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I 

 

Abstract 

 

Metal chalcogenides, such as IV-VI and V-VI compounds (SnTe, Bi2Te3, Bi2Se3), are 

ideal candidates for applications in thermoelectricity and topological (crystalline) 

insulators. This PhD thesis focuses on the controllable synthesis of metal 

chalcogenide nanostructures via chemical vapour deposition method (CVD), and on 

the understanding of the crystal structure, growth mechanism, and structure-property 

correlation in the as-grown nanomaterials. IV-VI and V-VI compounds have attracted 

extensive research interest because of their excellent thermoelectric properties and 

exotic physical properties. Nevertheless, there still exist unresolved issues that 

prevent the further applications of IV-VI and V-VI nanomaterials by rational design, 

including (1) it is still difficult to grow these nanomaterials with controllable 

morphology and (2) crystal structure; (3) limited investigations of their growth 

mechanisms; (4) limited study on structure-property relationships in the 

nanostructures. Therefore, in this thesis, the controllable growth technique, growth 

mechanism and structure-property relation in IV-VI and V-VI based nanostructures 

are explored. The objective is achieved in the following steps: 

 Realizing the morphological control of the nanostructures. (i) By catalyst 

engineering in Au-catalysed CVD. For SnTe nanostructures, catalyst composition 

was found to be a key factor controlling the morphology. AuSn catalysts induce 

growth of triangular SnTe nanoplates, whereas Au5Sn catalysts result in <010> 

SnTe NWs. For Bi2Se3 nanostructures, catalyst-nanostructure interface was 

found to have an impact on their growth directions. A {0001} interface between 

the catalyst/nanostructure induces the growth of {0001} NWs, while when the 

interface is not defined, <  112̅0  > nanoribbons are grown. (ii) By doping in 

catalyst-free CVD. It has been found that Bi doping induces a switch of dominant 

surface facet in SnTe nanostructures, from {100} to {111}. This transition is driven 

by surface-energy minimization according to our energetic calculation results, 

which suggests that incorporation of Bi dopant reduces the surface energy of 

{111}Te facet in SnTe. 

 Realizing the crystal-structure control of the nanostructures. Bi dopant was found 

to be an essential parameter that can control the crystal structure of SnTe based 

nanostructures. Bi dopants promote the formation of Sn planar vacancies in Sn1-



 

 

II 

 

xBixTe nanoribbons. The density of the planar vacancies can be engineered by 

varying the Bi concentration. Through combination of sub-ångström-resolution 

imaging and calculation within density functional theory, these planar vacancies 

are found to be associated with Bi segregation, which significantly lowers the 

formation energies of the vacancies. The planar vacancies exhibit polymorphic 

structures with local variations in lattice relaxation level, determined by their 

proximity to nanoribbon surface.  

 Understanding the growth mechanism. For the growth of Bi2Se3, Au catalyst was 

found to initiate the nucleation of nanostructures by absorbing V vapour species 

(Bi) via a vapour-solid-solid mechanism. For growth of SnTe, the catalyst was 

found to preferentially absorb IV resources (Sn) to form Au-Sn alloy particles to 

initiate the nanostructure growth, where both vapour-solid-solid and vapour-

liquid-solid mechanisms may dominate.  

 Understanding the structure-property correlation. (i) By experimental 

measurement of individual nanostructures. Bi2Te3 and Bi2Se3 have a layered 

rhombohedral crystal structure. Within each quintuple layer, atoms are joined by 

strong covalent bonding. While between neighboring quintuple layers, the 

interaction is only weak van der Waals. This anisotropic bonding is expected to 

result in a strong anisotropy in electronic properties. We demonstrate that such 

electronic anisotropy may be enhanced in nanoscale samples, by comparing the 

conductivities of <0001> and <112̅0> grown Bi2Se3 nanostructures using an in-

situ TEM-STM facility. The conductivity anisotropic ratio at nanoscale is found to 

be ~50 times larger than their bulk counterparts. (ii) By electronic-structure 

calculation within density functional theory in combination of atomic-scale 

imaging. In planar-vacancy engineered Sn1-xBixTe nanoribbons, calculations 

show that the Bi segregated planar vacancies introduce newly localized distorted 

density of states into the system. In Bi2SnTe4 nanostructures, cation-atom 

disordering was observed by aberration-corrected STEM. Calculations show that 

such cation disordering may narrow the bandgap of this semiconductor system. 
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Figure 2.20 (a) SEM image showing a Hall bar device fabricated for SnTe NW 

transport measurement. (b) Normalized magnetoresistance under magnetic field. (c) 

Fast Fourier transform of the derivate dR/dB, showing a prominent AB oscillation 

frequency of h/e at high magnetic field. 

Figure 2.21 SEM images of electrodeposition grown Bi2Te3 NWs. (a) Cross-section 

back-scattered SEM images of the NWs embedded in AAO templates. (b) NWs after 

the removal of the template. 

Figure 2.22 TEM images of solvothermal method synthesised products. (a) Bi2Te3 

ultrathin NWs (~8nm). (b) Bi2Te3 nanoplates. 

Figure 2.23 TEM images of solution-based synthesised monodisperse cubic SnTe 

nanocubic (a-b), and NRs (c-d). 

Figure 2.24 (a) HAADF STEM image of the atomically abrupt Bi2Te3/GaAs interface 

viewed along ⟨110⟩GaAs axis. (b) HAADF STEM image of the interface between 

Bi2Te3 and SiO2/Si substrate. (c) HAADF STEM image of the interface between 

Bi2Te3 and mica substrate. 

Figure 2.25 (a) Scheme of a typical CVD reactor and the CVD growth parameters 

used for controlling the products. (b) Schematic diagram showing the vapour-solid 

growth process using bismuth chalcogenide nanoplate as an example. 

Figure 2.26 Morphology and structure of CVD-grown Bi2Te3 and Bi2Se3 NPs. (a) 

SEM image of the CVD-grown Bi2Se3 NPs; (b) TEM image of a Bi2Se3 NP and (c) 
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HRTEM image, with (d) SAED pattern taken from the NP; (e) SEM image of CVD-

grown Bi2Te3 NPs, and the corresponding (f) TEM image, (g) FFT and (h) HRTEM 

images. 

Figure 2.27 Morphology and structure of Au-catalysed CVD-grown Bi2Se3 

nanostructures. (a) Crystal structure of Bi2Se3 and schematic diagram of different 

morphologies of synthesized nanostructures. (b) SEM image of synthesised NRs, 

with an inset showing its catalyst NR tip. (c)TEM image of an individual NR, with an 

inset the SAED taken from the NR. (d, e, f) SEM images showing the different 
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Figure 2.28 Morphology control of Au-catalysed CVD-grown SnTe NWs by growth 

temperature in CVD. (a) Calculated free energies of surface facets in SnTe. (b, c) 

SEM images of the high-temperature grown {100} faceted NWs. (d, e) SEM images 

of the low-temperature NWs with both {100} and {111} facets. (f, g) Atomic models 

showing the {100}-faceted NWs (g) and the NWs with {111} and {100} surface facets 

(g). 

Figure 2.29 VLS growth mechanism (Au-assisted silicon NW). 

Figure 2.30 VSS growth mechanism (Al-assisted silicon NW). 

Figure 2.31 (a) Self-catalysed growth model of GaAs NWs. (b) SEM image of 

catalyst-free grown InAsSb NWs on InAs substrate by selective-area patterning. (c) 

Catalyst-free growth model for catalyst-free InAs NW on Si substrate proposed by 

Dimakis et al., in which In-rich droplet forms first as nucleation followed by VS growth 

of NW. (d) VS growth model of NWs. 

Figure 3.1 A schematic diagram of the CVD reactor.  

Figure 3.2 (a) A schematic diagram showing the components of a SEM. (b) A 

schematic diagram showing the interactions between the electron beam and the 
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Figure 3.3 (a) A photograph of a TEM instrument and (b) a schematic diagram 
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Introduction 

 

1.1 Background 

Metal chalcogenide materials, such as Bi2Se3, Bi2Te3 and SnTe, have attracted 

numerous research interests recently in modern physics and energy materials.1-2 For 

the past half century, chalcogenides have been studied as classical thermoelectric 

(TE) materials. TE technology can convert temperature differences into electricity, 

and thus plays a very important role in novel power-generation devices for solving 

the energy-crisis issues nowadays. Compared to the conventional electricity 

generation methods, TE technology has key advantages such as high reliability, 

small sizes and no noise.1-3 Among the current TE materials, chalcogenide 

compounds, such as PbTe and Bi2Te3, are recognized as high-efficiency TE 

materials, and have already been used in commercial thermoelectric refrigeration 

and generators.3  

Very recently, chalcogenides, such as Bi2Te3, Bi2Se3 and SnTe, have been 

demonstrated to be topological insulators (TIs) or topological crystalline insulator 

(TCI). TI or TCI is a gapped insulator in the bulk but the surface states are metallic, 

which endows them with novel physical properties, such as anomalous quantum Hall 

effect,4 time-reversal invariant topological superconductivity,5-7 and massless 

electrical transport.8  

One of the main approaches to enhance the TE and TI (TCI) properties of 

chalcogenides is scaling down the sample size into nanoscale.9-15 For applications in 

TE, a high-efficiency TE material requires a high power factor and low thermal 

conductivity. This can be achieved by introducing low-dimensional nanoscale 

constituents into the system, which may bring a simultaneous increase in the power 

factor and decrease in the thermal conductivity because of enhanced quantum-

confinement effects and phonon scattering.9 For the probing of TI (TCI) surface 

state, the low-dimensional materials with large surface-to-bulk ratio is an interesting 

system to study, in which the contribution from surface carriers is largely increased 
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and the surface states are manifested.10-13 Thus, it is highly important to develop low-

dimensional metal chalcogenide nanostructures, of which an essential prerequisite is 

the realization of  their  controllable growth. 

Various methods, including CVD,10-14 molecular beam epitaxy (MBE)16,17 and 

solution-based methods,18,19 have been used for the synthesis of low-dimensional 

chalcogenide nanostructures. For solution-based methods, products generally 

exhibit disadvantages of low-crystallinity and surface contamination.19 Alternatively, 

CVD and MBE can fabricate chalcogenide nanostructures with high crystallinity and 

purity. As MBE is very expensive and not as accessible as CVD, CVD is widely used 

for growth of high-quality low-dimensional metal chalcogenide nanostructures.10-13 In 

these CVD grown nanostructures, exotic physical phenomenon have been observed, 

such as superconductivity, magnetoresistance, and quantum oscillations.13 Although 

the property of CVD grown low-dimensional chalcogenides has been intensively 

investigated, the growth mechanisms and detail structural characteristics of grown 

samples are far from thorough understanding. The objective of this PhD thesis is to 

realize the controllable growth of binary and ternary chalcogenide nanomaterials, 

and to understand their crystal structures by detailed electron microscopy analysis. 

 

1.2 Objectives 

The aim of this thesis is to grow low-dimensional IV-VI and V-VI compound 

nanomaterials using CVD method and to understand their structural characteristics 

and their physical properties. The specific objectives are as follows: 

 Growth of high-quality low-dimensional metal chalcogenide nanostructures 

using a CVD approach, and understanding their morphological, structural and 

compositional characteristics; 

 Understanding the growth mechanism by closely correlating the nanostructure 

growth and the as-determined morphological, structural and chemical 

characteristics; 

 Examination and modification of the physical properties of the as-grown 

nanostructures and understanding the structure-property relation in the 

nanostructure. 
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1.3 Thesis Outline 

In this thesis, SnTe, Bi2Se3, Bi2Te3 and Sn-Bi-Te nanostructures were grown by CVD 

method. The structural characteristics and growth mechanism of the as-grown 

nanostructures are investigated by advanced electron microscopy. 

Chapter 1 gives an introduction of this thesis. 

Chapter 2 provides a literature review of the current research progress on the crystal 

structure, physical properties, and the growth techniques for low-dimensional IV-VI 

and V-VI nanostructures.  

Chapter 3 introduces the experimental and characterization methods involved in this 

thesis. The details of the CVD method used to grow nanostructures are summarised. 

The characterization methods, including scanning electron microscopy (SEM), 

transmission electron microscopy (TEM), X-ray diffraction (XRD), and scanning 

transmission electron microscopy (STEM) are explained in this chapter. 

Chapter 4-7 shows our findings in binary IV-VI and V-VI nanostructures grown by 

CVD. Chapter 4 discusses the effect of growth direction on the electrical property of 

Bi2Se3 nanostructures, and their growth mechanism in Au-catalyzed CVD. This 

chapter is included as the Journal of Physical Chemistry C, 2014, 118, 20620-20626. 

Chapter 5 demonstrates a morphological control method of SnTe nanostructures by 

catalyst engineering in CVD. This chapter is included as the Nano Research, 2015, 

8, 3011-3019. Chapter 6 demonstrates the planar-vacancy engineering in SnTe 

nanostructures by Bi doping, and the detail atomic structure will be discussed. This 

chapter has been published in ACS Nano, 2016, 10, 5507-5515. Chapter 7 

demonstrates a surface-facet control method of doped SnTe nanostructures by Bi 

doping.  

Chapter 8 shows our findings in ternary IV-V-VI nanostructures grown by CVD. We 

investigated into the metal-atom disordering in Bi2SnTe4 nanostructures using STEM 

in combination with density functional theory calculation. 

Chapter 9 summarizes the conclusions of this PhD research work and the 

recommendations for future work. 
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2  

Literature Review 

2.1 Crystal Structure 

2.1.1 IV-VI Compound 

The binary IV-VI compounds are composed of group IV (Ge, Sn, Pb) and VI 

elements (Se, Te). Many of these compounds have a rock-salt crystal structure, with 

a space group of Fm3̅m, including PbSe (a=6.12 Å), PbTe (a=6.46 Å), GeTe (𝛼-

GeTe, a=6.02 Å) and SnTe (a=6.31 Å). In the lattice of a rock-salt structured IV-VI 

compound, each metal cation is coordinated to the octahedral interstice of six 

chalcogenide anions, and vice versa (Fig. 2.1). 

 

Figure 2.1 (a) Atomic model showing rock-salt structured SnTe, and (b, c) its 

projections along axis of [110] (b) and [111] (c).  

 

In these IV-VI compounds, SnTe and GeTe are non-stoichiometric compounds. Their 

natively grown samples are characterized by a considerable deviation from 

stoichiometry, due to the intrinsic cation vacancies in the crystal. Figure 2.2 shows a 

Sn-Te phase diagram, in which a narrow range of homogeneity near 50 at.% Te can 

be seen, indicating that a small deviation from perfect stoichiometry is likely to 

happen during the formation of SnTe samples. This was confirmed by experimental 

results that un-doped SnTe sample shows a p-type semiconducting behavior, 

characterized by large hole concentration induced by Sn vacancies.20-21  
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Figure 2.2 Sn-Te binary phase diagram.22 

 

2.1.2 V-VI Compound 

The binary V-VI compounds (V=Bi, Sb, VI=Se, Te) have tetradymite layered crystal 

structures.23-24 Here, we denote the V-VI phases as M-X, where M=Bi, Sb; X= Se, Te. 

The layer structure of these phases can be considered as stacking variants within 

part of a single homologous series. Their structures can be expressed as the 

combination of charge-balanced M2X3 (5, five-atom layer unit) and M2 (2, two-atom 

layer unit), or M3X4 (7, seven-atom layer unit) slabs stacking along c axis. Table 1 

lists the crystal structure parameters of layered structured V-VI phases, which all 

have a feature of large c. In these phases, M2X3, including Bi2Se3, Bi2Te3 and Sb2Te3, 

has the regular “555” structure, with each unit cell consisting of three M2X3 units and 

15 atomic layers (N=15). M3X4 (Bi3Se4 and Bi3Te4) has a “777” structure, with each 

unit cell consisting of consisting of three M3X4 units and 21 atomic layers (N=15). In 

the case of MX (BiSe and BiTe), a M2 unit is inserted between every second M2X3 

unit and forms a “552” structure. M4X3 has the “525252” structure, with each M2X3 

unit separated by a M2 unit, and has 21 atomic layers in the unit cell. 
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Table 2.1 Number of atomic layers each unit cell (N), space group (S. G.), and lattice 

parameter of layer structured V-VI compounds. 

Compound N S. G. a(Å) c(Å) Ref. 

Bi2Se3 15 𝑅3̅𝑚 4.16 28.63 [25] 

Bi2Te3 15 𝑅3̅𝑚 4.36 30.47 [25] 

Sb2Te3 15 𝑅3̅𝑚 4.25 30.00 [26] 

Bi3Se4 21 𝑅3̅𝑚 4.23 40.40 [27] 

Bi3Te4 21 𝑅3̅𝑚 4.42 41.49 [29] 

BiSe 12 𝑃3̅𝑚1 4.18 22.80 [30] 

BiTe 12 𝑃3̅𝑚1 4.42 24.05 [28] 

Bi4Se3 21 𝑅3̅𝑚 4.27 39.90 [29] 

Bi4Te3 21 𝑅3̅𝑚 4.54 41.89 [28] 

Bi7Se3 60 𝑅3̅𝑚 4.43 116.40 [31] 

Bi7Te3 60 𝑅3̅𝑚 4.49 120.04 [29] 

Among these V-VI compound phases, M2X3 (Bi2Te3, Bi2Se3 and Sb2Te3) are 

recognized as the most stable phases, and all have a “555” rhombohedral crystal 

structure.24-27 Figure 2.3 shows the atomic model of a M2X3 crystal. Each metal atom 

occupies the distorted octahedral interstice of six chalcogenide atoms. Along the c 

axis of M2X3, the atomic arrangement can be considered as a quintuple-layer (QL) 

structure with each QL consisting of XI-M-XII-M-XI, where XI denotes the 

chalcogenide atoms at the border of QL, and XII denotes these in the middle of QL. 

Within each QL, there exist both covalent and ionic bonds. Between the adjacent QL 

layers, only van der Waals (VDW) interaction exists, corresponding to the weakest 

bond and the largest atom-plane spacing in this structure. The presence of VDW 

gaps enables the easy disassembly of bulk M2X3 to its QL building blocks (possibly 

just by Scotch tapes), and makes them prone to accommodate foreign atoms or 

foreign layered phases.7,32 This may further introduce novel physical properties into 

the system, such as superconductivity7 and a locally conductivity variation.32 For 

examples, by the intercalation of Cu in the VDW gaps of Bi2Se3, researchers found  
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CuxBi2Se3  becomes a superconductor (Fig. 2.4a).7 Figure 2.4b-c show the STEM 

images taken from Bi2Te3 films, in which  a defect region of a  seven-layer Bi3Te4 

nanolamella can be found (Te-Bi-Te-Bi-Te-Bi-Te), suggesting that such layered 

structured defect may be an universal feature in  Bi2Te3 crystals. 32 

 

Figure 2.3 Crystal structure of M2X3 (X=Te, Se).  

 

Figure 2.4 (a) The crystal structure of CuxBi2Se3.
7 (b) HAADF-STEM image of Bi2Te3, 

projected along ⟨100⟩, showing its five-layer host structure interacted by a defect 

region of seven-layer Bi3Te4 defect lamella.32 
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2.1.3 Ternary IV-V-VI Compound 

Search for new materials with Bi2Te3-type layer structures has led many researchers 

to focus on nAIVTe·mBV
2Te3 systems (AIV denoting the metal elements in Group IV: 

Ge, Sn, Pb, BV denoting Group V elements of Sb, Bi). Through variation in m and n 

integers, one is able to obtain a series of tetradymite-like layer structured 

compounds, i.e. GeBi2Te4, SnBi2Te4 and PbBi2Te4 (m=n=1). Experimental studies 

have shown that these compounds have low thermal conductivities compared to 

their constituent tellurides, making them attractive for thermoelectric applications.33
 

Meanwhile, most of these compounds, including GeBi2Te4, SnBi2Te4 and PbBi2Te4, 

have been theoretically proved to be 3D TIs with complicated surface electronic 

structures.34  

2.1.3.1 Phase Relation 

Understanding the phase relation between rock-salt and rhombohedral structured 

chalcogenides is very important for the understanding of the crystal structure of 

ternary IV-V-VI compound. As mentioned in previous sections, IV-VI compounds (eg. 

GeTe, SnTe, PbTe, denoted as MX) mostly have a rock-salt structure, while V-VI 

compounds (eg. Bi2Te3, Sb2Te3, denoted as M2X3) mostly have a rhombohedral 

crystal structure. Figure 2.5 presents the stacking sequences of MX and M2X3 

crystals, which can be represented respectively by the stacking symbols as below, 

                          A𝛼B A𝛼B𝛽C B𝛽C𝛾A C𝛾A𝛼B A𝛼                                            (M2X3) 

                        A𝛼B𝛽C𝛾A𝛼B𝛽C𝛾A𝛼B𝛽C𝛾A𝛼B𝛽C                                            (MX) 

where the stacking sequences of metal (M) and chalcogenide (X) atomic planes are 

respectively denoted by Greek and Capital letters.33 The same sequences shown in 

M2X3 and MX are highlighted with underlines. 

Figure 2.5a shows that M2X3 is composed of slabs ordered along c axis, and within 

each slab, the stacking sequence is of close-packed periodicity, which is the same 

with that of MX. The essential difference between the two structures is that in the MX 

structure, the layers alternate between metal and chalcogenide layers throughout the 

whole structure, whereas, in the M2X3 structure, one metal vacancy layer (two 

adjacent chalcogenide layers, indicated by white dashed line in Fig. 2.5b) arises 

every five planes. This suggests that M2X3 structure can be generated from MX by 
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removing every sixth metal plane, closing the resulting gap, and shearing each 

remaining five-layer block laterally to form a hexagonal stacking sequence (i.e. A𝛼B 

A𝛼B) at the two chalcogenide layers adjacent to the metal vacancy layer.33 

The similarity between the rock-salt and rhombohedral structures can also be 

reflected in their unit cells. Figure 2.6a and 2.6b respectively shows the unit cells of 

rock-salt and rhombohedral structures.35 By comparing of their cubic unit cells 

(denoted as c), one can see the only difference is the inter-axial angle, which is 

respectively 90o and 88o. This means that the phase transformation between these 

two structures only needs an elongation of the unit cell along <111> direction and a 

relative shift of sublattices. The crystallographic orientation relations between the 

cubic (C) and rhombohedral (R) unit cells can be theoretically proposed as 

[ 11̅0 ]C//[211̅̅̅̅ 0 ]R(=[ 100 ]C), [ 112 ]C//[ 1̅100 ]R(=[ 11̅0 ]C), [111̅ ]C//[0001]R(=[001]C). This 

relationship has been proved by many microscopic experiments regarding the 

interfaces relationship between AIVTe and BV
2Te3 compounds. For example, Ikeda et 

al. have extensively investigated the PbTe/Sb2Te3 system.36 Figure 2.7a presents a 

back-scattered electron (BSE) image showing Sb2Te3 precipitates (dark contrast) in 

PbTe matrix. Electron back-scatter diffraction (EBSD) analysis shows that the habit 

planes of Sb2Te3 precipitates are {111} planes of PbTe, and the crystallographic 

relationship is (0001)Sb2Te3//{111}PbTe and <112̅0>Sb2Te3//<110>PbTe. 
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Figure 2.5 Projected atomic models of (a) rock-salt structured MX and (b) 

rhombohedral structured M2X3. 
 

 

Figure 2.6 (a) Unit cell, and primitive cell (denoted as P) of a rock-salt structured 

crystal. (b) Cubic unit cell (denoted as C), hexagonal unit cell (denoted as R), and 

primitive cell of a rhombohedral structured crystal.35 
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Figure 2.7 (a) BSE image showing microstructure of PbTe matrix with Sb2Te3 

precipitates. (b)  BSE image showing two precipitates, labelled as “1” and “3”, and 

the line between them in the matrix labelled as “2” were analysed in EBSD. (c-f) 

EBSD pole figures for (111) planes (c) and <110> directions (e) in PbTe, and for 

(0001) plane (d) and <112̅0> directions (f) in Sb2Te3.
36 

2.1.3.2 n(AIVTe)·m(BV
2Te3) phases 

In this section, we focus on ternary IV-V-VI phases. Similar to binary V-VI phases, 

they contain many-layered and long-period structures, and the stoichiometry is 

featured by nAIVTe·mBV
2Te3, where n and m are integers, and AIV=Ge, Sn, Pb, BV 

=Bi, Sb. For example, Ge2BiTe4 can be described as GeTe·Bi2Te3, with m=1 and 

n=1. Table 2.2 listed the lattice parameters of n(AIVTe)·m(BV
2Te3) compounds, from 

which the average atomic-layer thickness c/N can be calculated as 0.18~0.21nm. 

Figure 2.8 shows the schematic atomic models of AIVBV
2Te4 (n=1, m=1, including 

GeSb2Te4, SnSb2Te4, PbSb2Te4, GeBi2Te4, SnBi2Te4 and PbBi2Te4), A
IVBV

4Te7 (n=1, 

m=2), AIVBV
6Te10 (n=1, m=3) compounds. The unit cells of these compounds 

comprise of seven-layer (Te-MII-Te-MI-Te-MII-Te) or five-layer (Te-MII-Te-MII-Te) 

slabs ordered along c axis, connected to one another by VDW force. Metal atom 

sites are denoted as MI and MII, in which MI site is a perfect octahedral interstice 

similar to the cation sites in rock-salt structure, whereas MII site is a distorted one 

similar to the cation sites of M2X3 structure. The layered feature of these compounds 

can be clearly revealed by their electron diffraction patterns. Figure 2.9a-c shows the 
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selective-area electron diffractions (SAED) patterns from ternary Ge-Sb-Te crystals 

in phases of GeSb2Te4, Ge2Sb2Te5 and Ge3Sb2Te6.
37 From the diffraction spots 

along {0001} direction, the periodic bright spots show a period of 7 for GeSb2Te4, 9 

for Ge2Sb2Te5 and 11 for Ge3Sb2Te6, in consistency with the number of atomic 

layers in their unit cells (N or N/3, Table 4).  

 

Table 2.2 Number of atomic layers each unit cell (N), space group (S. G.), and lattice 

parameter of.n(AIVTe)·m(BV
2Te3) compounds. 

System Compound n m S. G N a(Å) c(Å) PDF# Ref. 

Ge-Sb-Te 

GeSb6Te10 1 3 𝑅3̅𝑚 51 4.26 101.51 00-063-0699 [38] 

GeSb4Te7 1 2 𝑃3̅𝑚1 12 4.25 23.85 01-076-8867 [39] 

GeSb2Te4 1 1 𝑅3̅𝑚 21 4.27 41.68 01-074-7389 [40] 

Ge2Sb2Te5 2 1 𝑃3̅𝑚1 9 4.23 17.28 01-082-8889 [41] 

Ge3Sb2Te6 3 1 𝑅3𝑚 33 4.20 62.02 01-075-9746 [42] 

Ge-Bi-Te 

GeBi6Te10 1 3 𝑅3̅𝑚 51 4.35 101.87 00-063-0700 [43] 

GeBi4Te7 1 2 𝑃3̅𝑚1 12 4.35 23.92 01-089-1932 [44] 

GeBi2Te4 1 1 𝑅3̅𝑚 21 4.32 41.27 00-048-1340 [43] 

Ge2Bi2Te5 2 1 𝑃3̅𝑚1 9 4.29 17.35 01-076-4258 [45] 

Ge3Bi2Te6 3 1 𝑅3𝑚 33 4.27 62.59 00-050-0375 [38] 

Sn-Sb-Te SnSb2Te4 1 2 𝑅3̅𝑚 21 4.30 41.57 01-080-8952 [46] 

Sn-Bi-Te SnBi4Te7 1 2 𝑅3̅𝑚 12 4.40 24.07 01-082-3172 [47] 

SnBi2Te4 1 1 𝑅3̅𝑚 21 4.44 41.60 01-082-3171 [47] 

Pb-Sb-Te PbSb2Te4 1 1 𝑅3̅𝑚 21 4.35 41.71 01-073-4301 [48] 

Pb-Bi-Te 

PbBi6Te10 1 3 𝑅3̅𝑚 12 4.40 102.54 01-070-9250 [48] 

PbBi4Te7 1 2 𝑅3̅𝑚 12 4.41 24.07 01-073-4300 [48] 

PbBi2Te4 1 1 𝑅3̅𝑚 21 4.44 41.77 01-038-1232 [48] 
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Figure 2.8 Schematic atomic models of AIVBV
2Te4, A

IVBV
4Te7, A

IVBV
6Te10 compounds 

projected onto (011̅0) plane. c’= c /3. 

 

 

Figure 2.9 SAED patterns from GeSb2Te4, Ge2Sb2Te5 and Ge2SbTe6 crystals.37 
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2.1.3.3 Defect in IV-V-VI compound 

2.1.3.3.1 Vacancy Disorder  

Sections 2.1.3.1 and 2.1.3.2 have shown that the existence of metal vacancy layer is 

an intrinsic structure feature in ternary IV-V-VI compounds. For a n(AIVTe)·m(BV
2Te3) 

phase with perfect crystal structure, the vacancy layers are expected to be 

distributed with an ordered manner and same spacing. However, this is not always 

the case in ternary IV-V-VI compounds, particularly for those samples with AIVTe-

riched compositions. Figure 2.10 takes Ge18Bi2Te21 as an example, HRTEM imaging 

shows that vacancy layers are always found to be randomly distributed in the 

structure, with varying spacing between each other (21, 17, 15, 20, 23 atomic 

layers).50 The arrangement of the vacancy layers is also dependent on sample 

preparation method. It has been found that heat treatments, such as annealing and 

quenching, can effectively manipulate the vacancy arrangement in IV-V-VI 

compounds. For example, in (GeTe)12·(Sb2Te3), annealing can increase the ordering 

degree in vacancy arrangement  in the crystal structure, which further influences 

their thermal conductivities.51 

 

Figure 2.10 HRTEM image taken from a Ge18Bi2Te21 sample along [112̅0], showing 

the presence of slabs with strongly varying width, indicating the random arrangement 

of vacancy layers.50 
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Figure 2.11 TEM images showing the vacancy layer arrangements of 

(GeTe)12(Sb2Te3) samples from different heat treatments: (a) quenched from 500oC 

and (b) annealed at 400 °C for 20 h.51 

The metal vacancies play an important role in phase-change IV-V-VI materials. 

Table 4 has shown that stable ternary IV-V-VI phases have a hexagonal crystal 

structure. In fact, metastable n(AIVTe)·m(BV
2Te3)  compounds may also have a rock-

salt structure, in which metal vacancies are distributed randomly. When these 

compounds are undergoing heating or laser instantaneous irradiation, phase 

transition between hexagonal and cubic rock-salt phases is prone to happen. In this 

transition, vacancy diffusion was assumed to play an important role.52 Figure 2.12 

gives a sketch showing the possible processes happened during the phase transition 

of GeSb2Te4 from rock-salt to hexagonal: (A) Cation atom diffuses from site 2 to the 

vacancy at site 1, and a vacancy is formed at site 2. (B) Cation atom diffuses from 

site 3 to 2 and a vacancy is formed at site 3. With the repeating of process (A) and 

(B), a vacancy layer is formed at site 3. (C) Te atoms nearby sites 3 shift towards the 

vacancy layer. 
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Figure 2.12 Structural phase transition caused by vacancy diffusion. (a) Atomic 

model of the rock-salt structured GeSb2Te4, showing three processes of atomic 

displacements happened near the dash line for the transition to (b). (b) Atomic model 

of the hexagonal structured GeSb2Te4, with an ordered arrangement of the 

vacancies at the dash line. Cation vacancies, Te atoms and cation atoms, are 

respectively denoted by hollow circles, green filled circles and orange circles.52 

Density functional theory (DFT) calculations have been widely employed to 

understand the vacancy formation in IV-V-VI compounds. Zhang et al. studied the 

impact of vacancy disorder on the phase stability of GeSb2Te4.
53 Figure 2.13 shows 

the four configurations they calculated for the comparison of total energies. The 

concentration of vacancies in the vacancy layers is denoted as lvac, both cubic and 

hexagonal arrangements were considered. They start from a cubic GeSb2Te4 phase 

with Poisson distribution of Ge, Sb and vacancies in cation layers (25%), and then 

gradually reduce the disorder by depleting the number of atoms in every fourth 

cation layer, until vacancies fully occupy the sites at the depleting layer (100%). 

From Fig. 2.13, 100-d configuration with perfect vacancy planes has the lowest 

energy, indicating that the decrease in vacancy and compositional disorder with the 

change from cubic to hexagonal stacking lead to a large reduction in system energy. 



 

 

18 

 

 

Figure 2.13 Total energy per atom, Ediff, of the models of cubic GeSb2Te4, 

hexagonal GeSb2Te4 and intermediate structures studied. In the plot the zero of the 

energy coincides with the energy of the most favourable structure, hexagonal 100%-

d. Insets show the starting random cubic phase, the final hexagonal phase 100%-d 

and two intermediate phases (cubic-lVac=50% and hexagonal-lVac=75%). The last four 

points (100%-a~d) correspond to hexagonal structures containing completely formed 

vacancy layers, which differ in the distribution of Ge and Sb atoms in the Ge/Sb 

layers.53 

 

2.1.3.3.2 Metal-Atom Disorder                                                                                                                                                   

In the structure of n(AIVTe)·m(BV
2Te3) compounds, there are two kinds of cation 

sites, one is adjacent to the vacancy layer, and the other is inside the cubic close 

packed slabs, respectively defined as MI and MII, as shown in Fig. 2.8. The fact that 

there are two kinds of cations (AIV, BV) in the compounds gives rise to the question of 

how these cations distribute in the MI and MII sites. To resolve this question, many 

methods have been employed to understand the real arrangement of metal atoms in 



 

 

19 

 

n(AIVTe)·m(BV
2Te3) compounds, including X-ray diffraction, Mossbauer 

measurements and energetic calculations. However, the subject of metal 

arrangement is still under disputation, where both ordered and mixing models were 

proposed to describe the metal-atom arrangement. For example, AIVBV
2Te4 

comprises of seven atom-layer units that can be described as Te-MII-Te-MI-Te-MII-

Te. The ordered model considers that Bi and Sn atoms respectively occupy MII and 

MI, and the atomic sequence is of Te-BV-Te-AIV-Te-BV-Te. While the mixing model 

considers that BV and AIV coexist in each site and they are randomly distributed in 

the cation sites.   

For Bi2SnTe4 phase, Bryan et al. studied the sites of Bi and Sn atoms by XRD 

experiments in combination with Rietveld refinements.53 Table 2.3 shows the 

refinement results, using the powder data and models with different occupation ratios 

of Sn or Bi in MI and MII sites. Three different refinement scenarios converged 

successfully with RP/RB values between 0.066/0.064 and 0.049/0.046 with both 

tellurium sites fixed at 100% occupancy. The best RP/RB values were achieved when 

higher quantities of Sn occupy MI site (80%), defined as the ‘partial mixing’ model in 

Table 2.3. This result demonstrates that in Bi2SnTe4, M sites exhibit preference for 

Sn on the MI site and Bi on MII sites, but are not likely perfectly ordered.54 

Table 2.3 Rietveld refinements on SnBi2Te4 polycrystalline samples.54 

 

The partial mixing of metal atoms has also been observed in other systems like 

GeSbTe4. Table 2.4 shows reported refined structural parameters for GeSbTe4 

derived from synchrotron XRD results. The refined results indicate that, in the three 

cation sites, Sb atoms prefer to occupy cation site (1) and (2) but Sb and Ge still 

coexist in all the three cation sites. 55 Therefore, the metal atom disordering may be a 

general phenomenon that can be observed in the crystal structure of ternary IV-V-VI 
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phases. Further theoretical and experimental investigations are required in order to 

pain a clearer picture of the metal-atom arrangement in ternary IV-V-VI compounds. 

Table 2.4 Refined structural parameters for GeSb4Te7 polycrystalline samples.55 

 

 

2.2 Physical Properties 

Bismuth selenides, bismuth tellurides and tin tellurides are semiconductors with 

narrow bandgaps (~0.15eV in Bi2Te3, ~0.35eV in Bi2Se3, and ~0.18eV in SnTe).  

They have shown exotic physical properties, such as superconductivity, topological 

surface states, and high-efficiency thermoelectricity performances.  

 

 2.2.1 Electronic Structure 

SnTe has a rock-salt structure (Fig. 2.14a) with face-centred-cubic Brillouin zone 

(Fig. 2.14b).56 Figure 2.14c shows the calculated bulk electronic structure of SnTe, in 

which the valence band maximum and conduction band minimum both are located at 

the L points. As shown in the grey region, the orbitals are switched near L points, in 

which the conduction band edge is derived from Te and the valence band edge from 

Sn, suggesting that SnTe has an intrinsically inverted band structure. In SnTe, 

surface states exist on any crystal surface symmetric about {110} mirror plane, 

including {001}, {111}, and {110}. {100} surface Brillouin zone has been shown in Fig. 

2.14b, in which four ΓL1 L2 plane in the bulk Brillouin zone projects into four 𝛤𝑋1
̅̅ ̅ lines 

in the surface Brillouin zone. Figure 2.14d plots the band dispersion of {001} surface, 

indicating that {001} surface states have four Dirac points located on the four 

equivalent 𝛤𝑋̅̅ ̅̅  lines (Fig. 2.14d).  
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Figure 2.14 (a) The rock-salt crystal structure of SnTe. (b) Corresponding face-

centered-cubic (FCC) Brillouin zone, showing the plane ΓL1L2, which is invariant 

under reflection about the (110) axis and projects onto the 𝛤𝑋1
̅̅ ̅ line in the [001] 

surface. (c) Calculated band structures of bulk SnTe. The size of the red dots 

represents the fraction of electronic charge residing on Te atoms. The exchange of 

the band character at L point as highlighted in the grey area indicates the intrinsic 

band inversion of SnTe. (d) Band dispersion of (001) surface.56 

 

Bi2Se3, Bi2Te3, and Sb2Te3 have the same rhombohedral crystal structure. We take 

Bi2Se3 as an example, and show its unit cell and Brillouin zone in Fig. 2.15a. Figure 

2.15b and c present the calculated band structure for Bi2Se3 without and with SOC, 

respectively.5  By comparing these two figures, one can see that by turning on SOC, 

the only qualitative change induced is an anti-crossing feature around the Γ point, 

indicating that SOC effects would induce an inversion between the valence band and 

conduction band.5 Figure 2.15 d presents the calculated surface local density of 

states (LDOS) on the [111] surface for Bi2Se3. The surface states can be clearly 
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seen around the Γ point as red lines dispersing in the bulk gap that forms a single 

Dirac cone at Γ point.5 

 

Figure 2.15 (a) Primitive unit cell (left) and Brillouin zone (right) for Bi2Se3 with space 

group 𝑅3̅𝑚. The blue hexagon shows the 2D Brillouin zone of the projected (111) 

surface. (b, c) Calculated and structure for Bi2Se3 without considering SOC (b) and 

with SOC (c). (d) Energy and momentum dependence of the LDOS for Bi2Se3 on the 

(111) surface. The red regions indicate bulk energy bands and the blue regions 

indicate bulk energy gaps.5 

 

2.2.2 Properties and Applications 

 

2.2.2.1 Thermoelectricity 

Two fundamental effects used in thermoelectricity are Seebeck Effect and Peltier 

Effect. Seebeck Effect refers to the phenomenon that the heat flow between two 

different conductor junctions can generate electrical field. The generated electrical 

voltage (∆V) from this effect is proportional to the difference of temperature 

(∆V=S∆T),2 and the proportional coefficient S is known as the Seebeck coefficient, or 
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the thermopower. Peltier Effect refers to the phenomenon that a current would cause 

the heating or cooling at the junction of two different conductors.2 The amount of the 

heat produced is proportional to the electric current (𝑄 = Π∆𝑇) and the proportional 

coefficient Π is known as the Peltier coefficient. Equation 𝑆 = Π𝑇 can show the close 

relationship between Peltier Effect and Seebeck Effect. 

TE modules can be used in two ways, as illustrated in Fig. 2.16: thermoelectric 

power generator and thermoelectric cooling device. When a voltage or current is 

applied from C to A, the module acts as a refrigerator due to Peltier Effect. 

Alternatively, when a resistive load is connected between A and C, which means that 

a heat removal is being processed from B to AC, the thermocouple would drive an 

electric current around the load and the circuit and acts as a generator due to the 

Seebeck Effect. 

 

Figure 2.16 Thermoelectric modules: (a) power generator by the Seebeck Effect, (b) 

cooling refrigerator by the Peltier Effect. 

 

Figure of Merit ZT evaluates the maximum efficiency of a TE material, and is defined 

as: 

                                                         𝑍𝑇 =
𝑆2𝜎𝑇

𝑘
                                                        (2.1) 

where 𝑆  is the Seebeck coefficient, 𝜎  is the electrical conductivity and 𝑘  is the 

thermal conductivity. In Eq. 2.1, the quantity 𝑆2𝜎 is defined as the power factor (PF) 
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and the higher PF value suggests a larger voltage and current can be achieved from 

the TE device.  

ZT of the thermoelectric couple in Fig. 2.16 is given by as below:2 

                                                       𝑍𝑇 =
(𝑆𝑝−𝑆𝑛)2𝑇

(𝑘𝑛/𝜎𝑛)
1

2⁄ +(𝑘𝑝/𝜎𝑝)
1

2⁄
                                     (2.2) 

And its efficiency in heat-to-electricity converting energy is as below: 

                                                       ∅=
𝑇𝐻−𝑇𝐶

𝑇𝐻
[

(1+𝑍𝑇𝑀)1/2−1

(1+𝑍𝑇𝑀)1/2+(𝑇𝐶 𝑇𝐻)⁄
]                               (2.3) 

 

As shown in Eq. 2.2, the ZT value depends on the Seebeck coefficients of the p-

doped and n-doped semiconductors, 𝑆𝑝 and  𝑆𝑛 ; their electrical conductivities, 

𝜎𝑝 and  𝜎𝑛 ; and thermal conductivities, 𝑘𝑝  and 𝑘𝑛 . Eq. 2.3 gives the positive 

relationship between the converting efficiency ∅  and (1 + 𝑍𝑇𝑀)1/2 . For a given 

operating temperature or a temperature difference, a higher ZT leads a higher 

efficiency in power generation or refrigeration.  

 

Eq. 2.1 provides the solutions to obtain high ZT TE materials, which is to 

simultaneously achieve a high 𝑆, high 𝜎  and a low 𝑘 . The thermal conductivity 𝑘 

contains contributions from lattice and carrier thermal conductivities, and its value 

can be calculated from 

                                                       𝑘 = 𝑘𝑒 + 𝑘𝑙                                                      (2.4) 

where 𝑘𝑒  is the carrier thermal conductivity, 𝑘𝑙  is the lattice thermal conductivity. 

Thus, although a higher 𝜎 is desirable for improving PF, it will not always increase 

the ZT since a higher 𝜎 would lead to a considerable increase in  𝑘𝑒 ,  which may 

further increase the total thermal conductivity 𝑘.  

One of the practical approaches to reduce 𝑘𝑙  of the samples is nanostructuring, 

which creates extensive interfaces between the nanostructures and increase the 

phonon scattering at the grain boundaries. Meanwhile, with the quantum 

confinement and phonon scattering effect in nanostructures, they may show 

enhanced ZT value, The quantum confinement of the carriers increases the density-

of-states (DOS) near the Fermi level in quantum well and correspondingly increases 

the Seebeck coefficient. In 1990s, Hicks and Dresselhaus have reported the 

calculation results for the ZT values of the 2D quantum Bi2Te3 layers compared to 

the 3D bulk Bi2Te3, which shows that ZT value in the 2D quantum layer is ~13 times 
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higher than that of its 3D bulk counterpart.9 Therefore, it is very desirable to develop 

low-dimensional chalcogenides for TE applications. 

SnTe based TE materials and have shown a promising ZT value over 1, as shown in 

Table 2.5, In fact, pure SnTe only has a ZT ~0.4 at 900K, which is attributed to (a) a 

low Seebeck coefficient and a high electronic thermal conductivity due to the high 

carrier concentration from intrinsic Sn vacancies, (b) bipolar transport from the low 

energy band gap (0.18 eV) at room temperature, and (c) a large separation in energy 

between heavy and light valence bands that hinders the contribution of the heavier 

holes to the Seebeck coefficients. To overcome these disadvantages, several 

strategies for enhancing ZT of SnTe have been proposed, include (i) suppressing the 

hole concentration by doping, enhance the Seebeck coefficient by (ii) supressing the 

bipolar effect, (iii) band convergence or (iv) valence resonance, and reduce the 

thermal conductivity with pronounced phonon scattering by introducing (v) lattice 

distortion from precipitates, or (vi) defects or grain boundaries. 

 

Table 2.5 Enhanced TE properties of SnTe based materials using different 

strategies. 

System Strategy  

S. G 

N 

a(Å) 

c(Å) 

T ZT Ref. 

Ca - SnTe i, iii, v 873 1.35 [57] 

Cd - SnTe i, iii,  v, vi 923 1.3 [58] 

In - SnTe i, iv 873 1.1 [59] 

Mg - SnTe i, ii 923 1.3 [60] 

Hg and Bi- SnTe ii, iii,  v, vi 910 1.35 [61] 

AgBiTe2-SnTe i, vi 775 1.1 [62] 

AgBiTe2-SnTe i, v 710 1 [63] 

MnTe-SnTe iii, iv 900 1.3 [64] 

MnTe-SnTe ii, iii,  v, vi 900 1.3 [65] 
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Bi2Te3 based materials have been recognized as a high-efficiency TE system at 

room temperature. The highest reported ZT value until now is 2.4 from Bi2Te3-

Sb2Te3 thin film devices.66 For bulk TE materials, the highest reported ZT value is 

1.86 from a Te-riched Bi0.5Sb1.5Te3.
68 Strategies used for further improvement of ZT 

in Bi2Te3 system  includes based on grain boundary and defect engineering, doping 

and nanostructuring. 67-73 

2.2.2.2 Topological Surface States  

Section 2.2.1 presented the exotic surface band structures of SnTe and Bi2Se3, in 

which their surface band dispersions form Dirac cones at the bulk gap region. This 

indicates that their surface states are metallic, which are known as the topological 

surface states. In the recent decade, the topological surface states have been found 

in Bi2Se3, Bi2Te3 and SnTe. Bi2Se3 and Bi2Te3 belong to a group of topological 

insulators (TI), where the metallic surface states are protected by the time-reversal 

symmetry.74 SnTe belongs to a group of topological crystalline insulators (TCI), 

where the surface states are protected by the mirror symmetry of the crystal.  

Figure 2.17a shows an idealized band structure of TI. The Fermi level falls within the 

bulk band gap which is traversed by topologically –protected surface states.74 The 

metallic surface of TI is in a helical spin texture, where the electron spin is oriented 

perpendicularly to its orbital momentum. Figure 2.17b shows the wire-like metallic 

edges around 2D TI, a quantum well or thin film. Such edge states have the 

important “spin filtered” property that the up spins propagate in one direction, while 

the down spins propagate in the other. Figure 2.17c (left) shows the metallic surface 

states of a 3D TI. The spin texture on such surfaces is illustrated in momentum 

space as a “spin-resolved” band structure (right panel of Fig. 2.17c). Another 

attractive feature of TI is the inherent robustness of the metallic surface properties 

against almost any surface modification (Fig. 2.17d). In contrast, for a normal 

semiconductor, the surface states are usually easily modified or destroyed (Fig. 

2.17e). 
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Figure 2.17 (a) Idealized band structure of TI with metallic edge states (green lines) 

in the bulk bandgap, in which up and down spins propagate in opposite directions. 

(b) Metallic edge of a 2D TI (left), and the corresponding spin-resolved surface band 

structure (right). (c) Metallic surface of 3D TI (left) and the corresponding spin-

resolved surface band structure (right). (d) Band diagram of a TI before surface 

modification (left) and after surface modification (right), in which the grey area 

denotes the bulk states. (e) Band structures of an ordinary semiconductor before 

surface modification (left) and after surface modification (right).74 

 

The surface band structures of TI and TCI can be directly confirmed by angle-

resolved photoemission spectroscopy (ARPES).75 Figure 2.18 shows the ARPES 

measurements of surface electronic band dispersion on Bi2Se3(111), revealing the 

helical nature of the surface electrons.8,76 As Bi2Se3 has comparative large band gap 

(~0.3eV at 360K) compared to other the current TI materials, its surface states and 

band structure can be tuned with proper doping and be observed at room 

temperature, as shown in Fig. 2.18c-d. In the case of SnTe, in contrast to Bi2Se3 with 

single Dirac cone at the surface band structure, surface electronic states of SnTe 

consist of four Dirac cones in the first surface Brillouin zone (Fig. 2.19).  
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Figure 2.18 (a, b) High-resolution ARPES measurements of the surface electronic 

band dispersion of Bi2Se3(111) near the 𝛤  point along the 𝛤–�̅�  (a) and  𝛤–�̅�  (b) 

momentum-space cuts. (c, d) ARPES map of the surface band dispersion of Bi2-

xCaxSe3 (111) after a 2 L dosage of NO2, taken at 300K (c) and 10K (d).8,76 

 

 

Figure 2.19 (a) Schematic 2D band dispersions near Fermi level EF depicting the 

evolution of the surface Dirac cones. (b) Near-EF energy distribution curves around 

the 𝛬̅ point for SnTe.77 
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A direct probing of the topological surface state in TI and TCI by transport 

experiments is challenging, because the contribution from the bulk carriers is likely to 

outnumber that from the surface carriers. Low-dimensional nanostructures, on the 

other hand, with enhanced surface-to-bulk ratio, provide attractive systems for 

surface transport property study, since a much higher contribution from surface 

carriers is expected. For example, in SnTe system, bulk sample always has a high 

hole concentration because of the intrinsic Sn vacancies, making it challenging to 

realize the probing of surface states. In contrast, in SnTe nanowires (NWs), transport 

experiments have realized the observation of topological surface states by quantum 

oscillation measurement, including Aharonov–Bohm (AB) interference and 

Shubnikov-de Haas (SdH) oscillations.78-79 Figure 2.20 a shows a four terminal 

device of SnTe NW, from which a pronounced AB oscillation was observed under 

magnetic field at 20 K (Fig. 2.20 b-c). The derived prominent oscillation frequency of 

h/e is shown in Fig. 2.20C.78 The above experiment result shows that low-

dimensional TI and TCI nanostructures are excellent systems for understanding the 

topological surface states. 

 

Figure 2.20 (a) SEM image showing a Hall bar device fabricated for SnTe NW 

transport measurement. (b) Normalized magnetoresistance under magnetic field. (c) 

Fast Fourier transform of the derivate dR/dB, showing a prominent AB oscillation 

frequency of h/e at high magnetic field.78 
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2.3 Growth and Characteristics of Nanostructures 

The fabrication techniques of low-dimensional chalcogenide nanomaterials can be 

classified as the solution-phase method (2.3.1) and the vapour deposition methods 

(2.3.1). The advantage and disadvantages of these two methods are listed in Table 

2.6.  

Table 2.6 Advantages and disadvantages of the synthesis methods for low-

dimensional chalcogenide nanostructures. 

Fabrication techniques Advantages Disadvantages 

Vapour- 

deposition 

methods 

MBE 

High-crystalline and purity 

products. 

Controllability on product 

morphology and structure. 

In-situ monitoring of the 

growth process. 

Capability of growing high 

quality thin films. 

Expensive and 

complex growth 

procedures. 

Low product output 

 

CVD 

High-crystalline and purity 

products 

Controllability on the 

product morphology and 

structure 

Simple growth procedure. 

Low product output 

 

 

 

 

Solution-

phase 

methods 

Electrochemical 

Deposition 

Controllability on product 

morphology and scale. 

Toxic electrolytes. 

Complex growth 

procedure. 

Chemical residues on 

product surface. 

Low-crystalline 

products. 

Solvothermal 

Synthesis 

Low cost and high product 

output 

Chemical residues on 

product surface. 

Time-consuming. 
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2.3.1 Solution-Phase Method 

Figure 2.21 shows a electrochemical deposition method to synthesize bismuth 

chalcogenide NWs using the anodic aluminium oxide (AAO) as the template, acid 

solution with precursors (such as Bi, Bi2(SO4)3, Te, Se, H2SeO3) as the electrolyte. 80, 

81 The template with products is then removed by dissolving it in NaOH to get the 

final product, as illustrated in Fig. 2.21a and b. 

 

Figure 2.21 SEM images of electrodeposition grown Bi2Te3 NWs. (a) Cross-section 

back-scattered SEM images of the NWs embedded in AAO templates. (b) NWs after 

the removal of the template.80, 81  

 

In the synthesis by solvothermal method, the precursors (metal chlorides, oxides, 

nitrates and acetates) are mixed and dissolved in an organic (for example, ethanol 

and amine) or aqueous solvent with a reductant (for example PVP and EDTA).82, 83 

The mixture is then sealed, pressured and heated to certain temperature to enable 

the precursors react with each other to form bismuth chalcogenide. After the mixture 

is cooled down, the products are collected from the solution by washing and drying. 

Figure 2.22 shows the typical morphologies of solvothermal synthesised Bi2Te3 

nanostructures. 

 

Figure 2.22 TEM images of solvothermal method synthesised products. (a) Bi2Te3 

ultrathin NWs (~8nm).82 (b) Bi2Te3 nanoplates.83 
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Solution-phase method can be used to fabricate metal chalcogenide nanomaterials 

with controllable shapes. Guo et. al demonstrate the growth of monodisperse SnTe 

nanocubics, elongated NRs with controlled aspect ratio, and long, straight NWs by 

solution-phase method.84 High-temperature growth (240°C) results in monodisperse 

SnTe nanocubes (Fig. 2.23a-b), whereas a lower-temperature synthesis (180 °C) 

produces SnTe NRs with aspect ratio tunable from 1.5 to >100 (Fig. 2.23c-d). 

.  

Figure 2.23 TEM images of solution-based synthesised monodisperse cubic SnTe 

nanocubic (a-b), and NRs (c-d).84 

 

Solution-phase method has been used widely for the synthesis for TE applications 

because its considerable product output that enables the assembly of 

nanocomposites for TE property tests. However, the residual surfactants or 

impurities from the reactants can hardly be removed completely, which may affect 

the TE performances of the final nanocomposites, In this regard, vapour-deposition 

grown method shows advantages in product quality, and therefore has been 

developed for synthesis of device-quality nanostructures. 
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2.3.2 Vapour-Deposition Method 

The vapour-deposition method, as illustrated in its name, the growth of the solid 

products is initiated by vapour species. Widely used vapour-deposition growth 

methods include molecular beam epitaxy (MBE), metal organic chemical vapour 

deposition (MOCVD), and chemical vapour deposition (CVD), MBE and MOCVD 

show advantages in thin-film growth and precise growth control. However, CVD has 

become the most widely used method because of its low cost and convenience in 

operation. In a typical vapour-deposition growth, a substrate is exposed to the 

vapour constitutes of the desired products, which react with each other under certain 

temperature and the products are deposited on the substrate. For chalcogenide 

nanostructures, various substrates, such as Si (Si/SiO2), Al2O3 and GaAs, have been 

used.85-88 Figure 2.24a,b,c respectively shows the HAADF STEM image of Bi2Te3 

nanostructure grown on GaAs (001),85 Si (100),86 and Al2O3 (mica) substrate.87 The 

growth on GaAs substrate shows evident feature of lattice-matching epitaxy (Figure 

2.24a), while for mica grown Bi2Te3, the growth is van der Waals epitaxy.86 In the 

case of silicon or SiO2/Si(100) substrate, it has been found that amorphous SiOx 

interface layer always exist when growing Bi2Te3 on silicon, even with HF 

treatment.86,88 One of the growth mechanisms for Bi2Te3 growth on silicon is 

proposed as Te-seeded (Figure 2.24a), where a Te or Te-rich interface is 

responsible for the initiation of the nanostructure growth.86,88 Since silicon substrates 

have been commonly adopted for depositing metal chalcogenide nanostructures with 

low cost and good visual/optical contrast, and SiO2/Si substrates are favourable for 

device fabrication, we use the silicon substrates for nanostructure growth in this 

thesis. 

  
Figure 2.24 (a) HAADF STEM image of the atomically abrupt Bi2Te3/GaAs interface 

viewed along ⟨110⟩GaAs axis.85 (b) HAADF STEM image of the interface between 
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Bi2Te3 and SiO2/Si substrate.86 (c) HAADF STEM image of the interface between 

Bi2Te3 and mica substrate.87 

 

However, when the substrates are covered with metallic catalysts, one-dimensional 

(1D) nanostructures with variable facets can grow, driven by a vapour-liquid-solid 

(VLS) or vapour-solid-solid (VSS) mechanism. The growth mechanisms of 1D 

nanostructures will be discussed in Chapter 3. 

 

2.3.2.1 CVD 

In this thesis, CVD method is used for the nanostructure growth, which has been 

widely used as for growth of high-quality nanostructures. The CVD vapour resources 

are directly using the elemental powders (Bi, Sn, Se, Te) or the compound powders 

(Bi2Te3, Bi2Se3 or SnTe). As illustrated in Fig. 2.25, in a typical CVD growth, the solid 

resources are put at the hot centre of the tube furnace, while the substrates are put 

at the downstream cooler area for product collection. After heating the furnace centre 

to certain temperature, vapour atomic species evaporate from the solid resources, 

moving to the downstream area by the carrier gases. When reach the substrates 

with proper growth temperature, they react with each other and form the solid 

product. 

 

 

Figure 2.25 (a) Scheme of a typical CVD reactor and the CVD growth parameters 

used for controlling the products. (b) Schematic diagram showing the vapour-solid 

growth process using bismuth chalcogenide nanoplate as an example.89 

 

CVD growth parameters contain the temperature of the resource Tsource, temperature 

of the substrates Tgrowth, which can be adjusted by the distance between the 
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substrate and the hot center (Psubstrate), and the flow rate of the carrier gas. 

Especially, for the growth of 1D nanostructures, metallic catalysts may be used, and 

the choice and modification of the metallic catalyst can influence the final products. 

Table 2.7 and 2.8 summarized the reported CVD growth parameters for Bi2Te3, 

Bi2Se3 and SnTe based nanomaterials. 

 

Table 2.7 Growth parameters for CVD growth of Bi2Te3 and Bi2Se3 based 

nanomaterials (Para.=Parameters; NB=nanobelt; N=no catalyst or no carrier gas) . 

       Para. 

 

Product 

Source 

 
Catalyst 

Carrier 

gas 
Tsource 

Psubstrate 

(cm) 
Ref. 

Flow rate 

(sccm) 
Holding t Tgrowth 

Bi2Se3 NR Bi2Se3 20nm Au 
Ar 

450~580 

oC 
8~12 

11 

30~120 1~5h NA 

Bi2Se3 NR Bi2Se3 N N 
680 oC NA 

13 
72h 560 oC 

Fe/Ni doped 

Bi2Se3 NR 
Bi2Se3 

5nm Fe/Au 

5nm Ni/Au 

Ar 430 oC NA 

10 
135~145 1~3h 

350~450 

oC 

Bi2Te3 NW Bi2Te3 30nm Au 
Ar 470oC 20~23 

14 
30 1h 432-355oC 

Sn-doped 

Bi2Te3 NW 
Bi2Te3 

Sn Film & 

13nm Au 

H2&Ar 480℃ 16 
90 

25&25 5 min NA 

Bi2Se3 NP Bi2Se3 N 

Ar 
460~500 

oC 
12 

89 

50 5min 
320~360 

oC 

Bi2Te3 NP 

 
Bi2Te3 N 

Ar 
450~480 

oC 

12 

89 

20 5min 
320~360 

oC 
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(BixSe1-x)Te3 

NP/NR 

Bi2Se3 

Bi2Te3 

10nm Au 

film 

Ar 480 oC 6-15 
12 

30-150 2h NA 

(BixSb1-x)Te3 

Bi2Sb3 

Bi2Te3 
N 

Ar 490 oC 12 
91 

15 10min 300 oC 

 

Table 2.8 Growth parameters for CVD growth of SnTe nanomaterials. 

       Para. 

 

Product 

Source 

 
Catalyst 

Carrier 

gas 
Tsource (

oC) 

Psubstrate 

(cm) 
Ref. 

Flow rate 

(sccm) 
Holding t Tgrowth (

oC) 

{100}SnTe 

NP/NR 
SnTe Au film 

Ar 600 NA 
92 

40~50 10 min 350~450 

{111}SnTe 

NP/NR 
SnTe Au film 

Ar 600 NA 
92 

40~50 10 min 300 

{100}SnTe 

NW 
SnTe 20nm Au 

Ar 700 NA 
93 

5~15 30min 675 

SnTe NW SnTe 20nm Au 
Ar 700 NA 

93 
5~15 30min 500 

SnTe NW SnTe 10nm Au 

Ar 900 10~20 

90 100 1h NA 

15 10min 300 oC 

 

Figure 2.26 shows the morphology and structure of the catalyst-free CVD grown 

Bi2Te3 or Bi2Se3 NPs. A-few layer NPs can be obtained with uniform sizes and 

morphology, mostly exhibit triangular and hexagonal morphologies, with {0001} as 

the surface facet and {1000} as side facet. 
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Figure 2.26 Morphology and structure of CVD-grown Bi2Te3 and Bi2Se3 NPs. (a) 

SEM image of the CVD-grown Bi2Se3 NPs; (b) TEM image of a Bi2Se3 NP and (c) 

HRTEM image, with (d) SAED pattern taken from the NP; (e) SEM image of CVD-

grown Bi2Te3 NPs, and the corresponding (f) TEM image, (g) FFT and (h) HRTEM 

images.89 

 

When substrates are coated with proper metallic catalysts, 1D Bi2Te3 and Bi2Se3 

NWs nanostructures can be grown. Figure 2.27 shows the morphologies of the gold-

assisted CVD grown Bi2Se3 NWs and NRs, which generally exhibit a preferred 

growth direction along [112̅0]. For each NW and NR, gold catalyst nanoparticle can 

be found at the tip, suggesting the VLS growth mechanism. Bi2Se3 NW shows a 

rough surface facet and a growth direction along [0001] (Fig. 2.27d). In contrast, 

Bi2Se3 NRs, have smooth {0001} surfaces facet (Fig. 2.27c) 
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Figure 2.27 Morphology and structure of Au-catalysed CVD-grown Bi2Se3 

nanostructures. (a) Crystal structure of Bi2Se3 and schematic diagram of different 

morphologies of synthesized nanostructures. (b) SEM image of synthesised NRs, 

with an inset showing its catalyst NR tip. (c)TEM image of an individual NR, with an 

inset the SAED taken from the NR. (d, e, f) SEM images showing the different 

morphologies of individual nanostructures.11 

 

For the growth of SnTe nanostructures, CVD was found to be an effective method to 

tune their surface facets. One of the controlling factors is found to be the growth 

temperature, which control the surface energy by adjusting the Te stoichiometry in 

the product. Figure 2.28a shows the calculated surface energies of SnTe as a 

function of Te chemical potential. Low-energy surface facets of SnTe include {100}, 

{111}Te and {110}. In general growth conditions, {100} facet has the lowest surface 

energy. However, when the growth condition is Te-rich, {111}Te facet may exhibit 

lower surface energy than that of {100} facet. This suggests a way of controlling the 

surface facet of SnTe through stoichiometry, and was proved by the experiments 

conducted by Li et al.. They demonstrated that by reducing the growth temperature, 

{111}Te surface facet can be found in SnTe nanostructures, as lower growth 

temperature induces a Te-rich growth condition.93 Figure 2.28b,c,f show that the 

surface of high-temperature grown NWs are dominated by {100} facets, whereas 

{111} facets can be found in the low growth-temperature products (Fig. 2.28d,e,g). 
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Figure 2.28 Morphology control of Au-catalysed CVD-grown SnTe NWs by growth 

temperature in CVD. (a) Calculated free energies of surface facets in SnTe. (b, c) 

SEM images of the high-temperature grown {100} faceted NWs. (d, e) SEM images 

of the low-temperature NWs with both {100} and {111} facets. (f, g) Atomic models 

showing the {100}-faceted NWs (g) and the NWs with {111} and {100} surface facets 

(g).93 

 

In spite of the extensive reports of semiconductor nanostructure growth, the 

controllable growth of high-quality IV-VI and V-VI chalcogenide nanostructures has 

achieved very limited success in CVD. Further experimental and theoretical analysis 

is highly demanded to develop the growth techniques and to understand the related 

growth mechanisms. 
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2.4 Growth Mechanisms of 1D Nanostructures 

 

In this section, the detail growth mechanisms (VLS, VSS, self-catalysed and VS) of 

1D nanostructures by vapour deposition are introduced. Through applying these 

growth mechanisms, successful examples of growth of metal chalcogenide 

nanomaterials have been already shown in Section 2.3.2. 

 

2.4.1 Vapour-Liquid-Solid Mechanism  

VLS mechanism is a classical growth mechanism to understand the catalyst-assisted 

growth of 1D nanostructures. It was firstly proposed by Wagner et al. to explain the 

growth of Au catalysed Si whisker.94 The VLS growth consists of three main steps: (i) 

mass transport of NW growth species in the vapour to the catalyst, (ii) alloy reaction 

between the catalyst and the vapour phase on the vapour-liquid interface, resulting 

in a liquid alloy, (iii) the continuing dissolution and diffusion of the vapour atoms 

through the liquid alloy, and their solid precipitation on the liquid-solid interface. 

Figure 2.29 takes Au-assisted sI NW as an example to describe the VLS growth 

process. The substrates are coated with Au nanoparticles prior to the growth. During 

the growth, the substrate is heated to the growth temperature (~500oC), and catalyst 

particles keep absorbing of the silicon vapour species, which makes the composition 

of Au-Si nanoparticles become silicon-rich phase and enter the liquid phase area 

shown as the step (ii) in Figure 2.29. As the Si content in the alloy particle is 

increased and reaches the saturated point, the solid precipitation of the excess Si 

leads to the 1D growth of Si NWs (step (iii)). 

 

Figure 2.29 VLS growth mechanism (Au-assisted silicon NW).95 
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2.4.2 Vapour-Solid-Solid Mechanism  

Similar with the VLS growth mechanism, the 1D nanostructure growth by VSS is also 

induced by the saturation and precipitation of the grow species in the catalyst. But 

the growth of VSS can happen below the liquidus/eutectic point, during which the 

catalyst keeps the solid form. This mechanism is a comparatively new explanation 

for low-temperature catalyst assisted NW growth. Figure 2.30 illustrates the process 

of Al-assisted growth of silicon NW, which happens at the temperature below the 

eutectic point. As shown in Figure 2.30, the growth temperature is 470oC while the 

eutectic temperature of Al-Si is 577 oC, based on which Al and Si are not likely to 

form liquid alloys during the NW growth. But a quasi-liquid or solid alloy particle can 

still be formed by surface diffusion to initiate the nanostructure growth, which is the 

VSS mechanism. VSS growth process can be proposed as the following: (i) silicon 

vapour is absorbed by Al catalysts and form Au-Si solid solution by Si atom diffusion. 

(ii) After Si concentration reaches the saturation point, Si precipitates from the alloy 

particles to form the NW. 

 

 

Figure 2.30 VSS growth mechanism (Al-assisted silicon NW).95 

 

2.4.3 Catalyst-Free Growth Mechanisms  

The growth of 1D nanostructure without foreign catalyst is widely explained by self-

catalysed and/or vapour-solid (VS) mechanisms.96-100 In a typical self-catalysed 

growth, one of the reactants (normally the one with low melting point) agglomerates 
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first to form nuclei (droplet), which then absorbs vapour reactants to grow 

unidirectional nanostructure by VS/VLS mechanism. Such self-catalysed mechanism 

has been widely observed and adopted in III-V NW growth. Figure 2.31a shows the 

growth model and SEM images of Ga-catalysed GaAs NWs, where a Ga droplet can 

clearly be observed at the NW tip, indicating the catalyst role of Ga and the VLS 

growth of the NW.96  

However, in many catalyst-free cases, absence of catalyst droplet can be observed 

at NW tip, suggesting the VLS-free growth. Figure 2.31b shows such a case, using 

the growth of InAs based NWs as an example.97 These NWs show flat top surface 

after growth. To explain the disappearance of catalyst particles, researchers have 

proposed two models. The first one is that the catalyst particle was dissolved into the 

nanostructure at the early growth stage (Figure 2.31c).98 The second is that the 

nucleation is so fast that no droplet was actually formed during the growth, and the 

growth is completely governed by VS mechanism (Figure 2.31d), where the 

unidirectional growth direction is attributed to the competition in growth rate among 

different crystallographic planes.99-100 Nevertheless, for both  models, the 

nanostructure growth needs assistance of heterogeneous nucleation, such as 

dislocation,99 strain,99 impurity(e.g. silicon oxides)100 and selective area pattern.97  

 

Figure 2.31 (a) Self-catalysed growth model of GaAs NWs.96 (b) SEM image of 

catalyst-free grown InAsSb NWs on InAs substrate by selective-area patterning.97 (c) 

Catalyst-free growth model for catalyst-free InAs NW on Si substrate proposed by 

Dimakis et al.,98 in which In-rich droplet forms first as nucleation followed by VS 

growth of NW. (d) VS growth model of NWs.98 
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2.5 Summary 

In summary, low-dimensional chalcogenide nanomaterials are promising candidates 

for TE and TI applications. Among the current fabrication methods, CVD has been 

widely used for growing high-quality chalcogenide nanomaterials. However, insights 

into the growth mechanism and controllable growth of CVD grown nanomaterials are 

still limited, which will be investigated in our work.  
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3  

Methodology 

 

This project is focused on the CVD growth for low dimensional metal chalcogenide 

nanostructures, and their structural and compositional characterizations. In this 

chapter, the procedures of CVD growth for nanostructures will be presented, and the 

working principles of various structural characterization techniques including SEM, 

TEM, aberration-corrected STEM and XRD will be described in detail. Since part of 

the understanding of the nanostructure facets and atomic structure was based on 

DFT calculations, the theoretical background of DFT is also introduced. 

 

3.1 CVD Growth Method 

 

Figure 3.1 shows a schematic diagram of CVD reactor. Prior to the growth 

experiment, types of the chemicals for the solid source (precursor), the carrier gases 

and the substrates need to be predesigned. The precursor chemicals used in the 

growth experiments are listed in Table 3.1.  

 

Figure 3.1 A schematic diagram of the CVD reactor.  
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Table 3.1 Chemicals for the CVD growth for chalcogenide nanostructures. 

Quality 

 

Content 

Purity Particle Size Supplier 
Treatment 

Before Use 

Bismuth Selenide 99.9% 
Beads 

1~6mm 
Sigma Aldrich Grinding 

Bismuth 

Telluride 
99.99% 

Powder 

~325mesh 
Sigma Aldrich N 

Tin 

Telluride 
99.99% NA Sigma Aldrich N 

Bismuth 99.99% ~100 mesh Sigma Aldrich N 

Telluride 99.99% ~50 mesh Sigma Aldrich N 

Tin 99.99% ~50 mesh Sigma Aldrich N 

Silicon Wafer NA NA MTI Soniclean 

Silicon Wafer 

With 300nm Silica Layer 
NA NA MTI Soniclean 

Argon Gas 99.999% NA Coregas N 

Hydrogen Gas 99.9995 NA Coregas N 

  

The general procedures of the CVD experiments can be summarized as the below. 

(i) Preparation of the wafers  

Silicon wafer (Si or Si/SiO2) is cleaned first in acetone and then in distilled deionized 

water using sonicator. For catalyst-assisted growth, the substrates are coated with 

Au films using a SPI module sputtering coater with a gold target.  

(ii) Nanostructure growth 

Weigh the precursor with predesigned amount. Put the precursor and substrates into 

the tube furnace, in which precursor are put at the centre while the substrates are 

put at the downstream of the tube. Flush the furnace chamber with mixed Ar/H2 gas 

to prevent the oxygen contamination and then adjust the flow rates for the gases to 

predesigned value. Heat the furnace to temperature with predesigned program. 

(iii) Sample collection 
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After a natural cool down to the room temperature, the substrates are removed from 

the furnace chamber. Samples are collected from the substrates for further 

characterization. 

(iv) Controllable growth by tuning the growth parameters 

After the characterization of the products, further experiments will be conducted to 

improve or modify the quality and morphology of the as-grown products by tuning the 

growth parameters, which include the composition of the precursor, the holding 

temperature of the hot centre (source), the holding time, the composition and the 

flow rate of the carrier gases, and the positions of the wafers (growth temperature). 

 

3.2 Morphological and Structural Characterization 

 

3.2.1 Scanning Electron Microscopy (SEM) 

SEM produces the images through the scanning of sample surface using a focused 

electron beam. The interaction of the electron beam with the sample produces 

signals that contain the topography and composition information of the sample. Fig. 

3.2a shows the major components of a SEM. The incident electron beam is 

collimated by the electromagnetic condenser lens, focused by an objective lens and 

scanned across the surface by electromagnetic scanning coils. After incident 

electron beam interacts with the surface of the specimen, the interaction signals, 

including the secondary electrons (SEs) and backscattered electrons (BSEs), will be 

generated and collected by multiple detectors. Figure 3.2b shows the interaction 

volume between the electrons and the specimen surface, and it can be seen that the 

SEs interact with the sample surface (5~50nm) with a much smaller volume than the 

BSEs. This suggests that SEs reflect the most surface information of the sample 

while the BSEs reflect the information from a deeper area of the sample. Since the 

volume of escaped SEs from protruded surface are theoretically larger than from a 

flat one, and more SE signals induce an increased brightness in the final image 

(edge effect), the SE imaging mode can be used to study the topography of the 

specimen. On the other hand, BSE signals are generated from the high-energy 

(>50eV) elastic scattered electrons, and their intensity is increased with an increase 



 

 

56 

 

of the average atomic number in the sample. BSE imaging mode is thereby used to 

reflect the composition difference across the specimen. 

 

Figure 3.2 (a) A schematic diagram showing the components of a SEM. (b) A 

schematic diagram showing the interactions between the electron beam and the 

sample, and the corresponding interaction volumes and emitted signals.1 

 

3.2.2 Transmission Electron Microscopy (TEM) 

Figure 3.3a shows a TEM facility and its major components are shown in Fig. 3.3b. 

Similar to SEM, an electron gun generates the electron beam with an acceleration 

voltage of 80~400 kV that is able to penetrate through thin samples. The electron 

beam is further modulated by series of condenser lenses and its interaction with the 

sample will further create signals for imaging. 

Figure 3.4 shows the two modes in TEM. In general, when the intermediate lens is 

placed at the objective plane of the objective lens, the TEM is in an imaging mode 

(left panel of Fig. 3.4), and an enlarged image will be formed in the image plane of 

the objective lens. When the transmitted beam is selected by the objective aperture 

to pass through, a bright-field (BF) image is generated, in which thicker and heavier 

samples tend to be darker in the BF image. On the other hand, when the scattered 

beam is allowed by the aperture to generate the image, a dark-field image can be 

obtained. The bright contrast suggests that the imaging area contains atomic planes 

that satisfy the Bragg condition. When the intermediate lens is placed at the back 

focal plane of objective lens, the TEM is in a diffraction mode (right panel of Fig. 3.4). 
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If the sample is a single crystal, a set of well-defined electron diffraction spots can be 

obtained which can be used to determine the crystal structure. If the sample region 

under imaging contains polycrystals, diffraction rings are expected to be obtained; 

while when the imaging region contains amorphous materials, diffused diffraction 

rings may be obtained. 

In this project, TEM is applied to obtain BF image, HRTEM images and diffraction 

patterns from the as-grown nanostructures. The EDX attached to the TEM is used to 

determine the chemical compositions of the as-synthesized nanostructures. 

 

 

Figure 3.3 (a) A photograph of a TEM instrument and (b) a schematic diagram 

showing its major components.2 
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Figure 3.4 The ray diagrams of the electron beams in the diffraction mode and in the 

imaging mode of TEM.3  

 

3.2.3 Scanning Transmission Electron Microscopy (STEM) 

The major components of a STEM are shown in Fig. 3.5. In STEM, a field-emission 

gun provides a highly coherent electron source, with an acceleration voltage arrange 

of 60~300 kV. The electron beam is further focused by the following lenses and 

optics until the diameter is reduced to be smaller than lattice spacing of the sample 

to be imaged. The focused electron beam is then used to scan over a sample with a 

thin thickness up to 100nm. The optimal thickness of the sample is neither too thin, 

to avoid the surface dominated signal, nor too thick, so that electron spot would not 

spread largely in the sample. After the beam is scanning across the sample, signals 

generated from scattered electrons and ionized atoms are recorded to build up a 

two-dimensional mapping image, and the electron-scattering differences between 

different atomic columns at the samples will be reflected as the image contrast.4 By 

using a STEM detector with a large inner radius, an annular dark-field (ADF) 

detector, electrons that are not Bragg scattered are collected. The intensity of these 

high angle scattering depends only on the atomic number (Z) of the column atom, 

and is roughly proportional to the atomic number Z1.7, where a larger Z induces 

greater the loss of energy. Therefore, high-angle ADF imaging mode can provide ‘Z-

contrast’ imaging.  
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Figure 3.5 Major components of a STEM.4 

 

To improve the microscope resolution, one important approach is through reducing 

the spherical aberration. The limitation to the microscope resolution (ds) is resulted 

from the spherical aberration, which can be described by the following formula: 

𝑑𝑠 = 0.67𝐶𝑠
1/4

𝜆3/4                                           (3.1) 

in which Cs is the coefficient of spherical aberration and 𝜆 is the wavelength of the 

incident electrons.  

The appearance of Cs is caused by the imperfect electromagnetic lenses, where the 

off-axial rays experience a greater bending than those close to the axis, leading to 

premature focus, which converts a point object into a disk of radius rs (Fig. 3.6), 

𝑟𝑠 = 𝐶𝑠𝛼3                                           (3.2) 

in which 𝛼 is the objective lens collection angle. 
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Figure 3.6 A spherically aberrated lens causes higher angle rays to come to a 

premature focus (bottom) when compared with a perfect lens (top).5 

 

The current Cs corrector uses multipole lenses that can produce negative aberration 

to compensate the positive Cs. Once the spherical aberration has been 

compensated, the presence of chromatic aberration (Cc) becomes more significant. 

Chromatic aberration comes into play as a consequence of an energy spread in the 

electron beam produced by the electron source, resulting in longer focal distances 

for rays with higher energies and shorter distances for lower energies (Fig. 3.7). The 

effect of Cc on the resulting spot size (disc of least confusion) can be expressed as6: 

𝑑𝑐 = 𝐶𝑐𝛼
∆𝐸

𝐸
                                                       (3.3) 

where Cc is chromatic aberration coefficient, ΔE/E0 is the energy spread with respect 

to the primary beam energy, and α is the convergence angle. The spot size 

dependence on 1/E suggests stronger effect of chromatic aberration as accelerating 

voltage is lowered. The effect of chromatic aberration can be minimized by 

employing a Cc corrector or by using a monochromator. 
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Figure 3.7 A Schematic representation of chromatic aberration effects.6 

 

3.2.4 X-Ray Diffraction (XRD) 

There are two basic XRD techniques that can be used to study materials, single-

crystal XRD apparatus and powder diffraction apparatus. The single-crystal XRD is 

used to solve the crystal structures of crystalline materials. The powder XRD is 

generally used to understand the crystal structure, as well as other information 

including grain size, and preferred crystal orientation in powder or polycrystalline 

sample. 

X-ray diffractometers have three basic components: an X-ray tube to generate the X-

ray source, a sample holder to hold the testing samples, and an X-ray detector, as 

illustrated in Fig. 3.8. X-rays are generated by heating a filament in a cathode ray 

tube. When electrons have sufficient energy to bounce out inner shell electrons from 

the X-ray generating material, characteristic X-rays can be produced, which provide 

the X-ray sources. The most widely used target material to generate X-ray is copper, 

with the wavelength of λ=1.5418 Å from Cu Kα radiation. The generated X-rays are 

collimated and fired onto the sample. During the testing, both sample and X-ray 

detector are rotated, and the intensity of the reflected X-rays is recorded. When the 

incident X-rays are rotated to a position that satisfies the Bragg equation when 

impinging the sample (2d sin θ = λ, where d is the interplanar spacing, λ is the 

wavelength of incidental electrons, and θ the Bragg angle), constructive interference 

occurs in a form of a peak at the position of 2θ, where 2θ is generally in a range of 

~5o to 70o. In this project, powder XRD is employed for analysis of the crystalline 

phases of synthesized products. Substrates after product growth are directly used for 

X-ray diffraction characterization. XRD result will be compared with the stand PDF 

cards from the database by the International Center of Diffraction Data. The 

information from the substrates will be excluded to determine the phase composition 

of the products. 
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Figure 3.8 (a) A photograph of a XRD instrument and (b) the schematic diagram of 

its components.7 

 

3.3 Sample Preparation for Electron Microscopy 

 

3.3.1 Sample Preparation for SEM 

As the incident electrons with negative charges will continuously interact with the 

sample, it is very necessary to get rid of the negative charges accumulated on the 

sample. Thus, all the SEM samples need to be electrically conductive. For insulating 

samples, a thin layer of conductive agent, such as carbon, platinum or gold, will be 

coated on the surface. Since all the SEM samples in this thesis are semiconducting 

nanostructures, the nanostructured samples were not pre-coated with any 

conductive layer. Therefore, as-grown nanostructure on the substrate is directly used 

as the SEM samples. The substrate bottom is then sticked to the metallic sample 

stub to get plain views and side views of the sample. 

 

3.3.2 Sample Preparation for TEM/STEM 

In this thesis, there are two types of nanostructure sample, the first is individual 

NWs, and the other is the nanostructures with the supporting substrate. The 

corresponding sample prepare methods are listed as below. 

 

Table 3.2 Preparation processes of TEM/STEM samples.  
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Sample type Preparation process 

Individual nanostructures A small substrate with as-grown 

nanostructures is cut and placed in a small 

container with a tiny amount of pure ethanol. 

Then the container is put into a 

ultrasonicator for 10~40 min to break the 

NWs from the substrate. The NW-ethanol 

dispersion is then dropped onto a holy 

carbon film coated copper grid. 

Cross-section TEM sample Substrates with nanostructure were glued 

with clean silicon substrates, and form 

sandwiched TEM sample. Mechanically 

grinding the sandwich substrate till thin 

enough (by tripod or Disc Grinder, or 

polishing machine). Glue the thinned 

sandwich to a copper grid. Further thinning 

the sample till electron transparent by ion-

milling via PIPS. 

 

3.4 Density Functional Theory (DFT) 

DFT provides a powerful tool for computations of the quantum state of atoms, 

molecules and solids, and of ab-initio molecular dynamics. Its first version was 

conceived by Thomas and Fermi immediately after the foundation of quantum 

mechanics in 1927.8 In the middle of 1960s, Hohenberg, Kohn and Sham 

established a logically rigorous DFT of the quantum ground state on the basis of 

quantum mechanics, and introduced an approximatively explicit theory called the 

local-density approximation (LDA), after which DFT grows vastly in popularity.9-11  

Accurate description of electronic structure of atoms, molecules and solids is 

complex, since there are large numbers of electrons that must be treated following 

quantum mechanics rather than classical physics. To obtain the energy of the 

electron system, early quantum mechanics was by solving stationary (time-

independent) Schrodinger equation10: 

�̂� Ψ𝑘(𝐫1, 𝐫2, 𝐫3, ⋯ 𝐫N) = 𝐸𝑘Ψ𝑘(𝐫1, 𝐫2, 𝐫3, ⋯ 𝐫N)                          (3.4) 
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where �̂�  is called Hamiltonian which operates on the wave function Ψ𝑘  and give 

corresponding energies (eigenvalues) 𝐸𝑘 . When the function Ψ  is known, the 

corresponding energy of the system can be calculated as an expectation value of the 

Hamiltonian �̂� as: 

𝐸 =
∫ ∫ ⋯ ∫ Ψ∗(𝐫1, 𝐫2, 𝐫3, ⋯ 𝐫N)�̂�𝛹 (𝐫1, 𝐫2, 𝐫3, ⋯ 𝐫N)𝒅𝐫1, 𝒅𝐫2, 𝒅𝐫3, ⋯ 𝒅𝐫N

∫ ∫ ⋯ ∫ Ψ∗(𝐫1, 𝐫2, 𝐫3, ⋯ 𝐫N)𝛹 (𝐫1, 𝐫2, 𝐫3, ⋯ 𝐫N)𝒅𝐫1, 𝒅𝐫2, 𝒅𝐫3, ⋯ 𝒅𝐫N

 

      (3.5) 

For an electronic system like atom or bulk materials, the total Hamiltonian operator 

can be written as: 

�̂�𝑡𝑜𝑡 = �̂�𝑛𝑢𝑐𝑙 + �̂�𝑛𝑢𝑐𝑙 + �̂�𝑒 + �̂�𝑒𝑒 + �̂�𝑒𝑥𝑡                           (3.6) 

where �̂�𝑛𝑢𝑐𝑙 is the operator of kinetic energy of nuclei, �̂�𝑛𝑢𝑐𝑙 is the interaction energy 

of nuclei, �̂�𝑒 represents the kinetic energy of electrons, �̂�𝑒𝑒 denotes the interaction 

energy between electrons, and �̂�𝑒𝑥𝑡 is an external potential. Since nuclei are much 

heavier than electrons, we can consider that the movement of electrons depends on 

positions of nuclei in a parametric way, which is Born-Oppenheimer approximation.12 

It allows us to use describe electron Hamiltonian �̂�𝑒𝑙 as 

�̂�𝑒𝑙=�̂�𝑒 + �̂�𝑒𝑒 + �̂�𝑒𝑥𝑡=∑ −
1

2

𝑁
𝑖=1 ∇𝑖

2 + ∑ ∑
1

|𝐫𝑖−𝐫𝑗|

𝑁−1
𝑗=𝑖+1

𝑁−1
𝑖=1 + ∑ (∑

−𝑍α

|𝐫𝑖−𝐑α|

𝑁𝑛𝑢𝑐𝑙
𝛼=1

𝑁
𝑖=1 )      (3.7) 

in which energy is in Hartree unit, atomic units are used for mass of electron 𝑚𝑒= 1; 

ℏ= 1; length in bohrs; |𝐫𝑖 − 𝐫j| is the distance between 𝑖𝑡ℎ and 𝑗𝑡ℎ electron. The 𝑍α is 

the charge of an α𝑡ℎ nucleus (atomic number), |𝐫𝑖 − 𝐑α|  is the distance between 

electron 𝑖 and nucleus α, 𝑁𝑛𝑢𝑐𝑙 is the total number of nuclei in the molecule.  

The essence of DFT is to describe a many-body interacting system via its particle 

density but not many-body wavefunction. This reduces the 3N degrees of freedom of 

N-body system to three spatial coordinates. The Thomas-Fermi (TF) model is 

predecessor of DFT concepts.8 The TF model was proposed by Thomas and Fermi 

at around 1928, in which they use the electron density 𝑛(𝑟) as the basic variable 

instead of wave function. The total energy of a system in an external potential 𝑉𝑒𝑥𝑡(𝑟) 

can be written as a functional of the electron density n(r) as: 

𝐸𝑇𝐹[𝑛(𝑟)] = 𝐶1 ∫ 𝑛(𝑟)5/3 𝑑𝑟 +  ∫ 𝑛(𝑟)
5

3 𝑉𝑒𝑥𝑡(𝑟)𝑑𝑟 +
1

2
∫

𝑛(𝑟)𝑛(𝑟′)

|𝑟−𝑟′|
𝑑𝑟𝑑𝑟′               (3.8) 

where the first term represents the kinetic energy of the non-interacting electrons in a 

homogeneous electron gas with 𝐶1 =
3

10
 (3𝜋2)2/3  in atomic units ( ℏ = 𝑚𝑒 = 𝑒 =
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4𝜋/𝜖0=1). The kinetic energy density of a homogenous electron gap is obtained by 

adding up all of the free-electron energy state 𝜖0=k2/2 up to Fermi wave vector 𝑘𝐹 =

[3𝜋2𝑛(𝑟)]1/3. The second term represents the classical nucleus-electron Coulomb 

electrostatic interaction energy. The third term represents the classical Hartree 

energy with the classical Coulomb repulsion between electrons. As in TF method, 

the exchange and correlation among electrons was ignored, Dirac extended the TF 

method by adding a local exchange term C2 𝑅𝑛(𝑟)4/3dr with C2=∫ 34(
3

𝜋
)1/3, which 

results new equation13: 

𝐸𝑇𝐹𝐷[𝑛(𝑟)] = 𝐶1 ∫ 𝑛(𝑟)5/3 𝑑𝑟 +  ∫ 𝑛(𝑟)
5

3 𝑉𝑒𝑥𝑡(𝑟)𝑑𝑟 +
1

2
∫

𝑛(𝑟)𝑛(𝑟′)

|𝑟−𝑟′|
𝑑𝑟𝑑𝑟′ + 𝐶2 ∫ 𝑛(𝑟)4/3 𝑑𝑟 

(3.9) 

The ground state density and energy can be obtained by minimizing the TF equation 

subject to conservation of the total number (N) of electrons. By using the technique 

of Lagrange multipliers, the solution can be found in the stationary condition: 

𝛿{𝐸𝑇𝐹𝐷[𝑛(𝑟)] − 𝜇(∫ 𝑛(𝑟)𝑑𝑟 − 𝑁)} = 0                                       (3.10) 

where 𝜇 is a Lagrange multiplier, which denotes the chemical potential (or Fermi 

energy at T=0K). Combining Eq. 3.5 and 3.6, the Thomas-Fermi-Dirac (TFD) 

equation can be described as: 

5

3
𝐶1𝑛(𝑟)2/3 + 𝑉𝑒𝑥𝑡(𝑟) + ∫

𝑛(𝑟)

|𝑟−𝑟′|
𝑑𝑟′ +

4

3
𝐶2𝑛(𝑟)4/3 − 𝜇 = 0                    (3.11) 

which can be solved directly to obtain the ground state density. The approximations 

used in the TFD approach fails to describe the atomic bonding, and thereby cannot 

give accurate description for molecules and solids. Nevertheless, it has given a path 

to application of DFT method. 

Modern DFT is based on the Hobenberg-Kohn (HK) theorem,14 which contains 

following conventional formulations: 

Theorem 1: The external potential 𝑉𝑒𝑥𝑡[𝑟], and hence the total energy is a unique 

functional of electron density 𝑛(𝑟). 

Theorem 2: The ground state total energy functional 𝐸𝑉𝑒𝑥𝑡
[𝜌0] reaches its minimal 

value at the ground state electron density 𝜌0 corresponding to 𝑉𝑒𝑥𝑡: the density that 

minimises the total energy is the exact ground state density. 

𝐸[𝜌] ≥ 𝐸[𝜌0 ]                                                        (3.12) 

For every trial electron density 𝜌, 𝐸𝑉𝑒𝑥𝑡
[𝜌0] can be written as  
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𝐸𝑉𝑒𝑥𝑡
[𝜌0] =< Ψ|𝛵𝑒 + 𝑉𝑒𝑒|Ψ >+< Ψ|𝑉𝑒𝑥𝑡|Ψ >=𝐹𝐻𝐾 [𝜌] +  ∫ 𝜌𝑉𝑒𝑥𝑡𝑑𝑟                (3.13) 

where 𝐹𝐻𝐾 [𝜌] is universal for a many-electron system. Then, the one-to-one 

correspondence 𝜌0 ⟷ 𝑉𝑒𝑥𝑡, and ground state total energy functional 𝐸𝑉𝑒𝑥𝑡
[𝜌0] are 

explained. 

Theorem 1 demonstrates that the density contains as much information as the wave 

function. Hence, all the observable can be written as functional of electron density.  

The HK theorem only shows that it is possible to obtain ground state density, but 

does not tell a way to find the ground state density. This difficulty was overcome by 

Kohn-Sham (KS) equations,9 which rewrite the total energy as: 

𝐸[𝜌] = 𝑇[𝜌] + 𝐸𝐻[𝜌] + 𝐸𝑥𝑐[𝜌] + ∫ 𝑛 (𝑟)𝑉𝑒𝑥𝑡(𝑟)𝑑𝑟                      (3.14) 

where 𝑇0, 𝑉𝐻  and 𝑉𝑥𝑐  are the kinetic energy, Hartree potential, and exchange-

correlation functional. The corresponding Hamiltonian is called the KS Hamiltonian: 

                                                      �̂�𝐾𝑆 = �̂�0 + �̂�𝐻 + �̂�𝑥𝑐 + �̂�𝑒𝑥𝑡                             (3.15) 

The exchange-correlation potential is given by the functional derivative of the exact 

ground state density: 

�̂�𝑥𝑐 =
𝛿𝐸𝑥𝑐[𝜌]

𝛿𝜌
                                                (3.16) 

Now the KS equation can be described as 

�̂�𝐾𝑆𝜙𝑖 = 𝜖𝑖𝜙𝑖                                                (3.17) 

where the single particle wave functions 𝜙𝑖  fulfils ∑ 𝜙𝑖
∗𝜙𝑖=1 𝑖

= 𝜌  and 𝜖𝑖  is orbital 

energy of the 𝑖 th particle. KS equation simply needs the solution of single-particle 

Schrödinger equations to find the ground-state density 𝑛(𝑟)  for non-interacting 

system.15 

However, the crucial quantity i exchange correlation energy 𝐸𝑋𝐶[𝑛] is still unknown in 

KS method. Since there is no way to know the exact exchange correlation, 

approximate exchange correlation functionals were used, such as local density 

approximation (LDA),16 generalized gradient approximation (GGA)17 and hybrid 

functionals. 

In LDA, the exchange correlation energy is compared to homogeneous electron gas, 

16 

      𝐸𝑥𝑐
𝐿𝐷𝐴[𝜌] = ∫ 𝜌(𝑟) 𝜖𝑥𝑐

ℎ𝑜𝑚(𝜌(𝑟))𝑑3(𝑟)                                   (3.18)  
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where 𝜖𝑥𝑐
ℎ𝑜𝑚(𝜌(𝑟))  is the exchange-correlation energy density. The many-electron 

system is divided into infinitesimally small regions located at positions 𝑟 , each 

containing a homogeneous interacting electron gas with a constant local density  𝜌. 

The LDA fails in system where there is a rapid variation in the electron density, such 

as surfaces and strongly correlated electron systems. The well-known example is the 

underestimation of bandgap in semiconductors and insulators.10 To overcome this 

deficiency, other approximation methods have been proposed, in which the most 

widely used is GGA, where the exchange-correlation functional depends on both 

electron density and its gradient |∇𝜌(𝑟)|17: 

𝐸𝑥𝑐
𝐺𝐺𝐴[𝜌(𝑟)] = ∫ 𝜌(𝑟) 𝜖𝑥𝑐(𝜌(𝑟), ∇𝜌(𝑟))𝑑3(𝑟)                                  (3.19) 

The KS equations can be solved numerically through self-consistent iterations. The 

typical steps to solve KS equations follow the steps9, 10: 

1, Start with a density, For the 1st iteration, superposition of atomic densities is 

usually taken; 

2, Establish grid for charge density and exchange correlation potential; 

3, Compute KS matrix; 

4, Solve the equations for expansion coefficients to obtain KS orbits. 

5, Calculate new density 𝜌 = ∑ |𝜙𝑖=𝑜𝑐𝑐 𝑖
(𝐫)|2

 

6, If density or energy changed substantially, go to step 1. 

7, If SCF cycle converged and geometry optimization is not requested, go to step 10. 

8, Calculate derivatives of energy vs. atom coordinates, and update atom 

coordinates; 

9, If gradients are still large, or positions of nuclei moved appreciably, go to step 1, 

10, Calculate ground state properties and analyse the results. 
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Figure 3.9 A flow chart of the iteration scheme to solve KS equation.9, 10 

 

In this thesis, Calculations of energies and electronic structures were performed 

using the Vienna ab initio simulation package (VASP) within the framework of DFT. 

The projector augmented wave (PAW) method was employed for electron-ion 

interactions, and the GGA from Perdew et al. (PW91) was used to describe the 

exchange-correlation functional.16 
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4 

Morphological Variation of Bi2Se3 

Nanostructures by Catalyst-

Nanostructure Interface Effect 

 

 

4.1 Introduction  

Au-catalyzed chemical vapor deposition (CVD) has become the most widely 

employed approach for growth of Bi2Se3 and Bi2Te3 nanostructures. However, their 

growth mechanism is still far from understanding. Here, we use Bi2Se3 as a case 

system to study the growth mechanism, and to understand the impact of catalyst-

nanostructure interface on the growth directions of nanostructures. We have 

achieved the growth of 1D Bi2Se3 nanostructures with different growth directions 

using Au film as catalyst. Bi2Se3 nanostructures with various orientations, including 

< 112̅0 > NRs, <0001> NWs and NR-NW junctions, were found to be induced by 

faceted Au catalysts via VSS mechanism. It has been found that a {0001} interface 

between the catalyst/nanostructure induces the growth of NWs. While when the 

interface is not sharp, NRs were induced. We further correlate the electrical 

properties with the growth directions of individual Bi2Se3 nanostructures by in-situ 

TEM, and a large conductivity anisotropy ratio (~250) was observed. 

 

4.2 Journal Publication  

These results in Chapter 4 are included as it appears in Journal of Physical 

Chemistry C, 2014, 118, 20620-20626. 

http://pubs.acs.org/doi/abs/10.1021/jp505407j 
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Anisotropic Electrical Properties from Vapor-Solid-Solid Grown Bi2Se3 
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Abstract 

High-quality Bi2Se3 nanoribbons and NWs were synthesized by a Au-catalyzed 

chemical vapor deposition method. Detailed structural and chemical 

characterizations show that the growth of both Bi2Se3 nanoribbons and NWs are 

governed by the vapor-solid-solid growth mechanism, in which the nanoribbons grow 

along <112̅0> and NWs grow along <0001> directions. In-situ scanning tunneling 

microscope-transmission electron microscopy electrical measurements show that the 

nanoribbons are much more conductive than the NWs with a conductivity anisotropy 

ratio of ~2.5 x102 at room temperature.  

 

 

Key words: Bismuth Selenide, Topological Insulators, NWs, Chemical Vapor 

Deposition, In-situ TEM, Thermoelectrics 
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Introduction 

As an ideal candidate for applications in thermoelectrics and topological insulators, 

Bi2Se3 has been a globally focused material system, from which various unique 

physical phenomena, such as quantum anomalous Hall effect, superconductivity and 

topological magnetoelectric effect, have been observed.1-8 For the bulk topological 

insulators, the direct observation and manipulation of their metallic edge/surface 

states are relatively difficult due to the significant outnumbering of the bulk carriers.9-

11 The 1D topological insulator nanostructures, on the other hand, have become an 

excellent alternative system for understanding the metallic surface properties 

because of the enhanced surface-to-volume ratio.10, 12-19 For example, single-

crystalline Bi2Se3 NRs show unambiguous transport properties through the periodic 

quantum interference effect.18 Therefore, engineering Bi2Se3 at the nanoscale is 

exciting for developing topological insulators for future spintronic applications. 

From the structural point of view, a rhombohedral layered structured Bi2Se3 has a 

strongly covalent bonding within the quintuple layers and a weak van der Waals 

bonding between the quintuple layers.20 Such a strong structural anisotropy is 

expected to result in a strong electrical anisotropy, which may be enhanced when 

the sample size is reduced to nanoscale.21 For example, hexagonal layer-structured 

In2Se3  NWs (NWs) also have such anisotropic structural feature, and have shown 

much stronger anisotropy ratio in electrical properties that from their bulk materials 

(10~103 times).21 Therefore, it is desirable to investigate the electrical anisotropy in 

1D Bi2Se3 nanostructures with different growth directions, and hence a desire for 

their growth. 

Metal-catalyzed chemical vapor deposition (CVD) is a common method for growing 

1D Bi2Se3 nanostructures, by which the growth of Bi2Se3 nanostructures was 

generally believed to be governed by the vapour-liquid-solid (VLS) mechanism,1, 9, 16, 

18, 22 although it needs demonstration for the possibility of the vapour-solid-solid 

(VSS) growth mechanism, which has been also constantly found in other metal-

catalysed 1D nanostructures.23-27 Growth of Bi2Se3 nanostructures with different 

morphologies, including NRs and NWs,9-10, 16, 18, 28 was realized by CVD. However, 

achieving high-quality Bi2Se3 nanostructures with different growth directions remains 

challenging and requires further investigations to understand the fundamental growth 

mechanism. 
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In this study, we have achieved the growth of 1D Bi2Se3 nanostructures with different 

growth directions using Au film as catalyst. Bi2Se3 nanostructures with various 

orientations, including <  112̅0  > NRs, <0001> NWs and NR-NW junctions, were 

induced by faceted Au catalysts, which were proposed to be grown via the VSS 

mechanism. The physical reasons of this observation have been discussed. We 

further correlate the electrical properties with the growth directions of individual 

Bi2Se3 nanostructures, and a large conductivity anisotropy ratio (~250) was 

observed. 

 

Experimental  

Material Synthesis. The Bi2Se3 nanostructures were grown in a horizontal tube 

furnace under atmospheric pressure. SiO2/Si (001) substrates were firstly cleaned by 

acetone and distilled water and then dried with high-purity N2 gas. Prior to the 

nanostructure growth, the substrates were coated with a thin Au film (~9 nm 

thickness) using the SPI Module sputtering coater. The Bi2Se3 powders (99.999 %, 

0.2 g per growth from Sigma Aldrich) were placed in the hot centre of the furnace 

while the Au-coated substrates were placed in the downstream of the tube at a 

distance ranging from 9-12 cm away from the central furnace, as schematically 

shown in Figure 1a. The alumina tube was firstly flushed with Ar gas to minimize the 

oxygen contamination, and then was heated to 700 oC with a heating rate of 8 

oC·min-1
 and kept at this temperature for 1.5 h under the mixed carrier gas of Ar (100 

sccm·min-1) and H2 (40 sccm·min-1), followed by cooling-down naturally. When the 

furnace center was heated to 700 oC, the temperature distribution along the 

downstream were measured by an external thermocouple, in which the substrate 

temperature for collecting samples are found to be varied from 490 to 580 oC 

(defined as the growth temperature - Tgrowth), as schematically illustrated in Fig.1a. 

Material Characterizations. The morphological, structural and chemical 

characteristics of as-grown products were investigated by scanning electron 

microscopy (SEM, JEOL JEM 7800, operated at 15 kV) and transmission electron 

microscopy (TEM, Philips Tecnai F20 and F30, operated at 200 kV) equipped with 

energy-dispersive X-ray spectroscopy (EDS) for compositional analysis. 

Electrical Measurements. Electrical measurements of individual nanostructures were 

performed using a Nanofactory in-situ scanning tunneling microscope (STM)-TEM 
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electrical probing system inside the F20 TEM. Individual nanostructures for electrical 

measurements were prepared by scratching the surface of the sample substrates 

with home-made Cu grids. As illustrated in Figure 1b, during the electrical 

measurement, the Cu grid acts as the top electrode and the bottom electrode is a W 

tip that is movable via the control of a piezo tube. 

 

Results and discussion 

Figure 2a shows a typical overview SEM image of the products grown on the 

substrate and shows many 1D nanostructures. Detailed SEM characterization 

suggests that the majority of these nanostructures are NRs with lengths of several 

tens of µm. Figure 2b shows a side-view SEM image of a typical NR, in which a 

faceted catalyst can be observed at the NR tip (refer to its inset). Figure 2c shows a 

SEM image taken from the bottom section of a typical NR, indicating that the NRs 

grow from the nanoplates stacked on the substrate. Apart from NRs, NWs were also 

found and an example is shown in Fig. 2d. As can be seen, the NW is relatively short 

with rough sidewalls. Figure 2e is an enlarged SEM image to show details of the NW 

tip, in which the faceted catalyst can be observed. In addition, NW-NR junctions 

were occasionally observed, as shown in Fig. 2f.  

To understand the detailed structural and chemical characteristics of the as-grown 

NRs and NWs, TEM was employed. Figures 3a and 3e are bright-field (BF) TEM 

images of a typical NR and a typical NW. Figures 3b and 3f are their corresponding 

EDS spectra taken from both the catalysts and nanostructures. EDS results indicate 

that the NR and the NW have identical chemical composition with a Bi:Se atomic 

ratio of 2:3 and the catalysts are pure Au (the Cu peaks shown in the EDS spectra 

are due to the Cu grids). Selected area electron diffraction (SAED) patterns and 

high-resolution TEM (HRTEM) were used to evaluate the structures of the NR and 

the NW. Their corresponding results are shown in Fig. 3c-d and Fig. 3g-h, from 

which, the structures of the NR and NW are confirmed to be rhombohedral Bi2Se3 

phase with a = 4.1 Å and c = 28.6 Å (fitted well with JCPDS file no. 33-0214). As can 

be seen in Fig. 3c, a set of weak diffraction patterns can be observed, which is faint 

kinematically forbidden {101̅0} in the zero Laue zone but can be constantly observed 

in rhombohedral nanostructured samples.9,16, 29 The appearance of such spots may 

be resulted from (1) the projection of the diffractions from higher Laue zone caused 
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by the intrinsic large c-axis lattice parameter in rhombohedral Bi2Se3 with the thin 

feature (<50nm) of the NR along c-axis;30 (2) the antisite defects in the NR.31 By 

carefully correlating the SAED patterns and corresponding TEM images, the axial 

direction of the NRs can be determined as < 112̅0> while the NW has the axial 

direction of <0001> with few stacking faults (refer to Fig. 3h). 

Figure 4a presents a typical BF TEM image taken from a NR-NW junction where the 

electron beam is perpendicular the axial directions of the NR section and the NW 

section. The corresponding SAED pattern (inset of Fig. 4a) shows that the NW 

section grows along the <0001> direction while the NR section grows along the 

< 112̅0 > direction, similar to those individual NRs and NWs. Figure 4b shows an 

HRTEM image taken from the NW section, confirming that the axial direction of the 

NW section is along <0001>. Figure 4c shows a HRTEM image taken from the 

NW/catalyst interface and shows a sharp {0001} NW/catalyst interface. Figure 4d is 

a BF TEM image taken from the NR-NW junction and inset is the corresponding 

HRTEM image, showing a sharp {0001} junction. Interestingly, during the electron 

beam irradiation, the NW section was cleaved along the {0001} plane (possibly due 

to the weak van der Waals bonding between the quintuple layers), from which a 

hexagonal cross-section can be seen (refer to Fig. 4e). By correlating the TEM view 

direction and the cleaved morphology, the side facets of the NW section can be 

determined as {11̅00}, and the atomic structure of the NW can be schematically 

illustrated, as shown in Fig. 4f. 

To understand the growth mechanism of our 1D Bi2Se3 nanostructures, we note that 

the post-growth catalysts for both NRs and NWs are faceted, suggesting that the 

catalysts were in solid form during the 1D nanostructure growth.26, 32 Accordingly, the 

growth of our 1D Bi2Se3 nanostructures should be governed by the VSS mechanism. 

To understand whether the Bi and Se atoms in vapor can form a liquid alloy with Au 

particles (formed after the thin Au film being broken due to the heating26), we 

investigate the possible eutectic reactions in the Au-Se and Au-Bi phase diagrams. 

Based on the Au-Se phase diagram, we found that the eutectic point in Au-Se is 

~755 oC (Teu (Au-Se)), which is much higher than the Tgrowth, suggesting that such 

eutectic reaction is unlikely to happen in our growth temperature.33 In the Au-Bi case, 

there is an eutectic point at 241 oC (Teu(Au2Bi-Bi)), which is 200 oC lower than Tgrowth. 
33 

To investigate whether such a eutectic reaction can happen in our growth 
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environment, we correlated the Au-Bi binary phase diagram (refer to Fig. 5a) with our 

experimental results. As can be seen in Figure 5a, the Au2Bi-Bi eutectic reaction 

requires the Bi concentration to be as high as 86.8 atom% in Au solid, which is 

impossible for Au particles with sizes of ~300 nm to absorb sufficient Bi to reach 

such a eutectic point.31,33 As a consequence, we consider the possibility that Au 

formed a liquid alloy with Bi is unlikely during the nanostructure growth. From the 

above discussion, the catalysts should be in the solid form during the growth of the 

Bi2Se3 nanostructures. Therefore, the Au-induced 1D Bi2Se3 nanostructures should 

be governed by the VSS growth. 

To understand how the Au particles absorb and collect the vapour species during the 

VSS growth of 1D Bi2Se3 nanostructures, we examined the solubility of Bi and Se in 

Au. From Au-Se and Au-Bi phase diagrams, Se is not soluble in solid Au,33 while Bi 

can form a solid solution with Au in a solubility range of 0~0.06% under the 

temperature of 500-1064 oC, as shown in the inset of Fig. 5a.34 Therefore, under our 

Tgrowth (490-580 oC), a small amount of Bi can be penetrated into the Au particles by 

solid diffusion mechanism.35-36 After growth, Bi is not soluble in Au at room 

temperature and will be expelled entirely from the Au catalyst, which is in 

consistence with our post-growth catalyst composition (only Au can be detected in 

the catalyst, as shown in Fig. 3b and 3f). Regarding how the Se reaction during the 

growth of the nanostructures, we note that the growth of III-IV semiconductor NWs 

only needs the penetration of single component into the catalyst, and the other 

component can react with the penetrated one to form the compound at the energy-

favorable catalyst-nuclei interfaces.35,37 Therefore, Se vapor may react with Bi to 

induce the growth of Bi2Se3 compound at the catalyst/nanostructure interface, as 

illustrated in Fig. 5b.35-36, 38  

To understand the growth difference of NRs and NWs, as well as NR-NW junctions, 

we note that the interfaces between catalyst and these nanostructures are significant 

different according to our extensive SEM and TEM investigations. In the case of 

NWs and NR-NW junctions, NW sections and the catalysts always have the {0001} 

interfaces (refer to Fig. 3h and 4c), while the NRs and their catalysts always have 

multi-faceted interfaces. Taking these experimental results and the VSS growth 

mechanism into accounts, the solid-form catalysts makes it difficult to form specific 

interfaces with their underlying nuclei,26 and the variety in the nuclei/catalyst 
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interfaces can induce nanostructures with different morphologies.26, 39 Thus, we 

propose that when the catalyst/nuclei interfaces are not {0001} interfaces, NRs will 

be induced by the catalysts,39 while if the catalyst/nuclei interfaces are {0001} 

interfaces, both NRs and NWs can be induced and the NR-NW junctions are very 

likely to be formed from the formal case (NRs that have {0001} NR/catalyst 

interfaces), as shown in Fig. 5b. 

Since a strong anisotropy in transport properties is expected in the rhombohedral 

structured Bi2Se3 nanostructures due to their nature of layered structure, we 

accordingly measured the conductivities of our NRs and NWs using the STM-TEM 

electrical probing system. Figure 6a shows a BF TEM image with an inset SAED 

showing a typical < 112̅0 > NR connected by two electrodes. Corresponding 

measured I-V curve is shown in Figure 6b. Figure 6c shows a BF TEM image with an 

inset SAED pattern of a typical <0001> NW. Figure 6d shows the corresponding I-V 

curve from the NW. In Fig. 6b and 6d, both I-V curves are linear, indicating that the 

contacts between the electrodes and the nanostructures are ohmic-type contacts. 

The contact area between the electrodes and the nanostructures was found to have 

very little effect on the resistance measurement results (Fig. S1), which means we 

can use the two-terminal resistance to estimate the intrinsic nanostructure 

conductivity. The resistances (R) of the NR and the NW can be calculated as 0.167 

MΩ and 12.50 MΩ, respectively. To calculate the electrical conductivity (C), we use 

C = l / (R∙A),21 where l is the length of the wire and A is the cross-sectional area. 

Given that the NR has a length of 3.0 μm and a quasi-rectangular cross section with 

a width of 304 nm and a thickness of ~30 nm (estimated by the statistical thickness 

to width ratio ~1:10), and the NW has a length of 1.2 μm and a quasi-hexagonal 

cross section with a diagonal length of 140 nm, the conductivities of the NR and NW 

can be calculated as ~19.44 S∙cm-1 and ~0.078 S∙cm-1. The electrical conductivity of 

the <112̅0> NR is about 2.5x102 times higher than that of the <0001> NW. The 

anisotropic value is much higher than that of the Bi2Se3 bulk single crystal (up to 

~40).40 Based on the measurements of different NW and NR samples, we obtained 

an anisotropic ratio value large than 250 (refer to Fig. S2 and Table S1). We found 

that the conductivities of our NRs are marginally comparable to the reported 

conductivity values of undoped Bi2Se3,
41-42 while the conductivities of our NWs are 

much lower (>2 orders of magnitude) than that from the single crystal measured 
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along the [0001] direction.40 From the native structural characteristics of Bi2Se3 

crystal, the weak van der Waals bonding interaction between the layers along 

<0001> directions can cause structural defects such as stacking faults more easily 

(refer to Fig. 3h),21 while strong covalent bonding within the layer along <112̅0> is 

free of defects, which increases the conductivity anisotropy in our 1D Bi2Se3 

nanostructures. Since many physical properties of Bi2Se3 are directly related to their 

transport properties, we expect that the large electrical anisotropy in our 1D Bi2Se3 

nanostructures with different growth directions must bring more possibilities for their 

practical applications. 

 

Conclusion 

We have fabricated high-quality Bi2Se3 NRs and NWs by a CVD method using Au 

thin film as catalyst. Through detailed structural and chemical characterizations using 

electron microscopy, we found that the growth of both Bi2Se3 <112̅0> NRs and 

<0001> NWs are governed by the VSS growth mechanism. From detailed in-situ 

STM-TEM electrical measurements, the correlation of transport properties with the 

growth directions of 1D Bi2Se3 NRs and NWs was built, which shows that <112̅0> 

NRs have a much higher electrical conductivity than <0001> NWs. The large 

conductivity anisotropy (with a ratio of ~ 2.5x102) in nano-form 1D Bi2Se3 will allow 

for new opportunities in many Bi2Se3-based advanced device applications. 
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Figure Captions 

 

 

Figure 1. (a) Schematics of the tube furnace for growing Bi2Se3 nanostructures 

(upper panel) and the temperature as a function of position (lower panel). (b) 

Schematics of the in-situ STM-TEM electrical probing system, with the inset of a 

TEM image showing the W tip, and the Cu grid for electrically connecting the 

sample. 
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Figure 2. SEM images of the nanostructures grown on substrate. (a) Plain-view 

image of the as-grown products. (b) Side-view image of a typical NR with an inset 

showing the NR tip with a faceted catalyst particle. (c) Side-view image showing the 

bottom of a NR. (d) Side-view image of a short NW. (e) High-magnified side-view 

image of the NW tip with a faceted catalyst. (f) Side-view image of a NW-NR 

junction. 
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Figure 3. TEM characterization results of a NR and a NW. (a) BF image of a NR with 

an inset showing the catalyst tip. (b) EDS spectra taken at the catalyst and body of 

the NR. (c) Corresponding SAED pattern taken along [0001] zone axes from the 

area indicated by the square in a). (d) The corresponding HRTEM image. (e) BF 

image of a NW with an inset of HRTEM image showing a sharp {0001} catalyst/NW 

interface. (f) EDS spectra taken at the catalyst and the body of the NW. (g) 

Corresponding SAED pattern taken along [1̅21̅0] zone axis from the area indicated 

by the square in (e). (h) Corresponding HRTEM image of the NW section showing a 

stacking fault. 
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Figure 4. TEM images and the atomic model of a NR-NW junction. (a) BF image 

with the inset of SAED pattern taken along [1̅100] zone axis from the area indicated 

by the square. (b) Corresponding HRTEM image from the NW section. (c) 

Corresponding HRTEM image from the catalyst-NW interface. (d) BF image showing 

the NR-NW interface with an inset of the HRTEM image. (e) BF image taken along 

[1̅100] zone axis from the cleaved area of the NW. (f) An atomic model of a NW 

section, the black vectors are within the a-b plane while the red vectors are along the 

c-axis.  
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Figure 5 (a) Au-Bi binary phase diagram, with an inset to illustrate the solid solubility 

of the Bi in Au.34 (b) Proposed growth models for the Bi2Se3 nanostructures with 

different morphologies.  
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Figure 6. (a) A BF TEM image of a NR contacted by the electrodes with an inset of 

SAED. b) Two-probe I-V characteristics for the NR. (c) A BF TEM image of a NW 

contacted by the electrodes with a SAED inset. (d) Two-probe I-V characteristics for 

the NW.  
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Supporting Information 

Figures S1a-c shows the variation of the contact area between the electrodes. 

Figure S1d shows the corresponding I-V measurement results. It can be seen that 

the I-V curves are not evidently changed when the contact area is varied. 

 

Figure S1 Effects of the contact area between the W tip and the Bi2Se3 NR on its 

conductivity. (a-c) Variation in the contact area. (d) I-V curves corresponding to 

different contact areas. 
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Figure S2 shows the I-V curves from 6 samples, in which the NW#0 and NR# 0 are 

the samples presented in the main manuscript. The corresponding calculated 

geometrical features, resistances and electrical conductivities of these samples are 

presented in Table S1, which shows that the conductivity variation range is 

19.74~44.00 s·cm-1 for the NRs and is 0.008~0.078 s·cm-1 for the NWs, resulting in 

an anisotropy ratio varying in a range of 250~5500.  

 

 

Figure S2 (a) I-V curves obtained from the NR samples. (b) I-V curves obtained from 

the NW samples. 

 

Table S1 Geometrical and electrical characterization results from the NR and NW 

samples. 

No. 
Cross-Section 

Area(m2) 

Channel 

Length (m) 
R（MΩ） C(s·cm-1) 

NW0 9.1x10
-15

 3.0x10
-6

 0.167 19.44 

NR1 4.0x10
-15

 3.4x10
-6

 0.277 30.07 

NR2 1.0x10
-14

 1.1x10
-6

 0.025 44.00 

NW0 1.7x10
-14

 1.2x10
-6

 12.5 0.078 

NW1 3.5x10
-14

 6.5x10
-6

 76.9 0.024 

NW2 5.4x10
-14

 4.2x10
-6

 97.0 0.008 
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5  

Morphological Control of SnTe 

Nanostructures by Catalyst 

Engineering 

 

5.1 Introduction  

Au-catalyzed chemical vapor deposition (CVD) has become the most widely 

employed approach for growth of SnTe nanostructures. However, growth 

mechanism is still far from well understanding, and the controllable growth technique 

reported is still limited. Therefore, in this work, we investigate into the detail growth 

mechanism of how Au induces the growth of SnTe nanostructures. We further 

demonstrate a morphological control of SnTe nanostructures using a facile chemical 

vapor deposition approach, in which Au containing catalysts with different Au 

concentrations were used to induce the nanostructure growth. Through electron-

microscopy analysis, Au-Sn catalysts with different compositions were found to 

induce SnTe nanostructures with different morphologies. 

 

5.2 Journal Publication 

These results in Chapter 4 are included as it appears in Nano Research, 2015, 8, 

3011-3019.  

http://link.springer.com/article/10.1007%2Fs12274-015-0806-y 
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Abstract 

A method of controlling the morphology of SnTe nanostructures produced by a 

simple chemical vapor deposition is presented, in which Au-containing catalysts with 

different Au concentrations are used to induce specific growth behavior. Triangular 

SnTe nanoplates with a {100} dominated surface and {100}, {111} and {120} side 

facets were induced by AuSn catalysts, whereas <010> SnTe NWs with four 

nonpolar {100} side‐facets were produced using Au5Sn catalysts. Through detailed 

structural and chemical characterization, coupled with surface energy calculations, it 

is found that NW growth is thermodynamically controlled via a vapor‐solid‐solid 

growth mechanism, whereas nanoplate growth is kinetically controlled via a vapor-

liquid-solid growth mechanism. Therefore, this study provides a fundamental 

understanding of the catalyst’s role in the growth of IV‐VI compound nanostructures. 

 

Key words: Tin Telluride, Chemical Vapor Deposition, Morphology, Catalyst 

Composition, Topological Insulator, Thermoelectrics 

 

 

 

 



 

 

93 

 

Introduction 

As a new type of topological insulators(TI), topological crystalline insulator (TCIs), 

SnTe owns exotic electronic properties, such as superconductivity,1 and 

ferromagnetism,2 which makes it as a promising candidate for applications in low-

dissipation quantum computation,3 and spintronics devices.4,5 The direct observation 

and manipulation of the SnTe surface states remain challenging since the bulk 

carriers often mask the contribution from the surface carriers.6 A major approach to 

reveal the surface states of SnTe is to reduce their size to nanoscale. To realize the 

growth of high-quality nanoscaled SnTe, Au-catalyzed chemical vapor deposition 

(CVD) has become the most widely employed approach.5-8 However, the growth 

mechanism of the Au-catalyzed SnTe nanostructures is still far from clear, which  

deserve detailed understanding in order to effectively direct the controllable growth 

of SnTe nanostructures. 

In contrast to the TIs that possess a single surface state, TCIs possess multiple 

surface states.6 In SnTe, topological surface states exist on {100}, {110} and {111} 

surfaces, and each surface has its own unique topological surface states.4 

Therefore, the facet control of SnTe is crucial to secure the specific surface state.6 

Previous studies showed that SnTe nanostructures with different morphologies, such 

as NWs,7 nanoplates,6 and nanocubes,6 can be obtained by CVD approach.5-7 

Variation of the growth temperature can be employed to obtain different products 

with varied morphologies, in which higher growth temperature facilitates {100} facet 

dominated SnTe nanostructures, while growth of {111} dominated SnTe is favored 

under a low growth temperature.5-8 However, it is still far to realize the facet control in 

the growth of highly-uniform SnTe nanostructures. 

Catalyst composition has been widely recognized as a key parameter to tailor the 

structures of semiconductor nanomaterials.9-12 For examples, binary metallic 

catalysts with varied compositions, such as NixFe1-x and WxCoy, can manipulate the 

chirality of carbon nanotubes.13,14 On the other hand, Au-Ni catalysts, with Au-rich or 

Ni-rich composition, can result in <11̅00> or <121̅0> grown GaN NWs.15 Different 

compositional Au-Ga or Au-In catalysts can tune the phase and growth direction of 

III-V NWs.16,17 Fundamentally, catalyst compositions influence the catalyst chemical 

potential, the surface energy and interface energy of the catalyst and the nucleus, 

which in turn drives the formation of specific morphology and structures. Therefore, 
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we anticipate catalyst composition and status engineering as effective approach to 

alter the morphology of synthesized nanostructures.  

In this study, growth of SnTe with two different morphologies: nanoplates and NWs 

with specific facets have been realized using a facile CVD approach using Au 

catalysts. The grown nanoplates and the NWs are found to be induced by catalyst 

with different status and different Sn concentrations. The fundamental reasons 

behind such phenomena were investigated by electron microscopy analysis, coupled 

with the surface energy calculation. 

 

Experimental 

SnTe nanostructures were grown in a multi-zone horizontal tube furnace under 

atmospheric pressure using SnTe powders as the precursor (Fig. 1a). SiO2(300nm 

thick)/Si(001) substrates, labelled as sample A and B, were used for the growth.18 

The substrates are firstly coated with a ~1 nm thick Au film prior to the nanostructure 

growth. During the growth, substrate A was placed at the 500oC zone in the 

downstream near to the precursor, and substrate B was placed at the 450oC zone, 

comparatively farther away from the precursor, as illustrated in Fig. 1a. The 

morphological, structural and chemical characteristics of the as-grown 

nanostructures was investigated by scanning electron microscopy (SEM, JEOL 

7800), and transmission electron microscopy (TEM, FEI F20, F30) equipped with 

energy-dispersive X-ray spectroscopy (EDS) for compositional analysis. 

 

Results and Discussion 

In this study, two kinds of nanostructures were obtained. Figure 1b shows a typical 

plain-view SEM image taken from sample A, in which triangular nanoplates with a 

lateral dimension of up to 6 µm and a thickness of up to 200 nm are seen. Figures 1c 

and 1d show a pair of SEM images taken from a typical triangular nanoplate, viewed 

in plain-view and 45o tilted-view, respectively. From this pair of SEM images, the 

triangular feature of the nanoplate can be confirmed and the fine feature of its side-

walls can be witnessed (details refer to the inset of the Fig. 1c). On this basis, the 

morphological feature of the nanoplate can be illustrated and shown in Fig. 1e, in 

which different facets are labels. Figure 1f shows a typical SEM image of sample B, 

in which NWs with an average length of 5 µm and a diameter of up to 120 nm are 
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seen. Figure 1g shows a SEM image of a typical NW in which a catalyst associates 

with one end of the NW. Figure 1h shows a tilted SEM image taken from the bottom 

of the NW, illustrating a faceted feature of the NW with the NW cross-section being a 

near squared shape. 

To understand the morphological and structural characteristics of as-grown 

nanostructures, TEM was employed. Figure 2a shows a bright field (BF) TEM image 

of a triangular nanoplate obtained from sample A, in which a catalyst can be found at 

the tip of the triangular nanostructure. Since this TEM image was taken from un-tilted 

specimen, we anticipate that the surface normal of the plate is parallel to the electron 

beam. Therefore, the angles measured between different edges (as shown in Fig. 

1a) reflect as the true crystallographic angles. Figure 2b presents the corresponding 

selected area electron diffraction (SAED) pattern, which can be index as [100] zone 

axis of cubic structured SnTe phase (JCPDS #. 65-0322, a = 6.304 Å and a space 

group of Fm3̅m). Accordingly, the facet A shown in Fig. 1e and inset of Fig. 2a can 

be indexed as the {100} plane. Since TEM images provide only two-dimensional 

projections of three-dimensional objects, SEM investigation was performed on the 

TEM specimens to gain three-dimensional information of the nanoplates, particular 

the side facets. Figure 2c shows such an example, where an inclined side facet 

associated with the catalyst (facet C) can be seen. Furthermore, the side facets of B 

and D can be found to be perpendicular to facet A, which can then be respectively 

indexed as {010} and {120} by correlating Figs. 2a–c. Since the projected plane of 

different C facets along the electron beam is {110} and the corresponding projected 

morphology is an inclined plane, the C facets can index as {11x} (x is an integer). 

Based on our surface energy modelling (see below), we found that C facets can be 

assigned as {111} planes. As a consequence, the structural model of our triangular 

nanoplates can be built, as shown in Figs. 1d-e.  

TEM investigations were also performed to the NWs grown at the relevant low 

temperature, and the results are shown in Fig. 3. Figure 3a shows a BF TEM image 

of a typical NW, and the inset is a magnified TEM image taken from the NW tip, 

where the catalyst can be clearly seen. The corresponding SAED pattern is shown 

Fig. 3b. Correlating Figs. 3a,b, the axial direction of the NW can be determined to be 

along <010> direction. According to Fig. 1h, NWs grown at the relevant low 

temperature has near squared cross-sections. Taking this phenomenon with Figs. 
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3a,b into account, the four side-walls of the NWs can be determined to be {100} 

surfaces. The atomic model of the NW is shown in Fig. 3c. 

Figures 4a and 4b show a pair of BF TEM images taken from the tip region of a 

triangular nanoplate, obtained by tilting along the [010] axis of SnTe. Figures 4c and 

4d show the corresponding nanodiffraction patterns taken from the catalyst, which 

can be indexed as the [ 0111̅̅̅̅ ] and [ 1̅21̅0 ] zone-axes diffractions patterns of a 

hexagonal structured AuSn phase (JCPDS #. 08-0463, with a= 4.323Å, c=5.517Å 

and a space group of P63). Figure 4e shows the EDS profiles taken respectively 

from the catalyst and nanoplate, from which the composition of Au and Sn in the 

catalyst can be estimated as 1:1 and the nanoplate has a composition of 49 at.% Sn 

and 51 at.% Te with an uncertainty of ±3% (note that the Cu peaks are due to the Cu 

TEM grids). Figure 4f  presents a nanodiffraction pattern taken from both the catalyst 

and its underlying nanoplate, which shows that two sets of diffraction patterns are 

superimposed, with one belonging to the [101]SnTe and the other belonging to the 

[1̅21̅0] AuSn. This diffraction pattern suggests that the catalyst and its underlying 

nanoplate have a certain crystallographic relationship. The crystallographic 

orientation relationship between the catalyst and the nanoplate can be determined 

as {101̅0}AnSn // {242}SnTe and {0001}AuSn // {111}SnTe. To ensure the validity of such a 

crystallographic relationship in all nanoplates, we have examined over a dozen 

nanoplates and confirmed this crystallographic relationship does exist generally. To 

understand the existence of such a crystallographic relationship between AuSn and 

SnTe, we note the similarity of equilibrium lattice spacings of AuSn and SnTe: 

d{103̅0}AnSn (1.25Å ≈d{242}SnTe (1.29Å), and d{0003}AnSn (1.84Å) ≈ d{222̅}SnTe (1.83Å). 

Similar analysis has also been performed on the catalysts of SnTe NWs. Figure 5a 

shows a BF TEM image of a tip section of a NW sample. Since this TEM image is 

taken without any titling, the axial direction of the NW should be perpendicular to the 

electron beam. Therefore, the observed sharp interface between the catalyst and 

NW must be perpendicular to the axial direction of the NW. EDS spectra taken from 

the catalysts and the NW, showing that the catalyst has the chemical composition of 

∼84 at.% Au and ∼16 at.% Sn with an uncertainty of ± 2% and  the NW is SnTe as 

expected (Fig. 5b). Figures 5c and 5d show a pair of nanodiffraction patterns taken 

from the catalyst shown in Fig. 5a, which can be respectively indexed as diffraction 

patterns along [0001] and [011̅0] zone axes of a rhombohedral structured Au5Sn 
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phase (JCPDS#. 65-2188, a=5.09Å and c=14.33Å, with a space group of R3). Figure 

5e shows the SAED pattern taken from both catalyst and NW, in which the 

superimposed diffraction patterns can be indexed as [ 1̅01 ]SnTe//[0001]Au5Sn, 

suggesting a crystallographic relationship between the catalysts and NW. According 

to Fig. 5e, both the diffraction spots of {033̅0}An5Sn and {220}SnTe and the diffraction 

spots of {112̅0}Au5Sn and {010}SnTe are parallel, indicating that the crystallographic 

orientation relationship of {011̅0}AnSn//{101}SnTe and {112̅0}Au5Sn//{010}SnTe. We note 

that, in equilibrium conditions, d{011̅0}Au5Sn (4.41Å) ≈ d{101}SnTe (4.45Å) with a lattice 

mismatch of 0.9%. The atomic model is shown in Fig. 5(f). We further calculate the 

other (perpendicular) in-plane lattice mismatch between 5d{ 1̅01 }SnTe and 

4d{0001}An5Sn, which shows a lattice mismatch as small as 0.6%. Therefore, the 

interface between the NW and catalyst can be considered as an almost coherent 

interface, as schematically illustrated in Fig. 5g.  

It is of interest to note that, in both cases, the catalysts and their underlying 

nanostructures have crystallographic relationships as a result of their similar lattice 

spacings, as outlined above. To understand the formation and impact of such 

relationships, it is necessary to clarify whether catalysts in both cases are in the 

liquid form or in the solid form during the nanostructure growth, as the formal leads 

to a vapor-liquid-solid (VLS) grown mechanism,19 and the latter lead to a vapour-

solid-solid (VSS) growth mechanism.15, 16 Accordingly, we examine both Au-Sn and 

Au-Te phase diagrams.20 Since Te is nearly not soluble in solid Au (<0.046 at.% Te), 

and since we did not find Te in the catalysts (refer to Figs. 4e, 5b), we only need to 

deal with the Au-Sn phase diagram for understanding the nature of catalysts. Figure 

6 is the binary Au-Sn phase diagram,21 from which the AuSn phase has a melting 

point of 418.7oC, suggesting that the catalysts in sample A must be in the liquid form 

when inducing the nanoplate growth. As a consequence, the observed lattice 

matching between the catalysts and nanoplate must be formed during the cooling 

period of the nanoplate growth, in which the liquid catalysts solidifies and forms 

coherent interfaces with their precipitated nanostructures in order to reduce their 

interfacial energy.22 On the other hand, in the case of sample B, the catalysts have a 

post-growth composition of ~16 at.% Sn. According to the Au-Sn diagram, alloy with 

such a Au-Sn composition can only be completely transformed to liquid at a 

temperature of as high as ~700oC,23 indicating that Au5Sn catalyst should be in solid 
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or quasi-solid form during the NW growth at 450oC. This suggests that the formation 

of SnTe NWs is induced by the solid or quasi-solid Au5Sn catalysts. Since a tiny 

lattice mismatch was found between the Au5Sn catalyst and the NW at the {010} 

interface (refer to Fig. 5g), we anticipate that the coherent interface is the driving 

force for the formation of [010] NWs through the VSS growth mechanism. 

To understand the evolution of these nanostructures, two issues need to be 

addressed: (1) why catalysts with different phases can be obtained at different 

synthesis zones; and (2) why different nanostructures can be obtained at different 

synthesis zones?  

To answer the first question, we note that, at a high temperature zone of 500oC, 

more Sn vapor species can be absorbed by the catalysts because nanostructural 

elements can be diffused into Au catalysts at a higher diffusion rate.10 In addition, 

according to the experimental setup (refer to Fig. 1a), the facts that (1) the location of 

sample A is much closer to the precursors than that of sample B and (2) some Sn 

and Te vapors have been consumed in the location of sample A, leading to a 

relatively low Sn and Te vapor concentrations in the location of sample B. These 

synergetic effects result in a high diffusibility of Sn into the catalysts for sample A. On 

this basis, the catalysts at the 500oC zone are expected to have a significantly higher 

Sn concentration than that at the 450oC zone, which in turn results in different 

catalyst status and compositions.  

To answer the second question, we need to consider the surface energies of 

obtained nanostructures and status of the catalysts during the nanostructure growth. 

Figure 7a plots the calculated surface energies of SnTe phase for low indexed 

surfaces, including {100}, {110}, {120}, {111}Sn and {111}Te planes. As can be seen, 

the surface energies of {100}, {120}, and {111}Te are all low, suggesting that they are 

relatively stable. Among them, the {100} surface has the lowest surface energy, 

which has a value of ~10.4 meV/Å2, in consistency with previous literature results.7 

This can also be confirmed experimentally by (i) the plate normal of triangular 

nanoplates being {100} and (ii) {100} side-walls of NWs, as illustrated in Figs. 7b,c. 

As outlined above, the NWs are induced by the solid catalysts that require a 

coherent interface between the catalysts and NWs (parallel to the SnTe (010) plane) 

to lower the interfacial energy. Since {100} surfaces have the lowest surface energy, 

the fact that the sidewalls of NWs are {100} suggests that the formation of NWs (in 
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the low temperature zone) is thermodynamically dominated (by minimalizing the 

side-wall surface energy). In contrast, when compared with elemental diffusion in 

solid, elemental diffusion in liquid catalysts at the high temperature zone is much 

faster, resulting in a fast nanostructure growth rate of the nanoplate. Since all {100}, 

{120}, and {111}Te surfaces have relatively low surface energies, the formation of 

triangular nanostructures can be accordingly considered as a kinetically dominated 

process at the high temperature zone. To understand this phenomenon, we can 

consider the classical crystal growth theory, in which the crystal growth velocity (v) 

can be presented as:24, 25 

                                                  v ∝ [ Δμ kBT⁄ ]2                                                                                 (1)    

where the kB is the Boltzmann constant, T is the growth temperature, and Δμ is the 

chemical potential difference between the catalyst and the nanostructure that can be 

expressed as:26 

                                              Δμ = kBTln[ CSnCTe CSn,eqCTe,eq⁄ ]                               (2) 

in which  CSn refers to the Sn concentration in the alloyed catalyst. CTe refers to the 

Te concentration in vapor during growth, CTe,eqand CSn,eq  denotes the Te and Sn 

concentration at equilibrium.  

According to Eqs. (1) and (2), high Csn leads to a high Δμ, and in turn promotes v. 

Compared to NWs, nanoplates have a much higher Csn. Therefore, a higher growth 

rate of triangular nanoplates can be expected, as the synthesis can be easily 

dominated kinetically, leading to the formation of the {120}, {111}Te side facets via a 

VLS growth mode.  

 

Conclusion 

Through carefully controlling the catalyst compositions and statues at different 

synthesis zones in a CVD synthesis, we have successfully grown morphological-

uniform SnTe triangular nanoplates and NWs at different zones, respectively. Our 

detailed characterisation indicates that (1) the SnTe triangular nanoplates are 

kinetically induced by liquid Au-Sn catalysts with high Sn concentrations, while (2) 

the SnTe NW growth is thermodynamically controlled by the solid or quasi-solid 

Au5Sn catalysts, in which the coherent {010} interfaces between the Au5Sn catalysts 

and NWs are the driving force for the NW growth. This study opens a pathway to 

realize the facet control of the crystalline nanostructures, which is critically important 



 

 

100 

 

for their applications, such as in the case of TCIs, where crystallographic facets 

determine the properties. 
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Figure Captions 

 

 

Figure1. (a) Schematic diagram of the CVD reactor for growing SnTe 

nanostructures. (b) SEM image of the nanoplates from sample A. (c) High-magnified 

SEM image of a typical nanoplate with an inset of a tip area marked by a circle. (d) 

45o-tilted side-view SEM image of the nanoplate. (e) Labels for the different facets of 

the triangular nanoplate (the dominant facet is defined as facet A, side facets are 

labelled as facet B, C1, C2 and D). (f) SEM image of the NWs from sample B. (g) 

Plain-view SEM image of a typical NW. (h) 45o-tilted SEM image at the bottom part 

of the NW. 

  



 

 

102 

 

 

Figure 2. (a) Plain-view BF TEM image of a typical SnTe nanoplate with an inset 

model with facets labeled. (b) Corresponding [100] zone-axis SAED pattern. (c) SEM 

image of a typical nanoplate taken from a TEM sample with the electron beam 

perpendicular to the {100} nanoplate surface. (d) Atomic model of the nanoplate 

viewed along [100]. (e) Morphological models of a nanoplate with all determined 

crystallographic facets 
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Figure 3. (a) A 0o-tilted BF TEM image of a typical NW; the upper inset is a 

magnified BF image of the NW tip region. (b) Corresponding SAED from the NW 

body area. (c) An atomic model of the NW with facets labeled.  
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Figure 4. (a, b) BF TEM images of a section of a typical nanoplate near the catalyst 

with different tilting angles. (c, d) Corresponding nanodiffraction patterns of the 

catalyst taken along [011̅1̅] and [1̅21̅0] zone axes, respectively. (e) EDS spectra 

taken from the catalyst and the nanoplate. (f) Nanodiffraction pattern taken from the 

nanoplate-catalyst interface area showing overlapped diffraction patterns. 
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Figure 5. (a) BF TEM image of a typical NW section near the catalyst. (b) EDS 

spectra taken from the catalyst and NW. (c, d) Nanodiffraction patterns of the NW 

catalyst taken along [1̅21̅0] and [0001] zone axes, respectively. (e) SAED pattern 

taken from the NW-catalyst interface showing overlapped diffraction patterns. (f) 

Atomic model for Au5Sn catalyst-SnTe NW junction viewed along the SnTe [1̅01] 

direction. (g) Schematic diagram showing the almost coherence of the atomic planes 

at the catalyst/NW interface. 
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Figure 6. Au-Sn binary phase diagram with the purple and pink lines illustrating the 

formation of AuSn and Au5Sn catalyst particles.  
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Figure 7. (a) Calculated surface energies for the {100}, {110}, {120}, {111}Sn and 

{111}Te surfaces as a function of the relative Te chemical potential ΔμTe. (b, c) 

Models of grown triangular nanoplate and NW 
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6 

Crystal-Structure Control of Sn1-xBixTe 

Nanoribbons by Doping 

6.1 Introduction  

 

In this work, we investigate into the effect of Bi doping on the crystal structure of 

SnTe nanostructures. We found that in highly doped SnTe, the incorporation of Bi 

dopants promote the formation of Sn planar vacancies. The density of the planar 

vacancies can be engineered in Sn1-xBixTe NRs by using Bi dopants via a facile 

chemical vapour deposition. Through combination of sub-ångström-resolution 

imaging and calculation within density functional theory, these planar vacancies are 

found to be associated with Bi segregations, which significantly lower the formation 

energies of the vacancies. The planar vacancies exhibit polymorphic structures with 

local variations in lattice relaxation level, determined by their proximity to NR surface. 

Such polymorphic planar vacancies, in conjunction with Bi dopants, trigger distinct 

localized electronic states, offering new device platforms for ternary chalcogenide 

materials. 

 

6.2 Journal Publication 

These results in Chapter 6 have been published in ACS Nano, 2016, 10, 5507-5515.  

http://dx.doi.org/10.1021/acsnano.6b01953 
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Abstract 

Vacancy engineering is a crucial approach to manipulate physical properties of 

semiconductors. Here, we demonstrate that planar vacancies are formed in Sn1-

xBixTe nanoribbons by using Bi dopants via a facile chemical vapour deposition. 

Through combination of sub-ångström-resolution imaging and density functional 

theory calculations, these planar vacancies are found to be associated with Bi 

segregations, which significantly lower their formation energies. The planar 

vacancies exhibit polymorphic structures with local variations in the lattice relaxation 

level, determined by their proximity to the nanoribbon surface. Such polymorphic 

planar vacancies, in conjunction with Bi dopants, trigger distinct localized electronic 

states, offering platforms for device applications of ternary chalcogenide materials. 

 

Keywords: chalcogenides, nanoribbon, vacancy, scanning transmission electron 

microscopy, density functional theory 
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Introduction 

Vacancy engineering has been demonstrated as an effective approach to expand 

the practical applications of semiconductors in superconductors,1 thermoelectrics,2-4 

optoelectronics,5-7 and ferromagnetic devices.8,9 The spatial arrangements of 

vacancies in crystal lattices have been recognized as a key factor to govern the 

electrical,10-12 thermal,2-4 and optical5-7 properties of semiconductors. For example, 

manipulating the distribution of vacancy clusters in thermoelectric materials can 

greatly suppress the thermal conductivity and enhance their thermoelectric 

performances.4 In light of the fundamental role, vacancies break the ordered 

arrangement of atoms in crystals and thus considerably shift the local electronic 

states and phonon scattering behaviours. Therefore, to fully understand the 

mechanism behind vacancy engineering and resultant physical/chemical properties, 

it is crucial to obtain a comprehensive atomic insight into the local vacancy-defect 

structure.
13,14 

For highly doped semiconductors, vacancies are likely to interact with impurities, 

leading to an increased complexity in local defect structures. The incorporation of 

donor (acceptor) impurities may cause the formation of compensating acceptor 

(donor) vacancies, resulting in vacancy-impurity defect complexes.15-19 These defect 

complexes may induce unexpected physical phenomena in semiconductors, such as 

abnormal resistance switching memory,18 superconductivity,19 illuminances,20 and 

ferromagnetism.8 Although these defect complexes can be demonstrated by 

theoretical modellings and/or property measurements, no direct evidence of the 

atomic configuration of vacancy-impurity complex has been shown experimentally. 

On the other hand, aberration-corrected scanning transmission electron microscopy 

(STEM) has enabled the atomic-scale observation of vacancies associated with 

impurities.13,14,21 

Metal chalcogenide nanostructures are important building blocks for semiconductor 

electronic devices.22,23 Particularly, impurity doped SnTe nanomaterials have shown 

exotic physical properties including superconductivity,24 enhanced topological 

surface states24 and high thermoelectric performances.25-31 SnTe is a p-type 

compound semiconductor with native Sn vacancies, in which the Sn vacancies 

significantly influence the property.32 However, the atomic  configurations of various 

defects in doped SnTe have not been studied experimentally, although theoretical 
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modelling have predicted that the point defects in SnTe have the tendency to form 

complex clusters.32 To further clarify the defect structure in doped SnTe, here we 

conducted STEM imaging on Bi-doped SnTe NRs, from which we find that in the 

highly doped NRs, Bi promotes the formation of Sn planar vacancies, which are 

decorated by Bi dopants. In combination with synthesis experiments, we show that 

the density of the planar vacancy can be engineered by using Bi dopants. Density 

functional theory (DFT) calculations were further conducted to understand the 

energetic origin of the Bi segregation and the formation mechanism of the planar 

vacancies. By correlating the atomic modelling and the density of states (DOS) 

calculations, we are able to identify the distinct local electronic states arising from the 

complex planar vacancies. 

 

Results and Discussion 

Sn1-xBixTe nanostructures doped with different Bi concentrations were synthesized 

by catalyst-free chemical vapour deposition (CVD). Their compositions were 

controlled by varying the weight ratios of elemental precursors in the CVD growth as 

the nominal compositions of x = 0.15, 0.2, and 0.3 (in mole fraction), respectively. 

Figure 1a-c show (scanning electron microscopy) SEM images of as-grown 

nanostructures with different Bi concentrations. Corresponding high-magnified SEM 

images are shown in Figure 1d-f, revealing that the nanostructures have the 

morphology of NRs with a lateral size of 70~300 nm and a thickness of 20~80 nm. 

The comparison of Figure 1a-c suggests that the growth rate of the NRs can be 

enhanced by increasing the Bi doping concentration. The NRs are dominated by 

{111} surface facets based on our TEM investigations. 

Figure 2 presents the TEM investigations of the three samples with different Sn/Bi 

ratios. Figure 2a,e,i show their typical bright-field (BF) TEM images taken at a 

section of an individual NR. Their corresponding energy-dispersive spectroscopy 

(EDS) profiles (Figure 2b,f,j) confirm the presence of Bi, Sn and Te in all samples 

(note that the C and Cu peaks are attributed to the holly C film on the Cu grid for 

supporting NRs). Further quantitative analyses show that the compositions of 

obtained Sn1-xBixTe NRs are very close to their nominal compositions. EDS line scan 

and mapping further confirm that the elemental composition of Sn, Bi and Te, and 

they are found throughout the entire NR (Figure S1). From Figure 2a,e,i, with 
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increasing the Bi concentration, an increased density of planar defects can be 

observed in the NRs. This is further confirmed by high-resolution TEM (HRTEM) 

images taken from the NRs (Figure 2c,g,k), in which the planar defects can be 

clearly seen (yellow arrows). Figure 2d,h,l show their corresponding selective-area 

electron diffraction (SAED) patterns taken along their [011] axis of rock-salt 

structured SnTe. By correlating the BF TEM and HRTEM images with SAED 

patterns, the axial direction of obtained NRs can be determined along the <110> 

direction and planar defects are lying on the {111} planes. Interestingly, streaks lying 

along the 111* diffraction spots can be seen in Figure 2k,l with pronounced streaks 

found in Figure 2l, reflecting the high-density of planar defects. 

To understand the atomic configuration of planar defects, we employed aberration-

corrected high-angle annular dark-field (HAADF) imaging technique in STEM. Figure 

3a, 3b respectively shows typical HAADF STEM images showing the planar defects 

in Sn0.8Bi0.2Te and Sn0.7Bi0.3Te NRs, revealing the impact of the Bi doping level on 

the planar-defect density. Statistical analysis (from more than 10 NRs in each 

sample) further indicates that the averaged density of planar defect is increased from 

~9.1×103 µm−2 for the Sn0.8Bi0.2Te sample to ~2.9 ×104 µm−2 for the Sn0.7Bi0.3Te 

sample, as plotted in Figure 3c. 

Figure 4 presents a detail HAADF STEM analysis for an individual planar defect in a 

Sn0.7Bi0.3Te sample. Figure 4a shows four horizontal planar defects in a very small 

area. Interestingly, brighter atomic columns can be constantly and regularly 

observed near the planar defects (Figure 3a,b and 4a). Since the intensity of an 

atomic column in the HADDF STEM imaging mode is approximately proportional to 

Z1.7 (Z is atomic number),13 and since Bi has a higher Z (83) value compared with Sn 

(50) and Te (52), brighter atomic columns should be Bi-rich. To further confirm this 

point, a detailed planar defect is analysed. Figure 4b shows a magnified image of the 

area marked as ‘R’ in Figure 4a, defined as individual R-type planar defect. Figure 4c 

plots the intensity profile between point I and II in Figure 4b, showing two highest 

peaks (red arrows) associated with brighter columns and they are symmetrical to the 

corresponding vacancies sites (denoted as Vs), indicating that the planar defect is 

composed of Sn vacancies condensed at {111} planes, with Bi atoms aggregated at 

the nearest cation sites next to Vs (denoted as S1, Figure 4d). To further verify the 

brighter columns being Bi atoms, we conducted DFT calculations and found that Bi 
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energetically prefers locating at S1 by saving at least 0.31 eV compared to that at 

bulk (S2 sites in Figure 4d). Using this energetically stable structural model, further 

HADDF STEM image simulation was performed, and the result is shown in Figure 

4e, which is in an excellent agreement with experimental HAADF STEM image 

(Figure 4b).  

By carefully examining the planar defects shown in Figure 4a, two structural types of 

planar vacancies can be observed and defined as R-type and U-type planar vacancy 

(marked as ‘R’ and ‘U’ in Figure 3a). To fully understand their structural similarity and 

difference, a HAADF STEM investigation on U-type planar defect was also 

conducted (Figure 5). Figure 5a shows a HAADF STEM image taken from the edge 

of a U-type defect, revealing that it is also composed of Sn vacancies at a {111} 

atomic plane, which is verified by DFT calculations (Figure 5b). The extracted 

intensity line profile further confirmed the abrupt drop of image intensity at the 

vacancy sites (Figure 5c). Interestingly, a small peak can still be detected at the 

vacancy site (marked by the yellow arrow). To understand this, we note that each 

“white dot” in a HAADF STEM image corresponds to the projection of an atomic 

column. When there exists a perfect region and a vacancy region along an atomic 

column, a weak “white dot” corresponding to the atomic column is expected. For this 

reason, the small peak found in the vacancy site in Figure 5c indicates there exists a 

small section of perfect region superimposed with the U-type planar vacancy. This is 

in agreement with features shown in Figure 5d, from which U-type defect terminate 

before reaching the NR surface and are surrounded by perfect regions, whereas the 

R-type defects extend to the NR surface (Figure 4a).  

On a closer inspection of atomic configurations of R-type and U-type planar 

vacancies, we can find their difference in defect geometry, particularly on the 

structural relaxation levels in the vacancy plane. To evaluate the structural relaxation 

level, we define (dT-T-dT1-T1)/dT-T as an index, where dT-T is the distance between the 

two nearby Te atoms on the {110} atomic plane in the bulk (white arrows, Figure 

4b,5a), while dT1-T1 is the distance between two nearby Te atoms at the vacancy 

region (blue arrows, Figure 4b,5a). dT-T of both types of vacancies can be measured 

as ~4.5Å, close to d{110} of a perfect SnTe (~4.46 Å), confirming that the host lattice 

has a SnTe rock-salt structure. dT1-T1 of U-type vacancies can be measured as ~4.3Å 

(Figure 5a,c), with a relaxation level of ~4%, indicating that the formation of U-type 
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planar vacancies has little influence on the surrounding rock-salt structured lattice. In 

contrast, in R-type planar vacancies, dT1-T1 is reduced to a much smaller value of 

~2.8 Å (Figure 4b), with a large relaxation level of ~38%. This indicates that R-type 

vacancy structure has deviated from the rock-salt matrix, in which adjacent atoms 

have relaxed toward the vacancies, resulting in a significantly reduced spacing 

between T1-T1 layers. In fact, such a structural arrangement of lattice relaxed R-type 

planar vacancies is similar to the structure of rhombohedral-structured stable Bi2Te3 

phase. The R-type vacancy structure exhibit a A(𝛼)B(V)A(𝛼)B stacking sequence (V 

denotes the vacancy layer) at the local vacancy region along its <111> direction, 

which shows similarity to that of the Bi2Te3 phase along the <0001> direction (Figure 

S3). The above results show that the R-type exhibit a larger degree in structural 

relaxation compared to the U-type. As the U-type vacancies are bounded by 

surrounding bulk, their structural relaxation is restricted, whereas the R-type 

vacancies located at the vicinity of the surface have larger freedom to relax.33
  

To understand the energetic origin of the Bi segregation nearby the planar 

vacancies, we performed DFT calculations for both R-type (Figure 6a-c) and U-type 

(Figure 6d-f) defects. Starting with pure Sn planar vacancies (0% cases shown in 

Figure 6a,d), we gradually introduce Bi that segregates to the S1 sites nearby, to 

simulate the defect configurations with different levels of Bi segregation (100% cases 

shown in Figure 6b,e).  

To determine which defect configuration is stable, we further calculated the formation 

energy (Eform) of the planar vacancies as a function of the atomic chemical potentials 

(𝜇𝑆𝑛, 𝜇𝐵𝑖, 𝜇𝑇𝑒) of their constituents (Sn, Bi, Te), using the equation of34 

                         Eform= 
1

2𝐴
[Etot(defect)-Etot(SnTe)+𝑛Sn𝜇Sn-𝑛Bi𝜇Bi+𝑞EF]                        (1) 

where Etot(defect) and Etot(SnTe) are total energies derived from a supercell 

calculation, with and without the planar vacancies, respectively; 𝑛 Sn denotes the 

number of Sn atoms that have been removed from the pristine SnTe, and 𝑛 Bi 

denotes the number of Bi atoms substituting Sn atoms; 𝜇Sn and 𝜇Bi are the chemical 

potentials of Sn and Bi atoms, respectively; EF is the electron Fermi energy, and A is 

the defective area. Charge neutrality is maintained in all calculations (𝑞 = 0).  

During the calculation,  𝜇𝑆𝑛, 𝜇𝐵𝑖 , and 𝜇𝑇𝑒 were estimated by adopting the following 

equations28, 35: 

                                         𝜇𝑆𝑛 + 𝜇𝑇𝑒 = 𝐸𝑆𝑛𝑇𝑒 , and                                                     (2) 
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                                            2𝜇𝐵𝑖 + 3𝜇𝑇𝑒 = 𝐸𝐵𝑖2𝑇𝑒3
;                                                     (3) 

where 𝐸𝑆𝑛𝑇𝑒 and 𝐸𝐵𝑖2𝑇𝑒3
 denote the cohesive energies of one pair of Sn-Te in SnTe, 

and one pair of Bi-Te in Bi2Te3. Our DFT calculations shows that 𝐸𝑆𝑛𝑇𝑒  and 

𝐸𝐵𝑖2𝑇𝑒3
respectively has a value of 𝐸𝑆𝑛𝑇𝑒=-7.618 eV and 𝐸𝐵𝑖2𝑇𝑒3

=-18.500eV. 

According to the approach of atomistic thermodynamics,28 the chemical potentials of 

Sn and Te cannot be higher than their cohesive energies in the elemental stable 

phases, namely:  

                                                𝜇Te < 𝐸Te , and                                                           (4) 

                                                 𝜇𝑆𝑛 < 𝐸𝑆𝑛 ;                                                                 (5) 

where 𝐸Te  and 𝐸𝑆𝑛  are the total energy of Te (trigonal crystal structure) and Sn 

(tetragonal crystal structure), respectively. Total energies for Sn and Te were 

calculated by DFT as 𝐸𝑇𝑒 = −3.163  eV, and 𝐸𝑆𝑛 = −3.896  eV. 28 Based on Eqs. 

2,4,5, the chemical potential of Te is in the range of -3.722  < 𝜇𝑇𝑒<-3.163 eV. Using 

Eqs 1-3 and the calculated 𝜇𝑇𝑒 range, Eform can be calculated as a function of 𝜇𝑇𝑒. In 

this study, the relative Te chemical potential ∆𝜇𝑇𝑒  (= 𝜇𝑇𝑒 − 𝐸𝑇𝑒 ) is applied as a 

variable, which has a range of -0.559eV<∆𝜇𝑇𝑒<0 eV calculated from the 𝜇𝑇𝑒 range. 

Te-rich condition is reached when ∆𝜇𝑇𝑒 =0 eV (𝜇𝑇𝑒=𝐸𝑇𝑒), and Te-lean condition is 

reached when ∆𝜇𝑇𝑒 = -0.559 eV (𝜇𝑆𝑛=𝐸𝑆𝑛).28  

Figure 6c,f show the calculated Eform for both R-type and U-type planar vacancies 

with different Bi segregation levels as a function of ∆𝜇𝑇𝑒. From the energy profiles, 

one can clearly see that for both R-type and U-type, over the entire range of 𝜇Te, the 

planar vacancies segregated with Bi (25~75% cases) show lower formation energies 

than that without Bi (0% case). With increasing the Bi substitution concentration at 

S1 sites, Eform is gradually reduced over the whole range of μTe, indicating that Bi 

tends to substitute the Sn until a fully substitution at S1 sites (100% case). In all 

these cases, Eform of R-type planar vacancies with full Bi segregation has shown the 

lowest value, in consistent with our observation that R-type defects are statistically 

dominated (refer to Figure 4a). The above analysis indicates that Bi segregation at 

the planar vacancies assists the stability of planar vacancies, and a large lattice 

relaxation would further lower the formation energy. 

For both R-type and U-type planar vacancies, the cases with 100% Bi occupying 

nearby cation sites have the lowest formation energy, which suggests that formation 

of defect clusters (2BiSn+VSn) are more energy favourable than that of a single Sn 
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vacancy (VSn). To understand this, we note that each Bi atom has three 6p electrons, 

which has one more p electron compared with Sn (5p2).36 Bi can therefore act as a 

donor dopant in SnTe, as Bi is normally trivalent and Sn is divalent.29--32 In our case 

where Bi is excessively doped in SnTe, the formation of Sn planar vacancies can 

effectively compensate the local unbalanced charge introduced by Bi3+ impurities, 

and two of BiSn
+  can be charge-compensated locally by one negatively charged Sn 

vacancy ( VSn
2− ). This is further supported by the DOS calculated for the planar 

vacancies with different Bi segregation levels (Supporting Information Figure S2). 

The DOS plots indicate that sole Sn vacancies act as deep p-type dopants in the 

system (0% case), and a further introduction of Bi dopants (25%~100% cases) right 

shifts the Fermi level and brings compensation with donor (n-type) doping.  

Consequently, the observed planar vacancies are compensating defect clusters 

formed between donor Bi impurities and the charged native Sn vacancies. In fact, 

the formations of the compensating vacancy-impurity clusters driven by formation 

energy minimization have also been reported in other material systems, such as Sb 

stabilized Si vacancies in Sb doped Si,14 Li induced Zn vacancies in Li-doped ZnO, 9 

and oxygen stabilized Ga vacancies in GaN.20
  

It is of interest to note that for improving the thermoelectric properties of SnTe, 

attempts have been devoted to suppress the native Sn vacancies in SnTe by doping 

cations (such as Ga, Sb, In and Bi).30,31 In many cases, the incorporation of cation 

dopants didn’t give an efficient compensation of Sn vacancies, particularly when the 

dopant concentration is high.30,31 This issued can explained by our observation that: 

in Bi-doped SnTe, the incorporation of Bi dopants promote the formation of Sn planar 

vacancies, and the higher the Bi concentration, the more Sn vacancies are expected.  

To understand the impact of the Bi decorated planar vacancies on the electronic 

properties of our NRs, Figure 7a,b presents the calculated total DOS using the 

predicted stable atomic structures (100% cases in Figure 6b,e) of R-type and U-type 

defects. As a comparison, total DOS calculated for bulk SnTe is also presented (as 

the grey background), which shows consistent features with reported calculation 

results.36-38 The calculated band gap (Eg) of pure SnTe (0.28 eV) is in good 

agreement with experimentally determined bandgap (0.3 eV at 4 K).39 In contrast to 

bulk SnTe, the Eg for the systems with R-type and U-type planar vacancies are 

relatively smaller, with a value of 0.12 and 0.19 eV, respectively. This is mainly 
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resulted from the shift of conduction band minimum (CBM) toward to the Fermi level 

(0.15 eV for R-type, 0.08 eV for U-type). Figure 7c and 7d show the partial DOS 

(PDOS) projected on specific valence orbitals (d, s and p states) of Sn, Bi and Te 

atoms, for R-type and U-type defects, respectively. The PDOS reveals that the CBM 

shift is mainly attributed to Sn-p and Bi-p states. In the total DOS of U-type defect, 

additional acceptor state at ~0.4eV above CBM can be found (red arrows, Figure 

7b), which is not evident in the case of R-type defects and SnTe, indicating that 

these states originate from the local variation in the defect geometric features, such 

as the under-coordination of ions and local strain.40 From Figure 7d, these acceptor 

states stem from the hybridization of Sn-p and Bi-p states. Meanwhile, localized 

valence states can also be found for both R-type and U-type defects, at ~0.3 eV 

below the valence band maximum (blue arrows, Figure 7a,b), which is induced by 

the strong interaction of the Bi-p sand Te-p states. Previous studies on SnTe related 

thermoelectric materials have shown that local increase of DOS near the Fermi level 

helps enhance the Seebeck coefficient and the thermoelectric performance.26,41-43 

Therefore we anticipate that the additional gap states brought by the planar 

vacancies may play a decisive role to the overall properties of the system. 

 

Conclusion 

In summary, we have demonstrated that Bi dopants promote the formation of planar 

vacancies in SnTe-based NRs. Detailed atomic-scale analysis indicates that Bi 

atoms preferentially occupy at the nearby cation sites of the planar vacancies, driven 

by the need of formation-energy minimization and the local charge balancing. These 

planar vacancies exhibit local variation in structural relaxation level. When 

terminating at the NR surface, the planar vacancies (R-type) exhibit large structural 

relaxation level, and are characterized by low formation energy. Determination of the 

atomic structure of these planar vacancies with such atomistic detail has enabled us 

to predict their corresponding electronic properties. Calculations show that the Bi 

segregated planar vacancies introduce localized DOS distortion into the system, 

which provides opportunities for the future applications of chalcogenide materials. 

 

Methods 
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Sample Growth. Sn1-xBixTe NRs with different Bi concentrations were grown by 

catalyst-free chemical vapour deposition method in a horizontal tube furnace, using 

Bi, Sn and Te elemental powders as precursors, coflow of Ar and H2 as carrier gas 

and Si(100) as substrates. In a typical synthesis, Bi and Sn powders were put at the 

heating centre with a heating temperature of 750oC, while Te powder was put 14 cm 

away at the upper-stream area from the center. NR samples were collected from Si 

substrates ~12 cm away from furnace centre, at a growth temperature of 

approximately 500oC. The compositional control of the nanostructures was realized 

by varying the weight ratios of Bi and Sn powders.  

Microscopic Characterization. Morphology of the samples supported by their 

substrates was characterized using SEM (JEOL 7800). Structural and chemical 

characteristics of the samples were characterized using 200-kV TEM (FEI Tecnai 

F20), equipped with energy-dispersive X-ray spectroscopy (EDS) for compositional 

quantification analysis. The HAADF images were obtained using a 200-kV STEM 

(JEOL 2100F) equipped with an aberration corrector (CEOS Gmbh). In the HAADF 

imaging, a probe convergence angle of ~22 mrad, and a HAADF detector with an 

inner semi-angle of over 60 mrad were adopted.  

Calculation Methodology. Calculations of energies and electronic structures were 

performed using the Vienna ab initio simulation package (VASP) within the 

framework of DFT. The projector augmented wave (PAW) method was employed for 

electron-ion interactions, and the generalized gradient approximation (GGA) of 

Perdew et al. (PW91) was used to describe the exchange-correlation functional.44 

The Kohn-sham wave function was expanded in a plane wave basis with a cut-off 

energy of 400 eV. Potentials for Sn, Bi and Te contained the 5s25p2, 6s26p3 and 

5s25p4 electrons as valence, respectively. The k-point mesh was generated within 

Monkhorst Packscheme and applied for all calculations. Optimized grid for R-type 

and U-type defect supercells is 6×3×1 and 5×3×3, respectively, to guarantee the 

convergence of 1 meV/unit. R-type planar defects were modelled by periodic 

supercells with a dimension of 4.52×7.84×56.36 Å. U-type planar defects were 

modelled by periodic supercells with a dimension of 4.47×22.11×38.62 Å. The 

supercells were further doubled for examining the size effect. All atoms in the 

supercells were fully optimized until the magnitude of force on every atom fell below 

0.05 eV/Å, and the total energy converged up to 10-4 eV. The self-consistent 
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calculations were performed using tetrahedron method with Blöchl corrections with 

energy convergence criteria of 10-5 eV. 
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Figure Captions 

 

Figure 1. (a-c) Over-view SEM images taken from NRs with compositions of 

Sn0.85Bi0.15Te (a), Sn0.8Bi0.2Te (b), and Sn0.7Bi0.3Te (c). (d-f) High-magnified SEM 

images taken from NRs with compositions of Sn0.85Bi0.15Te (d), Sn0.8Bi0.2Te (e), and 

Sn0.7Bi0.3Te (f). 

 

 

Figure 2. (a,e,i) BF TEM images, (b,f,j) EDS profiles, (c,g,k) HRTEM images, and 

(d,h,l) SAEDs of NRs with compositions of Sn0.85Bi0.15Te, (a-d) Sn0.8Bi0.2Te (e-h), and 

Sn0.7Bi0.3Te. (i-l). Typical planar defects are marked with yellow dash lines and 

yellow arrows. All TEM images are taken along [011] axis. 
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Figure 3. (a, b) Atomic-resolution HAADF STEM imaging showing planar defects in 

(a) Sn0.8Bi0.2Te and (b) Sn0.7Bi0.3Te NRs. (c) Planar defect (PD) density as a function 

of Bi concentration, counted from experimental images taken from NRs with different 

Bi concentrations. Scale bars are 2 nm. 

 

 

Figure 4. (a) HAADF STEM image showing four planar defects obtained from the 

edge of a Sn0.7Bi0.3Te NR. (b) Magnified HAADF STEM image showing a section of 

the R-type planar vacancies. (c) Line profiles showing the image intensity along the 

line I-II defined in (b). (d) Corresponding atomic model calculated by DFT for R-type 

planar vacancies. (e) Simulated HAADF STEM image using the atomic model in (d). 
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Figure 5. (a) HAADF STEM image taken from the edge of U-type planar vacancies. 

(b) Relaxed atomic models for U-type planar vacancies calculated by DFT. (c) Line 

profile showing image intensity along the line I-II in (a). (d) A HAADF STEM image of 

a U-type planar defect bounded with the bulk atoms.  
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Figure 6. (a, b) Relaxed atomic models for R-type planar vacancies without Bi 

segregation (a) and with 100% Bi substitution (b) at S1. (c) Formation energies of R-

type planar vacancies with different Bi substitution concentrations. (d, e) Relaxed 

atomic models for R-type planar vacancies without Bi segregation (d) and with 100% 

Bi substitution (e) at S1. (f) Formation energies of U-type planar vacancies with 

different Bi substitution concentrations. 
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Figure 7. (a, b) Total DOS and PDOS for Sn, Bi and Te atoms for (a) R-type and (b) 

U-type planar vacancies with full Bi segregation, the total DOS for bulk SnTe is given 

as the grey shaded area. (c, d) PDOS plots of the s, p, d orbitals of Sn, Bi and Te 

atoms in (c) R-type and (d) U-type planar vacancies with full Bi segregation. The 

Fermi level is set to zero and indicated by a vertical dotted line.  
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S1. EDS Line Scan and Mapping for Sn1-xBixTe Nanoribbons 

Figure S1 show a typical STEM-EDS line-scan and mapping analysis conducted on 

Sn0.7Bi0.3Te NR, demonstrating its elemental composition across the entire sample.  

 

Figure S1. (a) A typical BF TEM of a Sn0.7Bi0.3Te NR. (b-d) Corresponding EDS line 

scan profiles obtained along the green line in (a), for element Sn (b), Bi (c) and Te 

(d). (e-g) Corresponding EDS mapping images taken from the NR in (a), for element 

Sn (e), Bi (f) and Te (g). 
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S2. Comparison of R-type vacancy structure with the rhombohedral structure 

of Bi2Te3  

Figure S2 shows the analogy diagram of R-type vacancy structure to rhombohedral 

structured Bi2Te3, in which their stacking sequences are labelled by Greek and 

Capital letters.1 They both show a stacking sequence of A(𝛼 )B(V)A(𝛼 )B at the 

vacancy region, where V denotes the vacancy layer. 

 

Figure S2 Projected atomic models of R-type planar vacancies, and rhombohedral 

structured Bi2Te3, where the stacking sequences of cationic (Bi/Sn) and Te atomic 

planes are respectively denoted by Greek and Capital letters.  
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S3. Total DOS of planar vacancies with different Bi segregation levels 

Figure S3 shows the total DOS calculated for both R-type and U-type planar 

vacancies with different Bi segregation levels at S1 sites. For 0~75% cases, the 

Fermi levels always lie in valence band, indicating the metallicity for the systems, 

and the role of Sn vacancies as deep n-type dopants. With an increasing Bi 

segregation level, the Fermi level shifts towards the conduction band, indicating that 

Bi dopants act as donor (n-type) dopants in the system. 
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Figure S3. Total DOS calculated for R-type (a-e) and U-type (f-j) planar vacancies, 

with Bi substitution levels (at S1 sites) of 0% (a, f), 25% (b, g), 50% (c, h) 75% (d, i) 

and 100% (e, j).  

 

S4. Supercells of R-type and U-type planar vacancies with different Bi 

substitution levels 

Figure S4 shows the supercells adopted for R-type planar defect calculations, which 

contain 60 atoms, with 28 cationic (Sn/Bi) atoms and 32 Te atoms. 

 

Figure S4 Relaxed supercells for R-type planar vacancies with Bi segregation levels 

of (a) 0%, (b) 25%, (c) 50%, (d) 75% and (e) 100%. 

 

Figure S5a-e show the supercells adopted for U-type planar defect calculations, 

which contain 114 atoms, with 54 cationic (Sn/Bi) atoms and 60 Te atoms. Figure 

S5f-g show that the energetic-favourable substitution sites for Bi dopants are 1-6#, in 
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which site 6# has the lowest substitution energy. Therefore, sites 1-6# were chosen 

for Bi substitution to build supercells for U-type planar vacancies with 25~100% Bi 

segregation (Figure S5b-e).  

 

Figure S5 Relaxed supercells for U-type planar vacancies with Bi segregation levels 

of (a) 0%, (b) 25%, (c) 50%, (d) 75% and (e) 100%. (f) Projected atomic model of a 

U-type planar vacancy supercell (BiSn53Te60) with Bi substituting one of the nine 
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possible substitution sites in S1 sites (labelled as 0 through 8). (g) Total energies of 

the supercells with Bi substituting at one of the sites labelled in (f), revealing that 

sites 1-6# are energy favourable for Bi substitution.  
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7 

Morphological Control of SnTe 

Nanostructures by Bi Doping 

7.1 Introduction  

Chapter 5 and 6 have discussed the morphology of un-doped SnTe and Bi doped 

SnTe nanostructures. The un-doped SnTe nanostructures show morphologies of NW 

and nanoplate, which are all dominated by {100} surface facet, whereas the Bi doped 

SnTe nanostructures shows a distinct morphology of NR. To clarify the impact of Bi 

dopant on the morphology of SnTe nanostructures, in this chapter, we investigate 

into the surface-facet control of single-crystalline SnTe nanostructures by Bi doping. 

The nanostructured un-doped and Bi-doped SnTe samples were synthesized 

through catalyst-free CVD method. The surface-facet control is realized by surface 

energy engineering through the combination of CVD experiments with first-principles 

calculations. 

7.2 Journal Publication 

These results are to be submitted for publication soon. 
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Abstract 

Facet control of SnTe nanostructures is important for the realization of their property 

modifications. For pure SnTe nanocrystals, both theoretical and experimental studies 

found that {100} surface facets are the most stable, and it is challenging to realize 

the synthesis of uniform SnTe nanostructures with high percentage of {111} surface 

facet. In this work, through chemical vapour deposition experiments in combination 

with density functional calculations, we demonstrate that Bi doping is an effective 

method to control the surface facet of SnTe by surface-energy engineering. Using 

this method, we have realized the growth of Bi doped SnTe nanoribbons with {111} 

dominated surface facet.  
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Introduction 

As one of the new-emerging topological insulators, topological crystalline insulator 

(TCI) has recently attracted extensive attention, which possesses gapless surface 

states protected by crystalline symmetries rather than time-reversal symmetries.1 

TCIs were firstly discovered within the class of rock-salt structured IV-VI 

semiconductors, such as SnTe and Pb1−xSnxTe.2 Theoretical studies predicted that 

topological surface states exist on their high-symmetry surfaces, such as {100}, 

{110} and {111}.2 Experimentally, the existence of Dirac surface states in {100} and 

{111} surfaces of SnTe has been confirmed by both angle-resolved photoemission 

spectroscopy measurements and scanning tunneling microscopy,4,5 which also show 

that the modulation of the surface states can be achieved by strain or alloying.5 The 

unique and tunable surface properties of SnTe have demonstrated its potential 

spintronic applications. 

To manifest the surface states of SnTe, an important approach is to develop low-

dimensional SnTe nanostructures.6 In bulk TCIs, the direct observation and 

manipulation of the topological surface states are highly challenging due to the 

dominant bulk contributions.6 This is because that in pristine SnTe, the intrinsic Sn 

vacancies largely contribute to the bulk hole concentration, which often masks the 

surface conductance.6 On the other hand, low-dimensional SnTe nanostructures with 

high surface-to-volume ratio provide an excellent system for probing and tuning the 

surface states, which enables the observation of quantum oscillation effects, 

including Shubnikov-de Haas oscillations,7 Aharonov–Bohm oscillations,7 and weak 

antilocalization.6 In addition, with introducing dopants, more exotic properties, such 

as superconducting6 and quantum anomalous Hall effect,8 are presented, making 

SnTe based nanostructures highly attractive for spintronic applications. 

To access the specific surface state in SnTe, it is crucial to grow SnTe 

nanostructures with controlled surface facet,9 since each surface facet has its own 

surface state.2 For examples, on {100} surfaces, the surface states locate away from 

�̅�  points with a double-Dirac-cone structure.2 In contrast, on {111} surfaces, four 

Dirac-cone surface states exist, with one centered at 𝛤  and three centered at �̅� 

points.2 However, it is still a challenge to fabricate uniform low-dimensional SnTe 

nanostructures with {111} dominated surface facets, due to the coexistence of low-

energy {100} facets.  
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In this study, we demonstrate that the growth of {111}-dominated SnTe NR can be 

achieved by Bi doping. We firstly investigated the effect of Bi dopant on the surface 

facet of SnTe crystals by density functional theory (DFT) calculations, which 

suggests that Bi doping can switch the relative surface stability between {100} and 

{111} facets in SnTe. Based on the theoretical predictions, we grow Bi-doped SnTe 

nanostructures by a facile catalyst-free chemical vapor deposition (CVD) method. 

Detailed electron microscopy analysis proved that Bi dopant can tune the 

morphology of SnTe nanostructures. Subsequent magnetotransport measurements 

conducted on the Bi-doped SnTe NRs show that weak antilocalization (WAL) effect 

can be observed. 

To theoretically understand the effects of Bi doping on the surface energies of SnTe, 

Figure 1 shows the calculated {100}, {110} and {111} surface energies of SnTe with 

different Bi doping concentrations of 0 at.%, 4 at.% and 8 at.%. It should be pointed 

out that in pristine SnTe, {100} and {110} surfaces have equal numbers of Sn and Te 

atoms, while the {111} surfaces can either be Sn-terminated (denoted as {111}Sn) or 

Te-terminated (denoted as {111}Te). Surface energies (𝛾 ) were calculated as a 

function of the chemical potentials of the atomic species (𝜇𝛼)using the equation10: 

                                           𝛾 =
1

2𝐴
[𝐸𝑠𝑙𝑎𝑏

𝑠𝑢𝑟𝑓
− 𝐸𝑠𝑙𝑎𝑏

𝑟𝑒𝑓𝑒𝑟
− ∑ ∆𝑛𝛼𝛼 𝜇𝛼]                              (1) 

where 𝐴 is the free surface area of the simulated slab supercell (fully relaxed); 𝐸𝑠𝑙𝑎𝑏
𝑠𝑢𝑟𝑓

 

is the DFT total energy of the slab supercell with specific surface and 𝐸𝑠𝑙𝑎𝑏
𝑟𝑒𝑓𝑒𝑟

is the 

DFT total energy of reference slab which is derived from atomic energy of bulk SnTe; 

∆𝑛𝛼  are the differential numbers of atom species  𝛼  (Sn, Te, Bi) relative to the 

reference slab. In this calculation, the relative Te chemical potential ΔμTe  (in the 

range of −0.559~0 eV) is applied as a variable. ΔμTe=0 denotes the Te-rich growth 

condition and the Te-poor condition corresponds to ΔμTe=-0.559 eV.  

As can be seen from Figure 1a, for almost the entire range of Δ𝜇Te in un-doped 

SnTe, the {100} surface energy (𝛾100) lies lowest with a value of 9.64 meV/A2, which 

is in consistent with previous reported calculation results and experimental 

observation.10 The surface energies of {111}Sn and {110} surfaces are higher than 

those of {111}Te and {100} surfaces, suggesting that only {111}Te (𝛾111Te) and {100} 

facets could be presented in the facet configuration of un-doped SnTe 

nanostructures.11,12 The comparisons of Figure 1a-c indicate that, with increased Bi 
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concentration, 𝛾 111Te gradually decreases while 𝛾 100 increases. When the Bi 

concentration reaches 8 at.%, 𝛾111Te (16.57~3.95 meV/A2) becomes almost lower 

than 𝛾100 (14.94~18.26 meV/A2). According to the surface energy profiles in Figure 

1a-c, the equilibrium crystal facets (ECFs) were further predicted using the Gibbs-

Wulff theory.12 Figure 1d,f,e respectively show the ECFs of SnTe with different Bi 

dopant levels under the condition of ΔμTe =-0.25eV (ECFs of Te-poor or Te-rich 

conditions were also calculated, Figure S1). In such a condition, the ECF of pure 

SnTe is predicted to have the {100} as dominant surfaces (Figure 1d). With the 

incorporation of Bi dopant (Figure 1e-f), the {111}Te facets become dominant, and 

when the Bi doping level reaches to 8 at%, {111}Te facets become the preferred 

surfaces for the SnTe crystals. These calculation results suggest that the surface 

energy engineering in SnTe crystals can be achieved through effective Bi doping. 

To verify above theoretical predictions, the synthesis of SnTe nanostructures with 

and without Bi dopants was conducted via CVD. Figure 2a shows a representative 

scanning electron microscopy (SEM) image of un-doped SnTe nanostructures, in 

which nanowires (NWs) with cubic cross-section can be seen (inset of Figure 2a). 

Figure 2b shows a bright-field (BF) transmission electron microscopy (TEM) image of 

an un-doped SnTe NW. Since this TEM image was taken from an un‐tilted TEM 

specimen, the surface normal of a NW side-wall is anticipated to be parallel to the 

electron beam. Figure 2c shows the corresponding selective-area electron diffraction 

(SAED) pattern, which can be indexed as the [100] zone-axis of SnTe, indicating that 

the NWs are single-crystalline. Figure 2b and 2c indicate that the NWs have {100} 

facets as side-wall surfaces and a growth direction of [010], leading to a cubic cross-

section when viewed along the [010] direction (Figure 2d). This experimental result is 

in excellent agreement with the theoretical prediction shown in Figure 1a that {100} is 

the most stable surface facet in un-doped SnTe. 

Similar electron microscopic analyses were further conducted for Bi-doped 

nanostructures with doping levels of 4 at.% (Figure 2e-h) and 8 at.% (Figure 2i-l), 

respectively. For 4 at.% doped nanostructures, wire morphology can be witnessed 

(Figure 2e). However, this Bi-doped NW has a different cross-section geometry 

(slightly distorted hexagon, Figure 2e inset) compared with un-doped NWs (square, 

Figure 2a inset). Figure 2f,g show respectively a BF TEM image and the 

corresponding SAED pattern taken from a typical doped NW without tilting the NW. 
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The SAED pattern can be indexed as the [111] zone-axis of SnTe, and the 

comparison of Figure 2f,g indicates that the NW has its axial direction of [110]. 

Crystallographically, the possible side-walls are {mmn} atomic planes (where m and 

n are integers). Taking the [110] growth direction and cross-section geometries into 

account (Figure 2e inset), the side facets can be determined as four {111} planes 

and two {100} planes (all with low surface energies, refer to Figure 1e), as illustrated 

in Figure 2h. In the case of 8 at.% Bi-doped nanostructures, Figure 2i shows a 

representative SEM image, in which ribbon-like nanostructures can be seen. The 

zoom-in SEM image at one end of a ribbon-like nanostructure (Figure 2i inset) 

illustrates that those ribbon-like nanostructures are NRs with a cross-section 

geometry of a parallelogram. Further TEM investigation (Figure 2j-k) shows that the 

NRs grow along the <110> direction. Combining the cross-section morphology 

(Figure 2i) and the <110> growth direction, the side facets of the NRs can be 

determined as four {111} facets, as illustrated in Figure 2l.  

These detailed electron microscopy results indicate that the dominant surface facet 

of SnTe were switched from {100} to {111} through the Bi doping, which is in 

excellent agreement with the theoretical predictions that the Bi incorporation can 

alter the surface stability between {111}Te and {100}. 

To obtain the statistical analysis of surface facets, X-ray diffraction (XRD) was 

performed on the doped and un-doped SnTe nanostructures, and their results are 

shown in Figure 3a. All the XRD peaks can be indexed exclusively as the rock-salt 

structured SnTe phase. The comparison of their diffraction peak intensities indicates 

that, for un-doped SnTe nanostructures, the 200* diffraction peak is the dominating 

peak with a weak 222* diffraction peak; while with increasing the Bi concentration, 

the intensity of the 200* diffraction peak decreases but the intensity of the 222* 

diffraction peak increases. When the SnTe nanostructures doped with 8 at.% Bi, 

222* diffraction peak becomes dominating, suggesting that {111} facets become 

dominated surface facets.  

Since Bi atoms have different covalent radii (~1.48 Å) compared with Sn (~1.39 Å) 

and Te (~1.38 Å), the incorporation of Bi may cause a change of lattice 

parameters.13 Figure 3b are XRD patterns to show the detailed positions of 222* 

diffraction peak for different nanostructures, from which 0.16% (a=6.305 Å) and 

0.30% (a = 6.314 Å) increase of a can be found for 4 at.% and 8 at.% Bi-doped SnTe 
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when compared with those of the un-doped SnTe (a = 6.295 Å). This indicates that Bi 

has been indeed doped in SnTe. To examine the underlying reason for the increased 

lattice parameter, XPS analysis was performed to understand the chemical state of 

Bi dopant in Bi-doped nanostructures. Figure 3c shows a XPS survey spectrum 

taken from the 8 at.% doped NRs, in which Sn, Te and Bi peaks can be found (note 

that the Si peak is attributed to the Si substrate). Figure 3d shows the high-resolution 

scan for Bi 4f, in which two peaks, located at 156.8 eV and 158.8 eV, can be 

respectively attributed to the binding energies of the Bi-Te bonding and the Bi-O 

bonding (due to the surface oxidation of the sample).13 This indicates that Bi has 

substituted Sn in SnTe,14 which verifies our theoretical models in which the Bi 

dopants are incorporated to substitute Sn in SnTe. Since the covalent/ionic radius of 

Bi is slightly larger than that of Sn, the Bi substitution of Sn in the lattice leads to an 

increase in the lattice parameter of the Bi-doped SnTe. 

As SnTe nanostructures are expected to have interesting magnetoresistance (MR) 

properties,6 we measured the MR of our NRs by fabricating Hall bar devices. The 

optical image of the fabricated device is presented in the inset of Figure 4a, in which 

the current (I) is applied along the longitudinal direction of the NR and the magnetic 

field (B) is applied perpendicular to the NR surface. Figure 4a plots the temperature 

(T) dependent resistivity of the NR at zero magnetic field (denoted as 𝜌0). The 𝜌0−T 

curve reveals a metallic behaviour of the NR, similar with previous experiment 

oberservations.6 Figure 4b displays the corresponding MR, defined as ∆𝜌/𝜌= (𝜌B -

 𝜌0)/ 𝜌B, measured from 4K to 30K. Interestingly, at low temperatures (4K and 6K), a 

sharp dip in MR can be observed when the magnetic field is close to zero (denoted 

by arrow), implying the presence of a WAL effect.6 Such WAL effect is due to strong 

spin-orbit coupling of Dirac electron, which can only be observed up to 20K, and is 

vanished at 30K (Figure 4b). WAL effect has been investigated in many 2D TCI 

nanostructures, where the subtracted magnetoconductance (∆𝜎(𝐵) ) can be fitted to 

the 2D Hikami-Larkin-Nagoka (HLN) equation as: 

∆𝜎(𝐵) = 𝜎𝐵 − 𝜎0 = 𝛼
𝑒2

2𝜋ℏ
 [Ψ (

ℏ

4𝑒𝐵𝑙𝜙
2 +

1

2
) − ln (

ℏ

4𝑒𝐵𝑙𝜙
2)]                    (2) 

where 𝑒  is the charge of electron, ℏ  is the reduced Planck constant, Ψ  is the 

digamma function, 𝛼 is a prefactor representing the number of conduction channels 

and 𝑙𝜙 is the phase coherence length. The WAL effect appears as a negative 
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 ∆𝜎(B).10 Figure 4c shows the ∆𝜎(B) curve measured at 4K. By fitting this curve to 

equation (2), the values of the fitting parameters of α and lϕ can be found to be -1.2 

and 93.1 nm, respectively (Figure 4c). As α ≈ -1 and the number of surface transport 

channels (A) can be calculated as A=2| 𝛼|, A can obtained as ~2, suggesting that our 

{111} dominated Bi-doped SnTe NRs have multiple surface states, which is 

consistent with the theoretical band structure and other experiment observations.2-4 

Fundamentally, at the {111} surface of SnTe, since there exists four Dirac cones that 

can contribute eight valley transport channels,15 the ideal value of α should be 4, 

larger than our experimental value (α=1.2), which can be ascribed to the strong 

couplings among the eight different valley channels.15 Therefore, the surface state 

may have remained intact in the Bi-doped SnTe NRs, which can further be 

corroborated by the linear MR behaviour observed at high magnetic field (Figure 

4d).6 

In summary, we demonstrate that SnTe NRs with {111} dominated surface facets 

can be achieved by Bi doping through surface-energy engineering under the 

prediction of DFT calculation. Bi dopants can effectively substitute the Sn in SnTe 

and significantly reverse the relative stability between {100} and {111} facets. WAL 

effect and linear MR at high magnetic field can be both observed in the Bi-doped 

SnTe NRs, which makes them promising for future applications in spintronic devices.  

 

Conclusion 

In this work, we demonstrate a surface-facet control method for SnTe nanostructures 

through surface energy engineering by Bi doping. We first explore the effect of Bi 

dopant on SnTe surface energies by DFT calculation. Calculation results show that 

the incorporation of Bi dopant on the surface reverses the relative stability between 

{100} and {111}Te surface facet. On the basis of theoretical predictions, we have 

synthesized uniform Bi doped SnTe NRs with {111} dominant surface facet through 

chemical vapour deposition. 

 

Methods 

Sample Growth. Bi doped SnTe NRs were grown by catalyst-free chemical vapour 

deposition method in a horizontal tube furnace, using elemental Bi, Sn, Te powders 

as precursors, coflow of Ar and H2 as carrier gas and Si(100) as substrates. In a 
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typical synthesis, Sn and Bi powders were put at the heating centre with a heating 

temperature of 720 oC, while Te powder was put 14 cm away at the upper-stream 

area from the center. The synthesised products samples were collected from Si 

substrates ~12 cm away from furnace centre, at a growth temperature of 

approximately 500 oC. As a comparison, a synthesis without adding Bi powders was 

used to fabricate un-doped SnTe nanostructures.  

Microscopic Characterization. Morphology of the samples supported by their 

substrates was characterized using SEM (JEOL 7800). Structural and chemical 

characteristics of the samples were characterized using 200-kV TEM (FEI Tecnai 

F20), equipped with energy-dispersive X-ray spectroscopy (EDS) for compositional 

quantification analysis, and X-ray photoelectron spectroscopy (XPS). Phase 

identification characterizations were carried out by using a Bruker D8 Advance 

powder X-ray diffractometer (XRD) with a Cu-Kα1 radiation. 

Calculation Methodology. Calculations of surface energies and electronic structures 

were performed using the Vienna ab initio simulation package (VASP) within the 

framework of DFT. The projector augmented wave (PAW) method was employed for 

electron-ion interactions, and the generalized gradient approximation (GGA) was 

used to describe the exchange-correlation functional. The Kohn-sham wave function 

was expanded in a plane wave basis with a cut-off energy of 400 eV.  

Transport Measurement from Nanodevice. Hall bar nanodevices were fabricated on 

Bi doped SnTe NR on 300 nm SiO2/Si. Cr/Au electrodes were deposited by E-beam 

lithography. Quantum Design PPMS was used to measure the magnetotransport in 

magnetic fields up to 9 T at a temperature between 4~30 K.  
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Figure Captions 

 

Figure 1. (a-c) Calculated surface energies as a function of ΔμTe for un-doped SnTe 

(a), and Bi-doped SnTe with Bi concentrations of 4 at.% (b) and 8 at.% (c). (d-f) Wulff 

constructions of the thermodynamic equilibrium SnTe crystals when ΔμTe =-0.25 eV 

(denoted by the vertical dash lines in a-c) with Bi concentrations of (d) 0 at.%, (e) 4 

at.%, and (f) 8 at. %.  
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Figure 2. Surface-facet analysis for nanostructures of un-doped SnTe (a-d), 4 at.% 

Bi-doped (e-h), and 8 at.% Bi-doped SnTe (i-l), by SEM (a, e, i), BF TEM imaging (b, 

f, j) and SAED (c, g, k). (d, h, l) Schematic diagrams showing the cross-section 

geometry and side-facet configuration of the nanostructures. Scale bars are 100 nm. 
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Figure 3. (a) Typical XRD patterns from the un-doped and doped SnTe samples, 

and (b) corresponding enlarged 222* peaks. (c) XPS spectra of Bi 4p from the 8 at.% 

Bi-doped SnTe sample, and (d) corresponding high-resolution scan of Bi 4f. 
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Figure 4. Magnetoresistance measurements for an individual Bi-doped SnTe NR. (a) 

𝜌0-T curve. The inset is an optical image of the device. (b) Δ𝜌/𝜌0-B curves measured 

from 4~30K, in which when B is near zero, WAL effect can be observed at low 

temperatures (denoted by arrow). (c) Subtracted magnetoconductivity ∆𝜎(𝐵) = 𝜎𝐵 −

𝜎0  measured at 4K, where 𝜎𝐵  and 𝜎0  respectively denote the conductivities 

measured with and without the application of magnetic field. ∆𝜎(𝐵) is normalized by 

e2/h. Solid lines depict fitting to HLN equation. (d) 𝜌B- 𝜌5T curves at a high magnetic 

field (5-9T), which are linear and overlapped below 30K. 
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Supporting Information  

EDS analysis was conducted on individual SnTe nanostructures in TEM. Figure S1a, 

b, c respectively show the typical EDS spectrum taken from SnTe nanostructures 

with different nominal Bi concentrations of 0 at.% (Figure S1a), 4. at.% (Figure S1b) 

and 8 at.% (Figure S1c). In the EDS spectrum from un-doped sample (Figure S1a), 

only Sn and Te peaks can be found, from which the atomic ratio of Sn:Te is close to 

1:1, indicating that the un-doped sample is indeed pure SnTe. In contrast, from the 

EDS spectrums of Bi-doped samples (Figure S1a,b), besides the Sn and Te peaks, 

presence of Bi peaks can be observed, and their peak intensities are increased with 

the increase of Bi concentration. Further quantification analysis shows that the Bi 

concentrations in the nanostructures are very close to their nominal doping 

concentrations. 

Figure S1. Typical EDS point profiles taken from SnTe nanostructures with Bi 

doping concentrations of (a) 0 at.%, (b) 4 at.%, and (c) 8 at. %. 
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8 

Metal-Atom Disorder in Bi2SnTe4 

Nanostructures 

8.1 Introduction  

In Bi-Sn-Te ternary system, Bi2SnTe4 has been recognized as the most stable 

phase. The unit cell of Bi2SnTe4 comprises of layers structures with ordered 

lamellae. Each lamella is composed of seven atomic layers (Te-MII-Te-MI-Te-MII-

Te), where MI and MII sites are the octahedral interstices of Te atoms that are 

occupied by metallic atoms (Bi or Sn). Controversy still exists regarding the 

arrangement of Bi and Sn atoms in MI and MII sites. To address this issue, in this 

chapter, we investigate into the metal-atom arrangement in single-crystalline 

Bi2SnTe4 nanoplates synthesized through catalyst-free chemical vapour deposition 

method. The atomic structure was studied using Cs-corrected scanning transmission 

electron microscopy in combination with first-principles calculation. 

8.2 Journal Publication 

These results are to be submitted for publication soon. 
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Abstract 

The debate is still on-going regarding the metal-atom arrangement in Bi2SnTe4, 

whether it is in a mixed or an ordered model. To give a precise identification of the 

metal-atom arrangement in Bi2SnTe4, we conduct Cs-corrected scanning 

transmission electron microscopy studies on nanostructured Bi2SnTe4 samples, 

synthesized through a chemical vapor deposition method. The STEM imaging 

observations, in combination with first-principles calculation, shows that a partial 

ordered metal-atom arrangement can be observed in the crystal structure. Further 

electronic calculation suggested that the small degree of metal-atom disordering we 

observed may lead to a semiconductor-to-metal transition in Bi2SnTe4. 

 

 

Keywords: ternary compound, STEM, tin telluride, bismuth telluride, topological 

insulator, thermoelectric, atomic structure 
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Introduction 

Layered-structured Bi2Te3 compounds have attracted world-wide research interest 

because of their high thermoelectric performances at room temperature, and their 

exotic physical properties as a topological insulator.1-8 Search for new thermoelectric 

materials and topological insulators with Bi2Te3-type crystal structures has led many 

researchers to focus on pseudobinary (AIVTe)m(Bi2Te3)n materials systems (AIV 

denoting the Group IV elements: Ge, Sn, Pb).9-18  Through variation in m and n 

integers, one is able to obtain a series of tetradymite-like layer structured 

compounds,9-18 i.e. GeBi2Te4, SnBi2Te4 and PbBi2Te4 (m=n=1). Experimental studies 

have shown that these compounds generally have a lower lattice thermal 

conductivity compared to their constituent tellurides, which makes them attractive for 

applications in thermoelectricity.9-12 Meanwhile, most of these compounds, such as 

GeBi2Te4 and PbBi2Te4, have been both theoretically and experimentally proved to 

be 3D topological insulators with complicated surface electronic structures, revealing 

the potential for applications in novel quantum devices.13-18  

To precisely predict and understand the properties of (AIVTe)m(Bi2Te3)n compounds, 

it is critical to give an accurate identification of their real atomic structure. In many of 

the compounds, structural unit cell contains a seven atomic-layer structure, which 

can be described as Te-MII-Te-MI-Te-MII-Te (Fig. 1a).19 MI and MII are the 

octahedral interstice sites of Te atoms, occupied by metallic atoms (Bi or AIV). The 

difference of MI and MII sites is that MI is a regular octahedral site while MII is a 

distorted one, as illustrated in Fig. 1a. It has been noted that such difference may 

induce different types of Bi and AIV atom arrangement, which further influences the 

surface state and overall properties of the compounds.14 This prompts the important 

question of how Bi and AIV atoms are distributed in the cation sites of 

(AIVTe)m(Bi2Te3)n compounds. 

However, the arrangement of Bi and AIV atoms in MI and MII sites is still a subject of 

controversy.11,18,19 For example, in Bi2SnTe4 system, both an ordered (Fig. 1a) and 

random (Fig. 1b) models were proposed to describe the metal-atom arrangement, 

XRD results from Zhukova et al. show that Bi and Sn atoms are statistically randomly 

occupy the MI and MII sites.20 This is in variance with the XRD results from 

Kuropatwa et al.,11 who referred from Rietveld refinement results to indicate that Sn 

atoms exhibit preferences for MI sites. Mossbauer spectra results from Ledda et al. 
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also suggest that Sn and Bi in SnBi2Te4 should be arranged in an ordered manner,12 

as the Sn peak from SnBi2Te4 is similar with that of SnTe. Energetic calculations 

from Casula et al. further support that the ordered arrangement of Sn and Bi is 

preferred in Sn2BiTe4.
4 Despite of intensive diffraction, spectroscopy and simulation 

analysis, none of these methods gives a direct evidence of the metal-atom 

arrangement in Sn2BiTe4. On the other hand, aberration-corrected scanning 

transmission electron microscopy (STEM) with Z-contrast imaging technique has 

enabled us to give a precise identification of the atomic configuration of compounds 

with complicated compositions.  

In this study, to clarify metal-atom distribution in SnBi2Te4, we report a direct atomic-

scale observation on the atomic structure of Sn2BiTe4 nanostructures using 

aberration-corrected STEM imaging. We found that Bi and Sn atoms are partially 

ordered in the cation sites, where Bi atoms prefer to occupy MII sites and Sn atoms 

prefer to occupy MI sites, but they are not completely ordered. The result of the 

observation is further understood by structural modeling and energetic calculations 

using density functional theory. 

 

Experimental 

Sn2BiTe4 nanostructures were prepared by chemical vapor deposition method using 

the vapour-solid growth mechanism in a horizontal tube furnace, using elemental 

powders of Sn (Sigma Aldrich, 99.99%), Bi (Sigma Aldrich, 99.99%), Te (Sigma 

Aldrich, 99.99%) as the precursor, and mixture of Ar(100sccm) and H2(40sccm) as 

the carrier gas. Silicon (100) with natural oxide layer was used as the substrate to 

collect the nanostructured samples. During the growth, precursors were put at the 

center of the furnace and heated to 700oC, whereas substrates were put at the 

downstream area with a distance of ~12 cm from the furnace center.  

Phase identification characterizations were carried out by using a Bruker D8 

Advance powder X-ray diffractometer (XRD) with a Cu-K 𝛼 1 radiation. The 

morphological, structural and chemical characteristics of the samples were studied 

using scanning electron microscope (SEM, JEOL 7800) and  transmission electron 

microscope (TEM, Philips Tecnai F20, 200kV), equipped with energy-dispersive X-

ray spectroscopy (EDS) for compositional quantification analysis. Cross-sectional 

TEM specimens were prepared firstly by mechanical ground till their thickness 
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reached ~0.12mm, followed by a dimpling down to ~20um. To further make the 

specimen electron transparent, the dimpled slices were finally thinned by argon-ion 

polishing (PIPS 691, Gatan). For atomic-resolution imaging of TEM specimens, high-

annular angle dark-field images (HAADF) were taken by scanning transmission 

electron microscope (ARM-200FC STEM, 200kV) equipped with a probe corrector 

(CEOS Gmbh). 

Calculations of energies and electronic structures were performed using the Vienna 

ab initio simulation package (VASP) within the framework of DFT. The projector 

augmented wave (PAW) method was employed for electron-ion interactions, and the 

generalized gradient approximation (GGA) was used to describe the exchange-

correlation functional. The Kohn-sham wave function was expanded in a plane wave 

basis with a cut-off energy of 400 eV. Potentials for Sn, Bi and Te, respectively used 

5s25p2, 6s26p3 and 5s25p4 orbitals as valence electrons. 

 

Results and Discussion 

Figure 2a shows the experimental XRD patterns obtained from the sample. The XRD 

experimental result agrees with the standard Bragg peaks from a rhombohedral 

structured Bi2SnTe4 (PDF# 65-3692), indicating that the crystals grown were single-

phased Bi2SnTe4. Figure 2b,c present a pair of SEM images taken from the Bi2SnTe4 

nanostructures grown on silicon substrate with a top view (Fig. 2b) and a side view 

(Fig. 2c). The nanostructures exhibit morphology as nanoplate, with a lateral size of 

30-200 nm, and are grown free-standing on the substrate surface. In combination 

with the XRD results shown in Fig. 2a, the strong intensity of {0001} peaks 

suggested that the nanoplates have a dominated surface facet as {0001}.  

To further understand the structural characteristics of the as-grown Bi2SnTe4 

nanoplates, cross-sectional TEM analysis was conducted. Figure 2d shows a high-

resolution TEM bright-field (BF) image of a typical nanoplate, clearly showing the 

layer-structured feature. The seven-layered structure is further confirmed by 

selective-area electron-diffraction patterns (SAED) taken from the nanoplate, which 

reveals seven spots between two adjacent [00021] spots, as shown in Fig. 2e. 

Figure 2f shows EDS point profile taken from the nanostructure (note that the C, O Si 

and Cu peaks are due to the superglue used for sample preparation, silicon 
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substrate, and Cu grid for supporting the sample). Quantitative analysis confirms that 

the atomic ratio of Bi, Sn and Te is approximately 2:1:4 in the sample. 

To understand the atom arrangement in our BiSn2Te4 samples, the same nanoplate 

was further characterized under STEM imaging mode. Figure 3a shows a typical 

HAADF STEM image taken from the thin edge of the nanoplate, where slabs of Te-

MII-Te-MI-Te-MII-Te atomic layers can be seen. Constantly, brighter atomic columns 

can be observed at the MII sites. Since the intensity of an atomic column in the 

HADDF STEM mode is roughly proportional to Z1.7 (Z is atomic number), and Bi has 

a higher Z (83) value compared with Sn (50) and Te (52), brighter atomic columns 

can be classified as Bi-rich atomic columns. This was further confirmed by extracting 

the intensity profile along line I-II, as shown in Fig. 3b, revealing that atomic columns 

at MII sites show higher image intensity than other sites. This indicates that Bi atoms 

show preference to occupy MII sites, and Sn show preference for MI sites. 

Nevertheless, it should be noted that atomic columns at MI sites show slightly higher 

intensity than that of Te sites, suggesting that the metal atom arrangement is not 

perfectly ordered in the Bi2SnTe4 sample. Based on our examination on more than 

half a dozen of samples, the STEM imaging result shows that there exists certain 

degree of metal-atom disorder, and the metal arrangement can be considered as 

partial ordered. 

To understand the degree of metal-atom disorder in our sample, image simulations 

using multi-slice method were conducted. The supercells used for image simulation 

was built and relaxed using DFT. As shown in Table 1, starting from supercells of the 

ordered model, in which the Sn occupancy at MII sites (gSn-MII) equals 0, we 

gradually exchange Sn with Bi, and increase the gSn-MII to 1/10, 1/4, and 1/3. When 

gsn-MII reaches 1/3, the arrangement of metal atoms is completely mixed. 

Corresponding supercells and their projections are shown in Fig. 4a, b. Using these 

atomic models, the resulted simulated HAADF images are shown in Fig. 4c. In Fig. 

4c, one can see that as the degree of exchange is increased, the difference of image 

contrast between atom column at MI and MII sites is largely reduced. By comparing 

the simulated images with our experimental one in Fig. 3a, the simulated image at 

gSn-MII of 1/10 agrees the best, suggesting that in our sample, the exchange degree 

of Sn and Bi atoms is around 1/10.  
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To understand whether the 10% metal atom exchange we observed is energetically 

favourable, we calculate formation energies (Ef) using the BiSn2Te4 supercells 

shown in Fig. 4a. Figure 5a shows the calculated energy profiles as a function of gSn-

MI, where the formation energy (Ef) of the ordered arrangement is set to zero. Figure 

5a reveals that an increased disorder of metal atom arrangement leads to an 

increase of Ef. The 1/3 case, where Sn evenly occupy 1/3 of both MI and MII sites, 

has the highest Ef, suggesting that an evenly mixed arrangement of metal atoms is 

not likely to form. This is in agreement with our experimental results that Sn prefers 

MII rather that MI sites. Although the 1/10 and 1/4 cases show higher Ef than the 

ordered one, their energy difference is quite low, which is below 0.1eV/f.u. The low Ef 

suggests that although metal disorder is not predicted to be the most energy 

favourable at thermal-equilibrium conditions, a small fluctuation such as strain or 

chemical potential in the synthesis environment may easily induce the metal 

disorder, especially in our case of nanostructures where finite-size effects exist. 23 

To understand the impact of metal-atom disorder on the electronic property of 

Bi2SnTe4, Figure 5b compared the density of states (DOS) calculated for the ordered 

and 1/10 exchanged supercells. The DOS of the ordered model shows a band gap 

~0.45 eV, with the Fermi level lying close to the valence band maximum (VBM), 

showing a p-type semiconducting feature. This is in consistency with previous 

calculations using the ordered model.11 In contrast, in 1/10 exchanged case, the 

band gap is diminished, showing a metallic conducting feature. We further calculated 

DOS and band structures for other cases (Fig. S1), which suggests that the 

semiconductor-to-metal transition can always be observed. This transition is due to 

the left shift of conduction band minimum (CBM), stem from the valence p orbitals of 

Bi and Te atoms. 

 

Conclusion 

From CVD grown Bi2SnTe4 nanoplates, STEM imaging found that Bi and Sn atoms 

are partially ordered in the cation sites of Bi2SnTe4, where Bi prefer to stay in MII 

sites and Sn atoms prefer to stay at MI site, with certain degree of metal-atom 

disorder can be observed. Calculations show that metal-atom disorder may cause a 

semiconductor-to-metal transition in Bi2SnTe4.  
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Figure Captions 

 

 

Figure 1. Projections along [ 112̅0 ] of the structure models proposed for the 

rhombohedral Bi2SnTe4 phase with an ordered (a) and a random (b) metal atom 

arrangement. In the seven-layer structural unit, two types of octahedral cation sites 

exist, labelled as MI, MII in (a). In an ordered model, MI sites are occupied by Sn, 

while MII sites are occupied by Bi (a). In a random model, Bi and Sn are antisited 

compared to the ordered one. MI and MII are occupied by even mixing of Bi and Sn 

atoms, in which Sn has occupancy of 1/3 in both M sites (b). 
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Figure 2. (a) XRD patterns from the as-grown sample, with the bottom panel 

showing standard peaks of a rhombohedral Bi2SnTe4 phase. (b-c) SEM images of 

Bi2SnTe4 nanoplates standing on the substrate surface, with a top view (b) and a 

side view (c). (d) TEM BF image of cross-section specimen taken from a Bi2SnTe4 

nanostructure along [112̅0] axis, indicating the layered structure. (e) SAED patterns 

taken from the nanostructure along [112̅0] axis. (f) EDS point profile taken from the 

nanoplate. 
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Figure 3. (a) Atomic-resolution HADDF image taken from the nanoplate sample, 

showing its seven-layer slabs. (b) Line profiles showing the image intensity along line 

i-ii in (a). 

 

Table 1 Occupancy of Sn in MI and MII sites in the four proposed atomic models to 

describe the exchange levels of metal atoms in Bi2SnTe4 
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Figure 4. (a) Bi2SnTe4 supercells with different exchange degrees of Bi and Sn, 

supercells from left to right corresponding to a gSn-MII value of 0%, 10%, 25% and 

33.33%. (b) Corresponding schematic projections along [ 112̅ 0] axis, (c) 

Corresponding simulated STEM images, atomic columns at MI and MII sites are 

denoted by yellow and red arrows, respectively. 
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Figure 5. (a) Calculated formation energies of the supercells as a function of gSn-MII 

value. (b-c) Calculated total DOS derived from the ordered (b) and 1/10 exchanged 

(c) supercells. 
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Supporting Information 

 

Figure S1. (a, c ,e) Calculated band structure from Bi2SnTe4 supercells for the 

ordered (a), 1/4 exchanged (b), and (c) 1/3 exchanged supercells. (b, d, f) Total DOS 

and corresponding partial DOS extracted for Bi and Te p orbitals for ordered (a), 1/4 

exchanged(b), and (c) 1/3 exchanged supercells.  

 



 

 

168 

 

References 

1. Snyder, G. J.; Toberer, E. S. Complex thermoelectric materials. Nat. Mater. 

2008, 7, 105-114. 

2. Yang, L.; Chen, Z.-G.; Hong, M.; Han, G.; Zou, J. Enhanced thermoelectric 

performance of nanostructured Bi2Te3 through significant phonon scattering. 

ACS Appl. Mater. Interf. 2015, 7, 23694-23699. 

3. Hong, M.; Chen, Z. G.; Yang, L.; Zou, J. BixSb2−xTe3 nanoplates with enhanced 

thermoelectric performance due to sufficiently decoupled electronic transport 

properties and strong wide-frequency phonon scatterings. Nano Energy 2016, 

20, 144-155. 

4. Han, G.; Chen, Z.-G.; Yang, L.; Hong, M.; Drennan, J.; Zou, J. Rational design of 

Bi2Te3 polycrystalline whiskers for thermoelectric applications. ACS Appl. Mater. 

Interf. 2015, 7, 989-995. 

5. Vineis, C. J.; Shakouri, A.; Majumdar, A.; Kanatzidis, M. G. Nanostructured 

thermoelectrics: big efficiency gains from small features. Adv. Mater. 2010, 22, 

3970-3980. 

6. Hsieh, D.; Xia, Y.; Qian, D.; Wray, L.; Dil, J. H.; Meier, F.; Osterwalder, J.; 

Patthey, L.; Checkelsky, J. G.; Ong, N. P.; Fedorov, A. V.; Lin, H.; Bansil, A.; 

Grauer, D.; Hor, Y. S.; Cava, R. J.; Hasan, M. Z. A tunable topological insulator 

in the spin helical Dirac transport regime. Nature 2009, 460, 1101-1105. 

7. Chen, Y. L.; Analytis, J. G.; Chu, J.-H.; Liu, Z. K.; Mo, S.-K.; Qi, X. L.; Zhang, H. 

J.; Lu, D. H.; Dai, X.; Fang, Z.; Zhang, S. C.; Fisher, I. R.; Hussain, Z.; Shen, Z.-

X. Experimental realization of a three-dimensional topological insulator, Bi2Te3. 

Science 2009, 325, 178-181.  

8. Kong, D.; Cui, Y. Opportunities in chemistry and materials science for topological 

insulators and their nanostructures. Nat. Chem. 2011, 3, 845-849.  

9. Rosenthal, T.; Schneider, M. N.; Stiewe, C.; Döblinger, M.; Oeckler, O. Real 

structure and thermoelectric properties of GeTe-rich germanium antimony 

tellurides. Chem. Mater. 2011, 23, 4349-4356.  

10. Karpinsky, O. G.; Shelimova, L. E.; Kretova, M. A.; Fleurial, J. P. X-Ray study of 

the nGeTe·mBi2Te3 mixed layered tetradymite-like compounds. J. Alloy. Compd. 

1998, 265, 170-175.  



 

 

169 

 

11. Kuropatwa, B. A.; Kleinke, H. Thermoelectric properties of stoichiometric 

compounds in the (SnTe)x(Bi2Te3)y system. Z. Anorg. Allg. Chem. 2012, 638, 

2640-2647.  

12. Shelimova, L. E.; Karpinskii, O. G.; Zemskov, V. S.; Konstantinov, P. P. 

Structural and electrical properties of layered tetradymite-like compounds in the 

GeTe-Bi2Te3 and GeTe-Sb2Te3 systems. Inorg. Mater. 2000, 36, 235-242. 

13. Yang, K.; Setyawan, W.; Wang, S.; Buongiorno Nardelli, M.; Curtarolo, S. A 

search model for topological insulators with high-throughput robustness 

descriptors. Nat. Mater. 2012, 11, 614-619. 

14. Okamoto, K.; Kuroda, K.; Miyahara, H.; Miyamoto, K.; Okuda, T.; Aliev, Z. S.; 

Babanly, M. B.; Amiraslanov, I. R.; Shimada, K.; Namatame, H.; Taniguchi, M.; 

Samorokov, D. A.; Menshchikova, T. V.; Chulkov, E. V.; Kimura, A. Observation 

of a highly spin-polarized topological surface state in GeBi2Te4. Phys. Rev. B 

2012, 86, 195304. 

15. Vergniory, M. G.; Menshchikova, T. V.; Silkin, I. V.; Koroteev, Y. M.; Eremeev, S. 

V.; Chulkov, E. V. Electronic and spin structure of a family of Sn-based ternary 

topological insulators. Phys. Rev. B 2015, 92, 045134. 

16. Eremeev, S. V.; Landolt, G.; Menshchikova, T. V.; Slomski, B.; Koroteev, Y. M.; 

Aliev, Z. S.; Babanly, M. B.; Henk, J.; Ernst, A.; Patthey, L.; Eich, A.; 

Khajetoorians, A. A.; Hagemeister, J.; Pietzsch, O.; Wiebe, J.; Wiesendanger, 

R.; Echenique, P. M.; Tsirkin, S. S.; Amiraslanov, I. R.; Dil, J. H.; Chulkov, E. V. 

Atom-specific spin mapping and buried topological states in a homologous series 

of topological insulators. Nat. Commun. 2012, 3, 635. 

17. Ren, Z.; Taskin, A. A.; Sasaki, S.; Segawa, K.; Ando, Y. Fermi level tuning and a 

large activation gap achieved in the topological insulator Bi2Te2Se by Sn doping. 

Phys. Rev. B 2012, 85, 155301. 

18. Jung, C. S.; Kim, H. S.; Im, H. S.; Park, K.; Park, J.; Ahn, J.-P.; Yoo, S. J.; Kim, 

J.-G.; Kim, J. N.; Shim, J. H. In situ temperature-dependent transmission 

electron microscopy studies of pseudobinary mGeTe·Bi2Te3 (m=3-8) NWs and 

first-principles calculations. Nano Lett. 2015, 15, 3923-3930. 

19. Zhukova, T. B.; Zaslavskii, A. I. Crystal structures of PbBi4Te7, PbBi2Te4, 

SnBi4Te7, SnBi2Te4, SnSb2Te4, and GeBi4Te7. Kristallografiya  1971, 16, 918-

922. 



 

 

170 

 

20. Ledda, F.; Muntoni, C.; Serci, S.; Pellerito, L. Ordering of metal atoms in the 

SnTe-Bi2Te3 system. Chem. Phys. Lett. 1987, 134, 545-548. 

21. Casula, F.; Deiana, L.; Podda, A. Atomic arrangement in the mSnTe-nBi2Te3 

compounds by electronic structure calculations. J. Phys.: Condens. Mat. 1991, 3, 

1461. 

22. McKenna, K. P.; Hofer, F.; Gilks, D.; Lazarov, V. K.; Chen, C.; Wang, Z.; 

Ikuhara, Y. Atomic-scale structure and properties of highly stable antiphase 

boundary defects in Fe3O4. Nat. Commun. 2014, 5, 5740. 

 



 

 

171 

 

9 

Conclusions and Recommendations 

 

9.1 Conclusions 

This thesis investigated the growth mechanism, structural characteristics of SnTe, 

Bi2Se3, Bi-Sn-Te nanostructures grown by Au-catalyzed and catalyst-free CVD. 

Through detailed electron microscopy investigations, the morphology, crystal 

structure controlled growth of IV-VI and V-VI based nanostructures have been 

successfully achieved, and the growth mechanisms were proposed to understand 

their growth behaviors. Furthermore, we combined aberration-corrected STEM 

imaging with first-principle calculation to elucidate the complex atomic structure of 

ternary chalcogenides. The conclusions of this PhD thesis are summarized as 

follows. 

 In Au catalysed growth of chalcogenide compound NWs, detailed experimental 

investigations have demonstrated that catalyst composition, catalyst 

orientation, can be used to tune the morphology and structural characteristics 

of the products. For Bi2Se3 nanostructure growth, the catalyst-nanostructure 

interface was found to have an impact on the growth directions of the products. 

When the catalyst/nuclei interfaces are {0001} interfaces, NWs and the NR-NW 

junctions can be introduced. When the catalyst/nuclei interfaces are not {0001} 

interfaces, NRs are likely to be formed. In SnTe nanostructures, Au-containing 

catalysts with different Au concentrations are used to induce specific growth 

behavior. Triangular SnTe nanoplates with a {100} dominated surface and 

{100}, {111} and {120} side facets were induced by AuSn catalysts, whereas 

<010> SnTe NWs with four nonpolar {100} side‐facets were produced using 

Au5Sn catalysts. Through detailed structural and chemical characterization, 

coupled with surface energy calculations, it is found that NW growth is 

thermodynamically controlled via VSS growth mechanism, whereas nanoplate 

growth is kinetically controlled via VLS growth mechanism. 
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 In the growth of Bi doped SnTe nanostructures, we found that the surface facet 

and crystal structure of the SnTe nanostructures can be engineering through Bi 

doping. When Bi doping concentration is reaching ~8 at.%, SnTe NRs with 

{111} dominated surface facets can be achieved, as the incorporation of Bi 

significantly lowers the surface energy of {111}Te facet which reverses the 

relative stability between {100} and surface facet. Furthermore, Bi doping can 

be used to realize the vacancy engineering in highly doped SnTe NRs. An 

increased Bi concentration promotes the formation of compensating planar 

vacancies. Atomic-resolution STEM study found that the observed planar 

vacancies provide energetic favorable sites to accommodate Bi dopants, and 

exhibit local variation in structural relaxation level. When terminating at the NR 

surface, the planar vacancies (R-type) exhibit large structural relaxation level, 

and are characterized by low formation energy. Determination of the atomic 

structure of these planar vacancies with such atomistic detail has enabled us to 

predict their corresponding electronic properties. Calculations show that the Bi 

segregated planar vacancies introduce newly localized DOS distortion into the 

system, which provides new opportunities for the future applications of 

chalcogenide nanomaterials. 

 For ternary Bi-Sn-Te nanostructures, we investigate into the atomic structure of 

CVD grown single-crystalline Bi2SnTe4 nanoplates by STEM imaging. We 

found that Bi and Sn atoms show preferences for different cation sites. 

However, they still coexist in each cation site, and show a small degree of 

metal atom disorder. DFT calculation indicates that the formation energy of 

such metal-atom disorder is low. Further electronic calculations suggested that 

the disordering of metal atoms may lead to a semiconductor-to-metallic 

transition in Bi2SnTe4. 

 

9.2 Recommendations 

The observations and conclusions that were made in the PhD thesis can be 

extended to explore the properties and structures of metal chalcogenide 

nanostructures. Suggestions are stated as follows. 

 Investigate into the nano-device design of the samples and study the impact of 

structural, morphology and composition on the property of the nanostructure. 
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 Detail analysis of the magnetoresistance properties of Bi-Sn-Te compound 

nanostructures is desirable, since the related study on their topological surface 

properties is very limited from previous literature reports. Related 

measurements can be conducted on the grown SnBi2Te4 nanoplates. The 

comparison of such results with SnTe and Bi2Te3 based nanostructures may 

provide new opportunities for applications of Bi-Sn-Te compound 

nanostructures in spintronic devices. 

 Further structural understanding is needed regarding the planar vacancies 

formation in the Bi-Sn-Te nanostructures, and their correlation with the 

mechanism of phase change from rock-salt to rhombohedral in ternary Bi-Sn-

Te nanostructures.  

 

 


