A|P| Journal of Mathematical Physics

Singular indecomposable representations of $\mathbf{s l}(2, C)$ and relativistic wave equations

A. J. Bracken and A. Cant

Citation: Journal of Mathematical Physics 30, 2963 (1989); doi: 10.1063/1.528484
View online: http://dx.doi.org/10.1063/1.528484
View Table of Contents: http://scitation.aip.org/content/aip/journal/jmp/30/12?ver=pdfcov
Published by the AIP Publishing

Articles you may be interested in

The quantum relativistic two-body bound state. II. The induced representation of SL(2,C)
J. Math. Phys. 30, 380 (1989); 10.1063/1.528456

An SL(2,C)-invariant representation of the Dirac equation. II. Coulomb Green's function
J. Math. Phys. 24, 2366 (1983); 10.1063/1.525985

An SL(2,C)-invariant representation of the Dirac equation
J. Math. Phys. 23, 1179 (1982); 10.1063/1.525449

On the determination of the relativistic wave equations associated with a given representation of $S(2, C)$ J. Math. Phys. 16, 2093 (1975); 10.1063/1.522425

Some properties of matrices occuring in $\operatorname{SL}(2, C)$ invariant wave equations
J. Math. Phys. 14, 1495 (1973); 10.1063/1.1666214

Welcome to a

PHYSICS TODAY

Find the tools you're looking for today!

Singular indecomposable representations of $\mathbf{s l}(2, \mathbb{C})$ and relativistic wave equations

A. J. Bracken and A. Cant ${ }^{\text {a) }}$
Department of Mathematics, The University of Queensland, Brisbane, Australia

(Received 21 February 1989; accepted for publication 28 June 1989)

Abstract

A detailed summary is given of the structure of singular indecomposable representations of sl(2,C), as developed by Gel'fand and Ponomarev [Usp. Mat. Nauk 23, 3 (1968); translated in Russ. Math. Surveys 23, 1 (1968)]. A variety of four-vector operators Γ_{μ} is constructed, acting within direct sums of such representations, including some with nonsingular Γ_{0}. Associated wave equations of Gel'fand-Yaglom type are considered that admit timelike solutions and lead to mass-spin spectra of the Majorana type. A subclass of these equations is characterized in an invariant way by obtaining basis-independent expressions for the commutator and anticommutator of Γ_{μ} and Γ_{ν}. A brief discussion is given of possible applications to physics of these equations and of others in which nilpotent scalar operators appear.

I. INTRODUCTION

Many authors have studied first-order linear relativistically invariant wave equations of the type

$$
\begin{equation*}
\left(\Gamma_{\mu} \partial^{\mu}+i \kappa\right) \psi(x)=0 \tag{1.1}
\end{equation*}
$$

in which the wave function ψ takes its values in a vector space V carrying a representation π of the Lorentz group $\operatorname{SL}(2, \mathbb{C})$, the Γ_{μ} (for $\mu=0,1,2,3$) and κ are linear operators on V, and $\partial^{\mu}=\partial / \partial x_{\mu}$. The first systematic treatment was that of Gel'fand and Yaglom, ${ }^{1}$ who gave detailed formulas for the structure of possible Γ_{μ} in the case where π is a direct sum of irreducible representations of $\operatorname{SL}(2, \mathbb{C})$. These representations may or may not be infinite dimensional.

The results of Ref. 1 were obtained in a particular basis for V, but various authors have later emphasized the importance of invariant properties of wave equations. These are the properties that do not depend on the choice of basis in V or on the corresponding explicit form of the Γ_{μ} and κ. In particular, starting with the early work on wave equations (see, for example, Lubanski ${ }^{2}$ and Harish-Chandra ${ }^{3}$), there has been great interest in what we shall refer to as their algebraic structure, by which we mean especially the algebras generated by the vector operator Γ_{μ}. This involves, in particular, a description of the commutator [$\Gamma_{\mu}, \Gamma_{\nu}$] and the anticommutator $\left\{\Gamma_{\mu}, \Gamma_{\nu}\right\}$. Representations of such algebras lead to entire families of equations, giving us a systematic way of classifying some of the vast number of relativistic wave equations. Lubanski concentrated on the case where the commutator [$\Gamma_{\mu}, \Gamma_{\nu}$] is a nonzero multiple of the generator $J_{\mu \nu}$ of $\operatorname{SL}(2, \mathbb{C})$, so that the complex Lie algebra generated by the Γ_{μ} is just so($5, \mathbb{C}$). An analysis of the possible Lie algebras generated by the Γ_{μ} was later carried out by Cant and Hurst, ${ }^{4}$ who showed that arbitrarily large simple Lie algebras can be obtained. This contradicted earlier claims that had been made (see, for example, Refs. 5 and 6). It was also shown in Ref. 4 how a knowledge of the Lie algebra can help in deriving the mass and spin spectra associated with

[^0]Eq. (1.1). Bracken ${ }^{7}$ also used algebraic properties to characterize a class of wave equations, and to determine the associated mass and spin spectra, in a study of the family with κ a multiple of the identity operator on V, and

$$
\begin{equation*}
\pi=\left[\frac{1}{2}, l_{1}\right] \oplus\left[\frac{1}{2},-l_{1}\right], \quad l_{1} \in \mathbb{C} . \tag{1.2}
\end{equation*}
$$

[We use the standard notation ${ }^{1}$ for the irreducible representations of SL(2,C).] In fact, it has been shown ${ }^{8}$ that an infi-nite-dimensional Lie algebra is generated in this case, except when $l_{1}=0$, where we recover one of the Majorana equations, or $2\left(l_{1}-1\right) \in \mathbb{N}$, where π is finite dimensional and the Lie algebra generated is $\operatorname{sp}\left(2\left(l_{1}\right)^{2}-\frac{1}{2}\right)$. A further study of algebraic structure, concentrating on the role of real Lie algebras in wave equations, was carried out by Cant. ${ }^{9}$

Such algebraic properties will, we believe, be especially useful when one considers variations on the classical theme of wave equations based on direct sums of irreducible representations. For example, wave equations of the form (1.1), with the added property that V carries a representation of the larger group $\overline{\mathrm{SL}}(4, R)$, have been studied and applied to the problem of describing the gravitational interactions of hadrons. ${ }^{10}$ Such equations are infinite dimensional and SL $(2, \mathbb{C})$ invariant, although not fully $\operatorname{SL}(4, R)$ invariant. The results of Ref. 9 were particularly useful in this work. Infinite-dimensional equations associated with representations of $\operatorname{SO}(4,2)$ have also been widely discussed in the literature. ${ }^{11}$

In this paper we shall be concerned with a different direction of generalization: we consider the case where π is a direct sum of reducible but indecomposable representations of the algebra ${ }^{12} \mathrm{sl}(2, \mathbb{C})$. All such representations are infinite dimensional, and they can be very complicated objects. The first examples presented were the "expansors" described by Dirac, ${ }^{13}$ who more recently emphasized the potential importance of indecomposable representations for physics. ${ }^{14} \mathrm{~A}$ class of indecomposable representations was studied by Gel'fand and Ponomarev, ${ }^{15}$ and divided into two subclasses, called singular and nonsingular. Bender and Griffiths, ${ }^{16}$ in a study of the transformation properties of massless fields, examined the composition series for the tensor product of the
four-vector representation of $\operatorname{SL}(2, \mathrm{C})$ with an infinite-dimensional irreducible representation, and found that it can contain indecomposable representations. Hlavaty and Niederle ${ }^{17}$ applied the results of Ref. 15 in constructing some examples of wave equations based on indecomposable representations. Their work describes the general structure of Γ_{μ} associated with a representation π, which is a direct sum of nonsingular indecomposable representations, but their results are slight in the more complicated, and possibly more interesting case, when singular indecomposable representations are involved: there they gave only one example of a wave equation (1.1), associated with a direct sum of particularly simple singular indecomposable representations that are in fact operator irreducible. Operators Γ_{μ} associated with such representations, sometimes called "integer-point" representations in the literature, ${ }^{18}$ had been constructed earlier by Ruhl. ${ }^{19}$ Hlavaty et al. showed for their example that no timelike solutions exist.

A different approach to indecomposable representations of $\operatorname{sl}(2, \mathrm{C})$ and associated four-vector operators has been developed by Gruber and his associates. ${ }^{20}$ To our knowledge, the relationship of the representations constructed there to those of Gel'fand and Ponomarev ${ }^{15}$ has not been fully elucidated.

Our object in the present work is twofold. First, to summarize the results of Gel'fand and Ponomarev on singular indecomposable representations of $\operatorname{sl}(2, \mathrm{C})$, in a form more readily accessible to physicists, and second, to give some examples of wave equations based on such representations, especially ones that do admit timelike solutions, unlike the example given in Ref. 17.

We shall show further that a subclass of these equations can be characterized in an invariant way, at least partly, by virtue of the simple form taken by the commutator and anticommutator of Γ_{μ} and Γ_{ν}. This subclass is a direct generalization of that considered in Ref. 7, which includes one of Majorana's equations, ${ }^{21}$ and indeed the subclass of wave equations we discuss does lead to mass-spin spectra of the Majorana type.

II. SINGULAR INDECOMPOSABLE REPRESENTATIONS OF sl(2, C$)$

Let $g \cong \mathrm{sl}(2, \mathrm{C})$ denote the real Lie algebra of the homogeneous Lorentz group, and $k \cong \operatorname{su}(2)$ its maximal compact subalgebra. We take the standard basis $\left\{h_{1}, h_{2}, h_{3}, f_{1}, f_{2}, f_{3}\right\}$ for (the complexification of) $g ;\left\{h_{1}, h_{2}, h_{3}\right\}$ for k. The defining Lie product relations are

$$
\begin{align*}
& {\left[h_{p}, h_{q}\right]=-\left[f_{p}, f_{q}\right]=i \epsilon_{p q r} h_{r}} \\
& {\left[h_{p}, f_{q}\right]=i \epsilon_{p q r} f_{r}} \tag{2.1}
\end{align*}
$$

where p, q, r run over $1,2,3$, repeated subscripts are summed over those values, and $\epsilon_{p q r}$ is the usual alternating symbol. We work with $h_{3}, f_{3}, h_{ \pm}=h_{1} \pm i h_{2}$, and $f_{ \pm}=f_{1} \pm i f_{2}$ in what follows. A representation τ of g is said to be k finite or a Harish-Chandra representation if in the direct sum decomposition of the restriction of τ to κ, equivalent irreducible representations of k occur with finite multiplicities only. Thus

$$
\begin{equation*}
\left.\tau\right|_{\kappa}=\oplus_{l \in \mathscr{S}} \tau_{l} \tag{2.2}
\end{equation*}
$$

where \mathscr{S} is a subset of $\mathbb{N} / 2 \equiv\left\{0, \frac{1}{2}, 1, \frac{3}{2}, \ldots\right\}$, and each τ_{l} is the direct sum of a finite number of copies of the $(2 l+1)$-dimensional irreducible representation φ_{l} of k. Such a τ is called indecomposable if it cannot be decomposed into a direct sum of representations of g. The indecomposable Har-ish-Chandra representations of g have been classified by Gel'fand and Ponomarev, ${ }^{15}$ and we now summarize their results.

Let τ be such a representation, V the associated g module, and $H_{3}=\tau\left(h_{3}\right), F_{3}=\tau\left(f_{3}\right)$, etc. The Casimir operators are given, as usual, ${ }^{1}$ by

$$
\begin{align*}
\Delta_{1}= & \frac{1}{2}\left(H_{-} F_{+}+F_{-} H_{+}\right)+H_{3} F_{3}, \\
\Delta_{2}= & H_{-} H_{+}-F_{-} F_{+} \\
& +\left(H_{3}\right)^{2}-\left(F_{3}\right)^{2}+2 H_{3}, \tag{2.3}
\end{align*}
$$

and commute with $H_{3}, H_{ \pm}, F_{3}$, and $F_{ \pm}$on V. If τ is in fact irreducible, then Δ_{1} and Δ_{2} are multiples of the identity operator on V. This is a necessary but not sufficient condition for subspace irreducibility. More generally, it is only true that Δ_{1} and Δ_{2} each have on V exactly one eigenvalue λ_{1}, λ_{2}, of the form

$$
\begin{equation*}
\lambda_{1}=-i l_{0} l_{1}, \quad \lambda_{2}=l_{0}^{2}+l_{1}^{2}-1 \tag{2.4}
\end{equation*}
$$

with $l_{0} \in \mathbb{N} / 2$ and $l_{1} \in \mathbb{C}$. If $l_{1}-l_{0}$ is a nonzero integer, then τ is called singular; otherwise τ is nonsingular. The structure of nonsingular indecomposable representations of g, as determined in Ref. 15, has been summarized by Hlavaty and Niederle. ${ }^{17}$ In the present paper, we shall concentrate on the more complicated case of singular indecomposable representations.

Given such a representation τ then, with λ_{1}, λ_{2}, as in (2.4), we choose l_{0} and l_{1} without loss of generality, such that $0 \leqslant l_{0}<\left|l_{1}\right|$. Then ${ }^{15}$ the set \mathscr{S} in (2.1) is given by $\mathscr{S}=\left\{l_{0}, l_{0}+1, l_{0}+2, \ldots\right\}$. Corresponding to (2.2) we can write V as an algebraic direct sum

$$
\begin{equation*}
V \cong \underset{l \in, \mathscr{Y}}{\oplus} V_{l} \tag{2.5}
\end{equation*}
$$

where each V_{l} is an eigenspace of the Casimir operator $\left(H_{3}\right)^{2}+H_{-} H_{+}+H_{3}$ of k, with eigenvalue $l(l+1)$. Each V_{l} can in turn be written as a direct sum

$$
\begin{equation*}
V_{l} \cong{\underset{m=-l}{\oplus}}_{l}^{l} V_{l m} \tag{2.6}
\end{equation*}
$$

of eigenspaces $V_{l m}$ of H_{3} with eigenvalue $m \in\{l, l-1, \ldots,-l\}$. The subspaces $V_{l m}$ for $l=l_{0}, l_{0}+1, \ldots,\left|l_{1}\right|-1$ all have dimension n_{0}, while the $V_{l m}$ for $l=\left|l_{1}\right|,\left|l_{1}\right|+1, \ldots$ all have dimension n_{1}, for some pair (n_{0}, n_{1}) of non-negative integers, not both of which are zero. If $n_{1}=0$ we must have $n_{0}=1$, in which case τ is the finitedimensional irreducible representation labeled ${ }^{1}$ [$\left.l_{0}, l_{1}\right]$. If $n_{0}=0$ and $n_{1}=1, \tau$ is the infinite-dimensional irreducible representation $\left[\left|l_{1}\right|, \operatorname{sgn}\left(l_{1}\right) l_{0}\right]$, sometimes ${ }^{18,19}$ called the "tail" of $\left[l_{0}, l_{1}\right]$. In all remaining cases, with $n_{0}=0, n_{1}>1$ or $n_{0}>0, n_{1}>0, \tau$ is subspace reducible, i.e., V contains a proper subspace invariant under the action of H_{3}, F_{3}, etc. Such a τ can loosely be thought of as n_{0} copies of $\left[l_{0}, l_{1}\right.$] and n_{1} copies of its tail "glued indecomposably" together. ${ }^{16}$ However, τ is
not in general determined to within equivalence by giving l_{0}, l_{1}, n_{0} and n_{1} alone. It is necessary to specify the action of H_{3}, F_{3}, etc., in a suitably chosen basis for V. In Ref. 15 , it is shown that a basis of vectors $\xi_{l m a}$ can be found, with $l=l_{0}, l_{0}+1, \ldots ; \quad m=l, l-1, \ldots,-l ; \quad \alpha=1,2, \ldots, n_{0} \quad$ for $l_{0} \leqslant l<\left|l_{1}\right| ;$ and $\alpha=1,2, \ldots, n_{1}$ for $l \geqslant\left|l_{1}\right|$, such that (adapting the notation of Ref. 17)

$$
\begin{aligned}
H_{3} \xi_{l m \alpha}= & m \xi_{l m \alpha} \\
H_{ \pm} \xi_{l m \alpha}= & {[(l \pm m+1)(l \mp m)]^{1 / 2} \xi_{l m \pm 1 \alpha} } \\
F_{3} \xi_{l m \alpha}= & {\left[l^{2}-m^{2}\right]^{1 / 2}\left(M_{l}^{\tau}\right)_{\alpha \beta} \xi_{l-1 m \beta}-m\left(Z_{l}^{\tau}\right)_{\alpha \beta} \xi_{l m \beta} } \\
& -\left[(l+1)^{2}-m^{2}\right]^{1 / 2}\left(P_{l}^{\tau}\right)_{\alpha \beta} \xi_{l+1 m \beta} \\
F_{ \pm} \xi_{l m \alpha}= & \pm[(l \mp m)(l \mp m-1)]^{1 / 2} \\
& \times\left(M_{l}^{\tau}\right)_{\alpha \beta} \xi_{l-1 m \pm 1 \beta} \\
& -[(l \mp m)(l \pm m+1)]^{1 / 2}\left(Z_{l}^{\tau}\right)_{\alpha \beta} \xi_{l m \pm 1 \beta}
\end{aligned}
$$

$$
\begin{align*}
& \pm[(l \pm m+1)(l \pm m+2)]^{1 / 2} \\
& \times\left(P_{l}^{\tau}\right)_{\alpha \beta} \xi_{l+1 m \pm 1 \beta} \tag{2.7}
\end{align*}
$$

Here repeated subscripts β are to be summed over the values 1 to n_{0} or n_{1}, as appropriate. Note that certain vectors on the right-hand sides in (2.7) are undefined, e.g., $\xi_{l-1 m \beta}$ when $m=l$, but these can be ignored because they always appear with vanishing coefficients. The matrices $M_{l}^{\tau}, Z_{l}^{\tau}$, and P_{l}^{τ}, whose elements are $\left(M_{l}^{\tau}\right)_{\alpha \beta},\left(Z_{i}^{\tau}\right)_{\alpha \beta}$, and $\left(P_{l}^{\tau}\right)_{\alpha \beta}$, respectively, have the appropriate dimensions. Thus P_{l}^{τ} is $n_{0} \times n_{0}$ for $l_{0} \leqslant l<\left|l_{1}\right|-1 ; n_{1} \times n_{0}$ for $l=\left|l_{1}\right|-1$; and $n_{1} \times n_{1}$ for $l \geqslant\left|l_{1}\right|$. Similarly, M_{l}^{τ} is $n_{0} \times n_{0}$ for $l_{0} \leqslant l<\left|l_{1}\right| ; n_{0} \times n_{1}$ for $l=\left|l_{1}\right| ;$ and $n_{1} \times n_{1}$ for $l>\left|l_{1}\right|$, while Z_{l}^{r} is $n_{0} \times n_{0}$ for $l_{0} \leqslant l<\left|l_{1}\right|$ and $n_{1} \times n_{1}$ for $l \geqslant\left|l_{1}\right|$. These matrices have the following form:

$$
P_{l}^{\tau}= \begin{cases}I_{0}, & l_{0} \leqslant l<\left|l_{1}\right|-1, \tag{2.8a}\\ d_{+}, & l=\left|l_{1}\right|-1, \\ I_{1}, & l \geqslant\left|l_{1}\right|,\end{cases}
$$

$$
\begin{aligned}
M_{l}^{\tau} & = \begin{cases}{\left[\left(l^{2}-l_{0}^{2}\right)\left(l_{1}^{2}-l^{2}\right) /\left(4 l^{2}-1\right) l^{2}\right]\left[I_{0}+\left(l_{1}^{2} /\left(l_{1}^{2}-l^{2}\right)\right) a_{0}\right],} & l_{0} \leqslant l<\left|l_{1}\right|, \\
d_{-}, & l=\left|l_{1}\right|,\end{cases} \\
{\left[\left(l^{2}-l_{0}^{2}\right)\left(l_{1}^{2}-l^{2}\right) /\left(4 l^{2}-1\right) l^{2}\right]\left[I_{1}+\left(l_{1}^{2} /\left(l_{1}^{2}-l^{2}\right)\right) a_{1}+\left(l_{0}^{2} /\left(l_{0}^{2}-l^{2}\right)\right) \delta\right], } & l>\left|l_{1}\right|,
\end{aligned}, \begin{array}{ll}
{\left[i l_{0} l_{1} / l(l+1)\right] \sqrt{I_{0}+a_{0}, \quad l_{0} \leqslant l<\left|l_{1}\right|,}} \\
{\left[i l_{0} l_{1} / l(l+1)\right] \sqrt{I_{1}+a_{1}+\delta,} \quad l \geqslant\left|l_{1}\right|,}
\end{array}
$$

where I_{0} and I_{1} are the unit matrices of dimension $n_{0} \times n_{0}$ and $n_{1} \times n_{1}$, while d_{+}is $n_{1} \times n_{0}, d_{-}$is $n_{0} \times n_{1}$, and δ is $n_{1} \times n_{1}$, such that

$$
d_{-} \delta=\delta d_{+}=0
$$

δ and $d_{+} d_{-} \quad$ (and hence $d_{-} d_{+}$) are nilpotent.
(The matrices Z_{l}^{τ} and M_{l}^{τ}, in cases with $l_{0}=0$, should be interpreted as vanishing when $l=0$, as should M_{l}^{τ} when $l=l_{0}=\frac{1}{2}$.) In addition, we have set

$$
\begin{align*}
& a_{0}=\left[\left(4 l_{1}^{2}-1\right) /\left(l_{1}^{2}-l_{0}^{2}\right)\right] d_{-} d_{+} \tag{2.10}\\
& a_{1}=\left[\left(4 l_{1}^{2}-1\right) /\left(l_{1}^{2}-l_{0}^{2}\right)\right] d_{+} d_{-}
\end{align*}
$$

Each matrix square root in (2.8c) is of the form $\sqrt{I+A}$, with I a unit matrix and A nilpotent (say $A^{K+1}=0, A^{K} \neq 0$ in a particular case), and is to be interpreted through the binomial expansion as ${ }^{22}$

$$
\begin{align*}
\sqrt{I+A}= & I+\frac{1}{2} A+\cdots \\
& +\left[(-1)^{K+1}(2 K)!/(2 K-1)(K!)^{2} 2^{2 K}\right] A^{K} \tag{2.11}
\end{align*}
$$

From the formulas (2.6)-(2.9) it can be deduced that the Casimir operators (2.3) leave each $V_{l m}$ in (2.6) invariant, and act on $V_{\text {Im }}$ as
$\Delta_{1 l}=\left\{\begin{array}{l}-i l_{0} l_{1} \sqrt{I_{0}+a_{0}}, \quad l_{0} \leqslant l<\left|l_{1}\right|, \\ -i l_{0} l_{1} \sqrt{I_{1}+a_{1}+\delta}, \quad l \geqslant\left|l_{1}\right|,\end{array}\right.$
$\Delta_{2 l}=\left\{\begin{array}{l}\left(l_{0}^{2}+l_{1}^{2}-1\right) I_{0}+l_{1}^{2} a_{0}, \quad l_{0} \leqslant l<\left|l_{1}\right|, \\ \left(l_{0}^{2}+l_{1}^{2}-1\right) I_{1}+l_{0}^{2} \delta+l_{1}^{2} a_{1}, \quad l \geqslant\left|l_{1}\right|,\end{array}\right.$
and it can be seen that they do indeed have one eigenvalue each, of the form (2.4), because of (2.11) and the nilpotency of a_{0}, a_{1}, and δ.

To complete the description of a singular indecomposable representation τ, it remains to complete the description of the matrices d_{+}, d_{-}, and δ subject to (2.9). Gel'fand and Ponomarev ${ }^{15}$ have shown that inequivalent indecomposable sets of such matrices are in one-to-one correspondence with certain diagrams, which are therefore also in one-to-one correspondence with inequivalent indecomposable representations τ having the same values of l_{0}, l_{1}, n_{0}, and n_{1}. In other words, each such diagram may be regarded as providing the remaining labels necessary to characterize a corresponding τ, up to equivalence.

There are two categories of diagrams, of so-called "open" and "closed" types, and, correspondingly, there are singular indecomposable representations of type I and type II.

Definition 2.1: An open diagram is a finite set M of points in the lattice \mathbb{Z}^{2}, arranged as an unbroken staircase descending from left to right. Thus M contains one point [which can be taken without loss of generality to be the origin $(0,0)$ in $\left.\mathbb{Z}^{2}\right]$, starting from which we can generate all of M by going successively either right or down to the nearest neighboring lattice point. Each point is colored black or white, with the restriction that nearest neighbors in M are both black if they are vertically adjacent, and are opposite in color if they are horizontally adjacent. (This implies that the length of each horizontal part of the staircase must be an even integer, unless that part includes the first or last point, when its length may be even or odd.)

For the corresponding indecomposable representation τ of g, n_{0} equals the number of white points and n_{1} the number of black points in the diagram.

The simplest diagrams are as follows:

To obtain from a given diagram the corresponding matrices $d_{ \pm}, \delta$ of (2.7)-(2.9), we first associate with each of the points $(i, j) \in M$, a basis vector $e(i, j)$ in an $\left(n_{0}+n_{1}\right)$ dimensional complex vector space P. The basis vectors $e(i, j)$ corresponding to white points (i, j) span an n_{0}-dimensional subspace P_{0} of P, while those corresponding to black points span an n_{1}-dimensional subspace P_{1} of P; evidently

$$
\begin{equation*}
P=P_{0} \oplus P_{1} \tag{2.14}
\end{equation*}
$$

Next we define linear operators a and b on P by

$$
\begin{align*}
& a e(i, j)=\left\{\begin{array}{cl}
e(i+1, j), & (i+1, j) \in M, \\
0, & \text { otherwise }
\end{array}\right. \tag{2.15}\\
& b e(i, j)=\left\{\begin{array}{cl}
e(i, j+1), & (i, j+1) \in M \\
0, & \text { otherwise }
\end{array}\right. \tag{2.16}
\end{align*}
$$

Then a and b are nilpotent, with

$$
\begin{align*}
& a b=b a=0, \\
& a P_{0} \subseteq P_{1}, \quad a P_{1} \subseteq P_{0} \\
& b P_{0}=\{0\}, \quad b P_{1} \subseteq P_{1} . \tag{2.17}
\end{align*}
$$

If we now identify P with $\mathbb{C}^{n_{0}+n_{1}}$, choosing the $e(i, j)$ in such a way that vectors in P_{0} have their bottom n_{1} components zero, and vectors in P_{1} have their top n_{0} components zero, we obtain a matrix realization of a and b with the form

$$
a=\left[\begin{array}{ll}
0 & d_{-} \tag{2.18}\\
d_{+} & 0
\end{array}\right], \quad b=\left[\begin{array}{ll}
0 & 0 \\
0 & \delta
\end{array}\right]
$$

where d_{+}, d_{-}, and δ have dimension $n_{1} \times n_{0}, n_{0} \times n_{1}$, and $n_{1} \times n_{1}$, respectively, and satisfy (2.9).

For example, for the diagram (2.13 h) we can take the points to be at $(0,0),(1,0)$, and $(1,-1)$ in \mathbb{Z}_{2}, and set $e(0,0)$ $=(1,0,0)^{T}, e(1,0)=(0,1,0)^{T}$, and $e(1,-1)=(0,0,1)^{T}$. Then (2.15) and (2.16) imply

$$
a=\left[\begin{array}{lll}
0 & 0 & 0 \tag{2.19}\\
1 & 0 & 0 \\
0 & 0 & 0
\end{array}\right], \quad b=\left[\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 1 \\
0 & 0 & 0
\end{array}\right],
$$

so that

$$
d_{+}=\left[\begin{array}{ll}
1 & 0
\end{array}\right]^{T}, \quad d_{-}=\left[\begin{array}{ll}
0 & 0
\end{array}\right], \quad \delta=\left[\begin{array}{ll}
0 & 1 \tag{2.20}\\
0 & 0
\end{array}\right] .
$$

In this way the matrices $d_{ \pm}, \delta$ are determined by a given open diagram and, together with l_{0} and l_{1}, complete the specification of a representation τ of type I. Note that for given l_{0}, l_{1}, the diagrams (2.13a) and (2.13b) correspond to the irreducible representations $\left[l_{0}, l_{1}\right]$ and $\left[\left|l_{1}\right|, \operatorname{sgn}\left(l_{1}\right) l_{0}\right]$.

Our treatment of an open diagram differs slightly from that of Ref. 15 , in that we color the points to show explicitly the grading $P_{0} \oplus P_{1}$. Apart from making the structure clearer, this is in fact necessary to distinguish between those inequivalent representations which would otherwise have the same "straight-row" diagram, consisting of n points in a horizontal line.

For example, (2.13c) and (2.13d) lead to

$$
\begin{array}{ll}
d_{+}=1, & d_{-}=\delta=0 \\
d_{-}=1, & d_{+}=\delta=0 \tag{2.21}
\end{array}
$$

respectively. For given l_{0} and l_{1}, the corresponding inequivalent representations of g in this case are the well-known "op-erator-irreducible" indecomposable representations. For these the Casimir operators Δ_{1} and Δ_{2} of (2.3) are multiples of the identity by λ_{1} and λ_{2}, as in (2.4), as follows from (2.21), (2.10), and (2.12), but the representations are nevertheless subspace reducible. In Ref. 23 they are denoted, respectively, by $\left\{l_{0} \rightarrow l_{1}\right\}$ and $\left\{l_{0} \leftarrow l_{1}\right\}$, this notation being intended to indicate that in the first case the subspace $V_{|l| l}$ $\oplus V_{\left|l_{1}\right|+1} \oplus \cdots$ of V is invariant, while in the second case $V_{l_{0}}$ $\oplus V_{l_{0}+1} \oplus \cdots \oplus V_{|t,|-1}$ is invariant. In Ref. 17 they are denoted by ($l_{0}, l_{1},+$) and ($l_{0}, l_{1},-$).

Definition 2.2: A closed diagram is obtained from any open diagram M that begins with a white point and ends with at least two successive black points. A line is drawn connecting the first and last points of M and the diagram is supplemented by a pair of labels $(q, \mu), q \in \mathbb{N}, \mu \in \mathbb{C} \backslash 0$.

The simplest example has three points:

$$
\begin{equation*}
(q, \mu) \tag{2.22}
\end{equation*}
$$

When $q=1$, the procedure for constructing a and b, and subsequently $d_{ \pm}$and δ, is just as before, except that the definition (2.15) of a is supplemented by requiring

$$
\begin{equation*}
a e(k, l)=\mu e(0,0), \tag{2.23}
\end{equation*}
$$

where (k, l) is the final and $(0,0)$ the initial point of M. Again this leads to matrices a and b with the general form (2.18), from which d_{+}, d_{-}, and δ can be determined in order to complete the description of a singular indecomposable representation of g of type II. This representation is labeled (up to equivalence) by l_{0}, l_{1}, and the closed diagram [including the pair $(1, \mu)$].

For example, diagram (2.22) with $q=1$ leads to

$$
a=\left[\begin{array}{lll}
0 & 0 & \mu \tag{2.24}\\
1 & 0 & 0 \\
0 & 0 & 0
\end{array}\right], \quad b=\left[\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 1 \\
0 & 0 & 0
\end{array}\right]
$$

and hence to

$$
d_{+}=\left[\begin{array}{ll}
1 & 0
\end{array}\right]^{T}, \quad d_{-}=\left[\begin{array}{ll}
0 & \mu
\end{array}\right], \quad \delta=\left[\begin{array}{ll}
0 & 1 \tag{2.25}\\
0 & 0
\end{array}\right]
$$

[Note that these matrices reduce to those in (2.20), corresponding to the open diagram (2.13 h), if μ is set equal to zero. In fact, it is obviously true, in general, that the closed diagram with $q=1$ and μ set equal to zero, reduces in this sense to the corresponding open diagram.]

More generally, for $q>1$, a representation of type II is obtained by associating with each point ($i j$) of a closed diagram, a q-dimensional subspace $v(i, j)$ rather than a single vector $e(i, j)$ (as in the case $q=1$). The definitions of a and b are generalized accordingly. Thus

$$
\begin{equation*}
a v(i, j) \rightarrow v(i+1, j) \tag{2.26}
\end{equation*}
$$

is an isomorphism if $(i+1, j) \in M$ (with a $q \times q$ matrix, which can be taken to the identity I_{q}); otherwise $a v(i, j)=0$, except that if $(0,0)$ is the first and (k, l) the last point of M, then a maps $v(k, l)$ into $v(0,0)$ with a $q \times q$ matrix μ_{q}, which can be taken to be a single Jordan block with eigenvalue μ. The mapping

$$
\begin{equation*}
b v(i, j) \rightarrow v(i, j+1) \tag{2.27}
\end{equation*}
$$

is an isomorphism (with matrix I_{q}) if ($i, j+1$) $\in M$, and $b v(i, j)=0$ otherwise. In this case the subspaces P_{0} and P_{1} of P are of dimension $n_{0}=q m_{0}, n_{1}=q m_{1}$, respectively, where m_{0} and m_{1} are the numbers of white and black points in the diagrams. Associating P with $\mathbf{C}^{n_{0}+n_{1}}$ as before, we read off the matrices $d_{ \pm}$and δ from the matrices of a and b in the same way. The corresponding indecomposable representation of $g_{\mathcal{g}}$ of type II is labeled by l_{0}, l_{1}, and the closed diagram [including (q, μ)].

For example, taking the diagram (2.22) with $q=2$, the matrices can be obtained from those for the case $q=1$, as in (2.24), (2.25), by replacing each zero by a 2×2 block of zeros, each 1 by the 2×2 unit matrix, and each μ by the 2×2 matrix

$$
\mu_{2}=\left[\begin{array}{cc}
\mu & 1 \tag{2.28}\\
0 & \mu
\end{array}\right]
$$

III. VECTOR OPERATORS: GENERALITIES

Suppose that $\psi(x)$ in (1.1) is, for each x, an element of the g module V_{π} of a Harish-Chandra representation π of \mathcal{g},

$$
\begin{align*}
& \pi \cong \underset{r}{\oplus} \tau_{r}, \\
& V_{\pi} \cong \oplus{ }_{r}^{\oplus} V^{\tau_{r}}, \tag{3.1}
\end{align*}
$$

where each τ_{r} is (singular) indecomposable. Suppose further that Γ_{μ} and κ in (1.1) are linear mappings (operators) from V_{π}^{μ} into itself. Let $H_{3}=\pi\left(h_{3}\right), F_{3}=\pi\left(f_{3}\right)$, etc. Generalizing well-known results, ${ }^{1,24}$ we know that a sufficient condition for (1.1) to be locally ${ }^{12}$ invariant under homogeneous (and, indeed, inhomogeneous) Lorentz transformations is that κ commutes with H_{3}, F_{3}, etc., on V_{π} and

$$
\begin{align*}
& {\left[\Gamma_{0}, H_{ \pm}\right]=\left[\Gamma_{0}, H_{3}\right]=0,} \tag{3.2a}\\
& \Gamma_{0}=\left[\left[F_{3}, \Gamma_{0}\right], F_{3}\right], \tag{3.2b}\\
& \Gamma_{3}=i\left[F_{3}, \Gamma_{0}\right], \quad \Gamma_{1} \pm i \Gamma_{2}=i\left[F_{ \pm}, \Gamma_{0}\right] \tag{3.2c}
\end{align*}
$$

on V_{π}. Then we say that κ is a scalar operator and Γ_{μ} a fourvector operator on V_{π}. In searching for possible locally invariant equations, we therefore seek representations π for which κ and Γ_{μ} can be found with these properties. If we restrict attention to equations for which κ is invertible on V_{π}, then ${ }^{24}$ there is no significant loss of generality in supposing κ to be a nonzero numerical multiple of the identity operator on V_{π}. Then the problem reduces to finding representations π for which a four-vector operator Γ_{μ} can be found. It is sufficient to search for Γ_{0} satisfying (3.2a) and (3.2b), as Γ_{1}, Γ_{2}, and Γ_{3} can then be defined by (3.2c). We shall concentrate on this problem here, but make some remarks about wave equations with noninvertible κ at the end of the paper.

Let τ and τ^{\prime} denote any two of the indecomposable representations (or possibly one and the same representation) contained in π, and let $P^{\tau}, P^{r^{\prime}}$ be the operators projecting V_{π} onto the corresponding subspaces $V^{\tau}, V^{r^{\prime}}$ in (3.1). Define

$$
\begin{equation*}
\Gamma_{\mu}^{\tau^{\prime \tau} \tau}=P^{\tau^{\prime}} \Gamma_{\mu} P^{\tau} \tag{3.3}
\end{equation*}
$$

and note that, since P^{τ} and $P^{r^{\prime}}$ commute on V_{π} with H_{3}, F_{3}, etc., $\Gamma_{\mu}^{\gamma^{\prime} \tau}$ is a four-vector operator whenever this is true of Γ_{μ}. We concentrate on the determination of $\Gamma_{\mu}^{\tau^{\prime} \tau}$, in effect restricting attention to the case when $\pi=\tau \oplus \tau^{\prime}$ (or $\pi=\tau$, if $\tau^{\prime}=\tau$). The Γ_{μ} in a more general case can evidently be built up from such $\Gamma_{\mu}^{\gamma^{\prime} \tau}$.

Decomposing V^{τ} and $V^{\tau^{\prime}}$ as in (2.5) and (2.6), and introducing bases, as in Sec. II, we see from (3.2a) and (3.3) that $\Gamma_{0}^{\tau^{\prime} \tau}$ carries $V_{i m}^{\tau}$ into $V_{i m}^{\tau^{\prime}}$. Let $X_{I}^{\tau^{\prime} \tau}$ denote the corresponding matrix; it is independent of m, again because of (3.2a). Expressions for the matrices $\Gamma_{p ; l m}^{r^{\prime},}$, defined by the action of the operators $\Gamma_{p}^{\gamma^{\prime} \tau}, p=1,2,3$, on $V_{l m}^{\tau}$, can then be written down. For example, we find, using (2.7) and (3.2c), that

$$
\begin{align*}
i \Gamma_{3 ; / m}^{\tau^{\prime} \tau}= & {\left[l^{2}-m^{2}\right]^{1 / 2}\left(X_{l-1}^{\tau^{\prime} \tau} M_{l}^{\tau}-M_{l}^{\tau^{\prime}} X_{l}^{r^{\prime \tau} \tau}\right) } \\
& -m\left(X_{l}^{\tau^{\prime} \tau} \boldsymbol{Z}_{l}^{\tau}-\boldsymbol{Z}_{l}^{\tau^{\prime}} \boldsymbol{X}_{l}^{\gamma^{\prime} \tau}\right) \\
& -\left[(l+1)^{2}-m^{2}\right]^{1 / 2}\left(X_{l+1}^{\boldsymbol{\tau}^{\prime} \tau} \boldsymbol{P}_{l}^{\tau}-\boldsymbol{P}_{l}^{\tau^{\prime}} X_{l}^{\boldsymbol{\tau}^{\prime \tau} \tau}\right) . \tag{3.4}
\end{align*}
$$

The heart of the problem then is to determine the $X{ }_{l}^{r^{\prime} \tau}$ from the remaining condition (3.2b), for the appropriate range of l values in the representation τ. This condition leads to the following system of coupled matrix equations, essentially the same as Eqs. (3.6) of Ref. 17, in which $\boldsymbol{Z}_{i}^{\tau}, M_{i}^{\tau}, P_{i}^{\tau}$, and the corresponding primed variables are to be regarded as given, and the $X T_{l}^{\tau^{\prime} \tau}$ are unknowns:

$$
\begin{equation*}
2 P_{l+1}^{\tau_{i}^{\prime}} X_{l+1}^{\tau^{\prime \tau}} P_{I}^{\tau}-P_{l+1}^{\tau_{i}^{\prime}} P_{l}^{\tau^{\prime}} X_{I}^{\tau^{\prime \tau}}-X_{l+2}^{\tau^{\prime \tau}} P_{l+1}^{\tau} P_{I}^{\tau}=0, \tag{3.5a}
\end{equation*}
$$

$$
\begin{align*}
& X_{i+1}^{\tau^{\prime} \tau}\left[P_{i}^{\tau} Z_{i}^{\tau}+Z_{l+1}^{\tau} P_{l}^{\tau}\right]+\left[P_{i}^{\tau^{\prime}} Z_{l}^{\tau^{\prime}}+Z_{i+1}^{\tau_{i}^{\prime}} P_{i}^{\tau^{\prime}}\right] X_{l}^{\tau^{\prime \tau}} \tag{3.5b}\\
& -2 P_{I}^{\tau^{\prime}} X_{I}^{\tau^{\prime} \tau} Z_{i}^{\tau}-2 Z_{i+1}^{\tau_{1}^{\prime}} X_{i+1}^{\tau_{i}^{\tau} \tau} P_{I}^{\tau}=0, \tag{3.5c}\\
& X_{i-1}^{\tau^{\top}{ }_{1}}\left[Z_{i-1}^{\tau} M_{i}^{\tau}+M_{i}^{\tau} \boldsymbol{Z}_{i}^{\tau}\right] \\
& +\left[\boldsymbol{Z}_{I-1}^{\boldsymbol{\tau}^{\prime}} \boldsymbol{M}_{I}^{\boldsymbol{\tau}^{\prime}}+\boldsymbol{M}_{I}^{\boldsymbol{\tau}^{\prime}} \boldsymbol{Z}_{i}^{\boldsymbol{\tau}^{\prime}}\right] \boldsymbol{X}_{I}^{\boldsymbol{\tau}^{\prime} \tau}
\end{align*}
$$

$$
\begin{align*}
& -2 Z_{i-1}^{\tau^{\prime}} X_{l-1}^{\tau^{\prime} \tau} M_{i}^{\tau}-2 M_{i}^{\tau^{\prime}} X_{l}^{\tau^{\prime} \tau} Z_{i}^{\tau}=0, \tag{3.5d}\\
& \boldsymbol{X}_{l}^{\tau_{i}^{\tau}}\left[P_{i-1}^{\tau} M_{l}^{\tau}+M_{l+1}^{\tau} P_{i}^{\tau}+\boldsymbol{Z}_{i}^{\tau} Z_{i}^{\tau}\right] \\
& +\left[Z_{l}^{\tau^{\prime}} \boldsymbol{Z}_{l}^{\tau^{\prime}}+\boldsymbol{P}_{l-1}^{\tau_{1}^{\prime}} M_{l}^{\tau^{\prime}}+\boldsymbol{M}_{l+1}^{\tau_{i}^{\prime}} P_{l}^{\tau^{\prime}}\right] \boldsymbol{X}_{l}^{\tau^{\prime} \tau} \\
& -2 P_{l-1}^{\tau^{\prime}} X_{l-1}^{\tau^{\prime \tau}} M_{I}^{\tau}-2 M_{l+1}^{\tau^{\prime}} X_{l+1}^{\tau^{\prime \tau}} P_{I}^{\tau} \\
& -2 Z_{i}^{\tau^{\prime}} \boldsymbol{X}_{i}^{\tau^{\prime} \boldsymbol{Z}} \boldsymbol{Z}_{i}^{\top}=0, \tag{3.5e}\\
& (l+1)^{2}\left[X_{l}^{\tau^{\tau} \tau} M_{l+1}^{\tau} P_{l}^{\tau}\right. \\
& \left.-2 M_{l+1}^{\tau_{1}^{\prime}} X_{l+1}^{\tau_{1}^{\prime \tau}} P_{I}^{\tau}+M_{l+1}^{\tau_{i}^{\prime}} P_{l}^{\tau^{\prime}} X_{l}^{\tau^{\prime} \tau}\right] \\
& +l^{2}\left[X_{l}^{\boldsymbol{T}^{\tau}} \boldsymbol{P}_{i-1}^{\tau_{1}} M_{l}^{\tau}-2 P_{l-1}^{\tau_{-}^{\prime}} X_{l-1}^{\boldsymbol{\tau}_{\tau}^{\tau}} M_{l}^{\tau}\right. \\
& \left.+P_{i-1}^{\tau^{\prime}} M_{I}^{\tau^{\prime}} X_{I}^{\boldsymbol{\gamma}^{\prime} \tau}\right]=X_{l}^{\boldsymbol{r}^{\prime} \tau} . \tag{3.5f}
\end{align*}
$$

These equations must hold for each allowed l value in the representation τ, and $X_{i}^{\tau^{\prime} \tau}$ must be set equal to zero unless both V_{l}^{τ} and $V_{l}^{\tau^{\prime}}$ are non-null.

If τ and τ^{\prime} are irreducible [so that each matrix in (3.5) is a single number], it is well known ${ }^{1}$ that a necessary and sufficient condition for the existence of a nontrivial solution is that the labels $\left(l_{0}, l_{1}\right)$ and $\left(l_{0}^{\prime}, l_{1}^{\prime}\right)$ of τ and $\tau^{\prime}($ which serve to characterize the representations completely in such a case) satisfy the "interlocking" condition that one of the pairs $\left(l_{0}^{\prime}, l_{1}^{\prime}\right),\left(-l_{0}^{\prime},-l_{1}^{\prime}\right)$ is equal to one of the pairs $\left(l_{0}, l_{1}+1\right),\left(l_{0}, l_{1}-1\right),\left(l_{0}+1, l_{1}\right)$, or $\left(l_{0}-1, l_{1}\right)$. Moreover, the structure of the solutions is known for all such cases. ${ }^{1}$ Hlavaty and Niederle ${ }^{17}$ have in fact extended these results to the case where τ and τ^{\prime} are nonsingular indecomposable representations.

In the singular case, we expect that it is still true that the labels (l_{0}, l_{1}), ($l_{0}^{\prime}, l_{1}^{\prime}$) of τ and τ^{\prime} (which now are not sufficient to characterize τ and τ^{\prime} completely) must satisfy the interlocking condition if a nontrivial solution is to exist, although we have no general proof. On the other hand, it would be surprising if this condition is sufficient for existence, with no restriction on the diagrams for τ and τ^{\prime}, but this too remains an open question.

IV. VECTOR OPERATORS: EXAMPLES

For a given pair (τ, τ^{\prime}) of singular indecomposable representations, ${ }^{25}$ it is not, in general, easy to determine if Eqs. (3.5) admit a nontrivial solution. The only solutions previously presented (apart of course from those corresponding to irreducible τ and τ^{\prime}) seem to have been those corresponding to the case of interlocking τ and τ^{\prime} of the operator-irreducible type, with diagrams of the form (2.13c) or (2.13d). Then $n_{0}=n_{1}=1$, so that all the matrices in (3.5) are simply numbers, and the problem of finding solutions is not substantially more difficult than in the irreducible case.

In Ref. 17, a nontrivial solution is found in a case of this type, where τ has labels $\left(\frac{1}{2}, l_{1}\right)$ and τ^{\prime} has labels $\left(\frac{1}{2},-l_{1}\right)$, with $l_{1} \in\left\{\frac{3}{2}, \frac{5}{2}, \ldots\right\}$, and the diagrams for τ and τ^{\prime} are (2.13c) and (2.13 d), respectively. (These are the operator-irreducible representations $\left[\frac{1}{2} \rightarrow l_{1}\right]$ and $\left[\frac{1}{2} \leftarrow-l_{1}\right]$ described earlier.) It was shown, however, that this leads to an operator Γ_{0} with no nonzero eigenvalues, so that (1.1) has no timelike solutions in this case. ${ }^{17}$ In fact, four-vector operators in the case of interlocked operator-irreducible τ and τ^{\prime} were described earlier by Ruhl. ${ }^{19}$

In seeking to find, for representations with arbitrarily complicated diagrams, examples of four-vector operators that lead in at least some cases to wave equations with timelike solutions, we shall make the following simplifying assumptions: (1) τ and τ^{\prime} have labels ($\frac{1}{2}, l_{1}$) and ($\frac{1}{2},-l_{1}$), where $l_{1} \in\left\{\frac{3}{2}, \frac{5}{2}, \ldots\right\}$ (note that the interlocking condition is then satisfied); and (2) τ and τ^{\prime} have the same diagram.

Note that condition (1) but not condition (2) is satisfied by the example of Ref. 17. The matrices $d_{ \pm}, \delta$ (and hence a_{0}, a_{1}) can now be taken to be the same for τ^{\prime} as for τ, and we obtain

$$
\begin{equation*}
Z_{i}^{\tau^{\prime}}=-Z_{i}^{\tau} ; \quad P_{l}^{\tau^{\prime}}=P_{l}^{\tau} ; \quad M_{i}^{\tau^{\prime}}=M_{i}^{\tau}, \tag{4.1}
\end{equation*}
$$

and, for the matrices of the Casimir operators (2.12),

$$
\begin{align*}
& \Delta_{1 l}^{\tau}=-\Delta_{i l}^{\prime}, \\
& \Delta_{2 l}^{\tau}=\Delta_{2 l}^{\prime} . \tag{4.2}
\end{align*}
$$

Under these conditions, $\boldsymbol{X}_{1}^{\tau^{\prime} \tau}\left(\frac{1}{2} \leqslant l<l_{1}\right)$ and a_{0} are $n_{0} \times n_{0}$ matrices, while $X_{1}^{\gamma^{\prime} \tau}\left(l \geqslant l_{1}\right), a_{1}$, and δ are $n_{1} \times n_{1}$ matrices, where n_{0} and n_{1} are determined by the number of white and black points in the (common) diagram for τ and τ^{\prime}, as described in Sec. II. In order to simplify ordering problems in (3.5), we limit ourselves further by seeking only solutions such that (3) $X{ }_{1}^{r^{\prime} \tau}$ commutes with a_{0} for $\frac{1}{2} \leqslant l<l_{1}$, and with a_{1} and δ for $l \geqslant l_{1}$.

It follows from (2.12) and (4.2) that condition (3) is equivalent to requiring that $\Gamma_{\mu}^{\gamma^{\prime} \tau}$ satisfies

$$
\begin{equation*}
\left[\Gamma_{\mu}^{\tau^{\prime} \tau}, \Delta_{2}\right]=0=\left\{\Gamma_{\mu}^{\gamma^{\prime} \tau}, \Delta_{1}\right\} \tag{4.3}
\end{equation*}
$$

on $V^{\tau} \oplus V^{\gamma^{\prime}}$. Equations (4.3) are known ${ }^{7}$ to hold for all solutions in the case that τ and τ^{\prime} are irreducible [given conditions (1) and (2)], when Δ_{2} is a multiple of the identity operator (on $V^{\tau} \oplus V^{\tau^{\prime}}$) and Δ_{1} is a (generalized) Dirac γ_{5} matrix, but it is not clear if the imposition of condition (3) places a nontrivial restriction on the solution of (3.5) in the present situation.

Having imposed conditions (1)-(3), we now consider (3.5a) and find using (2.8) that

$$
\begin{equation*}
X_{l+2}^{\tau_{1}^{\prime} \tau}=2 X_{l+1}^{\tau_{1}^{\prime \tau}}-X_{l}^{\tau^{\prime} \tau} \tag{4.4}
\end{equation*}
$$

for $\frac{1}{2} \leqslant l<l_{1}-2$, and for $l \geqslant l_{1}$, so that

$$
X_{l}^{\tau^{\prime \tau}}= \begin{cases}l A+C, & \frac{1}{2} \leqslant l<l_{1}, \tag{4.5}\\ l B+D, & l \geqslant l_{1},\end{cases}
$$

where A, B, C, and D are matrices independent of l. According to condition (3), A and C commute with a_{0}, and B and D commute with a_{1} and δ. Use of (4.1) and (2.8) in (3.5c), with $l_{0} \leqslant l<l_{1}-1$, then gives

$$
\begin{align*}
& {[(2 l-1) A+2 C] P_{i}^{\tau} Z_{I}^{\top}} \\
& \quad=[(2 l+3) A+2 C] Z_{i+1}^{\tau} P_{I}^{\tau} . \tag{4.6}
\end{align*}
$$

But Eqs. (2.8) imply that $l P_{i}^{\tau} Z_{l}^{\tau}=(l+2) Z_{l+1}^{\tau} P_{l}^{\tau}$, so that

$$
\begin{align*}
&(l+2)[(2 l-1) A+2 C] P_{I}^{\tau} Z_{I}^{\tau} \\
&=l[(2 l+3) A+2 C] P_{l}^{\tau} Z_{l}^{\tau}, \tag{4.7}
\end{align*}
$$

and since $P_{i}^{T} Z_{I}^{\tau}$ is nonsingular, we obtain $C=\frac{1}{2} A$. In a similar way, using (3.5c) with $l \geqslant l_{1}$, we obtain $D=\frac{1}{2} B$. Thus

$$
X_{l}^{\tau^{\prime} \tau}= \begin{cases}\left(l+\frac{1}{2}\right) A, & \frac{1}{2} \leqslant l<l_{1}, \tag{4.8}\\ \left(l+\frac{1}{2}\right) B, & l \geqslant l_{1} .\end{cases}
$$

Then (3.5a) with $l=l_{1}-2$ or $l=l_{1}-1$ implies

$$
\begin{equation*}
d_{+} A=B d_{+} \tag{4.9}
\end{equation*}
$$

Equation (3.5b) yields no new condition for $\frac{5}{2} \leqslant l<l_{1}$ or $l>l_{1}+2$, but for $l=l_{1}+1$ or $l=l_{1}$ we obtain

$$
\begin{equation*}
A d_{-}=d_{-} B \tag{4.10}
\end{equation*}
$$

The remaining equations (3.5) require just one more condition, that

$$
\begin{equation*}
B \delta=\delta B=0 \tag{4.11}
\end{equation*}
$$

Since (4.9) and (4.10) imply, with (2.10), that A commutes with a_{0} and B commutes with a_{1}, the problem reduces to the following: for a given diagram and hence for given $d_{ \pm}, \delta$, find matrices A and B such that (4.9)-(4.11) are satisfied.

For small values of n_{0} and n_{1}, we can now easily construct all solutions subject to the conditions (1)-(3). For example, the diagram

leads to

$$
d_{+}=\left[\begin{array}{ll}
1 & 0 \tag{4.13}\\
0 & 0
\end{array}\right], \quad d_{-}=\left[\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right], \quad \delta=\left[\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right]
$$

[and hence to $a_{0}=a_{1}=\left[\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right]$], and it follows from (4.9)-(4.11) that

$$
A=\left[\begin{array}{ll}
0 & 0 \tag{4.14}\\
\alpha & 0
\end{array}\right], \quad B=\left[\begin{array}{cc}
0 & \beta \\
0 & 0
\end{array}\right]
$$

where α and β are arbitrary constants. Similarly, for diagram (2.22) with $q=2$ and $\mu \neq 0$, we find that A equals the 2×2 zero matrix and B is a 4×4 matrix with an arbitrary 2×2 block in the upper right-hand corner, and zeros elsewhere.

Of more interest is the observation that a class of solutions (A, B) can now be determined as follows, whatever the common diagram of τ and τ^{\prime}. Since (2.9) and (2.10) imply that

$$
\begin{align*}
& d_{+} a_{0}=a_{1} d_{+}, \quad a_{0} d_{-}=d_{-} a_{1} \\
& \delta a_{1}=a_{1} \delta=0 \tag{4.15}
\end{align*}
$$

we can satisfy (4.9) and (4.10) by taking

$$
\begin{align*}
& A=\alpha_{0} I_{0}+\alpha_{1} a_{0}+\alpha_{2} a_{0}^{2}+\cdots+\alpha_{N} a_{0}^{N} \\
& B=\alpha_{0} I_{1}+\alpha_{1} a_{1}+\alpha_{2} a_{1}^{2}+\cdots+\alpha_{N} a_{1}^{N}+c \delta^{M} \tag{4.16}
\end{align*}
$$

where c and the $\alpha_{i}, i=0,1,2, \ldots, N$ are arbitrary complex constants, N is the largest non-negative integer such that at least one of a_{0}^{N}, a_{1}^{N} is nonzero, and M is the largest non-negative integer such that δ^{M} is nonzero.

If $\delta=0$, then (4.11) is satisfied trivially, and (4.16) defines a class of solutions (4.8) parametrized by $\alpha_{0}, \alpha_{1}, \ldots, \alpha_{N}$. The vanishing of δ is easily seen to require that the diagram of τ and τ^{\prime} be a straight row: we discuss this case further in the next section.

If $\delta \neq 0$, we must set $\alpha_{0}=0$ in (4.16) in order to satisfy
(4.11). We then still obtain a class of solutions (4.8), parametrized by $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{N}$ and c, but note immediately that $X_{l}^{\tau^{\prime} \tau}$ is then nilpotent for each l, and that the same will be true of $\Gamma_{0}^{\gamma^{\prime} \tau}$. The corresponding wave equation (1.1) with Γ_{μ} $=\Gamma_{\mu}^{\tau^{\prime} \tau}$ [or with $\Gamma_{\mu}=\Gamma_{\mu}^{\tau^{\prime} \tau}+\Gamma_{\mu}^{\tau \tau^{\prime}}$ as in (4.17) below] will not admit timelike solutions in such a case. The question arises as to whether or not (4.8) and (4.16) give in the way described, all solutions of (3.5) under conditions (1)-(3). That the answer is no, at least when $\delta \neq 0$, is shown by the counterexample (4.12)-(4.14), with $\alpha \neq 0$.

We attempted to find other solutions to (3.5), satisfying conditions (1) and (2), but not (3), with the help of the symbolic manipulation computer package ${ }^{26}$ MUMATH, but were unsuccessful. Furthermore, for all diagrams leading to $\delta \neq 0$, we found only nilpotent solutions $X_{l}^{\tau^{\prime} \tau}$. We conjecture that this is a general rule, at least when conditions (1) and (2) hold.

We also found only nilpotent solutions in cases like that considered in Ref. 17, where condition (2) does not hold. This was in fact our motivation for imposing that condition.

Note that if the roles of τ and τ^{\prime} are interchanged in (3.5), then $X_{l}^{\tau \tau^{\prime}}$ satisfies the same equations as $X_{l}^{\tau^{\prime} \tau}$, as a consequence of (4.1). Therefore we have also found solutions $X_{I}^{\tau \tau^{\prime}}$ of the same general form (4.8), (4.16), and we can consider

$$
\begin{equation*}
\Gamma_{\mu}=\Gamma_{\mu}^{\gamma^{\prime} \tau}+\Gamma_{\mu}^{\tau \tau^{\prime}} \tag{4.17}
\end{equation*}
$$

in (1.1). This will, in general, be necessary if equations possessing timelike solutions are to be obtained, as is familiar from the case of the Dirac matrices γ_{μ}, which couple the irreducible representations $\tau=\left[\frac{1}{2}, \frac{3}{2}\right], \tau^{\prime}=\left[\frac{1}{2},-\frac{3}{2}\right]$; here

$$
\begin{align*}
& \Gamma_{\mu}^{\tau^{\prime} \tau}=\alpha \gamma_{\mu}\left(1+\gamma_{5}\right), \quad \Gamma_{\mu}^{\tau \tau^{\prime}}=\beta \gamma_{\mu}\left(1-\gamma_{5}\right), \\
& \gamma_{\mu}=\Gamma_{\mu}^{\tau^{\prime} \tau}+\Gamma_{\mu}^{r \tau^{\prime}} \tag{4.18}
\end{align*}
$$

(choosing $\alpha=\beta=\frac{1}{2}$).

V. A CLASS OF WAVE EQUATIONS

We consider the case when τ and τ^{\prime} have the straight row diagram

with $2 k$ points and, as in Sec. IV, condition (1) holds. Following the prescription outlined in Sec. II we obtain

$$
\begin{align*}
& d_{+}=I_{k}, \quad \delta=0, \quad \text { and } \\
& d_{-}=\frac{1}{4} a_{0}=\frac{1}{4} a_{1}=\left[\begin{array}{cccccc}
0 & & & & \\
1 & 0 & & & 0 & \\
& 1 & 0 & & & \\
& & \cdots & & \\
& 0 & & & \cdots & \\
& & & & 1 & 0
\end{array}\right], \tag{5.2}
\end{align*}
$$

each being a $k \times k$ matrix. Then from (4.8) and (4.16) we have

$$
\begin{equation*}
X_{l}^{\tau^{\prime} \tau}=\left(l+\frac{1}{2}\right) \sum_{j=0}^{k-1} \zeta_{j}\left(d_{-}\right)^{j} \tag{5.3}
\end{equation*}
$$

where the ζ_{j} are arbitrary constants. Similarly,

$$
\begin{equation*}
X_{l}^{\tau^{\prime}}=\left(l+\frac{1}{2}\right) \sum_{j=0}^{k-1} \eta_{j}\left(d_{-}\right)^{j} \tag{5.4}
\end{equation*}
$$

with arbitrary η_{j}. We restrict our attention to cases where η_{0} and ζ_{0} are nonzero, so that $X_{l}^{\tau^{\prime} \tau}$ and $X_{l}^{\tau \tau^{\prime}}$ are not nilpotent; because we can multiply (1.1) throughout by an arbitrary constant, there is no significant loss of generality in assuming then that

$$
\begin{equation*}
\eta_{0} \zeta_{0}=1 \tag{5.5}
\end{equation*}
$$

On each $2 k$-dimensional subspace $V_{l m}$ of $V\left(=V^{\tau}\right.$ $\oplus V^{\tau^{\prime}}$),

$$
V_{l m}=\left[\begin{array}{c}
V_{l m}^{\tau} \tag{5.6}\\
V_{l m}^{\tau^{\prime}}
\end{array}\right], \quad m \in\{l, l-1, \ldots,-l\}
$$

the matrix of $\Gamma_{0}\left(=\Gamma_{0}^{\tau^{\prime} \tau}+\Gamma_{0}^{\tau \tau^{\prime}}\right)$ is

$$
\Gamma_{0 l}=\left[\begin{array}{cc}
0 & X_{l}^{\tau \tau^{\prime}} \tag{5.7}\\
X_{l}^{\tau^{\prime} \tau} & 0
\end{array}\right]
$$

where the zeros represent $k \times k$ blocks. It follows from (5.3)-(5.5) that $\Gamma_{0 l}$ has only $\pm\left(l+\frac{1}{2}\right)$ as eigenvalues, but is not, in general, completely diagonalizable, depending on the values of the ζ_{j} and η_{j}.

For example, in the case that $k=3$, we can take $\zeta_{0}=\eta_{0}=1, \zeta_{1}=\eta_{1}=\zeta_{2}=\eta_{2}=0$, and find that for each eigenvalue $\pm\left(l+\frac{1}{2}\right)$ of $\Gamma_{0 l}$ (and for each value of m) there are three linearly independent eigenvectors, and $\Gamma_{0 l}$ is diagonalizable; or take $\zeta_{0}=\eta_{0}=\zeta_{2}=\eta_{2}=1, \zeta_{1}=\eta_{1}=0$, and find only two linearly independent eigenvectors for each eigenvalue; or take $\zeta_{0}=\eta_{0}=\zeta_{1}=\eta_{1}=\zeta_{2}=\eta_{2}=1$ and find only one eigenvector for each eigenvalue. In these last two cases, $\Gamma_{0 I}$ is not diagonalizable and does not have a complete set of eigenvectors.

It follows that (1.1) will admit timelike solutions corresponding to at least one set of positive and one set of negative energy particles with a Majorana-type mass-spin spectrum

$$
\begin{equation*}
m_{l}=\kappa /\left(l+\frac{1}{2}\right), \quad l=\frac{1}{2}, \frac{3}{2}, \ldots \tag{5.8}
\end{equation*}
$$

but that there will, in general, be enough linearly independent solutions to describe n such sets, $1 \leqslant n \leqslant k$. We can expect that, in general, there will also be lightlike and spacelike solutions of (1.1), as for the case ${ }^{27}$ of infinite-dimensional irreducible representations τ and τ^{\prime}.

Similar results hold in the case that the black and white points in (5.1) are interchanged. This simply leads to an interchange of d_{-}and d_{+}in (5.2)-(5.4).

Slightly more complicated are the cases corresponding to the diagrams

each with $2 k+1$ points. For the diagrams (5.9a) we obtain

$$
d_{+}=\left[\begin{array}{cc}
& 0 \tag{5.10}\\
I_{k} & 0 \\
\vdots \\
0
\end{array}\right], \quad d_{-}=\left[\begin{array}{cl}
0 & 0 \cdots 0 \\
& I_{k}
\end{array}\right], \quad \delta=0
$$

d_{+}is $k \times(k+1), d_{-}$is $(k+1) \times k$, and δ is $k \times k$. Then $\frac{1}{4} a_{0}$ and $\frac{1}{4} a_{1}$ have the same form as the matrix d_{-}in (5.2), with a_{0} being $(k+1) \times(k+1)$, and a_{1} being $k \times k$. Our solution (4.8),(4.16) now gives

$$
X_{l}^{\tau^{\prime} \tau}= \begin{cases}\left(l+\frac{1}{2}\right) \sum_{j=0}^{k} \zeta_{j}\left(\frac{1}{4} a_{0}\right)^{j}, & \frac{1}{2} \leqslant l<l_{1} \tag{5.11}\\ \left(l+\frac{1}{2}\right)^{k-1} \sum_{j=0}^{k} \xi_{j}\left(\frac{1}{4} a_{1}\right)^{j}, & l \geqslant l_{1}\end{cases}
$$

We get a similar expression for $X_{l}^{\tau \tau^{\prime}}$, with further arbitrary constants η_{j} replacing the ζ_{j} of (5.11). Again we suppose ζ_{0}, η_{0} are nonzero, set $\eta_{0} \zeta_{0}=1$, and find that Γ_{0} has only $\pm\left(l+\frac{1}{2}\right)$ as eigenvalues. For some choices of arbitrary constants ζ_{j} and $\eta_{j}, \Gamma_{o l}$ is diagonalizable (for every l), but for most it is not. A new feature that emerges is that for a given eigenvalue $\pm\left(l+\frac{1}{2}\right), \Gamma_{0 l}$ may have a different number of linearly independent eigenvectors for $l<l_{1}$ than for $l \geqslant l_{1}$. For example, if we set $\zeta_{0}=\eta_{0}=1$, all other ζ_{j} and η_{j} being equal to zero, then $\Gamma_{0 i}$ is diagonalizable, with $(k+1)$ linearly independent eigenvectors for $l<l_{1}$, and k for $l \geqslant l_{1}$. The corresponding wave equation (1.1) would admit timelike solutions capable of describing ($k+1$) positive (or negative) energy particles with spins $\frac{1}{2}, \frac{3}{2}, \ldots, l_{1}-1$, and k with spins $l_{1}, l_{1}+1, \ldots$. Again the mass-spin spectrum is of the Majorana type.

Similar remarks apply in the case of the diagram (5.9b); in this case $\Gamma_{0 t}$ will be $2 k \times 2 k$ for $l<l_{1}$, and $2(k+1) \times 2(k+1)$ for $l \geqslant l_{1}$.

For any of these straight row diagrams, we can restrict attention to the diagonalizable cases by requiring that (5.5) holds and

$$
\begin{equation*}
X_{l}^{\tau^{\prime} \tau} X_{I}^{\tau \tau^{\prime}}=\left(l+\frac{1}{2}\right)^{2} I_{l} \tag{5.12}
\end{equation*}
$$

where I_{l} is the unit matrix of the appropriate size. Then

$$
\begin{equation*}
\left(\Gamma_{o l}\right)^{2}=\left(l+\frac{1}{2}\right)^{2}\left(I_{l} \oplus I_{l}\right) \tag{5.13}
\end{equation*}
$$

Some important algebraic properties of the corresponding operators Γ_{μ} can now be determined. It follows from (3.4) that, quite generally, the matrix of the operator $i\left[\Gamma_{0}^{\pi \tau^{\prime}} \Gamma_{3}^{\tau^{\prime} \tau}\right.$ $\left.\pm \Gamma_{3}^{\pi \tau^{\prime}} \Gamma_{0}^{\tau^{\prime} \tau}\right]$ on the subspace $V_{l m}$ of V is given by

$$
\begin{align*}
& {\left[l^{2}-m^{2}\right]^{1 / 2}\left\{X_{l-1}^{\tau \tau^{\prime}}\left(X_{l-1}^{\tau^{\prime} \tau} M_{l}^{\tau}-M_{l}^{\tau^{\prime}} X_{l}^{\tau^{\prime} \tau}\right) \pm\left(X_{l-1}^{\tau \tau^{\prime}} M_{l}^{\tau^{\prime}}-M_{l}^{\tau} X_{l}^{\tau \tau^{\prime}}\right) X_{l}^{\tau^{\prime} \tau}\right\}-m\left\{X_{l}^{\tau \tau^{\prime}}\left(X_{l}^{\tau^{\prime} \tau} Z_{l}^{\tau}-Z_{l}^{\tau^{\prime}} X_{l}^{\tau^{\prime} \tau}\right)\right.} \\
& \left.\quad \pm\left(X_{l}^{\tau \tau^{\prime}} Z_{l}^{\tau^{\prime}}-Z_{l}^{\tau} X_{l}^{\tau^{\prime}}\right) X_{l}^{\tau^{\prime} \tau}\right\}-\left[(l+1)^{2}-m^{2}\right]^{1 / 2}\left\{X_{l+1}^{\tau^{\prime},}\left(X_{l+1}^{\tau^{\prime} \tau} P_{l}^{\tau}-P_{l}^{\tau^{\prime}} X_{l}^{\tau^{\prime} \tau}\right) \pm\left(X_{l+1}^{\tau \tau^{\prime}} P_{l}^{\tau^{\prime}}-P_{l}^{\tau} X_{l}^{\tau \tau^{\prime}}\right) X_{l}^{\tau^{\prime} \tau}\right\} . \tag{5.14}
\end{align*}
$$

In the present context, this reduces, with the help of (2.7), (2.8), and (5.12), to

$$
\begin{align*}
& i\left[\Gamma_{0}, \Gamma_{3}\right]_{l m}=\left(F_{3}-4 H_{3} \Delta_{1}\right)_{l m}, \tag{5.15}\\
& i\left\{\Gamma_{0}, \Gamma_{3}\right\}_{l m}=\left(F_{-} H_{+}-H_{-} F_{+}\right)_{l m} .
\end{align*}
$$

Since (5.13) also holds, it is then easy to verify from (3.2) that we have the following identities on V :

$$
\begin{align*}
& {\left[\Gamma_{\mu}, \Gamma_{v}\right]=-i J_{\mu v}+4 i \tilde{J}_{\mu v} \Delta_{1}} \tag{5.16a}\\
& \left\{\Gamma_{\mu}, \Gamma_{\nu}\right\}=2 g_{\mu \nu}\left(\Delta_{2}+\frac{1}{4} I\right)-\left\{J_{\mu \sigma}, J_{v}{ }^{\sigma}\right\} \tag{5.16b}
\end{align*}
$$

where, as usual,

$$
\begin{align*}
& J_{p q}=\epsilon_{p q r} H_{r}, \quad J_{0 p}=-J_{p 0}=F_{p} \\
& \tilde{J}_{\mu \nu}=\frac{1}{2} \epsilon_{\mu v \rho \sigma} J^{\rho \sigma} . \tag{5.17}
\end{align*}
$$

(Here latin subscripts run over 1,2,3; Greek over $0,1,2,3$. We use the summation convention and set $J^{\rho \sigma}=g^{\rho \sigma} g^{\sigma \beta} J_{\alpha \beta}$. The metric tensor $g_{\mu \nu}=g^{\mu \nu}$ is diagonal, with $g_{00}=-g_{11}$ $=-g_{22}=-g_{33}=1$; and the alternating tensor has ϵ_{0123} $=-1$.)

It is noteworthy that the indentities (5.16) are exactly those proved by Bracken ${ }^{7}$ for the family of four-vector operators based on the direct sum of the irreducible representations $\left[\frac{1}{2}, l_{1}\right]$ and $\left[\frac{1}{2},-l_{1}\right], l_{1} \in \mathrm{C}$. These identities have some interesting consequences. Since Δ_{1} can never vanish in the present context (as $l_{0} l_{1} \neq 0$), it follows that we never obtain the so($5, \mathbb{C})$ commutation relations

$$
\begin{equation*}
\left[\Gamma_{\mu}, \Gamma_{\nu}\right]=-i J_{\mu \nu} \tag{5.18}
\end{equation*}
$$

In fact, an analysis similar to that of Cant ${ }^{8}$ shows that an infinite-dimensional Lie algebra will be generated by the Γ_{μ} in the present situation.

Supposing that (1.1) holds (with κ a number), the identity (5.16b) implies that, for sufficiently smooth ψ,

$$
\begin{equation*}
\left(\frac{1}{4} \partial^{\mu} \partial_{\mu}+\omega^{\mu} \omega_{\mu}\right) \psi=-\varkappa^{2} \psi \tag{5.19}
\end{equation*}
$$

where $\omega_{\mu}=\widetilde{J}_{\mu \nu} \partial^{v}$ is the Pauli-Lubanski vector operator, so that

$$
\begin{align*}
\omega^{\mu} \omega_{\mu} & =\frac{1}{2} J_{\mu \nu} J^{\mu \nu} \partial_{\sigma} \partial^{\sigma}-J_{\mu \sigma} J_{\nu}{ }^{\sigma} \partial^{\mu} \partial^{v} \\
& =\Delta_{2} \partial_{\sigma} \partial^{\sigma}-\frac{1}{2}\left\{J_{\mu \sigma}, J_{v}{ }^{\sigma}\right\} \partial^{\mu} \partial^{v} . \tag{5.20}
\end{align*}
$$

If ψ is a wave function for a particle with mass m_{l} and $\operatorname{spin} l$, then we will also have

$$
\begin{align*}
& \partial^{\mu} \partial_{\mu} \psi=-\mathbf{m}_{l}^{2} \psi \tag{5.21a}\\
& \omega_{\mu} \omega^{\mu} \psi=-l(l+1) m_{l}^{2} \psi \tag{5.21b}
\end{align*}
$$

and (5.19) then implies that

$$
\begin{equation*}
m_{l}^{2}=\kappa^{2} /\left(l+\frac{1}{2}\right)^{2} \tag{5.22}
\end{equation*}
$$

in agreement with (5.8). Equation (5.19) also determines the nature of generalized mass-spin relations for lightlike and spacelike solutions of (1.1). In this connection we remark that it can be seen from (5.16b) that ($\Gamma_{0}+\Gamma_{p}$) and $\Gamma_{p}(p=1,2,3)$ are not diagonalizable, unlike Γ_{0}.

VI. CONCLUDING REMARKS

The structure of indecomposable representations of $\operatorname{sl}(2, \mathbb{C})$ is rich and interesting from a mathematical point of view. Because of the central role played by this Lie algebra and associated group in relativistic physics, we might expect
that the theory of its indecomposable representations should be of relevance to applications as well. However, it must be said that, following the present work and that of Ref. 17, it is by no means clear that relativistic wave equations of the form (1.1), based on such representations, are likely to prove useful in physics.

In the case of singular indecomposable representations, we have shown that a variety of four-vector operators and corresponding wave equations can be constructed, corresponding to the great variety of such representations, labeled by ladder diagrams as in Sec. II, and we do not claim to have exhausted the possibilities, even under the restrictive conditions (1)-(3) imposed in Sec. IV. Our main objective has been to produce illustrative examples. Only for a very restricted subclass of representations (corresponding to straight row diagrams) did we find examples with Γ_{0} not nilpotent, although even then there is a considerable variety of possibilities, as we have seen in Sec. V. However, these all lead to mass-spin spectra of the Majorana type, a dissappointing result from the point of view of potential applications.

It could be that the solutions of (1.1), in cases based on indecomposable representations, ought to be interpreted, in general, in a different way than in cases based on irreducible representations. For example, we could consider ψ to belong to the representation $\left[\frac{1}{2} \rightarrow \frac{3}{2}\right] \oplus\left[\frac{1}{2} \rightarrow-\frac{3}{2}\right]$. (See Sec. II.) The subspace $U \subset V$,

$$
U=\underset{1>\frac{3}{2}}{\oplus} V_{l}
$$

is then invariant under the action of the $\operatorname{sl}(2, \mathbb{C})$ algebra. Moreover, since Γ_{0} leaves each V_{l} invariant, U is also invariant under the action of Γ_{0} and therefore, by (3.2), of all Γ_{μ}. It is also invariant under the action of κ if that is a multiple of the identity operator on V. The component in U of each ψ satisfying (1.1) could then be "factored out" in order to construct an unusual "gauge description" of a massive spin- $\frac{1}{2}$ particle, i.e., we could regard as physically equivalent two ψ 's that differed only on U. Whether this would lead to new physics would depend on how the infinite component wave function (field) could be coupled to other fields.

Another possibility is that the equations (1.1) of interest here are not those with κ nonsingular, as usually considered, but rather ones with singular κ, associated with gauge descriptions of massless particles. Singular scalar operators arise naturally in the present context. For example, it follows from (2.12) that the operator whose matrix on $V_{l m}$ is a_{0} for $l<\left|l_{1}\right|$ and a_{1} for $l \geqslant\left|l_{1}\right|$, is a nilpotent $\operatorname{sl}(2, \mathrm{C})$ scalar, as is the operator whose matrix is zero for $l<\left|l_{1}\right|$ and δ for $l \geqslant\left|l_{1}\right|$.

Alternatively, these interesting representations of sl($2, \mathbb{C}$) may of course have applications to physics, not involving relativistic wave equations (1.1) at all. ${ }^{13,14,16}$ In any event, we hope to have made their study more accessible.
${ }^{\text {'I. M. Gel'fand and A. M. Yaglom, Zh. Eksp. Teor. Fiz. 18, 703, 1096, } 1105}$ (1948); I. M. Gel'fand, R. A. Minlos, and Z. Ya. Shapiro, Representations of the Rotation and Lorentz Groups and their Applications (Pergamon, Oxford, 1963).
${ }^{2}$ J. K. Lubanski, Physica 9, 310 (1942); see also H. J. Bhabha, Rev. Mod Phys. 17, 200 (1945)
${ }^{3}$ Harish-Chandra, Phys. Rev. 71, 793 (1947).
${ }^{4}$ A. Cant and C. A. Hurst, J. Aust. Math. Soc. B 20, 446 (1978).
${ }^{5}$ F. L. Bauer, Sitzb. Bayer. Akad. Wiss, 13, 111 (1952).
${ }^{6}$ M. Lorente, P. L. Huddleston, and P. Roman, J. Math. Phys. 14, 1495 (1973).
${ }^{7}$ A. J. Bracken, J. Phys. A 8, 800 (1975).
${ }^{8}$ A. Cant, J. Math. Phys. 23, 354 (1982).
${ }^{9}$ A. Cant, J. Math. Phys. 22, 870, 878 (1981).
${ }^{10}$ A. Cant and Y. Ne'eman, J. Math. Phys. 26, 3180 (1985).
${ }^{11}$ A. O. Barut, C. K. E. Schneider, and R. Wilson, J. Math. Phys. 20, 2244 (1979).
${ }^{12}$ As far as we are aware, representations of the group $\operatorname{SL}(2, \mathrm{C})$ have not been constructed, corresponding to the singular indecomposable representations of $\operatorname{sl}(2, \mathbb{C})$ presented in Ref. 15, except in the simplest nontrivial cases of operator-irreducible representations, as discussed, for example, in Ref. 19.
${ }^{13}$ P. A. M. Dirac, Proc. R. Soc. London Ser. A 183, 284 (1945).
${ }^{14}$ P. A. M. Dirac, Int. J.Theor. Phys. 23, 677 (1984).
${ }^{15}$ I. M. Gel'fand and V. A. Ponomarev, Usp. Mat. Nauk 23, 3 (1968); translated in Russ. Math. Surveys 23, 1 (1968).
${ }^{16}$ C. M. Bender and D. J. Griffiths, Phys. Rev. D 1, 2335 (1970); 2, 317 (1970); J. Math. Phys. 12, 2151 (1971).
${ }^{17}$ L. Hlavaty and J. Niederle, J. Math. Phys. 22, 1775 (1981); see also Czech. J. Phys. B 29, 283 (1978).
${ }^{18}$ I. M. Gel'fand, M. I. Graev, and N. Ya. Vilenkin, Generalized Functions (Academic, New York, 1966), Vol. 5.
${ }^{19}$ W. Ruhl, The Lorentz Group and Harmonic Analysis (Benjamin, New York, 1970).
${ }^{20}$ B. Gruber, Proc. R. Irish Acad. A 82, 13 (1972); B. Gruber and R. Lenczewski, J. Phys. A 16, 3703 (1983); T. S. Santhanam, in Group Theoretical Methods in Physics, Proceedings of the 14th International Colloquium, edited by Y. M. Cho (World Scientific, Singapore, 1987).
${ }^{21}$ See, for example, A. Bohm, in Lectures in Theoretical Physics, edited by A O. Barut and W. E. Brittin (Gordon and Breach, New York, 1968), Vol. 10B.
${ }^{22}$ Other matrix square roots seem either to be inconsistent with the requirements of (2.1), or to correspond to replacing the label l_{1} by $-l_{1}$.
${ }^{23}$ A. J. Bracken, Phys. Rev. D 10, 1168 (1974).
${ }^{24}$ A. S. Wightman, in Invariant Wave Equations, Lecture Notes in Physics, Vol. 73, edited by G. Velo and A. S. Wightman (Springer, New York, 1978).
${ }^{25}$ It would be possible also to consider the coupling of singular and nonsingular indecomposable representations. This has not been attempted.
${ }^{26}$ MUMATH is a trademark of The Soft Wharehouse, Hawaii.
${ }^{27}$ V. Bargmann, Math. Rev. 10-583, 4 (1949).

[^0]: ${ }^{\text {a }}$ Present address: Department of Industry, Technology and Commerce, GPO Box 9839, Canberra, Australia.

