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Singular indecomposable representations of sl{2,C) and relativistic wave 
equations 

A. J. Bracken and A. Canfl) 
Department of Mathematics, The University of Queensland, Brisbane, Australia 

(Received 21 February 1989; accepted for publication 28 June 1989) 

A detailed summary is given of the structure of singular indecomposable representations of 
sl(2,C), as developed by Gel'fand and Ponomarev [Usp. Mat. Nauk 23,3 (1968); translated 
in Russ. Math. Surveys 23, 1 (1968)]. A variety of four-vector operators r I" is constructed, 
acting within direct sums of such representations, including some with nonsingular r o· 

Associated wave equations of Gel'fand-Yaglom type are considered that admit timelike 
solutions and lead to mass-spin spectra of the Majorana type. A subclass of these equations is 
characterized in an invariant way by obtaining basis-independent expressions for the 
commutator and anticommutator of r I" and r v. A brief discussion is given of possible 
applications to physics of these equations and of others in which nilpotent scalar operators 
appear. 

I. INTRODUCTION 

Many authors have studied first-order linear relativisti
cally invariant wave equations of the type 

(rl" al" + iK)t/J(X) =0, (Ll) 

in which the wave function t/J takes its values in a vector 
space V carrying a representation 1T of the Lorentz group 
SL(2,C), therl" (for,u = 0,1,2,3) and K are linear operators 
on V, and al" = a /axw The first systematic treatment was 
that of Gel'fand and Yaglom, I who gave detailed formulas 
for the structure of possible r I" in the case where 1T is a direct 
sum of irreducible representations ofSL(2,C). These repre
sentations mayor may not be infinite dimensional. 

The results of Ref. 1 were obtained in a particular basis 
for V, but various authors have later emphasized the impor
tance of invariant properties of wave equations. These are 
the properties that do not depend on the choice of basis in V 
or on the corresponding explicit form of the r I" and K. In 
particular, starting with the early work on wave equations 
(see, for example, Lubanski2 and Harish-Chandra3

), there 
has been great interest in what we shall refer to as their alge
braic structure, by which we mean especially the algebras 
generated by the vector operator r 1". This involves, in partic
ular, a description of the commutator [r I",r v] and the anti
commutator {r I",r v}. Representations of such algebras 
lead to entire families of equations, giving us a systematic 
way of classifying some of the vast number of relativistic 
wave equations. Lubanski concentrated on the case where 
the commutator [r I",r v] is a nonzero mUltiple of the gener
ator JI"V ofSL(2,C), so that the complex Lie algebra genera
ted by the r I" is just soC 5,C). An analysis of the possible Lie 
algebras generated by the r I" was later carried out by Cant 
and Hurst,4 who showed that arbitrarily large simple Lie 
algebras can be obtained. This contradicted earlier claims 
that had been made (see, for example, Refs. 5 and 6). It was 
also shown in Ref. 4 how a knowledge of the Lie algebra can 
help in deriving the mass and spin spectra associated with 

.) Present address: Department of Industry, Technology and Commerce, 
GPO Box 9839, Canberra, Australia. 

Eq. ( 1.1). Bracken 7 also used algebraic properties to charac
terize a class of wave equations, and to determine the asso
ciated mass and spin spectra, in a study of the family with K a 
multiple of the identity operator on V, and 

1T=[Vdal[!,-/d, IIEC. (1.2) 

[We use the standard notation I for the irreducible represen
tations ofSL(2,C).] In fact, it has been shown8 that an infi
nite-dimensional Lie algebra is generated in this case, except 
when II = 0, where we recover one of the Majorana equa
tions, or 2(11 - 1 )EN, where 1T is finite dimensional and the 
Lie algebra generated is sp(2 (II) 2 - n. A further study of 
algebraic structure, concentrating on the role of real Lie al
gebras in wave equations, was carried out by Cant. 9 

Such algebraic properties will, we believe, be especially 
useful when one considers variations on the classical theme 
of wave equations based on direct sums of irreducible repre
sentations. For example, wave equations of the form (1.1), 
with the added property that V carries a representation of 
the larger group SL ( 4,R), have been studied and applied to 
the problem of describing the gravitational interactions of 
hadrons.1O Such equations are infinite dimensional and 
SL(2,C) invariant, although not fully SL(4,R) invariant. 
The results of Ref. 9 were particularly useful in this work. 
Infinite-dimensional equations associated with representa
tions ofSO( 4,2) have also been widely discussed in the liter
ature. 11 

In this paper we shall be concerned with a different di
rection of generalization: we consider the case where 1T is a 
direct sum of reducible but indecomposable representations 
of the algebra l2 sl(2,C). All such representations are infinite 
dimensional, and they can be very complicated objects. The 
first examples presented were the "expansors" described by 
Dirac, 13 who more recently emphasized the potential impor
tance of indecomposable representations for physics. 14 A 
class of indecomposable representations was studied by Gel
'fand and Ponomarev,15 and divided into two subclasses, 
called singular and nonsingular. Bender and Griffiths, 16 in a 
study ofthe transformation properties of massless fields, ex
amined the composition series for the tensor product of the 
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four-vector representation of SL(2,C) with an infinite-di
mensional irreducible representation, and found that it can 
contain indecomposable representations. Hlavaty and Nie
derle l7 applied the results of Ref. 15 in constructing some 
examples of wave equations based on indecomposable repre
sentations. Their work describes the general structure of r J.t 

associated with a representation 1T, which is a direct sum of 
nonsingular indecomposable representations, but their re
sults are slight in the more complicated, and possibly more 
interesting case, when singular indecomposable representa
tions are involved: there they gave only one example of a 
wave equation ( 1.1 ), associated with a direct sum of particu
larly simple singular indecomposable representations that 
are in fact operator irreducible. Operators r J.t associated 
with such representations, sometimes called "integer-point" 
representations in the literature, 18 had been constructed ear
lier by Ruhl. 19 Hlavaty et al. showed for their example that 
no timelike solutions exist. 

A different approach to indecomposable representa
tions of sl(2,C) and associated four-vector operators has 
been developed by Gruber and his associates.20 To our 
knowledge, the relationship of the representations con
structed there to those of Gel'fand and Ponomarevl5 has not 
been fully elucidated. 

Our object in the present work is twofold. First, to sum
marize the results of Gel'fand and Ponomarev on singular 
indecomposable representations ofs1(2,C), in a form more 
readily accessible to physicists, and second, to give some ex
amples of wave equations based on such representations, 
especially ones that do admit timelike solutions, unlike the 
example given in Ref. 17. 

We shall show further that a subclass of these equations 
can be characterized in an invariant way, at least partly, by 
virtue of the simple form taken by the commutator and anti
commutator of r J.t and r v' This subclass is a direct general
ization of that considered in Ref. 7, which includes one of 
Majorana's equations,21 and indeed the subclass of wave 
equations we discuss does lead to mass-spin spectra of the 
Majorana type. 

II. SINGULAR INDECOMPOSABLE REPRESENTATIONS 
OF 81(2,C) 

Let 9' ~ s1( 2, C) denote the real Lie algebra of the homo
geneous Lorentz group, and h ~ su (2) its maximal compact 
subalgebra. We take the standard basis {h l ,h2,h3,f.,/z,h,} 
for (the complexification of) 9'; {h l ,h2,h3 } for h. The defin
ing Lie product relations are 

[hp,hq] = - [J;,,/q] = iEpqrh" 

(2.1 ) 

where p,q,r run over 1,2,3, repeated subscripts are summed 
over those values, and Epqr is the usual alternating symbol. 
We work with h3,h" h ± = hI ± ih2, and I ± =11 ± ifz in 
what follows. A representation rof 9' is said to be h finite or a 
Harish-Chandra representation if in the direct sum decom
position of the restriction of r to h, equivalent irreducible 
representations of h occur with finite multiplicities only. 
Thus 
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(2.2) 

where Y is a subset ofN/2={0,p,~, ... }, and each TI is the 
direct sum of a finite number of copies of the (21 + 1 )-di
mensional irreducible representation IPI of h. Such a T is 
called indecomposable if it cannot be decomposed into a di
rect sum of representations of 9" The indecomposable Har
ish-Chandra representations of 9' have been classified by 
Gel'fand and Ponomarev,15 and we now summarize their 
results. 

Let T be such a representation, V the associated 9' mod
ule,andH3 = T(h3),F3 = T(f3),etc. The Casimir operators 
are given, as usual, I by 

a l = !(H_F+ + F_H+) + H 3F3, 

a2 =H_H+ -F_F+ 

+ (H3f - (F3)2 + 2H3, (2.3 ) 

and commute with H 3 , H ± ' F3, and F ± on V. If T is in fact 
irreducible, then a I and a2 are multiples of the identity oper
ator on V. This is a necessary but not sufficient condition for 
subspace irreducibility. More generally, it is only true that 
a l and a2 each have on Vexactly one eigenvalue AI' A2 , of 
the form 

(2.4 ) 

with 10EN12 and IIEC. If/I - 10 is a nonzero integer, then Tis 
called singular; otherwise Tis nonsingular. The structure of 
nonsingular indecomposable representations of 9', as deter
mined in Ref. 15, has been summarized by Hlavaty and Nie
derle. 17 In the present paper, we shall concentrate on the 
more complicated case of singular indecomposable repre
sentations. 

Given such a representation r then, with AI' A2 , as in 
(2.4 ), we choose 10 and II without loss of generality, such 
that O<Jo< 1/11. Then l5 the set Y in (2.1) is given by 
Y = {lo'/o + 1'/0 + 2, ... }. Corresponding to (2.2) we can 
write Vas an algebraic direct sum 

(2.5) 

where each VI is an eigenspace of the Casimir operator 
(H3)2 + H_H+ + H3 of h, with eigenvaluel(/ + I). Each 
VI can in turn be written as a direct sum 

(2.6) 

of eigenspaces Vim of H3 with eigenvalue 
mE{l,I- 1, ... , - n. The subspaces Vim for 
1= 10'/0 + 1, ... ,1/11 - 1 all have dimension no, while the Vim 
for 1= 1/11, 1II1 + 1, ... all have dimension nl, for some pair 
(no,n,) of non-negative integers, not both of which are zero. 
If n l = 0 we must have no = 1, in which case T is the finite
dimensional irreducible representation labeled' [/0'/.1. If 
no = 0 and n, = 1, T is the infinite-dimensional irreducible 
representation [l/11,sgn(/I)/o], sometimes l8,19 called the 
"tail" of [/0,/1], In all remaining cases, with no = O,n, > 1 or 
no> 0, n I > 0, T is subspace reducible, i.e., V contains a prop
er subspace invariant under the action of H 3, F3, etc. Such a T 

can loosely be thought of as no copies of [/0 ,/,] and n, copies 
of its tail "glued indecomposably" together. '6 However, Tis 
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not in general determined to within equivalence by giving 10, 
II' no and nl alone. It is necessary to specify the action of H 3, 

F3, etc., in a suitably chosen basis for V. In Ref. 15, it is 
shown that a basis of vectors Sima can be found, with 
1= 10,/0 + 1, ... ; m = 1,1- 1, ... , - I; a = 1,2, ... ,no for 
10<1< 1/11; and a = 1,2, ... ,n l for 1>1/11, such that (adapting 
the notation of Ref. 17) 

H ± Sima = [(I ± m + 1) (/ + m) ] 1/2 Sim ± la' 

F3SIma = [[2 - m2] 1/2(MDapSI_ImP - m(ZDapSlmP 

- [(I + 1)2 - m2] 1/2(PDapSI+ Imp' 

F±Slma = ± [(l +m)(l +m-l)]1/2 

X (MDapSI-Im± IP 

- [(l +m)(l±m+ 1)]1/2(ZJ)apSlm±IP 

± [(l±m+ 1)(I±m+2)]1/2 

X (PDapSI+ Im± IP' (2.7) 

Here repeated subscripts {3 are to be summed over the values 
1 to no or n I' as appropriate. Note that certain vectors on the 
right-hand sides in (2.7) are undefined, e.g., SI-lmP when 
m = I, but these can be ignored because they always appear 
with vanishing coefficients. The matrices M r, Z r, and P r, 
whose elements are (MDaP' (ZDaP' and (PDaP' respec
tively, have the appropriate dimensions. Thus P r is no X no 
for 10<1<1/11-1; nlXno for 1= 1/11-1; and nlXn l for 
1>1/11. Similarly, Mr is noXno for 10<1< 1/11; noXnl for 
1= 1/11; and nlXn l for I> 1/11, while Zr is noXno for 
10<1<1/11 and nlXn l for 1>1/11. These matrices have the 
following form: 

{

Io, 
pr = d+, 

II' 

10<1< 1I11 - 1, 

1= 1/11-1, 

1>1/11, 

(2.8a) 

{

[ ([2 -/~) (Ii - [2)/(4/ 2 - 1)[2] (10 + (lV(li -/ 2»ao], 

M r = ~ (; 2 _ I ~ ) (I i _ 12) 1 (41 2 _ I) 12]( II + (l V (I i - 12»a I + (I ~ 1 (I ~ - [2»0] , 

T _ {[ilo/lll(l + 1 )]~Io + ao, 10<1< 1/11, 

10<1< 1/11, 

1= 1/11, 
I> 1/1 1, 

(2.8b) 

ZI-
[ilo/lll(l + I) ]~II + al + 0, 1>1111, 

where 10 and II are the unit matrices of dimension noXno 
andn l Xn l, whiled+ is nl X no, d_ isnoXnl' andoisn l Xnl> 
such that 

d_o=Od+=O 

o and d+d_ (and hence d_d+) are nilpotent. 
(2.9) 

(The matrices Z rand M r, in cases with 10 = 0, should be 
interpreted as vanishing when I = 0, as should M r when 
1= 10 = !.) In addition, we have set 

ao= [(4n -l)l(li -/~)]d_d+, 
(2.10) 

al = [(4n - l)/(li -/~) ]d+d_. 

Each matrix square root in (2.8c) is of the form ~I + A , 
with I a unit matrix and A nilpotent (say A K + I = 0, A K =1= ° 
in a particular case), and is to be interpreted through the 
binomial expansion as22 

~I+A =I+!A+'" 

+ [( _I)K+I(2K)!!(2K-1)(K!)222K ]A K. 
(2.11) 

From the formulas (2.6)-(2.9) it can be deduced that 
the Casimir operators (2.3) leave each Vim in (2.6) invar
iant, and act on Vim as 

A _ { - ilo/l~Io + ao, 10<1<1/11, 
'-J.1l -

- ilo/l~II + al + 0, 1>1/11, (2.12) _ {(l~ +n -l)Io+nao, 10<1<1/11, 

6.
21 

- (l~ + n - 1)/1 + I~o + nal, 1>1/11, 

and it can be seen that they do indeed have one eigenvalue 
each, of the form (2.4), because of (2.11) and the nilpotency 
of ao, a I' and o. 
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(2.8c) 

To complete the description of a singular indecompos
able representation 'T, it remains to complete the description 
of the matrices d +, d _, and 0 subject to (2.9). Gel'fand and 
Ponomarev l5 have shown that inequivalent indecomposable 
sets of such matrices are in one-to-one correspondence with 
certain diagrams, which are therefore also in one-to-one cor
respondence with inequivalent indecomposable representa
tions 'T having the same values of 10 , II' no, and n l • In other 
words, each such diagram may be regarded as providing the 
remaining labels necessary to characterize a corresponding 
'T, up to equivalence. 

There are two categories of diagrams, of so-called 
"open" and "closed" types, and, correspondingly, there are 
singular indecomposable representations of type I and type 
II. 

Definition 2.1: An open diagram is a finite set M of 
points in the lattice Z2, arranged as an unbroken staircase 
descending from left to right. Thus M contains one point 
[which can be taken without loss of generality to be the ori
gin (0,0) in Z2], starting from which we can generate all of 
M by going successively either right or down to the nearest 
neighboring lattice point. Each point is colored black or 
white, with the restriction that nearest neighbors in Mare 
both black if they are vertically adjacent, and are opposite in 
color if they are horizontally adjacent. (This implies that the 
length of each horizontal part of the staircase must be an 
even integer, unless that part includes the first or last point, 
when its length may be even or odd. ) • 

For the corresponding indecomposable representation 'T 

of 9', no equals the number of white points and n I the number 
of black points in the diagram. 

The simplest diagrams are as follows: 
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no + n l = 1: 0 

• 
no + n l = 2: o----e, 

e---o ' 

I 
no + n l = 3: 0 • o ' 

......-o---e ' 

i , 

L, 

(2.13a) 

(2.13b) 

(2.13c) 

(2.13d) 

(2.13e) 

(2.13f) 

(2.13g) 

(2.13h) 

(2.13i) 

(2.13j) 
To obtain from a given diagram the corresponding ma

trices d ± ,8 of (2.7)-(2.9), we first associate with each of 
the points (i,j)EM, a basis vector e(i,j) in an (no + n l )

dimensional complex vector space P. The basis vectors 
e(i,j) corresponding to white points (i,j) span an no-dimen
sional subspace Po of P, while those corresponding to black 
points span an nl-dimensional subspace PI of P; evidently 

P=PO(f)PI. (2.14) 
Next we define linear operators a and b on P by 

( .. ) {e(i + l,j), (i + l,j)EM, (2.15) 
ae l,j = 0, otherwise, 

be(i,j) = {e(i,jo+ 1), (i,j + 1)EM, (2.16) 
, otherwise. 

Then a and b are nilpotent, with 
ab = ba = 0, 

aPoc;;;"pl , aPI c;;;"po 

bPo = {O}, bPI c;;;"PI· (2.17 ) 

Ifwe now identify Pwith C" + n" choosing the e(i,j) in such 
a way that vectors in Po have their bottom n l components 
zero, and vectors in PI have their top no components zero, we 
obtain a matrix realization of a and b with the form 

a=[~ ~-], b=[~ ~], 
+ 

(2.18 ) 

where d+, d_, and 8 have dimension nlXno, noXnl' and 
n l X n l, respectively, and satisfy (2.9). 

For example, for the diagram (2.13h) we can take the 
points to be at (0,0), (1,0), and (1, - 1) in 1:2, and set e( 0,0) 
= (1,O,O)T, e(1,O) = (O,I,O)T, and e(1, -1) = (O,O,1)T. 

Then (2.15) and (2.16) imply 

a ~ [! ~ ~l h [~ ~ !l, (2.19) 
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so that 

T [0 1] d+ = [1 0], d_ = [0 0], 8 = ° ° . (2.20) 

In this way the matrices d ± ,8 are determined by a given 
open diagram and, together with 10 and II, complete the spe
cification of a representation T of type I. Note that for given 
10'/1' the diagrams (2.13a) and (2.13b) correspond to the 
irreducible representations [/0,/1] and [Il11,sgn(l1 )/0 ], 

Our treatment of an open diagram differs slightly from 
that of Ref. 15, in that we color the points to show explicitly 
the grading Po (f) PI' Apart from making the structure 
clearer, this is in fact necessary to distinguish between those 
inequivalent representations which would otherwise have 
the same "straight-row" diagram, consisting of n points in a 
horizontal line. 

For example, (2.13c) and (2.13d) lead to 

d + = 1, d _ = 8 = 0, 

d _ = 1, d + = 8 = 0, 
(2.21 ) 

respectively. For given 10 and II' the corresponding inequiva
lent representations of ~ in this case are the well-known "op
erator-irreducible" indecomposable representations. For 
these the Casimir operators 6. 1 and 6.2 of (2.3) are multiples 
of the identity by A I and A2, as in (2.4), as follows from 
(2.21), (2.10), and (2.12), but the representations are nev
ertheless subspace reducible. In Ref. 23 they are denoted, 
respectively, by {l0 ..... /1} and {lo-/I}' this notation being 
intended to indicate that in the first case the subspace ~/,I 
(f) VII,I + I (f) ••• of Vis invariant, while in the second case VI" 

(f) VI" + I (f) ••• (f) VII,I _ I is invariant. In Ref. 17 they are de
noted by (/0'/1' + ) and (/0'/1' - ). 

Definition 2.2: A closed diagram is obtained from any 
open diagram M that begins with a white point and ends with 
at least two successive black points. A line is drawn connect
ing the first and last points of M and the diagram is supple
mented by a pair oflabels (q,ll) , qEN, IlEC\..O. • 

The simplest example has three points: 

(q,Il)' (2.22) 

When q = 1, the procedure for constructing a and b, and 
subsequently d ± and 8, is just as before, except that the 
definition (2.15) of a is supplemented by requiring 

ae(k,/) = lle(O,O), (2.23 ) 

where (k,/) is the final and (0,0) the initial point of M. 
Again this leads to matrices a and b with the general form 
(2.18), from which d+, d_, and 8 can be determined in 
order to complete the description of a singular indecompos
able representation of ~ of type II. This representation is 
labeled (up to equivalence) by 10 , II' and the closed diagram 
[including the pair (I,ll) ] . 

For example, diagram (2.22) with q = 1 leads to 

a~ [! ~ n b~ [~ ~ !l (2.24) 

and hence to 
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d+=[1 O]T, d_=[O Il], £5=[~ ~]. (2.25) 

[Note that these matrices reduce to those in (2.20), corre
sponding to the open diagram (2.13h), if Il is set equal to 
zero. In fact, it is obviously true, in general, that the closed 
diagram with q = 1 and Il set equal to zero, reduces in this 
sense to the corresponding open diagram.] 

More generally, for q> 1, a representation of type II is 
obtained by associating with each point (ij) of a closed dia
gram, a q-dimensional subspace vU,j) rather than a single 
vector e (i, j) (as in the case q = 1). The definitions of a and 
b are generalized accordingly. Thus 

av(i,j) --+v(i + l,j) (2.26) 

is an isomorphism if (i + l,j)EM (with a qxq matrix, 
which can be taken to the identity Iq); otherwise 
avU,j) = 0, except that if (0,0) is the first and (k,/) the last 
point of M, then a maps v(k,l) into v(O,O) with aqX qmatrix 
Ilq , which can be taken to be a single Jordan block with 
eigenvalue Il. The mapping 

bv(i,j)--+v(i,j+ 1) (2.27) 

is an isomorphism (with matrix Iq) if (i,j + 1)EM, and 
bv(i,j) = o otherwise. In this case the subspaces Po and P, of 
P are of dimension no = qmo, n, = qm" respectively, where 
mo and m, are the numbers of white and black points in the 
diagrams. Associating P with Clio + II, as before, we read off 
the matrices d ± and £5 from the matrices of a and b in the 
same way. The corresponding indecomposable representa
tion of Y' oftype II is labeled by 10,/" and the closed diagram 
[including (q,Il)]. 

For example, taking the diagram (2.22) with q = 2, the 
matrices can be obtained from those for the case q = I, as in 
(2.24), (2.25), by replacing each zero by a 2X2 block of 
zeros, each 1 by the 2 X 2 unit matrix, and each Il by the 2 X 2 
matrix 

(2.28) 

III. VECTOR OPERATORS: GENERALITIES 

Suppose that f/!( x) in (1.1) is, for each x, an element of 
the Y' module V". ofa Harish-Chandra representation 1Tof Y" 

(3.1 ) 

where each 1", is (singular) indecomposable. Suppose 
further that r JL and K in (1.1) are linear mappings (opera
tors) from V". into itself. Let H3 = 1T(h3), F3 = 1T( J;), etc. 
Generalizing well-known results, ',24 we know that a suffi
cient condition for (1.1) to be locally'2 invariant under ho
mogeneous (and, indeed, inhomogeneous) Lorentz trans
formations is that K commutes with H 3, F3, etc., on V". and 
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(3.2a) 

(3.2b) 

(3.2c) 

on V".. Then we say that K is a scalar operator and r JL a four
vector operator on V".. In searching for possible locally in
variant equations, we therefore seek representations 1T for 
which K and r JL can be found with these properties. If we 
restrict attention to equations for which K is invertible on V"., 
then24 there is no significant loss of generality in supposing K 

to be a nonzero numerical multiple of the identity operator 
on V".. Then the problem reduces to finding representations 
1T for which a four-vector operator r JL can be found. It is 
sufficient to search for ro satisfying (3.2a) and (3.2b), as 
r " r 2' and r 3 can then be defined by (3.2c). We shall con
centrate on this problem here, but make some remarks about 
wave equations with noninvertible K at the end of the paper. 

Let 1" and 1"' denote any two of the indecomposable rep
resentations (or possibly one and the same representation) 
contained in 1T, and let P T, P T' be the operators projecting V". 

onto the corresponding subspaces VT, VT'in (3.1). Define 

r~'T = pT'r JLpT (3.3) 

and note that, since P T and P T' commute on V". with H 3, F3 , 

etc., r~'T is a four-vector operator whenever this is true of 
r JL' We concentrate on the determination of r~' T, in effect 
restricting attention to the case when 1T = 1" $1"' (or 1T = 1", if 
1"' = 1"). The r JL in a more general case can evidently be built 
up from such r~'T. 

Decomposing VT and VT' as in (2.5) and (2.6), and 
introducing bases, as in Sec. II, we see from (3.2a) and (3.3) 
that r~'T carries Vrm into Vr~. Let X(T denote the corre
sponding matrix; it is independent of m, again because of 
(3.2a). Expressions for the matrices r;;;;", defined by the 
action of the operators r;'T,p = 1,2,3, on Vrm, can then be 
written down. For example, we find, using (2.7) and (3.2c), 
that 

irI;Jm = [/2 - m2] '/2(Xr~ ,Mr - M(X(T) 

- m(X(TZr - Z(X(T) 

- [(I + 1)2 - m2
] "2(X(;, pr - p(X(T). 

(3.4 ) 

The heart of the problem then is to determine the X (T 
from the remaining condition (3.2b), for the appropriate 
range of I values in the representation 1". This condition leads 
to the following system of coupled matrix equations, essen
tially the same as Eqs. (3.6) of Ref. 17, in whichZr,Mr, pr, 
and the corresponding primed variables are to be regarded as 
given, and the X(T are unknowns: 

2p T' XT'T p T pT' PT'XT'T XT'T pT pT - 0 
1+' 1+' 1 - 1+' 1 1 - 1+2 1+' 1 - , 

(3.5a) 

2Mr~,Xr~,Mr -MC,M(X(T -Xr~2Mr_,Mr=0, 
(3.5b) 

- 2P(X(TZr - 2Zr~ txt; ,P'i = 0, 

Xi~, [Zi_,Mi + MiZI] 

+ [Z(_,M( +M(Z[']X(T 

A. J. Bracken and A. Cant 
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- 2Z;-~ IX;-:::-IM;-- 2M;-'X;-"Z;- = 0, 

X;-'T[P;-_IM;- +M;-+IP;- +Z;-Zn 

+ [Z;-,Z;-' +P;-~IM;-' +M;-~lpnX;-'T 

- 2P;-~ IX;-:::-IM;-- 2M;-~ IX;-~ IP;-

- 2Z;-'X;-'TZ;- = 0, 

(/+ 1)2[X;-'TM;-+IP;-

- 2M;-~ IX;-~ IP;- + M;-~ IP;-'X;-'T] 

+ 12[XT'TpT MT 2p T' XT'T MT 
I I-I 1- I-I I-I I 

(3.5d) 

(3.5e) 

+ P;-~ IM;-'X;-'T] = X;-'T. (3.5f) 

These equations must hold for each allowed I value in the 

representation r, and XJ'T must be set equal to zero unless 

both V;- and vI' are non-null. 
Ifrand r' are irreducible [so that each matrix in (3.5) is 

a single number], it is well known I that a necessary and 
sufficient condition for the existence of a nontrivial solution 
is that the labels (/0,11) and (/ U ; ) of rand r' (which serve 
to characterize the representations completely in such a 
case) satisfy the "interlocking" condition that one of the 
pairs (/ b ,I ; ), ( - I b, - I ;) is equal to one of the pairs 
(/0,/1 + 1), (/0,11 - 1), (/0 + 1,11)' or (/0 - 1,11)' Moreover, 
the structure of the solutions is known for all such cases. I 
Hlavaty and Niederle17 have in fact extended these results to 
the case where rand r' are nonsingular indecomposable rep
resentations. 

In the singular case, we expect that it is still true that the 
labels (/0,11), (/ b,l; ) of rand r' (which now are not suffi
cient to characterize rand r' completely) must satisfy the 
interlocking condition if a nontrivial solution is to exist, al
though we have no general proof. On the other hand, it 
would be surprising if this condition is sufficient for exis
tence, with no restriction on the diagrams for rand r', but 
this too remains an open question. 

IV. VECTOR OPERATORS: EXAMPLES 

For a given pair (r,r') of singular indecomposable rep
resentations,25 it is not, in general, easy to determine if Eqs. 
(3.5) admit a nontrivial solution. The only solutions pre
viously presented (apart of course from those corresponding 
to irreducible rand r') seem to have been those correspond
ing to the case of interlocking rand r' of the operator-irredu
cible type, with diagrams of the form (2.13c) or (2.13d). 
Then no = n I = 1, so that all the matrices in (3.5) are simply 
numbers, and the problem of finding solutions is not sub
stantially more difficult than in the irreducible case. 

In Ref. 17, a nontrivial solution is found in a case of this 
type, where rhas labels (VI) and r' has labels (!, -II)' with 
IIE{~, ~, ... }, and the diagrams for rand r' are (2.13c) and 
(2.13d), respectively. (These are the operator-irreducible 
representations [! ..... ltl and [!- -II] described earlier.) It 
was shown, however, that this leads to an operator r 0 with 
no nonzero eigenvalues, so that (1.1) has no timelike solu
tions in this case. 17 In fact, four-vector operators in the case 
of interlocked operator-irreducible rand r' were described 
earlier by Ruhl. 19 

2968 J. Math. Phys., Vol. 30, No. 12, December 1989 

In seeking to find, for representations with arbitrarily 
complicated diagrams, examples of four-vector operators 
that lead in at least some cases to wave equations with time
like solutions, we shall make the following simplifying as
sumptions: (1) rand r' have labels (V I) and (!, - II)' 
where IIE{~, ~, ... } (note that the interlocking condition is 
then satisfied); and (2) rand r' have the same diagram. 

Note that condition (1) but not condition (2) is satis
fied by the example of Ref. 17. The matrices d ± ' 8 (and 
hence ao, a I) can now be taken to be the same for r' as for r, 
and we obtain 

Z;-' = - Z r; P t = P r; M t = M;-, (4.1 ) 

and, for the matrices of the Casimir operators (2.12), 

arl = - ar;, 
a;1 = a;;. (4.2) 

Under these conditions, X t T q < l< II) and ao are 

noXno matrices, whileXtT (/>/1 ), aI' and 8 are n l Xn l ma
trices, where no and n l are determined by the number of 
white and black points in the (common) diagram for rand 
r', as described in Sec. II. In order to simplify ordering prob
lems in (3.5), we limit ourselves further by seeking only 

solutions such that (3) XtT commutes with ao for !<J < I., 
and with a l and 8 for 1>/ •. 

It follows from (2.12) and (4.2) that condition (3) is 

equivalent to requiring that r;'T satisfies 

(4.3) 

on VT ffi VT'. Equations (4.3) are known7 to hold for all solu
tions in the case that rand r' are irreducible [given condi
tions (1) and (2)], when a2 is a multiple of the identity 

operator (on VTffi VT') and a. is a (generalized) Dirac Y5 
matrix, but it is not clear if the imposition of condition (3) 
places a nontrivial restriction on the solution of (3.5) in the 
present situation. 

Having imposed conditions (1)-(3), we now consider 
(3.5a) and find using (2.8) that 

for !<I < I. - 2, and for 1>/1' so that 

X(T= {IA + C, !<I</I' 
lB + D, 1>/1' 

( 4.4) 

(4.5 ) 

where A, B, C, and D are matrices independent of I. Accord
ing to condition (3), A and C commute with ao, and Band D 
commute with a l and 8. Use of (4.1) and (2.8) in (3.5c), 
with 10<1 < II - 1, then gives 

[(2/-1)A +2C]prZr 

(4.6) 

But Eqs. (2.8) imply that IPrZ r = (I + 2)Z r+ • pr, so that 

(/ + 2) [(21- I)A + 2C]prZr 

= I [(21 + 3)A + 2C ]prZr, (4.7) 

and since P rZ r is nonsingular, we obtain C = !A. In a simi
lar way, using (3.5c) with 1>/1' we obtain D = !B. Thus 
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X(T={(l+!)A, !<k/l' (4.8) 
(l + !)B, t;?/I' 

Then (3.5a) with I = II - 2 or I = II - 1 implies 

d+A = Bd+. (4.9) 

Equation (3.5b) yields no new condition for ~<k/l or 
i> II + 2, but for I = II + lor I = II we obtain 

Ad_ = d_B. (4.10) 

The remaining equations (3.5) require just one more condi
tion, that 

Bo=oB=O. (4.11 ) 

Since (4.9) and (4.10) imply, with (2.10), that A commutes 
with ao and B commutes with ai' the problem reduces to the 
following: for a given diagram and hence for given d ± ' 0, 
find matrices A and B such that (4.9)-(4.11) are satisfied. 

For small values of no and n I' we can now easily con
struct all solutions subject to the conditions (1)-(3). For 
example, the diagram 

( 4.12) 

leads to 

d+ = [~ ~], d_ = [~ ~], 0 = [~ ~] (4.13) 

[and hence to ao = a l = [g g]], and it follows 
from(4.9)-(4.11) that 

A = [0 0] B = [0 P] 
a 0 ' 0 0 ' (4.14 ) 

where a and P are arbitrary constants. Similarly, for dia
gram (2.22) with q = 2 andw;t=O, we find that A equals the 
2 X 2 zero matrix and B is a 4 X 4 matrix with an arbitrary 
2 X 2 block in the upper right-hand corner, and zeros else
where. 

Of more interest is the observation that a class of solu
tions (A,B) can now be determined as follows, whatever the 
common diagram of l' and 1". Since (2.9) and (2.10) imply 
that 

d+ao = ald+, aod_ = d_aJ> 

oa l = aiD = 0, (4.15 ) 

we can satisfy (4.9) and (4.10) by taking 

A = aolo + alao + a2a~ + ... + aNa~, 
B = aoIl + alai + a2ai + ... + aNaf + COM, (4.16) 

where c and the aj> i = 0, 1,2, ... ,N are arbitrary complex con
stants, N is the largest non-negative integer such that at least 
one of a~, af is nonzero, and M is the largest non-negative 
integer such that OM is nonzero. 

If 0 = 0, then (4.11) is satisfied trivially, and (4.16) 
defines a class of solutions (4.8) parametrized by 
aO,al, ... ,aN • The vanishing of 0 is easily seen to require that 
the diagram of l' and 1" be a straight row: we discuss this case 
further in the next section . 

If 0 # 0, we must set a o = 0 in (4.16) in order to satisfy 
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( 4.11 ). We then still obtain a class of solutions (4.8), para
metrized by a l ,a2, ... ,aN and c, but note immediately that 

X(T is then nilpotent for each I, and that the same will be 

true of r~' T. The corresponding wave equation ( 1.1 ) with r Il 
= r~'T [or with r

ll 
= r~'T + r~T' as in (4.17) below] will 

not admit timelike solutions in such a case. The question 
arises as to whether or not (4.8) and (4.16) give in the way 
described, all solutions of (3.5) under conditions (1 )-( 3). 
That the answer is no, at least when 0;t=0, is shown by the 
counterexample (4.12)-( 4.14), with a;t=O. 

We attempted to find other solutions to (3.5), satisfying 
conditions (1) and (2), but not (3), with the help of the 
symbolic manipulation computer package26 MUMATH, but 
were unsuccessful. Furthermore, for all diagrams leading to 

o;t= 0, we found only nilpotent solutions X (T. We conjecture 
that this is a general rule, at least when conditions (1) and 
(2) hold. 

We also found only nilpotent solutions in cases like that 
considered in Ref. 17, where condition (2) does not hold. 
This was in fact our motivation for imposing that condition. 

Note that if the roles of l' and 1" are interchanged in 

(3.5), then Xr' satisfies the same equations as X(T, as a 
consequence of (4.1). Therefore we have also found solu

tionsX,T' ofthesamegeneralform (4.8), (4.16), and we can 
consider 

r = p'T + pr (4.17) 
Il Il Il 

in ( 1.1 ). This will, in general, be necessary if equations pos
sessing timelike solutions are to be obtained, as is familiar 
from the case of the Dirac matrices r Il' which couple the 
irreducible representations l' = [!,~], 1" = [!, - ~] ; here 

r~'T = arll (1 + r5), r~T' = Pr Il (1 - r5), 

r = rT'T + rrr' 
Il Il Il 

(4.18 ) 

(choosing a = P = !). 

V. A CLASS OF WAVE EQUATIONS 

We consider the case when l' and 1" have the straight row 
diagram 

(5.1) 

with 2k points and, as in Sec. IV, condition (1) holds. Fol
lowing the prescription outlined in Sec. II we obtain 

d+=Ik' 0=0, and 

o 
o o 

o 

o 
o 

(5.2) 

each being a k Xk matrix. Then from (4.8) and (4.16) we 
have 
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k-I 

X;'T = (l +~) I ;j (d_)j, 
j~O 

where the;j are arbitrary constants. Similarly, 
k-I 

(5.3 ) 

Xr' = (/+D I1]j(d_)j, (5.4) 
j~O 

with arbitrary 1]j. We restrict our attention to cases where 1]0 

and;o are nonzero, so that X;'T and XrT' are not nilpotent; 
because we can multiply (1.1) throughout by an arbitrary 
constant, there is no significant loss of generality in assuming 
then that 

(5.5) 

On each 2k-dimensional subspace Vim of V ( = VT 
EB V T

'), 

[ V~m] Vim = T' , mE{/,I- 1, ... , -I}, 
Vim 

(5.6) 

the matrix of r 0 ( = r~' T + r~T') is 

[
0 Xr'] 

rOI = xtr ° ' (5.7) 

where the zeros represent k X k blocks. It follows from 
(5.3 )-( 5.5) that r 01 has only ± (l + ~) as eigenvalues, but 
is not, in general, completely diagonalizable, depending on 
the values of the ;j and 1]j. 

For example, in the case that k = 3, we can take 
;0 = 1]0 = 1, ;1 = 1]1 = ;2 = 1]2 = 0, and find that for each 
eigenvalue ± (I + !) of r 01 (and for each value of m) there 
are three linearly independent eigenvectors, and r 01 is dia
gonalizable; or take ;0 = 1]0 = ;2 = 1]2 = 1, ;1 = 1]1 = 0, 
and find only two linearly independent eigenvectors for each 
eigenvalue; or take ;0 = 1]0 =;1 = 1]1 =;2 = 1]2 = 1 and 
find only one eigenvector for each eigenvalue. In these last 
two cases, r 01 is not diagonalizable and does not have a com
plete set of eigenvectors. 

It follows that ( 1.1 ) will admit timelike solutions corre
sponding to at least one set of positive and one set of negative 
energy particles with a Majorana-type mass-spin spectrum 

m l = K/(I + n, I = !,~, ... , (5.8) 

but that there will, in general, be enough linearly indepen
dent solutions to describe n such sets, 1 <n<k. We can expect 
that, in general, there will also be lightlike and spacelike 
solutions of (1.1), as for the case27 of infinite-dimensional 
irreducible representations rand r'. 

"Similar results hold in the case that the black and white 
points in (5.1) are interchanged. This simply leads to an 
interchange of d _ and d + in (5.2 )-( 5.4). 

Slightly more complicated are the cases corresponding 
to the diagrams 

0---+--<>-- ... ~ , (5.9a) 

~ ... o----e (5.9b) 

each with 2k + 1 points. For the diagrams (5.9a) we obtain 

[ ~] [0 0·· .0] d+ = Ik ~ , d_ = Ik ,8=0; (5.10) 

d + is k X (k + 1), d _ is (k + 1) X k, and 8 is k X k. Then lao 
and!a I have the same form as the matrix d _ in (5.2), with ao 
being (k + 1) X (k + 1), and a I being k X k. Our solution 
(4.8),(4.16) now gives 

{(/+~)±;j (~aoY, ~<i</1 
XT'T_ 2 J~O 4 2 (5.11) 

I - (I +~) kil ;j (~al)j, 1;;./1. 
2 J~O 4 

We get a similar expression for X ~T', with further arbitrary 
constants 1]j replacing the ;j of (5.11). Again we suppose 
;0,1]0 are nonzero, set 1]0;0 = 1, and find that r OI has only 
± (/ + !) as eigenvalues. For some choices of arbitrary con-

stants ;j and 1]j' r 01 is diagonalizable (for every I), but for 
most it is not. A new feature that emerges is that for a given 
eigenvalue ± (/ + D, rOI may have a different number of 
linearly independent eigenvectors for 1< II than for 1;;./1• For 
example, if we set;o = 1]0 = 1, all other;j and 1]j being equal 
to zero, then r 01 is diagonalizable, with (k + 1) linearly in
dependent eigenvectors for I < II' and k for 1;;./1• The corre
sponding wave equation (1.1) would admit timelike solu
tions capable of describing (k + 1) positive (or negative) 
energy particles with spins !,~, ... ,/I - 1, and k with spins 
II,!I + 1, .... Again the mass-spin spectrum is of the Major
ana type. 

Similar remarks apply in the case of the diagram (5. 9b); 
in this case r 01 will be 2k X 2k for i< II, and 
2(k+ 1)X2(k+ 1) forl;;./l. 

For any of these straight row diagrams, we can restrict 
attention to the diagonalizable cases by requiring that (5.5) 
holds and 

X(TXr' = (/ + !)2II' (5.12) 

where II is the unit matrix of the appropriate size. Then 

(rO/ )2 = (/ + p2(/1 EBII ). (5.13) 

Some important algebraic properties of the corresponding 
operators r JL can now be determined. It follows from (3.4) 
that, quite generally, the matrix of the operator i [r~T'rr'T 

± r~T'r~'T] on the subspace Vim of Vis given by 

[/ 2 m2] 1/2{X TT' (XT'T MT MT'XT'T) + (XTT' M T' MTXTT')XT'T} _ m{XTT'(XT'TZT _ ZT'XT'T) - I-I I-I I - I I _ I-I I - I I I I I I I I 
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± (XrT'Z( - Z~Xr')X(T} - [(/ + 1)2 - m2] 1/2{Xr;: I (X~:; IP~ - p(X(T) ± (Xr;: IP( - prXr')X(T}. 
(5.14) 
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In the present context, this reduces, with the help of (2.7), 
(2.8), and (S.12), to 

i[rO,r3 Lm = (F3 - 4H3 al)lm' 

i{rO,r3}lm = (F_H+ -H_F+)lm' 
(S.lS) 

Since (S.13) also holds, it is then easy to verify from (3.2) 
that we have the following identities on V: 

[r ,.,r v] = - iJ,.v + 4U,.v al> 
{r,.,rv} = 2g,.v(a2 + !1) - {J,.u,Jvu}, 

where, as usual, 

Jpq = EpqrHr, Jop = - JpO = Fp, 

(S.16a) 

(S.16b) 

J,.v = !E,.vpuJPU. (S.17) 

(Here latin subscripts run over 1,2,3; Greek over 0, 1,2,3. We 
use the summation convention and set JPu = r~P Jap • The 
metric tensor g,.v = g"v is diagonal, with goo = - gll 

- g22 = - g33 = 1; and the alternating tensor has E0123 
= - 1.) 

It is noteworthy that the indentities (S.16) are exactly 
those proved by Bracken 7 for the family of four-vector oper
ators based on the direct sum of the irreducible representa
tions [!Jd and [!, -/d, IIEC. These identities have some 
interesting consequences. Since a I can never vanish in the 
present context (as loll #0), it follows that we never obtain 
the so(S,C) commutation relations 

(S.18 ) 

In fact, an analysis similar to that of CantS shows that an 
infinite-dimensional Lie algebra will be generated by the r I' 
in the present situation. 

Supposing that ( 1.1) holds (with K a number), the iden
tity (S.16b) implies that, for sufficiently smooth t/J, 

(!a"a,. + {tj'w,.)t/J= -x2t/J, (S.19) 

where wI' = fJllv a v is the Pauli-Lubanski vector operator, 
so that 

{tj'w,. = ~J,.vJ,.vau au -J,.uJvu a"a v 

= a2 au au - HJ,.u,Jv u}a" avo (S.20) 

If t/J is a wave function for a particle with mass m I and spin I, 
then we will also have 

a"a,.t/J= -myt/J, 

wI' w,.t/J = - I (l + 1) myt/J, 

and (S.19) then implies that 

my = K/(l + !)2, 

( S.21a) 

(S.21b) 

(S.22) 

in agreement with (S.8). Equation (S.19) also determines 
the nature of generalized mass-spin relations for lightlike 
and spacelike solutions of (1.1). In this connection we re
mark that it can be seen from (S.16b) that (ro + rp) and 
r p (p = 1,2,3) are not diagonalizable, unlike r o. 

VI. CONCLUDING REMARKS 

The structure of indecomposable representations of 
sl(2,C) is rich and interesting from a mathematical point of 
view. Because of the central role played by this Lie algebra 
and associated group in relativistic physics, we might expect 

2971 J. Math. Phys., Vol. 30, No. 12, December 1989 

that the theory of its indecomposable representations should 
be of relevance to applications as well. However, it must be 
said that, following the present work and that of Ref. 17, it is 
by no means clear that relativistic wave equations of the 
form (1.1), based on such representations, are likely to 
prove useful in physics. 

In the case of singular indecomposable representations, 
we have shown that a variety of four-vector operators and 
corresponding wave equations can be constructed, corre
sponding to the great variety of such representations, labeled 
by ladder diagrams as in Sec. II, and we do not claim to have 
exhausted the possibilities, even under the restrictive condi
tions (1 )-( 3) imposed in Sec. IV. Our main objective has 
been to produce illustrative examples. Only for a very re
stricted subclass of representations (corresponding to 
straight row diagrams) did we find examples with r 0 not 
nilpotent, although even then there is a considerable variety 
of possibilities, as we have seen in Sec. V. However, these all 
lead to mass-spin spectra of the Majorana type, a dissap
pointing result from the point of view of potential applica
tions. 

It could be that the solutions of ( 1.1 ), in cases based on 
indecomposable representations, ought to be interpreted, in 
general, in a different way than in cases based on irreducible 
representations. For example, we could consider t/J to belong 
to the representation [~-+ ~] EB [~-+ - ~] . (See Sec. II.) The 
subspace U C V, 

is then invariant under the action of the sl(2,C) algebra. 
Moreover, since r 0 leaves each VI invariant, U is also invar
iant under the action ofro and therefore, by (3.2), of all r,.. 
It is also invariant under the action of K if that is a multiple of 
the identity operator on V. The component in U of each t/J 
satisfying (1.1) could then be "factored out" in order to 
construct an unusual "gauge description" of a massive spin-~ 
particle, i.e., we could regard as physically equivalent two 
t/J's that differed only on U. Whether this would lead to new 
physics would depend on how the infinite component wave 
function (field) could be coupled to other fields. 

Another possibility is that the equations (1.1) of inter
est here are not those with K nonsingular, as usually consid
ered, but rather ones with singular K, associated with gauge 
descriptions of massless particles. Singular scalar operators 
arise naturally in the present context. For example, it follows 
from (2.12) that the operator whose matrix on VIm is ao for 
1< II1I and a l for I> 1/11, is a nilpotent sl(2,C) scalar, as is the 
operator whose matrix is zero for 1< II1I and 8 for I> 1/11. 

Alternatively, these interesting representations of 
s1(2,C) may of course have applications to physics, not in
volving relativistic wave equations ( 1.1) at all. 13,14,16 In any 
event, we hope to have made their study more accessible. 
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