

methodology is illustrated in Fig. 5.14.
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Regression model output for 418 movements:

Regression model output translated into time-series:

Zero-crossing activity counts (30s epochs):
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Figure 5.13: Procedure for representing movement with the regression model (movement-by-movement basis and
translated into an equivalent time-series representation), as compared to the standard 30s zero-crossing activity
counts. Example from one full-night patient study.
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Figure 5.14: Method for identifying the predictive performance of detecting sleep and wake on a movement-by-
movement basis.

Regression model

The feature vector for sleep and wake movements includes temporal characteristics that sum-

marise vigorous movement and postural changes, and the specific spectral characteristics iden-

tified in Section 5.2.

The spectral features for wake F were defined as the N wake characteristics summarised in

Table 5.2,

F = {�
Wn(f, t), �Wn(f, t)}, 8n, 1  n  N. (5.6)

The di↵erentiable segments of high spectral energy from Fig. 5.11 (summarised in Table 5.2)

consist of a set of wavelet coe�cients. Therefore, di↵erent statistical summary operations were

performed on each of these segments to summarise the spectral content for consideration in the

regression model: maximum, mean, summation and variance.
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The final set of temporal features and spectral regions from Section 5.2 used in the regression

model were:

Label Description

Temporal features

� Duration of movement

R Auto-correlation with a 0.1s o↵set

SM Total magnitude of the movement

MM Maximum magnitude of the movement

SP Total degree of positional changes within the movement

MP Maximum degree of positional change within the movement

Spectral regions (from Section 5.2)

�W1 ��, 0.781� 3.13Hz, 0.2� 1s

�W2 ��, 0.781� 3.13Hz, 1.2� 2s

�W3 ��, 0.781� 1.56Hz, 3.5� 4.5s

�W4 ��, 0.781� 1.56Hz, 0.5� 1s

�W5 ��, 0.781� 1.56Hz, 2.3� 2.6s

�W6 ��, 1.56� 3.13Hz, 1� 1.2s

�W7 ��, 1.56� 3.13Hz, 1.7� 1.9s

Linear regression identified the fit of the model on the training patient data using the movement

features described above: the temporal features and the summary operations (maximum Max,

mean E, summation ⌃ and variance Var) applied to the spectral regions. The normalised

features were used to identify the significant features for the model (i.e. features with a p-value

< 0.05). The final model coe�cients were identified using the unnormalised features.The final

model found in the regression analysis was,

P

wake

= 0.354R + 0.037S
P

� 0.029Max(�
W7) + 0.008E(�

W2)� 0.007Max(�
W2)

+ 0.003⌃�
W5 . (5.7)

Validation procedure

The predictive performance of the regression model was compared to the conventional zero-

crossing threshold technique using ROC analysis in leave-one-out cross validation on the test

patients. The threshold for predicting wake was identified as the threshold closest to (0, 1)
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Table 5.3: Class discrimination ability and predictive performance of the regression model and the conventional
zero-crossing thresholding.

AUC (%) Kappa Sensitivity (%) Specificity (%)

Regression Model 70.2 (8.5) 0.285 (0.157) 70.0 (18.0)a 59.6 (20.4)

Regression Model (Time-series) 63.9 (6.7) 0.331 (0.133) 30.3 (13.4) 96.9 (1.3)

Zero-crossing Thresholding 69.7 (7.9) 0.424 (0.157)a 42.8 (14.7) 95.3 (2.4)a

Values are shown as mean (±SD)
a
p < 0.05, Regression model vs. Zero-Crossing thresholding

in the ROC space of the training set in the cross validation. In addition to movement-by-

movement detection, the regression model was analysed when translated back into the 100Hz

time-series. As illustrated in Fig. 5.13, the detected movements were represented by their

respective regression value, and regions with no movement were set to 0. The AUC, Kappa

agreement, sensitivity and specificity of the chosen threshold (from ROC analysis) were assessed.

5.3.2 Results

The ROC analysis and Kappa agreement for the regression model and the conventional zero-

crossing threshold method are shown in Table 5.3. The sleep and wake discrimination ability

was similar between the regression model and the conventional method (AUC: 70.2(8.5)% vs.

69.7(7.9)% respectively). The Kappa agreement was significantly greater for the conventional

method (0.424(0.157) vs. 0.285(0.157), p < 0.05).

5.3.3 Discussion

The movement-by-movement regression model poorly predicts if movement occurs during sleep

or wake. The regression model only classifies segmented movements; it is not a↵ected by quiet

rest artefacts or restful sleep. Therefore, the regression model assessed the ability to discrim-

inate sleep regions that are associated with movement from wake regions that are associated

with movement. We can speculate from the poor predictive performance that sleep and wake

movements cannot accurately be discriminated using a simple threshold or regression model.

Considering that the performance of the regression model was similar to the conventional epoch

summaries, we can also speculate that the specific method for deriving a movement represen-

tation does not significantly a↵ect the predictive performance.

The autocorrelation of the movement was found to be the most significant factor in the

regression model. This verifies literature [18] and general data observations in Chapter 4 and

Chapter 5 that the coherence of movements during sleep and wake di↵er. Wake movements are

generally more consistent in nature than sleep movements, and are consequently characterised
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Figure 5.15: Average ROC of the regression model and the zero-crossing thresholding (a) initially and (b) after
smoothing with a 5.5 min moving average filter. The filter was not applied to the movement-by-movement
regression model (shown in blue).
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by a greater degree of autocorrelation. This verifies our movement observations in Section 5.1

that sleep movements appear more ‘random’. However, the poor predictive performance sug-

gests that the degree of this characteristic di↵erence is not substantial for discriminating sleep

movements from wake movements.

The model o↵ered slightly better performance when a moving average filter was applied (as

illustrated by the comparative ROC curves in Fig. 5.15b). This is consistent with the filter

e↵ects seen in Chapter 4; smoothing the time-series representations significantly improved the

sleep and wake discrimination ability for both methods. The greatest impact on sleep and wake

prediction accuracy has consistently been the smoothing filter (seen here and in Chapter 4). The

significant increase in discrimination ability when applying the smoothing filter (highlighted in

Fig. 5.15) is explained by the addition of activity values in wake periods that, prior to the

smoothing, did not contain activity. Applying a threshold to these activity values will correctly

identify these regions of quiet rest as ‘wake’ where, prior to smoothing, these regions were

incorrectly identified as ‘sleep’. The greatest performance improvement in sleep and wake

estimation with actigraphy is seen when addressing the quiet rest limitation.

5.4 Summary

In this chapter we sought to di↵erentiate movements that occur during sleep from movements

that occur during wake, with the aim of improving false wake detections. We hypothesised

that the physiological characteristics of sleep and wake movements di↵er, and can consequently

directly di↵erentiate sleep regions from wake regions for improved classification performance.

First, we explored the e↵ect of specifically removing the influence of movements associated

with sleep on wake predictions in Section 5.1. We then identified movement characteristics

that di↵ered between sleep and wake in Section 5.2. Finally, we used these characteristics to

predict sleep and wake on a movement-by-movement basis in Section 5.3.

Heuristically removing movements that occur during sleep as a pre-processing step in Sec-

tion 5.1 significantly improved wake predictions. This shows that we can successfully detect

some movements that are associated with restless sleep, which indicates that there are some

characteristics of movements that occur during sleep that di↵er from wake. This was verified

in Section 5.2, where localised spectral characteristics of short-duration movements di↵ered be-

tween sleep and wake. We saw regions of increased spectral energy and characteristics indicative

of postural changes during wake movements. Movements during wake were also consistent in

nature, whereas the spectral characteristics tended to di↵er across the sleep movements. Using

these characteristics to classify sleep and wake on a movement-by-movement basis in Section 5.3

did not accurately predict the correct class membership of the detected movements. This shows

that although some movement characteristics did significantly di↵er, they were not substan-

tially discriminatory for classification purposes. It is likely that the general inconsistent nature
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of sleep movements contributes to this. That is, some sleep movements do di↵er to wake

movements; however, there are also sleep movements that have similar characteristics to wake

movements. Therefore, because of the inability to di↵erentiate movements in a generalised

context, and the moderate wake predictive performance seen in Chapter 4, we can conclude

that movement information alone is not able to accurately classify sleep and wake; there are

no generalisable movement characteristics that consistently and accurately di↵erentiate sleep

from wake.

In this chapter we saw that:

• Some movements associated with restless sleep can be isolated from movements that occur

during wake, and removing these sleep movements consequently improves sleep and wake

predictive performance;

• Wake movements have greater energy than sleep movements for some localised spectral

regions;

• Short-duration wake movements are generally more vigorous than sleep movements and

are characteristic of positional changes;

• Movement characteristics in a regression model are unable to accurately classify move-

ments as occurring during sleep or wake; and

• Temporal and spectral characteristics of movements are not able to accurately estimate

sleep and wake regions for a generalised cohort; it is unlikely that movement information

alone can be e↵ectively manipulated to accurately estimate sleep and wake.

We saw in this chapter that, unlike wake, the nature of sleep movements varied considerably;

however, the specific origin of these events has yet to be considered. It is possible that some

of these sleep movements are associated with a physiological or pathological event that is

characteristic of sleep disturbance associated with a sleep disorder. In the next chapter, we

will identify the association between sleep movements and physiological and pathological events

(transient arousals, apnoeas and hypopneas) that are associated with sleep disorders.
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6
Physiological associations with sleep movements

“Mr. C., aged fifty-six years, ... gave no evidence in the day of respira-

tory incompetence, ... . When in deep sleep he began to breathe less and

less deeply, and at last, for a few seconds, not to breathe at all. At this

moment he moved, twitched, and at last awakened with evidences of com-

mencing apnoea in the color of the lips, tongue, and nails. When awake

a few voluntary e↵orts to respire relieved him. These attacks became at

last so frequent and perilous that a nurse sat by his bed and awakened

him as soon as he began to breathe less and less deeply. As time went

on the trouble increased, and whenever he fell asleep respiration ceased

abruptly. He was finally worn out with loss of sleep, and died suddenly

in one of these onsets of respiratory failure.”

— Medical case studies, 1890, S. Weir Mitchell, M.D., LL.D Harv.,

Physician, 1829 - 1914 1

In Chapter 5 we concluded that although some sleep movements were characteristically dif-

ferent to wake movements, these characteristics were unable to reliably di↵erentiate sleep from

wake. This is due to the considerable variability of movement characteristics during sleep. For

this reason, it is unlikely that movement characteristics will form an accurate predictor of sleep

and wake regions. However, this analysis did not attempt to identify the source of these sleep

1Medical case studies and discussion detailed in [178].
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movements. If these sleep movements are caused by a physiological process characteristic of

sleep disorders (such as transient arousals, apnoeas and hypopneas), movements associated with

sleep may capture signs indicative of sleep disorder severity. In this chapter we will explore the

temporal association between movements during sleep, transient arousals and apnoeic events.

Arousals from sleep can occur spontaneously or as a response to some stimulus, such as an

apnoeic event. During an arousal, the body is mobilised in an attempt to address a potential

threat. It is therefore thought that body or limb movements may occur during arousal from

sleep [179]. Indeed, historic American Sleep Disorders Association (ASDA) criteria for scoring

arousals during REM sleep required leg muscle movement to accompany electroencephalogram

(EEG) activity [51] (now optional [42]). Although this is not the case for apnoeic events, the

cessation of, and return to, breathing may cause body and/or limb movement [59]. Consistent

temporal association between movement and arousal or apnoea would suggest that actigraphy

could predict these events and explain the origin of some movements during sleep. Since arousals

during a sleep stage transition likely disturb sleep [52], and arousals to wake may not satisfy

the wake scoring criteria (i.e. duration < 50% of an epoch), predicting arousals and/or apnoea

would identify regions of sleep disturbance otherwise unidentifiable by the 30s wake estimates.

In addition to predicting these events, the relationship with body and/or limb movements

during sleep may negatively impact the wake predictive performance of actigraphy. Indeed,

movement associated with these events will manifest during ‘sleep’ and may be seemingly

misclassified as ‘wake’ with actigraphy. Identifying these movements as ‘sleep disturbance’,

instead of ‘wake’, would improve the accuracy of sleep estimates (as compared to the gold

standard polysomnography), and/or may provide an avenue for identifying signs indicative of

sleep disorder severity.

There have been some studies that have investigated physiological markers for arousal de-

tection using sensors that measure muscle activation (electromyogram (EMG)). Mograss et al.

[180] analysed the occurrence of movement/arousals recorded with chin and arm EMG and

standard polysomnography for 15 children presenting with OSA. Despite an extensive analysis

on the prevalence of arousals and their relationship with apnoeas and hypopneas, they did not

explore the relationship between arousals and specific movements. Further to this, Mograss

et al. [180] only identified movement using chin and arm EMG, which records muscle activa-

tion, not necessarily specific movement types. Drinnan et al. [181] evaluated the ability of some

physiological markers to detect transient arousals from sleep in 36 adults using raw wrist and

ankle accelerometry and left and right tibia EMG. They found that limb movement is somewhat

correlated with arousal events and therefore can identify the occurrence of arousals. Despite

this, they noted poor sensitivity for specifically detecting arousals with movement. This may be

due to their method of detecting movement during arousal. ‘Arousal movement’ was defined as

any movement greater than what is ‘standard’ during sleep (assessed using raw accelerometry

data). This definition assumes, possibly incorrectly, that arousals cannot cause small move-
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ments, or movements similar to those that occur during sleep. In addition to this, they used

uni-axial accelerometry to detect movements, which, as we saw in Chapter 4, cannot detect

movements that occur orthogonal to the measurement axis. More recently, O’Driscoll et al.

[100] evaluated the agreement between actigraphic measures of sleep fragmentation (identified

as the percentage of high-activity sleep epochs and the percentage of surrounding immobility)

and the polysomnographic arousal index for 130 children. O’Driscoll et al. [100] found that

actigraphy was unable to accurately determine the level of sleep fragmentation when compared

to the standard arousal index. However, this study used activity as scored by a commercial

system on a 30s basis, and therefore can only detect arousals based on the occurrence or absence

of large regions of movement.

There is evidence of an association between some sleep movements and arousal events in

literature. However, it is unclear whether this association is specific to a certain subset of sleep

movements, and whether these movements can be isolated from other sleep movements and/or

from movements that occur during wake. It is also unclear if this association is extended to

apnoeic events. Accurately identifying sleep-related movements that are not associated with

arousals, apnoeas or wake would improve the accuracy of ‘sleep’ predictions.

This chapter indirectly addresses the second limitation of actigraphy, discussed in Chapter 1:

False positives: sleep epochs with observed movement are incorrectly identified as

‘wake’.

This chapter will address the hypothesis:

Physiological and pathological events characteristic of sleep disorders (e.g. apnoeas,

hypopneas and transient arousals) cause sleep movements that contribute to false wake

detections.

In this chapter we will first explore the temporal association between sleep movements, transient

arousals and apnoea. We will explore the impact of arousals on actigraphy-derived estimates

of wake, and whether actigraphy can predict these events.

This exploration will be performed in two sections:

Association between movement, arousal and apnoea

Section 6.1 aims to explore the temporal and spectral association between limb/body movements,

transient arousal and apnoeic events. This section will explore the duration and percentage of
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arousals and apnoeas/hypopneas that coincide with movement, and the duration and percentage

of sleep movements that coincide with arousal.

Predicting arousals with movement

Section 6.2 aims to identify the ability of actigraphy to predict transient arousals, and conversely,

the impact of arousals on actigraphy-derived wake scores. This section will compare the total

wake after sleep onset of actigraphy-derived wake (considering arousal events) as compared to

polysomnography scored wake.
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6.1. Association between movement, arousal and apnoea

6.1 Association between movement, arousal and apnoea2

In this section we will investigate the temporal and spectral association between limb/body

movements, sleep-related arousal events and apnoea. There is evidence in literature that tran-

sient arousals may be accompanied by movement. However, these studies do not compare

high-resolution information from all movements during sleep, arousal and wake for children.

The literature also does not analyse movement from di↵erent locations on the body. We are

able to address these limitations and perform these analyses with CMAS.

The specific aims of this section are to:

1. Determine the association between transient arousals and body/limb movement; and

2. Determine the temporal association between apnoea and body/limb movement.

6.1.1 Method

The full 30 participants detailed in Table 3.1.3 were used in this analysis. Each patient under-

went the study procedure outlined in Section 3.1.4.

Analysis of association with transient arousal

The methodology for this analysis is summarised in Fig. 6.1. Movement segments were de-

tected from the raw accelerometry for each accelerometer placement using the method outlined

in Section 3.2.3. The manually scored arousal label and 30s sleep stage were extracted for

each movement (described in detail below). After movements were segmented, blocks of miss-

ing accelerometry data within each segment (caused by missing wireless packets discussed in

Section 3.1.4) were interpolated. This was performed post-movement detection to ensure that

the interpolation procedure did not create artefacts. Segmented movements were stratified

according to sleep stage (REM, NREM and wake) and arousal incidence.

Although the American Academy of Sleep Medicine (AASM) alterations to the ASDA cri-

teria (summarised in Section 2.1.2) somewhat improved the inter-rater variability for scoring

arousals [183, 50], there is still substantial variability. To account for any variability in scored

arousal start and end times, a detected movement was considered associated with an arousal

event if it occurred during or within a 2s window before or after the event. Movement was con-

sidered to occur during a specific sleep stage if more than 50% of the movement occurred during

that stage. Arousals that occurred during a wake transition were not included in this analysis.

Two metrics were developed to quantify the temporal association between limb and/or body

movements and arousal events: event duration and prevalence. Event duration was assessed

2This work has been published in The Journal of Physiological Measurement: “Temporal association between
arousal and body limb movement in children with obstructed sleep apnoea” [182]
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Raw CMAS 
accelerometry data

(x,y,z)

Segment movements 
from raw accelerometry

• Finger
• Wrist
• Chest
• Ankle
• Toe

Identify temporal location of 
movements and arousal events

Outcome:

Input signals:

30 patients     6-16 (9) years, 21M/9F, AHI 0-16.9 (0.95)

Percentage and duration of arousals the are associated with movement
Percentage and duration of movements during sleep that are associated with an arousal event
Spectral characteristics of sleep movements during arousal and not during arousal
Duration of movements during sleep, wake and arousal

Manually scored 
arousal events

Analyse: 
• temporal association between movement, arousal 

events and wakefulness; and
• Spectral characteristics of sleep movements that occur 

during arousal

Figure 6.1: Methodology for exploring the characteristics of movement during di↵erent arousal events for 30
patients. Movements and their corresponding arousal event are segmented and the duration and prevalence for
each arousal event is explored.

across the cohort by analysing the median duration for each patient, and the variation of these

medians across the cohort (represented using the coe�cient of variation). The prevalence of

movements associated with arousal was defined as the percentage of movements that occurred

during an arousal and also during sleep. Similarly, the prevalence of arousals with an associ-

ated movement was defined as the percentage of arousals that had a movement occur within

the span of the arousal event. The spectral characteristics were derived for sleep movements

that coincided with arousal and sleep movements that did not coincide with arousal using the

approach outlined in Section 5.2.

This analysis was performed for the finger, wrist, upper thorax, ankle and toe accelerome-

ters individually, and for all accelerometers combined; i.e. when movement was detected in any

of the finger, wrist, upper thorax, ankle or toe recordings. Since the variability and number of

events di↵ered, Welchs t-test was used to compare the median duration distributions for move-

ments that occurred during an arousal and those that did not have an associated arousal event

for all patients. For the same reason, Welch’s t-test was also used to assess the significance of

the spectral characteristics. Finally, the association between arousal events, movement and AHI

for this cohort was identified. The analysis determined whether a greater AHI corresponds to

a greater number of arousals, or arousal-related movements, using Spearmans rank correlation

coe�cient.

Analysis of association with apnoea

The full methodology for this analysis is summarised in Fig. 6.3. The manually scored ap-

noeic events (central, mixed and obstructive apnoeas and hypopneas) were extracted from the
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Figure 6.2: Number of arousals experienced by each patient: (a) during sleep (dark blue) and the transition to
wake (light blue), and (b) respiratory-related arousals (dark blue) and spontaneous arousals (light blue).

polysomnography files. The associated regions in the raw accelerometry data were then iden-

tified for each apnoeic event and a surrounding ±2s region. This dilation in event scoring

accounts for any inter-scorer variability in event start and end time. For each apnoeic event,

movements within the event region were segmented using the process described in Section 3.2.3.

Summary metrics were then determined for each event region (detailed below). The analysis

in this section is limited by the number of apnoeic events from each patient (illustrated in

Fig. 6.4). Since there is only a small number of apnoeic events (total of 402 across the 38

patients, excluding Patient 21, who dominated the distribution with 122 of the 402 events),

this analysis can only be an exploration, and the temporal association between movement and

apnoeic events cannot be accurately quantified.

Two metrics were derived to indicate the occurrence of movement within an apnoeic event:

the total number of positional changes �DC of all movements for all limbs (6.1), and the total
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Raw CMAS 
accelerometry data

(x,y,z)

Segment accelerometry 
data using the bounds of 
each apnoeic event, ±2�

{ℳ�}

Set of movements within 
each apnoeic event region

• Finger
• Wrist
• Chest
• Ankle
• Toe

Percentage of apnoeic events that contain
��� > 0
��� > 0

Segment movements 
within each apnoeic event

For all movements ℳ within each apnoeic 
event, compute association summary metrics

Δ��
���

Manually scored 
apnoeic events,

Outcome:

Input signals:

30 patients     6-16 (9) years, 21M/9F, AHI 0-16.9 (0.95)

Figure 6.3: Methodology for analysing the association between any movement and an apnoeic event.
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Figure 6.4: Total number of apnoeas (dark blue) and hypopnoeas (light blue) experienced by each patient.

acceleration Acc of all movements for all limbs (6.2) for each apnoeic event E. These values

were normalised by the event duration t to ensure that longer events did not bias the metrics.

A positional change was defined as occurring within a movement if the first 0.5s of a movement

had a di↵erent (x, y, z) DC o↵set than the final 0.5s within a tolerance T . The total number

of positional changes for each movement m within an apnoeic event E is described by,

�DC =
1

t

X
{km̂[0, · · · , 0.5s]� m̂[N � 0.5s, · · · , N ]k > T} 8m 2 E, (6.1)

112



6.1. Association between movement, arousal and apnoea

where N is the length of the respective movement. The total acceleration for each movement

in an event is described by,

Acc =
1

t

NX

n

m[n] 8m 2 E | km[n]� m̂k > T. (6.2)

The percentage of apnoeas and hypopneas that contain values of �DC and Acc greater than 0

was then analysed. This percentage indicates whether the event coincides with some movement.

6.1.2 Results

Association with transient arousal

On average, 67.5% of arousals were associated with wrist movement (see the median percent-

age of arousals that coincided with movement ‘%a’ in Figure 6.5). The median percentage of

movements that coincided with arousal, ‘%s’ in Figure 6.5, shows that, on average, 17.5% of

wrist movements were associated with an arousal. That is, 82.5% of wrist movements during

sleep did not occur with an arousal. Other than gender, there was no distinguishable di↵er-

ence between the patient with the highest (patient 31, 96.9%) and lowest (patient 34, 1.89%)

percentage of arousals coinciding with movement. Arousal incidence rate varied greatly across

all patients, irrespective of AHI. This inter-patient variability was seen for all accelerometer

placements, as summarised in Table 6.1 (also see Fig. E.1 through Fig. E.5 in Appendix E).

Including movement segments from any sensor increased the percentage of arousals that co-

incided with movement to 89%. There was no di↵erence in movement prevalence or duration

between NREM and REM sleep.

As shown by the median movement duration in Table 6.1 and Fig. 6.7, the duration of both

arousal-related wrist movements and wake movements were greater than sleep movements that

were not associated with an arousal event (duration of 6.26s and 9.89s vs. 2.35s respectively,

p < 0.01). As documented in Table 6.1, this was consistent across all accelerometer placements

(also illustrated in Fig. E.1 through Fig. E.5 in Appendix E). Arousals with an associated wrist

movement were generally longer than arousals without an associated wrist movement (median

duration 12s vs. 9s respectively, p < 0.01), as shown in Fig. 6.8(left). However, arousals with

a greater duration did not correspond with a longer associated wrist movement, as shown by

the weak correlation in Fig. 6.8(right).

The spectral characteristics di↵ered for longer-duration wrist movements (2� 10s in dura-

tion) and chest movement (5�10s in duration). The greater wavelet coe�cients are summarised

for wrist movements in Fig. 6.9 and Fig. 6.10 and chest movements in Fig. 6.11. The greater

coe�cients (highlighted by the lighter blue in the spectrograms) indicate that the magnitude of

sleep movements during arousal are generally greater than sleep movements that do not coincide

with arousal. There were no significant di↵erences for finger, ankle and toe movements.
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Figure 6.5: Number of wrist movements that occur during sleep, wake and an arousal event, and the total
number of arousals across the night for each patient. The percentage of arousals that contain movement %a
are indicated by the overlapping regions. The percentage of movements across the night that occur solely during
sleep %m and during both sleep and arousal %s are also shown.

The total number of arousals were weakly correlated with AHI (⇢ = 0.19) and respiratory-

related arousals were moderately correlated with AHI (⇢ = 0.72). Arousal-related wrist move-

ments were mildly correlated with AHI (⇢ = 0.28), as illustrated in Fig. 6.12. Patient 21, who

had an AHI of 16.9, was removed because they were a significant outlier and influenced the

correlation (⇢ = 0.27 vs. 0.19). Patient 6, highlighted in Fig. 6.12, did not have a greater

number of arousals, arousal-related movements or movements during sleep, despite having a

moderate AHI.
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Figure 6.10: Spectral characteristics of wrist movements during sleep that coincide with arousal, and movements
that do not coincide with arousal for movements 5� 10s in duration.
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Figure 6.11: Spectral characteristics of chest movements during sleep that coincide with arousal, and movements
that do not coincide with arousal for movements 5� 10s in duration.
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Table 6.1: Prevalence and duration of arousals and movements for the left finger, left wrist, chest, left ankle
and left toe during wake, non-REM (NREM) and REM sleep stages

Finger Wrist Chest Ankle Toe All

Number of Movements per Hour of NREM/REM Sleep

NREM 15.4 (21.4) 13.6 (18.0) 46.0 (79.8) 8.6 (13.5) 10.9 (17.0) 60.5 (103.1)

REM 13.3 (21.6) 14.0 (16.8) 48.0 (67.9) 5.1 (7.0) 4.7 (11.6) 65.9 (66.1)

Percentage of movements that occur during sleep that also occur during arousal

Sleep 16.0 (17.9) 17.5 (26.2) 5.0 (6.9) 26.8 (24.8) 18.4 (23.8) 4.1 (6.0)

NREM 15.0 (20.0) 18.8 (26.1) 4.7 (7.8) 23.7 (29.6) 19.6 (23.3) 4.9 (6.6)

REM 11.5 (23.2) 16.7 (28.8) 8.2 (13.1) 23.1 (37.1) 15.8 (23.9) 6.2 (8.8)

Percentage of arousals that have an associated movement

Sleep 70.7 (50.1) 67.5 (46.3) 71.8 (31.0) 62.3 (50.1) 65.9 (48.4) 89.0 (33.0)

NREM 62.3 (43.8) 68.7 (50.0) 79.1 (29.2) 62.5 (47.4) 67.8 (49.2) 88.9 (30.7)

REM 66.4 (48.1) 55.1 (54.1) 58.5 (45.2) 52.8 (57.5) 59.2 (55.9) 87.8 (45.0)

Median movement duration (s, CV)b

Wake 6.92, 0.33 6.26, 0.26 4.35, 0.35 6.37, 0.89 4.96, 0.23 6.16, 0.38

Sleep, no arousal 2.70, 0.30 2.35, 0.31 2.29, 0.69 2.11, 0.35 2.96, 0.35 2.33, 0.55

Sleep, arousal 9.89d, 0.41 9.56d, 0.36 7.46d, 0.61 5.91d, 0.46 7.64d, 0.38 11.03d, 0.54

NREM, no arousal 2.77, 0.34 2.33, 0.39 2.30, 0.70 2.17, 0.30 2.97, 0.33 2.32, 0.57

NREM, arousal 9.22d, 0.45 9.20d, 0.44 7.49d, 0.62 6.50d, 0.44 6.72d, 0.41 10.12d, 0.57

REM, no arousal 2.72, 0.31 2.35, 0.39 2.22, 0.57 2.22, 0.49 3.38, 0.44 2.43, 0.32

REM, arousal 10.90d, 0.60 10.23d 0.58 7.45d 1.02 7.40d, 0.45 9.02d, 0.34 12.40d, 0.79

Median arousal duration (s, CV)b

Sleep, no movement 8.50, 0.35 9.25, 0.29 9.00, 0.23 9.50, 0.28 9.50, 0.29 8.75, 0.15

Sleep, movement 12.5, 0.38 13.4, 0.56 13.0, 0.36 14.8, 0.48 12.5, 0.52 12.3, 0.40

NREM, no movement 9.00, 0.34 9.00, 0.36 10.5, 0.29 9.75, 0.32 9.25, 0.42 8.25, 0.34

NREM, movement 13.8, 0.42 13.8, 0.59 13.8, 0.45 15.0, 0.57 12.5, 0.62 13.0, 0.49

REM, no movement 7.75, 0.16 9.00, 0.35 6.25, 0.08 9.00, 0.32 9.00, 0.28 6.50, 0.36

REM, movement 14.3c, 0.31 13.5, 0.51 12.3c, 0.39 14.5, 0.36 15.3, 0.37 12.0, 0.42

a Values are shown as median (IQR). Values represent the percentage of movement, arousal, NREM and REM sleep that contain
movement with arousal or arousal with movement.
The median prior probabilities for NREM/REM sleep are 78.7%/21.3% respectively.
The median (IQR) number of arousals per hour of NREM/REM sleep are 4.5(2.9)/6.2(3.9) respectively (p = 0.11).
The percentage of movement without arousal and arousal without movement (not shown) is approximately 100% minus movement
with arousal and arousal with movement respectively.
b Values are shown as median across the cohort (i.e. the median of the individual patient medians) (s), coe�cient of variation (�µ ).
c
p < 0.05, d

p < 0.05 Larger movement/arousal duration with arousal/movement compared to without arousal/movement.
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Figure 6.13: Representation of (a) the total acceleration, and (b) the number of positional changes for each
apnoeic event, *normalised by the event duration.
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Chapter 6. Physiological associations with sleep movements

Association with apnoea

As illustrated by the scatter plots in Fig. 6.13, on average, 36.7% of hypopneas contained

vigorous movement and 40.8% contained postural changes. Obstructive apnoeas tended to

coincide with more movement than central apnoeas (20.0% vs. 17.6% for vigorous movement

during obstructive and central apnoeas respectively, and 28.0% vs. 19.7% for postural changes

during obstructive and central apnoeas respectively). Hypopneas coincided more often with

movement than apnoeas (36.7% vs. 18.5% for vigorous activity, and 40.8% vs. 21.4% for

postural changes).

6.1.3 Discussion

This analysis sought to identify the temporal association between transient arousals, apnoeic

events and movement to explore the impact on actigraphy-based estimates of sleep architecture.

Given the moderate association between arousals and lengthy movements, arousals are indeed

likely to confound wake predictions. While the greater duration of arousal-related movements

suggests that actigraphy could di↵erentiate arousal-related movements from other movements

during sleep, on average 32.5% of arousals were not associated with a measured movement

event. Actigraphy, on its own, cannot reliably detect all arousal events; however, since arousals

with movement are longer than those without, actigraphy may detect the arousal events that

have the greatest impact on sleep quality.

Movement and transient arousal

Body mobilisation, as an attempt to address a potential threat, is often considered a key

element of the arousal response [4]. However, on average, only two thirds of arousals coincided

with wrist movement. This increased to 89% when including movement detected from any

accelerometer (summarised in Table 6.1 and illustrated in Fig. 6.6); however, these arousals

only coincided with 4.1% of movements during sleep. Although actigraphy may di↵erentiate

some of these lengthier arousal-related movements from the other 95.9% of shorter-duration

sleep movements (thereby identifying the corresponding regions of sleep disturbance), the inter-

patient variability (illustrated by the large spread of prevalence in Fig. 6.6) suggests that it

would only be e↵ective for a subset of patients. Furthermore, this increased sensitivity to

arousals with an associated movement requires additional accelerometers, which decreases the

percentage of sleep movements associated with arousal. Additional accelerometers may also

reduce the usability in a non-clinical setting, and increase the risk of artefacts from patient

interference. Regardless, this is still promising and requires further exploration.

Comparing the manually labelled movements of the 10 patients that were used to derive the

heuristic in Section 5.1 found that body movements without positional changes coincided the

most with arousal. The confusion matrices for the labelled movements and arousal events for
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Figure 6.14: Confusion matrix of labelled movement types and arousal events for 10 patients.

the 10 patients are shown in Fig. 6.14. The association is low when compared to the association

documented in Table 6.1. It is important to note that these movements are manually labelled

and only from 10 of the 38 patients. Comparing the number of sleep movements that coincide

with an arousal event to the heuristically identified sleep movements in Section 5.1 (i.e. the

application of an observationally derived heuristic to identify sleep movements) across the

cohort showed that the majority (88.2%) of arousal-related movements were identified by the

heuristic. We saw in this chapter that short-duration movements during sleep were unlikely to

occur during an arousal event. Removing the short-duration movement component from the

heuristic further increased the percentage of arousal-related movements that were identified by

the heuristic to 90.9%. This further supports the hypothesis that arousal events cause body

and limb movement during sleep.

Arousals that did coincide with movement were generally longer than those that did not

coincide with movement, as illustrated in Fig. 6.8. Similarly, the majority of movements dur-

ing sleep were not associated with an arousal (only 17.5% of wrist movements). Therefore, in

accordance with adult data presented by Drinnan et al. [181], the paediatric data does not sup-

port the theory that arousals consistently coincide with body mobilisation. Furthermore, only

some movements that occur during sleep periods can be explained by arousals. Nonetheless,

movements that were associated with an arousal were significantly longer than other move-

ments during sleep (range of 6s �14s vs. 2s �7s for wrist movements, as indicated in Fig. 6.7).
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Chapter 6. Physiological associations with sleep movements

Sleep movements that coincide with arousals also generally have greater spectral energy be-

tween 0.781Hz and 3.13Hz, particularly for movement magnitude (illustrated in Fig. 6.9). As

such, our data does support that there is a sub-group of arousal events that are longer in dura-

tion and are associated with significant body/limb movements. In some cases, these extended

events may satisfy the requirements of wake classification, but may overlap consecutive epochs,

thereby falling short of the scoring requirement of occupying the majority of a single 30s epoch.

Spontaneous arousals have been found to be more common during NREM sleep than REM

sleep in children (approximately 3 : 1) [52]. As such, it may be expected that arousal-related

movements are also more common during NREM sleep. But, as shown by the similar percentage

of arousals associated with movement in Table 6.1, we can observe no di↵erence during NREM

and REM sleep for this cohort. There is also no significant di↵erence in the number of any

movements per hour of NREM and REM sleep (60.5(103.1) vs. 65.9(66.1)), and the number

of arousals per hour of NREM and REM sleep (4.5(2.9) vs. 6.2(3.9)). This finding is similar

to Walter et al. [184], who found no significant di↵erences between arousal occurrence within

NREM and REM sleep (9.0(0.4) vs. 8.0(0.65)) for 51 children 3�5 years of age with obstructive

sleep apnoea.

Apnoeic events in children often terminate with arousal and/or movement [180], and con-

sequently, children with obstructive sleep apnoea syndrome typically experience an increased

number of arousals [6]. It was expected that movement prevalence would be higher for res-

piratory related arousals than spontaneous arousals. However, of the 118 respiratory-related

arousal events experienced by the cohort (excluding patient 21, who was a significant outlier

with 93 respiratory-related arousals), only 37% were associated with wrist movement. It was

also expected that a greater AHI will coincide with a greater number of arousals, and, by

extension, a greater number of sleep movements.

Similar to literature [6, 184], we saw in Fig. 6.12 that AHI was only somewhat correlated with

arousals (⇢ = 0.19 for all arousals and ⇢ = 0.72 for respiratory-related arousals) (Walter et al.

[184] found ⇢ = 0.5). AHI was only moderately correlated with arousals that had an associated

movement (⇢ = 0.28). There was no correlation between the total number of movements during

sleep and AHI, which is likely due to the large number of movements that are not associated

with arousal. Therefore, without ignoring the sleep movements that are not associated with

arousal, the total number of movements during sleep is likely a poor predictor of OSA severity.

It is important to note that this cohort is biased towards low AHI, with only two patients

presenting as moderate (patient 6, AHI= 5.1) or severe (patient 21, AHI = 16.9). As such, care

should be taken when generalising these results to children with more severe sleep apnoea.

We have seen in this analysis that movements that were not associated with sleep disturbance

(i.e. an arousal event or wake) tended to be shorter in duration (approximate range of 2s - 7s vs.

6s - 14s and 7s - 18s for wrist movements during sleep, arousal and wake respectively). As such,

we can speculate that removing these short-duration movements from the accelerometry signal

122



6.2. Predicting arousals with movement

would reduce the number of sleep epochs with a high activity count and consequently reduce

false wake detections. We do not have a su�cient sample size to perform this analysis and

the cohort is bias towards patients with symptoms of a sleep disorder; however, a preliminary

exploration (detailed in Appendix B.1) found that removing short-duration movements as a

pre-processing step on the raw accelerometry data increased the number of sleep epochs with

a zero activity count, and decreased the number of sleep epochs with large activity counts.

Although this is a promising result, care must be taken when interpreting and generalising the

results because of the inherent pre-analysis bias.

Movement and apnoea

The identified relationship between apnoeic events and movement can, at best, provide an

indication of the relationship because only 4 of the 38 patients that undertook a sleep study

had an AHI greater than 5 (moderate AHI), and only 31 of the 38 patients had scored apnoeic

events. Of these patients, the number of events were heavily dominated by Patient 21, who

had 30% of the events (122 of the total 402). The distribution of events across the patients

is illustrated in Figure 6.4. We can see from the scatter plots in Fig. 6.13 that less than

half of apnoeic events coincided with movement. Interestingly, hypopneas coincided more with

movement than apnoeas. As these are regions of shallow breathing (as opposed to a cessation

of breathing during an apnoea [7]) this might suggest that body movements occur as a response

to continued respiratory e↵ort, rather than a distinct cessation of, and return to, breathing.

Actigraphy cannot predict all apnoeic events because less than only half of the events contained

some form of movement (illustrated by the scatter plots in Fig. 6.13). Therefore actigraphy, on

its own, cannot be used to reliably predict apnoeas and/or hypopneas.

6.2 Predicting arousals with movement

In the previous section, we saw that extended arousals coincided with movement. These length-

ier arousals may indicate regions of sleep disturbance, where the shorter-duration arousals may

not. For this reason, identifying these lengthier events may provide a more detailed representa-

tion of sleep quality than the conventional 30s wake scores. In addition to this, in the previous

analysis we saw that arousals are likely to confound actigraphy-derived estimates of wake.

In this section we will:

• Identify arousal duration above which actigraphy can accurately predict events; and

• Explore the extent that arousals confound actigraphy-derived estimates of wake.
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Chapter 6. Physiological associations with sleep movements

6.2.1 Method

The full 30 participants detailed in Table 3.1.3 were used in this analysis. Each patient under-

went the study procedure outlined in Section 3.1.4. The cohort dataset was separated into a

training and test dataset: 15 patients (2� 10, 15, 21, 27, and 30� 32 in Table 3.1.3, 10 male,

median 9 years, range 6 � 16 years) formed the training dataset, and the other 15 patients

(11 � 12, 19 � 20, 22, 23 � 25, 28 � 29, 33 � 35 and 37 � 38 in Table 3.1.3, 12 male, median

9 years, range 6 � 15 years), formed the test dataset. The test dataset was used to assess

detection accuracy in a leave-one-out cross-validation design on patients.

Arousal detection using actigraphy

Actigraphy’s ability to detect arousals of di↵erent durations was analysed by applying a thresh-

old to a representative metric (i.e. movement duration or the zero-crossing summary value) of

segmented tri-axial movements that occur within 2s of an arousal event. Movement duration

and magnitude were used to summarise movement information because we identified in the

previous analysis that these metrics di↵er between movements that coincide with arousal and

movements that do not coincide with arousal. The process is summarised in Fig. 6.15. The

training dataset was used to identify a generalisable threshold that maximised the precision

and recall of detecting arousal events greater than a specified duration t

a

(between 1s and 30s).

Since the arousal events vary in duration, we cannot identify a true-negative event; unlike wake

as scored on a 30s basis, there can be no discrete region for which a negative arousal event

can be defined. For this reason, the recall and precision is analysed to identify the optimal

threshold [185] (these metrics do not require the number of true negatives). Recall is defined

as:

Recall =
TP

TP + FN

, (6.3)

where TP is the number of true positives (i.e. arousals that are correctly predicted), and FN

is the number of false negatives. The number of false negatives is identified as the number of

arousals that do not coincide with a movement segment; ‘no movement’ (i.e. the value of the

summary metric is approximately 0) cannot identify the event as an arousal, since arousals are

detected by the representative metric value occurring above a threshold. Precision is defined

as:

Precision =
TP

TP + FP

, (6.4)

where FP is the number of false positives. The number of false positives is defined as the

number of movement segments that are falsely identified as coinciding with an arousal event.

We will assess the ability to predict arousal events using both movement duration and a

summary zero-crossing activity count ZCA

M

for each segmented movement associated with an
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arousal. This summary activity value was defined as the activity count ZC
TRI

normalised for

the duration �t of the movement segment,

ZC

A

M

=
ZC

TRI

�t

, (6.5)

where ZC

A

M

represents the zero-crossing value for each movement during arousal. A thresh-

old T

n

(varied between 0 and the maximum movement duration or maximum ZC

A

M

) was ap-

plied to the movement duration and the summarised activity counts ZC

A

M

to predict arousal

events. These predicted events were then compared to the manually scored arousal events from

Raw CMAS 
accelerometry data

(x,y,z)

Segment 
movements from 

raw accelerometry

{�}

• Wrist

Identify duration and zero-
crossing activity count ���� for 

each movement

Outcome:

Input signals:

Identify recall � and precision � for all threshold values, 
�	 = 	 0, 0.01,… ,max	(����)

30 patients     6-16 (9) years, 21M/9F, AHI 0-16.9 (0.95)

Identify movement threshold for all arousals greater than duration �,	 0	 ≤ � ≤ 30

Ignore movements that occur 
during an arousal event with 

duration less than �

Identify ability to detect arousals greater than a specified duration �,	 0	 ≤ � ≤ 30

Segment 
movements from 

raw accelerometry

Identify zero-crossing activity 
count ���� for each movement

Identify arousal events � as 
greater than the threshold �

Precision
Recall

{�}

Manually scored 
arousal events

For each arousal duration, identify optimal threshold �, 
�	 = 	 0, 0.01,… ,max	(����) as the threshold that 

maximizes the recall and precision

Raw CMAS 
accelerometry data

(x,y,z)
• Wrist

Manually scored 
arousal events

Compare detected arousals � to the 
manually scored arousal events from the 

polysomnogram

15 patients
9 (6 – 16) years

10M/5F

15 patients
9 (6 – 15) years

12M/3F

Train set

Test set

Figure 6.15: Methodology for identifying the ability of actigraphy to predict arousals on the basis of movement
duration.
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polysomnography. The threshold T

n

for each arousal duration was identified as the threshold

T

n

2 {T1, . . . , TN

} that gave precision p

n

and recall s
n

closest to (1, 1) in the precision-recall

space. This objective is described by:

X (T
n

) = k[1� p

n

, 1� s

n

]k. (6.6)

The optimal threshold T

n

for each movement representation (duration and ZC

A

M

) was identified

by finding the threshold that corresponds to the minima of X , when X is applied to all thresh-

olds in {T1, . . . , TN

}. The optimal threshold T

n

was then applied to the test data to identify

the accuracy of detecting arousal events. This was compared using the precision and recall of

detecting arousal events for varying arousal durations. In this analysis, arousal events that are

scored on a wake transition, and movements that occur during wake are ignored, since we are

only attempting to identify arousal events during sleep.

Impact of arousal on actigraphy-derived wake scores

Given that the extended arousal events are associated with lengthier movements (as seen in

Section 6.1), it is likely that these arousals confound actigraphy-derived estimates of sleep and

wake when compared to polysomnography. This was assessed by comparing the total duration

of polysomnography and actigraphy derived wake after sleep onset (WASO) and arousal dura-

tion for each patient. As documented in Fig. 6.16, arousal events A were first detected from

the zero-crossing activity counts of segmented wrist movements ZC

A

M

. All arousals were de-

tected using the corresponding threshold in training. The movements that were associated with

an arousal were set to NaN in the raw accelerometry data, prior to generating the 30s zero-

crossing activity counts ZCS

M

for wake detection. ZCS

M

is defined similarly to ZC

A

M

; however,

it represents the zero-crossing value for each movement during sleep and wake.

Regions of wake W were identified as any ZC

S

M

greater than a threshold T

S

. The threshold

was identified as the threshold that gave the greatest Kappa agreement in ROC analysis on the

training dataset. The conventional zero-crossing smoothing filter (see Section 2.3.1) was applied

to the data, prior to ROC analaysis. The total duration of arousal events ⌧A
acti

and WASO ⌧

W

acti

was then identified by summing the duration (indicated here as T (·)) of all detected arousals

a[i] and detected wake scores w[i] respectively. That is,

⌧

A

acti

=
NAX

i=1

T (a[i]), A = {a[i], a[i+ 1], ..., a[i+N

A

]} (6.7)

and

⌧

W

acti

=
NWX

i=1

T (w[i]), W = {w[i], w[i+ 1], ..., w[i+N

W

]} (6.8)
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where N

A

and N

W

are the total number of detected arousals and wake scores respectively.

The total actigraphy derived arousal and WASO, ⌧A
acti

and ⌧

W

acti

, were then compared to the

polysomnography derived arousal and WASO, ⌧A
PSG

and ⌧

W

PSG

. These were derived from the

manual scores, documented in the polysomnography files. Once derived, the e↵ect of arousals

on actigraphy scores, relative to the polysomnography, was analysed by comparing WASO to

polysomnography,
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Figure 6.16: Methodology for identifying the total arousal and wake duration as detected with actigraphy to the
events that are manually scored using polysomnography.
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This was compared to the combination of actigraphy derived arousal duration and WASO,
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.

The polysomnography and actigraphy-derived WASO and arousal total duration were normally

distributed and had similar standard deviation. For this reason, the two-sample t-test was used

to assess the significance of the estimation di↵erence from the Bland-Altman plot.

6.2.2 Results

The ability of actigraphy to identify arousal events greater than a specified duration is shown

in Fig. 6.17a for varying threshold values of movement duration and Fig. 6.17b for varying

threshold values using the zero-crossing summaries ZC

A

M

; threshold values to the left of the

figure are larger than those to the right of the figure. Movement duration achieved approxi-

mately 80% precision; however, this was at a low recall (approximately 10� 20%, illustrated in

Fig. 6.17a. The precision decreased to 50% with an increase in recall. The zero-crossing sum-

mary representation achieved approximately 70% precision for up to 60% recall (as illustrated

in Fig. 6.17b).

The zero-crossing movement summary was better able to predict arousals greater than a

specified duration (illustrated by the comparative recall plots in Fig. 6.18a and Fig. 6.18b).

Movement duration had a greater recall; however, the precision was less than the zero-crossing

summary representation. The recall and precision of arousal detection in Fig. 6.18 illustrates

that movement information was best able to detect arousals of duration between 8s and 16s.

After approximately 16s, the precision consistently decreased.

The di↵erence between polysomnography derived estimates of total arousal duration and

estimates derived from actigraphy are illustrated in Fig. 6.19a. Including actigraphy-derived

arousal events with actigraphy-derived WASO in Fig. 6.19b tended to decrease the di↵erence

with polysomnography WASO estimates (from 12.58 mins, p = 0.76, to 3.84 mins, p = 0.31).

6.2.3 Discussion

In general for all arousal events, the predictive performance increased as we decreased the

threshold (illustrated in Fig. 6.17b). This indicates that actigraphy is most e↵ective with

high sensitivity to arousals. Actigraphy was able to e↵ectively detect the arousal events that

coincided with movement (as evidenced by the 70% recall in Fig. 6.17b). Indeed, we saw in the

previous analysis that only 67.5% of arousal events (averaged across the cohort) coincided with

wrist movement (illustrated in Fig. 6.5); 32.5% of arousals did not coincide with movement.

Actigraphy will not be able to identify these arousals, resulting in false negatives that will

impact the recall.
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Figure 6.17: Ability to detect arousal events greater than a specified duration for varying threshold values using
(a) movement duration, and (b) zero-crossing summary of movement. Dark blue lines represent short-duration
arousals (< 8s), light blue lines represent medium-duration arousals (between 9s and 18s) and red lines represent
lengthy arousals (> 19s).
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Figure 6.18: Mean recall (blue) and precision (red) of detecting arousals greater than a specific duration (between
1s and 30s), using (a) movement duration, and (b) zero-crossing summary of movement. The shaded region
represents ±1 standard deviation.
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Figure 6.19: Bland-Altman plot showing (a) the di↵erence between the total duration of polysomnography de-
rived arousal events and actigraphy derived arousal events for each patient, and (b) the di↵erence between the
polysomnography derived WASO, actigraphy derived WASO and the combination of polysomnography derived
WASO and arousal events, and actigraphy derived WASO and arousal events.
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Actigraphy predicted all arousal events better than when restricting the prediction to only

longer arousals. This can be seen by the poor performance for arousals greater than 19s

in Fig. 6.17b (illustrated by the varying red region). We can also see that the thresholds

performed better for arousals greater than 8s until approximately 16s. The average recall for

arousal detection was fairly consistent across all arousal durations until 25s, where it increased

by approximately 10% (shown in Fig. 6.18b). The increased recall indicates that there were

less false negative detections when predicting arousals greater than 25s in duration. Supporting

what we saw in Section 6.1, this suggests that arousal events greater than 25s coincide more

with movement than shorter duration arousals; however, the precision was low (10� 20%) for

these arousals, indicating a larger number of false positives than shorter arousal events. This

is as expected because there are significantly less arousals of longer duration (summarised in

Fig. 6.20), but there are still the same number of movements during sleep; the ratio of arousal-

related movements to sleep movements will reduce as we move the arousal duration threshold

towards longer arousals.

Although the average arousal duration di↵erence was low across the cohort (approximately
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Figure 6.20: Median number of arousals of each duration (0  ⌧30s) across all patients.
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0.127 mins or 7.6s, illustrated in Fig. 6.19a), the estimates varied considerably between patients

(with a di↵erence standard deviation of 5 mins), particularly when considering that the average

total duration of arousal events was 7 � 11 mins for the cohort. The large variance is in

accordance with the limitations of wake detections; actigraphy is unable to accurately estimate

the duration of specific events; events derived from movement information cannot detect regions

without movement unless estimated with a smoothing filter. However, as we saw in the previous

analysis, actigraphy can e↵ectively detect the occurrence of an event. Including actigraphy-

derived estimates of arousal duration with WASO estimates did improve the di↵erence between

polysomnography and actigraphy derived WASO estimates (from an average of 12.6 mins to 3.8

mins, as illustrated in the Bland-Altman plot in Fig. 6.19b). This improvement is likely due to

increased regions of apparent ‘wake’; often wake will occur with no activity, and these will be

misclassified as ‘sleep’, reducing the total estimated wake time. Therefore, including movements

that normally occur during sleep, but are not large enough to register on a 30s epoch scale,

increases the total estimated wake time. This processes acts similarly to the moving average

filters discussed throughout this thesis (detailed in Section 2.3.1).

6.3 Summary

One limitation of actigraphy is its poor sensitivity for detecting wake [84]. Section 6.1 quan-

tified the temporal association between apnoea, arousals and body and/or limb movements

highlights two mechanisms leading to this limitation. We saw that not all apnoeic events can

be predicted with movement information; less than half of the apnoeic events coincided with any

movement. We also saw that lengthy arousal events are associated with lengthy movements.

These movements are likely to contribute to a large activity count in the associated epoch, and

consequently may be misidentified as wake using the standard movement quantification tech-

niques employed in commercial actigraphy [84]. However, these incorrectly identified epochs of

wake are being correctly identified as periods of sleep disturbance. From this we can conclude

that the typical epoch-by-epoch agreement rates between polysomnography and actigraphy are

likely a pessimistic estimate of actigraphys ability to quantify sleep disturbance. The second

mechanism that may lead to actigraphys poor sensitivity is the numerous short movements dur-

ing sleep that are not associated with an arousal event. These movements may cumulatively

contribute to a significant activity count, which would be misidentified as wake using conven-

tional actigraphy. But, the data demonstrates that these movements are significantly shorter

than arousal-related movements. Therefore, developing a scoring algorithm that explicitly re-

moves these short movements from analysis may significantly improve the limitations discussed

above, and consequently improve the accuracy of sleep/wake scoring using actigraphy.

A key objective here is to determine whether actigraphy can detect arousal events. Although

the greater duration of arousal-related movements suggests that actigraphy may be capable of
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di↵erentiating these movements from other movements during sleep (and thereby identify the

corresponding arousal events), the number of arousal events with an associated movement

varied greatly across all patients. As such, actigraphy cannot be used to reliably predict all

arousal events. However, as arousal events without an associated movement tend to be shorter,

it may be possible to detect lengthy arousal events and thereby estimate the severity of sleep

disturbance. Indeed, literature suggests that longer arousals are a significant contributor to

sleep disturbance [5], and that the incidence rate or length of arousal likely determines the

extent of daytime dysfunction caused by sleep disruption [186].

The performance of predicting arousal events of di↵erent durations and the accuracy of

estimating total arousal and wake duration was explored in Section 6.1. We saw that although

we can detect the arousal events that coincide with movement with high recall, there will be

many false arousal detections; we can only discriminate arousal-related movements from other

sleep movements with, at best, 50% accuracy (summarised by the precision in Fig. 6.17b).

We also cannot estimate the duration of arousal events. Incorporating arousal duration with

wake scores does improve estimates of total time spent awake, however this is likely acting in a

similar way to standard smoothing filters. This is likely due to re-identifying what was classed

as ‘sleep’ movements to ‘wake/arousal’ movements.

In this chapter we saw that:

• On average, approximately 67% of arousal events coincided with wrist movement for this

cohort, indicating that actigraphy cannot identify all arousal events;

• The number of arousal events varied greatly across the cohort, indicating that actigraphy

cannot reliably predict arousal events in a generalised context;

• Arousals that did coincide with movement were generally longer in duration;

• Movements that coincided with wake or arousal were longer in duration than movements

that occurred during sleep and did not coincide with an arousal;

• Actigraphy was able to predict the arousal events that coincided with movement;

• A representation of movement intensity predicted arousals better than associated move-

ment duration; and

• The temporal association between apnoeic events and movement was inconsistent.
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7
General Discussion and Conclusions

“There is a time for words, and there is a time for sleep.”

— Odysseus, Homer, Poet, c. 750 BC

The objective of this thesis was to improve the utility of actigraphy for home-based assess-

ment of paediatric sleep disorders by addressing the two key error types in the conventional

actigraphy framework:

Error 1. False negatives: wake epochs with no measured movement are incorrectly identified

as sleep.

Error 2. False positives: sleep epochs with measured movement are incorrectly identified as

wake.

To address these error types, we investigated three hypotheses:

I Uni-axial accelerometry measured solely at the wrist limits sleep and wake prediction

accuracy because movements orthogonal to the measurement axis, or occurring elsewhere

on the body, cannot be detected, and consequently using tri-axial multisite accelerometry

will improve the performance of actigraphy;
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II Movement characteristics can di↵erentiate sleep from wake because the physiological nature

of these movements di↵er; and

III Physiological and pathological events characteristic of sleep disorders (e.g. apnoeas, hypop-

neas and transient arousals) cause sleep movements that contribute to false wake detections.

The key findings from investigating these hypotheses were:

I Summaries of movement that exploit tri-axial information significantly improve sleep and

wake predictions relative to the conventional uni-axial representations, and incorporating

movement information from multiple accelerometer locations with the conventional wrist

placement further improves sleep and wake predictions.

Representing activity with three-dimensional vector techniques significantly improves sleep

and wake prediction accuracy when compared to the same one-dimensional representation

(Kappa agreement in Chapter 4: 0.402(0.141) vs. 0.268(0.210), p < 0.05 for tri-axial and

uni-axial respectively). Tri-axial accelerometers can detect a greater range of movement

and isolate physiological characteristics with greater accuracy because they measure two

additional axes of motion. Unlike a single axis, measuring three axes of movement can

summarise both vector magnitudes and phase changes. We saw in Chapter 4 that activity

counts that summarise vector magnitudes have a greater resolution of activity than those

that summarise phase changes. Vector magnitude appears a better descriptor of movements

during sleep and wake than postural changes. This was verified in Chapter 5, where we

saw (visually, by examining videos; and analytically, by examining spectral characteristics)

that wake movements are generally more vigorous (i.e. greater vector magnitudes), and

share similar postural spectral characteristics with sleep movements. Therefore, the most

e↵ective representation of movement for sleep and wake discrimination summarises the

magnitude of movements.

Measuring movement of multiple limbs improves sleep and wake prediction accuracy by

capturing additional movements that predominantly occur during wake. Incorporating

ankle and toe movement into the conventional classification framework with wrist mea-

surements in Chapter 4 gave the greatest performance improvement in terms of additional

measurements (Kappa: 0.565(0.231) vs. 0.488(0.257), p < 0.05 for multisite and wrist

accelerometry respectively). Additional accelerometers improve the first error type by

increasing the number of detected movements during wake; however, they also increase

system complexity and the potential for patient discomfort. The benefits to classifica-

tion performance of additional accelerometers will need to be considered against these

limitations for each clinical application. Conforming to the conventional framework, the
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wrist was verified as the most e↵ective single accelerometer placement for sleep and wake

prediction.

The greatest impact on predictive performance throughout the analyses in this thesis

was consistently seen when applying a smoothing filter (direct comparison shown in Ap-

pendix B.2). The conventional filter design smooths regions of large activity values into

surrounding epochs of no activity, and, depending on the filter coe�cients, attenuates sin-

gle epochs of activity. Considering that wake corresponds with regions of high activity, the

smoothing filter temporally extends this activity and consequently reduces false sleep de-

tections. Similarly, the smoothing filter reduces false wake detections by attenuating short

regions of high activity epochs during sleep. However, the smoothing filter is not always

e↵ective because there are extended regions of high activity during sleep (such as positional

changes) and short regions of low activity during wake (such as limb movements). Apply-

ing the smoothing filter to these regions will worsen the e↵ect on sleep and wake predictive

performance. An approach that considers the likelihood of high-activity epochs occurring

during sleep or wake may improve this; however, the variability in movement prevalence

and physiological characteristics between patients suggests that this may not be feasible

in a generalised context.

II Movement characteristics di↵er between sleep and wake, although they are not able to

accurately predict sleep and wake for this cohort.

Applying a heuristic to remove movements specific to sleep as a pre-processing procedure on

the raw multisite accelerometry data e↵ectively improved the second error type, resulting in

improved sleep and wake classification accuracy (Kappa: 0.630(0.292) vs. 0.565(0.231) for

post- and pre-heuristic respectively). Where additional accelerometers reduce false sleep

detections by increasing the number of detected wake movements, the heuristic reduces

false wake detections by reducing the number of sleep movements. Since applying the

heuristic requires minimal computation and no additional hardware, pre-processing the

raw data is an e↵ective improvement that can easily be incorporated into the existing

actigraphy framework. However, the heuristic applied in this thesis was formulated by

manually analysing movements from a subset of the patient cohort. As a consequence of the

relatively small patient sample size, these sleep movements may not represent a generalised

cohort. Therefore, to incorporate this into conventional sleep actigraphy assessment, a

specific heuristic will need to be identified with a di↵erent study design.

Short-duration movements were consistently identified as occurring more often during sleep

in Chapter 5 and again in Chapter 6. Summarising movement within a large epoch results

in many short-duration movements appearing as a single long movement, despite being

137



Chapter 7. General Discussion and Conclusions

distinctly di↵erent movements. Misrepresenting movements within these low-temporal res-

olution activity counts can cause false wake detections because the resulting activity value

of cumulative short-duration movements is similar to wake epochs. From this, we hy-

pothesised that removing short-duration movements from analysis would reduce false wake

detections (thereby addressing the second error type) by minimising high-activity sleep

epochs. However, pre-processing the raw data to specifically remove these short-duration

movements (see Appendix B.1) did not significantly improve the predictive performance,

and including movement duration in the regression model in Chapter 5 showed no sig-

nificant e↵ect. Although short-duration movements are generally specific to sleep, this

information alone cannot discriminate sleep from wake for this cohort. Incorporating these

movements with others during sleep (as done with the heuristic in Chapter 5) is e↵ective

at significantly improving sleep and wake discrimination; however, this requires multiple

accelerometers, which introduces the previously discussed practical limitations.

Localised spectral characteristics of sleep and wake movements significantly di↵ered for

movements 2 � 5s in duration for a subset of patients. We saw in Chapter 5 that wake

movements were generally more vigorous, had low-frequency spectral content characteris-

tic of positional changes and were more consistent across the cohort. The time-invariant

epochs (commonly 30s in existing commercial systems) cancel any sleep/wake discrimina-

tion potential of these spectral characteristics and movement duration because they are

summarised within this extended period of time. However, the sleep and wake predictive

performance was not improved when incorporating these characteristics into a movement-

by-movement classification model, relative to the conventional epoch-by-epoch summaries

(AUC: 63.9(6.7)% vs. 69.7(7.9)% for movement-by-movement classification and the con-

ventional epoch summary respectively). The similar predictive performance of these dis-

tinctly di↵erent classification models verifies that movement characteristics cannot accu-

rately di↵erentiate sleep and wake movements for a generalised cohort. Therefore, some

sleep movements will always cause false wake detections in actigraphy-derived sleep and

wake estimates; actigraphy is only suitable for indicating an approximation of sleep quality.

III Lengthy transient arousals correlate with the longer sleep movements that are most likely

to cause false wake detections.

The prevalence and characteristics of sleep movements vary considerably across the co-

hort, which impacts the ability to detect sleep movements and accurately describe their

physiology. As a consequence of this variability, movement information alone cannot accu-

rately predict sleep and wake. However, we saw in Chapter 6 that the longer confounding

sleep movements correlate with lengthy transient arousals that are characteristic of sleep

disturbance caused by sleep disorders. Therefore, sleep movements that confound wake es-
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Figure 7.1: Correlation between AHI and the number of arousals per hour of sleep and percentage of time spent
awake after sleep onset, as defined by polysomnography. Patient 21 was removed from the diagram is it was a
significant outlier (AHI = 16.9).

timates are actually indicative of regions of sleep disturbance. Incorporating these lengthier

sleep movements with the conventional wake scores may summarise sleep disturbance and

thereby provide a metric that is correlated with sleep disorder severity. Indeed, we can

see from Fig. 7.1 that the number of arousals per hour of sleep is more correlated with

AHI (indicative of OSA) than the percentage of wake after sleep onset for this cohort.

We can hypothesise that combining these measures would provide a metric that is better

correlated with AHI. Actigraphy is likely able to achieve this because it can predict both

wake and lengthy transient arousals (duration between approximately 8s and 16s, seen

in Chapter 6). However, this exploration requires a di↵erent clinical study design with a

larger set of patients (control and moderate-to-severe sleep disorder symptomatology).

7.1 Conclusions

We can conclude from the analyses in this thesis that:

• Measuring movement with tri-axial accelerometry detects a larger range of movements

that, when summarised with tri-axial techniques, improve sleep and wake predictions

relative to conventional uni-axial accelerometry;
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• Epoch summaries of movement that capture magnitude information are more e↵ective

for sleep and wake classification than summaries that capture postural information;

• Incorporating ankle and toe movement into the scoring routine improves sleep and wake

classification by increasing activity during wake epochs, which reduces false sleep detec-

tions;

• Identifying and heuristically removing movements that are generally sleep-specific as a

pre-processing step on the raw accelerometry data improves the sleep and wake discrimi-

nation ability of activity counts;

• Localised spectral characteristics di↵er between sleep and wake movements, although not

in a generalised context;

• The technique (temporal or spectral, movement-based or epoch-based) for summarising

movement generally does not a↵ect the sleep and wake predictive performance;

• Movement information alone cannot accurately estimate sleep quality; and

• Lengthy and high-intensity sleep movements are associated with the lengthier transient

arousals that are characteristic of sleep disturbance.

The utility of actigraphy for sleep assessment may be improved by combining detec-

tion of the transient arousals characteristic of sleep disturbance with the standard

wake scores to capture signs indicative of sleep disorder severity.

7.2 Contributions

There were three main contributions to paediatric sleep assessment with actigraphy:

1. Previous and existing commercial actigraphy systems in sleep assessment cannot concur-

rently analyse uni-axial and tri-axial data from the same device, simultaneously analyse

movement from di↵erent locations on the body, and temporally synchronise with the gold

standard polysomnography. In this thesis, we have directly compared the sleep and wake

predictive performance of the conventional activity count summary techniques, uni-axial

and tri-axial accelerometry using the same device, and movement information from five

locations (i.e. left-finger, left-wrist, upper thorax, left-ankle and left-toe movements).

These analyses were performed using high-resolution raw accelerometry data that was

synchronised to within 0.1s of polysomnography;
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2. There have been no known attempts in literature to analyse specific localised spectral

characteristics of movements that occur during sleep and wake, or that predict sleep

and wake on a time-varying basis. We have segmented high-resolution sleep and wake

movements and compared the localised spectral information. We have also analysed sleep

and wake predictive performance on a movement-by-movement basis; and

3. There have been no known analysis of the high-resolution temporal association between

apnoeic events, transient arousals and movements during sleep for children. We have seg-

mented raw movements during sleep and temporally compared these to manually scored

apnoeic events and transient arousals. We have also analysed the ability of sleep move-

ments to predict transient arousals.

7.3 Implications for clinical practice

Representing movement with summaries that incorporate information from tri-axial accelerom-

etry will yield benefits to sleep and wake classification with minimal additional cost, and no

increase in system complexity or invasiveness. This is likely to be the most attractive clinical

improvement for a device targeted at home-based sleep assessment. Incorporating multisite

accelerometry will further improve sleep estimates, particularly when applying a heuristic that

preliminarily removes movement types specific to sleep. However, additional accelerometers

increase system complexity and patient discomfort. This may seem unimportant for diagnostic

studies, where the numerous sensors for full polysomnography are already required. However, in

practice, we regularly observed that children often play with the accelerometer units, not only

interfering with the data, but at times inadvertently removing the units altogether. Minimising

the number of required sensors mitigates this problem. In addition to patient interference,

a more complex system requires expert support for system configuration, which is not ideal

for home-based assessment. Therefore, the benefits to sleep/wake classification performance of

data from additional accelerometers will need to be weighed against these practical limitations.

Capturing sleep disturbance severity by incorporating the detection of lengthy and high-

intensity sleep movements into the conventional classification framework requires no additional

hardware modifications, and negligible additional on-board processing. Provided that the actig-

raphy modules store raw tri-axial accelerometry data, movement segmentation and sleep distur-

bance detection could be implemented within the standard computer-based actigraphy scoring

software. Although this analysis could not be performed in this thesis (due to inadequate patient

sample size and disorder prevalence), incorporating lengthy and high-intensity sleep movement

detection with the standard wake scores may provide a useful metric for non-invasively assessing

signs indicative of sleep disorder severity in a non-laboratory setting.
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7.4 Limitations

There were a number of limitations of the analyses performed in this thesis:

1. The cohort comprised of children symptomatic of sleep-related breathing disorders, was

male dominated, had a large range in age, and was heavily biased towards low-AHI (with

only 2 in the 30 usable studies in the moderate to severe AHI categories). The results are

consequently unlikely to be representative of those observed in severe OSA patients, and

care must be taken when generalising the results to other cohorts;

2. The sleep stages and respiratory events used to validate the accuracy of all analyses were

manually scored by one technician. Although there are well documented rules for scoring

these events, the inter-scorer variability is often high in literature. Because of this, there

may be some inaccurately scored events used as a ’ground truth’ in these analyses;

3. Data were collected in a sleep laboratory, which may present di↵erent data than that col-

lected in a more typical sleeping environment because of the invasive nature of polysomnog-

raphy and the general laboratory environment;

4. For the multisite analysis, accelerometers were only placed on the left-side limbs and the

chest. Although movement from the right-side of the body and head may be of interest,

practical limitations restrict placing accelerometers on all areas of interest on the body;

and

5. The number of transient arousals, apnoeas and hypopneas varied greatly across the co-

hort, with some patients experiencing none, and others dominating the distribution. This

variability limits the generalisability and statistical power of the association analysis be-

tween sleep movements and these physiological and pathological events.

7.5 Recommendations for future research

• In Chapter 5, we found localised spectral characteristics that di↵ered between sleep and

wake movements, but were not significant across the cohort when incorporated into a

classification model. Since airway morphology changes with age, gender and hormones,

movement characteristics may significantly di↵er in a generalised cohort between age,

gender and pre- and post-puberty. It would be necessary to expand the study with a

larger number of children with severe obstructive sleep apnoea and a larger range of age

and gender to better analyse these relationships.
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7.5. Recommendations for future research

• Chapter 6 found that longer and high-intensity sleep movements are temporally associated

with lengthy transient arousals. Given that transient arousals are characteristic of sleep

disturbance associated with sleep disorders, actigraphy could detect the arousals that

are detrimental to sleep quality. The standard 30s wake scores cannot summarise these

sleep disturbances because of the poor temporal resolution. Incorporating these lengthier

arousals into the actigraphy routine could capture additional aspects of sleep disturbance

associated with sleep disorders and may provide a novel index of sleep apnoea severity.

This analysis requires a larger sample of children with moderate to severe sleep disorder,

and a control group of otherwise healthy children.

• The analyses throughout this thesis were performed on a paediatric cohort. Although

there are known pathological di↵erences between children and adults, it would be inter-

esting to determine if the results can be extended to adults.
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A
Heuristic: Removal of restless sleep

The analysis in Chapter 5 applies a heuristic to remove movements that were identified as

predominantly occurring during sleep. The pseudo-code algorithm for the heuristic is detailed

below.

Data: Raw (x, y, z)100Hz accelerometry data

Result: Raw (x, y, z)100Hz accelerometry data

repeat

if movement is detected within 1s and there is no more movement for another 7s then

segment movement s;

if (any wrist(x, y, z) > T and any chest(x, y, z) > T and any ankle(x, y, z) > T and no chest DC

o↵set) ; /* Body shift */

or (any wrist(x, y, z) > T and wrist DC o↵set) ; /* Hand positional shift */

or (duration of s < 2s) ; /* ‘Bursty’ movement */

then

s(x, y, z) [0, 0, 0] ; /* Set movement segment to 0 */

else

Ignore;

end

end

until all data points are checked ;
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Appendix A. Heuristic: Removal of restless sleep
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B
Pilot Analysis: Exploring wake quantification

with actigraphy

The analyses in Chapter 5 and Chapter 6 found that short-duration movements occur most

often during sleep. This short analysis will explore the impact of removing these movements as

a preliminary processing step on the raw accelerometry data, prior to generating the conven-

tional activity counts. We also saw throughout the thesis that post-processing activity counts

using a smoothing filter appeared to have the greatest impact on sleep and wake detection

accuracy. This analysis will also briefly compare the e↵ect of this process on sleep and wake

detection accuracy using a smoothing filter with constant coe�cients, and a regression model

that incorporates di↵erent epoch information.

B.1 Removal of short-duration movements

From Section 6.1 we found that short-duration movements mostly occur during sleep and are

generally not associated with transient arousal or wake. From this, we can conclude that short-

duration movements are likely not indicative of sleep disturbance. In this exploratory analysis

we will remove these short-duration movements prior to deriving activity counts and assess if

this improves the accuracy of sleep scores.

The duration threshold for each location was first identified. The threshold for each patient

was identified as the threshold with the maximum Kappa in ROC analysis for the duration of

all identified movements. The threshold for the location was found by taking the median of

these thresholds across all patients. The final movement duration thresholds for di↵erentiating

sleep from wake for each accelerometer placement were identified as:

147



Appendix B. Pilot Analysis: Exploring wake quantification with actigraphy

Placement Threshold

Finger accelerometer 5.82s

Wrist accelerometer 2.88s

Chest accelerometer 2.73s

Ankle accelerometer 3.00s

Toe accelerometer 2.75s

The raw data was then pre-processed to remove all detected movements that were less than

the identified threshold. Raw data were then segmented into 30s regions to correspond with the

manual sleep/wake scoring from polysomnography. Activity counts were then generated for the

processed data using the tri-axial zero-crossing method (detailed in Section 4.1.1). The discrim-

ination ability for sleep and wake scoring of the activity counts was compared to activity counts

derived from raw tri-axial accelerometry prior to removing the short-duration movements. The

di↵erentiation ability was analysed for each individual accelerometer placement and also when

combining movement information from all placements. This was combined by summing the

individual activity counts for all placements. A weighted moving average filter was applied to

the activity counts prior to ROC analysis.

Removing the short-duration sleep movements increased the number of sleep epochs with

a zero activity count, and decreased the number of sleep epochs with high values of activity

counts, as shown in Fig B.1. However, removing these short-duration movements did not sig-

nificantly improve sleep and wake predictive performance. As expected, the maximum Kappa

operating point tended to move towards reducing the sensitivity (89.2(10.2)% vs. 82.7(25.6)%

for pre- and post-removal of short-duration wrist movements respectively) for improved speci-

ficity (62.8(18.7)% vs. 65.4(19.9)% for pre- and post-removal of short-duration wrist move-

Table B.1: Sleep/wake predictive performance for the wrist accelerometer placement and all placements com-
bined prior- and post-removal of short-duration movements.

Se (at 70%
Sp) (%)

Maximum  Operating Point

Se (%) Sp (%) 

Wrist accelerometer placement

Pre-removal 77.5 (17.4) 89.2 (10.2) 62.8 (18.7) 0.521 (0.159)

Post-removal 76.0 (18.0) 82.7 (25.6) 65.4 (19.9) 0.537 (0.166)

All accelerometer placements

Pre-removal 83.1 (16.9) 89.6 (7.9) 65.2 (19.3) 0.523 (0.177)

Post-removal 83.7 (15.7) 90.6 (7.3) 66.7 (17.7) 0.570 (0.153)

Values are shown as mean (SD).
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B.1. Removal of short-duration movements
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Figure B.1: Histogram of activity counts during sleep for all accelerometer placements pre- and post-removal of
the short-duration movements.

ments respectively). This also resulted in slightly higher Kappa agreement (0.527(0.159) vs.

0.537(0.166) for pre- and post-removal of short-duration wrist movements respectively). We can

also see from the average ROC curves in Fig. B.2 that removing the short-duration movements

improved the sleep and wake discrimination ability for some operating points for wrist move-

ment (shown in Fig. B.2a) and for most operating points for all movements combined (shown

in Fig. B.2b). Considering that these were not significant e↵ects, short-duration movements do

not have a great e↵ect on sleep and wake predictive accuracy for this cohort.
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Figure B.2: Median ROC curves for the full population used in this analysis for removing short-duration move-
ments for (a) wrist movement, and (b) any movement.
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Appendix B. Pilot Analysis: Exploring wake quantification with actigraphy

B.2 Di↵erentiating inactive wake from sleep

Sadeh et al. [187] derived a wake re-scoring algorithm using discriminant analysis with di↵erent

summary variables (summarised in Table B.3). Although this technique smooths the data by

combining information from surrounding epochs, the main advantage of this technique is that

it uses di↵erent summaries of movement for each epoch of activity. A single summary value

likely has inadequate resolution for accurately representing sleep and wake. Indeed, we saw this

in 4 where there was no significant di↵erences between the di↵erent time-series representations,

and again in 5 with the spectral characteristics. From this, we can hypothesise that multiple

summary values for each epoch is significantly more accurate than a single summary value.

However, Sadeh et al. [187] found only a minor di↵erence in sleep and wake detection when

applying their algorithm.

Domingues et al. [18] successfully identified statistical models with high discrimination abil-

ity of sleep and wake movements. Previous samples and coe�cients of previous sample models

were combined to discriminate sleep from wake. Although Domingues et al. [18] were able to

di↵erentiate sleep movements from wake movements, they performed no validation studies and

the analysis was only performed on a small set of patients. Furthermore, this method does

not address the limitation of no movement while awake. Autoregressive models use a feedback

component in the model; the current prediction is dependent on previous predictions. These

systems are more complex than standard smoothing models and consequently require more data

than the standard smoothing models. Further to this, the smoothing functions use informa-

tion that summarise future epochs. For these reasons, we will not be analysing autoregressive

models.

Linear regression was used to identify a model by fitting variables to ‘wake’. Half of the 30

patients were used to train the model, and the other half were used to test the e↵ect of the model

Table B.2: Summary of patient characteristics for the 15 patients used for training the regression model and 15
used for testing the model in this analysis.

Training Testing

N 16 16

Age (years) 9 (6 - 16) 9 (6 - 16)

Gender (M/F) 12/4 10/6

AHI 1.15 (0 - 16.9) 0.55 (0 - 6)

Sleep E�ciency (%) 82.5 (10.0) 84.0 (8.5)

Total Sleep Time (mins) 428.2 (68.6) 443.8 (52.9)

REM (%) 21.5 (7.2) 22.5 (5.5)

Excluding gender, values are shown as mean (sd) where normally distributed, and median (range) otherwise.
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B.2. Di↵erentiating inactive wake from sleep

Table B.3: Variables used in the regression analysis.

Variable Description

Sadeh et al. [187] variables

LOG-Act

The natural logarithm of the current epoch E[0] plus 1.

ln(E[0] + 1)

Mean-W 5 min

The average activity 5 minutes before and after the current epoch of activity
inclusive.

1

21

+10X

n=�10

E[n]

NAT

The number of times activity counts have a value between 50 and 100 within
the epochs 5 minutes before and after the current epoch, inclusive.

+10X

n=�10

{50 < E[n] < 100}

SD-last 6 min

The standard deviation � of the activity within the 5 minutes prior to the
current epoch, inclusive.

�E[�10,··· ,0]

Other variables

Actn

Raw zero-crossing activity count in epoch n, for all 5 epochs prior and post
the current epoch.

E[n], 8 � 5  n  5

NumMovements The number of detected movements within the current epoch, using the de-
tection method discussed in Section 3.2.3.

MeanDuration The mean duration of detected movements within the current epoch, using the
detection method discussed in Section 3.2.3.

MeanDurationn
The mean duration of detected movements (using the detection method dis-
cussed in Section 3.2.3) within epoch n, for all 5 epochs prior and post the
current epoch.
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Appendix B. Pilot Analysis: Exploring wake quantification with actigraphy
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Figure B.3: Comparison of di↵erent lengths of moving average filter.

on wake detection (patient characteristics summarised in Table B.2). Variables included in the

regression were based on Sadeh et al. [187] work. These variables represent longer-duration

movements and are consequently more suited for wake detection. We have seen throughout

the analyses that short-duration movements are more common to sleep. Unfortunately, the

conventional activity counts do not summarise movement duration. For the purpose of this

analysis, two activity count metrics were derived that represent the:

• number of detected movements within a 30s epoch; and

• mean detected movement duration within a 30s epoch.

In addition to the Sadeh et al. [187] variables, zero-crossing activity counts surrounding the
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B.2. Di↵erentiating inactive wake from sleep

current epoch (±5 epochs) and average movement duration surrounding the current epoch (±5

epochs) were included. The additional variables are summarised in Table B.3.

To analyse the e↵ect of the di↵erent variables on wake detection, the data were standard-

ised prior to generating the regression model. The standardised coe�cients � and p�values
were analysed to identify the variables with the greatest influence on the wake model. The

significance of the individual coe�cients is summarised by the t statistic,

t =
c

SE

, (B.1)

where c is the coe�cient and SE is the standard error of that coe�cient.

The unstandardised data was used to generate the prediction model using stepwise regres-

sion. Unstandardised data was used in this case so that the final equation could directly be

applied to the raw zero-crossing activity counts. Both Akaike information criterion (AIC) and

adjusted R

2 was used as the criterion for the stepwise model. This was done to compare the

fit for maximum information (AIC) and explained variability of the predicted outcome in the

training procedure (adjusted R

2). The model was then used to predict sleep and wake for the

test set of patients. The agreement (standard and Kappa), AUC and sensitivity and specificity

were analysed to assess the performance of the model against raw activity counts, and a stan-

dard 9�epoch (4.5 minute) moving average filter. A filter of 9 epochs was chosen because the

increase in AUC was comparatively small for higher order filters (as shown in Fig. B.3(bottom),

which shows the change in AUC between consecutive increments in filter order). The thresholds

for prediction were identified as the point in the training ROC curve that gave the maximum

Kappa agreement. The predictive performance was compared using the Wilcoxon rank sum

test where the performance metrics were not normally distributed.

The significant standardised � coe�cients are shown in Table B.4. LOG-Act had the great-

est e↵ect on the model when compared to the other coe�cients (� = 0.184 vs. � < 0.1).

The logarithm of activity counts seems a better representation of activity than raw activity

counts. Therefore, the logarithm of previous and future epochs (±2.5 minutes) was added to

the stepwise model. The significant � coe�cients for the stepwise analysis are compared in

Table B.5. Excluding Act�5, both methods chose the same variables as the significant e↵ects

on the model. These variables formed the final regression model,

ˆWake = 0.111 log(A0 + 1) + 0.088 log(A�5 + 1) + 0.049 log(A�3 + 1)

+ 0.034 log(A�1 + 1) + 0.011Mean-W 5 min� 0.006 (B.2)

The model explains 97.3% of the variation (R2 = 0.973) and improves prediction when

compared to a constant model (F statistic of 88, 500, p < 0.001). For model validation, the

sleep and wake classification thresholds were found using ROC analysis:
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Appendix B. Pilot Analysis: Exploring wake quantification with actigraphy

Method Threshold

No smoothing 1

Moving average filter 3.759

Regression model 0.231

The predictive performance of the models is summarised in Table B.6. Compared to no

smoothing and the standard moving average filter, the regression model provided significantly

better sleep and wake discrimination ability and sensitivity at 75% specificity.

Table B.4: Significant � coe�cients for the linear regression model using Sadeh et al. [187] variables and the
surrounding 2.5 minutes of activity.

Variable � t Statistic

Intercept 0.124 -8.03

LOG-Act 0.184 257.36

Mean-W 5 min 0.089 76.08

Act0 -0.043 -80.76

Act�5 0.033 52.79

Act�4 0.027 53.0

Act�3 0.025 44.27

Act�1 0.021 45.66

NAT 0.019 26.04

Act�2 0.016 30.93

Act1 0.012 25.62

SD-last 6 min -0.025 -22.80

Table B.5: Significant � coe�cients for the stepwise regression model including logarithmic activity.

AIC R2

Variable � t Statistic � t Statistic

Intercept 0.198 62.82 0.210 72.25

Mean-W 5 min 0.110 18.84 0.124 26.34

LOG-Act 0.066 16.58 0.063 17.39

LOG-Act�5 0.052 13.05 0.107 17.07

LOG-Act�3 0.045 11.59 0.043 12.29

LOG-Act�1 0.043 11.38 0.043 12.49

Act�5 - - -0.060 -9.95
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B.2. Di↵erentiating inactive wake from sleep

Table B.6: The predictive performance after applying the regression model to zero-crossing activity counts.

No smoothing Moving Average
Filter

Regression Model

Agreement (%) 88.3 (74.5 - 94.1) 86.5 (77.3 - 94.3) 88.1 (77.3 - 93.6)

Kappa 0.388 (-0.034 - 0.691) 0.501 (-0.040 - 0.721) 0.494 (-0.068 - 0.765)

Sensitivity (%) 92.6 (17.5 - 98.5) 93.4 (84.3 - 99.6) 88.0 (17.3 - 95.6)

Specificity (%) 41.5 (8.2 - 87.0) 55.5 (6.8 - 86.9) 58.8 (8.2 - 94.5)

AUC (%) 68.8 (48.7 - 85.5) 83.3 (46.5 - 95.2) 89.8 (41.8 - 97.4)*

Sensitivity at 75% Specificity (%) 41.5 (3.6 - 74.9) 79.1 (17.8 - 95.9) 89.2 (11.5 - 98.8)*

Values are shown as median (range) where a non-normal distribution is observed.
* Regression model significantly greater performance than no smoothing, p < 0.05.
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average filter. Shown is the median curve and the bounds represent the inter-quartile range of values.
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Appendix B. Pilot Analysis: Exploring wake quantification with actigraphy

The Sadeh et al. [187] variables all had a significant e↵ect on the regression model. The

largest e↵ect was the logarithm of the raw activity count. This is likely due to the increments

and/or distribution of activity because the activity count distribution is skewed towards low

values. A logarithmic transform consequently improves the discrimination ability between these

activity values. The adjusted R

2 criterion chose Act�5 as an additional variable. However,

this variable had a negative e↵ect on the model and therefore may not contribute additional

information. This could explain why the AIC criterion did not chose Act�5 as a significant

variable. The regression model had greater performance than the standard moving average

smoothing filter (comparative ROC curves illustrated in Fig. B.4). The additional information

summarised by the regression model improves sleep and wake discrimination.
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C
Software Module: Labelling movements

A MATLAB graphical user interface (GUI) software module was developed to aid with manu-

ally labelling movements during sleep and wake, for each patient. The software module requires

a patient study .m file containing the raw CMAS data from all accelerometer modules (finger,

wrist, thorax, ankle and toe), the manually scored hypnogram from polysomnography and the

video file from the polysomnography montage. The software also assumes that the raw ac-

celerometry data is synchronised with the polysomonogram scoring (see Section 3.2.1). The

importing and synchronisation procedures are performed in the import data.m and synchro-

nise accel.m files.
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Appendix C. Software Module: Labelling movements

Figure C.1: Custom software for manually labelling patient movements.

The user is first asked to load the patient’s .m and video files (shown in Fig. C.2). Once

these are loaded into the GUI, the user is required to ensure that the video is synchronised

with the accelerometry data by selecting the start of a movement in the accelerometry plots

and identifying the exact temporal location of the movement in the video. After the ‘Done’

button is selected, the accelerometry data is synchronised with the polysomnogram video. As

the video plays, a cursor will move at the same position on the accelerometry plots.

Once the data is synchronised with the video, the user can label movements by positioning

the movement of interest in the centre of the plot view and selecting the ‘Add’ option on the

right. This will pause the video and the movement region will be highlighted. The bounds of

this highlighted region can be altered by clicking near the edge of the region (towards or further

away from the movement). An example of segmenting movements is shown in Fig. C.3. Once

the user is satisfied with the highlighted region, they can type in a description for the movement

and select ‘+’. The movement will be added to the list of movements for that patient. When

the user has labelled all movements, selecting the ‘Save Movements’ button will save the list of

movements within the patient’s .m study file as a cell matrix with columns: description, sleep

stage, temporal indices, and (x, y, z) raw data.
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(a)

(b)

Figure C.2: Custom software for manually labelling patient movements with (a) accelerometry data loaded and
(b) patient video loaded.
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Appendix C. Software Module: Labelling movements

Figure C.3: Segmenting movements with the custom software.
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D
Software Module: Validating the automated

movement detection algorithm

A custom MATLAB GUI was developed to assess the accuracy of the automated movement de-

tection algorithm in Chapter 5. This software allows the user to manually count the number of

movements that were detected by the algorithm, but did not contain movement (false positives),

and the number of actual movements that were not detected by the algorithm (false negatives).

The GUI displays 120s of raw accelerometry data overlaid with a binary plot indicating move-

ment detection (high indicates detected movement, low indicates no detected movement). The

user can move the data forwards or backwards temporally by 120s increments. Within each

displayed window, the user counts the number of correctly and falsely detected movements and

updates this in the counter (i.e. the up and down arrows for FPR and FNR) in the GUI. The

user can load di↵erent patient data by specifying the patient number and pressing the ‘Load’

button at the bottom of the GUI. The GUI stores the total number of false positives and false

negatives for all tested patients, and outputs the rates accordingly once the module is closed.
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Appendix D. Software Module: Validating the automated movement detection algorithm
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Figure D.1: Custom MATLAB graphical user interface software for manually assessing the accuracy of auto-
mated movement detection algorithm.
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E
Additional Figures: Prevalence of

arousal-related movements for di↵erent sensor

placements

The number of movements that occur during sleep and wake for the finger, upper thorax, ankle,

toe and all locations combined, and the number of arousals are shown below. Movement during

sleep are shown as light blue, wake as grey and the total number of arousals are shown as

dark blue. The percentage of arousals that coincide with movement %a are indicated by the

overlapping regions. The percentage of movements across the night that occur during sleep

%m and the percentage of movements that occur during both sleep and arousal %s are also

shown.
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Appendix E. Additional Figures: Prevalence of arousal-related movements for di↵erent sensor placements
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Figure E.1: Prevalence of movement during wake, sleep and arousal events for finger movement.
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Figure E.2: Prevalence of movement during wake, sleep and arousal events for chest movement.
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Figure E.3: Prevalence of movement during wake, sleep and arousal events for ankle movement.
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Figure E.4: Prevalence of movement during wake, sleep and arousal events for toe movement.
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Figure E.5: Prevalence of movement during wake, sleep and arousal events for any (finger, wrist, chest, ankle
or toe) movement.

168



F
Additional Figures: Predicting arousal events of

specific durations

Chapter 6 predicted arousal events greater than a specific duration. Using the same methodol-

ogy as Section 6.2, this appendix extends that analysis to predict arousals of a specific duration.

The following figures summarise the predictive performance. Note that the spread of arousal

event duration across the cohort is fairly Gaussian; there are not many short-duration and

long-duration arousal events relative to moderate-duration.
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Figure F.1: Ability to detect arousal events of a specific duration for varying threshold values using (a) movement
duration, and (b) zero-crossing summary of movement. Dark blue lines represent short-duration arousals (< 8s),
light blue lines represent medium-duration arousals (between 9s and 18s) and red lines represent lengthy arousals
(> 19s).
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(a)

(b)

Figure F.2: Mean recall (blue) and precision (red) of detecting arousals greater than a specific duration (between
1s and 30s), using (a) movement duration, and (b) zero-crossing summary of movement. The vertical lines
represent ±1 standard deviation.
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Glossary

A

AHI Apnoea hypopnea index (AHI) is a representation of the number of apnoes or hypopneas

per hour of sleep.

ANOVA Analysis of variance (ANOVA) is a statistical model used to analyse di↵erences

between group means. ANOVA provides a statistical test that determines whether the

means of groups of data di↵er. The ANOVA is a generalisation of the t-test to several

variables.

Apnoea Apnoea is where there is a cessation of air intake caused by an obstruction in the

airways or weak respiratory muscles. This cessation of air intake causes reduced oxygen

saturation in the blood.

E

Electrocardiography Electrocardiography (ECG) measures electrical signal fluctuations on

the surface of the skin caused by heart activity. Electrodes are placed on the surface of

the skin across the thorax and measure any voltage fluctuations caused by heart activity

over a period of time.

Electroencephalography Electroencephalography (EEG) records the electrical voltage po-

tential fluctuations along the scalp caused by brain activity. Multiple electrodes are placed

on the skin surface across the scalp and measure the electrical signals caused by neural

activity in the brain. These signals contain the frequency information of neural activity

during sleep that can be used to determine the di↵erent sleep stages in sleep analysis.

Electromyography Electromyography (EMG) measures electrical voltage potential generated

by muscle cells during muscular activity. Electrodes are placed on the surface of the

skin and measures the electrical potential that is generated when the muscle under the

electrode is activated.
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Electrooculography Electrooculography (EOG) measures eye movements by recording the

electrical voltage potential between the front and rear of the eye. Pairs of electrodes are

placed such that the eye is between them (for example, at the top and bottom or left

and right of the eye). These electrodes then measure the potential di↵erence between the

electrodes. If the eye moves in one direction it will create a positive potential. Conversely,

if the eye moves in the other direction it will cause a negative potential. This di↵erence

is used to determine the position of the eye.

H

HSD Tukey’s honest significant di↵erence (HSD) test is used in conjunction with an ANOVA

to determine the means that are significantly di↵erent and their statistical significance

value.

Hypopnea Hypopnea is where there is a reduction in air intake caused by an obstruction

in the airways or weak respiratory muscles. This reduction in air intake causes reduced

oxygen saturation in the blood.

Hypoxia Hypoxia refers to an inadequate supply of oxygen to a region of the body.

I

Indicator function The indicator function takes the value 1 when an event occurs, and 0

when it does not. It is mathematically defined as:

(!) =

8
<

:
1, if! 2

0, if! /2
(G.1)

K

Kappa Cohen’s Kappa is a measure of the agreement that adjusts for chance. It is defined

mathematically as:

 =
p

o

� p

e

1� p

e

(G.2)

where p

o

is the relative observed agreement, and p

e

is the hypothetical probability of

chance agreement [132].

M

Myoclonic twitches Myoclonic twitches are very small body twitches (in the order of less

than a second in duration) that occur during REM sleep.
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Glossary

N

Non-stationary signal A non-stationary signal has time-varying variance and mean param-

eters; the joint probability distribution changes when shifted temporally.

P

Polysomnography Polysomnography (PSG) is the current gold standard for diagnosing sleep-

ing disorders. Polysomnography measures various biophysiological signals across the

night, including brain activity (see electroencephalography), eye movements (see elec-

trooculography), heart rhythm (see electrocardiography) and muscular activity (see elec-

tromyography). These signals require many sensors to be placed on the body and as

such, polysomnography is generally intrusive and requires a fully trained nurse in the

sleep laboratory to administer.

Precision Precision represents the percentage of positive predictions that are actually correctly

predicted,

Specificity =
TP

TP + FP

. (G.3)

where TP refers to the number of true-positives, and FP refers to the number of false-

positives.

Q

Quiet rest Quiet rest refers to periods of wake where there is no associated movement. This

will often occur for patients with sleeping disorders such as insomnia or those causing

fragmented sleep. This will also occur at any time during the night when the patient is

immobile whilst awake.

R

R&K Scoring Guidelines The R&K scoring guidelines were developed by Allan Rechtschaf-

fen and Anthony Kales in 1986 to aid in scoring sleep stages.

Recall Recall represents number of positives that were correctly classified,

Recall =
TP

TP + FN

. (G.4)

where TP refers to the number of true-positives, and FN refers to the number of false-

negatives.

191



Glossary

RERA Respiratory e↵ort-related arousal (RERA) is defined as an event that cannot be clas-

sified as a hypopnea that lasts greater than 10 seconds, is accompanied by a progressively

negative oesophageal pressure (caused by increased inspiratory e↵ort) and is terminated

by an arousal.

Restless Sleep Restless sleep refers to periods of sleep where there is associated movement.

This will often occur for patients with sleeping disorders such as periodic leg movement or

REM behaviour disorder. This will also occur at any time during the night when a patient

moves whilst asleep, for example, to scratch their nose or change sleeping positions.

S

Sensitivity Sensitivity represents the ability to accurately detect sleep, and is defined as the

percentage of sleep epochs or samples correctly scored as ‘sleep’,

Sensitivity =
TP

TP + FN

. (G.5)

where TP refers to the number of true-positives, and FN refers to the number of false-

negatives.

Signal to Noise Ratio Signal to noise ratio (SNR) compares the level of a desired signal

strength to that of the background noise. It is defined as the ratio of the desired signal

power to the noise power.

Sleep apnoea Sleep apnoea is a sleep-related breathing disorder where breathing is partially

or completely restricted by either an obstruction in the airways or unregulated respiratory

muscle control. An obstruction in the airways is often due to enlarged tonsils or adenoids

in children. The restriction of breathing control or intake causes a reduction in oxygen

levels in the blood. This leads to poor respiratory function and/or fragmented sleep.

Sleep-disordered breathing Sleep-disordered breathing refers to breathing abnormalities

during sleep, such as those related to snoring, sleep apnoea-hypopnea syndrome, etc.

Specificity Specificity represents the ability to accurately detect wake, and is defined as the

percentage of wake epochs or samples correctly scored as ‘wake’,

Specificity =
TN

TN + FP

. (G.6)

where TN refers to the number of true-negatives, and FP refers to the number of false-

positives.
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Spectrogram Visual representation of the frequency spectrum of a signal. The horizontal axis

in a spectrogram represents the time scale, and the vertical axis represents the frequency

scale.

T

Transient Arousal Transient arousals describe the change in sleep stage (not necessarily to

wake) from an internal or external stimulus.
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Accelerometer, 20
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Actiwatch, 22, 36, 62

American Association of Sleep Medicine,
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Respiratory, 12
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Feature selection, 69

Frequency analysis, 26, 94

Hypopnea, 12, 14
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