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Abstract 

Satellite-based ocean color remote sensing has been extensively applied in monitoring 

deep ocean environments. Yet, ocean color products cannot be used to quantify water 

column properties with any degree of accuracy in shallow water environments because of 

bottom reflectance contamination. Currently, there are no operational ocean color 

algorithms that can correct for bottom reflectance contamination in optically shallow 

waters, where light reflected from the seafloor contributes to the water-leaving radiance. 

To improve the accuracy of ocean color products, it is essential to understand the impact 

of bottom reflectance on the retrieval of inherent optical properties (IOPs) of the water 

column. However, there is a lack of knowledge of the appropriate selection and 

parameterization of bottom reflectance inputs in shallow water inversion algorithms.  

The aim of this research was to optimize bottom reflectance parameterization in 

shallow water inversion algorithms, and to assess the effects of the parameterization on 

the retrieval of IOPs. The research addressed the following three objectives, with 

investigations based in the Great Barrier Reef (GBR), Australia: (1) to assess the spectral 

separability and detectability of bottom reflectance in coral reef environments, (2) to test 

the sensitivity of bottom reflectance parameterization on the retrieval of IOPs using a 

Shallow Water Inversion Model (SWIM) and (3) to assess different approaches to create a 

spatially-resolved bottom reflectance map for shallow water areas, using different 

datasets. 

To address research Objective 1, the spectral separability and detectability of bottom 

types at Moderate Resolution Imaging Spectroradiometer (MODIS) and Sea-Viewing Wide 

Field-of-View Sensor (SeaWiFS) bands were assessed. The results showed: (i) no 

significant contamination (Rrscorr < 0.0005) of bottom reflectance on the spectrally-

averaged remote sensing reflectance signal at depths >19 m for the brightest spectral 

reflectance substrate (light sand) in clear reef waters; and (ii) bottom cover classes can be 

combined into two distinct groups, “light” and “dark”, based on the modeled surface 

reflectance signals. This research established that it is possible to improve 

parameterization of bottom reflectance and water column IOP retrievals in shallow water 

ocean color models for coral reef environments. 
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To address research Objective 2, the impact of bottom reflectance parameterization on 

IOP retrievals in SWIM was assessed. The results showed that there is no clear spatial 

pattern in mean IOP retrievals under different bottom reflectance scenarios. A GBR-wide 

assessment showed that retrieved IOP values vary considerably across the extent of the 

GBR and thus the differences in IOP retrievals due to bottom reflectance parameterization 

are also spatially variable. Water clarity was shown to further influence the differences in 

IOP retrievals between different bottom types. Analysis showed that most differences in 

SWIM IOP retrievals between sand and seagrass, as well as between sand and algae 

bottom reflectance scenarios are observed at depths above 20 m. The results also 

indicated that the magnitude of the bottom reflectance spectrum is not the only factor 

influencing the retrievals of IOPs, but also the spectral shape. 

To address research Objective 3, four different methods to create spatially explicit 

bottom reflectance maps using two different available datasets were evaluated. Application 

of all generated bottom reflectance maps to IOP retrievals produced comparable results. It 

was determined that any one of these methods may be applied to create a bottom 

reflectance map suitable for use in the SWIM algorithm bottom reflectance 

parameterization, to improve IOP retrievals in optically shallow waters.  

This thesis has successfully demonstrated that bottom reflectance parameterization can be 

optimized using only two bottom reflectance classes (“light” and “dark”). The sensitivity of IOP 

retrievals to bottom reflectance in the SWIM algorithm is variable across the large extent of the GBR. 

Different methods to produce optimized bottom reflectance maps for ocean color shallow 

water inversion models have been presented to ensure wide applicability to shallow water 

environments. In a practical context, the findings of this thesis will help improve bottom 

reflectance parameterization, and thus IOP retrievals, in shallow water ocean color 

inversion algorithms, such as SWIM. 
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CHAPTER 1 : INTRODUCTION AND SIGNIFICANCE OF 
THE RESEARCH 

 

This chapter provides the general context that motivated the research presented in the 

thesis. 
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1.1 Overview 

Coral reefs are not only important ecologically, but also economically (Spurgeon, 

1992). It is estimated that up to 500 million people rely to some degree on coral reefs for 

subsistence and income, through tourism, fisheries, coastal protection, living resources 

and sand transportation (Veron et al., 2009, Wilkinson, 2004). Oceanographic processes, 

climate change and anthropogenic influences, such as tourism and coastal development, 

all affect water quality and coral reef health (Moberg and Folke, 1999, Lovelock and 

Ellison, 2007, Walling, 2006). In recent years, concern for the health of coral reefs has 

grown, particularly reefs in coastal or nearshore areas; with declining water quality 

identified as one of the principal threats (Fabricius, 2005, De'ath and Fabricius, 2010, 

Mumby et al., 2004b).  

In recognition of these environmental concerns, water quality monitoring is important 

for managing reef ecosystems. Assessing water quality or ecosystem health requires a 

compromise between the practicality of measuring the various indicators of interest and 

the requirements to sample spatial and temporal dynamics at appropriate scales (Udy et 

al., 2005). Remote sensing is frequently used to monitor environmental variables as 

indicators of reef health over large scales (Mumby et al., 2004b, Mumby et al., 2004a, 

Andréfouët et al., 2002, Beijbom et al., 2012, Lirman et al., 2007). Remote sensing is often 

described as the acquisition of information about an object without making physical contact 

with the object (Panigrahi, 2014).  

Satellite remote sensing data can be acquired several times a day, and the spatial 

extent of a scene can cover areas from a few kilometers to several thousand kilometers, 

providing observation to terrain that otherwise may be inaccessible, where field data might 

be impossible or too cost intensive to collect (Campbell and Wynne, 2011). Remote 

sensing has great potential for improving management practices, providing the possibility 

of quick event-based analysis, as well as detection of long term trends, allowing for 

adaptive management outcomes (Mumby et al., 1999). Further, long term trends can be 

used for benchmarking regional water quality objectives to ensure optimal ecosystem 

health (Antoine et al., 2005). Also, management decisions often require up to date field 

data, which are in the case of the GBR, costly and time intensive to obtain, but readily 

available from satellite data.  
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Current outputs from remote sensing products include water quality parameters such 

as chlorophyll a concentration (chl-a), sediment concentration and water turbidity 

(Example: Weeks et al., 2012, O'Reilly et al., 1998, Stumpf and Pennock, 1989, Dekker, 

1993). Many global physics-based algorithms have been developed to generate synoptic 

imagery and estimates of water column optical properties from remotely sensed data, but 

they have neglected the impact of light reflected from the bottom (Lee et al., 2002, Werdell 

et al., 2013). In optically shallow waters the algorithms need to account for the influence of 

light reflected from the bottom if they are to produce reliable estimates of water column 

properties (Barnes et al., 2013, McKinna et al., 2015). Very clear waters often characterize 

coral reef environments, thus light reflectance of the bottom becomes an issue. However 

this is often not the case in coastal systems that are relatively turbid (Reichstetter et al., 

2015a). 

Remote sensing has been extensively implemented in monitoring programs of 

terrestrial and deep ocean environments (Example: O'Reilly et al., 1998, Mélin et al., 2005, 

Zhao et al., 2005). Currently, there are no operational algorithms that can correct for 

bottom reflectance contamination in remote sensing products for optically shallow waters, 

where light reflected from the bottom of the ocean contaminates the remote sensing 

signal. Therefore, ocean color products of shallow water environments cannot be used 

with any degree of accuracy.  

New advances in satellite technology and the globally recognized need for optically 

shallow water quality products have led to optically shallow water algorithm development 

and validation (Example: McKinna et al., 2015, Wettle and Brando, 2006, Carder et al., 

2005, Dekker et al., 2011, Lee et al., 1998). One example is the Shallow Water Inversion 

Model (SWIM) (McKinna et al., 2015), recently developed to improve retrievals of inherent 

optical properties (IOPs) of the water column in shallow water environments. SWIM uses 

bathymetry and bottom reflectance as input parameters. The algorithm has been 

incorporated into NASA’s SeaWiFS Data Analysis System (SeaDAS) processing code, 

L2gen (http://oceancolor.gsfc.nasa.gov), as an evaluation product available to the 

research community (McKinna et al., 2015).  
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The newly developed shallow water inversion model, SWIM, requires bottom 

reflectance input parameters. Little is known about the effect of bottom reflectance 

parameterization on IOP retrievals in shallow water inversion models. Yet, both the 

atmospheric and water column light interactions have been well researched (Example: Lee 

et al., 1998, Ackleson, 2003, Hu et al., 2000, Mobley and Mobley, 1994, Mobley et al., 

1993, Mobley et al., 2002) and operational models to calculate these interactions have 

been developed and utilized.  

To date, little research exists on optimal bottom reflectance parameterization and its 

effects on the retrievals of IOPs. This lack of knowledge of the impact of bottom 

reflectance parameterization in shallow water inversion models may lead to ambiguous 

estimations or uncertainties in IOP retrievals and to suboptimal characterization of the 

bottom reflectance input parameter. This thesis focuses on optimizing bottom reflectance 

parameterizations in shallow water inversion models for coral reef environments and 

assesses the effects of bottom reflectance parameterization on the retrievals of IOPs.  

1.2 Light in water 

Ocean color satellite remote sensing can be described as the acquisition and 

interpretation of visible range (400-700 nm) data of the ocean collected by satellite-based 

sensors (Mobley et al., 2010). Reflected sunlight is the most commonly measured 

parameter in the production of satellite remote sensing products (Campbell, 2002). The 

radiance measured by ocean color satellite sensors originates from sunlight which passes 

through the atmosphere and is absorbed, and scattered by constituents in the water 

column, such as phytoplankton cells and suspended organic and inorganic matter—

affected in shallow waters by the seafloor—and is then transmitted back through the 

atmosphere to a satellite sensor (Sathyendranath, 2000) (see Figure 1–1).  
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Figure 1-1: Schematic diagram of the various processes that contribute to the signal as measured by 
a satellite in an optically shallow water environment, where the bottom reflectance has a significant 
effect on the water-leaving radiance (modified from Roelfsema C.M. (2010)). 

 

In ocean waters, light propagates through the water column, where it interacts with its 

constituents (Tzortziou et al., 2006, Doxaran et al., 2007). The water-leaving radiance 

contains information on optically active components, such as phytoplankton, non-living 

suspended particles and dissolved organic material, as well as seafloor cover (in shallow 

waters) (Jerlov, 1976, Perry, 2003). Hence, the light that leaves the ocean (the ocean color 

signal) carries information on ocean biology and biogeochemistry. The various optical 

constituents each affect the spectral nature of the light through preferential spectral 

absorption/reflection; thus, the spectral nature or color of the light is changed. It is the 

changes in the spectral nature, or the signature, that are employed in algorithms to 

determine the various ocean color products (Sathyendranath, 2000, Mobley et al., 2010, 

Mobley, 1994). 
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The optical signature for each constituent is unique and is defined by its inherent 

optical properties (IOPs) of absorption, backscattering and fluorescence (Kirk, 1994). IOPs 

describe everything there is to know about the bulk optical properties of a water body 

(Mobley et al., 2010, Mobley, 1994). Commonly used IOPs in ocean color remote sensing 

are the absorption coefficient (a) and the backscattering coefficient (b). Both absorption 

and backscattering can be expressed as a sum of contributions from individual 

constituents. The spectral absorption coefficient (a�) of natural waters is dependent on the 

number, size and kind of individual particles in the water column. The total absorption of 

natural waters can be expressed as: 

a(λ)=aw(λ)+aph(λ)+ad(λ)+ag(λ)          (1.1) 

where aw is the absorption of pure water, aph is the absorption of phytoplankton, ad is 

the absorption of non-pigmented particulates and ag is the absorption of colored dissolved 

organic matter (Kirk, 1994). The wavelength (λ) is written explicitly to reinforce the idea 

that each of these parameters varies spectrally.  

The scattering coefficient (b) can be divided into two parts, forward scattering, bf and 

backscattering bb 

b(λ)= bf(λ)+bb(λ)           (1.2) 

The backscattering coefficient (bb) can be further divided into contributions of pure 

water bbw and particles bbp and can be calculated as follows: 

bb(λ)=bbw(λ) +bbp(λ)          (1.3) 

The particle backscattering (bbp) is mostly due to phytoplankton and non-living 

particulates in the water column (Mobley, 1994). It is determined primarily by the 

concentration of particles, their shape, index of refraction and particle size distribution 

(Kirk, 1994). Particle backscattering (bbp) is an important factor in the interpretation of 

remotely sensed signals, because it is directly proportional to the upwelling radiance.  
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To derive water quality products from water-leaving radiance, as measured by the 

satellite sensors, one needs to establish the relationships between the water-coloring 

constituents in the water column and the apparent optical properties (Mobley et al., 2010, 

Mobley, 1994, Sathyendranath, 2000).  

It used to be difficult to collect in situ IOPs other than by using the beam attenuation 

coefficient (Mobley et al., 2010). Yet, it was comparatively easy to collect in situ 

measurements of radiometric variables such as the upwelling and downwelling 

irradiances. Therefore, apparent optical properties (AOPs) rather than IOPs were used to 

assess the bulk optical properties of a water body (Mobley et al., 2010). AOPs can provide 

information about a water body, such as the concentrations and types of the in-water 

constituents, from measurements of the light field and are associated with the ocean’s 

color and clarity (Bissett et al., 2005, Mobley et al., 2010).  

AOPs depend on two things: (I) the inherent optical properties (IOPs) of the system 

and (II) the light field in which they are measured (Kirk, 1994). The diffuse attenuation 

coefficient, K, the primary turbidity measures of the water column, is a commonly used 

AOP in the ocean color remote sensing community (Maritorena et al., 2002, Bricaud et al., 

1998, Kirk, 1984). For example, Kd490 determines how visible light in the blue-green part 

(490 nm) of the electromagnetic spectrum penetrates the water column. Kd is directly 

related to the presence of scattering and absorbing constituents in the water column. The 

measured value of Kd is dependent on depth, sun angle and sky conditions (Kirk, 1994, 

Mobley et al., 2010).   

1.3 Ocean color modeling 

Ocean color remote sensing is often utilized to map the distribution of chlorophyll 

concentration, one of the most fundamental properties of ocean ecosystem functioning. 

Ocean color remote sensing products have also been applied to a number of other 

applications such as management of fisheries, detection of harmful algal blooms, as well 

as the discrimination of functional groups of phytoplankton (Platt, 2008).  
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Ocean color models are used to relate remote sensing data—radiance measured at the 

satellite—to biogeophysical properties, such as chlorophyll concentrations 

(Sathyendranath, 2000). Ocean color remote sensing models are generally categorized 

as: empirical, analytical or semi-analytical (Sathyendranath, 2000) (Figure 1–2).  

 

Figure 1-2: Main model approaches in ocean color modeling showing the inverse and forward 
modeling processes (adapted from Sathyendranath (2000)) 

 

Ocean color models can also be classified as forward and inverse models. Forward 

models use IOPs (absorption, backscattering coefficients) of chl-a, particles and absorbing 

materials to estimate AOPs, such as Rrs and Kd. On the other hand, inverse models use 

AOPs to derive optically-active constituents and IOPs (Sathyendranath, 2000) (Figure 1–

2). For example, in this thesis I will use a forward modeling approach to derive Rrs from 

different substrate reflectances and IOPs to calculate the maximum depth at which a 

bottom reflectance signal still affects the remote sensing signal. But, I will use an inverse 

model to derive IOPs for the Great Barrier Reef (GBR) from MODIS (Moderate Resolution 

Imaging Spectroradiometer) data.  
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Analytical optical models in ocean color remote sensing are usually classified as 

forward models. Analytical optical approaches require the application of radiative transfer 

theory (Feng, 2004). Radiative transfer theory is based on the propagation of radiation 

through the atmosphere and water where it is affected by absorption, emission and 

scattering processes (Mobley et al., 2010).  

Analytical optical models are more complex than empirical optical models due to the 

inclusion of light interactions between the source and sensor. Because of the model 

complexity, analytical optical models are frequently used by remote sensing specialists 

rather than by application scientists (Franklin, 2001). With the introduction of improved 

underwater spectrometers in the late 1990s, the development of analytical optical models 

has improved (Dekker et al., 2011). Also, a commercial software model, Hydrolight, now 

allows the user to simulate in situ spectra under different water column conditions to better 

understand light interactions in the ocean and therefore, to provide a better understanding 

of the basic theory of analytical models (Mobley and Sundman, 2008a). 

Empirical and semi-analytical optical models are mostly classified as inverse models 

(Sathyendranath, 2000). Empirical optical approaches are based on statistical 

relationships between observational and/or experimental data, and remotely sensed data. 

Empirical optical models are widely used, especially in the open ocean, but do require 

extensive field calibration and thus, can be site specific (Leiper et al., 2009). Also, the 

ocean’s water column properties are changing, both on regional and global scales. It is 

likely that models based on in situ data collected over the past decades are not replicable 

in the near future (Dierssen, 2010). 

Semi-analytical or “quasi-analytical” models are based on the theory of light 

propagation through the water and the inclusion of some empirical approximations (Zoffoli 

et al., 2014). However, semi-analytical models do not rely on the fixed relationships 

between the empirical approximations and absorption or backscattering, that the empirical 

optical models are based on (Orcutt, 2013). Semi-analytical ocean color models can 

retrieve multiple ocean color properties simultaneously from a single water-leaving 

radiance spectrum, whereas empirical optical models usually only retrieve one parameter 

(Maritorena et al., 2002). Further, semi-analytical models use the retrieved IOPs to 

generate biochemical parameters, such as total suspended sediments and chl-a.  
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One of the most recent and widely accepted semi-analytical models for shallow water 

remote sensing was developed by Lee et al. (1998). In this model, the diffuse attenuation 

coefficients are explicitly expressed as functions of in-water absorption and backscattering 

(Lee et al., 1998). Lee et al. (2001) further developed Lee’s inversion optimization 

approach to derive water column properties and water depth from hyperspectral data.  

The later algorithm of Adler-Golden et al. (2005), that is based on the algorithm of Lee 

et al. (2001), assumes constant water column optical properties to retrieve coastal water 

properties and to estimate bathymetry of shallow waters. A recent study compared the 

absolute and relative accuracies, as well as computational efficiencies, of ocean color 

algorithms for optically shallow waters (Dekker et al., 2011). The study found that empirical 

models produced less accurate bathymetric retrievals than radiative-transfer-based 

models, but found all the tested inversion models produced reasonably accurate results of 

bathymetry, IOPs and bottom reflectance for waters shallower than 13 m. Locally 

parameterized models performed better, while none of the methods reviewed performed 

satisfactorily in all situations (Dekker et al., 2011).  

Increased efforts are currently being made within the ocean color remote sensing 

community to develop tools to retrieve water clarity parameters for optically shallow waters 

(Dekker et al., 2011). Optically shallow waters are characterized as areas in which light 

reflected from the seafloor affects the water-leaving radiance signal (Lee et al., 1998). This 

can lead to errors in ocean color products of models developed for deep water, such as 

IOPs (Cannizzaro and Carder, 2006, Qin et al., 2007, Zhao et al., 2013). In recent years, 

methods to derive IOPs from optically shallow waters have been developed (McKinna et 

al., 2015, Brando et al., 2012, Barnes et al., 2014, Barnes et al., 2013). To date, only one 

of the developed methods, the Shallow Water Inversion Model (SWIM) (McKinna et al., 

2015), explicitly uses bathymetry and benthic reflectance datasets to improve IOP 

retrievals. SWIM focuses on IOP retrievals. Most previous research in shallow water ocean 

color modeling focused on bathymetric retrieval and seafloor classification with little 

emphasis on the derived water column IOP values and geophysical products such as chl, 

and other water clarity measures (Brando et al., 2009, Dekker et al., 2011, Fearns et al., 

2011, Goodman and Ustin, 2007, Hedley et al., 2009, Klonowski et al., 2007, Lee, 1999, 

Lesser and Mobley, 2007).  
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The recent inclusion of SWIM into the NASA SeaDAS L2gen processing code 

(http://oceancolor.gsfc.nasa.gov) marks a milestone in the application of semi-analytical 

models to retrieve IOPs. SWIM allows the user to specify bathymetry and bottom 

reflectance to improve IOP retrievals (McKinna et al., 2015). The SWIM model has been 

found to perform well in clear coral reef waters in the Great Barrier Reef, under the current 

default IOP model parameterizations using MODIS ocean color data (McKinna et al., 

2015). 

1.4 Bottom reflectance in remote sensing applications 

1.4.1 Bottom reflectance in ocean color modeling 

Bottom reflectance parameterization in ocean color shallow water models usually 

includes the spectral reflectance signature of common bottom classes, while the recently 

developed shallow water inversion model, SWIM, also includes the spatial distribution of 

each bottom class (McKinna et al., 2015). Adding a bottom reflectance parameter to a 

shallow water inversion model should improve IOP retrievals, as the influence of light 

reflected from the corresponding bottom type is included in the calculation of the IOPs. 

The parameterization of bottom reflectance in shallow water inversion models is usually 

based on the original Lee et al. (1998, 1999, 2001) approach, which is as follows: 

Ρ= B*ρ(λ0)           (1.4) 

where P is the bottom reflectance, ρ(λ0) is the bottom reflectance spectrum normalized 

at wavelength λ0, and B is a scalar representing the magnitude of the bottom reflectance 

spectrum at the corresponding wavelength. B is the only variable that controls the 

contribution of the bottom reflectance to the water-leaving reflectance, because the 

spectral shape of the bottom cover type does not change. Lee’s bottom reflectance 

parameterization was tested in shallow waters in Tampa Bay, Florida (Lee et al., 2001). 

The only bottom cover present in that study area was sand, yet, the model was adjusted to 

select either a sand or seagrass spectrum, based on a rough estimation of existing bottom 

reflectance (Lee et al., 2001).  

Not all shallow water ocean color models use the same approach to parameterize 

bottom reflectance. For example, the shallow water inversion model, Semi-Analytical 

Model for Bathymetry, Un-mixing, and Concentration Assessment (SAMBUCA), searches 
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an inbuilt spectral library of bottom reflectance spectra to account for the diversity of 

seafloor cover (Wettle and Brando, 2006). For a model to search a spectral library to find 

the most appropriate combination of bottom reflectance spectra for each pixel in the 

satellite image increases the processing time substantially, limiting the application of such 

a model.  

For example, the SAMBUCA model needed 1147 hours to process one scene of Lee 

Stocking Island, while another model, the Hyperspectral Optimization Process Exemplar 

model (HOPE), that has a more simple bottom reflectance configuration, required only 48 

minutes to process the same image (Dekker et al., 2011).  

The current version of the NASA SWIM model applied to the GBR uses a 2-bottom 

cover class approach, where the user can specify the spectral signature and proportion 

contribution of a bottom class, such as sand or seagrass to the two classes of “light” and 

“dark”. The current SWIM model for the GBR is parameterized as follows: 

           (1.5) 

where ρnet (λ) is the net spectral reflectance per-pixel, CL represents the relative 

proportion of “light bottom” cover with CD representing the relative proportion of “dark 

bottom” cover (McKinna et al., 2015).  

1.4.2 Seafloor cover mapping 

Seabed mapping provides essential information to strengthen effective management of 

the marine environment by documenting the extent and distribution of particular seabed 

cover types and assessing the selection of Marine Protected Areas (MPAs). Seabed 

mapping and marine habitat mapping are loosely defined terms and can have different 

meanings based on their application. For example, seabed mapping may refer to 

bathymetry information or points representing occurrences of a single species or habitat 

across an area. In this thesis, the term bottom reflectance mapping will be used as a more 

general term to describe any activities involving mapping of the optical properties of the 

seabed.  

14 

 

2.3.2 Bathymetry data 

Bathymetric data used for testing SWIM in the GBR were extracted from a spatially 

consistent, gridded digital elevation model dataset (vertical datum: MSL; horizontal datum: WGS-

84), 3D-GBR [Beaman, 2010]. The 3D-GBR dataset is a composite of nearly 9.5 x 108 xyz data 

points sourced from multibeam and singlebeam acoustic soundings, Royal Australian Navy airborne 

Light Detecting and Ranging (LiDAR) data, Shuttle Radar Topographic Mission (SRTM) data and 

coastline data [Beaman, 2010]. The resulting 3D-GBR dataset has a pixel resolution of 100 m x 100 

m, and was deemed to resolve bathymetric features with sufficient horizontal and vertical detail for 

use as a SWIM algorithm input. Figure 3 shows the 3D-GBR digital elevation map of the GBR 

region and demonstrates both the extent of shallow shelf waters (less than 30 m) and also the large 

offshore reef matrix on the outer continental shelf. The 3D-GBR dataset was downloaded from the 

Great Barrier Reef online e-atlas website (http://eatlas.org.au/data/uuid/200aba6b-6fb6-443e-b84b-

86b0bbdb53ac). 

2.3.3 Benthic albedo map 

Marine benthic communities in the GBR are complex and spatially varied. As such, it was a 

challenge constructing a dataset suitable for characterizing the benthic albedo of the entire region. A 

pragmatic approach to the problem was to begin simply with just two benthic classes: ‘light’ and 

‘dark’, each with their own benthic albedo spectrum, ߩ௅ሺߣሻ and ߩ஽ሺߣሻ, respectively. The net benthic 

albedo per-pixel, ߩ௡௘௧ሺߣሻ, was then calculated via a linear mixing model  

ሻߣ௡௘௧ሺߩ ൌ ܿ௅ߩ௅ሺߣሻ ൅ ܿ஽ߩ஽ሺߣሻ    [16] 

where ܿ௅ and ܿ஽ are the relative proportion of light and dark benthic classes for a given pixel. Whilst 

not within the scope of this paper, it should be noted that further improvements to the benthic 

This article is protected by copyright. All rights reserved.
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Satellite imagery is frequently used for seafloor mapping (Example: Fearns et al., 2011, 

Goodman et al., 2013, Green et al., 1998, Joyce et al., 2004). Satellite images are 

composed of a matrix of image elements, or pixels, which are the smallest units of an 

image. The pixel defines the spatial resolution of an image representing the size of the 

surface area (i.e. km2) being measured on the ground, determined by the sensors’ 

instantaneous field of view (IFOV) (Schowengerdt, 2006). Most reef structures such as 

different coral cover or algae patches are spatial structures (cm2-m2), but can cover larger 

spatial extents (>km2) (Pitcher, 2007).  

Large shelf-scale ecosystems that contain a large number of coral reefs, such as the 

Great Barrier Reef are heterogeneous environments presenting several bottom types 

within one satellite pixel (Pitcher, 2007). Thus in moderate resolution sensors such as 

MODIS (1 km2) the pixel is usually a mix of substrate types. Thus, it is essential that 

shallow water inversion models account for the heterogeneity of bottom covers in shallow 

waters, where the seafloor is generally diverse. 

There is an abundance of research published about mapping seafloor cover for 

biodiversity or habitat purposes, or for bathymetry (Example: Adler-Golden et al., 2005, 

Andréfouėt et al., 2003, Casal et al., 2011, Goodman and Ustin, 2007, Fearns et al., 

2011); however, not much has been reported about mapping the seafloor based on its 

optical properties. Yet, to correct for bottom contamination in satellite ocean color 

algorithms, the bottom cover has to be classified based on its optical properties. The most 

common methods of large-scale seafloor mapping are based on remote sensing 

techniques. Most recently, several studies have assessed the integration of LIDAR and 

hyperspectral data to generate maps of seafloor reflectance (Macon et al., 2008, Tuell et 

al., 2005, Tuell et al., 2010). Seafloor mapping on smaller scales (<100 m) often includes 

underwater video or photography. The emergence of the autonomous underwater vehicle 

(AUV) may make future large-scale habitat mapping based on underwater imagery 

possible (Fair et al., 2006). While there is a focus on creating substrate maps using remote 

sensing techniques, no studies known to the author have focused on converting 

biodiversity in situ datasets to optical seabed cover maps. 

Remote sensing approaches for mapping seabed cover in coral reef systems started in 

the 1970s, using aerial photo interpretation (Hopley et al., 1978). In the 1980s, satellite 

data from the Landsat Multispectral Scanner (MSS) Thematic Mapper ™ and Satellite 
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Pour l’Observation de la Terre (SPOT) sensors were used for broad habitat classifications 

(Jupp et al., 1985, Poiner et al., 1987). Over recent years, state of the art high spatial and 

high spectral resolution airborne data have been used for bottom mapping (Leiper et al., 

2011). Spatially, they are classified into low (100-1000 m), moderate (10-100 m) and high 

(0.5–10 m) resolutions (Goodman et al., 2013) 

Numerous satellite and airborne imaging sensors have been used for coral reef 

mapping. They are primarily categorized based on their spatial and spectral resolution. 

Spectrally, sensors are classified as multispectral, where imagery is produced by satellite 

sensors that measure reflected energy within several specific broad bands of the 

electromagnetic spectrum, or hyperspectral, that contain hundreds of narrow bands across 

the electromagnetic spectrum. When using hyperspectral sensors, finer spectral 

reflectance differences may be detected compared to those detected using multispectral 

sensors (Phinn et al., 2008, Kutser et al., 2003). However, the importance of spatial versus 

spectral resolution for coral reef mapping remains a challenge for researchers (Capolsini 

et al., 2003, Lee et al., 2007, Mumby and Edwards, 2002, Pulliza, 2004, Hochberg et al., 

2003).  

Multispectral resolution sensors with moderate spatial resolution, such as Landsat 5 

Thematic Mapper ™, Landsat 7 Enhanced Thematic Mapper Plus (ETM+), SPOT and the 

Advanced Space-borne Thermal Emission and Reflection Radiometer (ASTER) have been 

used in coral reef research since the 1980s (Ahmad and Neil, 1994, Andréfouėt et al., 

2003, Andréfouët and Riegl, 2004, Capolsini et al., 2003, Dobson and Dustan, 2000, 

Mumby et al., 1998, Mumby et al., 1997, Purkis and Pasterkamp, 2004). Landsat imagery 

has been found to be the most successful for multi-spectral resolution remote sensing 

mapping, as its data records have now been available for more than 30 years, which 

makes trend analysis possible. Further, Landsat data also provide a cost-effective way to 

map coral reefs (Dobson and Dustan, 2000) especially since the Landsat archive is made 

freely accessible (Wulder et al., 2012). Nevertheless, these sensors are not able to 

distinguish between some coral reef benthos types, including live coral or macroalgae 

(Andréfouët et al., 2001). The recent introduction of multi-spectral sensors with high spatial 

resolution (approx. 0.5-10 m), such as IKONOS, Quickbird-2 and Worldview-2, has 

allowed researchers to map seafloor cover with higher descriptive resolutions than was 

possible with the moderate spatial resolution sensors, such as Landsat (Andréfouėt et al., 
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2003, Karpouzli et al., 2004, Mumby et al., 1998, Mumby et al., 1997, Mumby and 

Edwards, 2002, Tuell et al., 2010, Eugenio et al., 2015). Lee et al. (2007) assessed the 

most suitable spectral bands for remote sensing of aquatic environments. That study 

proposed more spectral bands than currently available on the MODIS sensor. In addition, 

it identified that a band between 551 and 667 nm on MODIS would be useful for remote 

sensing of suspended sediment and optically shallow waters.  

Hedley et al. (2012) further assessed sensor limitations in optical remote sensing of 

coral reefs, concluding that bottom classes and sub-pixel mixing are the main limiting 

factors in the accuracy of bottom mapping classification using remote sensing. The study 

also found that current instrument noise levels are a minor factor in the discrimination of 

bottom cover.  

Spectral libraries are used in some ocean color models to correct for the effects of 

bottom reflectance (Wettle and Brando, 2006) and in seafloor mapping. Spectral libraries 

of pure endmembers (single organisms, for example: sand, seagrass or algae) or cover 

types have been assessed in various studies (Andréfouët et al., 2001, Andréfouët and 

Riegl, 2004, Hochberg et al., 2004, Holden and LeDrew, 1998, Holden and Ledrew, 1999, 

Joyce et al., 2004, Kutser et al., 2003, Kutser et al., 2006, Leiper et al., 2009, Minghelli-

Roman et al., 2002, Myers et al., 1999, Hochberg et al., 2003). These studies were 

predominantly based on in situ field spectrometry measurements of single cover classes 

(Leiper, 2011). For example, Hochberg et al. (2003) analyzed 13,100 in situ spectral 

reflectance signatures for shallow water environments in the Atlantic, Pacific and Indian 

Oceans. The authors identified 12 bottom types which showed unique spectral features: 

fleshy brown, green, and red algae; non-fleshy encrusting calcareous and turf algae; 

bleached, blue, and brown hermatypic coral; soft/gorgonian coral; seagrass; terrigenous 

mud; carbonate sand. Significant conclusions from this analysis were that the geographical 

location does not significantly influence spectral reflectance signatures. Spectral features 

are based on the unique suite of pigments of each bottom type and these pigment suites 

are the same in all the geographic regions (Hochberg et al., 2003).  

Even though much research on spectral discrimination of bottom covers using in situ 

data has been conducted, no accepted criteria for spectral separability of bottom classes 

have been established (Hochberg et al., 2003). A number of studies demonstrate spectral 

discrimination of bottom cover types for individual datasets using a study specific 
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methodology (Kutser et al., 2003, Mumby et al., 2004b, Call et al., 2003, Hochberg et al., 

2003). However, there are considerable differences between the spectral separability 

methods used, as well as between the results of spectral separability studies in coral reef 

systems. Some studies have used derivative analysis and multivariate techniques to 

analyze datasets of pure bottom cover spectral libraries (Holden and LeDrew, 1998, Pinnel 

et al., 2004, Hedley et al., 2012).  

While those techniques may have produced discriminative criteria, they have failed to 

identify the underlying reason for the results, thus their application is limited (Hedley and 

Mumby, 2002). At large, studies that have used mixed endmember spectra have derived 

them using spectrum-matching and lookup table methods (Goodman and Ustin, 2007, 

Mobley et al., 2005). Further studies have assessed the spectral reflectance features and 

classification potential of coral reef benthos and bottom assemblages using in situ 

measurements, with limited success (Leiper et al., 2011, Hochberg et al., 2003). For 

example, Hochberg and Atkinson (2003) found that narrowband multispectral sensors 

overestimated coral cover by 11-15%, while broadband multispectral sensors 

overestimated coral cover by up to 103%. The task of translating in situ reflectance 

measurements to satellite imagery scale remains a challenge when mapping optical 

properties of seabed cover.  
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1.5 Aim of the project  

At present, it is not clear how bottom reflectance parameterization will affect the 

retrievals of IOPs in shallow water inversion models or how to derive bottom reflectance 

parameters from available data sources. It is thus important to identify the optimal bottom 

reflectance parameterization, and its effects on the retrievals of IOPs in shallow water 

areas.  

The overall aim of the project was to optimize bottom reflectance 
parameterizations in shallow water inversion models for coral reef environments 
and assess the effects of bottom reflectance parameterization on IOP retrievals.  

The main objectives for the project are: 

Objective 1: Assess the spectral separability and detectability of bottom 
reflectance in coral reef environments.  

Objective 2: Test the sensitivity of bottom reflectance parameterization on the 
retrieval of IOPs using a shallow water inversion model (SWIM). 

Objective 3: Assess and test different approaches to create a spatially explicit 
bottom reflectance map for areas deeper than 5 m, using different datasets.  
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1.6 Chapter synopsis 

The thesis has been organized with the following structure: 

Chapter 1—Overview of the project 

This chapter provides the theoretical background and a review of the relevant literature 

that has preceded the research proposed in this thesis, as well as the aims of the project. I 

will discuss issues that are important for mapping spectral bottom reflectance and the 

current challenges faced by researchers. A significant gap in the current state of 

knowledge regarding the available bottom reflectance data and methods for assembling 

such data for use in ocean color algorithms is identified, based on a case study of the 

GBR.  

Chapter 2—Research approach and study site 

A brief overview of the research approach is given. The study site used throughout the 

thesis is introduced.  

Chapter 3—An assessment of bottom reflectance contamination in satellite remote 
sensing  

The methodology and results for the assessment of spectral reflectance characteristics for 

the use in shallow water ocean color algorithms are presented and discussed. The 

separability and detectability of bottom cover classes are assessed and discussed.  

Chapter 4—Sensitivity analysis of bottom reflectance parameterization in the ocean 
color Shallow Water Inversion Model (SWIM): A case study of the Great Barrier Reef 

A sensitivity analysis of bottom type parameterization on IOP retrievals using SWIM is 

presented. The bottom cover parameterization is assessed for the GBR region using 

single scene and time series analysis of retrieved IOP data.  
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Chapter 5—The development of spatially explicit bottom reflectance parameters for 
use in in shallow water inversion models  

Different approaches to building a bottom reflectance map are presented. The different 

datasets used for the bottom reflectance maps are discussed and results are presented 

in detail. The effects of different bottom cover maps on the retrieval of IOPs are 

discussed. 

Chapter 6—Conclusion and recommendations 

Conclusions and recommendations are made. The main outcomes and contributions in 

the context of the objectives as well as limitations and directions for future work are 

presented.  
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CHAPTER 2 : RESEARCH APPROACH AND STUDY SITE 
 

Chapter 2 provides an overview of the research approach, and provides a summary of 

the study site. As this thesis has been structured to provide three standalone chapters 

(Chapters 3-5), further details about methods and datasets specific to these individual 

chapters are covered in their relevant sections. 
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2.1 Overall study approach  

The study uses radiative transfer modeling and remote sensing approaches to gain an 

understanding of bottom reflectance parameterization in shallow water inversion models. 

Specifically, the study assesses bottom reflectance parameterization with SWIM using 

MODIS satellite data. Chapter 1 highlighted both the need for inclusion of bottom 

reflectance in shallow water inversion models and the current lack of understanding of the 

impact of bottom reflectance parameterization in ocean color shallow water models. These 

two conditions were the primary motivators for the researcher. To address the aims of the 

study, the research approach needed to include three stages: (i) the assessment of 

appropriate and efficient bottom categorization, (ii) the development of bottom reflectance 

parameters and (iii) testing of these parameters in SWIM. 

To assess, develop and test the bottom reflectance parameterization in SWIM, four 

questions were addressed:  

(1) What spectral information is needed for bottom reflectance parameterization in 

ocean color shallow water models and how does it relate to bottom cover types? 

(2) How sensitive is SWIM to differences in bottom reflectance parameterization? 

(3) What types of data can we use to construct a spatially explicit bottom reflectance 

map for inclusion in shallow water inversion models? 

(4) How do different mapping approaches influence IOP retrievals? 

To address the first question, the researcher used in situ spectral reflectance data and 

radiative transfer modeling to define distinct optical bottom cover classes that can be 

spectrally separated by MODIS and the Sea-Viewing Wide Field-of-View Sensor 

(SeaWiFS). While the thesis focuses on MODIS data, SeaWiFS was included in this thesis 

because it has a long time-series of historic data that are often used in ocean color trend 

analysis. The researcher also assessed the maximum depth at which the bottom 

reflectance contributes to the surface reflectance (Rrs) —Chapter 3. The second question 

was addressed by conducting a sensitivity analysis on the retrieval of inherent optical 

properties (IOPs) using different bottom reflectance parameterizations in SWIM—Chapter 

4.  
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The final two questions were addressed by using various bottom cover data to 

generate spatially explicit bottom reflectance maps and assess the modeled IOP 

retrievals—Chapter 5. The overall study design is shown schematically in Figure 2–1. 

More detail pertaining to each of the steps documented in Figure 2–1 is contained in 

Chapters 3-5. 
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Figure 2-1: Flowchart illustrating the main components and linkages of the data and methods 
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2.2 Study area 

The project focuses on a subset of the Great Barrier Reef (GBR) shelf system between 

10°5’24”S and 25°00’00”S, and from the coastline to the continental shelf edge, as 

illustrated in Figure 2–2 (GBRMPA, 2002). The Great Barrier Reef World Heritage Area 

(GBRWHA) covers an area of approximately 346,000 km2 (GBRMPA, 2014) consisting of 

225,000 km2 of shelf areas and approximately 120 000 km2 of oceanic waters. It extends 

along 2300 km of the Queensland coastline from Torres Strait in the north almost to Fraser 

Island in the south. The GBR consists of a complex reef matrix of nearly 3000 separate 

coral reefs. About 36% of the GBR Marine Park consists of continental slope, with depths 

ranging from 150 to 2000 m, while 64% comprises the continental shelf, including the coral 

reefs, with depths ranging from <1 to 150 m. The continental shelf consists of inter-reef 

areas (25% of the Marine Park) and lagoons (33%). The vast majority of coral reefs are 

offshore with the inshore waters containing fewer reefs (Spalding et al., 2001).  

The GBR includes an extensive system of coral reefs and inter-reef areas, thus remote 

sensing provides the only viable approach for synoptic monitoring of reef-wide 

environmental parameters, such as water quality. However, reef waters can be clear and 

relatively shallow (above 30 m) allowing bottom reflectance to interfere with the remote 

sensing signal recorded by satellite sensors. Carbonate sediments, in particular, are highly 

reflective (bright) and therefore are most likely to interfere with extraction of water column 

properties from ocean color data. The GBR has been widely researched and considerable 

data on GBR water quality exist (Example: Fabricius, 2005, Fabricius et al., 2013, 

Fabricius et al., 2014, Furnas and Mitchell, 2001, Furnas et al., 2005, Schaffelke et al., 

2012, Schaffelke et al., 2005), providing a good case for developing and testing the SWIM 

algorithm. However, due to the large extent of the GBR, availability of detailed bottom 

cover data is a challenge. The following sections discuss the bathymetry and seafloor 

covers of the GBR used throughout this thesis.  
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Figure 2-2: Map of the Great Barrier Reef with the green line indicating the boundaries of the Great 
Barrier Reef Marine Park area, including the major reef groups (adapted from (GBRMPA, 2002)) 
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2.2.1 GBR bathymetry 

Bathymetry data is essential to this study. It is used in creating the bottom reflectance 

maps, as well as providing an input into the SWIM model. At present, two shelf-scale 

bathymetry data sets exist for the GBR, the Geoscience Australia bathymetry dataset 

(2009) and the gbr100 dataset (2010). Geoscience Australia and the Australian National 

Oceans Office have produced a high-quality 9 arc second (0.0025° or ~250 m at the 

equator) bathymetric grid for all Australian waters (92˚ E–172˚ E and 8˚ S–60˚ S), including 

the GBR. This bathymetry map is derived from bathymetric survey, seismic and sampling 

data collected between 1963 and 2009 (Whiteway, 2009).  

The second bathymetry dataset used in this thesis, is the gbr100 dataset from the 

3DGBR project (Beaman, 2012). The gbr100 dataset is a gridded digital elevation model 

based on WGS-84 and mean sea level (MSL) as the vertical datum (Beaman, 2012). This 

dataset was constructed from various data sources and includes multibeam and 

singlebeam acoustic soundings, Royal Australian Navy airborne Light Detecting and 

Ranging (LiDAR) data, Shuttle Radar Topographic Mission (SRTM) data and coastline 

data, and has a 100 m x 100 m resolution (Beaman, 2012). The gbr100 was chosen as the 

appropriate data set for this work because it is already included in the NASA SeaDAS 

processing code as an auxiliary database. Figure 2–3 shows the gbr100 bathymetry map 

of the study region.  



 27 

 

Figure 2-3: gbr100 bathymetry dataset used in this thesis (data from (Beaman, 2012)  

 

2.2.2 GBR seafloor cover 

Mapping the nature and spectral characteristics of the GBR seafloor and its biological 

cover is an essential step in developing reflectance parameterizations, which are useful in 

shallow water ocean color retrieval algorithms. Linking seafloor cover to improved IOP 

retrievals using shallow water inversion models requires accurate, spectrally and spatially 

detailed bottom cover datasets.  
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Due to the large spatial extent and remoteness of much of the GBR, detailed mapping 

of seafloor cover at the spatial resolution of ocean color sensors (250 m–1 km) is very 

limited. One of the most comprehensive sources of bottom cover distribution in the GBR is 

the biodiversity dataset by Pitcher (2007). The following sections describe the distribution 

of the main seafloor cover types observed in the GBR. 

2.2.2.1 Biotic bottom cover 

The GBR has approximately 3000 coral reefs (GBRMPA, 2009). Most bottom cover 

research focuses on very shallow areas (above 5 m) of these reefs, yet these areas are 

usually not of interest in ocean color data processing to retrieve water column properties 

(Example: Roelfsema et al., 2006). However, a wide range of biota also grows in inter-

reefal areas at depths below 5 m. As examples, Figure 2–4 shows the occurrence of soft 

coral in the GBR shelf, while Figure 2–5 represents the occurrence of hard corals with a 

focus on inter-reefal areas, as recorded by Pitcher et al. (2007). Most soft and hard corals 

are located on the middle and outer shelf. A maximum of 30% coral cover was recorded 

for soft corals, as illustrated in Figure 2–4. A maximum of 20% coral cover was recorded 

for hard coral substratum, as displayed in Figure 2–5. However, these are point data and 

thus do not include complete spatial distribution. There are no comprehensive inter-reefal 

maps of coral distribution, known to the author. Pitcher et al. (2007) found that many types 

of reef organisms exist as part of “reef communities” growing on sections of hard substrate 

in inter-reefal areas. Attached forms, such as hard or soft corals, tend to be less abundant 

in open sandy areas (Example: GBR lagoon), and more abundant around areas of greater 

“surface reef” development. Thus, this thesis considers only a limited amount of the coral 

bottom cover in shallow water areas above 25 m. 
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Figure 2-4: Map of the percentage distribution and cover of alcyonarian type soft corals in the Great 
Barrier Reef (from Pitcher, 2007). 

 
Figure 2-5: Map of the percentage distribution and cover of hard corals (from Pitcher, 2007). 
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Figure 3-57: Map of the distribution and cover of conspicuous genera and other morpho-types of alcyonarian 
soft-corals.  
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Figure 3-58: Map of the distribution and cover of morpho-types of bryozoans.  
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Figure 3-59: Map of the distribution and cover of morpho-types of hard corals.  

 

 

3.5.3. Statistical characterization and prediction (W Venables & R Pitcher) 
 

The medoid rpart algorithm, using the Manhattan (Bray-Curtis) distance metric applied to the vessel 
biological data (with the three densities of epibenthos grouped), produced the tree shown in Figure 
3-60 — a result which appeared to capture more of the known habitat distributions, compared with the 
other tree metrics. The improvement (proportional reduction) in deviance achieved by any node is 
reflected by the height of the vertical lines descending from the node.  Hence the most primary and 
most substantial cut is on the sediment variable GA_MUD with sites for which this value is less than 
15.51% proceeding down to the left hand node and the remainder to the right hand node.  In general, 
the labelling of each interior node indicated the cases going to the left hand node and the complement 
to the right. The labelling of the terminal nodes is with an arbitrary group number used only for 
identification purposes in the following descriptions  

Experience with the mvpart algorithm using both the Euclidean and Hellinger metrics suggested that 
a complexity, in those cases, of about 6 or 7 groups was justified on the basis of cross-validation. The 
stopping rules of the rpart algorithm terminated the Manhattan (Bray-Curtis) tree at 9 groups, a 
similar though perhaps somewhat more optimistic number compared to the others and possibly with 
cross-validation of Manhattan if that was available.  

Information on the biological habitat character of these 9 groups could be obtained from either the 
group medoids, or nearly equivalently, the group centroids. The latter are shown as horizontal bar 
graphs in Figure 3-61 and are described in more detail below. Nevertheless, it is clear from Figure 
3-61 that while the biological habitat profiles of some of the groups stand out as different from others, 
some are not strikingly dissimilar. For example, there are degrees of similarity between 6 and 7, 3 and 
4, and 5 and 9.  
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Seagrasses are widely distributed across the GBR system. They occur in various 

habitats, such as rivers, inlets, coastal, reef, intertidal, sub-tidal and deep-water areas 

(Pitcher, 2007). McKenzie et al. (2014a) estimated the total area of shallow (water depth 

above -15 m) and deep (water depth below 15 m) seagrass cover at 3,063 km2 and 31,778 

km2, respectively. Most seagrass mapping has been focused in shallower depths (above 

15m). Figure 2–6 shows the seagrass distribution in the GBR, mapped mainly for 

shallower coastal areas McKenzie et al., 2014b. Yet, seagrasses have been found growing 

in waters up to 61 m deep in the GBR (Coles et al., 2009). However, the only in situ 

information about deeper inter-reefal seagrass spatial distribution known to the author is 

the biodiversity study by Pitcher (2007). The study found that there is a long band of mixed 

algae and patchy seagrass along the mid-shelf off Townsville. Further, Pitcher (2007) 

found that there is dense seagrass over much of the shelf in the Capricorn region, located 

in the southern GBR and around the Turtle Island Group, which is located in the central 

northern GBR (Pitcher, 2007).  

 

Figure 2-6: Seagrass distribution in the GBR (data from McKenzie et al., 2014b).  
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It is estimated that 600-700 species of benthic algae occur in the GBR, accounting for 

approximately one-third of the total macroalgal species recorded for the Australian 

continent (Diaz-Pulido et al., 2008). Despite this, the distribution and identification of 

macroalgae in the GBR system are still poorly resolved, with survey data often limited to 

gross characteristics (Examples: red, green and brown algae). The spatial distribution of 

benthic algae is highly variable, with occurrence and degree of cover varying between 

seasons (Diaz-Pulido et al., 2008). Pitcher et al., 2007 found that Halimeda algae are 

present in the northern GBR near Lizard Island, as well as in the central northern GBR, 

and the far northern GBR. Other types of algae can be found along some sections of the 

outer shelf in water up to 80-100 m deep (Pitcher, 2007). However, the lack of spatial 

information and the temporal variability of algae distribution in the GBR present an issue 

when mapping bottom cover for the input in SWIM. It is likely that annual and seasonal 

trends in algae cover can introduce errors in the parameterization of bottom reflectance in 

shallow water ocean color models and thus affect the retrievals of IOPs. In general, in situ 

information on biota in inter-reefal areas of interest for ocean color shallow water modelers 

is limited.  

2.2.2.2 Non-biotic seafloor cover 

Sand is the most broadly distributed sediment type in the GBR, covering 140,900 

km2—more than 40% of the total 344,400 km² GBR Marine Park area (Mathews et al., 

2007). Sand cover is spatially very variable across the GBR, but is generally higher on the 

outer shelf and in the south, while mud is more likely to occur in coastal areas (Mathews et 

al., 2007). Figure 2–7 (left panel) shows the percentage sand content distribution in the 

GBR. The same spatial variability of carbonate concentrations can be observed (Mathews 

et al., 2007). Carbonate is the dominant sediment type in the GBR, with high 

concentrations of above 60% covering 152,700 km2—nearly 45% of the total area 

(Mathews et al., 2007). Carbonate concentrations vary from approximately 20% near the 

coast to more than 80% on the middle and outer shelves (Mathews et al., 2007). Figure 2–

7 (right panel) shows the percentage carbonate content in superficial sediments in the 

GBR. Carbonate sand is generally considered the brightest substrate (Reichstetter et al., 

2015a) and therefore, has the greatest influence on the accuracy of IOP retrievals in 

shallow water environments.  
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Terrigenous sand originates from the land and is mainly found near the coast (Figure 

2–7) (Scoffin and Tudhope, 1985), whereas carbonate sand is largely derived from corals 

and other calcifying organisms and is most abundant away from the coast, even though it 

can be found in most parts of the GBR (Scoffin and Tudhope, 1985). 

 

Figure 2-7: Percentage sand (left panel) and percentage carbonate sand (right panel) distribution in 
the Great Barrier Reef. The white areas along the eastern edge of the GBRWH area are in deep waters 
(>100 m) and do not impact shallow water remote sensing.  

 

Figure 2–8 shows areas within the GBR where there is mostly hard or consolidated 

(rock) substratum recorded. Most of the rocky seafloor occurs on the outer shelf of the 

mid- and southern GBR (approximately 18-20°S). Rubble (5-50 mm) occurs mostly in the 

outer self and the coastal areas of the GBR, but is mainly recorded in the mid- and 

southern GBR.  

 

Previous Work  
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of granite, beachrock and relict carbonate grains (Orme et al., 1978). In general, the 
concentration of mineral grains such as quartz, feldspar, hornblende and pyroxene 
increase with proximity to major rivers and decrease north from fluvial point sources 
(Lambeck and Woolfe, 2000). Close to outer shelf reefs, quartz grains are mature, 
commonly rounded and well sorted relict grains (Scoffin and Tudhope, 1985). Such 
concentrations of siliciclastic grains often reflect weathering and transport from a 
continental source, but can also be derived from eroded older Pleistocene substrate 
(Scoffin and Tudhope, 1985; Heap et al., 2002).  
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Figure 2.23. Percent sand content in surface sediments on the GBR shelf (from 
Passlow et al., 2005).  

 
The carbonate content of sediment on the GBR shelf is dominated by biogenic grains 

and is generally derived from contemporary skeletons of biota accumulated in situ (Flood 
et al., 1978). Carbonate concentrations increase from west to east across the shelf, and 
attain ~40% within 20 km of the coast and exceed 90% in inter-reefal seabed areas on the 
outer shelf (Fig. 2.20, 2.24) (Maxwell, 1968). Carbonate concentrations are typically 
between 20-40%, 60-80% on the middle shelf, and 80-100% on the outer shelf (Passlow et 
al., 2005). Most carbonate grains are sand- and gravel-sized, and increases in carbonate 
concentrations across the shelf are mirrored by increases in the gravel content (Figs. 2.23-
2.25) (Scoffin and Tudhope, 1985). Carbonate grains are principally composed of the 
skeletal remains of foraminifers, molluscs, Halimeda, coralline algae, coral rubble, 
bryozoans, echinoderms and serpulids (Belperio, 1983a). Benthic foraminifera, Halimeda 
and molluscs are the major producers of calcium carbonate to the shelf sediments of the 

Inter-reefal seabed sediments and geomorphology of the Great Barrier Reef, a spatial analysis  
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GBR (Scoffin and Tudhope, 1985). According to Maxwell (1968), sources of carbonate 
sediment to the GBR seabed are 17-40% coralline algae, 20-40% coral, 10-30% Halimeda, 8-
20% foraminifera, 4-15% molluscs and <5% of echinoid, bryozoan and crustacean 
fragments. The distribution of skeletal grains vary latitudinally across the shelf, controlled 
by reef density, bathymetry and shelf width, tidal currents and the influence of relict 
deposits (Orme and Flood, 1980). Generally, higher carbonate concentrations occur on the 
outer parts of the shelf. Changes in skeletal grains also occur in a longitudinal, along-shelf 
direction (Marshall and Davies, 1978) (Fig. 2.26). As well as modern skeletal material,  
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Figure 2.24. Percent carbonate in surficial sediments, with concentrations of less than 
30 % on the central GBR inner shelf and increase nearby reefs in outer shelf regions to 
80-100 % (from Passlow et al., 2005). 

 
relict grains from ancient faunas eroded from underlying sediments are also present 
(Maxwell, 1968). Relict formainifera represent a high percentage of all foraminiferal tests, 
in particular Marginopora and Alveolinella (Maxwell, 1968). Sediments in inter-reefal areas 
of the central GBR are composed mostly of benthic foraminifera and Halimeda grains 
(Scoffin and Tudhope, 1985; Harris et al., 1990).  

Foraminifera are a common component of surface sediments and are present in all 
sedimentary environments across the GBR (e.g., Maiklem, 1966; Flood and Orme, 1988; 
Harris et al., 1990; Heap et al., 2001; Horton et al., 2003, King et al., 2004). Benthic and 
pelagic species show strong shelf-parallel distributions related to water depth, except on 
the broad southern shelf where tidal currents modify the occurrence of pelagic species 
(Fig. 2.27) (Maxwell, 1973). Five facies types have been recognised (Orme and Flood, 
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Figure 2-8: Map of the distribution of non-biotic seafloor cover types in the Great Barrier Reef 
summarized as a percentage of transect length as observed by towed video camera (from Pitcher, 
2007).  

 

2.3 Models  

2.3.1 Hydrolight  

Hydrolight is a commercial radiative transfer numerical model that computes radiance 

distributions and related quantities, such as irradiances, reflectances, diffuse attenuation 

functions and similar in a water body (Mobley and Sundman, 2008a). Hydrolight’s inputs, 

such as water absorption and scattering properties, the sky conditions, and the bottom 

boundary conditions are highly adaptable and can be adjusted to user specifications 

(Mobley and Sundman, 2008a). For example, the user can choose to select a built-in bio-

optical and sky model, or read in user-specific data, or write their own Fortran subroutines 

to define their input (Mobley and Sundman, 2008a). Hydrolight then solves the radiative 

transfer equation to calculate the in-water radiance as a function of water depth, direction, 

and wavelength. Other quantities of interest to this thesis, such as the water-leaving 
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Figure 3-50: Map of the distribution of seabed substratum types summarized as percent of transect length 
observed by towed video camera.  
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Figure 3-51: Map of the distribution of broad biological seabed habitat types summarized as percent of transect 
length observed by towed video camera.  
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radiance and remote-sensing reflectance, can also computed using Hydrolight (Mobley 

and Sundman, 2008a). Detailed quantitative explanation of Hydrolight can be found in 

Mobley and Sundman (2008a).  

2.3.2 Shallow water inversion model (SWIM) 

SWIM is a semi-analytical ocean color model, which was developed specifically for IOP 

retrievals in shallow water. SWIM is constructed using the following three components: (i) 

a forward reflectance model, (ii) an inverse solution method and (iii) spectral IOP models 

(McKinna et al., 2015). The SWIM algorithm structure is similar to a general semi-

analytical inversion model, but has a different forward reflection model (McKinna et al., 

2015). The forward model analytically calculates the remote sensing reflectance, Rrs
mod 

(McKinna et al., 2015). A similarity matrix is then applied to compare Rrs
mod to Rrs

obs, the 

sensor observed spectra (McKinna et al., 2015). The IOP values returned when Rrs
mod best 

matches Rrs
obs. SWIM’s forward model is based on Lee et al. (1998, 1999), (McKinna et 

al., 2015), however, within SWIM the bathymetry and seafloor reflectance values are given 

as input and thus result in the following forward model:  

Rrs
mod(λ)=f(P, G, X) [sr-1]        (2.1) 

Where P is the magnitude of aϕ(443), G is the magnitude of agd(443),and X is the 

magnitude of bbp(443). The scalar parameters P, G and X represent the magnitude of the 

IOPs, which are iteratively changed until the set convergence criteria is met, where the 

error between Rrs
mod and Rrs

obs is below the set threshold (McKinna et al., 2015). SWIM 

used the Levenberg-Marquardt optimization routine, to compare Rrs
mod and Rrs

obs and thus 

retrieve IOPs for a sensor –observed pixel (McKinna et al., 2015). For the simulations 

presented in this study SWIM’s Levenberg-Marquardt error threshold was set to 1x10-6. If 

the convergence criteria cannot be met the flag (PRODFAIL) is returned (McKinna et al., 

2015).  

The forward model within SWIM does use an input bathymetry dataset (McKinna et al., 

2015). In this a spatially consistent gridded digital elevation model dataset as described in 

Section 2.2.1. Further, the SWIM forward model requires a seafloor reflectance map. 

Currently, the SWIM model is able to use two seafloor reflectance classes, which are 

classified as light and dark. Each class contains their own reflectance spectrum ρL (λ) for 
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the light substrate class and ρD (λ) for the dark substrate class. The net seafloor 

reflectance per pixel, ρnet (λ), is calculated using the following linear mixing model:.  

ρnet (λ)= cLρL (λ) +cDρD (λ)        (2.2) 

where cL and cD are the relative proportion of light and dark seafloor classes for a given 

pixel (McKinna et al., 2015). It is anticipated that SWIM will be able to include more 

substrate reflectance classes in the future (McKinna et al., 2015). Details of the seafloor 

reflectance maps used in this thesis can be found in the corresponding Chapters.  

Including the bathymetry and seafloor reflectance maps as inputs in the model 

parameterization reduces two unknowns usually present in other semi-analytical ocean 

color models. The absorption and backscattering coefficients of optically-active constituent 

matter in the water column are calculated using the following spectral IOP models within 

SWIM: 

a(λ) = aw(λ) + aϕ(λ) +adg(λ)       [m-1]       (2.3) 

bb(λ) = bbw(λ) + bbp(λ)               [m-1]       (2.4) 

where the w, ϕ, p and dg are water itself, phytoplankton, particulate matter, colored 

dissolved and detrital matter, respectively (McKinna et al., 2015). The spectral IOP models 

in SWIM are parameterized the same as common semi-analytical ocean color models 

(McKinna et al., 2015). 
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CHAPTER 3 : BOTTOM REFLECTANCE IN OCEAN 
COLOR SATELLITE REMOTE SENSING FOR CORAL REEF 

ENVIRONMENTS 
 

This chapter uses spectral signatures of common bottom types and radiative transfer 

modeling to assess bottom spectral separability and detectability at MODIS and SeaWiFS 

spectral bands The results provide a basis for spectral signature selection and region of 

interest in ocean color shallow water models. 

 

This chapter was published: 

REICHSTETTER, M., FEARNS, P. R. C. S., WEEKS, S. J., MCKINNA, L. I. W., 

ROELFSEMA, C. & FURNAS, M. 2015a. Bottom Reflectance in Ocean Color Satellite 

Remote Sensing for Coral Reef Environments. Remote Sensing, 7, 16756-16777. 

 

Main findings: 

• No significant contamination (Rrscorr < 0.0005) was observed from bottom 

reflectance on the spectrally-averaged remote sensing reflectance signal at 

depths >19 m for the brightest spectral reflectance substrate (light sand) in clear 

reef waters. 

• Bottom cover classes can be combined into two distinct groups, “light” and 

“dark”, based on the modeled surface reflectance signals.  

• In Estuarine waters, low water clarity, bottom reflectance does not affect the 

remote sensing signal. 
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3.1  Introduction 

Water clarity, or transparency, is an important characteristic of marine ecosystem 

health, affecting the primary resource (light) required by photosynthetic organisms. 

Ecosystems such as coral reefs and seagrass meadows are built by photosynthetic 

organisms, and are therefore highly sensitive to changes in water clarity (Fabricius, 2005). 

Recently, ocean color remote sensing techniques have complemented field sampling to 

monitor water clarity in coral reefs. Ocean color remote sensing allows large scale, 

synoptic water clarity monitoring where in situ physical sampling is difficult and costly 

(Weeks et al., 2012, Loisel et al., 2013). Satellite sensors provide spectral radiometric 

measurements of the color of the ocean that can be directly related to the relative 

concentrations of optically-active constituents, such as phytoplankton, dissolved organic 

matter or suspended particulate matter (Mobley et al., 2010). 

Empirical and physics-based algorithms relate sensor-observed remote-sensing 

reflectance signals to in situ marine components. The radiative transfer problem of 

optically deep waters has been widely researched; with deep-water ocean color algorithms 

meeting NASA mission required accuracies for water-leaving radiance and chlorophyll-a 

retrievals, (Example:  O'Reilly et al., 1998, Lee et al., 2002, Werdell and Bailey, 2005, 

Maritorena et al., 2002). On the other hand, deriving reliable ocean color products for 

optically shallow water masses, where light reflected from the seafloor contributes to the 

net water-leaving radiance, is more challenging and requires specialized algorithms. Water 

clarity monitoring of optically shallow waters using ocean color imagery data requires an 

understanding of the effects of bottom reflectance on the surface reflectance signal. 

Initial efforts in the development of shallow water inversion algorithms focused primarily 

on the simultaneous retrieval of bathymetry and bottom cover. Less attention was given to 

the derivation of the inherent optical properties (IOPs) of the water column (Bierwirth et al., 

1993, Dierssen et al., 2003, Louchard et al., 2002, Werdell and Roesler, 2003, Lee et al., 

2010). More recently, effort has focused on the development of ocean color inversion 

algorithms for IOP retrievals in optically shallow waters (Wettle and Brando, 2006, Dekker 

et al., 2011, McKinna et al., 2015, Barnes et al., 2013).  
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One example is the newly developed Shallow Water Inversion Model (SWIM), currently 

implemented as an evaluation product in NASA’s ocean color processing code, L2gen 

(McKinna et al., 2015). SWIM is based on the shallow water optical model of Lee et al. 

(1998); however, the SWIM algorithm does not retrieve water depth and bottom 

reflectance as free parameters. Instead, estimates of water column depth and benthic 

albedo (reflectance) are supplied to SWIM as ancillary data inputs. The current 

implementation of SWIM for the Great Barrier Reef (GBR), Australia, has been developed 

with the requirement of two specific regional input datasets, bathymetry and benthic 

albedo: Reliable bathymetry data at 100 m spatial resolution are available over the full 

extent of the GBR (Beaman, 2012). Prior to this study, an existing benthic biodiversity 

database (Pitcher, 2007) was used to derive the bottom reflectance signatures for a simple 

two-component “light” and “dark” reflectance map (Reichstetter et al., 2015b). 

However, the optimal parameterization of bottom reflectance in shallow water inversion 

models is still not well constrained, particularly with respect to the spectral signature and 

number of required spectral classes. There remains a need to resolve spectral separability 

for current ocean color sensors to optimize bottom reflectance parameterization, and thus 

IOP retrievals in shallow water inversion models. 

Quantifying the bottom reflectance contribution to the remote-sensing reflectance 

signals is challenging due to heterogeneous bottom cover and differences in spatial and 

spectral resolutions of common ocean color sensors. Current ocean color satellite sensors 

have limited capabilities to resolve bottom types or communities, such as sand, seagrass, 

algae or coral, due to the limited number and placement of their spectral bands (Lee et al., 

2007). Most sensors have 6–15 spectral bands in the 400–1050 nm optical range, spatial 

pixel resolutions ranging from 250 m to 1.1 km and spatial swath extents of 1000s of 

kilometers. Whilst planned next generation satellite sensors with improved spectral and/or 

spatial resolution, such as the Pre-Aerosol Cloud and ocean Ecosystem (PACE) and the 

Ocean Land Color Instrument (OLCI) (Sentinel-3) missions (Malenovský et al., 2012), may 

be able to better differentiate bottom cover spectral signatures, data acquisition from such 

sensors is still likely to be coarse, with pixels sizes of 300 m to 1 km in size.  
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Moderate resolution satellite sensors, such as the Moderate Resolution Imaging 

Spectroradiometer (MODIS), Medium Resolution Imaging Spectrometer (MERIS) and Sea-

Viewing Wide Field-of-View Sensor (SeaWiFS), are currently used by the satellite remote 

sensing community due to ease of data accessibility and large spatial (global) and 

temporal (daily) coverage. Numerous previous studies have assessed the spectral 

separability of different bottom types based on pure endmembers (single organisms or 

substrate types) within a small area (<1 m2) (Andréfouët et al., 2001, Hochberg et al., 

2004, Holden and LeDrew, 1998, Joyce et al., 2004, Kutser et al., 2006, Botha et al., 

2013). Only a few such investigations, however, have assessed the impact of bottom type 

mixtures on the remote-sensing reflectance signal (Hedley et al., 2012, Leiper et al., 

2011). Those studies have focused on higher spatial resolution sensors with pixel sizes of 

<50 m. Data from moderate resolution sensors are represented by 6 to 7 visible bands 

(Table 3–1) and relatively large pixel sizes (1 km × 1 km), which typically contain a mixture 

of bottom types in one pixel. Therefore, it is particularly important to assess the impact of 

mixed substrate pixels on their spectral separability, rather than analyzing single bottom 

covers. 

The primary objective of this study therefore was to determine a reliable and efficient 

approach to select the optimal bottom cover spectral parameterization for shallow water 

inversion algorithms. Specifically, we have focused on shallow water inversion algorithms 

applied to moderate resolution ocean color remote sensing of coral reef environments by: 

(1) determining threshold depths at which the bottom reflectance signal of individual and 

mixed bottom types can contribute to the remote-sensing reflectance signal; and (2) 

determining the number of bottom spectral signatures required to accurately characterize 

bottom reflectance in shallow water inversion models. We applied the methodology to the 

MODIS and SeaWiFS spectral bands. Due to project restraints, MERIS data were not 

used in this study, however the methods are similarly applicable. 

Table 3-1: Assessed band center and bandwidths (nm) used for the statistical analysis of spectral 
separability and detectability of bottom types. 

Sensor Band Center (Band Width) (units: nm) 

MODIS 412.5 (15) 443 (10) 488 (10) 531 (10) 551 (10) 667 (10) 677.5 (10) 

SeaWiFS 412 (20) 443 (20) 490 (20) 510 (20) 555 (20) 670 (20)  
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3.2 Data and methods 

3.2.1 Methods overview 

Radiative transfer modeling was used to determine the detectability and spectral 

separability of bottom cover classes through a variety of water column types. The radiative 

transfer model used, Hydrolight-Ecolight 5 (HE5) (Mobley and Sundman, 2008b), was 

parameterized based on combinations of IOPs, bottom reflectance, depth and sensor type. 

Output remote-sensing reflectances were then statistically analyzed to determine the 

detectability and spectral separability of bottom cover classes. The overall modeling 

approach is illustrated in Figure 3–1. 

 

Figure 3-1: Flowchart showing an overview of the input variables for the radiative transfer modeling 
framework used to conduct a hierarchical analysis of the class spectral separability of common 
bottom types. The Hydrolight model scenario setup is further described in Table 3–2. 



 41 

Table 3-2: Separability scenario description. 

 

The HE5 models spectral remote sensing reflectance (Rrs) based on user-specified 

geometric depth, spectral values of water column IOPs, and bottom reflectance. Here, 

HE5 was configured to calculate Rrs for the spectral bands of the SeaWiFS and MODIS 

sensors. We used built-in HE5 sensor spectral bands for MODIS and SeaWiFS, which 

include the sensor bands as well as some intermediate bands. For the statistical analysis 

of bottom type spectral separability and detectability, we only used the spectral bands 

listed in Table 3–1. 

The Rrs values were calculated for each bottom class (i), IOP configuration (w) and 

specific sensor bands (W) at incremental depths (z) from 5 m to 49 m (see Table 3–2). A 

baseline model, where the bottom reflectance was set to zero (black/non-reflective), was 

used to calculate the water column contribution to the Rrs for each IOP, depth increment 

and sensor band combination. 

Our study excluded depths shallower than 5 m, where benthic reflectance is likely to 

dominate the surface reflectance signal potentially causing sensor saturation. In these very 

shallow waters (<5 m), IOP retrievals are expected to be unreliable because the water 

column optical interactions contribute less to the remote-sensing reflectance than bottom 

reflectance. The deepest depth modeled, 49 m, was expected to be deep enough such 

that there would be no benthic reflectance contribution to the water-leaving signal. 

Remote Sens. 2015, 7, 16756–16777

Table 2. Separability scenario description.

Input Description

Bottom Classes (45 Classes)
Light Sand (carbonate) Eight endmember (pure bottom) classes were mixed with one another in 25% increments.

We then selected 45 classes, eight pure endmember classes and 37 mixed classes. Each class
was represented by five spectral reflectance signatures constructed as proportional linear
mix from in situ data, except for the coral class, which had ten spectral signatures. A total of
230 bottom scenarios were tested (44 classes * 5 spectral signatures + 10 coral spectral
signatures = 230 bottom cover scenarios). Spectra for the scenario classes were derived from
existing sources [33–35].

Sand (largely terrigenous)
Seagrass
Rock
Rubble
Green Algae
Brown Algae
Live Coral
Depth (23 Classes)
5–49 m The depth classes were in geometric depth, modeled in 2 m increments.
IOPs (4 Classes)
Reef Waters (Dry Season) The IOP parameters represent typical optically shallow water environments for the GBR,

and were based on field data published in Blondeau-Patissier et al. [36]. As shown in
Figure 2 below: “Reef Waters” were located on the outer shelf, within the reef matrix;
“Coastal” data were from the inshore Whitsundays region; “Lagoonal” data were from
shallow lagoonal stations in the Townsville region with no impact of any estuary or flood
plume; “Estuarine” data were collected from the Mossman-Daintree region.

Coastal (Dry Season)
Lagoonal (Dry Season)
Estuarine (Wet Season)

Sensors (2 Classes)
MODIS The sensors were selected as commonly used in ocean color remote sensing.
SeaWiFS

The HE5 models spectral remote sensing reflectance (Rrs) based on user-specified geometric
depth, spectral values of water-column IOPs, and bottom reflectance. Here, HE5 was configured to
calculate Rrs for the spectral bands of the SeaWiFS and MODIS sensors. We used built-in HE5 sensor
spectral bands for MODIS and SeaWiFS, which include the sensor bands as well as some intermediate
bands. For the statistical analysis of bottom type spectral separability and detectability, we only used
the spectral bands listed in Table 1.

The Rrs values were calculated for each bottom class (i), IOP configuration (w) and specific sensor
bands (W) at incremental depths (z) from 5 m to 49 m (see Table 2). A baseline model, where the
bottom reflectance was set to zero (black/non-reflective), was used to calculate the water column
contribution to the Rrs for each IOP, depth increment and sensor band combination.

Our study excluded depths shallower than 5 m, where benthic reflectance is likely to dominate
the surface reflectance signal potentially causing sensor saturation. In these very shallow waters
(<5 m), IOP retrievals are expected to be unreliable because the water column optical interactions
contribute less to the remote-sensing reflectance than bottom reflectance. The deepest depth modeled,
49 m, was expected to be deep enough such that there would be no benthic reflectance contribution
the water-leaving signal.

To parameterize the spectral shape and magnitude of IOPs used in the HE5 simulations, the
concentration of constituent matter (Chl and total suspended solids) and the spectral slope of the
colored dissolved organic matter absorption coefficient were required. For this study, typical values
for the four optical classed were based on in situ measurements in GBR waters, as reported by
Blondeau-Patissier et al. [36], with locations shown in Figure 2. Table 3 provides a summary of the
constituent concentrations representative of the four optical scenarios used in our study. The built-in
MODIS and SeaWiFS bands in HE5 were used to simulate the spectral Rrs signals for each scenario.
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To parameterize the spectral shape and magnitude of IOPs used in the HE5 

simulations, the concentration of constituent matter (Chl and total suspended solids) and 

the spectral slope of the colored dissolved organic matter absorption coefficient were 

required. For this study, typical values for the four optical classes were based on in situ 

measurements in GBR waters, as reported by Blondeau�Patissier et al. (2009), with 

locations shown in Figure 3–2. Table 3–3 provides a summary of the constituent 

concentrations representative of the four optical scenarios used in our study. The built-in 

MODIS and SeaWiFS bands in HE5 were used to simulate the spectral Rrs signals for each 

scenario. 

 

Figure 3-2: Map showing sampling locations for the four inherent optical property scenarios used: 
Coastal, Estuarine, Lagoonal and Reef Waters of the Great Barrier Reef (adapted from(Blondeau�
Patissier et al., 2009). 
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Table 3-3: Optically active constituent matter values used in Hydrolight 5 to calculate inherent optical 
properties. Values are from (Blondeau�Patissier et al., 2009). 

 

3.2.2  Bottom reflectance dataset 

Our study used published datasets of in situ spectral reflectance signatures for 

selected biotic and abiotic coral reef features and communities from various global 

locations representative of coral reef environments. These environments included the 

GBR, Australia, Fiji, the Cook Islands and Belize (Roelfsema and Phinn, 2012, Roelfsema 

and Phinn, 2013, Hedley et al., 2012). The datasets comprised reflectance spectra of 

different bottom types obtained in situ, using a spectrometer in a custom-made underwater 

housing. All the bottom cover spectra were considered also representative of bottom cover 

classes occurring in the GBR. Eight endmember classes were selected: light sand 

(carbonate), darker (largely terrigenous) sand, rock, rubble, live coral, green algae, brown 

algae, and seagrass. These endmember classes were selected based on their frequency 

of occurrence in the GBR, and their potential spectral separability based on previous 

research (Kutser and Jupp, 2006, Hochberg et al., 2004, Hochberg et al., 2003, Leiper et 

al., 2011, Hedley et al., 2012, Hedley et al., 2004, Hedley and Mumby, 2002). The eight 

classes were then linearly mixed by percentage with each other in 25%:75%, 50%:50% 

and 75%:25% proportions, to provide a total of 84 mixed classes. The mixed bottom 

classes were calculated using two different bottom classes only (Table 3–4). 

The following linear mixing method was applied: 

M! = (
!

!!!
R!"! ∙ F!) (3.1) 

where i = 1, ..., m represents the number of bands, j = 1, ..., n is number of 

endmembers (for our study n = 2), Mi is the spectral reflectance of the ith spectral band of a 

spectral mixture, Rij is the spectral reflectance of the jth component and Fj is the fraction 

coefficient of the jth component. 
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Figure 2. Map showing sampling locations for the four inherent optical property scenarios used: 

Coastal, Estuarine, Lagoonal and Reef Waters of the Great Barrier Reef (adapted from  

Blondeau-Patissier et al. [36]). 

Table 3. Optically active constituent matter values used in Hydrolight 5 to calculate inherent optical 

properties. Values are from Blondeau-Patissier et al. [36]. 

Parameter Abbreviation Units Estuarine Lagoonal Coastal Reef 
Chlorophyll 

concentration 
Chl mg·m−3 3.165 0.441 0.7605 0.1345 

Total Suspended 

Solids concentration 
TSS mg·L−1 11.63 3.65 6.35 1.4 

Colored Dissolved 

Organic Matter 

Spectral Slope 

SCDOM nm−1 0.016 0.0215 0.0185 0.0145 

2.2. Bottom Reflectance Dataset 

Our study used published datasets of in situ spectral reflectance signatures for selected biotic 

and abiotic coral reef features and communities from various global locations representative of 

Figure 2. Map showing sampling locations for the four inherent optical property scenarios
used: Coastal, Estuarine, Lagoonal and Reef Waters of the Great Barrier Reef (adapted from
Blondeau-Patissier et al. [36]).

Table 3. Optically active constituent matter values used in Hydrolight 5 to calculate inherent optical
properties. Values are from Blondeau-Patissier et al. [36].

Parameter Abbreviation Units Estuarine Lagoonal Coastal Reef

Chlorophyll concentration Chl mg¨ m´3 3.165 0.441 0.7605 0.1345
Total Suspended Solids concentration TSS mg¨ L´1 11.63 3.65 6.35 1.4
Colored Dissolved Organic Matter
Spectral Slope SCDOM nm´1 0.016 0.0215 0.0185 0.0145

2.2. Bottom Reflectance Dataset

Our study used published datasets of in situ spectral reflectance signatures for selected biotic
and abiotic coral reef features and communities from various global locations representative of
coral reef environments. These environments included the GBR, Australia, Fiji, the Cook Islands
and Belize [33–35]. The datasets comprised reflectance spectra of different bottom types obtained
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A selection (47) of mixed bottom classes were then subjectively eliminated from further 

consideration because they are less common in shallow coral reef environments. For 

example, seagrass does not grow on coral or rock, and light sand does not generally occur 

in the same pixel as terrigenous sand. A total of 37 remaining mixed bottom classes were 

used in this study. Table 3–4 shows the assessed bottom classes, comprising eight 

endmember and 37 mixed classes, as well as mixed classes excluded from the study. 

Table 3-4: Assessed endmember and mixed bottom classes, and excluded mixed bottom classes. 
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in situ, using a spectrometer in a custom-made underwater housing. All the bottom cover spectra
were considered also representative of bottom cover classes occurring in the GBR. Eight endmember
classes were selected: light sand (carbonate), darker (largely terrigenous) sand, rock, rubble, live
coral, green algae, brown algae, and seagrass. These endmember classes were selected based on
their frequency of occurrence in the GBR, and their potential spectral separability based on previous
research [25,30,31,37–40]. The eight classes were then linearly mixed by percentage with each other
in 25%:75%, 50%:50% and 75%:25% proportions, to provide a total of 84 mixed classes. The mixed
bottom classes were calculated using two different bottom classes only.

The following linear mixing method was applied:

Mi “
nÿ

j“1
pRij ¨ Fjq (1)

where i = 1, . . . , m represents the number of bands, j = 1, . . . , n is number of endmembers (for our
study n = 2), Mi is the spectral reflectance of the ith spectral band of a spectral mixture, Rij is the
spectral reflectance of the jth component and Fj is the fraction coefficient of the jth component.

A selection (47) of mixed bottom classes were then subjectively eliminated from further
consideration because they are less common in shallow coral reef environments. For example,
seagrass does not grow on coral or rock, and light sand does not generally occur in the same pixel
as terrigenous sand. A total of 37 remaining mixed bottom classes were used in this study. Table 4
shows the assessed bottom classes, comprising eight endmember and 37 mixed classes, as well as
mixed classes excluded from the study.

Table 4. Assessed endmember and mixed bottom classes, and excluded mixed bottom classes.

Assessed Endmembers (8 Classes)
Coral (100) Light sand (100)
Green algae (100) Rock (100)
Brown algae (100) Rubble (100)
Seagrass (100) Sand (100)

Assessed Mixed Bottom Classes (37 Classes)
Brown algae: Green algae (50:50, 25:75) Sand: Coral (75:25)
Brown algae: Coral (50:50, 75:25) Sand: Rock (50:50, 75:25)
Green algae: Coral (75:25) Sand: Rubble (50:50, 75:25)
Light sand: Brown algae (50: 50, 75:25) Sand: Brown algae (50:50, 75:25)
Light sand: Green algae (50: 50, 75:25) Sand: Green algae (50:50, 75:25)
Light sand: Rock (50:50, 75:25) Sand: Seagrass (50:50, 75:25)
Light sand: Rubble (50:50, 75:25) Seagrass: Rubble (50:50, 75:25)
Light sand: Seagrass (50:50, 75:25) Seagrass: Brown algae (75:25)
Light sand: Coral (75:25) Seagrass: Green algae (75:25)
Rubble: Brown algae (50:50, 75:25) Seagrass: Rock (75:25)
Rubble: Green algae (50:50, 75:25)
Rubble: Coral (75:25)

Excluded Bottom Classes (47)
Brown algae: Green algae (25:75) Rubble: Rock (50:50, 75:25, 25:75)
Brown algae: Coral (25:75) Rock: Coral (50:50, 75:25, 25:75)
Coral: Seagrass (50:50, 75:25, 25:75) Rock: Brown algae (50:50, 75:25, 25:75)
Green algae: Coral (50:50, 25:75) Rock: Green algae (50:50, 75:25 , 25:75)
Light sand: Coral (50:50, 25:75) Sand: Coral (50:50, 25:75)
Light sand: Brown algae (25:75) Sand: Brown algae (25:75)
Light sand: Green algae (25:75) Sand: Green algae (25:75)
Light sand: Rock (25:75) Sand: Rock (25:75)
Light sand: Rubble (25:75) Sand: Rubble (25:75)
Light sand: Seagrass (25:75) Sand: Seagrass (25:75)
Light sand: Sand (50:50, 75:25, 25:75) Seagrass: Rubble (25:75)
Rubble: Brown algae (25:75) Seagrass: Brown algae (50:50, 25:75)
Rubble: Green algae (25:75) Seagrass: Green algae (50:50, 25:75)
Rubble: Coral (50:50, 25:75) Seagrass: Rock (50:50, 25:75)
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The eight “pure” endmember classes were each represented by five field-measured 

spectra, except for the live coral class that was represented by ten field-measured spectra. 

The number of spectral signatures used was chosen based on data availability and quality 

for each endmember. For each mixed bottom class, five spectral signatures were 

calculated. The use of multiple sample spectra for each mixed and pure endmember class 

accounted for within-class variability. Figure 3–3 shows the “pure” endmember spectra 

used in this study, with light sand representing the brightest bottom cover, and green algae 

the darkest. In this study, we used seagrass to represent the darkest bottom cover as it is 

the most spatially distributed bottom cover in the GBR and hence most relevant to this 

study. 

 

Figure 3-3: In situ reflectances for the eight pure endmember bottom types used in this study. Each 
line represents a sub-sample spectrum for the respective bottom type category. 
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3.2.3 Data analysis 

HE5-modeled Rrs were used to determine: (1) bottom detectability, by calculating the 

difference between Rrs for a black bottom and Rrs for the substrate being tested; and (2) 

bottom separability, where separability was determined by cluster analysis of spectral 

characteristics of the substrate classes. 

3.2.3.1  Maximum depth of bottom reflectance detectability 

A water-column-only baseline scenario was simulated for each IOP and depth 

combination. This allowed us to ascertain the depth at which bottom reflectance becomes 

negligible in the Rrs signal. The water-column-only simulations were performed using a 

black bottom to represent a non-reflective seafloor. The resulting water-column-only 

remote-sensing reflectance spectra were then subtracted from Rrs modeled with a 

reflective seafloor, to give Rrscorr. We chose two reflective seafloors for this analysis: light 

sand and seagrass as representative of a light and a dark class, respectively, of the GBR 

shallow water environment. The band-averaged water column-corrected remote sensing 

reflectance,!!"#$!!,!,! was calculated as follows: 

!!"#$!!,!,! != !
(|!!"#$%&'(,!,!,!!! !!"#,!,!,!|) !

!!!!!
!  

(3.2) 

where RrsAlbedo is the simulated remote sensing signal for the respective bottom type, 

light sand or seagrass, RrsB is the modeled remote sensing reflectance using a black 

bottom, z is the water column depth, w is the IOP configuration, W is the sensor band, and 

n is the number of bands. We denoted the depth of maximum detectability (zmax) for each 

IOP scenario where the water column-corrected, band-averaged, absolute bottom 

reflectance signal was less than 0.0005 sr−1or less than 2% of the maximum band-

averaged, modeled Rrs (0.025 sr−1). Assessment of the modeled data below this threshold 

showed uncorrelated noise, most likely due to bottom boundary conditions within 

Hydrolight and water column interaction. 

  

 !



 47 

3.2.3.2 Bottom cover separability 

There are several approaches to compare and differentiate spectral signatures. Some 

of the most common are the Spectral Correlation Measure (SCM) (Gardner, 1986), the 

Spectral Angle Mapper (SAM) (Casal et al., 2011, Botha et al., 2013, Kutser and Jupp, 

2006), spectral clustering (Kutser and Jupp, 2006), derivative analysis (Holden and LeDrew, 

1998, Karpouzli et al., 2004), spectral mixture analysis (Van Der Meer, 1999, Goodman and 

Ustin, 2007) and linear discriminant analysis (Hedley et al., 2012). For this study, we were 

interested in both the absolute detectability of a bottom type and also the ability to 

spectrally distinguish one substrate type from another. For appropriate bottom reflectance 

parameterization, it was essential to know the number of different spectral classes and 

which spectral signatures were appropriate model inputs. 

The similarity between pure endmember spectra and spectral mixtures, or between 

clusters of similar spectra, can be mathematically assessed using distance metrics such 

as the Euclidean distance, the spectral angle or the Mahalanobis distance (Sohn and 

Rebello, 2002). These metrics indicate which spectral features can be differentiated and/or 

identified by different satellite image processing methods. Here, a cluster analysis using 

the cosine dissimilarity (spectral angle) was used to quantitatively analyze the similarity 

and hierarchical clustering of our bottom reflectance spectra. The cosine similarity was 

used because it is widely accepted in the remote sensing research community for 

application in various disciplines (Kutser et al., 2006, Keshava, 2004, Kruse et al., 2003, 

Sohn et al., 1999, Lass et al., 2002, Sohn and Rebello, 2002). The cosine dissimilarity was 

calculated as follows: 

! !! , !!! = !"#!! ! !!,! !!!,!!
!!!

!!,!!!
!!! ! !!,!!!

!!!

 

 

(3.3) 

where the cosine dissimilarity, S, is a metric based on the angle between two 

observations xi and xj, with p representing the number of spectral bands per observation. If 

the value for S is zero, the angle between the two modeled Rrs spectra is 90 degrees and 

they are dissimilar. If the value is one, the two modeled Rrs spectra have the same shape, 

but not necessarily the same magnitude.  
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This method provides a good estimate of spectral separability and has been used in a 

number of spectral classification studies, (Example: Casal et al., 2011, Kutser and Jupp, 

2006). However, it is to be noted that the spectral angle is based on differences in spectral 

shape rather than magnitude. 

First, the spectral angle algorithm was applied to the shallowest depth scenarios (5 m) 

to find the dissimilarity matrix based on each IOP and sensor combination for each of the 

45 pure and mixed bottom classes. We only considered the shallowest depth as we 

expected the most separation between individual bottom classes here, hence providing the 

most detailed information for bottom reflectance parameterization. To account for possible 

within-class variability, the five (ten for live coral) spectral signatures per bottom class were 

analyzed as individual samples and not averaged for each class, providing a total of 230 

sample spectra. 

In a second step, agglomerative hierarchical clustering (Kaufman and Rousseeuw, 

2009), was applied to the dissimilarity matrix to determine how many bottom sample 

spectra, as well as which spectra, could be differentiated. The agglomerative hierarchical 

clustering method is based on a series of fusions, where each bottom class spectrum 

(230) is considered as an individual cluster at the start. It then merges bottom spectra until 

all the substrate spectra belong to the same cluster. The clusters are merged based on the 

Ward’s method (Batagelj, 1988), which calculates the total within-cluster variance. 

Cluster accuracy, based on the modeled Rrs values, was interpreted using silhouette 

plots (Rousseeuw, 1987) to determine the optimal cluster configuration for each scenario 

set. A silhouette plot acts as a graphical means to identify how well each bottom type fits 

into the cluster to which it was assigned. Each cluster represents similarly modeled 

subsurface reflectance spectra. The silhouette plot allows one to compare how similar any 

one bottom class spectrum is to other bottom class spectra within its own cluster, as well 

as how close it is to bottom spectra in other clusters. In this study, the average silhouette 

width was used to select the appropriate number of clusters. The average silhouette width, 

also called the silhouette coefficient (SC), is a dimensionless measure quantifying the 

cluster structuring of the modeled remote sensing reflectance data. The silhouette width 

lies in the interval (−1, 1).  
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Values near one mean that the bottom type spectrum is well placed in its cluster; 

values near zero mean that it is likely that the bottom spectrum might belong in some other 

cluster, while negative values mean that the bottom spectrum has been misclassified. 

Here, we used the silhouette width to determine how many bottom class spectra were 

distinguishable from each other. We compared the silhouette widths for different numbers 

of clusters, selecting the largest silhouette width to indicate the most appropriate number 

of clusters to use in the bottom reflectance parameterization. 

3.3 Results 

3.3.1 Cluster analysis of bottom classes and silhouette plots 

Cluster analysis of modeled Rrs revealed that the most distinct spectral separation of 

the 230 modeled bottom cover spectra was achieved by separation into two clusters. 

These two clusters can be described as “light” and “dark”, with the light cluster mainly 

containing scenarios of light sand and light sand dominated mixtures, while the dark cluster 

consisted of the remaining bottom class spectra. 

3.3.1.1  Results for MODIS spectral resolution 

Figure 3–4 shows the silhouette plots for clustering of the modeled Rrs signals for 5 m 

deep Reef Waters at MODIS bands, with clusters visually separated by color from top-to-

bottom. We present only the silhouette plots for the shallowest depth (5 m) where the 

sensors can differentiate spectral separation most distinctly. The number of spectra 

grouped into each cluster, as well as the mean cluster width, is indicated alongside each 

plot. We used the silhouette width to determine how many clusters optimally represented 

the different spectral classes. We compared the silhouette widths for different numbers of 

clusters and selected the largest silhouette widths as indicative of the most appropriate 

number of clusters (2–5) to use in the bottom reflectance map. The top-left silhouette plot 

in Figure 3–4, which displays the results for a two-cluster configuration, dark and light, 

(shaded black and grey, respectively), shows two distinct clusters for the 230 bottom 

sample spectra considered, with cluster silhouette average widths of 0.85 (123 spectra) 

and 0.69 (107 spectra). Only a few (5) bottom sample spectra were “misclassified” in this 

scenario, as shown by the negative tail at the base of the plot, indicating that they are 

outliers that cannot clearly be classified in the two-cluster structure (Note that misclassified 

bottom covers are still counted towards the respective cluster.)  
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The three-, four- and five-cluster results (top-right, bottom-left, and bottom-right, 

respectively in Figure 3–4) also clearly show two dominant clusters, with 123 of the 230 

bottom sample spectra consistently grouped in Cluster 1 (C1) and between 107 and 90 

bottom spectra grouped in Cluster 2 (C2). Only three to ten bottom spectra were assigned 

to each of the additional clusters, each with low average cluster widths (0.13 to 0.46), 

indicating poor separability. 

 

Figure 3-4: Silhouette plots for Reef Waters at 5 m geometric depth using MODIS bands. Each cluster 
is represented by a different color (Cluster-1 (C1)-Black, Cluster-2 (C2)-Grey, Cluster-3 (C3)-Green, 
Cluster-4 (C4)-Blue and Cluster-5 (C5)-Red). The cluster statistics represent the number of bottom 
spectra assigned to each cluster, followed by the cluster silhouette width. Misclassified spectra are 
counted toward the cluster they are assigned to but represented as negative, hence to the left of the 
graphics. 
 !
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3.3.1.2 Results for SeaWiFS Spectral Resolution 

Figure 3–5 shows the silhouette plots for the clustering of the modeled Rrs signals for 5 

m deep Reef Waters, using SeaWiFS bands. The two-cluster configuration shows 

relatively high silhouette widths of 0.80 (130 spectra) and 0.77 (100 spectra) for the two 

clusters, C1 and C2, indicating strong within-cluster structures (Rousseeuw, 1987). The 

three, four and five clusters have lower silhouette widths for C3 to C5, ranging from 0.27 to 

0.48. Overall, the cluster partitioning for the Rrs with SeaWiFS spectral resolution in 5 m 

deep clear Reef Waters were similar to those for Rrs with MODIS spectral resolution, 

namely that only two clusters presented a strong within-cluster structure. Any clusters 

beyond two resulted in silhouette widths less than 0.5, thus negligible or weak within-

cluster structure was indicated (Rousseeuw, 1987). Further, these other clusters contained 

only a small number of bottom spectra (three to nine) compared to the two dominant 

clusters, as for the MODIS band results. 

 

Figure 3-5: Silhouette plots for Reef Waters at 5 m geometric depth at SeaWiFS bands. Each cluster 
is represented by a different color (Cluster-1 (C1)-Black, Cluster-2 (C2)-Grey, Cluster-3 (C3)-Green, 
Cluster-4 (C4)-Blue and Cluster-5 (C5)-Red). The cluster statistics represent the number of bottom 
spectra assigned to each cluster, followed by the cluster silhouette width. Misclassified spectra are 
counted toward the cluster they are assigned to but represented as negative, hence to the left of the 
graphics. 
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3.3.2 Cluster analysis of bottom classes for different IOP scenarios 

One may also consider the average width of all clusters in each analysis, and compare 

results for the different IOP scenarios. The average cluster width of all clusters is indicated 

underneath each cluster plot in Figures 3–4 and 3–5. The average silhouette widths are 

provided in Table 3–5 for each cluster configuration for each of the assessed IOP 

scenarios and satellite sensors at 5 m depth. With respect to MODIS bands, the average 

silhouette width was greatest for a two-cluster configuration for Reef Waters (0.78) and 

Lagoonal (0.76) IOP scenarios whereas, for the Coastal scenario, a three-cluster 

configuration resulted in the highest silhouette width (0.65). However, the two-cluster 

configuration was the only one that did not have any misclassified bottom spectra in the 

Coastal scenario. No bottom signal was detected at 5 m in Estuarine waters, thus no 

separation of bottom types resulted here. Examination of the individual silhouettes of each 

cluster showed that two clusters consistently contained the majority (>92%) of the bottom 

class spectra, with the remaining clusters containing only a few bottom spectra. For 

SeaWiFS, like MODIS bands, two clusters contained the majority (>93%) of the bottom 

classes and also had higher mean silhouette width values, indicating stronger within 

cluster agreement of the modeled remote sensing reflectances compared to the remaining 

clusters with much lower silhouette widths and therefore considered dissimilar. 

Table 3-5: Average silhouette widths based on the different cluster configurations, where each 
cluster represents statistically similar modeled Rrs spectra for the four optical water types: Reef 
Waters, Lagoonal, Coastal and Estuarine. 

Optical Scenario 2 Cluster 3 Cluster 4 Cluster 5 Cluster 

MODIS 
Reef Waters 0.78 0.7 0.68 0.67 
Lagoonal 0.76 0.69 0.69 0.69 
Coastal 0.6 0.65 0.59 0.61 
Estuarine No separation possible 
SeaWiFS 
Reef Waters 0.79 0.7 0.69 0.65 
Lagoonal 0.77 0.65 0.65 0.63 
Coastal 0.66 0.63 0.65 0.62 
Estuarine No separation possible 

 

 !
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3.3.3 Cluster analysis and intermediate classes 

The silhouette plots (Figures 3–4 and 3–5) presented clustering based on 230 sample 

spectra of the 45 bottom classes used in this study. However, some of the bottom classes 

might have had individual sample spectra assigned to two clusters.  

For example, of the five sample spectra for the rubble bottom class, some might have 

been assigned to C1 and some to C2 and therefore the bottom class could not clearly be 

identified as belonging to C1, the dark cluster, or C2, the light cluster. Tables 3–6 and 3–7 

show the individual 45 bottom classes assigned to the two dominant clusters based on the 

two-cluster partitioning of their sample spectra. Using the silhouette plots, we assessed 

how well each bottom class fitted into C1 or C2 and, where there were bottom classes 

which could not unambiguously be assigned to either C1 or C2, placed them in an 

“intermediary” cluster. The intermediary cluster category included classes where more 

than two of the five bottom class spectral signatures were assigned to the opposite class, 

and therefore no clear placement of the bottom class into C1 or C2 could be made. For 

SeaWiFS bands, the cluster analysis of the remote-sensing reflectance signal produced a 

higher number of intermediary classes (n = 13) than for MODIS bands (n = 5), which 

allowed for a clearer assignment of each bottom class to either C1 or C2 for MODIS 

bands. For the radiative transfer scenarios for SeaWiFS bands, a large proportion (~60%) 

of sand and rubble classes could not be clearly assigned to C1 or C2. In addition, fewer 

bottom classes (19) were assigned to C1, the dark cluster, in the scenarios modeled for 

SeaWiFS bands compared to MODIS bands (21), where more sand mixture classes were 

assigned to C1. 
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Table 3-6: Bottom class partitioning for the two-cluster configuration for MODIS bands. For example, 
Rubble: Green algae (50:50) refers to 50% rubble and 50% green algae mixed linearly to calculate the 
bottom spectra for that class. 

 
 
Table 3-7: Bottom class partitioning for the two-cluster configuration for SeaWiFS bands.  

 

 !
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Table 6. Bottom class partitioning for the two-cluster configuration for MODIS bands. For example,
Rubble: Green algae (50:50) refers to 50% rubble and 50% green algae mixed linearly to calculate the
bottom spectra for that class.

Cluster 1-DARK (n = 21) Intermediary (n = 5) Cluster 2-LIGHT (n = 19)

Endmembers
Coral (100) Light sand (100)
Green algae (100) Rock (100)
Brown algae (100) Rubble (100)
Seagrass (100) Sand (100)

Mixed bottom classes
Brown algae: Green algae (50:50, 25:75) Rubble: Brown algae (75:25) Light sand: Brown algae (50: 50, 75:25)
Brown algae: Coral (50:50, 75:25) Light sand: Green algae (50: 50, 75:25)
Green algae: Coral (75:25) Rubble: Coral (75:25) Light sand: Rock (50:50, 75:25)
Rubble: Green algae (50:50) Light sand: Rubble (50:50, 75:25)
Rubble: Brown algae (50:50, 75:25) Rubble: Green algae (75:25) Light sand: Seagrass (50:50, 75:25)
Sand: Brown algae (50:50, 75:25) Light sand: Coral (75:25)
Sand: Green algae (50:50, 75:25) Sand: Coral (75:25) Sand: Rock (50:50, 75:25)
Sand: Seagrass (50:50, 75:25)

Sand: Rubble (50:50, 75:25)
Seagrass: Brown algae (75:25)

Seagrass: Rubble (50:50)Seagrass: Green algae (75:25)
Seagrass: Rock (75:25)
Seagrass: Rubble (75:25)

Table 7. Bottom class partitioning for the two-cluster configuration for SeaWiFS bands.

Cluster 1-DARK (n = 19) Intermediary (n = 13) Cluster 2-LIGHT (n = 13)

Endmembers
Coral (100) Sand (100) Light sand (100)
Green algae (100) Rubble (100) Rock (100)
Brown algae (100)
Seagrass (100)

Mixed bottom classes
Brown algae: Green algae (50:50, 25:75) Sand: Rock (50:50) Light sand: Brown algae (50:50, 75:25)
Brown algae: Coral (50:50, 75: 25) Sand: Rubble (50:50) Light sand: Rock (50:50, 75:25)
Green algae: Coral (75:25) Sand: Rock (75:25) Light sand: Rubble (50:50, 75:25)
Rubble: Green algae (50:50) Sand: Brown algae (75:25) Light sand: Seagrass (50:50, 75:25)
Sand: Brown algae (50:50) Sand: Coral (75:25) Light sand: Coral (75:25)
Sand: Green algae (50:50, 75:25) Seagrass: Rubble (50:50) Light sand: Green algae (75:25)
Sand: Seagrass (50:50, 75:25) Rubble: Green algae (75:25)

Sand: Rubble (75:25)Seagrass: Brown algae (75:25) Light sand: Green algae
(50:50)

Seagrass: Green algae (75:25) Rubble: Brown algae
(50:50,75:25)

Seagrass: Rock (75:25) Rubble: Coral (75:25)Seagrass: Rubble (75:25)

3.4. Detectability of Bottom Cover

The maximum depth of bottom detectability was found to be 17 m for MODIS and 19 m for
SeaWiFS for light sand (the most reflective bottom cover considered) in clear Reef Waters optical
scenario of the GBR. In this paper, we present results for the light sand and seagrass bottom covers
only: light sand represents the bright spectral reflectance substrate with the highest reflectance
averaged over 400–700 nm of all coral reef bottom classes considered. Seagrass was chosen to
represent the dark spectral group since it has a low spectral reflectance and occurs over considerably
larger spatial scales in the GBR relative to green algae, the darkest spectral class (Figure 3).

The maximum depths of bottom detectability were similar for both MODIS and SeaWiFS sensors
for both bottom classes. For the clear Reef Water optical scenario, light sand was detected at slightly
greater depth using SeaWiFS (19 m) than when using MODIS (17 m), while the opposite was true for
seagrass, which was detected at greater depth for MODIS (15 m) than for SeaWiFS (11 m) (Figure 6).
For the Lagoonal optical scenario, the maximum depth at which light sand bottom reflectance was
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Table 6. Bottom class partitioning for the two-cluster configuration for MODIS bands. For example,
Rubble: Green algae (50:50) refers to 50% rubble and 50% green algae mixed linearly to calculate the
bottom spectra for that class.

Cluster 1-DARK (n = 21) Intermediary (n = 5) Cluster 2-LIGHT (n = 19)

Endmembers
Coral (100) Light sand (100)
Green algae (100) Rock (100)
Brown algae (100) Rubble (100)
Seagrass (100) Sand (100)

Mixed bottom classes
Brown algae: Green algae (50:50, 25:75) Rubble: Brown algae (75:25) Light sand: Brown algae (50: 50, 75:25)
Brown algae: Coral (50:50, 75:25) Light sand: Green algae (50: 50, 75:25)
Green algae: Coral (75:25) Rubble: Coral (75:25) Light sand: Rock (50:50, 75:25)
Rubble: Green algae (50:50) Light sand: Rubble (50:50, 75:25)
Rubble: Brown algae (50:50, 75:25) Rubble: Green algae (75:25) Light sand: Seagrass (50:50, 75:25)
Sand: Brown algae (50:50, 75:25) Light sand: Coral (75:25)
Sand: Green algae (50:50, 75:25) Sand: Coral (75:25) Sand: Rock (50:50, 75:25)
Sand: Seagrass (50:50, 75:25)

Sand: Rubble (50:50, 75:25)
Seagrass: Brown algae (75:25)

Seagrass: Rubble (50:50)Seagrass: Green algae (75:25)
Seagrass: Rock (75:25)
Seagrass: Rubble (75:25)

Table 7. Bottom class partitioning for the two-cluster configuration for SeaWiFS bands.

Cluster 1-DARK (n = 19) Intermediary (n = 13) Cluster 2-LIGHT (n = 13)

Endmembers
Coral (100) Sand (100) Light sand (100)
Green algae (100) Rubble (100) Rock (100)
Brown algae (100)
Seagrass (100)

Mixed bottom classes
Brown algae: Green algae (50:50, 25:75) Sand: Rock (50:50) Light sand: Brown algae (50:50, 75:25)
Brown algae: Coral (50:50, 75: 25) Sand: Rubble (50:50) Light sand: Rock (50:50, 75:25)
Green algae: Coral (75:25) Sand: Rock (75:25) Light sand: Rubble (50:50, 75:25)
Rubble: Green algae (50:50) Sand: Brown algae (75:25) Light sand: Seagrass (50:50, 75:25)
Sand: Brown algae (50:50) Sand: Coral (75:25) Light sand: Coral (75:25)
Sand: Green algae (50:50, 75:25) Seagrass: Rubble (50:50) Light sand: Green algae (75:25)
Sand: Seagrass (50:50, 75:25) Rubble: Green algae (75:25)

Sand: Rubble (75:25)Seagrass: Brown algae (75:25) Light sand: Green algae
(50:50)

Seagrass: Green algae (75:25) Rubble: Brown algae
(50:50,75:25)

Seagrass: Rock (75:25) Rubble: Coral (75:25)Seagrass: Rubble (75:25)

3.4. Detectability of Bottom Cover

The maximum depth of bottom detectability was found to be 17 m for MODIS and 19 m for
SeaWiFS for light sand (the most reflective bottom cover considered) in clear Reef Waters optical
scenario of the GBR. In this paper, we present results for the light sand and seagrass bottom covers
only: light sand represents the bright spectral reflectance substrate with the highest reflectance
averaged over 400–700 nm of all coral reef bottom classes considered. Seagrass was chosen to
represent the dark spectral group since it has a low spectral reflectance and occurs over considerably
larger spatial scales in the GBR relative to green algae, the darkest spectral class (Figure 3).

The maximum depths of bottom detectability were similar for both MODIS and SeaWiFS sensors
for both bottom classes. For the clear Reef Water optical scenario, light sand was detected at slightly
greater depth using SeaWiFS (19 m) than when using MODIS (17 m), while the opposite was true for
seagrass, which was detected at greater depth for MODIS (15 m) than for SeaWiFS (11 m) (Figure 6).
For the Lagoonal optical scenario, the maximum depth at which light sand bottom reflectance was
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3.3.4 Detectability of bottom cover 

The maximum depth of bottom detectability was found to be 17 m for MODIS and 19 m 

for SeaWiFS for light sand (the most reflective bottom cover considered) in the clear Reef 

Waters optical scenario of the GBR. In this paper, we present results for the light sand and 

seagrass bottom covers only: light sand represents the bright spectral reflectance 

substrate with the highest reflectance averaged over 400–700 nm of all coral reef bottom 

classes considered. Seagrass was chosen to represent the dark spectral group since it 

has a low spectral reflectance and occurs over considerably larger spatial scales in the 

GBR relative to green algae, the darkest spectral class (Figure 3–3). 

The maximum depths of bottom detectability were similar for both MODIS and 

SeaWiFS sensors for both bottom classes. For the clear Reef Water optical scenario, light 

sand was detected at slightly greater depth using SeaWiFS (19 m) than when using 

MODIS (17 m), while the opposite was true for seagrass, which was detected at greater 

depth for MODIS (15 m) than for SeaWiFS (11 m) (Figure 3–6). For the Lagoonal optical 

scenario, the maximum depth at which light sand bottom reflectance was detected was 9 

m for both sensors (Figure 3–6), while seagrass was detectable up to 7 m for SeaWiFS 

and 5 m using MODIS. For the Coastal and Estuarine scenarios, no bottom contamination 

was recorded using a seagrass bottom cover for either MODIS or SeaWiFS bands. For the 

Coastal optical scenario light sand bottom contamination was detected up to 7 m depth for 

both MODIS and SeaWiFS bands, while no bottom contamination was recorded for 

Estuarine optical scenarios for either sensor. 
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Figure 3-6: Maximum depth of detectability for light sand and seagrass under four different optical 
domain scenarios: Estuarine, Lagoonal, Coastal and Reef Waters for depths assessed between 5 m 
and 49 m. 

 

The Rrscorr values for MODIS and SeaWiFS are shown in Figure 3–7 for depths from 5 

to 20 m for the four optical scenarios. The contribution of sand and seagrass bottom 

reflectance to the net remote-sensing reflectance was greatest for the Reef Waters optical 

scenario for both MODIS and SeaWiFS sensors. The Rrscorr values for the Estuarine and 

Coastal optical scenarios were close to zero for light sand, even at shallow depths, as 

illustrated in Figure 3–7. For seagrass, the Rrscorr values for the Estuarine, Coastal and 

also the Lagoonal optical scenarios were close to zero at all depths. 
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Figure 3-7: Water column-corrected (a black bottom scenario was subtracted from the model run), 
average surface reflectance signals for two extremes of substrate brightness: light sand (left panel) 
and seagrass (right panel) for the four optical water property scenarios for SeaWiFS and MODIS 
sensors. For light sand, the Rrscorr values for the Estuarine and Coastal scenarios are close to zero 
even at shallow depths, while for seagrass, Rrscorr values are close to zero at all depths for the 
Estuarine, Coastal and Lagoonal scenarios. 

 

3.4 Discussion 

This study assessed the influence of bottom reflectance on the spectrally-averaged Rrs 

signal measured by the moderate resolution SeaWiFS and MODIS sensors in optically 

shallow waters of coral reef environments. The results showed: (i) that there was no 

significant (Rrscorr < 0.0005 sr−1) influence of bottom reflectance on the Rrs signal for depths 

>19 m for either sensor; and (ii) that the assessed bottom cover classes can be 

amalgamated into two distinct functional groups, “light” and “dark”, based on the modeled 

Rrs surface reflectance signals. Only Rrs spectra dominated by light sand and its mixtures 

can be clearly discriminated from other bottom cover types typically found in coral reef 

waters. 

SeaWiFS and MODIS Rrs data are routinely used to derive IOPs and a number of IOP-

based geophysical products such as chl-a and the diffuse attenuation coefficient (Kd). Light 

reflected off the seafloor in optically shallow waters contaminates the sensor-observed Rrs 

signal and subsequently causes errors in the derived IOPs. The recently-developed semi-

analytical SWIM algorithm was specifically devised to improve IOP retrievals in optically 

shallow coral reef waters, such as the GBR.  
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An essential input component of the SWIM algorithm is a bottom reflectance map 

(McKinna et al., 2015). To construct a bottom reflectance map, it is essential to know the 

number of distinct spectral classes to be mapped and which spectra best represent these 

classes (McKinna et al., 2015). Further, it is useful to know in which geographic areas 

bottom reflectance is most likely to contaminate Rrs and therefore needs to be included in 

the bottom reflectance map. To address this, we determined the maximum geometric 

depth at which bottom reflectance may be detectable under different IOP/water clarity 

scenarios. 

The maximum depth of bottom detectability for clear reefal waters of the GBR was 

determined to be 17 m and 19 m for spectrally-averaged MODIS band SeaWiFS bands, 

respectively. However, the depth of bottom detectability was reduced substantially in 

highly attenuating, inshore waters. Hence the SWIM algorithm may not need to account for 

bottom reflectance where the water column depth exceeds 19 m. We found bottom 

reflectance from seagrass, a relatively dark substrate, had no influence on spectrally-

averaged Rrs at depths exceeding 15 m for MODIS bands and depths exceeding 11 m for 

SeaWiFS. Seagrass occurrence is prevalent in coral reef waters and has been recorded 

down to depths of 61 m in the GBR (Coles et al., 2009). In Estuarine waters, which are 

dominated by terrigenous runoff, particularly in the summer wet season, bottom 

reflectance contamination was found to be minimal and undetectable in waters >5 m. In 

Coastal water types, darker bottom covers such as seagrass were also undetectable at 

depths >5 m. 

The minor differences in the maximum depth of bottom detectability between MODIS 

and SeaWiFS may be explained by the placement of their spectral bands. For example, for 

Reef Waters using the light sand bottom spectra, SeaWiFS provided a slightly deeper 

maximum depth than MODIS (19 m vs. 17 m), which is likely due to the placement and 

width of the assessed bands. The differences in the bands 490/488 (SeaWiFS band 3 and 

MODIS/Aqua band 10, respectively) and 555/551 (SeaWiFS band 5 and MODIS Aqua 

band 12, respectively) result in different radiance retrievals for these blue-green bands 

(Franz et al., 2005), which may have caused the minor differences in maximum depth of 

detectability. Further, the minor difference in maximum depth of bottom reflectance 

detectability might be due to band-averaging, as MODIS has two red bands compared to 

one for SeaWiFS.  
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In addition, our study used 2 m depth increments, thus the real difference in maximum 

depth of bottom reflectance detectability lies within a 0–2 m depth range. Even a 2 m 

depth difference in a 1 km × 1 km pixel is relatively minor and is not expected to make 

much difference to IOP retrievals using semi-analytical inversion algorithms. 

We focused on the band-averaged maximum depth of bottom reflectance detectability 

to investigate to which depth MODIS and SeaWiFS satellite sensors could detect bottom 

signals affecting shallow water inversion models. We selected a cutoff threshold of 

0.00005 sr−1, which was 2% of the maximum, band-averaged, modeled remote sensing 

reflectance, 0.025 sr−1. Anything below this threshold was considered noise. Therefore, 

one could argue that no signal from the bottom was recorded below this threshold. 

However, a minimal influence of benthic albedo was detected at the red bands (>650 nm), 

where pure water absorption is high. The bottom reflectance contribution was primarily 

detected in bands at 488 nm, 531 nm and 551 nm for modeled MODIS Rrs and at 490 nm, 

510 nm and 555 nm for modeled SeaWiFS Rrs. 

The four optical environments used in this study are defined on the basis of chlorophyll, 

suspended matter and CDOM, rather than on the optical properties themselves. We 

acknowledge that the simulations of the optical properties are computed within HE5, using 

conversions to absorption, scattering and backscattering, and therefore may not be always 

appropriate in coastal waters. Further, it should be noted that at the resolution of MODIS 

and SeaWiFS, one would expect mixed depth pixels, as well as mixed bottom types. This 

might lead to increasing or decreasing detectability and separability of bottom types and 

thus lead to uncertainties in IOP retrievals. 

However, to date there are no studies known to the authors that have ascertained the 

maximum depth at which MODIS or SeaWiFS-observed Rrs are contaminated by benthic 

reflectance despite these moderate resolution sensors being commonly used in near-

coastal waters by the international scientific community. Some recently developed ocean 

color shallow water inversion models that retrieve IOPs, such as SWIM, require input of 

bottom reflectance parameters as model input. Hence, determining the maximum depth of 

bottom detection at moderate resolution sensor bands is essential to the implementation of 

shallow water inversion models to coral reef ecosystems. 
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Here, we presented the maximum depth of bottom reflectance contribution to spectrally-

averaged Rrs for light sand and seagrass spectra only. We found these to represent two 

contrasting groups in coral reef waters, light versus dark substrates, based on their 

average spectral reflectance. Seagrass best represented the dark spectra group for the 

GBR as seagrass meadows can be thick and extensive there. Besides being the most 

common bottom cover of the dark spectral group in the GBR, seagrass is also closest to 

the average spectra of the dark spectral group. In the GBR, seagrass accounts for an 

estimated 40,000 km2 of bottom cover (Schaffelke et al., 2005) compared to coral reef and 

algae cover of ~24,158 km2 (Beaman, 2010), with the remaining ~280,242 km2 (81%) of 

the GBR Marine Park comprising primarily sand and mud. 

Clustering analysis showed that a two-cluster bottom reflectance input configuration, 

light and dark, is sufficient for parameterizing a shallow water inversion algorithm for 

MODIS and SeaWiFS sensors. Assessment of spectral uniqueness based on clustering 

showed that more clusters resulted in weak cluster structures and misclassified bottom 

types. Using several spectral samples for each bottom reflectance class allowed us to 

examine whether particular bottom classes might be ambiguously assigned to a specific 

cluster and hence misclassified. Modeled Rrs signals at MODIS bands assigned to two 

primary clusters allowed more consistent grouping of the individual bottom reflectances, 

with less bottom classes assigned to an “intermediary” cluster group, than at SeaWiFS 

bands. The intermediary cluster group contained bottom classes that could not be clearly 

assigned to C1 (dark) or C2 (light) because some of the five (ten for coral) spectral 

samples from one bottom class were assigned to C1 while others were assigned to C2. 

Using SeaWiFS bands, the majority of sand and rubble classes could not be clearly 

assigned to C1 or C2 as their spectral signatures lay between C1 and C2 (not as light as 

light sand but also not as dark as seagrass or similar). For either sensor, there was no 

bottom reflectance detected from seagrass for the Coastal or Estuarine optical scenarios, 

where the water is turbid, even at a shallow depth of 5 m. However, bottom contamination 

from light sand was still recorded in coastal waters by MODIS. The results provide insight 

into the optimal substrate clustering for bottom reflectance parameterization in shallow 

water models. The endmember and average spectra for the light and dark clusters are 

presented in the Appendix of this chapter. 
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To date, there have been no bottom cover spectral reflectance studies focusing on 

spectral separability or spectral uniqueness of bottom reflectance spectra at MODIS or 

SeaWiFS spectral and spatial resolutions known to the authors. Indeed, most comparative 

studies of bottom reflectance in shallow waters have focused on habitat classification 

mapping, (Example: Mumby et al., 1997, Kutser et al., 2003, Holden and LeDrew, 1998) 

that requires a greater level of spatial and spectral detail. At large, research on substrate 

spectral uniqueness has been undertaken using sensors with higher spatial resolution 

(pixel size <50 m and mostly <4 m) as they are commonly used to map benthic habitat or 

bathymetry at higher resolution (Example: Mishra et al., 2006, Stumpf et al., 2003, Kutser 

et al., 2006, Botha et al., 2013, Dekker et al., 2011, Brando et al., 2009). The spatial area 

imaged by these sensors is typically much smaller than the scale of larger coral reef 

ecosystems such as the GBR. Most high spatial resolution multi- and hyperspectral 

satellite-borne sensors do not have the temporal or spatial coverage provided by MODIS 

and SeaWiFS. Indeed, the broad swath and regular repeat orbits afforded by MODIS and 

SeaWiFS are needed to monitor and manage the ecosystem health of the GBR waters on 

a near-daily basis. 

Higher resolution sensors are typically able to discern smaller objects, and image 

pixels often contain signals from a single substrate class. These smaller objects cannot be 

distinguished by MODIS or SeaWiFS satellite sensors, as image pixels frequently contain 

signals from a mixture of substrate types. In order for a homogeneous bottom cover to 

contribute to sensor-observed Rrs, its size has to be larger than several pixels in a specific 

satellite image. We made the assumption that, if the bottom cover extent was smaller than 

the pixel size, the signal detected represented the average brightness of all bottom covers 

in that pixel. Nevertheless, smaller percentages of particular types of bottom cover, such 

as small patches of sand between extensive seagrass beds, may be detectable if their 

reflectance signal dominates a particular pixel. MODIS and SeaWiFS have a coarser spatial 

resolution than most of the commonly used higher resolution satellite sensors (such as 

IKONOS, WorldView2, etc.). Thus, bottom covers considered in this study generally occur 

on spatial scales >1000 m and are not based on specific species per habitat classification, 

but rather classified into broader bottom classes, such as algae. A number of pure 

endmember bottom spectra were combined into mixed bottom types most commonly 

observed in the GBR at MODIS and SeaWiFS scales. 
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From an ocean color perspective, we may consider the GBR to be divided into three 

distinct zones based on water depth and geological features: (1) an inner shelf zone with a 

depth range of 0–20 m dominated by terrigenous sediment; (2) a middle shelf zone with a 

depth range of 20–40 m of mixed carbonate-siliciclastic sediment; and (3) an outer shelf 

zone with a depth range of 40–90 m of carbonate-dominated sediment (Belperio and 

Searle, 1988, Mathews et al., 2007). The maximum depth of bottom contamination of 19 m 

found in this study corresponds primarily to the inner shelf region of 0–20 m. This region, 

with a width of <60 km, is therefore of primary concern for benthic contamination in ocean 

color algorithms. Because of resuspension and other processes, this is also the zone 

where optically complex ocean color remote sensing challenges are the greatest. 

However, our results showed that the most significant bottom contamination is recorded 

from light (carbonate) sand, which is mainly found in the middle and outer shelf zones of 

the GBR (Belperio, 1983). Hence, this study suggests that the primary areas of concern for 

benthic contamination of the Rrs signal may be shallow waters adjacent to coral reefs on 

the mid- to outer shelf of the GBR, rather than the shallow inner shelf region. 

3.5 Conclusions 

This study has considered spectral separability or classification in the context of 

improving bottom cover benthic albedo (reflectance) parameterization in shallow water 

inversion models. To date ocean color algorithms have primarily been developed for 

moderate resolution sensors, such as MODIS or SeaWiFS, which are typically employed 

to provide data on the global oceans on a daily basis. It is well known by the research 

community that the frequency and placement of the current ocean color satellite sensor 

bands are inadequate and do not capture most of the variability of the remote sensing 

reflectance caused by differences in IOPs and bottom cover (Lee et al., 2007, Lee and 

Carder, 2002, Decker et al., 1992, Wernand et al., 1997). This study confirms that the 

separability of common bottom covers is limited using the existing set of visible bands of 

the MODIS and SeaWiFS satellite sensors. The only bottom cover group that could be 

confidently separated from other bottom cover classes was light sand and its mixtures. 

This separability deteriorated in Lagoonal and Coastal water optical scenarios. In 

Estuarine waters, no bottom cover class could be separated even though some bottom 

contamination was recorded up to 5 m depth. These findings are consistent with previous 

studies that noted that light and dark features can be separated, but finer class separability 

would require higher spectral resolution(Botha et al., 2013).  
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The results show that bottom reflectance in shallow water models only needs to be 

considered up to 19 m depth for MODIS and SeaWiFS based on spectrally averaged 

results. This would exclude a large area of the GBR, and similarly of other coral reef 

systems, which are deeper than 19 m and hence, not significantly affected by bottom 

reflectance. In addition, we can conclude that only two spectral signatures have to be 

considered in the parameterization of bottom reflectance in shallow water inversion 

algorithms when applied to sensors such as SeaWiFS and MODIS. A light and a dark 

spectral signature should provide sufficient detail to improve the IOP retrievals. The 

outcomes of this work will guide the development of improved bottom reflectance datasets 

required by shallow water ocean color inversion algorithms such as SWIM. Such improved 

parameterization will assist in better estimating how much light is reflected from the 

bottom, contaminating ocean color satellite imagery used for water clarity monitoring, and 

thus lead to improved retrievals of IOPs and water.  
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CHAPTER 4 : SENSITIVITY ANALYSIS OF BOTTOM 
REFLECTANCE PARAMETERIZATION IN SHALLOW 

WATER MODELS 
 

The aim of this section was to assess how different bottom parameterization affects the 

IOP retrievals using SWIM. SWIM is a new shallow water inversion model, and it is not 

currently known how sensitive the IOP retrievals are to bottom reflectance 

parameterization. It is not intended to represent the actual IOPs in the GBR, but rather to 

demonstrate how differences in bottom parameterization affect IOP retrievals in time and 

space. To assess the sensitivity of IOP retrievals due to bottom reflectance under different 

water conditions experienced in the GBR study region, a time series of IOP retrievals was 

produced. Further, the sensitivity of IOP retrievals in different regions of the GBR was 

assessed. 

 

Main findings: 

• The sensitivity in IOP retrievals due to bottom reflectance parameterization was 

affected by water clarity conditions. 

• IOP retrievals were affected by both the magnitude of the bottom type spectra 

and spectral shape. 

• The influence of reflectance by different bottom types on SWIM retrievals of 

IOPs was greatest at depths shallower than 20 m. 

• The differences in IOP retrievals due to changes in bottom reflectance 

parameterization showed both spatial and temporal variability. 

 !
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4.1 Introduction 

The usefulness of ocean color models depends on the accuracy and reliability of their 

output, yet all output values are subject to uncertainties and errors, because all models are 

abstractions of reality. Accurate input data are not always available. Inherent optical property 

(IOP) retrievals from remotely sensed ocean color data are frequently used or reported 

without well-researched or documented estimates of their uncertainties/sensitivities (Boss 

and Maritorena, 2006). Ideally, the uncertainties of ocean color products, such as IOPs 

should be determined through a comparison with sufficient in situ measurements (match-

ups) (Werdell and Bailey, 2005). Match-ups are common for sea surface temperature 

products, where there are millions of match-up points available globally, as thousands of 

floats and buoys routinely measure sea surface temperature (Smith and Reynolds, 2004, 

Kilpatrick et al., 2001, Reynolds et al., 2002). However, there is no large database that 

would allow for a comprehensive match-up study using in situ IOPs in the GBR. Even 

though much effort has been directed into the generation of global databases used for 

validation of ocean color products (Fargion et al., 2002, Werdell and Bailey, 2005, Werdell 

et al., 2003), in situ IOP and chlorophyll data are expensive to collect and are usually not 

readily available (Werdell and Bailey, 2005). Thus, it is often not possible to conduct a 

comprehensive validation study to determine the level of uncertainty of an ocean color 

product.  

Frequently, match-up analyses are only performed for a fraction of a sensor’s records 

or spatial extent (Example: Antoine et al., 2008, Schroeder et al., 2007, Wang et al., 

2009). Hence, ocean color match-ups often create only a snapshot, and generally do not 

account for spatial and temporal variability of the data (Boss and Maritorena, 2006). 

Additionally, there are uncertainties in input data, such as bottom reflectance, in shallow 

water environments. These uncertainties can vary both spatially and temporally. For 

example, input data might represent a dry period while the model is run for both dry and 

wet seasons. Spatial uncertainties can occur when input data is limited and is applied to a 

different region, such as when data from the northern Great Barrier Reef (GBR) is used for 

modeling the southern GBR. Thus, uncertainties of ocean color products, like IOP or 

chlorophyll retrievals, cannot be stated as a single global value, as they can change 

spatially and with time. It is important for the interpretation of ocean color products, to 

document uncertainties in IOP retrievals. None of the current shallow water ocean color 

inversion models, including the recently developed Shallow Water Inversion Model, SWIM 
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(McKinna et al., 2015), has published records of the uncertainties in bottom reflectance 

parameterization on the retrieval of IOPs.  

In this chapter, a sensitivity analysis was undertaken to assess the potential 

uncertainty of water column IOP retrievals arising from uncertainties in bottom reflectance 

inputs in the SWIM algorithm. The GBR was used as the test region to assess the impact 

of bottom reflectance parameterization on IOP retrievals using the SWIM algorithm. 

Specific test regions have been described in Chapter 2 of this thesis. This sensitivity 

analysis does not address the accuracy of retrieved IOPs, but rather provides an insight 

into the potential effects of bottom reflectance parameterization on IOP retrievals. The 

results provide an overview of the complexity of bottom spectra and spatial resolution 

needed for the development of spatially explicit bottom reflectance maps, which are 

required as an input parameter to SWIM.  

4.2 Data and methods 

The aim of this study is to assess how different bottom spectral reflectance 

parameterization affects the IOP retrievals in SWIM. The researcher used in situ spectral 

reflectance data and SWIM modeling to assess the effect of bottom reflectance 

parameterization on IOP retrievals. The overall study design is shown schematically in 

Figure 4–1. 
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Figure 4-1: Flow
chart of the sensitivity analysis approach used in Chapter 4 
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4.2.1 Bottom reflectance scenarios 

The SWIM algorithm (McKinna et al., 2015) is an implementation of the semi-analytical, 

non-linear search algorithm developed by Lee et al. (1998, 1999). SWIM has been 

incorporated into the NASA Ocean Biology Processing Group L2gen satellite data 

processing code (available as part of the SeaWiFS Data Analysis System (SeaDAS); 

http://oceancolor.gsfc.nasa.gov). The bottom reflectance parameterization in SWIM is 

defined as follows: 

! , where q1 + q2 + ... + qn = 1! (4.1)!

where ρ(λ) is the spectral bottom reflectance, n is the number of bottom types with 

unique reflectance spectra within the pixel, and qn is the proportional area of bottom n 

within the pixel (McKinna et al., 2015). The researcher created bottom reflectance maps 

for the GBR to test the sensitivity of IOP retrievals from SWIM to changes in bottom 

reflectance parameterization. Each test map has a spatially-uniform bottom type coverage 

over the entire GBR. Seven scenarios were generated where 100% of the bottom type 

spectral signature was assigned to each pixel, while a further two scenarios were 

generated using mixed bottom types (sand and seagrass)(Table 4–1).  

Table 4-1: Table of bottom reflectance scenarios 

Bottom types Percentage cover (%) 

Sand (light) 100% 

Seagrass 100% 

Brown algae 100% 

Green algae 100% 

Coral 100% 

Black 100% 

White 100% 

SandSeagrass1 Sand 75%, Seagrass 25% 

SandSeagrass2 Sand 50%, Seagrass 50% 

 

 

SAMBUCA Page 6 

from the Lee et al. (1998, 1999, 2001) model relates to the SAMBUCA parameterisation 
through 
 
X = CTRXTR + CPHYXPHY          (21) 

 

3.1.3. Parameterisation of bottom albedo 

 
In the original Lee et al. (1998, 1999, 2001) parameterisation, one substrate reflectance 
spectra was used to represent the optical properties of the bottom substrate through 
 
U   = B · U Ȝ0           (22) 

 
Where U Ȝ0  is the reflectance spectra of the bottom substrate normalised at wavelength Ȝ0 

and, and B is a scalar. The variable B can be thought of as a ’denormalisation’ factor that 
allows for the same substrate to have varying magnitudes (but the same shape) of 
reflectance. Given a reflectance spectra, the contribution from bottom substrate is therefore 
controlled by the single variable B. 
 
This approach was applied to waters in Tampa Bay (Florida), where sand was the 
omnipresent bottom substrate. It was further developed to first make a rough assessment of 
bottom albedo, and to then use either a seagrass or a sand spectra for U Ȝ0 (Lee et al., 

2001). 
 
Coral reef environments present higher spatial heterogeneity in bottom substrate 
composition. The bottom substrate parameterisation for SAMBUCA was evolved in order to 
account for this, through 
 

nnqqq UUUOU ��� ...)( 2211  where  q1 + q2 + ...qn = 1   (23) 

 
where n is the number of substrate spectra within the pixel, and qn is the proportion of 
substrate n within the pixel. Typically, no more than 3 substrates are allowed within each 
pixel (n = 3). In the case of two substrates - the most commonly used parameterisation for 
this work - Equation 23 can be re-written as 
 

jijiij qq UUOU )1()( ��          (24) 

 
Given ȡi and ȡj, ȡ is now governed by the single variable qij, which represents the proportion 
of substrate i to substrate j. 
 
However, even if each pixel is allowed to contain e.g. two substrates, this does not solve the 
problem of taking into account the high diversity of bottom types encountered in a coral reef 
environment. Implementing Equation 24 with a library of bottom substrate reflectance spectra 
was seen as the solution. Hence, SAMBUCA cycles through all the possible combinations of 
e.g. a pair of spectra taken from a spectral library, retaining the substrates (ȡi and ȡj) and the 
proportions of each (qij and 1 – qij) that give the best solution. Note that the identification of 
which two substrates allowed for the best solution is implicit in the retrieval of qij. The 
limitation to this spectral library approach is the factorial increase in processing time with the 
number of spectra in the library. 

 

3.1.4. The final parameterisation 
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The black bottom reflectance scenario was selected to illustrate a completely non-

reflective bottom type, while the white scenario shows a fully reflective bottom with the 

maximum possible spectral reflectance. The bottom reflectance spectra were derived from 

an average of in situ measurements from spectral libraries (Roelfsema, 2012b, Roelfsema 

and Phinn, 2013, Roelfsema, 2012a) for each bottom type, and are illustrated in Figure 4–

2. The generated bottom reflectance scenarios were used as an auxiliary input dataset for 

the SWIM algorithm, using the SeaDAS L2gen processing code. 

 

Figure 4-2: Spectral signatures used to generate the bottom reflectance scenarios in the sensitivity 
analysis 

The data processing and analysis was divided into three parts: (a) general overview of 

the characteristic differences in IOP retrievals based on different bottom reflectance 

scenarios, (b) spatial differences in IOP retrievals using different bottom reflectance 

scenarios and (c) temporal differences in IOP retrievals under different bottom reflectance 

scenarios. The assessed IOP parameters of interest are presented in Table 4–2. The 

wavelength at 443 nm was chosen because it represents the chlorophyll absorption peak 

(Martin, 2014). 
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Table 4-2: Optical parameters derived from the SWIM algorithm using different bottom reflectance 
scenarios 

Level-2 Products Symbol  Units 

Total absorption coefficient at 443 nm a443 m-1 

Backscattering coefficient of particulate matter at 443 nm bbp443   m-1 

 

4.2.2 Overview and spatial assessment of the sensitivity of IOP retrievals to 
bottom reflectance parameterization 

4.2.2.1 Image processing  

Two MODIS Aqua Scenes covering the entire GBR were selected for initial 

assessment. MODIS Aqua Level-1A data were downloaded for the 3 December 2005 

(Scene 1) (Figure 4–3) and 09 August 2011 (Scene 2) (Figure 4–4) reflecting summer 

(wet) and winter (dry) conditions. These two images, in particular, were selected for their 

spatial coverage of the entire GBR with minimal cloud cover and apparent limited sensor 

noise. The scenes were processed using the SWIM algorithm within L2gen in its standard 

configuration. Different bottom reflectance scenarios were applied to each L2gen model 

run. A high-resolution digital elevation model for the GBR at a grid pixel resolution of 

0.001-arc degree (about 100 m) (Beaman, 2012) was used as an auxiliary dataset 

required by the SWIM algorithm. The bathymetry dataset is described in Chapter 2 and is 

included in the SeaDAS software package. The generated Level-2 files were re-projected 

to WGS1984 for further analysis using the SeaDAS re-projection tool. 
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Figure 4-3: True color image of the selected MODIS Scene 1 (03 December 2005) processed using 
SeaDAS. The scene shows the Lizard Island (blue) and Capricorn Bunker (red) sub-regions used for 
time series analysis.  
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Figure 4-4: True color image of the selected MODIS Scene 2 (09 August 2009) processed using 
SeaDAS. The scene shows the Lizard Island (blue) and Capricorn Bunker (red) sub-regions used for 
time series analysis.  
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4.2.2.2 Data analysis 

4.2.2.2.1 Analysis, of, overall, sensitivity, of, IOP, retrievals, under, different, bottom,

reflectance,scenarios,

Frequency histograms were generated to assess the distribution and overall retrieved 

IOP values due to different bottom reflectance parameterization within the SWIM model. 

Frequency histograms of modeled a443 and bbp443 values, showing the number of pixels 

per scene at each different a443 and bbp443 value bins. The reprojected Level-2 scenes 

were collocated with the gbr100 bathymetry dataset to generate a region of interest (ROI) 

mask for the depths of interest, from 5 to 25 m. The histogram distribution of the number of 

pixels for the bottom reflectance scenarios was generated using the SeaDAS GUI 

histogram tool and the created ROI mask. To generate the histograms, the value ranges of 

a443 and bbp443 data within the region of interest for Scenes 1 and 2 were evenly divided 

into bins.  

4.2.2.2.2 Spatial,variability, in, IOP,retrievals,under,different,bottom,reflectance,

scenarios,

Analysis of mean IOP retrieval for GBR regions (north, central, south) 

To assess the spatial differences in IOP retrievals under different bottom reflectance 

parameterizations, the GBR was divided into three sections: (1) the northern GBR (10 S to 

15 S), (2) the central GBR (15 S to 20 S) and (3) the southern GBR (20 S to 25 S). Figure 

4–5 shows the shallow water bathymetry (5 to 25 m) for the three GBR sections. First, the 

summary mean retrieved IOPs for pixels overlying five depth bins (5 to 8 m, 8 to 11 m, 11 

to 14 m, 14 to 17 m and 17 to 20 m) for the generated Level-2 files for each of the bottom 

reflectance scenarios were computed (Table 4–1), using the zonal statistics Python code 

from the Supplementary Spatial Statistics Toolbox in the ArcGIS software (ArcGIS, 2011). 

Each depth in 3 m intervals was assigned to a zone using the raster depth mask created 

from the gbr100 bathymetry dataset. A one-way multivariate analysis of variance (one-way 

MANOVA) was conducted in SPSS to assess whether the mean retrieved IOPs were 

significantly different from each other (Field, 2009). A Tukey HSD test (Field, 2009) was 

also conducted to evaluate which of the mean retrieved IOPs were significantly different 

from the others.  
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\ 

 
Figure 4-5: Shallow water bathymetry for the three sections of the Great Barrier Reef, the northern 
(top), central (center) and southern (bottom).  

 

Analysis of spatially distributed differences in IOP retrievals between different 
bottom reflectance scenarios 

To analyze the spatial differences in IOP retrievals due to bottom reflectance 

parameterization, two cases were considered. The first case compared the IOP retrievals 

from the black and white bottom reflectance scenarios with each other, subtracting the 

estimated IOPs of the black bottom reflectance scenario from that of the white bottom 

reflectance scenario, using the band math tool in the SeaDAS software 

(http://seadas.gsfc.nasa.gov). This provides the potential range in retrieved IOPs based on 

the differences between the brightest (maximum) and the darkest (minimum) bottom 

reflectance scenarios.  
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The second case was generated following the same procedure, but subtracting the 

IOPs generated from the seagrass bottom reflectance scenario from IOPs generated using 

reflectance from carbonate sand. Sand and seagrass are regularly used in ocean color 

algorithms for testing purposes (Example: Lee et al., 2001, Louchard et al., 2002).  

4.2.3 Temporal assessment of the sensitivity of IOP retrievals to bottom 
reflectance parameterization 

To assess the temporally-variable effect of bottom reflectance on IOP retrievals, time 

series analyses for two contrasting subregions were performed. Computational and time 

restraints precluded time series analyses of the entire GBR region. One of the test areas 

was located in the northern GBR, near Lizard Island (LI) [13.83°–15.06°S, 142.66°–

145.78°E]. The second test region was located in the southern GBR and included the 

Capricorn Bunker Group of reefs (CB) [-22.82°–24.06°S, 149.74°–152.39°E] (Figure 4–3 

and Figure 4–4). The time series test regions were chosen to illustrate the sensitivity of 

IOP retrievals under different oceanographic conditions (Steinberg, 2007, Burrage et al., 

1996) and hence optical properties. Daily Level-1A MODIS Aqua data, from 01 January 

2013 to 01 January 2014, were ordered from the NASA ocean color website 

(http://oceancolour.gsfc.nasa.gov) for the two test regions, LI and CB. The data were 

batch processed from Level-1A to Level-2 using SWIM within the SeaDAS L2gen 

processing code and its standard atmospheric correction (Ahmad et al., 2010, Bailey et al., 

2010). The processed time series were then re-projected to WGS1984 and summary 

statistics were extracted in 1 m depth bins from 5 to 25 m, using the zonal statistics Python 

code from the Supplementary Spatial Statistics Toolbox in the ArcGIS software (ArcGIS, 

2011).  
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4.3 Results  

4.3.1 Overall sensitivity of IOP retrievals under different bottom reflectance 
scenarios 

A total of 39,800 pixels for Scene 1 (03 December 2005) and 42,600 pixels for Scene 2 

(09 August 2011) were included in the analyses of bbp443 and a443 pixel distributions. 

Overall, the distribution of the number of pixels in each bbp443 depth bin is very similar for 

all scenarios, except the white bottom reflectance scenario, in both scenes. However, the 

distribution of the number of pixels in each bbp443 depth bin is different between Scene 1 

and 2. In Scene 1 there is a clear peak at ~0.007m-1, while in Scene 2 the peak is less 

defined and broader (between 0.0003-0.01 m-1) (Figure 4-6). Most of the pixels provided 

retrieved bbp443 values between 0 and 0.030 m-1. In Scene 1, the highest number of 

pixels (4205) was recorded for the sand bottom reflectance scenario in the lowest bbp443 

bin (0.00018 m-1). The black bottom scenario only had 10 pixels in the 0.00018 m-1 bin. For 

the different bottom reflectance scenarios in Scene 2, sand also had the highest number of 

pixels (4425) in the lowest bbp443 bin (0.00018 m-1) and the black bottom scenario had 

the lowest number (83) of pixels in the lowest bbp443 bin (0.00018 m-1). The distribution of 

pixels to each bbp443 bin was nearly identical for the brown algae and seagrass scenarios 

for bbp443 values above 0.001 m-1, in both scenes. 

For Scene 1, the white bottom scenario contains 14220 pixels below 0.005 m-1, while 

the black scenario only contains 4601 pixels, the seagrass scenario 8778 pixels and the 

sand scenario 14173 pixels below 0.005 m-1. The brighter bottom reflectance scenarios 

(sand, sandseagrass1, sandseagrass2 and white) had a lower number of pixels falling in 

the bbp443 range between 0.005 and 0.016 m-1 (between 12389 and 21615 pixels), 

compared to the darker scenarios (between 23684! and! 26593 pixels). Yet, the white 

bottom reflectance scenarios had about twice as many pixels (10917) in the bbp443 bins 

above 0.020 m-1 compared to the other scenarios, which all had between 4590 and 5302 

pixels above 0.020 m-1.  

The mean bbp443 in Scene 1 was nearly equal at approximately 0.013 m-1 for the 

coral, seagrass and black, as well as brown and green algae bottom reflectance 

scenarios, while the sand and sand mixture bottom reflectance scenarios produced a 

lower mean bbp443 at approximately 0.012m-1.  
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For Scene 2, the white bottom reflectance scenario contained 13512 pixels below 

0.005 m-1, while the black scenario contained only 8381 pixels. The seagrass scenario 

contained 10340 pixels and the sand scenario, 15164 pixels below 0.005 m-1. The brighter 

bottom reflectance scenarios (sand, sandseagrass1, sandseagrass2 and white) had a 

lower number of pixels falling in the bbp443 range between 0.005 and 0.016 m-1 (between 

10359 and 17380 pixels), compared to the darker scenarios (between 19354 and 20732 

pixels). The white bottom reflectance scenarios had about half as many pixels (10359) in 

the bbp443 bins between 0.005 and 0.016 m-1, compared to the black bottom reflectance 

scenarios (20106 pixels). Yet, the white bottom reflectance scenarios had about 50% more 

pixels in the bbp443 bins above 0.020 m-1 compared to the other scenarios, which all had 

between 9003 and 10022 pixels above 0.020 m-1. In Scene 2, the numbers of pixels per 

bbp443 bin were more similar than in Scene 1 through all the bottom reflectance 

scenarios. Scene 2 also had more pixels with a bbp443 value close to 0.00018 m-1 than 

Scene 1. Generally, the mean bbp443 values were higher for Scene 2 compared to Scene 

1. The white bottom reflectance scenario produced the highest mean bbp443 value in both 

scenes. However, in Scene 2 most bottom types had close mean bbp443 values between 

approximately 0.017- 0.018 m-1. Seagrass had a higher mean bbp443 value (0.020 m-1), 

compared to the algae coral, sand and sand mixtures scenarios.  
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Figure 4-6: Region of interest (5 to 25 m depth) histogram distribution for backscatter coefficient at 
443nm (bbp443) for Scene 1, (03 December 2005) (top), and for Scene 2, (09 August 2011) (bottom) 
and mean bbp443 values for each bottom scenario.  

 

Considering absorption values from Scene 1, most pixels provided total absorption 

coefficient at 443 nm values between 0.02 to 0.180 m-1, for all the assessed bottom 

scenarios (Figure 4–7). The white bottom spectra had the lowest number of pixels 

(71.46%) while the other scenarios had between 90.18% and 96.88%!(between 0.020 and 

0.180 m-1). Yet, the white bottom scenario had the most pixels (7644) in the approximately 

0.068 m-1 a443 value bin. Only between 1% and 2% of the a443 pixels of the darker 

bottom scenarios (black, seagrass, coral, green and brown algae) were between 0.18 and 

0.5 m-1 in Scene 1. The white bottom scenarios had 16.05% of a443 pixels between 0.18 

and 0.5 m-1, while 4.31% of the a443 pixels of the sand bottom reflectance scenario were 

between 0.18 and 0.5 m-1. 
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In Scene 2, the white bottom scenario also had the lowest number of pixels (63.95%) 

of total absorption coefficient at 443 nm values between 0.02 and 0.180 m-1 (Figure 4–7). 

The other bottom scenarios had between 83.02% and 89.38% of pixels with a443 values 

between 0.02 and 0.180 m-1. In Scene 1, only between 3.57% and 6.19% of the a443 

pixels of the darker bottom scenarios (black, seagrass, coral, green and brown algae) 

were between 0.18 and 0.5 m-1. The white bottom scenarios had 16.57% of the a443 

pixels between 0.18 and 0.5 m-1, while 6.47% of the a443 pixels of the sand bottom 

reflectance scenario were between 0.18 and 0.5 m-1. 

Scene 2 had a slightly larger number of pixels towards the higher end of the a443 

values (a443 between 0.180 and 0.500 m-1) compared to Scene 1. Overall, while the 

peaks in the frequency of number of pixels for a443 under the different bottom scenarios 

were quite similar, the peaks in the frequency of number of pixels for the bbp443 values 

were less distinct and centered. The mean a443 was slightly higher in Scene 2 compared 

to Scene 1. Yet the distribution of the mean a443 was nearly equal for Scenes 1 and 2, 

with the white bottom reflectance scenario having the highest mean a443 value followed 

by sand, sand mixtures and seagrass. The black, coral and algae scenarios had nearly 

equal mean a443 values (approximately 0.100 for Scene 1 and 0.150 for Scene 2). !
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Figure 4-7: Region of interest (5 to 25 m depth) histogram distribution for absorption coefficient at 
443nm (a443) for Scene 1, (03 December 2005) (top), and for Scene 2, (09 August 2011) (bottom) and 
mean a443 values for each bottom scenario.  

 

4.3.2 Spatial sensitivity of IOP retrievals under different bottom reflectance 
scenarios 

4.3.2.1 Mean IOP retrieval for GBR regions (north, central, south) 

Mean bbp443 was highest (0.04-0.068 m-1) for the white bottom scenario for the 

shallowest depth range (5 to 8 m) (Figure 4–8). The mean retrieved IOPs are tabulated in 

Appendix A. Retrieved bbp443 decreased with increasing depth under all bottom 

reflectance scenarios. At depth 14 to 20 m retrieved bbp443 values become similar with a 

maximum difference of 0.003 m-1 in both scenarios and all regions. Only in Scene 2 in the 

northern GBR the white bottom reflectance scenario produces mean bbp443 value up to 

twice as high (0.015 m-1) at 17 to 20 m depth compared to the other bottom reflectance 

scenarios. In Scene 1, significant differences between computed bbp443 between different 

bottom types were only observed in the 5-8 m and 8-11 m depth bins (F (8, 18) = 

7.703; p < 0.05) and (F (8, 18) = 8.433; p <0 .05). The Tukey HSD test showed that the 
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mean bbp443 of the white bottom reflectance scenario was the only one that was 

significantly different (p < 0.05) from all the other tested bottom reflectance scenarios for 

the 5-8 m and 8-11 m depth bins only. The differences between mean retrieved bbp443 of 

all the other bottom reflectance scenarios were not significant (p >0.05). There was a 

significant difference (p < 0.05) between the mean bbp443 of the regions (north, central 

and south) for the depth bins for 11-14 m (F (2, 24) = 13.890; p < 0.05), 14-17 m (F (2, 24) 

= 97.293; p < 0.05) and 17-20 m (F (2, 24) =142.600; p < 0.05), in Scene 1. The Tukey 

HSD showed that there the south was significantly different from the north and central (p < 

0.05), while the values for the central and north areas were not significantly different (p > 

0.05). 

In Scene 2, only the depth bin 5-8 m had a significant difference between bottom types  

(F (8, 18) = 3.394; p < 0.05). The Tukey HSD test showed that the mean bbp443 of the 

white bottom reflectance scenario was significantly different from the sand, sand mixtures 

and green algae bottom reflectance scenarios at depth 5-8 m (p < 0.05). The differences 

between all the other bottom reflectance scenarios were not significant (p >0.05). There 

was a significant difference (p < 0.05) between the mean bbp443 of the regions (north, 

central and south) for all depth bins, in Scene 2. The Tukey HSD showed that there was 

no significant difference in the mean bbp443 (p > 0.05) between north and central in the 

17-20 m depth bin, while significant differences were found between north and south and 

central and south (p < 0.05). For the 14-17 m and 8-11 m depth bins, there were 

significant differences between all the regions (p < 0.05). At depths between 11-14 m, on 

the other hand, there was no significant difference in mean bbp443 between central and 

south (p >0.05), while significant differences were found between south and north and 

central and north (p < 0.05). For the 5-8 m depth bins, there was no significant difference 

in mean bbp443 between north and south (p >0.05), while the differences were significant 

between south and central and north and central (p<0.05). For both scenes and all 

regions, means of estimated bbp443 were very similar for the coral, brown algal and green 

algal bottom type scenarios across all depth ranges.  
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Figure 4-8: Mean backscatter retrievals (bbp443) for Scenes 1 (03 December 2005) and 2 (09 August 
2011) for the northern, central and southern Great Barrier Reef under different bottom reflectance 
scenarios and depth ranges. 
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Retrieved a443 values were highest for the white bottom reflectance scenario for the 

two shallowest depth ranges (5 to 8 m and 8 to 11 m) for all three GBR regions and both 

Scenes 1 and 2. The highest mean a443 was recorded for the south GBR in Scene 2 

(0.78 m-1) (Figure 4–9). The differences in calculated mean a443 between the white 

scenario and the other bottom scenarios was greatest (> 0.4 m-1) in the northern GBR for 

both scenes for the depths between 5 and 8 m, although smaller in Scene 1 than in Scene 

2. Minor differences in mean a443 values were recorded between the coral, black, as well 

as the brown and green algae scenarios for both scenes, all regions and all assessed 

depths. Higher mean a443 values were calculated using the brighter bottom reflectance 

scenarios (sand, sandseagrass1 and sandseagrass2) than those found in the darker 

bottom reflectance scenarios (brown algae, green algae, coral and black), except 

seagrass in Scene 1.  

In Scene 1, only the depth bins 17-20 m had no significant differences between bottom 

types (p >0 .05), while all the other depth bins showed significant differences in mean 

a443 (p <0 .05). The Tukey HSD test showed that the mean a443 of the white bottom 

reflectance scenario was the only one that was significantly different from black, coral, 

seagrass, brown and green algae at 14-17 m depths (p < 0.05). Further, the white bottom 

scenario produced significant differences (p <0 .05) in mean a443 between all the other 

bottom types at depths 5-14 m. The differences between all the other bottom reflectance 

scenarios were not significant (p >0.05).  

In Scene 2, all the depth bins had significant differences between bottom types (p <0 

.05). The Tukey HSD test showed that the mean a443 of the white bottom reflectance 

scenario was the only one that was significantly different from all the other tested bottom 

types at 17-20 and 5-8 m depth bins (p < 0.05). Yet, the mean a443 was not significantly 

different between any of the bottom types in the 14-17 m and 11-14 m depth bins 

according to the Tukey HSD test. There was a significant difference in mean a443 

between the white bottom reflectance scenario and the coral and green algae scenario 

(p <0.05) in the 8-11 m depth bin. In the 5-8 m depth bin, the mean a443 values of all 

bottom scenarios were significantly different (p <0.05) from the mean a443 values in the 

white scenario in Scene 2. The differences between all the other bottom reflectance 

scenarios were not significant (p >0.05). There were significant differences (p >0.05) in 

mean a443 between the different regions of the GBR (north, south and central) for the 
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depth bins at 14-17 m, 11-14 m and 8-11 m. No significant differences (p <0.05) in mean 

a443 between the GBR regions were found for depth bins 17-20 m and 5-8 m. The Tukey 

HSD test showed that only the north and south had a significant difference (p <0.05) in 

mean a443 for the depth bins 14-17 m and 11-14 m, while in the 8-11 m depth bin the only 

significant difference (p <0.05) was observed between the central and northern GBR. The 

other regions did not have significant differences (p >0.05) in mean a443.  

There were no significant differences (p > 0.05) in mean a443 between Scene 1 and 

Scene 2 in the northern part of the GBR at all depth bins. Yet, there were significant 

differences (p < 0.05) in mean a443 in the central GBR at all depth bins, except for the 5-8 

m depth bin, which did not have a significant difference (p > 0.05) between Scene 1 and 

Scene 2. The mean a443 in the southern GBR showed significant differences between 

Scene 1 and Scene 2 (p < 0.05) at depths of 17-14 m and 14-11 m, but it was not 

significantly different for the other depth bins. 



 85 

 
Scene 1 Scene 2 

N
or

th
 

  

C
en

tr
al

 

  

So
ut

h 

  

 
 
Figure 4-9: Mean absorption retrievals (a443) for Scenes 1 (03 December 2005) and 2 (09 August 
2011) for the northern, central and southern Great Barrier Reef under different bottom reflectance 
scenarios and depth ranges. 
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4.3.2.2 Spatially distributed differences in IOP retrievals between different bottom 

reflectance scenarios 

Relative differences in bbp443 reached high levels (up to > +/- 1000%), but most 

ranged between +/-200% for the white and black (Figure 4–10) and between +/-100 for the 

sand and seagrass bottom reflectance scenarios (Figure 4–11). Most of the changes can 

be observed near the coast and the outer reef in both scenes, which corresponded to the 

shallow water areas (5 to 25 m). A large area of the northern GBR was affected by bottom 

reflectance parameterization in both assessed scenes. Interestingly, positive and negative 

changes can be observed within the same region for all GBR regions in both scenes. Near 

the coast, the white bottom reflectance case produced higher bbp443 values than the 

black bottom scenario. The differences in bbp443 retrievals of the black and white bottom 

reflectance scenarios showed which areas might be sensitive to bottom reflectance 

parameterization. The changes in retrieved bbp443 due to differences in bottom 

reflectance were highly spatially variable and did not follow a clear pattern. However, 

similar patterns in differences in retrieved bbp443 of the black and white bottom 

reflectance scenarios were observed between Scenes 1 and 2.  

The changes in retrieved bbp443 between the sand and seagrass bottom types were 

considerably smaller than the changes in retrieved bbp443 from black and white bottom 

reflectance scenarios. Overall, higher bbp443 retrievals from the sand bottom reflectance 

scenario could be observed adjacent to the coast, where the change in retrieved bbp443 

was positive. In Scene 2, there were more and larger areas where the seagrass bottom 

produced higher bbp443 values than the sand bottom in all GBR regions. Higher bbp443 

values from the sand bottom reflectance scenarios were observed in small areas adjacent 

to the coast, where the change was positive. Most changes in retrieved bbp443 between 

bottom reflectance scenarios were observed near the coast and around the reefal areas 

for both Scene 1 and 2. The northern and central GBR had similar differences in bbp443 

retrievals between Scenes 1 and 2. The southern GBR, on the other hand, had slightly 

higher changes in retrieved bbp443 in Scene 1 compared to Scene 2 in the coastal areas. 

However, like the differences in bbp443 from the black and white scenario, the changes in 

retrieved bbp443 between the sand and seagrass bottom reflectance scenarios provided 

similar spatial patterns between Scene 1 and 2.  
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Figure 4-10: Relative differences in algorithm-derived bbp443 between the black and white bottom 
scenarios (1) Scene 1 northern GBR (top-left panel) (2) Scene 2 northern GBR (top-right panel) (3) 
Scene 1 central GBR (center-left panel) (4) Scene 2 central GBR (center-right panel) (5) Scene 1 
southern GBR (bottom-left panel) (6) Scene 2 southern GBR (bottom-right panel) 
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Figure 4-11: Relative differences in algorithm-derived bbp443 between the sand and seagrass bottom 
scenarios (1) Scene 1 northern GBR (top-left panel) (2) Scene 2 northern GBR (top-right panel) (3) 
Scene 1 central GBR (center-left panel) (4) Scene 2 central GBR (center-right panel) (5) Scene 1 
southern GBR (bottom-left panel) (6) Scene 2 southern GBR (bottom-right panel) 
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The a443 retrievals were also assessed using percentage change. The percentage 

difference range in algorithm-calculated a443 for the black and white bottom reflectance 

scenarios was between -10 and 90% (Figure 4–12), and between -30 and 25% for the 

sand and seagrass scenarios (Figure 4–13). The changes in algorithm-calculated a443 

were much higher between the black and white scenarios for Scene 2, compared to Scene 

1. Bottom reflectance parameterization affected most of the northern GBR, with a higher 

percentage change observed in the coastal areas and around the reefs. The percentage 

difference in retrieved a443 between the black and white scenarios was lower for the outer 

reef areas, where it ranged between 13 and 35% for Scene 2. In the central GBR, Scene 1 

provided a higher positive percentage change in the coastal areas, while Scene 2 had a 

higher percentage change in a443 values in the area between the coast and the outer 

reefs. In the southern GBR, the area between the coast and the Capricorn Bunker group 

showed a change in retrieved a443 values in Scene 2 but little change in Scene 1, for the 

black and white bottom scenarios. 

The areas where a443 was affected by bottom reflectance parameterization of the 

sand and seagrass bottom types were much smaller compared to the areas affected by 

the black and white bottom reflectance scenarios (Figure 4–13). Both positive and 

negative percentage changes were observed along the coast, indicating that neither sand 

nor seagrass produced consistently higher a443 values. The differences between Scenes 

1 and 2 were also smaller between the sand and seagrass bottom reflectance scenarios, 

compared to the black and white bottom reflectance scenarios. 
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Figure 4-12: Relative differences in algorithm-derived a443 between the black and white bottom 
scenarios (1) Scene 1 northern GBR (top-left panel) (2) Scene 2 northern GBR (top-right panel) (3) 
Scene 1 central GBR (center-left panel) (4) Scene 2 central GBR (center-right panel) (5) Scene 1 
southern GBR (bottom- left panel) (6) Scene 2 southern GBR (bottom-right panel) 
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Figure 4-13: Relative differences in algorithm-derived a443 between the seagrass and sand bottom 
scenarios (1) Scene 1 northern GBR (top-left panel) (2) Scene 2 northern GBR (top-right panel) (3) 
Scene 1 central GBR (center-left panel) (4) Scene 2 central GBR (center-right panel) (5) Scene 1 
southern GBR (bottom- left panel) (6) Scene 2 southern GBR (bottom-right panel) 
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4.3.2.3 Spatially distributed differences in IOP retrievals between Scenes 1 and 2 

To get a better understanding of the differences between the bottom scenarios of the 

two scenes, the IOP retrievals for the sand bottom reflectance scenario were compared 

between the two scenes. The results show that differences in a443 values were slightly 

lower in Scene 1 compared to Scene 2 in the very top part of the GBR (10-12° S) (Figure 

4–14), indicating that water quality was lower in that part in Scene 1. The differences 

between the bottom reflectance scenarios white and black, as well as sand and seagrass 

were slightly higher in Scene 2 compared to Scene 1 in the outer reefs. The retrieved 

bbp443 did not show large variations between Scenes 1 and 2 in the northern part of the 

GBR (10-15 ° S), but indicated that there were marginally lower bbp443 values calculated 

for the outer reef in the northern GBR (Figure 4–15). In the central GBR a443 was higher 

in Scene 2 compared to Scene 1 in parts along the coast, but higher in the outer reefal 

areas in Scene 1 than Scene 2. The same pattern could be observed in the bbp443 

between the two scenes. The southern GBR displayed higher retrieved IOP values along 

the coast in Scene 2 while the outer reefs had higher retrieved IOP values in Scene 1. 

 
Figure 4-14: Retrieved a443 for Scene 1 (left) and Scene 2 (right) using the sand bottom reflectance 
scenario. 
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Figure 4-15: Retrieved bbp443 for Scene 1 (left) and Scene 2 (right) using the sand bottom 
reflectance scenario 

The retrieved IOPs were compared to the secchi depth for the two scenes to get further 

understanding into the water clarity of the two scenes (Figure 4–16). The secchi depth 

algorithm from Weeks et al. (2012) used to generate the images does not correct for 

bottom reflectance. However, by comparing the IOPs and secchi depth one can gain 

insight into the effect of water clarity on differences in IOP retrievals. The secchi depth 

imagery from Scene 1 shows slightly lower water transparency in the northern and central 

GBR compared to Scene 2. In the southern GBR, the outer reefs also displayed poorer 

water transparency in Scene 1 compared to Scene 2. However, the area between the 

reefs and the coast in the southern GBR was slightly more transparent in Scene 1 

compared to Scene 2. Overall, the secchi depth algorithm showed clearer waters in Scene 

2 compared to Scene 1. This was not as clearly observed from the IOP retrievals, where 

higher IOP values were observed in Scene 2.  
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Figure 4-16: Secchi depth for Scene 1 (left) and Scene 2 (right) processed using the GBR-validated 
Secchi depth algorithm (Weeks et al., 2012) 

 

4.1.1 Temporal sensitivity of IOP retrievals under different bottom reflectance 
scenarios 

In this section, the researcher assessed the differences in water column a443 and 

bbp443 retrievals using bottom reflectance spectra from brown algae and sand, as well as 

the differences between retrievals using seagrass and sand reflectance spectra for the 

time period from 1 January 2013 to 1 January 2014. Differences were calculated by 

subtracting the mean daily a443 and bbp443 values of the sand bottom reflectance 

scenario from those of the brown algae scenario (BASA), and the sand bottom values from 

the seagrass bottom values (SESA). The results of the differences in retrieved bbp443 of 

the LI and CB time series are displayed in Figure 4–17. 
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The time series analysis for both the CB and LI study areas showed that IOP retrievals 

at depth ranges from 5 to 20 m were most sensitive to changes in bottom reflectance 

parameterization, for both a443 and bbp443, for both areas (CB and LI). For the assessed 

time period, smaller differences (+/- 0.05) in a443 retrievals were recorded at depths 

shallower than 20 m from May to July 2013 for both the study areas compared to the rest 

of the year. More frequent large positive differences in a443 retrievals (0.1-0.15 m-1) were 

observed in the CB area, compared to the LI area for both BASA and SESA scenarios at 

depths shallower than 12 m. In general, the changes in a443 retrievals were positive for 

the shallower depths (above 12 m) and negative for deeper depths (below 15 m). This 

means that retrieved a443 values were higher for the dark bottom types (brown algae and 

seagrass) than for the sand bottom reflectance scenario in shallower depths. The opposite 

was true for the deeper depth (below approximately 15 m), where retrieved a443 was 

higher for the sand bottom reflectance scenario compared to the darker bottom types. 

However, in the LI region, retrieved a443 values were higher for the sand bottom 

reflectance scenario in the months February to May 2013 in depths shallower than 10m, 

while for the remainder of the year, the brown algae and seagrass scenarios produced 

higher a443 values. Also, in the CB area, the months of August, September and 

November 2013 provided higher retrieved a443 values for the dark bottom reflectance 

scenarios compared to the sand bottom reflectance scenario, with differences in a443 

between -0.15 and -0.05 m-1 for depths above 10 m. While most changes in a443 retrievals 

were observed at depths above 20 m, there were some changes observed between sand 

and dark bottom reflectance scenarios for depths below 20 m.  
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Figure 4-17: 12 –month time series differences in a443 retrievals for the SESA and BASA scenarios 
for the Lizard Island and Capricorn Bunker test regions 
  



 97 

The results of the differences in retrieved bbp443 between the LI and CB time series 

are shown in Figure 4–18. Similar to the a443 retrievals, the bbp443 retrievals were larger 

for the dark bottom reflectance scenarios, compared to the sand in shallower (above 12 m) 

areas. This led to positive changes in bbp443 for these areas, while negative changes 

were observed in depths below approximately 15 m. Also similar to the a443 retrievals, the 

differences in bbp443 values were smaller in the LI area compared to the CB region. Again 

similar to the retrieved a443 values, the bbp443 values showed a slight variation across 

the year 2013, with negative differences recorded at shallower depths (above 12 m) during 

May to September 2013. In June 2013, the differences in bbp443 in the CB region showed 

the highest negative values for the year, in both BASA and SESA for depths from 7 to 20 

m. In the LI region, the highest differences in retrieved bbp443 and a443 occurred from the 

end of April to early December 2013. 
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Figure 4-18: 12 –month time series of differences in bbp443 retrievals for the SESA and BASA 
scenarios for the Lizard Island and Capricorn Bunker test regions 
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To assess the median yearly trend in percentage change between the sand and 

seagrass, as well as the sand and brown algae scenario at different depths, the 

differences were converted to values. The median percentage change is highest at 5 to 10 

m depth for both a443 (11-43%) and bbp443 (15-34%) in all assessed scenarios (Figure 4-

19). The median percentage change is smallest at depth below 20 m for both a443 (2-7%) 

and bbp443 (2-6%). The CB had more differences in median retrieved IOPs for the SESA 

scenario. Yet, it had lower levels of median percentage change for a443 (2-25%) and 

bbp443 (6-23%), compared to LI areas, which had changes in a443 (7-34%) and bbp443 

(6-43%).  

The LI BASA scenarios had higher a443 (19%) median percentage change at very 

shallow depth (5m) compared to the CB BASA scenario (15%). However, at depths 

between 7 to 15 m the LI BASA scenario had a lower percentage change in median a443 

values (11-16%), compared to the CB scenario that had changes of 16-21%. At depth 

below 15 m median percentage difference is lower for the CB BASA (2-16%) compared to 

the LI BASA scenario (7-16%).  

The LI BASA scenarios had higher bbp443 (15-30%) median percentage change at 

very shallow depth 5-12 m compared to the CB BASA scenario (10-15%). At depth 

between 12-16 m median percentage difference in a443 is slightly higher for the CB BASA 

(7-12%) compared to the LI BASA scenario (7-11%). While at depth below 20m the 

median percentage difference in bbp443 is the same for the LI and CB BASA scenario.    
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Figure 4-19: Yearly median percentage differences from 5 to 25 m in bbp443 (left panel) and a443 
(right panel) for the SESA and BASA scenarios in the Capricorn Bunker Group (CB) and the Lizard 
Island area (LI)  

 

4.4 Discussion 

The objective of this research was to analyze the impact of bottom reflectance 

parameterization on IOP retrievals using SWIM. It has been demonstrated that IOP 

retrievals are clearly impacted by bottom reflectance parameterization in shallow waters. 

The results of this chapter confirm that bbp443 retrievals can be highly sensitive to 
bottom reflectance parameterization. Bottom reflectance contributions from different 

bottom types could cause up to 2-fold change in estimates of water column IOP values 

(a443a and bbp443) (Figure 4-10 and 4-11). Such large variations in retrieved IOPs were 

also observed by McKinna et al. (2015), where SWIM produced up to 400% lower 

retrieved IOP values compared to the deep water optimized models Quasi Analytical 

Algorithm (QAA) and Generalized IOP algorithm (GIOP) (McKinna et al., 2015). Even in 

the open ocean, where bottom reflectance does not contribute to IOP retrievals, bbp 

values can vary greatly. Ocean color models match-ups to in situ backscattering 

coefficients do not always produce satisfactory results even in deep ocean waters 

(Example: Mélin et al., 2005, Maritorena et al., 2010). Mélin et al. (2005) found that based 

on 17 match-ups, the comparison for the backscattering coefficient gives mean differences 

in the range of 31–53% for a study site in the Adriatic Sea. Maritorena et al. (2010) 

reported that there was a consistent difference observed throughout the assessed time-

series between MODIS Aqua-derived bbp values and in situ match-ups. The results of this 
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chapter confirm that bbp443 retrievals can be highly sensitive to bottom reflectance 

parameterization.  

For both scenes and all regions, means of estimated bbp443 were very similar 
for the coral, brown algal and green algal bottom type scenarios across all depth 
ranges with not significant differences. Coral, brown algae and green algae have 

similar spectral shape and magnitude, thus IOP retrievals are expected to be more similar 

for these bottom types compared to sand or seagrass, which have different spectral 

shapes. These results are consistent with the findings of Chapter 3 (Reichstetter, Fearns, 

et al., 2015), which found that most dark spectra, such as algae, coral and seagrass, can 

be clustered together into a “dark” cluster based on the modeled surface reflectance 

signals.  

The results showed that the sensitivity in IOP retrievals due to bottom 
reflectance parameterization was different under different water clarity conditions 
(different scenes). More light penetrates through the water column in clearer waters 

compared to more turbid waters. Therefore, the amount of light reaching the bottom is 

different in the two assessed scenes, resulting in different IOP retrievals. The black (non-

reflective bottom) and white (completely reflective bottom) cases are extreme scenarios 

and the differences in IOP retrievals were expected to be greater than between other 

bottom types. There were considerable variations between Scene 1, captured in 

December 2005, and Scene 2, in August 2011, in differences of IOP distributions, 

summary statistics and spatial differences. GBR waters are generally most transparent 

during September and most turbid during March (Weeks et al., 2012). In addition, the 

average monthly rainfall is lowest May to October (dry season) in the GBR, while from 

November to April (wet season), it is impacted by monsoonal winds (Furnas & Mitchell, 

2001; Weeks et al., 2012) The wet season results in greater river outflow, hence lower 

clarity, especially inshore (Fabricius, Logan, Weeks, & Brodie, 2014; Weeks et al., 2012). 

The comparison between the two scenes using the sand bottom reflectance scenario 

showed that the differences in retrieved IOPs were not large and were mostly observed in 

the coastal areas and outer reefs. Yet, the percentage differences between the IOP 

retrievals for the white and black and the sand and seagrass scenarios were generally 

larger in Scene 2 compared to Scene 1. Scene 2 had slightly lower retrieved IOP values in 

areas where the percentage differences were higher between the retrieved IOPs of the 
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white and black, as well as the sand and seagrass bottom reflectance scenarios. 

Therefore, it can be concluded that small changes in water clarity can greatly affect the 

sensitivity of IOP retrievals due to bottom reflectance parameterization. These changes 

are local, do not usually occur GBR-wide, and are influenced by oceanographic patterns 

and river runoff, typically being more significant in coastal turbid waters.  

Both spectral shape and magnitude affect IOP retrievals. This research showed 

that the magnitude of the bottom type spectra was not the only parameter determining the 

differences in IOP retrievals, but the spectral shape also influenced IOP retrievals. For 

example, the mean sand spectra was approximately 2.5 times higher than the spectra of 

the darker bottom types (coral, seagrass brown and green algae) but did not result in 

consistently higher mean retrieved IOPs. In addition, there was only an average 8% 

difference between brown algae and seagrass, yet the differences in IOP retrievals varied 

between the two bottom types. The influence of the spectral shape used in the bottom 

reflectance parameterization could also be observed in the mean IOP retrievals in Scenes 

1 and 2, where the dark bottom types (coral, brown and green algae) generally had similar 

effects on IOP retrievals, while seagrass, which has a different spectral shape compared 

to the other dark bottom types—as illustrated in Figure 4–2 —had a different pattern in IOP 

retrievals. In contrast, white and black spectra, which have no spectral shape, but have the 

highest (white) and the lowest (black) spectral magnitude respectively did not consistently 

give the highest (white) and lowest (black) IOP retrievals.  

The influence of reflectance by different bottom types on SWIM retrievals of a443 
and bbp443 was greatest at depths shallower than 20 m. Most differences were 

observed in shallow waters (5 to 14 m) and only small differences were observed beyond 

20 m. More light reaches the seafloor in shallow water areas, compared to deeper areas. 

Thus, the differences in IOP retrievals for different bottom types are greater in shallow 

water areas due to the increased proportion of light reflected from the seafloor compared 

to light reflected from the water column. However, the small differences that were 

observed at depths below 20 m were observed in the time series, where the sand bottom 

reflectance and the seagrass and algae bottom reflectance scenarios showed differences 

in IOP retrievals. This is contrary to other studies, which found that below 20 m, remote 

sensing reflectance or chlorophyll retrievals should not be impacted by bottom reflectance 

(Carder, Cannizzaro, & Lee, 2005; Reichstetter, Fearns, et al., 2015). Yet, none of these 
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studies were based on in situ data, but rather on modeled and synthetic data. The 

changes in retrieved IOPs were relatively minor (+/- 0.05m-1 for a443 and +/-0.005m-1 for 

bbp443) and were observed between February and March 2013, when water clarity is 

generally more turbid compared to the May to October months (Weeks et al., 2012). Lower 

water clarity is often associated with higher IOP retrievals (Blondeau-Patissier et al., 

2009), thus differences are higher between scenarios, while the percentage differences 

show little change. McKinna et al. (2015) found that SWIM, QAA and GIOP produced 

comparable IOP retrievals at depths greater than 30 m but showed some differences for 

depths less than 30 m, most likely directly due to bottom reflectance. The differences for 

waters shallower than 30 m were most likely associated with the SWIM model IOP 

configuration, which is still being optimized as noted in (McKinna et al., 2015).  

The differences in IOP retrievals due to changes in bottom reflectance 
parameterization showed both spatial and temporal variability. Spatial and temporal 

variability in IOP retrievals based on different bottom reflectance scenarios were expected. 

The variability in changes of IOP retrievals due to changes in bottom reflectance 

parameterization may be partly associated with spatial and temporal variability of water 

clarity in the GBR (Fabricius et al., 2014, Weeks et al., 2012, McKinna et al., 2015). 

Figures 4–10 to 4–13 showed clear spatial variability within the GBR regions. It can be 

seen that uncertainties in IOP retrievals were highly variable spatially. The time series 

analysis showed that there was a slight seasonal trend in differences in IOP retrievals, 

most likely associated with the lower values in a443 and bbp443 during the May to 

September 2013 period, when waters are generally clearer in the GBR (Weeks et al., 

2012). Previous in situ IOP studies have concluded that seasonal variability in IOPs occurs 

across the GBR regions (Furnas and Mitchell, 2001, Blondeau�Patissier et al., 2009). 

There are only a very few studies of in situ IOP measurements in the GBR, and these 

studies have found large bio-optical variability between and within regions (Blondeau�

Patissier et al., 2009, Oubelkheir et al., 2006). This high variability in retrieved IOPs might 

also explain the high variability in changes in retrieved IOPs from the SWIM algorithms 

due to differences in bottom reflectance parameterization. The large variation in optical 

properties in the GBR would be likely to lead to large variations of uncertainties in modeled 

IOPs under different bottom reflectance scenarios. In general, the central GBR produced 

slightly higher mean IOP retrievals for both assessed MODIS scenes, compared to the 

northern and southern GBR at shallower depth (5-8 m) as evident in Figure 4–8 and 4–9. 
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To increase confidence in shallow water ocean color products, it is therefore essential to assess 

retrieved IOP uncertainties due to bottom reflectance parameterization on a subregional 

scale. General uncertainty guidelines cannot be provided for the whole of the GBR. 

The median yearly percentage difference between the retrieved IOPs of the sand 
and brown algae, as well as the sand and seagrass scenarios for the Capricorn 
Bunker Group and the Lizard Island area, decreases with increasing depth for the 
analyzed time period from 01 January 2013 to 31 December 2013 (Figure 4-19). The 

percentage change in median IOP retrievals is only 2-7% at depth below 20 m between 

the sand and seagrass, as well as the sand and brown algae scenarios. Yet, the 

percentage different in mean IOP retrievals is between 11-43% for shallower depths (5-10 

m). These findings are consistent with findings in Chapter 3, where bottom reflectance 

impacts on the remote sensing signal decrease with increasing depth (Reichstetter et al., 

2015a). Carder et al. (2005) also concluded that bottom reflectance contributions decrease 

with increasing depth and become negligible at 20 m depth.  

Overall, the distribution of the number of pixels in each bbp443 depth bin is very 
similar for all scenarios, except the white bottom reflectance scenario, in both 
MODIS scenes. The white bottom reflectance scenario is the only one that produced 

significantly different mean IOP retrievals (p<0.05). Scene 1 had significant differences 

(p<0.05) in retrieved a443 between the white bottom type and any of the others bottom 

types for all depth bins except the 17-20 m depth bin. In Scene 2, all the depth bins 

showed significant differences (p<0.05) between retrieved a443 of the white and all the 

other bottom types. The retrieved bbp443 were only significantly different (p<0.05) 

between the white bottom scenario and the other bottom scenarios at depth 5-11 m in 

Scene 1 and 5-8 m in Scene 2. The white bottom reflectance scenario is an extreme case 

with a fully reflective bottom, which is not realistic in real life applications. However, it 

highlights where bottom reflectances are likely to occur. It highlights that bottom 

reflectance becomes negligible in depth below 17 m in Scene 1, as no significant 

differences between bottom reflectance scenarios were observed, even considering a fully 

reflecting bottom scenario. It has to be noted that the retrieved IOPs have been averaged 

over a large area and thus differences in retrieved IOPs are small. Larger differences 

might be observed in individual pixels or over a smaller area. The reported differences in 

mean IOP retrievals give an indication of the expected sensitivities for GBR –wide or 
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regional (north, central and south) applications. It is common in ocean color remote 

sensing that large areas are assessed for water clarity or quality indicators (Petus et al., 

2014, Weeks et al., 2012). However, if SWIM-derived IOPs in shallow water areas are 

assessed using a small study area, differences in IOP retrievals between the individual 

bottom reflectance scenarios might be larger.  

 

Yearly median percentage differences in IOP retrievals were highest (a443=28-
34% and bbp443=20-43%) between sand and seagrass at shallow depths (5- 10 m) in 
the Lizard Island study area. The percentage differences were higher in the Lizard 
Island area, compared to the Capricorn Bunker area. McKinna et al. (2015) noted that 

the Lizard Island area is sensitive to bottom reflectance with SWIM producing lower a443 

and bbp443 values compared to QAA and GIOP, which do not account for bottom 

reflectance at depths shallower than 30 m. The Lizard Island area contains extensive 

seagrass areas (McKenzie et al., 2014a, McKenzie et al., 2001). The seagrass areas 

might explain the large differences in retrieved IOPs between seagrass and sand. 

4.5 Conclusion and recommendation 

The aim of this study was to demonstrate the effects of bottom reflectance 

parameterization on IOP retrievals. The results provided a detailed assessment of GBR-

wide and regional uncertainties in IOP retrieval due to bottom reflectance 

parameterization. The study concluded that bottom reflectance contributions from different 

bottom types could cause up to a two-fold change in estimates of water column IOP 

retrieval values. However, this was found to be significant only at depths shallower than 20 

m. 

Differences in IOP retrievals due to changes in bottom reflectance parameterization 

showed both spatial and temporal variability across the GBR. However, differences in 

retrieved IOPs might be greater in individual pixels or in smaller subregions. Further 

research should be undertaken to investigate subregional sensitivities in IOP retrievals due 

to differences in bottom reflectance parameterization.  

This research focused on the GBR only. Further research should be directed towards the 

assessment of bottom reflectance parameterization in different regions in the world under 

different environmental conditions. Ideally, in situ, rather than modeled, IOP 
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measurements should be used to fully understand the impact of changes in bottom 

reflectance parameterization on IOP retrievals. This is the first detailed study of the impact 

of bottom reflectance parameterization on IOP retrievals in SWIM for the GBR.  
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CHAPTER 5 BOTTOM REFLECTANCE 
PARAMETERIZATION IN SHALLOW WATER OCEAN 

COLOR MODELS 
 

This chapter uses different methods and types of datasets to assess the applicability 

and suitability to improve IOP retrievals in SWIM. The results provide a basis for 

generating spatially explicit bottom reflectance parameterization in SWIM and its impact on 

IOP retrievals.  

Associated publications 

REICHSTETTER, M., MCKINNA, L., FEARNS, P., WEEKS, S. J., ROELFSEMA, C. M. & 
FURNAS, M. 2015b. Seafloor brightness map of the Great Barrier Reef, Australia, 
derived from biodiversity data. 

 
MCKINNA, L. I. W., FEARNS, P. R. C., WEEKS, S. J., WERDELL, P. J., 

REICHSTETTER, M., FRANZ, B. A., SHEA, D. M. & FELDMAN, G. C. 2015. A 
semianalytical ocean color inversion algorithm with explicit water column depth and 
substrate reflectance parameterization. Journal of Geophysical Research: Oceans, 
120, 1741-1770. 

 

  

Main findings 

• All four bottom reflectance maps (Lyzenga graded, Lyzenga classified, 

Bierwirth, and biodiversity) produce comparable IOP retrievals with little 

differences for most of the areas in the Capricorn Bunker Group. 

 

• Field data compared poorly to retrieved bbp555, but compared well to retrieved 

a443 for all four assessed bottom reflectance maps. 

 

• Landsat 8-based mapping approaches require more user expertise and are 

more time intensive compared to in situ based approaches. 
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5.1 Introduction  

This chapter describes and compares four different methods to develop spatially 

explicit bottom reflectance maps to improve IOP retrievals in SWIM using two different 

types of data. To generate ocean color products from analytical ocean color models such 

as SWIM, a spatially explicit bottom reflectance map is needed. Currently, there is no such 

map of the GBR available that is suitable to be used in the bottom reflectance 

parameterization of SWIM. The need for spatially explicit bottom reflectance maps has 

only arisen in the past few years with the advance of shallow water ocean color inversion 

models, where it was shown that accounting for bottom reflectance can potentially improve 

IOP retrievals (McKinna et al., 2015). Previously, most ocean color algorithms that are 

applied to shallow water environments are either parameterized using a single bottom 

cover or they use a look-up table (Dekker et al., 2011). Typically, shallow water algorithms 

include bottom reflectance parameters, but may also derive some aspect of the bottom 

reflectance, such as classification of bottom types, where the algorithm selects a 

reflectance signature from a library of signatures. This is different to SWIM, which uses a 

pre-defined and explicit parameterization of the reflectance at each pixel. SWIM is 

currently the only operational shallow water algorithm and has been included in the NASA 

SeaDAS processing code.  

Applications of remote sensing that use bottom reflectance mapping include monitoring 

coral reef health, water column correction for substrate mapping or deriving seafloor 

bathymetry (Example: Andréfouėt et al., 2003, Mumby et al., 2004b, Stumpf et al., 2003, 

Vahtmäe et al., 2006, Purkis and Pasterkamp, 2004). At large, these studies used remote 

sensing to derive bottom cover. There are many different approaches to map seafloor 

cover or benthic reflectance using remote sensing imagery (Example: Lyzenga, 1981, 

Lyzenga et al., 2006, Bierwirth et al., 1993). Remote sensing presents a valuable tool for 

mapping the bottom of the shallow ocean. Yet, extracting the reflectance spectrum from 

the data of satellite sensors is complex. Visual inspection of moderate or high spatial 

resolution images (<1000 m) of reef systems can reveal valuable information of reef extent 

and reef configuration, as well as distribution of cover types. But, bottom cover often 

cannot be accurately identified by just visual inspection, as a dark-colored pixel can 

represent different bottom types, such as algae, seagrass or coral (Reichstetter et al., 

2015a). Water depth further influences visual bottom classification as lighter, more 

reflective, bottom covers in deeper depth can resemble darker covers at shallower depths.  
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Many remote sensing algorithms that apply a water column correction to derive bottom 

reflectance, or bottom classifications, require remote sensing data that has been 

atmospherically corrected and masked for land and clouds (Zoffoli et al., 2014). At large, 

water column correction algorithms consider the bottom as a Lambertian reflector (Zoffoli 

et al., 2014). In addition, the remote sensing signal measured at the surface, Rrs, is usually 

separated into two components: the water column and the ocean bottom. Water column 

correction algorithms used for estimating bottom cover or bottom reflectance can be 

broadly divided into band combination algorithms, model-based algebraic and optimization 

algorithms or spectral matching algorithms (Zoffoli et al., 2014).  

Band combination algorithms are mostly applied to multispectral data, such as imagery 

from Landsat (Zoffoli et al., 2014). They assume that bottom radiance in band i (LB,i) is an 

exponential function of depth and the vertical attenuation coefficient in band i (KD,i) (Zoffoli 

et al., 2014, Lyzenga, 1978, Lyzenga, 1981, Lyzenga et al., 2006). Band combination 

algorithms attempt to linearize the relationship between radiance or reflectance in two 

bands, i and j, and water depth. The models run under the assumption that the water 

column is vertically and horizontally homogeneous and the variability in bottom reflectance 

for the same bottom type is small. While some band combination algorithms have been 

developed for waters with lower transparency, such as coastal environments, generally, 

these algorithms are only accurate for waters with high transparency. Lyzenga developed 

the most commonly used band combination algorithm (Zoffoli et al., 2014, Lyzenga, 1978, 

Lyzenga, 1981, Lyzenga et al., 2006).  

Model-based algebraic algorithms use in situ measurements of water column 

parameters – for example, absorption and scattering coefficients – to define the behavior 

of light within a water column (Zoffoli et al., 2014). Most of these models require 

measurements of depth as an input parameter. Some of the most common model-based 

algebraic algorithms include those by Lee et al. (1999) and Bierwirth et al. (1993).  
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Optimization or matching approaches are commonly classified as radiative transfer 

based algorithms using spectral matching. They can be divided into semi-analytical and 

database search algorithms. Semi-analytical algorithms start with radiative transfer theory 

to derive an approximate analytical model functionally relating Rrs to water column depth 

and reflectance. They then estimate best-fit values of model parameters using non-linear 

optimization from the image Rrs. Database search algorithms use a radiative transfer 

based algorithm to create a database of Rrs spectra for all possible combinations of water 

absorption and scattering properties, water depths, and bottom reflectance that might be 

found in the study area. They then match the database spectra to the image spectra to 

create a bottom cover map.  

The aim of this chapter is to assess which types of datasets and mapping approaches 

can be used to potentially improve IOP retrievals. To achieve this aim, four different 

approaches have been used to generate bottom cover maps for use in SWIM. Three 

bottom cover maps are based on Landsat 8 imagery. Two of these maps were created 

using the band combination method of Lyzenga (1978). For the first map, the researcher 

used the Lyzenga depth-invariant index as input for unsupervised classification processing 

to derive a light and dark classified map. The second map was generated by converting 

the Lyzenga depth-invariant index into graded percentages of light bottom cover. The light 

bottom cover is indicative for sand cover and relates to the “light” bottom cover category 

from Chapter 3. The third map is based on the model-based algebraic method of Bierwirth 

et al. (1993) to derive a map of percentage light cover. An additional bottom cover map 

was created, which is not based on remote sensing data, but rather on in situ biodiversity 

data. There are no studies known to the author that have converted in situ biodiversity 

data into bottom cover maps for the use in shallow water inversion models.  

Differences in IOP retrievals using bottom reflectance corrections based on the 

different mapping methods are presented. The approaches to bottom reflectance mapping 

presented here illustrate how different types of datasets can be used to create bottom 

reflectance maps that can be applied to ocean color shallow water inversion models to 

improve IOP retrievals. While the datasets used in this study are GBR specific, the 

methods are applicable to other parts of the world. Importantly, the study demonstrates 

that bottom reflectance can be mapped using different datasets, depending on availability 

and user expertise. 
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5.2 Methods 

The methods for this chapter can be divided into two stages. First, the researcher 

produced four different bottom reflectance maps using two different types of datasets 

(Landsat 8 and biodiversity). Second, the effect of the four different bottom reflectance 

maps on IOP retrievals was assessed. An outline of data processing and analysis is 

presented in Figure 5-1 and summarized in the following sections. 
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Figure 5-1: Flowchart of methods used in this study 
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5.2.1 Study area 

This study provides an approach to mapping light and dark bottom cover in the 

southern part of the Great Barrier Reef of Australia. The study site includes the Capricorn 

Bunker Group (23.2 S –23.7 S, 151.6 E –152.1 E) (Figure 5-2). The study area was 

selected due to the availability of field data and the researcher’s knowledge of the area. 

The region of interest (ROI) is the shallow water area between 5 m and 25 m depth, which 

lie mostly between shallow reefs and islands. 

 

Figure 5-2: Atmospherically corrected Landsat 8 (LC80910762014198LGN00) (17 July 2014) image for 
the study area: the Capricorn Bunker Group and the southern GBR and map of the Great Barrier Reef 
with the green line on the GBR map indicates the boundaries of the Great Barrier Reef Marine Park 
area   
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5.2.2 Mapping process 

The seafloor brightness maps were developed primarily as an input parameter for the 

SWIM algorithm as implemented in the NASA SeaDAS software package 

(http://oceancolor.gsfc.nasa.gov) to improve IOP retrievals. The current SWIM model for 

the GBR is parameterized as follows: 

         (5.1) 

where ρnet (λ) is the net benthic reflectance per pixel and CL representing relative 

proportion of light and CD presenting the relative proportion of dark bottom cover (McKinna 

et al., 2015). The “light” spectrum was generated from average sand spectra and the 

“dark” spectrum was generated from an average of dark substrate spectra (green and 

brown algae, coral and seagrass) as presented in McKinna et al. (2015) (Figure 5-3).  

 

Figure 5-3 Light and dark spectra used in the SWIM bottom reflectance parameterization 

 

  

14 

 

2.3.2 Bathymetry data 

Bathymetric data used for testing SWIM in the GBR were extracted from a spatially 

consistent, gridded digital elevation model dataset (vertical datum: MSL; horizontal datum: WGS-

84), 3D-GBR [Beaman, 2010]. The 3D-GBR dataset is a composite of nearly 9.5 x 108 xyz data 

points sourced from multibeam and singlebeam acoustic soundings, Royal Australian Navy airborne 

Light Detecting and Ranging (LiDAR) data, Shuttle Radar Topographic Mission (SRTM) data and 

coastline data [Beaman, 2010]. The resulting 3D-GBR dataset has a pixel resolution of 100 m x 100 

m, and was deemed to resolve bathymetric features with sufficient horizontal and vertical detail for 

use as a SWIM algorithm input. Figure 3 shows the 3D-GBR digital elevation map of the GBR 

region and demonstrates both the extent of shallow shelf waters (less than 30 m) and also the large 

offshore reef matrix on the outer continental shelf. The 3D-GBR dataset was downloaded from the 

Great Barrier Reef online e-atlas website (http://eatlas.org.au/data/uuid/200aba6b-6fb6-443e-b84b-

86b0bbdb53ac). 

2.3.3 Benthic albedo map 

Marine benthic communities in the GBR are complex and spatially varied. As such, it was a 

challenge constructing a dataset suitable for characterizing the benthic albedo of the entire region. A 

pragmatic approach to the problem was to begin simply with just two benthic classes: ‘light’ and 

‘dark’, each with their own benthic albedo spectrum, ߩ௅ሺߣሻ and ߩ஽ሺߣሻ, respectively. The net benthic 

albedo per-pixel, ߩ௡௘௧ሺߣሻ, was then calculated via a linear mixing model  

ሻߣ௡௘௧ሺߩ ൌ ܿ௅ߩ௅ሺߣሻ ൅ ܿ஽ߩ஽ሺߣሻ    [16] 

where ܿ௅ and ܿ஽ are the relative proportion of light and dark benthic classes for a given pixel. Whilst 

not within the scope of this paper, it should be noted that further improvements to the benthic 

This article is protected by copyright. All rights reserved.
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This section outlines how to create a bottom reflectance map, which is based on two 

different types of datasets: biodiversity and satellite imagery.  

The following four benthic reflectance maps were created: 

Graded percentage light maps:  

1. Biodiversity data (BIO) 

2. Lyzenga depth-invariant index (LZ) 

3. Bierwirth approach (BR) 

and a classified map: 

4. Lyzenga depth-invariant index (CL) 

 

5.2.2.1 Bottom reflectance map from biodiversity data (BIO) 

Quantitative bottom community structure and cover density data were used to create a 

bottom reflectance map. The dataset is based on the Reef CRC Great Barrier Reef 

Seabed Biodiversity Project (hereafter referred to as the CRC Biodiversity Project), which 

produced the most comprehensive characterization of living and non-living bottom cover 

throughout the GBR. The $9 million project was a collaboration between four research 

partners – the Australian Institute of Marine Science (AIMS), the Commonwealth Scientific 

and Industrial Research Organisation (CSIRO), Queensland Department of Primary 

Industries and Fisheries (QDPI&F), and the Queensland Museum (Pitcher, 2007). The aim 

of the CRC Biodiversity Project was to map non-reef habitats and their biodiversity 

throughout the Great Barrier Reef Marine Park (Pitcher, 2007). The map produced by the 

CRC Biodiversity Project was based on samples collected at 1210 locations throughout 

the GBR at depths between 10 m and 150 m, which is unique as most previous reef 

biological surveys focused on shallow reef habitats (<5 m deep) (Pitcher, 2007). At each 

sampling site, several devices, including towed video and digital cameras, baited remote 

underwater video stations (BRUVS), a digital echo-sounder, an epibottom sled and 

research trawls trawlers were deployed to collect samples of sediment, benthic plants, 

invertebrates and fish on the seabed.  
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Twenty-three (23) of the sampling sites fell within the study area examined in detail in 

this chapter (Figure 5-4). The data from the 23 specific locations were used to generate a 

bottom reflectance map of light and dark features. 

 

Figure 5-4: RGB Landsat 8 image (17 July 2014) and sample points map showing the 23 sites 
sampled during the CRC seabed biodiversity survey in the study region (Data from: Pitcher, 2007).  

 

The original benthic cover type classifications listed in Table 5-1 were converted into 

optically light and dark categories, based on the spectral separability criteria defined in 

Chapter 3 (Reichstetter et al., 2015). Photographic and written descriptions of each 

biodiversity class were used to gain an understanding of their likely optical characteristics.  
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The assumption was made that sparse and medium cover categories mainly contain 

sand or carbonate sand and, at the spatial scale of MODIS satellite resolution (1 km), the 

light spectra dominate; hence, these categories were assigned to the light class.  

Table 5-1: Light and dark feature classification based on the CSIRO seabed biodiversity 

 

For each benthic sampling site, the relative proportion from the entries in Table 5-1 were 

used to calculate light and dark bottom cover contribution, which resulted in two maps: (i) 

percentage of light substrate and (ii) percentage of dark substrate. The light and dark 

sample point maps were interpolated to a raster using ArcGIS geospatial software 

(ArcGIS, 2011) with (a) an inverse distance weighted interpolator, (b) a cell size set to be 

of 0.0009999 decimal degrees (dd) (~ 100 m), and (c) a maximum number of surrounding 

points (extrapolation distance) of 12. The resulting grids were represented in stretched 

values along a color ramp for display and analysis purposes. The spatially distributed 

bottom reflectance map was assigned the light and dark spectra as presented in Figure 5-

3.  

 

Light feature 

categories 

Dark feature 

categories No Biohabitat Alcyonarians Dense 

Bioturbated Whip Garden Dense 

Alcyonarians Sparse Gorgonian Garden 

Dense Alcyonarians Medium Sponge Garden 

Dense Whip Garden Sparse Hard Coral Garden 

Dense Whip Garden Medium Live Reef Corals 

Gorgonian Garden 

Sparse 

Flora 

Gorgonian Garden 

Medium 

Algae 

Sponge Garden Sparse Halimeda 

Sponge Garden 

Medium 

Caulerpa 

Hard Coral Garden 

Sparse 

Seagrass 

Hard Coral Garden 

Medium 

 

Bivalve Shell Beds  

Squid Eggs  

Tube Polychaete Beds  
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5.2.2.2 Bottom reflectance map from Landsat data 

Three shallow water bottom reflectance maps using Landsat 8 data were produced. 

The approach adopted here was to classify light and dark bottom covers based on color. 

Four Level 1 images from the Operational Land Imager (OLI) on Landsat 8 were obtained 

in GeoTIFF format from EarthExplorer (http://earthexplorer.usgs.gov/), covering the 

southern GBR area (Path 91/Row 76) with less than 10% cloud cover over the study area 

(Table 5-2). The images were cropped to cover the study area. The four quasi-true color 

images of the study area are displayed in Figure 5-5.  

Table 5-2: Landsat 8 images used for the remote-sensing based bottom reflectance maps 

Landsat Image Date  Symbol 

LC80910762013211LGN00 30 July 2013 Image A 

LC80910762014198LGN00 17 July 2014 Image B 

LC80910762014230LGN00 18 August 2014 Image C 

LC80910762015217LGN00 05 August 2015 Image D 
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Figure 5-5: RGB Landsat 8 images used to generate the bottom reflectance maps: Image A (July 
2013) (top left panel), image B (July 2014) (top right panel), image C (August 2014) (bottom left panel) 
and image D (July 2015) (bottom right panel).  

 

The images were atmospherically corrected to at-surface reflectance using the 

SeaDAS L2gen processing code (Vanhellemont et al., 2014). The images were projected 

to a horizontal datum of WGS84 and collocated with the gbr100 bathymetry dataset 

(Beaman, 2012) using the SeaDAS GPT toolkit. The image analysis and processing for all 

images was carried out using ENVI, ArcGIS and SeaDAS. The four images were then pre-

processed prior to the image analysis to mask out land and deep-water areas (deeper than 

25 m).  
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Land was masked out during the atmospheric correction using the SeaDAS L2gen 

processing code. The deep waters were masked out using the bathymetry dataset by 

applying a mask to each Landsat 8 band. Two different approaches, Lyzenga (1978, 1981) 

and Bierwirth et al. (1993), were used to correct the effects of the water column on bottom 

reflectance. The following sections describe the individual approaches to generate light 

and dark bottom cover maps using remote sensing techniques.  

5.2.2.2.1 Lyzenga,approach,

Lyzenga (1978, 1981) developed a band-ratio-based approach to create a depth-

invariant index for multiband satellite imagery, which compensates for variation in depth. 

The Lyzenga method makes two main assumptions: (i) waters are clear and (ii) light 

intensity decreases exponentially with increasing depth. The Lyzenga method creates a 

single depth-invariant band for each pair of spectral bands (for further details, readers are 

directed to Lyzenga (1978), Lyzenga (1981). The researcher calculated the ratio of 

attenuation coefficients ki /kj and produced depth-invariant bands for Landsat 8 bands 1 

and 2, 1 and 3, as well as 2 and 3. Band 4 contained relatively little information in areas 

corresponding to the study area as the water column absorbed the majority of red light. 

For each of the four assessed Landsat scenes, the coastal blue (Rrs443), blue (Rrs482) 

and green (Rrs561) Landsat 8 bands yielded three usable depth-invariant bands for 

subsequent classification.  

Classification map 

An unsupervised classification approach using k-Means (Canty, 2014), which does not 

require any initial inputs of spectral training data to classify the Landsat 8 imagery, was 

considered to be adequate for distinguishing the differences in spectral signatures 

between spectrally light and dark bottom covers. Upon visual examination of each band, it 

was decided that all the depth-corrected bands using the Lyzenga method – coastal 

blue_blue (Rrs443_Rrs482), coastal blue_green (Rrs443_Rrs561) and blue_green 

(Rrs482_Rrs561) – would be used for classification of bottom covers. The atmospherically 

corrected and depth-invariant Landsat 8 satellite images were subjected to k-Means 

clustering using ENVI, an unsupervised classification method which organized each pixel 

into the assigned number of classes (eight classes in the present study) during 10 

iterations.  
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The resultant classification was examined visually against the satellite imagery to 

assess if any classes could be grouped – for example, if any were clearly representing the 

same bottom types – and to highlight any areas that had obviously been misclassified. The 

eight classes were then amalgamated into three classes. Each of the three classes was 

assigned a symbol to discriminate pixels related to masked (M), light (L), or dark (D) areas.  

To assess the consistency of the mapping approach, pairwise change detection maps 

of light and dark features were produced. Further, the classified Landsat 8 satellite images 

containing the three classes (M, L and D) were then combined to produce a synthesized 

raster image containing the class codes – 100% light, 75% light 25% dark, 50% light 50% 

dark, 75% dark 25% light and 100% dark. 

 

Percentage light graded map based on the Lyzenga depth-invariant index 

Input maps into the SWIM model are continuous and not classified because, in reality, 

areas are neither 100% dark nor 100% light, but contain a mixture of light and dark 

spectra. Therefore, a graded percentage light cover map was generated using Landsat 8 

imagery. The principal researcher used the depth-invariant layer produced as described in 

the previous section, from Landsat 8 bands 2 and 3 only, to generate a graded percentage 

light cover map. The first step was to extract the area between depth of 5 m and 25 m. The 

images were then adjusted to set the minimum value to 0. The resulting raster was divided 

by the maximum raster value and multiplied by 100 for all the assessed images. The 

resulting four percentage light images – A, B, C and D – were then added together and 

divided by four to get the average image. The resulting percentage light cover was then 

adjusted to eliminate outliers.  

5.2.2.2.2 Graded,bottom,reflectance,map,based,on,Bierwirth,et,al.,(1993),method,

The same imagery as used in the previous sections was used to create a graded map 

with percentages of light and dark bottom cover. However, whereas in the previous section 

the Lyzenga (1978) approach was applied to correct for water column effects, in this 

section the Bierwirth et al. (1993) water column correction algorithm was applied to the 

Landsat 8 images. In addition, Kd Lee (Lee et al., 2005) was calculated using the L2gen 

processing code in SeaDAS. Since Kd cannot be calculated successfully in shallow water 
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areas, the principal researcher used the average Kd Lee values of the deep water area 

(25–200 m) within the Landsat 8 scenes. Kd Lee values are different in deep water areas 

compared to shallow water areas. Yet, band ratios, such as proposed in some studies 

(Zoffoli et al., 2014, Bierwirth et al., 1993, Lyzenga, 1978, Lyzenga, 1981), are also not 

entirely accurate. Using this approach, the researcher tried to establish if different methods 

of applying Kd would lead to different IOP retrieval results. Band ratios often do not work in 

coastal areas, whereas Kd Lee values could potentially improve the water column 

correction. Table 5-3 shows the Kd Lee values used during the water column correction 

process.  

Table 5-3: Mean Kd Lee values used in the Bierwirth et al. (1993) water column correction 

Wavelength 

(nm) 

Image A 

 

Image B Image C Image D 

443 0.0613 0.0575 0.0495 0.0619 

482 0.0493 0.0456 0.0384 0.0476 

561 0.0907 0.0911 0.0865 0.0908 

  

The researcher used the gbr100 bathymetry as the known input depth and did not 

calculate the bottom depth using the approach stated in Bierwirth et al. (1993). The 

researcher considered the gbr100 bathymetry dataset values more accurate than the 

depth values calculated from the Landsat 8 Imagery using the Bierwirth method. Knowing 

the water depth (Z) and the attenuation coefficient (Kd), the researcher used the following 

formula to calculate the bottom reflectance: 

RBI=REI e (2KdiZ)           (5.2) 

where REI is the atmospherically corrected surface reflectance and RBI is the derived 

estimate of true bottom reflectance for band i. The RB for each wavelength (443, 483 and 

561) was averaged to generate the band-averaged bottom reflectance. A linear peak-

clipped histogram function was applied using the Sentinel Application Platform (SNAP) 

data-processing software (ESA, 2016) to eliminate extreme values and adjust the data so 

it can be converted to a percentage light bottom cover map.  
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The linear peak-clipped histogram function redistributed the pixel values based on 

linear scaling between minimum and maximum pixels around the peak so that extreme low 

and high values do not influence the overall distribution. The data was then normalized 

from 0–100 to generate the 100% light map, where the 100% light means 100% sand 

cover and 0% light means no sand cover. This image processing procedure was applied to 

all four Landsat 8 images (A, B, C and D). The resulting four band-averaged bottom 

reflectance images where then averaged to produce the final bottom reflectance map (BR) 

of the Capricorn Bunker region.  

5.2.3 SWIM modeling 

The SWIM (Shallow Water Inversion Model) method used in this study is an 

implementation of the semi-analytical, non-linear search algorithm developed by Lee et al. 

(1998, 1999). SWIM is part of the NASA Ocean Biology Processing Group L2gen satellite 

data processing code (available as part of the SeaWiFS Data Analysis System (SeaDAS); 

http://oceancolour.gsfc.nasa.gov). SWIM does account for bottom reflectance 

heterogeneity, whereas the original model from Lee et al. (1998, 1999) did not. A high-

resolution digital elevation model (DEM) for the GBR and adjoining Coral Sea at a grid 

pixel resolution of 0.001-arc degree (about 100 m) was used in this project and is further 

described in Chapter 2. The bathymetry dataset (gbr100) is included in the SeaDAS 

software package.  

Extracted L1A MODIS Aqua time series data for the test region, from 1 January 2013 

to 31 December 2013, was obtained from the NASA ocean color website 

(http://oceancolour.gsfc.nasa.gov). The data was batch processed from Level-1A to Level-

2 using the L2gen implementation of SWIM to produce retrieved a443 and bbp443.  

5.2.4 Field data 

For testing the bottom reflectance parameterization, a field campaign was conducted in 

the Capricorn Bunker area. Water column attenuation and backscattering were measured 

during the period 23–25 April 2013. Only four data points out of 18 were selected to be 

useful and appropriate for a match-up analysis, as the other data points did not fall within 

valid MODIS pixels (Figure 5-6).  
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Absorption and beam attenuation measurements are made using WET Labs ac-9 or 

ac-s instruments. The ac-9 instrument utilizes two dual-flow tubes – attenuation (c) and 

absorption (a) tubes – a collimated source lamp, and spectral bandpass filters on a 

rotating wheel to record absorption and attenuation in the visible to near infrared 

electromagnetic spectrum at multiple wavelengths (Slade et al., 2010, Moore et al., 1997). 

Absorption is recorded using a reflective tube and a wide-angle detector, which includes a 

diffuser, while attenuation is recorded using a non-reflective tube and collimated detector 

(Slade et al., 2010). The ac-9 instrument records attenuation and absorption at nine 

wavelengths at a rate of 6 Hz (Slade et al., 2010).  

In this study, a 25-centimeter path length WetLabs ac-9 was used to measure the 

absorption coefficient (a) and beam attenuation coefficient (c) of materials other than water 

at nine wave bands at 10 nm FWHM across the visible spectrum. Absorption and 

attenuation signals at 715 nm were corrected for temperature-dependent water absorption 

(Pegau et al., 1997) and the data was averaged over one-meter depth intervals. Daily field 

calibrations were undertaken to detect instrument drift (Moore et al., 1997). Total 

backscattering (bb) was measured using a Hydroscat-2 HobiLabs (www.hobilabs.com). 

Since calibration of this instrument was not possible during the project durations, it was 

assumed that the manufacturer’s calibration remained valid.  

         

Figure 5-6: RGB Landsat 8 image (17 July 2014) displaying the field data point used in this study 

 

 ,
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5.2.5 Comparison of IOP retrieval  

The daily mean IOP retrievals for pixels overlying four depth bins (5–10 m, 10–15 m, 

15–20 m and 20–25 m) (Figure 5-7) were extracted from the generated L2 files for each of 

the different bottom reflectance maps, using the zonal statistics Python code from the 

Supplementary Spatial Statistics Toolbox in the ArcGIS software (ArcGIS, 2011). Each 

depth in 5-meter intervals was assigned to a zone using the raster depth mask created 

from the gbr100 bathymetry dataset. Only scenes with valid pixels in each depth range 

were considered, which resulted in the processing of 244 scenes out of a possible 365. A 

regression analysis (Type I) was conducted to compare the IOP retrievals in each depth 

zone and under different bottom reflectance scenarios. Type I regression was considered 

appropriate due to the high correlation of the retrieved IOPs. Histogram distribution and 

scatterplots were also generated to assess the distribution of the mean daily IOP retrievals 

from the different bottom reflectance scenarios.  

 

Figure 5-7:Depth bins used to derive mean daily IOPs 
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5.2.6 Comparison of IOP retrievals to field data  

MODIS Aqua data for the ROI for 24 April 2013 was downloaded and processed to 

Level 2 using SWIM in L2gen for each of the four different bottom reflectance maps. An 

additional scenario was generated using the QAA model to compare the differences of 

SWIM-derived and QAA-derived IOPs when compared to in situ data. In the present study, 

a match-up was considered valid if a match-up point fell within the latitude and longitude of 

a valid (non-zero) pixel within a 3X3-pixel window. The average retrieved IOPs were 

extracted using a 3X3-pixel window for each of the four field data points. The average 

retrieved IOPs were then compared to the in situ data.  

5.3 Results 

5.3.1 Comparison of bottom reflectance maps 

5.3.1.1 Percentage light bottom reflectance maps 

This section displays the percentage light maps only. The percentage dark bottom 

cover is calculated as follows within the current SWIM format: 

Percentage (%) dark bottom cover= 100% - percentage (%) light bottom cover  

For example, if a pixel in the light bottom cover map has a value of 80% the dark 

bottom cover pixel will contain 20%, meaning that 20% of the dark spectral signature gets 

mixed with 80% of the light spectral signatures within SWIM.  

The bottom reflectance maps, which are based on Landsat 8 imagery, have a 30-meter 

resolution, while the bottom reflectance map based on the biodiversity dataset was 

interpolated at a 100-meter resolution to match the gbr100 bathymetry dataset (Figure 5-

8). However, all the maps are interpolated to MODIS resolution (1 km) within SWIM and 

thus are missing some information around reefs and land. The percentage light bottom 

cover in the biodiversity map (BIO) is not affected by the locations of reefs, islands and 

bathymetry features, but shows an increase in percentage light bottom cover from the 

southwest to the northeast. There are only 23 biodiversity sample sites (Figure 5-4) within 

the assessed region and thus the southwest to northeast increase in percentage light 

bottom cover is most likely due to interpolation.  
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The graded Lyzenga (LZ) and the Bierwirth (BR) maps look similar in terms of 

resolution, relationship to islands and shallow reefs, as well as bathymetry features. Yet, 

the BR map has more dark (less light) pixels compared to the LZ map. The classified 

Lyzenga (CL) has five distinct classes, while all the other presented bottom maps are 

graded. The CL map is the only map that has areas with no light (0%) bottom cover, thus 

100% of the dark spectra will be used within SWIM when computing IOPs. All the other 

bottom reflectance maps have at least 25% light bottom reflectance cover. The CL map 

has areas ranging from 0%–100% light bottom reflectance. The Lyzenga-graded (LZ) 

bottom reflectance map has between 50% and 100% light bottom reflectance cover in 

each pixel. The biodiversity (BIO) bottom reflectance map has between 25% and 100% 

light bottom reflectance in each pixel – similar to the Bierwirth (BR) map, which has 

between 30% and 100% light bottom reflectance in each pixel.  

There are differences in the percentage of light bottom cover of up to 90% in a pixel 

between the CL map and the other maps (BIO, LZ and BR). The differences between the 

graded light bottom reflectance maps (LZ, BIO and BR) are smaller and are generally 

below 50%. Most of the areas with lower percentages of light bottom reflectance cover 

were observed west of 151°50’ E. Most of the inter-reefal area between North West Island 

and Broomfield Reef was classified with high percentages of light bottom cover (above 

50%). The area between Broomfield Reef and Wilson Island has a lower percentage of 

light bottom cover (below 50%) in the BR map, while it is classified as having 0% light 

bottom cover in the classified map. The same area has higher percentages of light bottom 

cover (50–90%) in the BIO and LZ maps. The area between Heron Reef and Sykes Reef 

contains a high level of percentage light bottom reflectance (above 75%) except for the LZ 

map, which displays areas with light bottom reflectance cover below 75%.  
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Figure 5-8: Maps of percentage light cover at original resolution using the following methods: 
Lyzenga classified (CL) (top left), Lyzenga graded (LZ) (top right), biodiversity (BIO) (bottom left) and 
the Bierwirth approach (BR) (bottom right). The white pixels are not of interest to this study and 
either represent land or deep areas.  
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5.3.1.1 Differences in percentage light bottom cover of individual Landsat 8 

scenes using the Lyzenga method 

The three (3) Landsat 8-based bottom reflectance maps (LZ, CL and BR) were 

generated using four individual Landsat 8 images as listed in Table 5-2. The brightness of 

Landsat 8 images changes between different acquisition dates. Thus, the percentage light 

spectra assigned to each pixel may differ between Landsat 8 images from different 

acquisition dates. To illustrate the differences in percentage light bottom cover derived 

from single Landsat 8 images, a pairwise percentage change analysis was performed for 

the graded Lyzenga-based approach only (Figure 5-9). As mentioned previously each of 

the four individual Landsat 8 images was processed into a graded percentage light cover 

map using the Lyzenga method and then combined in an average map. This section 

assessed the four individual graded Landsat 8 maps, before they were combined in the 

final map. Most changes occurred within a range of +/– 25%. The greatest change was 

observed in the very bright areas between North West Island and Broomfield Reef, and 

between Heron Reef and Sykes Reef. In addition, larger changes in the percentage of light 

bottom cover tend to be more evident closer to land or shallow reef areas. Very few 

differences were observed between images B (17 July 2014) and C (18 August 2014) (+/– 

15%), with the majority of pixels differing by +/– 5%. Larger areas containing higher 

differences (+/– 20%–25%) in the percentage of light bottom cover per pixel were 

observed between images A (30 July 2013) and B, A and C, B and D (05 August 2015), as 

well as C and D compared to A and D or B and C.  
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Figure 5-9: Pairwise percentage differences in Lyzenga graded light bottom cover maps between the 
four Landsat 8 images: images, A (July 2013) and B (July 2014) (top left), B (July 2014) and D (August 
2015) (top right), A (July 2013) and D (August 2015) (center left), B (July 2014) and C (August 2014) 
(center right), A (July 2013) and C (August 2014) (bottom left), C (August 2014) and D (August 2015) 
(bottom right).  
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5.3.2 Comparison of IOP retrievals under different bottom reflectance 
scenarios 

The SWIM-based IOP retrievals (a443 and bbp443) were compared for the four different 

bottom maps (BR, CL, BIO and LZ) for mean daily MODIS data from 01 January 2013 to 

31 December 2013 using regression analysis. Figures 5-10 and 5-11 show the 

comparisons of IOP retrieval data for each of the bottom reflectance maps (BR, CL, BIO 

and LZ). Each of the four panels shows data for depth bins (5-10 m, 10-15 m, 15-20 m and 

20-25 m). Within each panel are IOP retrievals distribution histograms for each of the four 

bottom reflectance maps, and scatter plots of IOP retrieval data comparing pairs of bottom 

reflectance maps. Also included in the figures are coefficient of determination (r2), 

intercept (A), slope (b) and the root mean square error (E) of retrieved a443 and bbp443.  

There is a good agreement (r2>0.710) between the retrieved daily a443 values under 

the different bottom reflectance scenarios (BR, CL, BIO and LZ) (Figure 5-10). At depths 

greater than 20 m, the agreement between the a443 values is evident as shown in Figure 

5-10 (bottom right panel) by the coefficient of determination (r2) > 0.987, the slopes (b) 

being close to 1.0, the intercept (A) <0.001 and the root mean square error (E)<0.012. 

Better results were achieved for the retrieved a443 values at depths of 5–10 m (Figure 5-

10 top left panel) and 10–15 m (Figure 5-10 top right panel) with both r2 and slope values 

close to 1.0 and E<0.04, compared to 15–20 m (Figure 5-10 bottom left panel) with a 

minimum r2 of 0.71, slopes between 0.78 and 1.117 and E<0.062. The poorest agreement 

in retrieved a443 values was observed between the CL and BIO bottom reflectance 

comparison (r2>0.710, b = 1.118, A = –0.013, E=0.062) at 15–20 m depths. Generally, the 

slopes were between 0.78 and 1.17 for the 15–20 m depth ranges, while the r2 values 

remained high (0.710–1.00). This indicates that the impact of differences in the bottom 

reflectance parameterization may lead to biases resulting in differences of  retrieval 

retrieval between –22% to +17% per one m-1 change by using different substrate 

reflectance maps. 

The CL bottom reflectance scenario has the greatest range of mean daily-retrieved a443 

values at 10–15 m depths compared to the other bottom reflectance scenarios. The BIO 

bottom reflectance scenario had the smallest spread as evident in the histograms in Figure 

5-10 (bottom left panel) in mean daily-retrieved a443 values. At depths of 5–10 m, as well 
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as from 10–15 m, the mean daily-retrieved a443 value for all bottom reflectance scenarios 

was between an r2 value of 0.964 and 0.991.  

However, the distribution of IOP retrieval values is greatest in the shallowest depth bin (5–

10 m), compared to the other assessed depths, as shown by the histograms of retrieved s 

in Figure 5-10.  

 

 

Figure 5-10: Scatterplots displaying pairwise comparison (column to row) between mean daily SWIM-
derived a443 values of the four different bottom reflectance maps (BR, CL, BIO and LZ) from 1 
January 2013 to 31 December 2013 grouped within the following 5-meter depth bins: 5–10 m (top left 
panel), 10–15 m (top right panel) 15–20 m (bottom left panel) and 20–25 m (bottom right panel). 
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There is good agreement (r2>0.832) between the retrieved daily bbp443 values under 

the different bottom reflectance scenarios (BR, CL, BIO and LZ) (Figure 5-11). At depths 

greater than 20 m, the agreement between the retrieved bbp443 values is evident as 

shown in Figure 5-11 (bottom right panel) by the coefficient of determination (r2)>0.982, 

the slopes (b) being close to 1.0, the intercept (A) equal to 0 and the root mean square 

error (E)<0.001.  

Better results were achieved for the retrieved bbp443 values at depth bins of 5–10 m 

(Figure 5-11 top left panel) and 10–15 m (Figure 5-11 top right panel), with both r2, slope 

(b) values close to 1.0, intercept (a) close to 0 and root mean square error (E)<0.005, 

compared to those for the depth bin of 15–20 m minimum r2 of 0.832, slopes between 

0.702 and 1.68 and E<0.008 (Figure 5-11 bottom left panel). The largest difference in 

retrieved bbp443 values was observed between the CL and the BIO bottom reflectance 

scenario (r2>0.832, b = 1.68 and A = –0.007, E=0.008) for the 15–20 m depth range. The 

slopes were between 0.702 and 1.68 for the 15–20 m depth range, while the r2 values 

remained high (0.832–1.00). This indicates that the variation in retrieved IOPs due to 

changes in bottom reflectance parameterization (different maps) is not equal, resulting in 

differences of IOP retrieval between –29.8% to +68% per one m-1 change.  

The histogram distribution of bbp443 is also greatest in the shallowest depth bin (5–10 m) 

compared with the other assessed depth bins. The BR bottom reflectance map produced 

the greatest range of bbp443 values as shown in Figure 5-11 top left panel.  

 



 134 

 

 
 
 
Figure 5-11: Scatterplots displaying pairwise comparison (column to row) between mean daily SWIM-
derived bbp443 values of the four different bottom reflectance maps (BR, CL, BIO and LZ) from 1 
January 2013 to 31 December 2013 grouped within the following 5-meter depth bins: 5–10 m (top left 
panel), 10–15 m (top right panel) 15–20 m (bottom left panel) and 20–25 m (bottom right panel). 
Comparison of IOP retrievals to field data.  

 

The retrieved IOP values were compared to a very limited amount of in situ data (4 

data points). Table B-1 in Appendix B provides some more detail of the individual field data 

points used in this section. The retrievals of average a443 values from a 3x3 window size 

for each in situ data point were comparable to the in situ data (maximum difference of –

0.0016 m-1) and were closer than the average QAA a443 values (difference of +0.0204) 

(Table 5-4). The BIO bottom reflectance scenario produced a higher average a443 value, 



 135 

which resulted in a smaller difference in the in situ data compared to the other SWIM-

derived a443 values, as well as the QAA-derived a443 value. The average retrieved a443 

values of the BR and CL bottom reflectance scenarios were the same (0.0726 m-1), while 

the average retrieved a443 value of the LZ bottom reflectance scenario was slightly higher 

at 0.0727 m-1. The average retrieved a443 value for QAA is considerably higher at 0.0946 

m-1 compared to the SWIM-derived average a443 values, and is also higher than the 

average in situ value (0.0024 m-1). 

The average bbp555 retrieval values from SWIM were approximately 3.5 times higher 

than the in situ data value, while the average retrieved bbp555 QAA value was only just 

over two times higher than the in situ value. The BIO bottom reflectance scenario 

produced a higher average bbp555 value compared with those of the other bottom 

reflectance scenarios (BR, CL and LZ) and thus produced a larger difference to the in situ 

data value (almost 3.5 times). The average retrieved bbp555 values of the BR and CL 

bottom reflectance scenarios are very close, with only 0.0001 m-1 difference between 

them, while the average retrieved bbp555 value of the LZ bottom reflectance scenario sits 

approximately in the middle of the range of the four SWIM-derived bbp555 values at 

0.0075 m-1. The average retrieved bbp555 value for QAA is considerably lower (0.0053 m-

1) compared to the SWIM-derived average bbp555 values, but also higher than the 

average in situ value (0.0742m-1). 
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Table 5-4: Average retrieved IOP values using SWIM with different bottom reflectance scenarios, 
QAA and in situ data 
 Average bbp555 (m-1) Average a443 (m-1) 

SWIM_BR 0.0071 0.0726 

SWIM_CL 0.0070 0.0726 

SWIM_BIO 0.0083 0.0730 

SWIM_LZ 0.0075 0.0727 

QAA 0.0053 0.0946 

In situ 0.0024 0.0742 

 

5.4 Discussion  

In this chapter, the researcher assessed four approaches to generating bottom 

reflectance maps (BR, CL, BIO, LZ) for use in SWIM. The retrieved IOPs using the four 

bottom reflectance map scenarios were compared over a one-year period (1 January 2013 

to 31 December 2013). The results showed that there were minor differences in IOP 
retrieval between the four maps, with r2 > 0.9, slopes close to 1 and intercepts close 
to 0 for the 5–10 m, 10–15 m and 20–25 m depth bins. Only the 15–20 m depth bin 

showed some differences in IOP retrievals with slopes between 0.78 and 1.17 for a443 

retrievals and between 0.70 and 1.68 for bbp443 retrievals. Most of the 15–20 m pixels are 

located in the southwestern part of the assessed ROI (Figure 5-7). As seen in Figure 5-7, 

this area’s contribution to light bottom cover ranges from 0% in the CL map to 75% in the 

LZ map. It is an area that produced a great range of differences in the individual Landsat 

8-based maps (Figure 5-9), with differences in light bottom cover of up to 50% between 

the four different individual Landsat 8 images.  

The BR and LZ maps showed very little differences in retrieved IOPs, with differences 

of 0.04% in mean daily retrieved a443 values and 0-6% in retrieved bbp443 values. This is 

likely due to the same source dataset and similar processing method. Even thought the CL 

map is also based on the Landsat 8 dataset it shows slightly larger differences in retrieved 

IOPs, compared to the BR (a443= 0.03-11.4% and bbp443=0.06-29.8%) and LZ (a443= 

0.02-4% and bbp443=0.04-31.8%) maps. The BIO map is based on a different datasets 

(biodiversity) compared to the LZ, CL and BR maps, which are based on Landsat 8. This 

resulted in larger differences between the BIO map compared to the LZ, CL and BR maps.   
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The CL bottom reflectance map produced the largest range of differences in IOP 

retrievals, with a minimum r2 of 0.71, when compared to the BIO scenario at depths 

between 15 m and 20 m. This difference is most likely explained by the dark areas, with 

0% light bottom cover present in the CL map, while none of the other bottom cover maps 

has areas with 0% light bottom cover as evidenced in Figure 5-8. The results in the 

previous chapter showed that there is no significant difference in mean retrieved IOPs 

between the 75% sand and 25% seagrass bottom cover class and the 50% sand and 50% 

seagrass bottom cover class. This finding indicates that IOP retrievals are not greatly 

affected by differences in +/– 25% light bottom cover under the current SWIM model 

configuration. This is supported by the current results, where bottom reflectance maps 

have different percentages in light bottom cover, yet the retrieved IOPs show good 

agreement. Yet, the comparison was based on mean daily retrieval values over several 

pixels, which resulted in good agreement between the retrieved IOPs. However, individual 

pixels or small areas in a scene where the individual bottom maps show large differences 

in percentage light spectra, might still lead to considerable differences in retrieved IOPs.  

All the methods presented here could potentially be utilized to produce bottom 
reflectance parameters for use in SWIM and are likely to improve IOP retrievals. 
Unfortunately, not enough validation data was available to determine which bottom 

reflectance scenario produced retrieval values that compared best with the in situ data. 

McKinna et al. (2015) used a GBR-wide version of the BIO map described in this thesis 

(Reichstetter, McKinna, et al., 2015) to test the applicability of SWIM in shallow water 

environments. They found that, in general, the retrieval of IOPs is more sensitive to water 

column depth than benthic reflectance. Further, the study concluded that the BIO light and 

dark map, as described in this thesis, could be used successfully in SWIM (McKinna et al., 

2015). Further, the results of spectral separability described in Reichstetter, Fearns, et al. 

(2015) found that at MODIS bands no more than two bottom classes could be separated 

based on at-surface spectral reflectance. Therefore, for MODIS sensor data, a light and 

dark bottom reflectance map as described in this chapter should be sufficient as input into 

SWIM. Yet, the principal researcher agrees with the conclusion of McKinna et al. (2015) 

that for past, existing or planned sensors with higher spectral resolution such as the 

Hyperspectral Imager for Coastal Ocean (HICO), Ocean and Color Imager (OCI) or the 

Ocean and Land Color instrument (OLCI), more bottom cover classes might need to be 

considered.  
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Also, the choice of methods to create a bottom reflectance map depends not only on 

data availability, but also on water clarity, if remote sensing methods are to be employed. 

In less clear water the possibility of miss-classification due to water column impact is 

greater in satellite imagery. Thus, in situ measurements, if available, may be more 

appropriate.  

Landsat 8-based bottom reflectance mapping approaches require more user 
expertise and are more time intensive than in situ point-based approaches. Most of 

the focus for creating bottom reflectance maps is based on high-resolution satellite 

imagery or a combination of satellite and LIDAR data (Park et al., 2010, Macon et al., 

2008, Gao, 2009, Islam et al., 2004, Blakey et al., 2015, Bierwirth et al., 1993). However, 

without some user expertise and knowledge of the applicability of water column and 

atmospheric correction to satellite images, products can become unreliable (Bierwirth et 

al., 1993, Lyzenga, 1978, Lyzenga, 1981, Zoffoli et al., 2014). As demonstrated on the 

Lyzenga graded map here, different Landsat 8 scenes produced up to a 50% difference in 

percentage light spectra in some pixels in parts of the ROI. A single Landsat 8 scene might 

not necessarily be representative of a region, as brightness can change between 

acquisition dates. Thus, it is essential that several Landsat 8 scenes are processed and 

averaged or compared to derive a more accurate bottom cover representation. If the 

objective was to derive a GBR-wide bottom reflectance map based on Landsat 8 data this 

would be a time-consuming process. Approximately 25 Landsat 8 scenes would need to 

be processed to cover all the shallow water areas within the GBR 

(http://earthexplorer.usgs.gov/). If the approaches presented in this thesis were used, each 

of the 25 scenes would need four images, which would result in the processing of 100 

Landsat images. Unfortunately, it is not easy to automate the presented methods due 

differences in band ratios and image brightness from scene to scene (Bierwirth et al., 

1993, Lyzenga, 1978, Lyzenga, 1981, Lyzenga et al., 2006, Sagawa et al., 2010). In 

addition, the methods used in this thesis to correct for water column effects are not 

accurate in waters with low transparency, such as coastal areas (Sagawa et al., 2010, 

Bierwirth et al., 1993, Lyzenga, 1978, Lyzenga, 1981, Lyzenga et al., 2006). 

Producing a spatially interpolated bottom cover map from in situ data is relatively easy 

and quick compared to satellite image processing. Little user expertise is needed and 

spatial interpolation methods are well documented and integrated in spatial software, such 
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as ArcGIS (ArcGIS, 2011, Mathews et al., 2007). The advantage of creating bottom 

reflectance maps from in situ data is that the water column – hence, the geometric depth – 

does not affect the classification of light and dark. There has been no previous research 

undertaken which compared different methods to generate bottom reflectance maps for 

the use in SWIM prior to the work undertaken for this thesis.  

Landsat imagery has recurrent spatial coverage over the entire GBR region, 
while in situ data on benthic community composition and water column IOPs is 
often sparse and might not be available for remote locations. Landsat 8 covers the 

entire GBR at 30 m x 30 m pixel resolution (Roy et al., 2014), while the in situ data points 

are often very sparse and one point might be used to represent hundreds of kilometers. 

For example, the seabed biodiversity dataset used herein is the most complete and 

spatially dense GBR-wide biodiversity survey, but it took several years to complete 

(Pitcher, 2007). The data were collected using an elaborate statistical sample and 

fieldwork design (Pitcher, 2007). Yet, only 23 sample sites are located within the test 

region used in the research undertaken for this thesis. All of the in situ points located in 

waters deeper than 25 m are not in the focus depth range of this thesis. Currently, SWIM 

uses MODIS satellite imagery at a 1 km resolution (McKinna et al., 2015). Hence, the 

bottom maps were resampled within SWIM to match MODIS pixels and resolutions smaller 

than 1 km are not necessary and are not likely to improve IOP retrievals.  

Data availability is also a major factor when deciding on the mapping approach to be 

used. Landsat data are freely available and easy to access 

(http://earthexplorer.usgs.gov/), which makes it a tool that can be used by anyone 

worldwide and is not region specific. While this thesis demonstrated that in situ biodiversity 

data could be used successfully to generate a bottom reflectance map for use in SWIM, 

such a detailed and comprehensive dataset might not be available in many other regions 

in the world.  

Field data compared poorly with bbp555 values, but compared well with a443 
values for all four bottom reflectance maps. The limited amount of field data available 

makes a comparison to the SWIM-derived data difficult. The SWIM bbp555 values are 

much higher (approximately 3.5 times as much) than the in situ data. However, 

considering that most bbp values range from 0.0001 to 0.1 m-1 in the GBR, a difference of 

0.0059 m-1 between the SWIM-derived bbp and the in situ data is relatively small. This is 
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also true for the average QAA-derived bbp555, which is 0.0029 m-1 higher than the 

average in situ bbp555. Whether the differences are due to bottom reflectance 

parameterization alone cannot be determined with the limited amount of in situ data. As 

noted in Chapter 4, bbp retrievals are highly sensitive to bottom parameterization. It is 

known that any inversion algorithm suffers from the non-uniqueness of the solution, 

meaning that multiple combinations of IOP values can lead to a unique reflectance 

spectrum (Defoin-Platel & Chami, 2007). Even in the open ocean, where bottom 

reflectance does not contribute to the IOP retrievals, ocean color model match-ups to in 

situ backscattering coefficients do not always produce satisfactory results (Example: 

Maritorena, d'Andon, Mangin, & Siegel, 2010; Mélin, Berthon, & Zibordi, 2005). Mélin et al. 

(2005) found that based on 17 match-ups, the comparison for the backscattering 

coefficient gives mean differences in the range of 31–53% for a study site in the Adriatic 

Sea. Maritorena et al. (2010) reported that there was a consistent difference observed 

throughout the assessed time-series between MODIS Aqua-derived bbp values and in situ 

match-ups.  

The three main reasons for uncertainties in IOP retrievals are: (i) uncertainties in rrs(λ) 

measurements, (ii) uncertainties in shapes of IOPs and (iii) uncertainties in the IOP–rrs(λ) 

relationship (Wang et al., 2005). Any of these uncertainties could affect the IOP retrievals 

within SWIM and thus explain the differences between SWIM-derived IOPs and in situ 

data. SWIM is a relatively new semi-analytical inversion model and efforts are still being 

made to improve the IOP model within SWIM (McKinna et al., 2015). Further, there are 

uncertainties with the in situ data. For example, the spatial extent where the match-up field 

data usually characterizes an area of around 1–10 m, while the satellite spatial scale – 

MODIS in this study – is 1000 m. The difference in scales introduces an uncertainty that is 

often hard to quantify (Boss and Maritorena, 2006). 

5.5 Concluding remarks 

This chapter discussed and assessed four methods to generate bottom reflectance 

maps for the application in SWIM from in situ biodiversity and Landsat 8 data. The results 

show that all the presented bottom reflectance maps have comparable IOP retrievals when 

used in SWIM in the presented study region. The addition of the generated bottom 

reflectance maps to the SWIM algorithm has the potential to improve ocean color retrievals 

of IOPs and subsequent IOP-centered product, which are commonly used by the research 
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community to assess water clarity variability and trends in the GBR. The GBR-wide BIO 

bottom reflectance map has been provided to the NASA Ocean Color Group for 

implementation in the SeaDAS software program. The BIO bottom reflectance map has 

since been used to test the performance of the newly implemented Shallow Water 

Inversion Model (SWIM), as developed by the Australian Research Council 

Project LP100100342: Improved tools for comprehensive monitoring of water-clarity and 

light availability in coral reef ecosystems 
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CHAPTER 6 : CONCLUSIONS, SIGNIFICANCE AND 
FUTURE RESEARCH 

 

This chapter revisits the main findings of this thesis and discusses their specific 

contribution to the field of satellite remote sensing of ocean color. Limitations of the studies 

are presented and the directions for future works are suggested. 
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6.1 Summary 

The Great Barrier Reef (GBR) has a wide range of ecological, economic and social 

values. In recent decades, the water quality of the GBR has been under pressure from 

anthropogenic and natural disturbances (Example: De'ath and Fabricius, 2010, Fabricius 

et al., 2013, Fabricius et al., 2014, Furnas and Mitchell, 2001) Water clarity is one measure 

of water quality (Fabricius et al., 2014, Weeks et al., 2012). There is a significant need to 

accurately monitor the changes in water clarity for management of the GBR ecosystem 

health. Ocean color remote sensing provides a means for spatially extensive, repeatable, 

multi-scale and multi-temporal assessment of water clarity conditions on the GBR. 

Advances in ocean color imagery processing algorithms over the past decade have 

allowed the generation of reliable ocean color products for deep water environments. 

However, in shallow water environments, these ocean color products often fail, partly due 

to bottom reflectance contamination (McKinna et al., 2015). Recently, efforts have been 

made to generate shallow water ocean color algorithms, which correct for bottom 

reflectance (McKinna et al., 2015, Lee, 1999, Dekker et al., 2011, Wettle and Brando, 

2006). To date, there have been only a limited number of studies and no detailed 

assessment to address the question of “how bottom reflectance parameterization can be 

optimized in shallow water inversion models”.  

This thesis outlines the development of a detailed and transferable method that sets a 

sound foundation for developing bottom reflectance parameters in shallow water inversion 

models in coral reef environments using the GBR as a test case. This was achieved by: (1) 

examining the separability and detectability of bottom covers at MODIS and SeaWiFS 

bands to find the appropriate classification in bottom reflectance, (2) testing the sensitivity 

of bottom reflectance in the newly-developed Shallow Water Inversion Model (SWIM) 

(McKinna et al., 2015) to determine the most appropriate spectral signature to use in 

bottom reflectance parameterization, and (3) generating and testing the applicability of 

spatially explicit bottom reflectance maps using different datasets for the retrieval of 

Inherent Optical Properties (IOPs) in SWIM.  
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6.2 Main findings and outcomes  

Objective 1: To assess the spectral separability and detectability of bottom 
reflectance in coral reef environments.  

The spectral separability and detectability of bottom cover types at spectral resolution 

provided by MODIS and SeaWiFS sensor bands were assessed. The results showed: (i) 

no significant contamination (Rrscorr < 0.0005) of bottom reflectance on the spectrally-

averaged remote sensing reflectance signal at depths >17 m for MODIS and >19 m for 

SeaWiFS for the brightest spectral reflectance substrate (light sand) in clear reef waters; 

and (ii) all bottom cover classes can be combined into two distinct groups, “light” and 

“dark”, based on the modelled surface reflectance signals. This study establishes that it is 

possible to efficiently improve parameterization of bottom reflectance and water column 

IOP retrievals in shallow water ocean color models for coral reef environments. 

Objective 2: To test the sensitivity of bottom reflectance parameterization on the 
retrieval of IOPs using SWIM. 

The impact of bottom reflectance parameterization on IOP retrievals in SWIM was assessed. The 

results showed that there is no clear spatial pattern in mean IOP retrievals under different bottom 

reflectance scenarios. A GBR-wide assessment showed that IOP values are highly variable across 

the GBR, and thus the sensitivity of IOP retrievals due to bottom reflectance parameterization also 

vary throughout the GBR. Further, the results suggested that water clarity influences the differences 

in IOP retrievals between different bottom types. Analysis showed that most of the differences in 

SWIM water column IOP retrievals varied between sand and seagrass, as well as between the sand 

and algae bottom reflectance scenarios, are observed at depths above -20 m. The results suggested 

that magnitude of the bottom reflectance spectra is not the only factor influencing the retrievals of 

IOPs—they are also influenced by the spectral shape. It was concluded that a subregional 

assessment of the impact of bottom reflectance parameterization on IOP retrievals is necessary to 

increase confidence in shallow water ocean color products. 

Objective 3: Assess and test different approaches to create a spatially explicit 
bottom reflectance map for areas deeper than 5 m, using different datasets.  
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Four different bottom reflectance maps were generated based on different datasets. 

Three maps were generated using Landsat 8 data applying different methods to derive 

bottom reflectance for the Capricorn Bunker area. The fourth map was based on a 

biodiversity in situ dataset. A visual inspection of the different bottom reflectance maps 

showed that Lyzenga classified has the largest difference in percentage light bottom cover 

from the other bottom reflectance maps (90%), while the differences between the graded 

bottom reflectance maps (biodiversity, Lyzenga graded, Bierwirth graded) were generally 

smaller than 50%. The maps were used in the bottom reflectance parameterization within 

SWIM to create bottom reflectance scenarios. The mean daily retrieved IOPs from the 

different bottom reflectance scenario were compared. The results showed that all maps 

produced comparable results (r2 0.71- 1.00) for depth from 5-25 m. Only for depth at 15-20 

m the IOP retrievals did not agree well with a minimum r2 of 0.71, slopes ranging from 0.70 

to 1.68. This study establishes that all four methods used to generate bottom reflectance 

maps produce comparable IOP retrievals and thus can be used for bottom reflectance 

parameterization in SWIM. 

6.3 Limitations and future research 

As is often the case with scientific research, this thesis has led to more questions than 

answers. Research undertaken during this study has shown that the impacts of bottom 

reflectance on IOP retrievals are complex and difficult to assess for an area as large as the 

GBR. Future research should focus on six key areas to optimize parameterization of 

bottom reflectance in shallow water inversion models. 

In this thesis, bottom cover maps were presented at a certain point in time. Yet, bottom 

cover is not static and changes over time. Some bottom covers, such as algae, might also 

change within seasons. Seasonal or temporal changes were not considered in this study 

due to data limitations. However, should new bottom cover data become accessible, the 

bottom reflectance maps created as part of this thesis could be updated. Also, if 

information on seasonal trends of bottom cover distribution becomes available, the 

inclusion of seasonal bottom maps in SWIM might be warranted.  

The bottom cover maps generated in this thesis were only rigorously tested on one 

section of the GBR, the Capricorn Bunker group (23.2 S –23.7 S, 151.6 E –152.1 E). While 

the bottom reflectance maps based on biodiversity and sediment data cover the entire 
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GBR, the Landsat based maps only cover the Capricorn Bunker area. Hence, for 

comparative purposes, testing was only undertaken for that area. Further research should 

be directed to generating bottom reflectance maps for the entire GBR and testing their 

impact on IOP retrievals across the system. 

The gbr100 bathymetry (Beaman, 2012) was used both to generate the bottom 

reflectance maps and to generate the IOP retrievals using SWIM, without accounting for 

tidal influences. In the GBR, tidal influences over shallow waters can be high and, if not 

accounted for, might lead to errors both in bottom map classifications and IOP retrievals. 

Currently there is no option to account for tidal influences in SWIM.  

To generate bottom reflectance maps from remote sensing data, the researcher chose 

to use Landsat data, as it is free and readily available. Yet, newer satellites with higher 

spectral and spatial resolution, such as WorldView-2, might improve the accuracy of 

bottom reflectance maps. Future research should focus on methods to produce bottom 

reflectance maps from other data sources such as high-resolution satellite sensors.  

SWIM has not been tested on regions other than the GBR; and therefore it was not 

possible to test the impact of bottom reflectance parameterization on IOP retrievals for 

other locations in this study. It is essential to test the impact of bottom reflectance 

parameterization in other locations around the world to determine wider applicability of the 

presented bottom reflectance parameterization methods.  

This thesis assessed bottom reflectance parameterization for use in SWIM (McKinna et 

al., 2015). Future research into the applicability of the presented bottom reflectance 

parameterization for other shallow water inversion algorithms should be prioritized. 
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6.4 Contribution to knowledge  

The methods and products presented in this thesis provide a fundamental basis for 

bottom reflectance parameterization in shallow water inversion models. This study has 

successfully demonstrated ways to optimise bottom reflectance parameterization in SWIM. 

Guidelines for selecting the most appropriate methods were developed to produce bottom 

reflectance input parameterizations based on different available datasets. This study has 

substantially increased knowledge on how bottom reflectance parameterization affects IOP 

retrievals. The contributions of this thesis to the body of scientific knowledge are: 

• The first ever study to develop an optimal number of bottom types for bottom 

reflectance parameterization;  

 

• First attempt to determine a bottom reflectance contamination depth limit;  

 

• Identification of the relationships between bottom reflectance parameterization in 

SWIM and IOP retrievals;  

 

• Provision of a fundamental basis for spatially explicit bottom reflectance maps for 

use in SWIM based on different datasets. 
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A
ppendix A

 
 

Table A- 1: M
ean retrieved bbp443 under different bottom

 reflectance scenarios and G
BR regions for 2005 

 
2005 

North 
 

B
row

n A
lgae 

C
oral 

G
reen A

lgae 
S

andS
eagrass1 

S
andS

eagrass2 
B

lack 
S

and 
S

eagrass 
W

hite 
17-20 m

 
0.008 

0.008 
0.008 

0.007 
0.007 

0.009 
0.007 

0.008 
0.007 

14-17 m
 

0.010 
0.010 

0.010 
0.010 

0.009 
0.011 

0.010 
0.011 

0.009 
11-14 m

 
0.012 

0.012 
0.013 

0.010 
0.012 

0.013 
0.009 

0.012 
0.015 

8-11 m
 

0.015 
0.015 

0.016 
0.010 

0.012 
0.017 

0.009 
0.016 

0.031 
5-8 m

 
0.020 

0.021 
0.023 

0.016 
0.017 

0.021 
0.014 

0.020 
0.051 

Central 
 

B
row

n A
lgae 

C
oral 

G
reen A

lgae 
S

andS
eagrass1 

S
andS

eagrass2 
B

lack 
S

and 
S

eagrass 
W

hite 
17-20 m

 
0.007 

0.007 
0.007 

0.007 
0.007 

0.008 
0.007 

0.007 
0.006 

14-17 m
 

0.010 
0.010 

0.010 
0.009 

0.009 
0.010 

0.009 
0.010 

0.008 
11-14 m

 
0.011 

0.012 
0.012 

0.011 
0.012 

0.013 
0.009 

0.012 
0.017 

8-11 m
 

0.013 
0.014 

0.014 
0.011 

0.013 
0.015 

0.011 
0.018 

0.029 
5-8 m

 
0.024 

0.024 
0.025 

0.023 
0.023 

0.028 
0.029 

0.035 
0.054 

South 
 

B
row

n A
lgae 

C
oral 

G
reen A

lgae 
S

andS
eagrass1 

S
andS

eagrass2 
B

lack 
S

and 
S

eagrass 
W

hite 
17-20 m

 
0.010 

0.010 
0.011 

0.011 
0.011 

0.011 
0.011 

0.011 
0.012 

14-17 m
 

0.013 
0.013 

0.013 
0.013 

0.013 
0.013 

0.014 
0.013 

0.015 
11-14 m

 
0.015 

0.015 
0.015 

0.016 
0.016 

0.015 
0.016 

0.016 
0.015 

8-11 m
 

0.016 
0.016 

0.016 
0.017 

0.018 
0.017 

0.017 
0.019 

0.023 
5-8 m

 
0.015 

0.015 
0.015 

0.015 
0.016 

0.018 
0.016 

0.022 
0.040 
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Table A- 2: M
ean retrieved bbp443 under different bottom

 reflectance scenarios and G
BR regions for 2011 

 
 

2011 
North 

 
B

row
n 

 A
lgae 

C
oral 

G
reen A

lgae 
S

andS
eagrass1 

S
andS

eagrass2 
B

lack 
S

and 
S

eagrass 
W

hite 

17-20 m
 

0.008 
0.008 

0.008 
0.007 

0.007 
0.008 

0.007 
0.008 

0.015 
14-17 m

 
0.010 

0.010 
0.010 

0.010 
0.010 

0.011 
0.012 

0.010 
0.008 

11-14 m
 

0.012 
0.013 

0.013 
0.013 

0.014 
0.013 

0.012 
0.013 

0.013 
8-11 m

 
0.018 

0.018 
0.019 

0.013 
0.015 

0.019 
0.012 

0.021 
0.031 

5-8 m
 

0.026 
0.028 

0.027 
0.019 

0.022 
0.031 

0.022 
0.033 

0.059 
Central 

 
B

row
n A

lgae 
C

oral 
G

reen A
lgae 

S
andS

eagrass1 
S

andS
eagrass2 

B
lack 

S
and 

S
eagrass 

W
hite 

17-20 m
 

0.010 
0.010 

0.010 
0.009 

0.009 
0.010 

0.009 
0.010 

0.011 
14-17 m

 
0.015 

0.015 
0.015 

0.015 
0.015 

0.015 
0.015 

0.015 
0.013 

11-14 m
 

0.019 
0.020 

0.020 
0.021 

0.022 
0.020 

0.020 
0.022 

0.022 
8-11 m

 
0.031 

0.029 
0.028 

0.029 
0.030 

0.029 
0.028 

0.040 
0.039 

5-8 m
 

0.045 
0.045 

0.043 
0.037 

0.040 
0.043 

0.038 
0.056 

0.068 
South 

 
B

row
n A

lgae 
C

oral 
G

reen A
lgae 

S
andS

eagrass1 
S

andS
eagrass2 

B
lack 

S
and 

S
eagrass 

W
hite 

17-20 m
 

0.014 
0.014 

0.014 
0.014 

0.014 
0.014 

0.014 
0.014 

0.016 
14-17 m

 
0.019 

0.020 
0.019 

0.021 
0.020 

0.020 
0.022 

0.021 
0.021 

11-14 m
 

0.020 
0.020 

0.020 
0.023 

0.024 
0.020 

0.021 
0.021 

0.020 
8-11 m

 
0.022 

0.022 
0.022 

0.024 
0.026 

0.023 
0.022 

0.030 
0.030 

5-8 m
 

0.029 
0.029 

0.028 
0.027 

0.029 
0.029 

0.028 
0.037 

0.053 
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Table A- 3: M
ean retrieved a443 under different bottom

 reflectance scenarios and G
BR regions for 2005 

2005 
North 

 
B

row
n A

lgae 
C

oral 
G

reen A
lgae 

S
andS

eagrass1 
S

andS
eagrass2 

B
lack 

S
and 

S
eagrass 

W
hite 

17-20 m
 

0.06 
0.06 

0.06 
0.06 

0.06 
0.06 

0.07 
0.06 

0.11 
14-17 m

 
0.07 

0.07 
0.07 

0.09 
0.08 

0.07 
0.10 

0.08 
0.12 

11-14 m
 

0.08 
0.08 

0.08 
0.11 

0.11 
0.08 

0.10 
0.09 

0.19 
8-11 m

 
0.10 

0.10 
0.11 

0.11 
0.12 

0.11 
0.12 

0.13 
0.36 

5-8 m
 

0.15 
0.16 

0.17 
0.23 

0.20 
0.15 

0.23 
0.18 

0.65 
Centre 

 
B

row
n A

lgae 
C

oral 
G

reen A
lgae 

S
andS

eagrass1 
S

andS
eagrass2 

B
lack 

S
and 

S
eagrass 

W
hite 

17-20 m
 

0.06 
0.06 

0.06 
0.07 

0.07 
0.07 

0.07 
0.07 

0.10 
14-17 m

 
0.07 

0.07 
0.07 

0.08 
0.08 

0.08 
0.10 

0.08 
0.12 

11-14 m
 

0.08 
0.08 

0.09 
0.12 

0.12 
0.09 

0.11 
0.10 

0.21 
8-11 m

 
0.10 

0.10 
0.10 

0.12 
0.13 

0.11 
0.15 

0.18 
0.39 

5-8 m
 

0.21 
0.22 

0.22 
0.31 

0.27 
0.23 

0.39 
0.37 

0.74 
South 

 
B

row
n A

lgae 
C

oral 
G

reen A
lgae 

S
andS

eagrass1 
S

andS
eagrass2 

B
lack 

S
and 

S
eagrass 

W
hite 

17-20 m
 

0.08 
0.08 

0.08 
0.10 

0.09 
0.09 

0.10 
0.09 

0.13 
14-17 m

 
0.09 

0.09 
0.09 

0.12 
0.12 

0.10 
0.12 

0.10 
0.17 

11-14 m
 

0.11 
0.11 

0.11 
0.15 

0.15 
0.11 

0.17 
0.12 

0.18 
8-11 m

 
0.12 

0.12 
0.12 

0.20 
0.21 

0.13 
0.21 

0.17 
0.32 

5-8 m
 

0.13 
0.13 

0.12 
0.26 

0.25 
0.14 

0.29 
0.27 

0.62 

 

Table A- 4: M
ean retrieved a443 under different bottom

 reflectance scenarios and G
BR regions for 2011 

2011 
N

orth 
 

B
row

n A
lgae 

C
oral 

G
reen A

lgae 
S

andS
eagrass1 

S
andS

eagrass2 
B

lack 
S

and 
S

eagrass 
W

hite 



 
166 

17-20 m
 

0.06 
0.06 

0.06 
0.07 

0.07 
0.06 

0.07 
0.06 

0.32 
14-17 m

 
0.08 

0.08 
0.08 

0.11 
0.09 

0.08 
0.16 

0.08 
0.16 

11-14 m
 

0.09 
0.10 

0.09 
0.17 

0.16 
0.10 

0.15 
0.10 

0.17 
8-11 m

 
0.13 

0.13 
0.14 

0.14 
0.16 

0.14 
0.15 

0.19 
0.36 

5-8 m
 

0.21 
0.22 

0.21 
0.24 

0.23 
0.25 

0.29 
0.31 

0.69 
Centre 

 
B

row
n A

lgae 
C

oral 
G

reen A
lgae 

S
andS

eagrass1 
S

andS
eagrass2 

B
lack 

S
and 

S
eagrass 

W
hite 

17-20 m
 

0.09 
0.09 

0.09 
0.10 

0.09 
0.09 

0.10 
0.09 

0.19 
14-17 m

 
0.11 

0.11 
0.11 

0.14 
0.13 

0.12 
0.15 

0.12 
0.15 

11-14 m
 

0.13 
0.14 

0.13 
0.20 

0.20 
0.14 

0.19 
0.18 

0.23 
8-11 m

 
0.24 

0.21 
0.20 

0.27 
0.28 

0.20 
0.26 

0.36 
0.39 

5-8 m
 

0.38 
0.38 

0.36 
0.38 

0.39 
0.36 

0.41 
0.54 

0.75 
South 

 
B

row
n A

lgae 
C

oral 
G

reen A
lgae 

S
andS

eagrass1 
S

andS
eagrass2 

B
lack 

S
and 

S
eagrass 

W
hite 

17-20 m
 

0.09 
0.10 

0.09 
0.11 

0.11 
0.10 

0.12 
0.11 

0.19 
14-17 m

 
0.12 

0.13 
0.12 

0.16 
0.15 

0.13 
0.19 

0.15 
0.21 

11-14 m
 

0.13 
0.14 

0.14 
0.23 

0.22 
0.13 

0.21 
0.17 

0.23 
8-11 m

 
0.16 

0.16 
0.16 

0.27 
0.28 

0.17 
0.28 

0.29 
0.41 

5-8 m
 

0.25 
0.24 

0.23 
0.42 

0.41 
0.24 

0.43 
0.44 

0.78 
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Appendix B 
 

Table B- 1: Detailed of match-up in situ data used in this thesis 
 Latitude  Longitude Depth a440 bbp550 Bottom cover 

Point 1 23.465 152.013 12.4 0.05 0.0027 

 
Point 2 23.475 152.012 10.1 0.16 0.0025 

 
Point 3 23.439 152.014 7.5 0.05 0.0021 

 
Point 4 23.435 152.014 21 0.03 0.0025 

 
Average    0.074 0.0024  

 


