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Abstract. It is shown that the semi-classical limit of solutions to the Klein–Gordon
equation gives the particle probability density that is in direct proportion to the inverse
of the particle velocity. It is also shown that in the case of the Dirac equation a different
result is obtained.
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1. Introduction

The semi-classical limit of the relativistic quantum mechanics can be introduced in
the same way as the semi-classical limit of solutions to the Schroedinger equation.
The purpose of this report is to consider one-dimensional stationary states and
show the properties of the semi-classical limit of solutions to the Klein–Gordon and
Dirac equations.

2. Partitioning the Klein–Gordon equation

Substitution

ψ = R exp(iθ/~), (1)

where R and θ are real, is used in the Klein–Gordon equation

(
i~

∂

∂t
− eφ

)2

ψ = c2
(
−i~∇− e

c
A

)2

ψ + m2
0c

4ψ. (2)
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In this way eq. (2) is partitioned into equations

c2
(
∇θ − e

c
A

)2

−
(

∂θ

∂t
+ eφ

)2

+ m2
0c

4 − c2~2 1
R

∆R + ~2 1
R

∂2R

∂t2
= 0

(3)

and

c2R∆θ −R
∂2θ

∂t2
+ 2c2∇R · ∇θ − 2

∂R

∂t

∂θ

∂t
− 2eφ

∂R

∂t
= 0. (4)

Equation (3) is the relativistic Hamilton–Jacobi equation with two additional
quantum terms. Equation (4) is a relativistic continuity equation.

For a stationary state substitution (1) can be also written as

ψ = R exp(−iEt/~) exp(iθ∗/~), (5)

where θ = −Et + θ∗. In substitution (5) constant E and functions θ∗ and R are
real and do not depend on time. This allows equation

−∂θ/∂t = E. (6)

3. Semi-classical limit of the Klein–Gordon equation – Unbound states

Wave function (5) can describe both unbound and bound stationary states. In the
case of unbound stationary states the energy of the particle E and the external
potential φ satisfy condition E−eφ > 0, and R and θ∗ are non-sinusoidal functions
of x. The fact that R does not depend on time, condition (6), condition A = 0 and

~→ 0 (7)

applied in (3) and (4) written for one dimension give equations

−(E − eφ)2 + c2

(
∂θ∗

∂x

)2

+ m2
0c

4 = 0 (8)

and

R
∂2θ∗

∂x2
+ 2

∂R

∂x

∂θ∗

∂x
= 0. (9)

Equation (9) can be rearranged as

2
∂R

R
= −∂(∂θ∗/∂x)

∂θ∗/∂x
(10)

and solved for R. This gives formula
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R2 = KKG 1
|∂θ∗/∂x| , (11)

where KKG > 0 is a constant. |∂θ∗/∂x| can be expressed using (8)
∣∣∣∣
∂θ∗

∂x

∣∣∣∣ =
1
c

√
(E − eφ)2 −m2

0c
4, (12)

and then applied in (11). This yields equation

R2 =
cKKG

√
(E − eφ)2 −m2

0c
4
. (13)

In the Klein–Gordon theory the charge density is defined as

ρKG
e =

ie~
2m0c2

(
ψ∗

∂ψ

∂t
− ψ

∂ψ∗

∂t

)
− e2φ

m0c2
ψ∗ψ. (14)

Substitution (1) and condition (6) applied in (14) reduce (14) to

ρKG
e =

e

m0c2
R2(E − eφ). (15)

Since the expression in the brackets in (15) can acquire both positive and negative
values, the particle probability density introduced as

ρKG = ρKG
e /e (16)

can be defined only for cases where E−eφ > 0. The fact that the particle probability
density defined with (16) is meaningful and useful for cases where E − eφ > 0 has
been demonstrated by Marx [1] and by the present author [2]. For one-dimensional
unbound, or scattering problems E−eφ > 0. Hence it is possible to use the particle
probability density defined by (16).

Formula (13) is now used in (15), and that is used in (16) to give

ρKG =
KKG(E − eφ)

m0c
√

(E − eφ)2 −m2
0c

4
. (17)

The law of the energy conservation for a relativistic particle in a static potential
field can be expressed with equation

E = eφ +
m0c

2

√
1− v2/c2

, (18)

where v is the velocity of the particle. The expression for 1/v obtained from (18) is

1
v

=
1
c

(E − eφ)√
(E − eφ)2 −m2

0c
4
. (19)

Matching (19) with (17) is achieved by putting KKG = m0.
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The derivation of eq. (17) started with eqs (3) and (4). Another way to (17) is
to use the Klein–Gordon equation for stationary states

(E − eφ)2ψ = −~2c2∆ψ + m2
0c

4ψ. (20)

Substitution (5) in (20) partitions (20) into relations

(E − eφ)2R = −~2c2

(
∆R−R

(
1
~
∇θ∗

)2
)

+ m2
0c

4R (21)

and

2∇R · ∇θ∗ + R∆θ∗ = 0. (22)

Equations (21) and (22) at condition (7) written for one dimension reduce to (8)
and (9). Therefore, eqs (21) and (22) also lead to eqs (13) and (17).

4. Semi-classical limit of the Klein–Gordon equation – Bound states

For bound stationary states we will consider only the region where E − eφ > 0.
Outside this region the charge density function reverses its sign. However, this is
not a problem because in limit (7) the value of function R2 outside region E−eφ > 0
and therefore also the charge density (15) rapidly approach zero.

For bound stationary states, R in eq. (5) inside region E − eφ > 0 is a si-
nusoidal function of x, and θ∗ in (5) becomes a constant. Considering this, for
one-dimensional bound stationary states we substitute R as

R = R0 cos
(

1
~
θ0

)
, (23)

where R0 and θ0 are real non-sinusoidal functions of x. Substitution (23) is applied
in (5). Then (5) and condition θ∗ = const. are applied in (20), which gives equation

(E − eφ)2R0 cos
(

1
~
θ0

)

= −~2c2

(
d2R0

dx2
−R0

1
~2

(
dθ0

dx

)2
)

cos
(

1
~
θ0

)

−~2c2

(
−2

dR0

dx

1
~

dθ0

dx
−R0

1
~

d2θ0

dx2

)
sin

(
1
~
θ0

)
+ m2

0c
4R0 cos

(
1
~
θ0

)
.

(24)

It is obvious that for the points x where cos(θ0/~) = 0, sin(θ0/~) is not zero.
Therefore, for those points the expression in (24) that is multiplied by sin(θ0/~)
has to be zero. This leads to equation

2
dR0

dx

dθ0

dx
+ R0

d2θ0

dx2
= 0. (25)

150 Pramana – J. Phys., Vol. 65, No. 1, July 2005



Semi-classical limit of relativistic quantum mechanics

For the points x in (24) where sin(θ0/~) = 0, cos(θ0/~) is not zero, and for those
points we get

(E − eφ)2R0 = −c2

(
~2 d2R0

dx2
−R0

(
dθ0

dx

)2
)

+ m2
0c

4R0. (26)

In limit (7) the number of points where the values of cos(θ0/~) and sin(θ0/~) are
zero, increases without restriction and the distance between any two such adjacent
points becomes infinitely small. Therefore, in limit (7) functions R0 and θ0 have
to satisfy both (25) and (26) where the quantum term is neglected. However, eqs
(25) and (26) are the same as eqs (9) and (8). Hence (25) and (26) give (13)
and (17). Equations (13) and (17) are thus valid for both bound and unbound
one-dimensional problems.

5. Semi-classical limit of the Dirac equation

The Dirac equation is a differential equation for a four-component column matrix
function ψ

i~
∂ψ

∂t
=

(
cα ·

(
−i~∇− e

c
A

)
+ m0c

2β + eφ
)

ψ. (27)

The charge density that follows from (27) is given with expression

ρDir
e = e

∑
µ

ψ+
µ ψµ, (28)

where µ = 1, ..., 4. The integral of charge density (28) is always of the same sign as
e, and for bound stationary problems it is equal to e.

Let us write the coordinate dependent parts of functions ψµ as

ψµ = Rµ exp
(
− i

~
Et

)
exp

(
i

~
θ∗µ

)
(29)

for one-dimensional scattering problems, or, as

ψµ = R0µ cos
(

1
~
θ0µ

)
exp

(
− i

~
Et

)
exp

(
i

~
θ∗µ

)
(30)

for one-dimensional bound stationary problems. (Note that functions θ∗µ in (29)
are not constants, but the same functions in (30) are assumed to be constants.
Compare this with assumptions about functions in eqs (5) and (23).) Since each
function ψµ has to satisfy the Klein–Gordon equation, the semi-classical limit of
each of the four terms in the right side of (28) will behave as the right side of eq.
(13). In this way (28) divided by e gives expression

ρDir =
ρDir

e

e
=

c
∑

µ KKG
µ√

(E − eφ)2 −m2
0c

4
. (31)
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If the dimensions of the physical quantities balance in (17), they cannot balance in
(31). Hence (31) has to be corrected. To achieve this, (31) is rewritten as

ρDir =
ρDir

e

e
=

Dc
∑

µ KKG
µ√

(E − eφ)2 −m2
0c

4
, (32)

where the value of D is 1 but its dimensions allow to balance (32).
The right side of eq. (32) does not comply with the right sides of eqs (17) and

(19). Therefore, the Dirac particle probability density of one-dimensional stationary
problems at condition (7) is not directly proportional to the inverse of the particle
velocity.

6. Non-relativistic limit

For velocities smaller than the velocity of light, eqs (17) and (19) should reduce to
the corresponding formulae of non-relativistic mechanics.

Classical equivalents of eqs (17) and (19) are equations

ρSchr = R2
Schr =

KSchr√
2(EClass − U)

(33)

and

1
v

=
√

m0

2(EClass − U)
, (34)

where the subscript ‘Schr’ and ‘Class’ stand for the words ‘Schroedinger’ and ‘clas-
sical’. Equation (33) is obtainable from the Schroedinger equation. Equation (34)
comes from the law of the energy conservation in classical mechanics

EClass − U =
1
2
m0v

2.

Equations (17) and (19) reduce into eqs (33) and (34) if we put U = eφ and
E = m0c

2 + EClass and then neglect both U and EClass with respect to E and
m0c

2.
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