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Abstract  

Attributes of the built environment can positively influence physical activity of urban populations, 

which results in health and economic benefits. In this study, we derived scenarios from the literature 

for the association built environment-physical activity and used a mathematical model to translate 

improvements in physical activity to health-adjusted life years and health care costs. We modelled 

28 scenarios representing a diverse range of built environment attributes including density, diversity 

of land use, availability of destinations, distance to transit, design and neighbourhood walkability. 

Our results indicated potential health gains in 20 of the 28 modelled built environment attributes. 

Health care cost savings due to prevented physical activity-related diseases ranged between 

A$2,800to A$99,600per 100,000 adults per year. On the other hand, additional health care costs of 

prolonged life years attributable to improvements in physical activity were nearly 50 percent higher 

than the estimated health care costs savings.  Our results give an indication of the potential health 

benefits of investing in physical activity-friendly built environments.  
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1 Introduction 

In Australia, just over half of the adult population meets the recommended physical activity  (PA) 

guidelines (Australian Bureau of Statistics 2015b). This is a public health concern, given the strong 

evidence of a causal association between low levels of physical activity and ischemic heart disease, 

stroke, colon cancer, breast cancer in women, and type 2 diabetes (Bull et al. 2004).  The high 

prevalence of physical inactivity  in Australia  is taking its toll with nearly 10,000 premature deaths 

and 31,000 years lived with disability annually (Institute for Health Metrics and Evaluation 2015a).  A 

physically inactive population also represents an economic burden for the society by means of high 

health care costs and loss of productivity (Pratt et al. 2012).  

Population levels of physical activity could be increased via multilevel approaches that include the 

individual, institutional, community, and built and policy environments (Sallis et al. 2012). The built 

environment (BE), defined as those elements of the environment that are man-made, including 

transportation systems, urban planning, and individual buildings (World Health Organization 2009 p. 

28), has drawn increasing attention to its effect on health. This is reflected in the exponential growth 

over recent years of studies investigating the links between physical activity and built environment 

attributes (Eichinger et al. 2015; Grasser et al. 2013; Kramer et al. 2013; McCormack & Shiell 2011; 

Van Holle et al. 2012). These studies have shed light on the effect of the built environment on levels 

of physical activity. However, demonstrating the potential health value of built environments that 

faciliatate physical activity may help to convince policy makers to consider health impacts in project 

appraisals. 

In recent years, a number of quantitative studies have been conducted to predict health and 

economic outcomes of built environment interventions. Health impact assessment (HIA) studies 

mostly investigated hypothetical or policy scenarios, including health impacts via physical activity, air 

pollution, and road injuries. For example, Woodcock and colleagues developed the Integrated 

Transport and Health Impact Modelling (ITHIM) tool and applied it to assess transport and urban 

form scenarios in the United Kingdom (UK), Europe, India and the United States (Centre for Diet and 

Activity Research 2015). In one of the applications of ITHIM, three alternative urban land transport 

scenarios (low-carbon emission motor vehicles, increased active travel and a combination of both) 

were assessed for London, UK and Delhi, India (Woodcock et al. 2009). The findings from this study 

indicated that decreased use of motor vehicles and more active travel produced the highest health 

benefits with 7,332 averted disability-adjusted life years in London and 12,516 in Delhi on average 

per year per million population. A recent systematic review of HIAs and economic evaluations 

assessing mode shifts towards active transport found that in most of the included studies, health 

benefits from physical activity outweighed other potential health harms of active transport (e.g. 
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road injuries and greater exposure to air pollution) (Mueller et al. 2015). The literature in the field is 

now advancing towards more specific scenarios linking built environment to physical activity, 

followed by health impact assessments and economic evaluations as opposed to basing prediction 

on hypothetical scenarios.  For instance, a recent study conducted cost-benefit analyses (CBAs) of 

proposed built environment changes designed to improve walkability in three different 

communities:  one urban, one suburban, and one rural (Mansfield & Gibson 2015). In this study 

estimates for the association between a walkability score and sidewalk density were used to predict 

changes in walking for transport. The study found that the health benefits of the built environment 

projects exceeded the project costs in the urban area and the rural town, with benefit-cost ratios of 

20.2 (95% CI:  8.7-30.6) and 4.7 (95% CI:  2.1-7.1).  The suburban project's costs exceeded benefits by 

40% (benefit-cost ratio= 0.6, 95% CI 0.3-0.9).  Unlike the urban and rural projects, the suburban 

project involved only the installation of sidewalks, without other improvements such as addition of 

walking destinations, in an area that was lacking in destinations. Gibson and colleagues recently 

developed a simulation model linking changes in the built environment to time spent walking which 

was translated into health and economic outcomes (2015).  The study results indicated potential 

economic benefits of US$ 234 million (95% CI: US$53-US$393 million) attributable to decreased 

mortality and diseases prevalence. A benefit-cost ratio of 29 (95% CI: 6.5-48) was estimated 

including only the cost of sidewalk infrastructure.   

In Australia, building and maintaining healthy places has become a priority given the rising levels of 

chronic diseases (National Preventative Health Taskforce 2009). Creating healthy built environments 

is already on the agenda of health professionals, who are working closely with urban planners to 

influence city designs that support healthy lifestyles (Thompson, Kent & Lyons 2014). However, for 

the inclusion of physical activity in urban and transport projects, context specific estimates for the 

association built environment-physical activity, in combination with agreed methods to determine 

the health benefits of physical activity are required.  

In this study, we quantified physical activity-related improvements in mortality and morbidity 

measured in health-adjusted life years (HALYs) associated with specific built environment attributes 

along with potential savings/increases in health care costs for the Australian context. The results can 

serve as a reference for the inclusion of physical activity-related health outcomes in the appraisal of 

built environment projects. This research originated as an initiative from the Centre for Population 

Health, Government of New South Wales (NSW), to demonstrate the potential costs and benefits of 

changes in urban form (built environment).  
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2 Methods 

We reviewed the Australian literature assessing the association BE-PA for the adult population and 

used reported effect estimates to quantify the potential health benefits and health care costs 

associated with improving population levels of PA attributable to the BE. There are three sections to 

our analysis: (1) selection of BE attributes; (2) estimation of change in PA attributable to the BE 

expressed as average minutes of PA per week across the population;  and (3) translation of changes 

in population levels of PA into HALYs gained and health care costs, using a mathematical model. We 

explain each step in turn (Figure 1).  

 

Figure 1 Analytical framework of the process of quantifying HALYs and health care costs of 
changes in exposure to selected built environment attributes.  

 

Selection of built environment attributes 

We reviewed the current Australian literature for the association BE-PA for the adult population (18 

years +) (For complete review see Zapata-Diomedi and Veerman (2016)). Given the wide diversity of 

BE attributes reported, we grouped them in seven categories, including five of the six “D’s” from 

Ewing and Cervero (2010) (density, diversity of land use, availability of destinations, distance to 

transit, and design) plus measures of safety and neighbourhood walkability. We assessed studies for 

the quality of their design, representativeness of the data, and control for confounding variables 

using tools applied for similar purposes (Grasser et al. 2013). We only modelled attributes from 

studies of good and fair quality that measured the BE objectively and were based on samples of over 

1,000 individuals.   
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Estimation of changes in physical activity 

Three types of measures for the association BE-PA were used in the source literature: (1) odds ratios 

for the likelihood of doing PA for a given BE exposure (Christian et al. 2011; Knuiman et al. 2014; 

Learnihan et al. 2011; Owen et al. 2010; Wilson et al. 2011); (2) beta coefficients for the additional 

time or sessions of PA for a given BE exposure (Giles-Corti et al. 2013; Koohsari et al. 2014; 

McCormack et al. 2012) and (3) marginal probabilities of doing  PA for those exposed compared to 

non-exposed to a given BE attribute (McCormack et al. 2012). Given the diversity of reporting styles 

we applied different methods to translate effect estimates into average population change in 

minutes of PA per week.  

Two steps were required to translate OR into average additional minutes of PA across the 

population. Firstly, we converted OR into relative risks (RR) to estimate the additional proportion 

doing PA if exposed to an alternative BE. We used the formula proposed by Grant (2014) which was 

developed by Zhang and Yu (1998) to convert OR to RR (Formula 1).  

(1) 𝑅𝑒𝑙𝑎𝑡𝑖𝑣𝑒 𝑅𝑖𝑠𝑘 =
𝑂𝑑𝑑𝑠 𝑟𝑎𝑡𝑖𝑜

(1−𝑝0+(𝑝0∗𝑂𝑑𝑑𝑠 𝑟𝑎𝑡𝑖𝑜))
  

Here, 𝑝0is the incidence of the outcome of interest in the non-exposed group (physical activity 

among those not exposed to the built environment of interest). None of the source studies provided 

information for 𝑝0, hence we assumed that this was equivalent to the prevalence of PA for the 

sample under consideration (sample prevalence physical activity in Table 4 in Results section). Our 

assumption is likely to be an over estimation of 𝑝0 (we would expect that those not exposed would 

be less physically active), therefore we conducted a sensitivity analysis to explore the impact of 

alternative assumptions (see univariate sensitivity analysis). Secondly, we assumed that those taking 

up PA would increase the weekly dose to reach the level equivalent to the sample mean PA (sample 

weekly dose of physical activity in Table 4 in Results section).  We conducted a sensitivity analysis to 

test our results to the assumption made on additional minutes (see univariate sensitivity analysis). 

RR and sample mean minutes of PA per week were then applied to calculate the change in average 

minutes of PA across the population (Formula 2). The first component of the left hand side of the 

formula indicates the additional proportion doing PA if exposed to an alternative BE which is then 

multiplied by the sample baseline minutes of PA to obtain the average change in minutes of PA 

across the population.  

(2) ∆ 𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑚𝑖𝑛𝑢𝑡𝑒𝑠 𝑜𝑓 𝑃𝐴 𝑎𝑐𝑟𝑜𝑠𝑠 𝑡ℎ𝑒 𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 = (𝑅𝑅 ∗ 𝑆𝑎𝑚𝑝𝑙𝑒 𝑝𝑟𝑒𝑣𝑎𝑙𝑒𝑛𝑐𝑒 𝑃𝐴 −

𝑆𝑎𝑚𝑝𝑙𝑒 𝑝𝑟𝑒𝑣𝑎𝑙𝑒𝑛𝑐𝑒 𝑃𝐴) ∗ 𝐵𝑎𝑠𝑒𝑙𝑖𝑛𝑒 𝑚𝑖𝑛𝑢𝑡𝑒𝑠 𝑝𝑒𝑟 𝑤𝑒𝑒𝑘 
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Beta coefficients were reported for three scenarios from two studies (Giles-Corti et al. 2013; 

Koohsari et al. 2014) and we interpreted them as the average increase in time/sessions of PA per 

week across the population for a given change in exposure. For instance, a study reported that every 

additional transport destination (Giles-Corti et al. 2013) within 800-1600 metres of a person’s 

residence was associated with an average increase in 5.8 minutes of walking per week. In our 

scenario, we assumed that the whole population would have one such additional destination.  

Thirdly, McCormack and colleagues (2012) reported the marginal effect of changes in the BE on the 

proportion of the population that did any walking, as well as the change in the average minutes per 

week walked among the walkers. Where this was the case, we incorporated both effects in our 

calculation of the change in minutes walked across the population. 

A number of included studies presented effect sizes for more than one PA threshold (e.g. 

walk>30/60/90 mins/wk.), domain (PA for transport, recreation or both) or more than one model 

were used. All decisions regarding chosen effect sizes are presented in Table S1 of the 

Supplementary Material. 

Mathematical model 

We translated changes in average minutes of PA across the adult population into undiscounted 

HALYs using an updated version of the mathematical model developed for the Assessing Cost 

Effectiveness in Prevention (ACE-prevention) project (Cobiac, Vos & Barendregt 2009). Using 2010 as 

the base year, we discounted 3% per annum to health care costs (Gold 1996).The Supplementary 

Material (Section 2.2) gives a detailed description of the model and input parameters. 

The mathematical model uses a macro simulation approach based on the proportional multi-state 

life table. It calculates changes in the occurrence of PA related diseases and ‘health adjusted life 

years’ (HALYs) (Barendregt et al. 1998).  One HALY is the equivalent of one year in full health that is 

gained due to avoidance of disease (adjusted for severity) and postponement of death. The analysis 

is conducted by comparing health outcomes associated with a ‘status quo’ scenario against those in 

an alternative scenario in which PA levels are changed. Health outcomes were calculated from 

changes in the occurrence of diseases causally related to PA (ischemic heart disease, stroke, type 2 

diabetes, breast cancer and colon cancer) (Danaei et al. 2009). Incidence rates for each disease are 

modified via potential impact fraction (PIF) calculations, which gives the proportional change in 

incidence as a function of a change in exposure, using the “relative risk shift” method (Barendregt & 

Veerman 2010) (See Figure S2 in the Supplementary Material).  That is, rather than proportions 

moving to higher PA categories (e.g. from inactive to insufficiently active), the population remains in 
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the same category (inactive, insufficiently active, etc.) but the risk of disease is reduced for that 

category. Changing incidence rates has an impact on the number of prevalent cases in the future and 

consequently mortality and years lived with disability (compared to the base case scenario).  To 

calculate the PIF we used information for PA prevalence and RRs before and after an improvement 

in PA. Danaei et al. (2009) proposed a four-tier dose-response for PA and health outcomes: highly 

active (≥1,600 Metabolic Equivalents of Task minutes (MET-minutes)/wk. and 1h/wk of vigourous 

PA), recommended level active (600≤MET-minutes/wk. ≤1,600 and 1 h of vigorous PA/wk. or 2.5 h of 

moderate PA/wk.), insufficiently active (0<MET-minutes/wk. ≤600 or <2.5 h/wk of moderate PA) and 

inactive (no moderate or vigorous PA). PA prevalence was derived from mean minutes spent in a 

usual week doing moderate PA, vigorous PA, walking for transport and walking for recreation, with 

the included categories being mutually exclusive (Australian Bureau of Statistics 2015a). We 

translated population mean minutes of PA per week into MET-minutes, applying intensity values 

from the physical activity compendium (Ainsworth et al. 2011). We fitted linear functions to 

reported RRs (Danaei et al. 2009) with decreasing levels of risk  associated with increasing levels of 

weekly energy expenditure (mean METs per week) (Cobiac, Vos & Barendregt 2009).  We tested the 

sensitivity of our results by assuming an alternative non-linear dose-response function. The source 

studies  lacked of information regarding likelihood of doing PA according to PA membership; hence 

we assumed that all groups (inactive, insufficiently active, etc.) increased PA equally. Furthermore, 

given the nature of our macro approach for modelling health outcomes we modelled the “average 

change in PA” rather than individual change. Those in the highly active group (≥1,600 MET-min/wk.) 

had a relative risk of one in the source literature, implying no additional benefit from extra physical 

activity (Danaei et al. 2009).   

The model requires baseline age and sex specific epidemiological and demographic data, prevalence 

of the risk factor (PA), relative risks for PA related diseases, MET-minutes values and health care 

costs (Table 1). Given that type 2 diabetes is a risk factor for cardiovascular disease, relative risks 

were applied to incorporate the increased risk of ischemic heart disease and stroke among those 

with type 2 diabetes. To avoid double counting, we reduced the direct effect of PA on ischemic heart 

disease and stroke commensurately, using correction factors from the Global Burden of Disease 

(GBD) study (GBD 2013 Risk Factors Collaborators 2015). Health care costs for PA-related diseases 

were calculated by dividing total cost related to a disease by the number of incident cases (breast 

cancer and colon cancer) or prevalent cases (ischaemic heart disease, stroke and type 2 diabetes). 

Health care costs for the modelled diseases are from the original ACE-prevention study, which used 

data from the Disease Costs and Impact Study 2001 prepared by the Australian Institute of Health 

and Welfare, inflated with the Health Price Index (Australian Institute of Health and Welfare 2014). 



8 
 

Health care costs due to any other diseases that occur across the life course are estimated in the 

same fashion (if an intervention prolongs people’s lives, they spend more in health care).  

Table 1 Proportional multi-state life table inputs 

Input parameter Source 

2010 mortality rates and population numbers Australian Bureau of Statistics (2013, 2014) 

2010 epidemiological data (prevalence, 
incidence, case fatality and mortality)a 

Institute for Health Metrics and Evaluation 
(2015b)  

Prevalence of physical activity (Supplementary 
Material Figure S3) 

National Nutrition and Physical Activity Survey 
Basic Confidentialised Unit Record File (CURF) 
(Australian Bureau of Statistics 2015a) 

Physical activity related diseases relative risk 
(Supplementary Material Table S2) 

Danaei et al. (2009)  

Relative risks of ischaemic heart disease and 
ischaemic stroke due to diabetes 
(Supplementary Material Table S2) 

Asia Pacific Cohort Studies Collaboration 
(2003) 

Mediating effect factors for diabetes in the 
association physical activity-ischemic heart 
disease/ischemic stroke 

GBD 2013 study (GBD 2013 Risk Factors 
Collaborators 2015p. 711 Supplementary 
Material) 

MET-minutes (walking 3.5 and cycling 5) Ainsworth et al. (2011) 

Health care costs (Supplementary Material 
Tables S3 and S4) 

ACE-prevention study 

a. Epidemiological data for the five physical activity related diseases (ischemic heart disease, stroke, type 2 
diabetes, colon cancer and breast cancer in women) were derived with the help of DISMOD II (available free of 
charge at http://www.epigear.com/index_files/dismod_ii.html) to obtain data in metrics not explicitly 
reported (incidence and case fatality from prevalence and mortality).  

Uncertainty and sensitivity analyses 

Ninety-five percent uncertainty intervals were determined for all outcome measures by Monte Carlo 

simulation (2,000 iterations), using the Excel add-in tool Ersatz (Epigear, Version 1.33). Uncertainty 

parameters are presented in Table 2.  

Table 2 Uncertainty parameters for evaluation health effects 
Parameter  Mean (SE) Distribution Source 

Relative Risks of 
diseases 

See Table S2 in 
Supplementary 
Material  

Normal (Ln 
RR) 

Physical activity: (Danaei et 
al. 2009) Diabetes: (Asia 
Pacific Cohort Studies 
Collaboration 2003) 

Health care costs 
See Table S3 and S4 
in Supplementary 
Material  

Uniform 

Australian Institute of 
Health and Welfare Impacts 
Study 2001. 
Maximum/minimum 
assumed at ±25% of mean 
value 

Mediating effect 
diabetes on ischemic 
heart disease (IHD) and 
stroke 

IHD: 0.14 (0.02) 
Stroke: 0.08 (0.03) 

Normal 
GBD 2013 Risk Factors 
Collaborators (2015p. 711 
Supplementary Material) 

Minutes per week See Table 4  Lognormal 
Koohsari et al. (2014); 
McCormack et al. (2012) 

Odds ratios See Table 4 Lognormal 
See Table 4 studies 
reporting Odds ratios 
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We tested our results to the sensitivity of a number of assumptions we had to make given the lack of 

information provided in the studies reporting the modelled scenarios as well as decisions inherent to 

our mathematical model. To translate OR into additional minutes per week we made two 

assumptions, one on the 𝑝0  value used in Formula 1 and the other on the additional minutes per 

week for those increasing PA. We tested the sensitivity of results of varying both parameters 

upwards and downwards. We also tested the sensitivity of our results to discounting HALYs and 

using a higher rate for health care costs.Given the increasing literature suggesting a curvilinear 

association for PA with specific diseases (Sattelmair et al. 2011) we modelled an alternative scenario 

assuming that PA is log linearly associated with a power transformation in MET minutes per week 

(0.75) (See Figures S4 and S5 in the Supplementary Material). Lastly, we produced estimates without 

taking into account the mediating effect of diabetes in the association PA-cardiovascular disease.  A 

summary of sensitivity analyses performed is presented in Table 3.    

Table 3 Univariate sensitivity analyses 
Parameter  Base case  Sensitivity 

Physical activity estimates 

Sample weekly dose 
of physical 
activity/Effect 
estimatea 

 
See Table 4 

±50% 

𝑝0 (see formula 1) 
Sample prevalence physical activity 
(see Table 4)  

-20% 

Mathematical model 

Discount rate health 
outcomes and health 
care costs 

0% health and 3% health care costs 
per annum 

3% health effects and 6% health care 
costs (Tan-Torres Edejer 2003) 

PA RR Linear 
Log-linear with power transformation of 
MET-mins/wk. 

Potential impact 
factor 

N/A 
Exclude mediation effect of diabetes in 
the association physical activity-
cardiovascular disease 

N.B 1000 iterations for Monte Carlo simulation  
a. In the study by Giles-Corti et al. 2013 only p-values were reported from which we could not derive 
uncertainty parameters, hence we applied sensitivity analysis to the additional minutes per week as a result of 
increases in the number of destinations.  

3 Results 

Scenarios 

We modelled a total of 28 scenarios from eight studies (Christian et al. 2011; Giles-Corti et al. 2013; 

Knuiman et al. 2014; Koohsari et al. 2014; Learnihan et al. 2011; McCormack et al. 2012; Owen et al. 

2010; Wilson et al. 2011) in density (n=3), diversity (n=2), design (n=7), destinations (n=6), distance 

to transit (n=4) and walkability indices (n=6). No studies for the safety category met the inclusion 

criteria. We present evaluated scenarios in Table 4 (e.g., density, diversity, etc.), detailing the change 
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in the built environment assessed (see Supplementary Material Table S5 for studies’ details). 

Besides, we provide information on the outcome measured in the scenarios (e.g. walking, cycling) 

and measures of effect (odds ratios, beta coefficients and marginal effects + beta coefficients). 

Reported baseline data for the sample prevalence of PA and sample weekly dose of PA served to 

translate OR to additional minutes of PA per week as explained in the methods section.  
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Table 4 Built environment attributes modelled 

Category Scenario/Study/Location Change in built environment attribute Outcome 

 

Effect 
estimate 

(SE) 

Baseline data 

Measure of 
effect 

Sample 
prevalence 

physical 
activity 

 

Sample 
weekly 
dose of 
physical 
activity 

D
EN

SI
TY

 

Density/ Christian et al. 
(2011)/Perth (WA) 

Density standardised to z-scores. One unit increase in 
density (1 SD) represents an increase of 8 dwellers per 
ha.d within a participant’s 1.6 km network service area 

Any walking Odds Ratio 1.04 (0.06)a 62% 93.5 

Density/Knuiman et al. 
(2014)/Perth (WA) 

Density standardised to z-scores. One unit increase in 
density (1 SD) represents an increase of 8 dwellers per 
ha.e  within a participant’s 1.6 km network service 
area 

Walking for 
transport 

Odds Ratio 0.96 (0.09) a 33% 18.75f 

Density/Wilson et al 
(2011)/Brisbane (QLD) 

Decrease from 9205 (mean lowest quintile) to 650 
(mean highest quintile) average size of residential 
zone lande within a one-kilometre radius of 
participant’s residence 

Any walking Odds Ratio 1.37 (0.12) a 23% 30g 

D
IV

ER
SI

T
Y

 

Land use mix 
(LUM)i/Christian et al. 
(2011)/Perth (WA) 

LUM standardised to z-scores. One unit increase in 
the LUM represents an increase in 0.15 units in 
diversityd within a participant’s 1.6 km network 
service area  

Walking for 
transport 

Odds Ratio 1.15 (0.05) a 26 % 26 

LUMi/Knuiman et al. 
(2014)/Perth (WA) 

LUM standardised to z-scores. One unit increase in 
the LUM represents an increase in 0.15 units in 
diversitye within a participant’s 1.6 km network 
service area 

Walking for 
transport 

Odds Ratio 1.33 (0.07) a 33% 18.75f 

D
ES

IG
N

 

Connectivity/ 
Christian et al. (2011)/Perth 
(WA) 

Connectivity standardized to z-scores. One unit 
increase represents an increase of 18 three or more 
ways intersections per km2 d within a participant’s 1.6 
km network service area  

Walking for 
transport 

Odds Ratio 1.15 (0.06) a 26 % 26 
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Connectivity/ 
Koohsari et al. 
(2014)/Adelaide (SA) 

Increase from 1 to 10 intersections (3-way or more) 
per km2. Mean 245 (range 12 to 901) within a 
participant’s Census Collection Districts (CCD) area. 

Walking for 
transport 

Beta 
coefficient 

0.27 (0.06)b   

Connectivity/ 
Knuiman et al. (2014)/Perth 
(WA) 

Connectivity standardized to z-scores. One unit 
increase represents an increase of 18 three or more 
ways intersections per km2 e within a participant’s 1.6 
km network service area 

Walking for 
transport 

Odds Ratio 1.13 (0.06) a 33% 18.75 f 

Connectivity/ 
Wilson et al 
(2011)/Brisbane (QLD) 

Increase from 4 (mean lowest quintile) to 51 (mean 
highest quintile) 4-way intersectionse within a one-
kilometre radius of participant’s residence 

Any walking Odds Ratio 1.44 (0.13) a 23% (43%) 30g 

Sidewalks/ 
McCormack et al. 
(2012)/Perth (WA) 

10 km. increase in sidewalk availability within a 
participant’s 1.6 km network service area 

Transport 
walking 

Marginal 
effect 
+Beta 

coefficient 

2.97%c, 5.38 
(3.01)c 

  

Off road bikeways/Wilson 
et al (2011)/Brisbane (QLD) 

Increase from 0 km.  (mean lowest quintile) to 7 km.   
(mean highest quintile) of off road bikewayse within a 
one-kilometre radius of participant’s residence 

Any walking Odds Ratio 1.34 (0.11) a 23% 30g 

Street lights/Wilson et al 
(2011)/Brisbane (QLD) 

Increase from 315 (mean lowest quintile) to 783 
(mean highest quintile) of street lights within a one-
kilometre radius of participant’s residence 

Any walking Odds Ratio 1.25 (0.12) a 23% 30g 

D
ES

TI
N

A
TI

O
N

S 

Transport destinations/ 
Giles-Corti et al. 
(2013)/Perth (WA) 

Per increase in one transport destination (after 

relocation)/ Post office, bus stops, delicatessens, 

supermarkets within 800 m of participant’s residence 

and train stations, shopping centres or CD and DVD 

stores within 1.6 km 

Transport 
walking 

Beta 
coefficient 

5.8h   

Recreation destinations/ 
Giles-Corti et al. 
(2013)/Perth (WA) 

Per increase in one recreational destination (after 
relocation)/ Beaches within 800 m of participant’s 
residence and parks and sport fields within 1.6 km 

Recreational 
walking 

Beta 
coefficient 

17.6h   

Distance to retail/Wilson et 
al. (2011)/Brisbane (QLD) 
 

From a retail zone within >1 km to one within >0.2 km 
within the street network distance in kilometres from 
a participant’s residence 

Any walking Odds Ratio 1.46 (0.13) a 23% 30g 

Distance to parks/Wilson et 
al. (2011)/Brisbane (QLD) 
 

From a park zone land within >1 km to one within 
>0.2 km within the street network distance in 
kilometres from a participant’s residence 

Any walking Odds Ratio 
1.08 (0.13) a 

 
23% 30g 

Destinations/ Knuiman et 
al. (2014)/Perth (WA) 

From =<3 to 4-7 general destinations (services, 
convenience stores and public open spaces) 

Transport 
walking 

Odds Ratio 1.08 (0.15) a 33% 18.75 f 
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accessible along the street network within 1.6 km 
from participant’s residence  

Destinations/ 
Knuiman et al. (2014)/Perth 
(WA) 

From =<3 to 5-15 general destinations (services, 
convenience stores and public open spaces) 
accessible along the street network within 1.6 km 
from participant’s residence 

Transport 
walking 

Odds Ratio 1.40 (0.21) a 33% 18.75 f 

D
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Bus stops/Knuiman et al. 
(2014)/Perth (WA) 

From 0-14 to 5-19 general destinations bus stops 
accessible along the street network within 1.6 km 
from participant’s residence 

Transport 
walking 

Odds Ratio 1.99 (0.16) a 33% 18.75 f 

Bus stops/ 
Knuiman et al. (2014)/Perth 
(WA) 

From 0-14 to =>30 general destinations bus stops 
accessible along the street network within 1.6 km 
from participant’s residence 

Transport 
walking 

Odds Ratio 2.33 (0.20) a 33% 18.75 f 

Train station/ 
Knuiman et al. (2014)/Perth 
(WA) 

Train station accessible along the street network 
within 1.6 km from participant’s residence 

Transport 
walking 

Odds Ratio 1.79 (0.29) a 33% 18.75 f 

Transit stops/ 
Wilson et al. 
(2011)/Brisbane (QLD) 

Access to the nearest transit stop within >0.2 km 
compared to >1 km within the street network 
distance in kilometres from a participant’s residence 

Any walking Odds Ratio 1.34 (0.16) a 23% 30g 

W
A

LK
A

B
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Y
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D
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Walkability indexj/ 
Christian et al. (2011)/Perth 
(WA) 

Increase in one unit in the index (z-score) within a 
participant’s 1.6 km network service area 

Any walking Odds Ratio 1.06 (0.02) a 62% 93.5 

Walkability indexk-
Suburb/Learnihan 
(2011)/Perth (WA) 

Highly walkable compared to low within a 
participant’s suburb area 

Transport 
walking 

Odds Ratio 1.63 (0.15) a 36% 26 

Walkability indexk- Census 
Collection District (CCD) 
scale/Learnihan 
(2011)/Perth (WA) 

Highly walkable compared to low within a 
participant’s CCD area 

Transport 
walking 

Odds Ratio 2.07 (0.13) a 36% 26 

Walkability indexk-15 mins 
walk scale/ Learnihan 
(2011)/Perth (WA) 

Highly walkable compared to low within a 
participant’s 15 minutes walking area 

Transport 
walking 

Odds Ratio 2.79 (0.15) a 36% 26 

Walkability indexj/ 
McCormack et al. 
(2012)/Perth (WA) 

Increase in one unit in the index (z-score) within a 
participant’s 1.6 km network service area 

Transport 
walking 

Marginal 
effect 
+Beta 

coefficient 

2.16%c , 3.32 
(6.21)c 
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Walkability indexk/Owen et 
al. (2010)/Adelaide (SA) 

High compared to low within a participant’s CCD area Any cycling Odds Ratio 1.82 (0.19) a 14% 10 

a. Odds ratio (OR) (SE(lnOR)). Standard errors were estimated from the confidence interval applying the formula proposed on page 33 of Ersatz user guide (Barendregt 
2012). 
b. β coefficient from negative binomial regression converted into additional minutes per week by multiplying by 10 which represented the minimum walking time for a trip 
(outcome assessed). Similar procedure was followed to estimate the standard error (Koohsari et al. 2014). 
c. Two stage modelling approach: Probit regression to estimate marginal probabilities followed by OLS to estimate β for additional walking minutes (McCormack et al. 
2012). 
d. We assumed that the information provided by Knuiman et al. for the value of 1SD applies here as both studies are based on the same data set (RESIDential Environment 
Study (RESIDE)).  
e. Study authors provided information for the value of the mean and SD of the built environment attributes assessed. 
f. Average trips over 4 data collections by trip time of 15 minutes (Knuiman et al. 2014). 
g. Lower bound walking range assessed (see Table S1 Supplementary Saterial). 
h. β coefficient from Generalize Linear Mixed Models representing the effect of one unit change in the continuous independent variable on the continuous outcome 
(walking). 
i. LUM includes the following land uses: ‘Residential’, ‘Retail’, ‘Office’, ‘Health, welfare and community’ and ‘Entertainment, culture and recreation’ land use classes 
(Christian et al. 2011). 
j. Walkability index based on three built environment characteristics: residential density, street connectivity and land use mix.  
k. Walkability index based on four built environment characteristics: residential density, street connectivity, land use mix and retail floor area.  
WA: Western Australia; QLD: Queensland; SA: South Australia
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Health outcomes 

In the following paragraphs we present findings per 100,000 adults per year for HALYs gained for the 

28 evaluated scenarios. There was large variability in the results, most of which can be attributed to 

the different reporting methods in the source literature for the association BE-PA. All results are 

presented in Table 5 and discussed in the following paragraphs.  

Density  

Only one of the three density scenarios indicated statistically significant results for health outcomes, 

with estimated HALYs gained of 1.98 for a decrease from 9,205m2 to 650m2 of average residential 

zone land per hectare (10,000 m2) (Wilson et al.’s scenario). Wilson and colleagues’ scenario 

represents approximately an increase from 1 to 15 dwellings/ha.1, which is considerably higher than 

the increase in 8 dwelling/ha. for the scenarios from Knuiman et al. and Christian and colleagues. 

Despite the scenarios derived from Knuiman and co-authors and Christian et al. being based on the 

same study (RESIDential Environment Study (RESIDE)), their results differed. One possible 

explanation is that Knuiman et al. evaluated walking for transport whereas for Christian and co-

authors we used estimates for walking for any purpose (see Table S1 of the Supplementary 

Material). Further, the estimate from Knuiman et al. was based on longitudinal data collected over 

four waves whereas Christian et al. used baseline data. 

Diversity 

On average, an improvement in diversity represented by one unit increase in the composite measure 

of LUM, within the area of 1.6 km street network from a participant’s residence, could potentially 

accrue 0.94 HALYS gained (scenario derived from Christian et al.) to 1.37 (scenario derived from 

Knuiman et al.). The interpretation of improvement in LUM is rather difficult. However, the source 

information did not allow us to translate such change into an explicit scenario (see explanation i 

from Table 4). While both estimates of effect of LUM on PA are based on the same study, the same 

conceptual definition of LUM, and the same physical activity outcome (walking for transport), the 

results are different. The odds ratio from the longitudinal analysis by Knuiman and colleagues (see 

Table 4) and prevalence of walking for transport at the baseline are greater to those in the cross-

sectional study by Christian et al. This implies a greater proportion taking up walking for transport in 

the scenarios based on the analysis by Knuiman et al. However, the additional weekly dose of 

                                                           
1 If the average residential land size is 650m2, there would be approximately 15 houses in a hectare 
(10,000/650=15.38), whereas only one house fits in a hectare for an average land size of 9,205m2 
(10,000/9250=1.08),  
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transport in the scenario derived from Knuiman and co-authors is smaller than that in the scenario 

resulting from Christian et al.  

Design 

Seven scenarios for measures of design were evaluated, including connectivity (the number of 

intersections within an area), availability of sidewalks or bikeways, and number of street lights. The 

average HALYs gained from improvements in connectivity ranged from 0.56 for an increase of 18 

three- or more- way intersections per km2 (scenario derived from Knuiman et al.) to 3.03 for an 

increase from 1 to 10 three- or more- ways intersections per km2 (scenario derived from Koohsari et 

al.). In Wilson et al. walking for any purpose was evaluated, whereas in the rest of the scenarios the 

outcome was walking for transport purposes. The mean HALYs gained for increases in the availability 

of sidewalks and off-road bikeways ranged from 1.85 for a change in the availability of bikeways 

from none to 7 km (scenario derived from Wilson et al.’s study) to 4.82 for an additional 10 km of 

sidewalk (scenario resulting from McCormack et al.’s analysis) within the neighbourhood area 

defined in the source studies. In the scenario by McCormack and colleagues, walking for transport 

was evaluated, whereas any walking was the outcome in Wilson et al.’s analysis. Lastly, an 

improvement in street lights from 315 to 783 within 1 km from a participant’s residence accrues on 

average 1.36 HALYs gained (Wilston et al.) as a result of improvements in walking for any purpose. 

However, the estimate for Wilson et al.’s scenario includes 0 in the uncertainty interval. 

Destinations 

Improvements in walking for transport, in the scenarioderived from Giles-Corti, resulted in HALYs 

gains of 6.53 for an increase in one transport destination within the area of 1.6 km street network 

from a participant’s residence.  Increasing general destinations was not associated with statistically 

significant changes in walking based on Knuiman et al.’s scenarios. Providing an additional 

recreational destination within 1.6 km street network from residence accrues 19.81 HALYs in the 

scenario based on Giles Corti and colleagues’ study.  In Wilson et al., having a retail zone within less 

than 0.2 km compared to less than 1 km results in potential HALYs gained of 2.45. Also, Wilson et al. 

provided a scenario for an improvement in access to park land, from one within 1 km to one within 

less than 0.2 km, however, they did not find a statistically significant association.  

Distance to transit 

Two of the  three scenarios derived from Knuiman et al. for improvements in the availability of 

transit stops indicated health benefits due to increased walking for transport. Increasing the 

availability of bus stops, from less than 14 to 15-19 within 1.6 km street network from residence, 
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translates into HALYs gained of 3.39. Slightly higher HALY gains of 4.14 can be achieved if the 

improvement is up to more than 30 bus stops.  

Walkability  

All six evaluated scenarios indicated health benefits in terms of HALYS gained for improvements in 

measures of walkability within the studies’ defined neighbourhood areas. Average values from 

improvements in walking for transport, ranged from 3.23 HALYs for an increase in one unit in the 

standardised walkability index for the scenario derived from McCormack et al.’s, to 7.2 for an 

improvement from low to high walkability in the scenario resulting from Learnihan and colleagues’ 

analysis (15 minutes area scale). In Christian et al., an increase in one unit in the standardised 

walkability index would potentially accrue on average 1.44 HALYs due to improvements in walking 

for any purpose. Lastly, in Owen and co-authors benefits from improvements in cycling were 

modelled, with results indicating HALY gains of 1.56 for a change from low to high walkability.    

Health care costs 

Savings in health care costs per year for PA-related diseases ranged from A$1,558 to A$99,568per 

100,000 adults. On the other hand, health care costs in added life years were approximately 50% 

higher than the savings obtained by having to treat fewer cases of PA related disease in earlier years, 

even after discounting at 3% (Table 5). It is important to note that there is great uncertainty in the 

health care costs estimates. 
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Table 5 HALYs, health care costs savings and health care costs in added life years per 100,000 people per year for built environment scenarios 

Changes in built environment attribute HALYs 
Health care costs 

(A$ 2010)a 
Health care costs in added life years 

(A$ 2010)a 

Density. + 1 SD (Christian et al. 2011) 0.95 (-1.75 to 3.7) -$4,713 (-$21,286 to $9,380) $6,836 (-$12,808 to $28,544) 

Density. + 1 SD (Knuiman et al. 2014) -0.17 (-1.01 to 0.72) $813 (-$3,784 to $5,754) -$1,182 (-$7,490 to $5,173) 

Density.  From 650 sqm2 to 9205 sqm2 average 
size of residential zone land within 1 km radius of 
residence (Wilson et al. 2011)  1.98 (0.33 to 3.75) -$9,837 (-$22,844 to $875) $14,200 ($1,481 to $28,946) 

Land use mix. + 1 SD (Christian et al. 2011) 0.94 (0.24 to 1.71) -$4,634 (-$10,158 to $420) $6,703 ($870 to $12,986) 

Land use mix. + 1 SD (Knuiman et al. 2014) 1.37 (0.65 to 2.11) -$6,813 (-$13,186 to $434) $9,851 ($2,651 to $16,316) 

Connectivity.  + 1 SD (Christian et al. 2011)  0.94 (0.19 to 1.69) -$4,642 (-$10,306 to $487) $6,695 ($741 to $13,121) 

Connectivity. Increase from 1 to 10 intersections 
(3-way or more) (Koohsari et al. 2014) 3.03 (2.29 to 3.43) -$15,028 (-$23,449 to $1093) $21,729 ($7,362 to $27,232) 

Connectivity.  + 1 SD (Knuiman et al. 2014)  0.56 (0.02 to 1.09) -$2,790 (-$6,478 to $449) $4,036 (-$113 to $8,378) 

Connectivity. From 4 to 51 four-way intersections 
(Wilson et al 2011) 2.34 (0.64 to 4.22) -$11,662 (-$25,706 to $692) $16,836 ($2,463 to $32,579) 

Sidewalk. 10 km increase in sidewalk. (McComack 
et al. 2012) 

4.82 (2.91 to 8.65) -$24,224 (-$52,545 to $32) $34,653 ($11,337 to $65,230) 

Bikeways. From 0 km to 7km (mean highest 
quintile) of off road bikeways (Wilson et al 2011) 1.85 (0.41 to 3.47) -$9,150 (-$20,974 to $708) $13,215 ($1,674 to $26,576) 

Street lights. From 315 to 783 street lights (Wilson 
et al 2011) 1.36 (-0.13 to 3.05) -$6,732 (-$17,833 to $1699) $9,722 (-$1,251 to $23,179) 

Destinations. + 1 transport destination  (Giles-Corti 
et al. 2013) 

6.53 (5.02 to 7.25) -$32,812 (-$50,726 to $45) $46,971 ($16,988 to $57,660) 

Destinations.  + 1 recreational destination (Giles-
Corti et al. 2013) 

19.81 (15.22 to 

22.01) 
-$99,568 (-$153,929 to $130) $142,537 ($51,560 to $174,973) 

Destinations. From retail zone land within >1km to 
>0.2km (Wilson et al. 2011) 2.45 (0.74 to 4.4) -$12,189 (-$26,972 to $857) $17,609 ($3,411 to $34,273) 

Destinations. From park zone land within >1km to 
>0.2km (Wilson et al. 2011) 0.44 (-1.04 to 2.13) -$2,228 (-$12,429 to $5458) $3,175 (-$7,444 to $15,693) 
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Changes in built environment attribute HALYs 
Health care costs 

(A$ 2010)a 
Health care costs in added life years 

(A$ 2010)a 

Destinations. From =<3 to 4-7 (Knuiman et al. 
2014) 0.32 (-1.09 to 1.82) -$1,558 (-$10,026 to $5851) $2,282 (-$8,013 to $13,904) 

Destinations. From =<3 to 8-15 (Knuiman et al. 
2014) 1.56 (-0.52 to 3.73) -$7,735 (-$21,746 to $3514) $11,200 (-$3,971 to $28,523) 

Bus stops. From 0-14 to 15-19 (Knuiman et al. 
2014) 3.39 (1.67 to 5.22) -$16,852 (-$31,583 to $1168) $24,342 ($6,754 to $39,916) 

Bus stops. From 0-14 to =>30 (Knuiman et al. 
2014) 4.14 (2.02 to 6.33) -$20,546 (-$39,917 to $1686) $29,656 ($8,697 to $48,995) 

Train station. Railway station present within 1.6km 
compared to no rail way station (Knuiman et al. 
2014) 2.74 (-0.12 to 5.83) -$13,630 (-$34,381 to $3616) $19,691 (-$1,404 to $44,171) 

 Transit stop. From one within >1km to one within 
>0.2km (Wilson et al. 2011) 1.87 (-0.25 to 4.47) -$9,320 (-$25,001 to $2598) $13,473 (-$1,972 to $33,758) 

Walkability index. + 1SD (Christian at al. 2011) 1.44 (0.28 to 2.67) -$7,119 (-$15,704 to $755) $10,312 ($1,270 to $20,446) 

Walkability index neighbourhood scale. High 
walkable compared to low (Learnihan et al. 2011) 3.36 (1.2 to 5.55) -$16,704 (-$33,948 to $800) $24,086 ($4,054 to $42,223) 

Walkability index CCD scale. High walkable 
compared to low (Learnihan et al. 2011)  5.12 (2.94 to 7.24) -$25,446 (-$45,885 to $1787) $36,754 ($11,128 to $55,864) 

Walkability index 15 minutes area scale. High 
walkable compared to low (Learnihan et al. 2011) 7.2 (4.78 to 9.58) -$35,737 (-$61,919 to $2692) $51,646 ($16,012 to $74,379) 

Walkability index. + 1SD (McCormack et al. 2012) 3.23 (1.63 to 8.89) -$16,156 (-$46,915 to $20) $23,170 ($6,143 to $65,448) 

Walkability index. High walkable compared to low 
(Owen et al. 2010) 1.56 (0.45 to 2.91) -$7,744 (-$17,630 to $622) $11,180 ($1,834 to $22,081) 

 

a.  Negative figures represent costs savings
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3.1 Results from sensitivity analyses 

The results are sensitive to some of the assumptions made in this study. Firstly, results are sensitive 

to the assumption around the number of additional minutes per week for scenarios derived from 

studies reporting odds ratios. Increasing or decreasing the dose of physical activity for those taking 

up walking or cycling as a result of a change in the built environment by 50%, translates to 

proportional changes in the estimated health and health care costs values (Tables S6 and S7 of the 

Supplementary Material). Similar sensitivity results were obtained from scenarios derived from 

studies reporting beta coefficients for which we did not have uncertainty parameters (destinations 

scenarios from Giles-Corti et al.). A lower value for p0 (20% lower) (incidence physical activity in the 

non-exposed) used in the formula to translate odds ratios into relative risks resulted in an upper 

variation in the estimated values ranging from 5% to 33% (Supplementary Material Table S8). 

Notably, the scenarios for density and walkability derived from Christian et al. were the most 

sensitive, which can be attributed to the high level of p0 (refer to Table 4 Sample prevalence physical 

activity). Excluding the mediating effect of diabetes on cardiovascular diseases results in slightly 

higher estimates, 9% for HALYs gained and PA-health care costs savings and 10% for health care 

costs in added life years (Supplementary Material Table S9).  Applying a 3% per annum discount rate 

for health outcomes results into a decrease of 40% in potential HALYs gained (Supplementary 

Material Table S10). Discounting health care costs at a higher rate (6%) results in lower estimates 

ranging from 20% to 35% (Table S11 Supplementary Material). Lastly, changing the shape of the 

dose response function for PA with health outcomes to a curvilinear dose-response has a major 

impact with results doubling in some cases (Supplementary Material Table S12).  

4 Discussion  

To our knowledge, this is the first study that attempts to estimate the potential health gains and 

health care cost savings associated with specific attributes of the built environment for the 

Australian context. Past studies specific to Australia provided general estimates of economic value 

per kilometre walked or cycled that included both mortality and morbidity measures of 

improvements in PA (Mulley et al. 2013; Transport for New South Wales 2013). However, these 

general estimates do not specify what built environment attributes need to be targeted to achieve 

these benefits. The results from our research add to the existing literature by producing a series of 

health and economic values for specific changes to the built environment based on well-established 

methods of the proportional multi-state life table (Barendregt et al. 1998).  Our estimates could be 



21 
 

used to incorporate the value of physical activity-related health outcomes in HIAs and economic 

evaluations of interventions to the built environment.  

Overall, 20 of the 28 modelled scenarios indicated potential annual health benefits represented by 

HALYs gained per 100,000 adults per year. Most of the health benefits in terms of HALYs gained 

presented in Table 5 ranged from 1 to 7 per 100,000 adults exposed to an improvement in the built 

environment per year. The greatest majority of results for savings in health care costs of 

improvements in PA related disease ranged between A$4,634 and A$35,737 per 100,000 adults per 

year. Additional health care costs in added life years ranged mostly between A$9,851 and A$51,646 

per 100,000 people (+18) per year.  Our estimates are specific to the data collection areas in three 

main Australian cities (Brisbane, Perth and Adelaide). However, in the absence of locally derived 

alternatives, they could be used as a reference for other metropolitan areas with similar 

characteristics.  

To our knowledge, no other studies have evaluated the potential health outcomes in terms of 

health-adjusted life years of improvements in the BE. Boarnet, Greenwald and McMillan (2008) did 

perform an analysis that had mortality as outcome measure. They used regression analysis on travel 

survey data from Portland, Oregon, to quantify the impact of built environment attributes 

(population/jobs density, number of intersections and distance to business centre) on distance 

walked and translated improvements in walking to lives saved. Their results suggested that at a 

minimum 0.0031 to 0.0912 lives per 1000 people per year would be saved from improvements in the 

BE towards more walkable places. These figures translate into 0.31 to 9.12 lives saved per year per 

100,000 people. Even though our estimates are not directly comparable as we adjust life years 

gained for disability, these include the range estimated by Boarnet and colleagues.  

Quantifying the potential health and health care costs attributable to improvements in the BE 

involved a number of challenging assumptions. To assess the potential impact on results of these 

assumptions, we conducted an extensive sensitivity analysis. The greatest majority of studies 

reported results in terms of the odds of doing physical activity for those exposed to the assessed BE 

feature, compared to those not exposed, without indicating the dose. The only exception was the 

study by McCormack et al. (2012), which assessed not only the marginal probability for an individual 

walking if exposed to an environmental attribute, but also the change in the average weekly dose 

among those walking. As presented in our sensitivity results, our estimates are highly sensitive to the 

assumption of the dose of PA for scenarios derived from studies reporting odds ratios. Our estimates 

are also sensitive to discounting HALYs and variations in the discounting rate for health care costs. 

However, the choice of discount rate is dependent on the agency carrying out the evaluations, 

hence; it is not an issue of empirical uncertainty but of choice.  Whether health should be discounted 
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has been debated in the past, with some literature suggesting applying the same rate as cost as well 

as conducting sensitivity analyses (Gold 1996) while others recommend not discounting health 

outcomes (Murray et al. 2012).  Discounting the future is a common practice for monetary costs to 

account for people’s time preference (individuals would rather have something good today than 

something good in the future, and the reverse for something bad) (Commonwealth of Australia 

2006; Drummond et al. 2005), but is controversial when applied to the health of others, or of future 

generations.  Applying alternative dose-response function for the effect of physical activity on health 

outcomes has a great impact on results. However, past studies also indicated major variations in 

results depending on the dose-response function used (Woodcock, Givoni & Morgan 2013).  

Some further limitations related of this study should be discussed. Firstly, the diversity in the ways in 

which different studies report their findings for the relationship of built environment with physical 

activity outcomes hinders direct comparison and pooling, and in some cases insufficient information 

is provided to enable meaningful interpretation. The use of more uniform measurement methods 

for both exposure (instruments used and domains measured) and physical activity would facilitate 

pooling and comparability of results. Furthermore, the great variability of measurements methods 

and results of PA exposure has a large impact in our estimated results. Secondly, there is potentially 

some imprecision in the measurement of exposure in the source studies, which leads to ‘regression 

dilution bias’, that is, improved measurement of relevant exposures (i.e., BE attributes) may lead to 

larger, more precise effect estimates. A further limitation is that the greatest majority of scenarios 

are based on cross-sectional studies, which does not allow for a direct causal interpretation. The 

association can be due to the built environment influencing physical activity; this is the hypothesis 

underlying this research. Alternatively, it could be due to physically active people choosing to live in 

neighbourhoods that facilitate that behaviour. By adjusting for self-selection, some studies try to 

avoid this ‘reverse causal’ interpretation. McCormack and Shiell (2011) systematically reviewed the 

international literature for the relationship BE-PA and found that adjusting for self-selection tended 

to diminish the strength of the associations, but only to a small extent. Nonetheless, the associations 

could be due to other (observed or unobserved) factors causing both (confounding). Most studies 

use statistical adjustment to minimise the impact of measured factors. From the literature we do not 

know whether those taking up physical activity due to an intervention may respond by 

simultaneously reducing other forms of physical activity. Along this analysis, we made the 

assumption that there was no substitution effect, as has been done in the past (Boarnet, Greenwald 

& McMillan 2008). In our model, the proportion of the population that is sufficiently active (~25%) 

receives no benefit from additional physical activity, which may led to underestimation of health 

impact. Also, there is growing evidence suggesting a causal association between PA and dementia 
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which were not included in our estimates resulting into a potential under estimation of outcomes 

(Blondell, Hammersley-Mather & Veerman 2014; Hamer & Chida 2009).  

Conclusion 

In this research we produced estimates for the physical activity-related health benefits of specific 

built environment attributes, and the economic value in terms of health care costs these represent. 

To our knowledge, there has been no study in the past that has attempted to demonstrate the 

potential health and economic value of such a broad range of specific built environment attributes. 

The results of this study can be incorporated into  health impact assessments and cost-benefit 

analyses conducted to inform infrastructural developments. 
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