
Latin Squares and Related Structures

Trent Gregory Marbach

Bachelor of Science (Mathematics) - UQ

Bachelor of Science[Honours] (Mathematics) - UQ

A thesis submitted for the degree of Doctor of Philosophy at

The University of Queensland in 2015

School of Mathematics and Physics

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Queensland eSpace

https://core.ac.uk/display/83964588?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Abstract

A latin square of order n is an n × n array of cells, each filled with one of n symbols

such that each row and each column contain each symbol precisely once. This thesis

contributes three new results from three different topics within the study of latin squares.

In doing this, we give a broad overview of three distinct areas of the study of latin squares,

and the results that have been accomplished in the literature so far.

The first study presents new results pertaining to transversals in latin squares. Previous

work on transversals has investigated the spectrum of intersection sizes of two transversals

within the back-circulant latin squares. A natural extension to this work is to investigate

the spectrum of intersection sizes of more than two transversals within the back-circulant

latin squares. In this thesis we will accomplish this for three and four transversals, and

for all but a finite list of exceptions give a design theoretic construction that recursively

builds from base designs that we found by a computational search.

The second study investigates µ-way k-homogeneous latin trades. These structures have

been extensively studied when µ = 2, but much less is known when µ > 2. Previous

investigation had filled in a fraction of the spectrum when µ = 3. We continue this study

giving new constructions and show that 3-way k-homogeneous latin trades of order m

exist for all but 196 possible exceptions.

The third study investigates mutually nearly orthogonal latin squares (MNOLS). These

MNOLS are similar to mutually orthogonal latin squares, and can also be used in the

design of experiments. Continuing from previous investigations, we enumerate the number

of collections of three cyclic MNOLS for latin squares with order up to 16. This required

using computational enumeration techniques and a large optimised computer search, as

the search space was incredibly large. We present the number of collections of three

MNOLS for latin squares with order up to 16 under a variety of equivalences, where we

take the collections to be either sets or ordered lists.

ii

Declaration by author

This thesis is composed of my original work, and contains no material previously published

or written by another person except where due reference has been made in the text. I have

clearly stated the contribution by others to jointly-authored works that I have included

in my thesis.

I have clearly stated the contribution of others to my thesis as a whole, including statisti-

cal assistance, survey design, data analysis, significant technical procedures, professional

editorial advice, and any other original research work used or reported in my thesis. The

content of my thesis is the result of work I have carried out since the commencement of

my research higher degree candidature and does not include a substantial part of work

that has been submitted to qualify for the award of any other degree or diploma in any

university or other tertiary institution. I have clearly stated which parts of my thesis, if

any, have been submitted to qualify for another award.

I acknowledge that an electronic copy of my thesis must be lodged with the University

Library and, subject to the policy and procedures of The University of Queensland, the

thesis be made available for research and study in accordance with the Copyright Act

1968 unless a period of embargo has been approved by the Dean of the Graduate School.

I acknowledge that copyright of all material contained in my thesis resides with the copy-

right holder(s) of that material. Where appropriate I have obtained copyright permission

from the copyright holder to reproduce material in this thesis.

Trent G. Marbach

iii

Publications during candidature

These works were published during candidature:

1. T.G. Marbach, “On the intersection of three or four transversals of the back circulant

latin square Bn”, Australasian Journal of Combinatorics 65, No. 1, pp. 84-107, 2016.

2. T.G. Marbach, L. Ji, “The spectrum for 3-way k-homogeneous Latin trades”, Elec-

tronic Journal of Combinatorics 22, Paper 4.1, 23pp, 2015.

Publications included in this thesis

These published works are incorporated in to the thesis:

1. T.G. Marbach, “On the intersection of three or four transversals of the back circulant

latin square Bn”, Australasian Journal of Combinatorics 65, No. 1, pp. 84-107, 2016.

Incorporated as Chapter 2.

Contributions: Marbach 100% of the key ideas, 100% of the technical calculations,

100% of the drafting and writing, 100% of initial editing.

2. T.G. Marbach, L. Ji, “The spectrum for 3-way k-homogeneous Latin trades”, Elec-

tronic Journal of Combinatorics 22, Paper 4.1, 23pp, 2015. Incorporated as Chapter

3.

Contributions: Marbach approximately 50% of the key ideas, 100% of the technical

calculations, 100% of the drafting and writing, approximately 50% of initial editing.

Ji approximately 50% of the key ideas, approximately 50% of initial editing.

iv

Contributions by others to the thesis

My supervisors Diane M. Donovan and Benjamin A. Burton helped in guiding me towards

suitable problems and in technical editing. Ji Lijun and Zhu Lie worked with me on the

construction of (3, k,m)-latin trades via RPBD’s. We would like to acknowledge Ian

Wanless for comments that helped us to improved section 2 of Chapter 2. Diane M.

Donovan and Fatih Dermikale worked with me on Chapter 4.

Statement of parts of the thesis submitted to qualify for the award of

another degree

None.

v

Acknowledgements

Firstly I would like to show my deepest appreciation for my principal supervisor Diane

Donovan. Her guidance, patience, encouragement, and kindness has always been amazing.

Beyond leading me through my work as a PhD candidate, she has more than anybody

else taught me how to think, for which I am deeply indebted to her.

To my associated supervisor Benjamin Burton, who encouraged me and gave me vital di-

rection. To the Mathematics Discipline at the University of Queensland, whose members

have been constantly friendly and wise. I would also like to acknowledge the financial

assistance provided by the Commonwealth Government by way of an Australian Post-

graduate Award.

For an 8 month period I was hosted at Soochow University, Suzhou, China. I would like

to acknowledge the large amounts of support and guidance that was given to me from

Ji Lijun during that time. It was an amazing experience being able to research at such

a beautiful campus with a number of great mathematicians. Also to Zhu Lie for his

mathematical guidance during this time.

To my family, who have always supported me in every endeavor I have embarked upon.

Particularly my father for being my rock, Cora for her continual guidance, Tanya for being

the best role model, Tristan for always showing me the fun side of life, and Monique for

her companionship.

vi

Keywords

latin square, latin trade, transversal, nearly orthogonal, k-homogeneous, intersection prob-

lem, combinatorial enumeration.

Australian and New Zealand Standard Research Classifications (ANZSRC)

ANZSRC code: 010104, Combinatorics and Discrete Mathematics (excl. Physical Com-

binatorics), 100%

Fields of Research Classification

FoR code: 0101, Pure Mathematics, 100%

vii

Contents

List of Figures xi

List of Tables xiii

Index xiv

1 Introduction 1

1.1 Brief History . 1

1.2 Definitions . 3

1.3 Questions . 6

1.3.1 Transversals in latin squares . 6

1.3.2 µ-way k-homogeneous latin trades 7

1.3.3 Mutually nearly orthogonal latin squares 10

2 Transversals in the back circulant latin squares 14

2.1 Introduction . 14

viii

2.2 Results . 16

2.2.1 Basic results . 16

2.2.2 Computer search . 18

2.2.3 Principal construction . 18

2.3 Application to µ = 3, 4 . 26

2.3.1 Existence of partial transversals in subsquares 27

2.3.2 µ = 3 . 29

2.3.3 µ = 4 . 31

2.4 Application to latin trades . 34

2.5 Conclusion and future work . 37

3 µ-way k-homogenous latin trades 39

3.1 Introduction . 39

3.2 Literature review . 41

3.3 Idempotent generalization of basic constructions 42

3.4 New Constructions for idempotent (µ, k,m)-latin trades 46

3.4.1 Computer search for small orders 46

3.4.2 Extended Multiplication Construction 51

3.4.3 Packing construction . 52

3.4.4 Construction via RPBDs . 59

ix

3.5 Result when µ = 3 . 64

3.6 Results . 68

3.7 Future work . 69

4 Enumeration of MNOLS 72

4.1 Introduction . 72

4.2 Further definitions . 74

4.3 Cyclic MNOLS . 76

4.4 Group actions for cyclic MNOLS . 79

4.5 Canonical forms . 82

4.6 Algorithms . 84

4.7 Results and conclusions . 88

5 Conclusion 93

Bibliography 96

A Appendix 105

A.1 Base blocks for Chapter 2 . 106

A.2 Program details . 113

A.2.1 More details . 113

A.2.2 Code . 116

x

List of Figures

2.1 The positioning of the subsquares. By taking the union of partial transver-

sals of Bn in these subsquares, we find a transversal of Bn. 21

2.2 We choose partial transversal such that the symbols not used between the

ith and (i+1)th base subsquares are used in the (I+i+1)th base subsquare.

The darkened cells represent those cells that we do not allow in any partial

transversal. 21

3.1 An illustrative example of the placement of blocks in Construction 3.4.4 . . 53

xi

List of Tables

1.1 The number of sets of µ MNOLS of order n under isotopic equivalence. . . 12

2.1 There exists a collection of µ = 3 transversals of Bn with stable intersection

size t. 19

2.2 There exists a collection of µ = 4 transversals of Bn with stable intersection

size t. 19

3.1 Values where no idempotent (3, k,m)-latin trade is known to exist with

6 ≤ k ≤ m − 1. The starred values indicate when a non-idempotent

(3, k,m)-latin trade is known to exist. 70

4.1 The number of two cyclic MNOLS of order n under the given equivalence. 89

4.2 The number of three cyclic MNOLS of order n under the given equivalence. 89

4.3 The number of four cyclic MNOLS of order n under the given equivalence. 90

4.4 The number of five cyclic MNOLS of order n under the given equivalence. . 90

4.5 The two cyclic MNOLS of order 14, by their type and autotopy group sizes. 91

4.6 The three cyclic MNOLS of order 14, by their type and autotopy group sizes. 91

xii

4.7 The four cyclic MNOLS of order 14, by their type and autotopy group sizes. 91

4.8 The two cyclic MNOLS of order 16, by their type and autotopy group sizes. 92

4.9 The three cyclic MNOLS of order 16, by their type and autotopy group sizes. 92

4.10 The four cyclic MNOLS of order 16, by their type and autotopy group sizes. 92

A.1 µ = 4 and b = 9. 106

A.2 µ = 4 and b = 9. 107

A.3 µ = 4 and b = 9. 107

A.4 µ = 3 and b = 9. 108

A.5 µ = 4 and b = 11. 108

A.6 µ = 4 and b = 11. 109

A.7 µ = 4 and b = 11. 110

A.8 µ = 3 and b = 11. 110

A.9 µ = 4 and b = 15. 111

A.10 µ = 4 and b = 15 (Only one partial transversal is needed in each case). . . 112

xiii

Index

(µ, k,m)-latin trade, 5, 39

µ-way latin trade, 4, 35, 39

k-homogeneous, 5, 35, 39

Base row, 35

Bitrade, 34

Canonical form, 82

Circulant, 35, 40

Column set, 4

Cyclic, 12

Diagonal, 4

Idempotent, 40

Intersect stably, 15

Latin square, 1, 3

Latin trade, 5

List-canonical, 83

List-reduced, 83

MNOLS, 11, 74

MOLS, 5

Mutually orthogonal, 5

Nearly orthogonal, 5, 72

Orderly algorithm, 73

Orthogonal, 2, 5

Partial latin square, 3

PBD-Pairwise balanced design, 59

Reduced, 75, 80

Reduced form, 27

Row set, 4

RPBD-Resolvable pairwise balanced de-

sign, 59

RTD-Resolvable transversal design, 62

Set-autotopy, 80

Set-canonical, 83

Set-isotopy, 80

Set-reduced, 80, 83

Shape (of a partial latin square), 4

xiv

Symbol set, 4

TD-transveral design, 62

Transversal, 4

Types of MNOLS, 89

Volume (of a partial latin square), 3

xv

Chapter 1

Introduction

1.1 Brief History

A latin square of order n is an n× n array of symbols such that each symbol occurs once

in each row and once in each column. Examples of latin squares appeared as early as

the 12th century. The writer Ahmad ibn ’Ali ibn Tusuf al-Buni (d. 1225) commented

on their use on talismans, as well as giving a hint towards a possible construction for

magic squares (magic squares significantly predated this usage of latin squares, having

been known to the Islamic world since the 9th Century and in China since the 4th century

BCE, see [33] page 525). They also appeared in the work of the 13th century Spanish

mystic and philosopher Ramon Lull, in a 1356 book of Indian mathematics, and in a book

of recreational card problems in the early 18th century (See [6] for further details of this

history, and references).

The systematic study of latin squares began in a paper by Leonhard Euler. This paper

[44] began with the now famous thirty-six officers problem (translation via [43]):

1

“Une question fort curieuse qui a exercé pendant quelque temps la sagacité

de bien du monde, m’a engagé à faire les recherches suivantes, qui semblent

ouvrir une nouvelle carrière dans l’Analyse et en particulier dans la doctrine

des combinaisons. Cette question rouloit sur une assemblée de 36 Officiers

de six différens grades et tirès de six Régimens différens, qu’il s’agissoit de

ranger dans un quarré de manière que sur chaque ligne, tant horizontale que

verticale, il se trouvât six Officiers tant de différens caractères que de Régimens

différens.”

“A very curious question that has taxed the brains of many (has) inspired

me to undertake the following research that has seemed to open a new path

in Analysis and in particular in the area of combinatorics. This question

concerns a group of thirty-six officers of six different ranks, taken from six

different regiments, and arranged in a square in a way such that in each row

and column there are six officers, each of a different rank and regiment.”

Euler asked the more general question of whether there exist a pair of latin squares L1

and L2 of order n with the property that the superimposition of L1 onto L2 yields all n2

possible pairs of symbols amongst the cells of the superimposition. When such a property

holds, L1 and L2 are said to be orthogonal . For a latin square L, let the symbol appearing

in row r and column c be denoted L(r, c). Then the thirty-six officers problem, if possible,

would correspond to a pair of orthogonal latin squares L1 and L2 of order 6, where the

officer in row r and column c has rank L1(r, c) and regiment L2(r, c). It turns out that

such a configuration is impossible. Euler conjectured that there did not exist a pair of

orthogonal latin squares when n ≡ 2 (mod 4). This was later shown to be false [13] [12],

and in fact it turns out that examples of pairs of orthogonal latin squares exist for all n,

except for n = 2, 6 [14].

2

This problem is naturally generalized to asking for s mutually orthogonal latin squares

(MOLS) of order n. Although two MOLS of order 10 have been found, it is still unknown

whether three MOLS of order 10 exist. Similarly, four MOLS of order 14 have been found

in [81], but it is still unknown whether five MOLS of order 14 exist.

The study of latin squares has also grown independently of the study of mutually orthogo-

nal latin squares. Interest in latin squares has also been spurred by the connections found

to algebra (through quasigroups, a generalisation of a group) and to statistics (through

the design of experiments) in the 1930’s. In this thesis we will explore a number of current

questions related to latin squares, and provide new results in these areas. We will fully

explain each of the subjects dealt with in this thesis, but first we are required to make an

interlude to formalize our notation.

1.2 Definitions

A partial latin square of order n, T = [t(r, c)], is an n × n array of cells with each

cell either filled with an element t(r, c) of Ω (a set of n symbols) or left empty, such

that each symbol of Ω appears at most once in each row, and at most once in each

column. In what follows, we typically take Ω = [0, n − 1] = {0, 1, 2, . . . , n − 1}, and

index the rows and columns of the partial latin square by Ω. A major exception to

this is in Chapter 3, where we take Ω = [n] = {1, . . . , n}. A partial latin square T

has volume s if it has precisely s filled cells, where 0 ≤ s ≤ n2. A partial latin square

with volume n2 is a latin square. We can represent T as a set of s ordered triples

{(r, c, t(r, c)) | r, c ∈ Ω and cell (r, c) is not empty}.

A commonly studied latin square is the back circulant latin square, which is defined as

Bn = {(r, c, r+c mod n) | r, c ∈ [0, n−1]}. The latin squares Bn have a strong connection

to diagonally cyclic latin squares, and are often used to prove facts about latin squares in

3

general.

A diagonal of a latin square L is a set of n cells of L such that each row and each column

is represented in the set of cells. A transversal of a latin square is a diagonal that also

has each symbol of Ω represented in the diagonal.

Consider a partial latin square T ⊂ Ω × Ω × Ω. The shape of T is defined as S(T) =

{(r, c) ∈ Ω × Ω | (r, c, e) ∈ T , for some e ∈ Ω}. The rth row set of T is defined as

Rr(T) = {e ∈ Ω | (r, c, e) ∈ T , for some c ∈ Ω}. The cth column set of T is defined as

Cc(T) = {e ∈ Ω | (r, c, e) ∈ T , for some r ∈ Ω}. The eth symbol set of T is defined as

Ee(T) = {(r, c) ∈ Ω× Ω | (r, c, e) ∈ T}.

Definition 1.2.1. For natural numbers µ, n, µ ≤ n, a µ-way latin trade of order n on

symbol set Ω is a collection T = (T1, . . . , Tµ) of µ partial latin squares of order n using

symbols of Ω such that:

• S(Tα) = S(Tβ), for each 1 ≤ α < β ≤ µ;

• for each (r, c) ∈ S(Tα) it holds that tα(r, c) 6= tβ(r, c), for every 1 ≤ α < β ≤ µ; and

• Rr(Tα) = Rr(Tβ) and Cc(Tα) = Cc(Tβ), for each r, c ∈ Ω and 1 ≤ α < β ≤ µ.

In the case that µ = 2, the term latin bitrade is often used, however we will make rare

use of it.

Let T = (T1, . . . , Tµ) be a µ-way latin trade. As the shape of each Tα is the same, we

can define the shape of T as S(T) = S(T1). Then the volume of T is the volume of

T1. Similarly, the row sets (resp. column sets) of each Tα are the same, so we can define

a row set for row r (resp. column set for column c) of T as Rr(T) = Rr(T1) (resp.

Cc(T) = Cc(T1)).

4

Definition 1.2.2. For an integer k ≥ 0, a (µ, k,m)-latin trade on symbol set Ω, T =

(T1, . . . , Tµ), is a µ-way latin trade of order m on Ω that has k = |Rr(T)| = |Cc(T)| =

|Ee(T1)|, for each r, c, e ∈ Ω. Such a µ-way latin trade is called k-homogeneous.

Note that |Ee(T1)| = |Ee(Tα)| for 2 ≤ α ≤ µ as T is a µ-way latin trade, for each e ∈ Ω.

So each symbol appears k times in each partial latin square of a (µ, k,m)-latin trade. A

(µ, k,m)-latin trade can have k = 0 in the case that each of the µ partial latin squares is

empty; otherwise k must satisfy µ ≤ k ≤ m.

A latin trade T of a latin square L is a partial latin square such that T ⊆ L and T is

one of the two partial latin squares in a 2-way latin trade. If the 2-way latin trade that

T appears in is k-homogeneous, we say T is k-homogeneous. If T contains no other latin

trade as a proper subset, it is minimal. Given T ′ with (T, T ′) a 2-way latin trade, we call

T ′ a disjoint mate of T .

A pair of latin squares L1, L2 of order n are called orthogonal if {(L1(r, c), L2(r, c)) |

r, c ∈ Ω} = Ω × Ω. A set of µ latin squares are mutually orthogonal if they are pairwise

orthogonal, and we refer to such a set as a set of MOLS .

A pair of latin squares L1, L2 of even order n are called nearly orthogonal if it holds

that {(L1(r, c), L2(r, c)) | r, c ∈ Ω} = Ω × Ω \ {(e, e) | e ∈ Ω} and for each e ∈ Ω

there are pairs (r1, c1) 6= (r2, c2) such that (e, e+ n/2 mod n) = (L1(r1, c1), L2(r1, c1)) =

(L1(r2, c2), L2(r2, c2)). Less formally, this says the superimposition of L1 and L2 contains

each ordered pair of symbols (l, l′) exactly once, except in the case l = l′, where no such

pair occurs, and in the case l ≡ l′ + n/2 (mod n), where such pairs occur twice. We will

deal with both sets and lists of pairwise nearly orthogonal latin squares.

5

1.3 Questions

1.3.1 Transversals in latin squares

A recent computational search seeking three MOLS of order 10 [69] focused on a small

subset of the possible latin squares (a latin square for each of the 8, 500, 842, 802 main

classes of latin squares of order 10 with a non-trivial autoparatopy group. See the paper

for definitions and details). This restriction was necessary due to the enormous number

of latin squares of order 10 (see [33]). The search did not yield a set of three MOLS of

order 10, but it was the largest search to date. Even having placed this heavy restriction

on the latin squares involved, this calculation took 172 years of CPU time. A fact in this

search was the well known result that a latin square L has an orthogonal mate if and only

if L is decomposable into transversals (see [33]). This search constructed a graph based

on transversals on each the aforementioned latin squares, and looked for specific cliques

within this graph.

Such an approach in the study of MOLS is not uncommon. The number of transversals

in a latin square has been used as a heuristic to identify latin squares that may have

a large number of orthogonal mates (see [15], although this is just a heuristic, as some

latin squares with a large number of transversals do not have an othogonal mate [68], and

some latin squares with a small number of transversals do have an orthogonal mate [83]).

Another result about transervals showed that for n > 3, there exists a latin square of

order n with a cell that is contained in no transversal of the latin square [87]. This implies

that there is always some latin square of order n > 3 without an orthogonal mate.

The study of transversals has been encouraged by this connection to MOLS, although the

study of transversals has yielded many stand-alone results. Further work on transversals

has investigated (to name a small number of topics) the largest size of a partial transversal

6

in any latin square of a given order (see [85] for details), the minimum and maximum

number of transversals amongst all the latin squares of a given order (again, see [85]), and

the possible intersection size of two transversals in a latin squares (in particular, using

transversals in the back-circulant latin square Bn [30]).

The back-circulant latin square Bn has many interesting connections to other structures.

Most relevant to this thesis is that a transversal of Bn is equivalent to a diagonally cyclic

latin square of order n [84]. A transversal of Bn is also equivalent to a complete mapping

of the cyclic group of order n as well as an orthomorphism of the cyclic group of order n

[28] (see also [85]). (Other equivalences can be found in [30].) Properties of Bn have also

been used to help identify properties about latin squares in general. For example, the

smallest known critical set in a latin square of order n (see next section for a definition of

a critical set) is a critical set in Bn [37]. Also, the largest known number of transversals

in a latin square are those in Bn [30].

Given that the problem of finding the possible intersection size of two transversals in Bn

is of interest, we ask the following question:

Question 1.3.1. For what t does there exist a collection of µ transversals of the back

circulant latin square of order n, Bn, such that each pair of transversals intersect precisely

in the same t cells?

We will answer this question in Chapter 2 for all but a finite list of exceptions in the cases

of µ = 3 and µ = 4. The results of this work are documented in [63].

1.3.2 µ-way k-homogeneous latin trades

Interest in latin trades arose from the study of the intersection problem for latin squares

and of critical sets for latin squares.

7

The study of the intersection problem for latin squares began in [51]. The initial problem

asked for the spectrum of sizes of the intersection of two latin squares. A modification

to this problem is finding the spectrum of sizes of the intersection of more than two latin

squares, which is called the µ-way intersection problem for latin squares. In this case, we

say a set of three or more latin squares have common intersection S if any pair of the

latin squares from the set of latin squares has intersection S. The spectrum of possible

common intersection sizes |S| has been investigated for sets of three and four latin squares

(for three latin squares with common intersection, see [1] [46]; for four latin squares with

common intersection, see [4]). Another modification to the initial problem that has found

some attention is asking for the spectrum of possible sizes of the intersection of two or

more latin squares with certain properties (i.e. totally symmetric latin squares [49]; semi-

symmetric latin squares [48]; commutative latin squares [47]; idempotent latin squares,

idempotent commutative latin squares, and latin cubes [50]; latin squares of different

orders [41]; and latin squares whose difference is a collection of m-flowers [60] [66]).

To see the connection between the intersection problem for latin squares and latin trades,

notice that if the intersection of two latin squares L1 and L2 is the set of cells S, then

removing S from the latin squares yields the 2-way latin trade {L1 \S, L2 \S}. Although

originally only the intersection of latin squares was studied, a shift in thinking recog-

nized the study of latin trades in its own right. Studying the possible volumes of µ-way

latin trades is then a problem with strong connections to the µ-way intersection problem

for latin squares, although these problems are not identical. As the Cayley table of a

quasigroup is equivalent to a latin square, latin trades first appeared as the equivalent

exchangeable partial groupoid [40], and have also appeared by other names (i.e. latin

interchanges, critical partial latin squares).

A critical set P of a latin square L is a partial latin square that is a subset of precisely one

latin square, namely L, and is minimal in this property. That is, if we remove any filled

8

cell from P , then the resulting partial latin square is a subset of two or more latin squares.

Amongst the set of all latin squares of order n, it is of interest to find the smallest size of

a critical set, which is denoted scs(n), and also the largest size of a critical set, which is

denoted lcs(n).

Latin trades have played a large role in the search for critical sets. This is due to the fact

that any critical set of L must intersect every latin trade of L (see [33]). As any two rows

of a latin square form a latin trade, then any critical set of the latin square must intersect

at least one of those two rows. This gives a simple lower bound of scs(n) ≥ n − 1.

It was suggested [9] that studying sets of 3 or 4 rows of a latin square may yield an

improvement on the bound, and subsequently [22] showed that in any set of three rows

of any latin square there exists a latin trade with an empty column, and used this to

provide a new bound of scs(n) ≥ 2n− 4. More complicated trades have been investigated

[19], and using these trades the bound was improved to scs(n) ≥ nb(log n)1/3/2c, which

is asymptotically better. An upper bound on scs(n) has also been found [34][79] giving

scs(n) ≤ bn2/4c, which was achieved by finding an example of a critical set in Bn for each

n. It is a conjecture [33] that in fact scs(n) = bn2/4c for all n. There has also been some

investigation of the spectrum of possible sizes of critical sets [26][38] using latin trades

to verify that the set of cells is a critical set. Lower and upper bounds on lcs(n) have

been found by both constructive and non-constructive techniques, although we will not

endeavor to detail them here (for a survey on critical sets in latin squares see [56], and

for details of some more recent work see [23]).

The latin trades that we study in this thesis have the k-homogeneous property. One of

the first papers to study the k-homogeneous property for latin trades was [24], which in

particular studied (2, 3, n)-latin trades. These (2, 3, n)-latin trades were constructed by

hexagonal packings of the plane with circles. It was later shown that the (2, 3, n)-latin

trades constructed in this manner classify every minimal (2, 3, n)-latin trade, and that

9

any (2, 3, n)-latin trade can be decomposed into three disjoint partial transversals [20].

(See also [39] for a generalization of these kinds of trades, called homogeneous toroidal

latin bitrades.) The fact that (2, k, n)-latin trades can be decomposed into disjoint partial

transversals is interesting (see [27] for further work on this topic, and [29] for an investi-

gation of partial transversals of k-plexes, a similar structure to (2, k, n)-latin trades). It

was found that (2, k,m)-latin trades can be embedded into abelian 2-groups [21]. It was

also pointed out that latin trades intersecting a large number of rows and columns while

having a relatively small volume are useful, and k-homogeneous trades could be said to

have this property, especially when k is relatively small to n.

As we mentioned earlier, a transversal of Bn is equivalent to a diagonally cyclic latin

square of order n. Using this fact, in Chapter 2 we use transversals to construct certain

(3, k,m)-latin trades. This leads us into the work of Chapter 3, where we investigate the

question posed by [7]:

Question 1.3.2. For given m and k, µ ≤ k ≤ m, does there exist a (µ, k,m)-latin trade?

We will use a number of constructions along with previous results to answer Question

1.3.2 in the case that µ = 3 for all but a finite list of exceptions. The results of this work

have been documented in [64].

1.3.3 Mutually nearly orthogonal latin squares

Mutually orthogonal latin squares have been used (under the name row-column designs)

to design experiments to investigate the covariance between experimental factors. For

instance an experimenter might wish to study two medications, say drug A and drug B,

where the two medications have some potential cross-over effects. Suppose that the drugs

can be administered at one of n different dosage levels, that there are n subjects taking

the medication, and a trial lasts for n dosage days. Take {L1, L2} to be a pair of MOLS

10

of order n. Suppose subject s on day d takes dosage level L1(s, d) of drug A and dosage

level L2(s, d) of drug B. Then over the trial, each subject will have taken each possible

dosage of each drug precisely once. Further, each possible pairing of dosage levels has

occurred precisely once amongst the subjects.

Raghavarao, Shrikhande, and Shrikhande [76] introduced the concept of mutually nearly

orthogonal latin squares (MNOLS), modifying the typical orthogonal property of latin

squares. These MNOLS can be used in place of MOLS in the design of experiments,

and their introduction was based on two possible benefits: First, as in the case of drug

dosages, there may be cases when subjects should not receive interventions that are all

at the maximum level or all at the minimum level. As the pairs of difference zero do not

appear in MNOLS, such cases are avoided when MOLS are replaced by MNOLS. Second,

there are some cases when conducting an experiment requiring sets of MOLS of certain

sizes that are hard or impossible to find, and so it may be necessary to find a set of latin

squares that are ‘close’ to a set of MOLS. As we mentioned before, it is known that two

MOLS of order 6 do not exist, and it is unknown whether three MOLS of order 10 exist.

However three MNOLS of order 6 exist [76] as do three [74] and even four MNOLS of

order 10 [61]. While the maximum size of a set of MOLS of order n when n is a prime

power is well known (see for example [33]), asking for the maximum size of such a set

when n is not a prime power is usually difficult. It appears that MNOLS may be a good

replacement for MOLS in such cases.

In this thesis, we concern ourselves with both the existence and enumeration of MNOLS.

We will consider both ordered lists and sets of µ MNOLS of order n, recalling that n must

be even for the definition of nearly orthogonal to make sense. Note that the distinction

between lists and sets of MNOLS is only important during enumeration, and not while

investigating existence. Finding the existence and enumeration of MNOLS has had some

prior attention. A simple constuction found that two MNOLS of order n exist for all n

11

even [74]. It has been found that there also exists three MNOLS of order n for each even

n ≥ 6, except perhaps when n = 146 (although the effort required for this was much

greater, see [36][35][61][76]). It was also shown [75] that there does not exist four MNOLS

of order 6. It is interesting to note that difference covering arrays can be used to construct

µ MNOLS as in [36].

A list (set) of µ MNOLS of order n is cyclic if each latin square L in the list (set) has

(r, c, e) ∈ L if and only if (r, c + 1 (mod n), e + 1 (mod n)) ∈ L for all r, c ∈ [0, n − 1].

An approach to finding sets of µ MNOLS that has been successful is to construct µ cyclic

MNOLS. Throughout the literature there has been some attempt to enumerate the µ

cyclic MNOLS under certain equivalences. The most recent paper to investigate this

enumeration [61] found the number of non-equivalent sets up to isotopism (see Chapter

4 for the definition of isotopism) of µ cyclic MNOLS of order n for n ≤ 12. The number

of these sets of µ cyclic MNOLS of order n is given in table 1.1.

n 6 8 10 12
µ = 3 1 1 ≥ 1 > 1
µ = 4 0 0 1 > 1
µ = 5 0 0 0 0

Table 1.1: The number of sets of µ MNOLS of order n under isotopic equivalence.

Given the rather small number of inequivalent MNOLS that are known to exist, and the

incompleteness of some of the counts, it will be useful to extend the previous results, and

in this thesis we do this to n ≤ 16. There are two questions of significance that we focus

on:

Question 1.3.3. For a fixed n, what is the largest µ such that a set of µ MNOLS of order

n exists?

Question 1.3.4. For a fixed µ and n, how many distinct collections of µ MNOLS of

order n exists?

12

In Chapter 4, we answer Question 1.3.4 for 2 ≤ µ ≤ 5 and n ≤ 16 under a variety of

equivalences. This will also in turn answer Question 1.3.3 for n ≤ 16, and will resolve in

the negative a conjecture of [61] that proposed the maximum µ for which a set of µ cyclic

MNOLS of order n exists is dn/4e+ 1. The results of this work have been documented in

[65].

13

Chapter 2

Transversals in the back circulant

latin squares

2.1 Introduction

A natural question to ask in combinatorics is how may two distinct examples of a certain

combinatorial structure intersect, a question which has been investigated for a large variety

of different structures. An extension of this is to consider the µ-way intersections of the

structures, and work has been done taking the underlying structure to be Steiner Triple

Systems in [73], m-cycle systems in [2], and latin squares in [3] and [1].

There has been an investigation into the possible intersection size of two transversals of

the back circulant latin square [30], and so in a similar fashion we generalize from the

intersection of two transversals to the intersection of a collection of µ transversals. See

[86] for a survey of transversals in latin squares.

The problem that this chapter investigates is Question 1.3.1, which we restate for conve-

14

nience:

Question. For what t does there exist a collection of µ transversals of the back circulant

latin square of order n, such that each pair of transversals intersect precisely in the same

t points?

These transversals can be used to construct (µ, k, n)-latin trades with n odd, which we

will use later in Chapter 3. We will sometimes reference rows, columns and symbols with

indices that are greater than n − 1, by which we will always mean the representation of

this index modulo n.

Throughout this chapter, we assume n is odd, as it is well known that Bn contains no

transversals for any even n. The possible intersection sizes of any two transversals of Bn

has been determined:

Theorem 2.1.1. [30] For each odd n, there exists a pair of transversals of Bn that inter-

sect in t cells, when n 6= 5 for t ∈ {0, . . . , n− 3} ∪ {n}, and when n = 5 for t ∈ {0, 1, 5}.

We consider a generalization of such intersections of pairs of transversals to the intersection

of µ transversals.

Definition 2.1.2. A collection of µ transversals T1, . . . , Tµ intersect stably in t points if

there is a set S ⊆ [0, n− 1]2 of size |S| = t such that S = ∩µi=1Ti and ∅ = (Ti ∩ Tj) \S for

each 1 ≤ i < j ≤ µ.

Informally, if there is a cell (i, j, k) ∈ S, then (i, j, k) appears in each transversal T1, . . . , Tµ.

If there is a cell (i′, j′, k′) ∈ Tα with (i′, j′, k′) /∈ S, then no other transversal contain

(i′, j′, k′).

Then Question 1.3.1 is asking for what values of t does there exist a collection of µ

transversals of Bn that intersect stably in t points. The main results of this chapter are

the following two theorems:

15

Theorem 2.1.3. For odd n ≥ 33, let I, I ′, d and d′ be the unique integers such that

n = 18I + 9 + 2d and n = 22I ′ + 11 + 2d′, I, I ′ ≥ 1, 0 ≤ d < 9 and 0 ≤ d′ < 11.

Then there exist three transversals of Bn that intersect stably in t points for t ∈ [min(3 +

d′, d), n] \ [n− 5, n− 1] except, perhaps, when:

• n = 51 and t = 29,

• n = 53 and t = 30.

Theorem 2.1.4. For odd n ≥ 33, let I, I ′, d and d′ be the unique integers such that

n = 18I + 9 + 2d and n = 22I ′ + 11 + 2d′, I, I ′ ≥ 1, 0 ≤ d < 9 and 0 ≤ d′ < 11.

Then there exist four transversals of Bn that intersect stably in t points for t ∈ [min(3 +

d′, d), n] \ ({n− 15} ∪ [n− 7, n− 1]) except, perhaps, when:

• 33 ≤ n ≤ 43 and t ∈ [10 + d′, 11 + d′] ∪ [n− 14, n− 12],

• 45 ≤ n ≤ 53 and t ∈ [−1 + d′, 2 + d′] ∪ [10 + d′, 11 + d′] ∪ [18 + d′, 20 + d′],

• 63 ≤ n ≤ 75 and t ∈ [7 + d, 8 + d].

2.2 Results

2.2.1 Basic results

Lemma 2.2.1. For an odd integer n, there exists a collection of µ transversals of Bn

which intersect stably in n points, for any µ ≥ 1.

Proof. For odd n, the main diagonal’s cells (i, i, 2i) with i ∈ [0, n− 1] form a transversal

of Bn, showing at least one transversal exists. A collection of µ identical transversals

intersects stably in n points.

16

Lemma 2.2.2. For an odd integer n, there exists a collection of µ transversals of Bn

which intersect stably in 0 points, for any 1 ≤ µ ≤ n.

Proof. Consider the µ transversals of Bn given by Tα = {(i, i + α, 2i + α | i ∈ [0, n− 1]}

for α ∈ [0, µ− 1]. These µ transversals intersect stably in 0 points.

Lemma 2.2.3. For odd µ, there exists a collection of µ transversals of Bn which intersect

stably in n− µ points if and only if µ | n.

Proof. Suppose there exists a collection of µ transversals of Bn which intersect stably

in n − µ points. Define R (resp. C) as the set of rows (columns) that have no pair of

transversals intersecting in those rows (columns). Then the cells of the set H = {(r, c, e′) ∈

Tα | 1 ≤ α ≤ µ, r ∈ R and c ∈ C} can only be filled with one of µ distinct symbols, as

the other n−µ symbols appear in the stable intersection of the transversals. So H forms

a µ × µ subsquare of Bn. Theorem 3 of [17] tells us such a subsquare implies the cyclic

group of order n has a subgroup of order µ. Then µ must divide n.

Now suppose µ | n, so n = m ·µ for some integer m. Let T 1
α = {(mi,m(i+α),m(2i+α)) |

0 ≤ i ≤ µ − 1} and T 2 = {i, i, 2i | 0 < i ≤ n − 1 and m - i}, for α ∈ [1, µ]. Define

transversals Tα = T 1
α ∪ T 2 for α ∈ [1, µ]. Then Tα ∩ Tβ = T 2, for each 1 ≤ α < β ≤ µ,

where |T 2| = n− µ.

Lemma 2.2.4. For odd integers n,m, if m | n and for integers q with 0 ≤ q ≤ n/m− 1

there exists µ transversals of Bm that intersect stably in tq points, then there exists µ

transversals of Bn that intersect stably in
∑n/m−1

q=0 tq points.

Proof. We construct µ transversals of Bn by combining µ transversals chosen from each

of the subsquares Sq = {(mi + q,m(i + α) + q,m(2i + α) + 2q) | 0 ≤ i ≤ µ − 1} for

0 ≤ q ≤ n/m− 1. Each of these are subsquares of Bn that are equivalent to Bm, and so

for each Sq we use the µ transversals of Bm that intersect stably in tq points. Combining

17

these n/m collections of µ transversals of size m gives µ transversals of Bn that intersect

stably in
∑n/m−1

q=0 tq points.

Lemma 2.2.5. For an odd integer n, there does not exists a collection of µ transversals

of Bn that intersect stably in t points, for t ∈ {n− µ+ 1, . . . , n− 1}, for any µ ≥ 2.

Proof. Suppose that there exists a collection of µ transversals that intersect stably in t

points, for t ≥ 1. Let C ⊆ [0, n−1] be the set of columns such that no pair of transversals

of our collection of µ transversal intersect in column c ∈ C. If row r has no pair of

transversals intersecting in row r, then the set {(r, c′, e′) ∈ Tα | 1 ≤ α ≤ µ and c′ ∈ C}

has size µ. But this implies |C| ≥ µ, which means there can be at most n − µ columns

where the µ transversals meet. This implies the result.

2.2.2 Computer search

We performed a computer search for µ transversals of Bn when n is relatively small, and

µ = 3, 4. For n ∈ {5, 7, 9, 11, 13}, the program was able to exhaustively check the search

space for both µ = 3, 4, and also n = 15 for µ = 3. For the other odd n ≤ 31, we were

only able to obtain partial results, as the search space was quite large. The results are

summarized in Tables 2.1 and 2.2.

2.2.3 Principal construction

For this section, take n to be a fixed odd integer. Define Bn
i,j to be the j × j subsquare

of Bn at the intersection of rows and columns with indices i, i + 1, . . . , i + j − 1. We

will write Bi,j instead of Bn
i,j when the value of n is clear in the given context. The

cells of such a subsquare are filled with symbols from {2i, . . . , 2i + 2j − 2}. We consider

a partial transversal within the j × j subsquare of cells Bi,j to be a set of j triples

18

n t
5 1
7 1,2
9 1,2,3,4,6
11 1,2,3,4,5,6
13 1,2,3,4,5,6,7
15 1,2,3,4,5,6,7,8,9,10,11,12

17 1,2,3,4,5,6,7,8,9,10,11
19 1,2,3,4,5,6,7,8,9,10,11,12,13
21 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,18
23 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16
25 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,21
27 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21
29 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22
31 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24

Table 2.1: There exists a collection of µ = 3 transversals of Bn with stable intersection
size t.

n t
7 1
9 1,2
11 1,2,3
13 1,2,3,4

15 1,2,3,4,5,10
17 1,2,3,4,5,6
19 1,2,3,4,5,6,7
21 1,2,3,4,5,6,7,8
23 1,2,3,4,5,6,7,8,9
25 1,2,3,4,5,6,7,8,9,10
27 1,2,3,4,5,6,7,8,9,10,11
29 1,2,3,4,5,6,7,8,9,10,11,12
31 1,2,3,4,5,6,7,9,10,11,12,13

Table 2.2: There exists a collection of µ = 4 transversals of Bn with stable intersection
size t.

19

{(rk, ck, ek) | rk − i, ck − i ∈ [0, j − 1] and 0 ≤ k ≤ j − 1} such that |{rk | 0 ≤ k ≤

j − 1}| = |{ck | 0 ≤ k ≤ j − 1}| = |{ek | 0 ≤ k ≤ j − 1}| = j. We further consider a set

of subsquares Bi,j such that the subsquares partition the rows and columns of Bn. Then

finding certain collections of µ partial transversals within each of these Bi,j that only use

certain symbols will amount to finding a collection of µ transversals of Bn.

Fix µ an integer and b an odd integer with 3 ≤ b ≤ n/3. For a given d̄ and t, we write

t ∈ Ωb
µ(b+ d̄) if there exists a collection of µ partial transversals of B0,b+d̄ within Bn that

intersect stably in t points, and only use symbols from {(b− 1)/2, . . . , 3(b− 1)/2 + 2d̄} \

{b + 2j | 0 ≤ j < d̄}. Notice that Bi,j is just a relabeling of the symbols of B0,j, and

so the existence of a collection of µ partial transversals within B0,j is equivalent to the

existence of a collection of µ partial transversals within Bi,j.

Take I and d to be the unique integers with I ≥ 1, d ∈ [0, b−1], and n = 2Ib+b+2d. We

consider three types of subsquares; large subsquares B0,b+d, small subsquares B(n+b)/2,d

and base subsquares Bib+d,b and B(I+i)b+2d,b for 1 ≤ i ≤ I. Figure 2.1 shows the layout

of the subsquares. The symbols that fill the cells of the partial transversal from each of

these subsquares are restricted. In particular, the base subsquares Bib+d,b use the symbols

{2(ib+d)+(b−1)/2, . . . , 2(ib+d)+3(b−1)/2} and the base subsquares B(I+i)b+2d,b use the

symbols {2(Ib+ib+2d)+(b−1)/2, . . . , 2(Ib+ib+2d)+3(b−1)/2} for 1 ≤ i ≤ I, the large

subsquare B0,b+d use the symbols {(b− 1)/2, . . . , 3(b− 1)/2 + 2d} \ {b+ 2j | 0 ≤ j < d},

and the small subsquare B(n+b)/2,d use the symbols {b+ 2j | 0 ≤ j < d}.

These symbols have been chosen so that the partial transversal of one of the subsquares

does not share any symbols in common with the partial transversal of any other subsquare.

We demonstrate the interleaving that occurs for the base subsquares in Figure 2.2.

Theorem 2.2.6. Let n, b be odd integers, 3 ≤ b ≤ n/3, and µ an integer with µ ≥ 2.

Let I ≥ 1 and d ∈ [0, b − 1] be the unique integers such that n = 2bI + b + 2d. There

exists µ transversals of Bn that intersect stably in t points with t = d +
∑2I

i=0 ti, where

20

b+d b b d b b

large

base
1

base
I

small

base
I+1

base
2I

Figure 2.1: The positioning of the subsquares. By taking the union of partial transversals

of Bn in these subsquares, we find a transversal of Bn.

i+1

i

The same
b symbols

I+i+1

Figure 2.2: We choose partial transversal such that the symbols not used between the ith

and (i+ 1)th base subsquares are used in the (I + i+ 1)th base subsquare. The darkened

cells represent those cells that we do not allow in any partial transversal.

21

t0 ∈ Ωb
µ(b+ d) and ti ∈ Ωb

µ(b), for 1 ≤ i ≤ 2I.

We provide the following construction, followed by a proof that demonstrates that the

construction yields Theorem 2.2.6.

Construction 2.2.7. Take µ ≥ 2 an integer and n, b odd integers, 3 ≤ b ≤ n/3 Let I ≥ 1

and d ∈ [0, b− 1] be the unique integers such that n = 2bI + b+ 2d.

We will construct µ subsets of Bn, T1, . . . , Tµ by finding partial transversals selected from

a large subsquare B0,b+d, a small subsquare Bb(I+1)+d,d = B(n+b)/2,d, and base subsquares

Bbi+d,b and Bb(I+i)+2d,b for 1 ≤ i ≤ I.

For the large subsquare, as t0 ∈ Ωb
µ(b+d) there exists a collection of µ partial transversals

PL
1 , . . . , P

L
µ within B0,b+d that intersects stably in t0 points and using each symbol of {(b−

1)/2, . . . , 2d + 3(b − 1)/2} \ {b + 2d′ | 0 ≤ d′ < d} precisely once per partial transversal.

We place the cells of PL
β into Tβ, 1 ≤ β ≤ µ.

For the small subsquare, a collection of µ partial transversals P S
1 , . . . , P

S
µ within Bb(I+1)+d,d

that intersect stably in d points can be defined by placing cells (r, r, 2r) with r = b(I+1)+

d+ d′ into every partial transversal P S
β , 1 ≤ β ≤ µ and 0 ≤ d′ < d, so that each of the µ

partial transversals are identical. We place the cells of P S
β into Tβ, 1 ≤ β ≤ µ.

For the first set of base subsquares, Bbi+d,b with 1 ≤ i ≤ I, as ti ∈ Ωb
µ(b) there exists a

collection of µ partial transversals P i
1, . . . , P

i
µ of B0,b that intersect stably in ti points and

using each symbol of {(b − 1)/2, . . . , 3(b − 1)/2} precisely once. For every (r, c, e) ∈ P i
β,

place the cells (r+a, c+a, e+ 2a) with a = bi+d into Tβ, 1 ≤ β ≤ µ. The cells that were

just filled are in the subsquare Bbi+d,b.

For the second set of base subsquares, Bb(I+i)+2d,b with 1 ≤ i ≤ I, as tI+i ∈ Ωb
µ(b) there

exists a collection of µ partial transversals P I+i
1 , . . . , P I+i

µ of B0,b that intersect stably in

tI+i points and using each symbol of {(b− 1)/2, . . . , 3(b− 1)/2} precisely once. For every

22

(r, c, e) ∈ P I+i
β , place the cells (r+a, c+a, e+2a) with a = b(I+i)+2d into Tβ, 1 ≤ β ≤ µ.

The cells that were just filled are in the subsquare Bb(I+i)+2d,b.

Proof. We begin by showing that T1, . . . , Tµ from Construction 2.2.7 are each diagonals.

Consider any T ∈ {T1, . . . , Tµ}. As T is the union of partial transversals of subsquares,

each of which share no common row or column, clearly T is a selection of n cells of L

using each row (resp. column) once, and so T is a diagonal of Bn.

We will proceed to show that each diagonal T ∈ {T1, . . . , Tµ} is a transversal, and that they

intersect stably in d+
∑2I

i=0 ti points. The construction placed 2b filled cells from the two

base subsquares Bbi+d,b and Bb(I+i)+2d,b into T , for each fixed i, 1 ≤ i ≤ I. This consisted

of precisely one filled cell for each symbol of {2bi+2d−(b+1)/2, . . . , 2bi+2d+3(b−1)/2}.

Then collectively the 2I base subsquares were used to fill 2bI cells into T , placing precisely

one filled cell for each symbol of {2d+ 3(b− 1)/2 + 1, . . . , 2bI + 2d+ 3(b− 1)/2}.

During the construction, (b+d)+d filled cells were placed into T from the large subsquare

B0,b+d and the small subsquare Bb(I+1)+d,d, which had one filled cell for each symbol of

{(b− 1)/2, . . . , 2d+ 3(b− 1)/2}.

Combining the statements for the 2I base subsquares and the large and small subsquare,

each symbol of {(b−1)/2, . . . , 2bI+2d+3(b−1)/2} = {0, . . . , 2bI+b+2d−1} appears in

the diagonal T precisely once, after recalling that each symbol is taken modulo 2bI+b+2d

and noting that 2bI + 2d + 3(b − 1)/2 = (2bI + b + 2d) + (b − 1)/2 − 1 ≡ (b− 1)/2 − 1

(mod n).

This shows that T is indeed a transversal, and so the construction has indeed formed µ

transversals. Now we need to show that the µ transversals intersect stably in d+
∑2I

i=0 ti

points. Suppose the µ partial transversals we chose for the large subsquare intersect

stably in the set S0, the µ partial transversals we chose for the base subsquare Bbi+d,b

23

intersect stably in the set Si, and the µ partial transversals we chose for the base subsquare

Bb(I+i)+2d,b intersect stably in the set SI+i, for 1 ≤ i ≤ I. Clearly the µ partial transversals

we chose for the small subsquare intersect stably in the points S−1 = {(r, r, 2r) | r =

b(I+ 1) +d+d′ and 1 ≤ d′ ≤ d}. The size of Si is |Si| = ti, for 0 ≤ i ≤ 2I, and |S−1| = d.

The µ transversals then clearly intersect stably in the d+
∑2I

i=0 ti points
⋃2I
i=−1 Si.

Example 2.2.8. We consider the case when µ = 2, n = 17, b = 5, d = 1, I = 1, t0 = 1,

t1 = 1, t2 = 0. Note that n = 2bI + b+ 2d = 5 · 2 · 1 + 5 + 2 · 1 = 17.

For this example, we will represent the first transversal of Bi,j or Bn by underlining those

entries, and the second transversal by adding a superscripted star. The intersection of the

two (partial) transversals are those entries that are both underlined and starred.

For the small subsquare, we require µ = 2 transversals of the small subsquare B(I+1)b+d,d =

B11,1 that intersect stably in d = 1 points. These transversals are simply chosen as there

is only one cell in B11,1.

For the large subsquare, we require µ = 2 transversals of the large subsquare B0,b+d = B0,6

that intersect stably in t0 = 1 points using symbols {(b−1)/2, . . . , 2d+3(b−1)/2}\{b+2d′ |

0 ≤ d′ < d} = {2, 3, 4, 6, 7, 8}, for example:

0 1 2 3∗ 4 5

1 2 3 4 5 6∗

2∗ 3 4 5 6 7

3 4∗ 5 6 7 8

4 5 6 7 8∗ 9

5 6 7∗ 8 9 10

For the first set of base subsquares (in this case the set contains only one subsquare) we

require µ = 2 transversals of the base subsquare B0,b = B0,5 that intersect stably in t1 = 1

points and using symbols {(b− 1)/2, . . . , 3(b− 1)/2} = {2, 3, 4, 5, 6}, for example:

24

0 1 2 3∗ 4

1 2 3 4 5∗

2∗ 3 4 5 6

3 4∗ 5 6 7

4 5 6∗ 7 8

For the second set of base subsquares (in this case the set contains only one subsquare),

we require µ = 2 transversals of the base subsquare B0,b = B0,5 that intersect stably in

t2 = 0 points, for example:

0 1 2 3∗ 4

1 2∗ 3 4 5

2 3 4 5 6∗

3 4 5∗ 6 7

4∗ 5 6 7 8

Then we can obtain µ = 2 transversals of size n = 17 and stable intersection size d+ t0 +

t1 + t2 = 3 as (where we omit those entries not relevant to our construction):

25

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

0 0 1 2 3∗ 4 5

1 1 2 3 4 5 6∗

2 2∗ 3 4 5 6 7

3 3 4∗ 5 6 7 8

4 4 5 6 7 8∗ 9

5 5 6 7∗ 8 9 10

6 12 13 14 15∗ 16

7 13 14 15 16 0∗

8 14∗ 15 16 0 1

9 15 16∗ 0 1 2

10 16 0 1∗ 2 3

11 5∗

12 7 8 9 10∗ 11

13 8 9∗ 10 11 12

14 9 10 11 12 13∗

15 10 11 12∗ 13 14

16 11∗ 12 13 14 15

This concludes the example.

2.3 Application to µ = 3, 4

Our approach to finding 3 (resp. 4) transversals of Bn that intersect stably is to find 3

(resp. 4) partial transversals of Bi,j that intersect stably for certain values of i and j,

and compose these into transversals of Bn. We will use Theorem 2.2.6 with base sizes

of b = 9, 11, 15. These sizes have been chosen based upon the results of a computational

search for partial transversals of base and large subsquares.

The appendix includes tables that contains a set of either three or four rows, corresponding

to µ = 3 and µ = 4 respectively, each row containing b + d symbols. For the rth row,

26

denote the ith symbol of the list in this row as ari , for 1 ≤ r ≤ µ and 1 ≤ i ≤ b+ d. The

cells (i, ari), 1 ≤ i ≤ b + d, form a partial transversal of B0,b+d. The three (resp. four)

rows give three (resp. four) partial transversals of B0,b+d, each partial transversal having

t cells that are common amongst all three (resp. four) partial transversals, and b + d− t

cells which do not appear in the other partial transversals. We call this representation a

reduced form.

We take the addition and scalar multiplication of finite sets to be:

A+B = {a+ b | a ∈ A, b ∈ B}

kA = {
k∑
i=1

ai | ai ∈ A}

Lemma 2.3.1. Let j, a, b be positive integers with 1 ≤ a < b. We have j([0, a] ∪ {b}) =

[0, jb] \
⋃b(b−2)/ac
i=1 [jb− ib+ ia+ 1, jb− ib+ b− 1].

Proof. From definition, j([0, a]∪{b}) = {
∑j

i=1 ai | ai ∈ [0, a]∪{b}} =
⋃j
i=0[i · b, i · b+ (j−

i)a] =
⋃j
i=0[(j−i)b, (j−i)b+ia]. Then any value t ∈ [0, jb] with t /∈ j([0, a]∪{b}) must be

between the two intervals [(j− i′)b, (j− i′)b+ i′a] and [(j− i′+ 1)b, (j− i′+ 1)b+ (i′−1)a]

for some 1 ≤ i′ ≤ j, and hence t ∈ [(j − i′)b + i′a + 1, (j − i′ + 1)b− 1]. This proves the

result, once we note that [(j − i′)b + i′a + 1, (j − i′ + 1)b − 1] is non-empty only when

i′a+ 1 ≤ b− 1, and so i′ ≤ (b− 2)/a.

2.3.1 Existence of partial transversals in subsquares

It is important to note that Ωb
4(b + d) ⊆ Ωb

3(b + d). Also, if there is at least one partial

transversal of B0,b+d using symbols {(b−1)/2, . . . , 2d+ 3(b−1)/2}\{b+ 2d′ | 0 ≤ d′ < d}

then b + d ∈ Ωb
µ(b + d) for any µ ≥ 2. This also tells us that if Ωb

µ(b + d) 6= ∅, then

b+ d ∈ Ωb
µ′(b+ d) for each µ′ ≥ µ.

27

Lemma 2.3.2. The following hold1:

1. Ω9
4(9) ⊇ {0, 1, 9}.

2. Ω11
4 (11) ⊇ {0, 1, 2, 3, 11}.

3. Ω15
4 (15) ⊇ {1, 2, 3, 4, 5, 15}.

4. Ω9
3(9) ⊇ {0, 1, 2, 3, 9}.

5. Ω11
3 (11) ⊇ {0, 1, 2, 3, 4, 5, 11}.

Proof. The corresponding partial transversals have been found by a computer search, and

have been written in reduced form in the appendix, in respectively Table A.1 and A.2,

Table A.5, Table A.9, Tables A.1, A.2, and A.4, and Tables A.5 and A.8.

Lemma 2.3.3. The following hold:

1. 0 ∈ Ω9
4(9 + d), for all 0 ≤ d < 9.

2. 3 ∈ Ω11
4 (11 + d), for all 0 ≤ d < 11.

Proof. The corresponding partial transversals have been found by a computer search, and

have been written in reduced form in the appendix, in respectively Tables A.1, A.2, and

A.3 , and Tables A.5, A.6, and A.7.

Lemma 2.3.4. The following hold:

1. 11 + d ∈ Ω11
4 (11 + d), for all 0 ≤ d < 11.

2. 15 + d ∈ Ω15
4 (15 + d), for all 0 ≤ d < 15.

1In each case equality holds, but this strengthened statement is not needed.

28

Proof. Since the partial transversals required intersect stably in the same number of

points as the square size, we only need one partial transversal of B0,b+d, which is repeated

4 times to form the 4 partial transversals that intersect stably in b+d points. One partial

transversal has been been found for each of the 26 cases by a computer search, and these

have been written in reduced form in the appendix, in respectively Tables A.5, A.6 and

A.7, and Table A.10.

Lemma 2.3.5. The following set relations hold:

1. 2IΩ9
4(9) = [0, 18I] \ ∪7

i=1[18I − 8i+ 1, 18I − 9i+ 8];

2. 2IΩ11
4 (11) = [0, 22I] \ ({22I − 23} ∪ [22I − 15, 22I − 12] ∪ [22I − 7, 22I − 1]);

3. 2IΩ15
4 (15) = [2I, 30I] \ ({30I − 29} ∪ [30I − 19, 30I − 15] ∪ [30I − 9, 30I − 1]);

4. 2IΩ9
3(9) = [0, 18I] \ ({18I − 11, 18I − 10} \ [18I − 5, 18I − 1]); and

5. 2IΩ11
3 (11) = [0, 22I] \ [22I − 5, 22I − 1]}.

Proof. The sets Ω9
µ(9), Ω11

µ (11) and Ω15
4 (15) = {1}+ {0, 1, 2, 3, 4, 14} are given in Lemma

2.3.2 for µ = 3, 4. For the case Ω9
µ(9) and Ω11

µ (11), Lemma 2.3.1 completes the result for

general J , however we will only be requiring the case when J is even, and hence written

J = 2I. For the case Ω15
4 (15), it can be seen that 2IΩ15

4 (15) = 2I{1, 2, 3, 4, 5, 15} =

2I({1} + {0, 1, 2, 3, 4, 14}) = {2I} + 2I{0, 1, 2, 3, 4, 14}. We can apply Lemma 2.3.1 to

find 2I{0, 1, 2, 3, 4, 14}, which gives the final result.

2.3.2 µ = 3

Theorem 2.3.6. For odd n ≥ 33, let I ′ and d′ be the unique integers such that n =

22I ′ + 11 + 2d′, I ′ ≥ 1 and 0 ≤ d′ < 11. Then there exist three transversals of Bn that

intersect stably in t points for t ∈ [11 + 2d′, n] \ [n− 5, n− 1].

29

Proof. Take the base size to be b = 11. Using Theorem 2.2.6, Lemma 2.3.4, and Lemma

2.3.5, we can conclude there exists the required collection of transversals for each t ∈

{d′}+ Ω11
3 (11 + d′) + 2I ′Ω11

3 (11), and hence for each t ∈ {d′}+ {11 + d′}+ 2I ′Ω11
3 (11) =

[11 + 2d′, n] \ [n− 5, n− 1].

Lemma 2.3.7. For odd n ≥ 27, let I and d be the unique integers such that n = 18I+9+

2d, I ≥ 1 and 0 ≤ d < 9. Then there exist three transversals of Bn that intersect stably

in t points for t ∈ [d, 18I + d] \ ([18I − 11 + d, 18I − 10 + d] ∪ [18I − 5 + d, 18I − 1 + d]).

Proof. Take the base size to be b = 9. Using Theorem 2.2.6, Lemma 2.3.3, and Lemma

2.3.5, we can conclude there exists the required collection of transversals for each t ∈

{d} + {0} + 2IΩ9
3(9) ⊆ {d} + Ω9

3(9 + d) + 2IΩ9
3(9), and hence for each t ∈ [d, 18I + d] \

([18I − 11 + d, 18I − 10 + d] ∪ [18I − 5 + d, 18I − 1 + d]).

Lemma 2.3.8. For odd n ≥ 33, let I ′ and d′ be the unique integers such that n =

22I ′ + 11 + 2d′, I ′ ≥ 1 and 0 ≤ d′ < 11. Then there exist three transversals of Bn that

intersect stably in t points for t ∈ [3 + d′, 22I ′ + 3 + d′] \ [22I ′ − 2 + d′, 22I ′ + 2 + d′].

Proof. Take the base size to be b = 11. Using Theorem 2.2.6, Lemma 2.3.3, and Lemma

2.3.5, we can conclude there exists the required collection of transversals for each t ∈

{d′} + {3} + 2IΩ11
3 (11) ⊆ {d′} + Ω11

3 (11 + d′) + 2IΩ11
3 (11), and hence for each t ∈ [3 +

d′, 22I ′ + 3 + d′] \ [22I ′ − 2 + d′, 22I + 2 + d′].

Theorem 2.3.9. For odd n ≥ 33, let I, I ′, d and d′ be the unique integers such that

n = 18I+9+2d and n = 22I ′+11+2d′, I, I ′ ≥ 1, 0 ≤ d < 9 and 0 ≤ d′ < 11. Then there

exist three transversals of Bn that intersect stably in t points for t ∈ [min(3+d′, d), 11+2d′]

except, perhaps, when:

• n = 51 and t = 29,

• n = 53 and t = 30.

30

Proof. We first show that we have three transversals of Bn that intersect stably in t

points for t ∈ [3 + d′, 11 + 2d′], except in the case n = 51 and t = 29, and the case n = 53

and t = 30, 31. Lemma 2.3.8 gives the cases when t ∈ [3 + d′, 22I ′ − 3 + d′]. Now if

11 + 2d′ ≤ 22I ′ − 3 + d′, then we are done. Otherwise d′ > 22I ′ − 14, and since d′ ≤ 10,

this implies I ′ = 1 and d′ ∈ {9, 10}. The case d′ = 9 gives n = 51, and we do not have

three transversals of Bn that intersect stably in t when t ∈ [22I ′−2 +d′, 11 + 2d′] = {29}.

The case d′ = 10 gives n = 53, and we do not have three transversals of Bn that intersect

stably in t when t ∈ [22I ′− 2 + d′, 11 + 2d′] = {30, 31}. We note that the case n = 53 and

t = 31 is covered by Lemma 2.3.7.

Second we show that we have those cases with t ∈ [d, 3 + d′] when d < 3 + d′. For

33 ≤ n ≤ 43, d = 3 + d′, so assume n ≥ 45, implying I ≥ 2. By Lemma 2.3.7, we have

those cases with t ∈ [d, 18I−12+d], and since 18I−12+d ≥ 24 > 3+d′, we are done.

Then Theorem 2.1.3 follows by Theorem 2.3.6 and Theorem 2.3.9.

2.3.3 µ = 4

Lemma 2.3.10. For odd n ≥ 33, let I ′ and d′ be the unique integers such that n =

22I ′ + 11 + 2d′, I ′ ≥ 1 and 0 ≤ d′ < 11. Then there exist four transversals of Bn that

intersect stably in t points for t ∈ [11+2d′, n]\{n−23, n−15, . . . , n−12, n−7, . . . , n−1}.

Proof. Take the base size to be b = 11. Using Theorem 2.2.6, Lemma 2.3.4, and Lemma

2.3.5, we can conclude there exists the required collection of transversals for each t ∈

{d′} + Ω11
4 (11 + d′) + 2I ′Ω11

4 (11), and hence for each t ∈ {11 + 2d′} + 2I ′Ω11
4 (11) =

[11 + 2d′, n] \ ({n− 23} ∪ [n− 15, n− 12] ∪ [n− 7, n− 1]).

Lemma 2.3.11. For odd n ≥ 45, let I ′′ and d′′ be the unique integers such that n =

30I ′′ + 15 + 2d′′, I ′′ ≥ 1 and 0 ≤ d′′ < 15. Then there exist four transversals of Bn that

31

intersect stably in t points for t ∈ [2I ′′+15+2d′′, n]\({n−29}∪[n−19, n−15]∪[n−9, n−1]).

Proof. Using Theorem 2.2.6, Lemma 2.3.4, and Lemma 2.3.5, we can conclude there exists

the required collection of transversals for each t ∈ {d′′}+ Ω15
4 (15 + d′′) + 2I ′′Ω15

4 (15), and

hence for each t ∈ {15 + 2d′′}+ 2I ′′Ω15
4 (15) = [2I ′′+ 15 + 2d′′, n] \ ({n− 29}∪ [n− 19, n−

15] ∪ [n− 9, n− 1]).

Theorem 2.3.12. For odd n ≥ 45, let I ′ and d′ be the unique integers such that n =

22I ′+11+2d′, I ′ ≥ 1, 0 ≤ d′ < 11. Then there exist four transversals of Bn that intersect

stably in t points for t ∈ [11 + 2d′, n] \ ({n − 15} ∪ [n − 7, n − 1]). For odd 33 ≤ n ≤ 43

such that n = 33 + 2d′ and 0 ≤ d′ ≤ 5, there exists four transversal of Bn that intersect

stably in t points, for t ∈ [11 + 2d′, n] \ ([n− 15, n− 12] ∪ [n− 7, n− 1]).

Proof. Define I ′′ and d′′ such that n = 30I ′′ + 15 + 2d′′, I ′′ ≥ 1 and 0 ≤ d′′ < 15. This

theorem is the union of the result from Lemma 2.3.10 and Lemma 2.3.11. The case for I ′′ ≥

1 requires the knowledge that {n−23}∪[n−14, n−12] ⊆ [2I ′′+15+2d′′, n]\({n−29}∪[n−

19, n−15]∪[n−9, n−1]), which is easily seen as 2I ′′+15+2d′′ ≤ n−23 = 30I ′′+15+2d′′−23

when I ′′ ≥ 1. Then the union of [11 + 2d′, n] \ ({n− 23}∪ [n− 15, n− 12]∪ [n− 7, n− 1])

and [2I ′′+15+2d′′, n]\({n−29}∪ [n−19, n−15]∪ [n−9, n−1]) gives the result as stated

in the theorem when n ≥ 45. The case for 33 ≤ n < 45 is covered by Lemma 2.3.10.

Lemma 2.3.13. For odd n ≥ 33, let I ′ and d′ be the unique integers such that n =

22I ′ + 11 + 2d′, I ′ ≥ 1 and 0 ≤ d′ < 11. Then there exist four transversals of Bn that

intersect stably in t points for t ∈ [3 + d′, 22I ′ + 3 + d′] \ ({22I ′ − 20 + d′} ∪ [22I ′ − 12 +

d′, 22I ′ − 9 + d′] ∪ [22I ′ − 4 + d′, 22I ′ + 2 + d′]).

Proof. Using Theorem 2.2.6, Lemma 2.3.3, and Lemma 2.3.5, we can conclude there

exists the required collection of transversals for each t ∈ {d′} + {3} + 2I ′Ω11
4 (11) ⊆

{d}+ Ω11
4 (11 +d′) + 2I ′Ω11

4 (11), and hence for each t ∈ {3 +d′, . . . , 22I ′+ 3 +d′} \ {22I ′−

20 + d′, 22I ′ − 12 + d′, . . . , 22I ′ − 9 + d′, 22I ′ − 4 + d′, . . . , 22I ′ + 2 + d′}.

32

Lemma 2.3.14. For odd n ≥ 27, let I and d be the unique integers such that n =

18I + 9 + 2d, I ≥ 1 and 0 ≤ d < 9. Then there exist four transversals of Bn that intersect

stably in t points for t ∈ [d, . . . , 18I + d] \
⋃7
i=1[18I − 8i+ 1 + d, 18I − 9i+ 8 + d].

Proof. Using Theorem 2.2.6, Lemma 2.3.3, and Lemma 2.3.5, we can conclude there exists

the required collection of transversals for each t ∈ {d}+{0}+2IΩ9
4(9) ⊆ {d}+Ω9

4(9+d)+

2IΩ9
4(9), and hence for each t ∈ [d, 18I + d] \

⋃7
i=1[18I − 8i+ 1 + d, 18I − 9i+ 8 + d].

Theorem 2.3.15. For odd n ≥ 33, let I, I ′, d and d′ be the unique integers such that

n = 18I+9+2d and n = 22I ′+11+2d′, I, I ′ ≥ 1, 0 ≤ d < 9 and 0 ≤ d′ < 11. Then there

exist four transversals of Bn that intersect stably in t points for t ∈ [min(3+d′, d), 11+2d′]

except, perhaps, when:

• 33 ≤ n ≤ 43 and t ∈ [10 + d′, 11 + d′],

• 45 ≤ n ≤ 53 and t ∈ [−1 + d′, 2 + d′] ∪ [10 + d′, 11 + d′] ∪ [18 + d′, 20 + d′],

• 63 ≤ n ≤ 75 and t ∈ [7 + d, 8 + d].

Proof. For 33 ≤ n ≤ 43, we have I ′ = I = 1 and min(3 + d′, d) = 3 + d′ = d. Then we

have the existence of four transversal of Bn that intersect stably in t points by Lemma

2.3.13 for t ∈ [3+d′, 25+d′]\ ([10+d′, 13+d′]∪ [18+d′, 24+d′]) and by Lemma 2.3.14 for

t ∈ [d, 18+d]\([3+d, 8+d]∪[11+d, 17+d]) = [3+d′, 21+d′]\([6+d′, 11+d′]∪[14+d′, 20+d′]).

The union of the two result sets is [3 + d′, 25 + d′] \ ([10 + d′, 11 + d′] ∪ [18 + d′, 20 + d′] ∪

[22 + d′, 24 + d′]). A subset of this is [3 + d′, 16 + d′] \ [10 + d′, 11 + d′]. Noting that as

d′ ≤ 5 for the specified n, then 11 + 2d′ ≤ 16 + d′, and so this subset includes the range

[min(3 + d′, d), 11 + 2d′] \ [10 + d′, 11 + d′], which is the required result when 33 ≤ n ≤ 43.

For 45 ≤ n ≤ 53, we have I = 2, I ′ = 1 and as d′ = 6+d we have min(3+d′, d) = d. Then

we have the existence of four transversal of Bn that intersect stably in t points by Lemma

33

2.3.13 for t ∈ [3+d′, 25+d′]\ ([10+d′, 13+d′]∪ [18+d′, 24+d′]) and by Lemma 2.3.14 for

[d, 36+d]\([5+d, 8+d]∪[13+d, 17+d]∪[21+d, 26+d]∪[29+d, 35+d]) = [−6+d′, 30+d′]\

([−1+d′, 2+d′]∪[7+d′, 11+d′]∪[15+d′, 20+d′]∪[23+d′, 29+d′]). The union of the two result

sets is [d, . . . , 30+d′]\([−1+d′, 2+d′]∪[10+d′, 11+d′]∪[18+d′, 20+d′]∪[23+d′, 24+d′]∪[26+

d′, 29+d′]). A subset of this is [d, 21+d′]\([−1+d′, 2+d′]∪[10+d′, 11+d′]∪[18+d′, 20+d′]).

Noting that as d′ ≤ 10, then 11 + 2d′ ≤ 21 + d′, and so this subset includes the range

[min(3 + d′, d), 11 + 2d′] \ ([−1 + d′, 2 + d′]∪ [10 + d′, 11 + d′]∪ [18 + d′, 20 + d′]), which is

the required result when 45 ≤ n ≤ 53.

For n ≥ 55, we have I ′ ≥ 2. Then we have the existence of four transversal of Bn that

intersect stably in t points by Lemma 2.3.13 for t ∈ [3 + d′, 21 + d′]. This completes the

case when min(3 + d′, d) = 3 + d′, as 11 + 2d′ ≤ 21 + d′. When d < 3 + d′, we still need

the cases t ∈ [d, . . . , 3 + d′]. As 3 + d′ ≤ 13, it is enough to show the statement holds for

those t with t ∈ [d, 13].

When I = 3, then 63 ≤ n ≤ 75, and we have the existence of four transversal of Bn that

intersect stably in t points by Lemma 2.3.14 for t ∈ [d, 13] \ [7 + d, 8 + d]. When I ≥ 4,

we have the existence of four transversal of Bn that intersect stably in t points by Lemma

2.3.14 for t ∈ [d, 13].

Then Theorem 2.1.4 follows by Theorem 2.3.12 and Theorem 2.3.15.

2.4 Application to latin trades

Let D represent a combinatorial design and assume there exists distinct sets S1, S2 with

S1 ⊆ D, such that D′ = (D \ S1) ∪ S2 forms a valid design. Then the pair (S1, S2) forms

a combinatorial bitrade. The original design D is immaterial, and we can define a bitrade

formally by taking the pair of sub-designs (S1, S2) that fulfill certain properties. If our

34

combinatorial design is a latin square, the bitrade is called a latin bitrade. A good survey

of latin bitrades is [23], and for trades in general is [11].

Definition 2.4.1. A µ-way latin trade of volume s and order n is a collection of µ partial

latin squares (L1, . . . , Lµ), each of order n, such that:

1. Each partial latin square contains exactly the same s filled cells,

2. If cell (i, j) is filled then it contains a different entry in each of the µ partial latin

squares,

3. Row i in each of the µ partial latin squares contains, set-wise, the same symbols,

and column j likewise.

A µ-way latin trade is circulant if each of the partial latin squares can be obtained from

the first row by simultaneously cycling the rows, columns, and symbols. For example,

the cell (r, c, e) ∈ L would imply (r + 1, c + 1, e + 1) ∈ L. We call the set of first rows

the base row , and can write it in the notation B = {(e1, . . . , eµ)cj | 1 ≤ j ≤ k}, where

(0, cj, eα) ∈ Lα for 1 ≤ α ≤ µ.

A µ-way latin trade is k-homogeneous if in each partial latin square, L, each row and

each column contain k filled cells, and each symbol appears in filled cells of L precisely k

times. Clearly a circulant µ-way trade is k-homogeneous, where k is the number of filled

cells in the first row.

There has been much interest in 2-way k-homogeneous latin trades as demonstrated by

the work in [8], [10], [20], [24], [25], and [59], and more recently there has been an extension

to µ-way k-homogeneous latin trades in [7].

Theorem 2.4.2. If there exists a collection of µ transversals of Bn that intersect stably

in t points, then there exists a circulant µ-way (n − t)-homogeneous latin trade of order

n.

35

Proof. Consider a collection of µ transversals of Bn, T1, . . . , Tµ, that intersect stably in

the t points S. Consider the partial latin squares Qα = {(i, c + i, r + c + i) | 0 ≤ i ≤

n− 1 and (r, c, r+ c) ∈ Tα \S}. It is clear that each corresponding row of the Qα contain

setwise the same symbols. As the cells of the first column of Qα are (−c, 0, r) ∈ Qα, each

column contain setwise the same symbols. Then it is clear that the collection of µ partial

latin squares satisfy the conditions of a µ-way latin trade. They are also circulant by

definition, and hence are clearly (n− t)-homogeneous.

Example 2.4.3. Consider B5 with the following transversals:

0∗ 1 2 3 4

1 2 3∗ 4 0

2 3 4 0 1∗

3 4∗ 0 1 2

4 0 1 2∗ 3

Here, the transversals intersect stably in the 1 point S = {(0, 0, 0)}. The cell (1, 2, 3) is

in the starred transversal, and not in S, so Construction 2.4.2 places the cell (0, 2, 3) into

the resulting first row of a circulant latin square. Construction 2.4.2 gives the first row of

a circulant latin squares to be:

· 4 3 2 1 · 2 4 1 3

Writing these latin squares out completely:

· 4 3 2 1

2 · 0 4 3

4 3 · 1 0

1 0 4 · 2

3 2 1 0 ·

· 2 4 1 3

4 · 3 0 2

3 0 · 4 1

2 4 1 · 0

1 3 0 2 ·

36

The two partial latin squares form a 2-way 4-homogeneous circulant latin trade of order

5. This completes the example.

Theorem 2.4.4. For odd n ≥ 33, let I, I ′, d and d′ be the unique integers such that

n = 18I + 9 + 2d and n = 22I ′ + 11 + 2d′, I, I ′ ≥ 1, 0 ≤ d < 9 and 0 ≤ d′ < 11.

Then there exists a circulant (n − t)-homogeneous 3-way latin trade of order n, for t ∈

[min(3 + d′, d), n] \ [n− 5, n− 1], except, perhaps, when:

• n = 51 and t = 29,

• n = 53 and t = 30.

Proof. Follows by Theorem 2.1.3 and Theorem 2.4.2.

Theorem 2.4.5. For odd n ≥ 33, let I, I ′, d and d′ be the unique integers such that

n = 18I + 9 + 2d and n = 22I ′ + 11 + 2d′, I, I ′ ≥ 1, 0 ≤ d < 9 and 0 ≤ d′ < 11.

Then there exists a circulant (n − t)-homogeneous 4-way latin trade of order n, for t ∈

[min(3 + d′, d), n] \ ({n− 15} ∪ [n− 7, n− 1]), except, perhaps, when:

• 33 ≤ n ≤ 43 and t ∈ [10 + d′, 11 + d′] ∪ [n− 14, n− 12],

• 45 ≤ n ≤ 53 and t ∈ [−1 + d′, 2 + d′] ∪ [10 + d′, 11 + d′] ∪ [18 + d′, 20 + d′],

• 63 ≤ n ≤ 75 and t ∈ [7 + d, 8 + d].

Proof. Follows by Theorem 2.1.4 and Theorem 2.4.2.

2.5 Conclusion and future work

We have been able to show, with a number of exceptions, that their exists three (resp.

four) transversals of Bn that intersect stably in t points when n is odd and n ≥ 33. With

37

only a few unsolved cases, it appears that future work may be able to answer Question

1.3.1 completely for µ = 3, 4.

Theorem 2.4.4 and 2.4.5 fill in a large portion of the spectrum of 3/4-way k-homogeneous

latin trades of odd order, which is a significant advancement on what was previously

known. There are a number of construction for µ-way k-homogeneous latin trades [7],

and it seems that further work may result in the spectrum being completed.

38

Chapter 3

µ-way k-homogenous latin trades

3.1 Introduction

In this chapter, the symbols in a latin square are Ω = [m] = {1, . . . ,m}. The rows and

columns will be indexed by Ω = [m]. For convenience, we restate the definitions that we

will use the most in the upcoming chapter:

Definition 3.1.1. For natural numbers µ,m, µ ≤ m, a µ-way latin trade of order m on

symbol set Ω is a collection T = (T1, . . . , Tµ) of µ partial latin squares of order m using

symbols of Ω such that:

• S(Tα) = S(Tβ), for each 1 ≤ α < β ≤ µ;

• for each (r, c) ∈ S(Tα) it holds that tα(r, c) 6= tβ(r, c), for every 1 ≤ α < β ≤ µ; and

• Rr(Tα) = Rr(Tβ) and Cc(Tα) = Cc(Tβ), for each r, c ∈ [m] and 1 ≤ α < β ≤ µ.

Definition 3.1.2. For an integer k ≥ 0, a (µ, k,m)-latin trade on symbol set Ω, T =

(T1, . . . , Tµ), is a µ-way latin trade of order m on Ω that has k = |Rr(T)| = |Cc(T)| =

|Ee(T)|, for each r, c, e ∈ [m]. Such a µ-way latin trade is called k-homogeneous.

39

A (µ, k,m)-latin trade can have k = 0 in the case that each of the µ partial latin squares

is empty; otherwise k must satisfy µ ≤ k ≤ m.

We will require the (µ, k,m)-latin trades that we investigate to have the property that if

(r, c, e) ∈ Tα, where Tα is one of the partial latin squares that forms the (µ, k,m)-latin

trade, then r, c, e are pairwise distinct. With this property, Tα ∪ {(i, i, i) | i ∈ [m]} would

form a new partial latin square that resembles an idempotent latin square with some

unfilled cells.

Definition 3.1.3. A µ-way latin trade T of order m is idempotent if i /∈ Ri(T)∪ Ci(T)

and (i, i) /∈ S(T), for i ∈ [m].

Definition 3.1.4. A (µ, k,m)-latin trade is circulant if it can be obtained from the ele-

ments of its first row, called the base row (denoted by µ−Bk
m), by simultaneously permut-

ing each of the coordinates cyclically. That is, for each α, the cell (1, c, e) ∈ Tα implies

(1 + i, c+ i mod m, e+ i mod m) ∈ Tα, for 1 ≤ i ≤ m− 1.

We write the base row as B = {(a1, . . . , aµ)cl | 1 ≤ l ≤ k}, where aα, cl ∈ [m]. Then

the corresponding µ partial latin squares can be constructed as Tα = {(1 + i, cl + i

mod m, aα + i mod m) | 0 ≤ i ≤ m − 1, 1 ≤ l ≤ k}, α ∈ [µ]. We will denote an

idempotent circulant (µ, k,m)-latin trade by µ− IBk
m.

Let m be an integer. The spectrum of µ-way homogeneous latin trades of order m, Sµm,

is the set of values of k such that there exists a (µ, k,m)-latin trade. The spectrum of

idempotent µ-way homogeneous latin trades of order m, ISµm, is the set of values of k

such that there exists an idempotent (µ, k,m)-latin trade.

A previous study of (µ, k,m)-latin trades [7] posed the question:

Question 3.1.5. For given m and k, m ≥ k ≥ µ, does there exist a (µ, k,m)-latin trade?

The primary goal of this chapter is to investigate this question by deducing S3
m. However

40

in order to do this, we will use a construction that requires us to first investigate IS3
m.

Clearly IS3
m ⊆ S3

m. It is known that {3, . . . ,m} ⊇ S3
m, and also that 3 ∈ S3

m if and only

if 3|m (see [7]). In this chapter, we show there exists 3-way k-homogeneous latin trades

of order m with 4 ≤ k ≤ m for all but a finite list of possible exceptions.

3.2 Literature review

A 2-way latin trade is typically called a latin bitrade. There have been three distinct

approaches used to construct k-homogeneous latin bitrades.

The first approach used graph theoretic constructions (see also [20], [52], [53], and [59]):

Theorem 3.2.1. [24][25] There exists a (2, p, 3m)-latin trade when p = 3, 4 and m ≥ 3.

The second approach used block theoretic based constructions:

Theorem 3.2.2. [8][10] There exists a (2, k,m)-latin trade when 3 ≤ k ≤ 37 and m ≥ k.

The third approach relies on finding pairs of transversals of given intersection in the

back-circulant latin squares:

Theorem 3.2.3. [30] For each odd m 6= 5 and for each t ∈ {0, . . . ,m− 3} ∪ {m}, there

exists two transversals in Bm, T1 and T2, with |T1 ∩ T2| = t. When m = 5 and for each

t ∈ {0, 1, 5}, there exists two transversals in Bm, T1 and T2, with |T1 ∩ T2| = t.

Lemma 3.2.4. [30] For m an odd integer, let T1 and T2 be two transversals in Bm such

that |T1 ∩ T2| = t. Then there exists a (2,m− t,m)-latin trade.

These results lead to the completion of the spectrum problem for homogeneous latin

bitrades:

41

Theorem 3.2.5. [8][10][24][25][30] There is a (2, k,m)-latin trade for all 3 ≤ k ≤ m and

a (2, 2, 2m)-latin trade, for all m ≥ 1.

The first study of (µ, k,m)-latin trades for general µ produced a number of block theoretic

constructions [7] that yielded results for small k when µ = 3:

Theorem 3.2.6. [7] There exist (3, k,m)-latin trades for m ≥ k when:

• k = 3 and 3 | m;

• k = 4 and m 6= 6, 7, 11;

• 5 ≤ k ≤ 13;

• k = 15; and

• k = m.

3.3 Idempotent generalization of basic constructions

The constructions that have appeared earlier in the literature for (µ, k,m)-latin trades [7]

can be used (or modified) for the construction of idempotent (µ, k,m)-latin trades. As

many of the constructions differ only trivially from their original appearance, we label

the source of the original construction, and give the original proof with an extension if

necessary.

Theorem 3.3.1. [7] If there exist idempotent (µ, k,mi)-latin trades, for i = 1, 2, then

there exists an idempotent (µ, k,m1 +m2)-latin trade.

Theorem 3.3.2. [7] If there exist an idempotent (µ1, k1,m1)-latin trade and a (µ2, k2,m2)-

latin trade, then there exists an idempotent (µ1µ2, k1k2,m1m2)-latin trade.

42

Theorem 3.3.3. [7] If l 6= 2, 6 and for each k ∈ {k2, ..., kl} there exists a (µ, k, p)-latin

trade and there exists an idempotent (µ, k1, p)-latin trade, then an idempotent (µ, k1 +

· · ·+ kl, lp)-latin trade exists. (Some ki’s can possibly be zero.)

Proof. For l 6= 2, 6, there exists two l × l orthogonal latin squares. Denote these latin

squares by L1 and L2, with elements chosen from the sets {e1, . . . , el} and {f1, . . . , fl},

respectively. We can simultaneously permute the rows and columns of L1 and L2 so

the main diagonal of L2 contains only f1, and then re-label the symbols of L1 so that

the symbols in cell (j, j) of L1 is ej. Assume that L∗ is the square that is formed by

superimposing L1 and L2. We replace each (ei, fj) ∈ L∗ such that j ≥ 2 with a (µ, kj, p)-

latin trade whose elements are from the set {(i − 1)p + 1, . . . , ip}, and when j = 1 with

an idempotent (µ, k1, p)-latin trade whose elements are from the set {(i−1)p+ 1, . . . , ip}.

As a result we obtain a (µ, k1 + · · ·+ kl, lp)-latin trade, which we denote as T .

Then clearly (j, j) /∈ S(T) as each of the entries on the main diagonal of T came from an

idempotent (µ, k1, p)-latin trade. Note that in T a row r ∈ {(i− 1)p+ 1, . . . , ip} contains

cells filled with symbols e ∈ {(i−1)p+1, . . . , ip} only in columns c ∈ {(i−1)p+1, . . . , ip},

and these filled cells came from an idempotent (µ, k, p)-latin trade. So if (i − 1)p + i′ ∈

R(i−1)p+i′(T), 1 ≤ i′ ≤ p, then there must be a cell in row (i − 1)p + i′ and column

c with c ∈ {(i − 1)p + 1, . . . , ip} that contains symbol (i − 1)p + i′, and this comes

from an idempotent (µ, k,m)-latin trade, say U . But then U would have i′ ∈ Ri′(U), a

contradiction as U is idempotent. The analogous result holds for the columns, and T

forms an idempotent (µ, k1 + · · ·+ kl, lp)-latin trade.

Theorem 3.3.4. Take k and k′ to be integers with k′ > k. If for every k′ ≤ l ≤

2k′− 1 there exists an idempotent (µ, k, l)-latin trade, then for any m ≥ k′ there exists an

idempotent (µ, k,m)-latin trade.

Proof. For every m ≥ 2k′, we can write m = rk′ + sl, for some r, s ≥ 0 and k′ + 1 ≤ l ≤

43

2k′ − 1. Since there exist an idempotent (µ, k, k′)-latin trade and an idempotent (µ, k, l)-

latin trade, by Theorem 3.3.1 we conclude that there exists an idempotent (µ, k,m)-latin

trade.

A large set of idempotent latin squares of order m is a set of m − 2 idempotent latin

squares of order m, (L1, . . . , Lm−2), such that for α, β with 1 ≤ α < β ≤ m − 2 and

i, j ∈ [m], Lα(i, i) = Lβ(i, i) = i and Lα(i, j) 6= Lβ(i, j) when i 6= j.

Theorem 3.3.5. For m ≥ 3, m 6= 6, there exists an idempotent (µ,m− 1,m)-latin trade

whenever 1 ≤ µ ≤ m− 2.

Proof. It was shown in [80] that for m 6= 6, 14, 62 there exists a large set of idempotent

latin squares of order m. The cases m = 14, 62 were solved in [32] and [31] respectively.

By taking such a large set and deleting the cells of the main diagonals of each of the

idempotent latin squares, we have an idempotent (m−2,m−1,m)-latin trade for m ≥ 3,

m 6= 6. Clearly we can remove any number of the resulting partial latin squares to yield

an idempotent (µ,m− 1,m)-latin trade for 1 ≤ µ ≤ m− 2.

Generalizing from the method of finding pairs of transversals of given intersection in

the back-circulant latin squares, in chapter 2 we were able to determine the possible

intersection sizes of three transversals in the back circulant latin square. We restate the

result:

Theorem 3.3.6. For odd integer m ≥ 33 with m = 18I + 9 + 2d, 0 ≤ d < 9, and

m = 22I ′+ 11 + 2d′, 0 ≤ d′ < 11, there exists three transversals of the back circulant latin

square Bm, T1, T2, T3, for each t ∈ {min(d′+ 3, d), . . . ,m} \ {m− 5, . . . ,m− 1} such that

S = T1 ∩ T2 = T1 ∩ T3 = T2 ∩ T3 and |S| = t, except possibly when:

• m = 51 and t = 29,

44

• m = 53 and t = 30.

Further, a transformation was provided to construct (µ, k,m)-latin trades from a collection

of µ transversals of the back circulant latin square:

Theorem 3.3.7. Take m odd and 0 ≤ t ≤ m. If there exists a set S ⊆ [m]3 with |S| = t

and µ transversals of Bm, T1, . . . , Tµ with Tα ∩ Tβ = S, for α, β ∈ [µ] and α 6= β, then

there exists a circulant (µ,m− t,m)-latin trade.

Proof. Consider the µ partial latin squares defined by Qα = {(i, c + i, r + c + i) | i ∈

[m], (r, c, r + c) ∈ Tα \ S}. The set (Q1, . . . , Qµ) forms a (µ,m− t,m)-latin trade that is

circulant by definition.

This can be generalized for our purposes in the following manner:

Theorem 3.3.8. Take m odd and 1 ≤ t ≤ m. If there is a set S ⊆ [m]3 with |S| = t

such that there exists µ transversals of Bm, T1, . . . , Tµ, with Tα ∩ Tβ = S, for α, β ∈ [m]

and α 6= β, then there exists an idempotent circulant (µ,m− t,m)-latin trade.

Proof. Notice that T x,yα = {(r + x, c + y, r + c + x + y) | (r, c, r + c) ∈ Tα}, for α ∈ [µ]

and x, y ∈ {0, . . . ,m − 1}, will define a new collection of µ transversals of Bm with

T x,yα ∩ T x,yβ = Sx,y such that |Sx,y| = t, for α, β ∈ [µ] and α 6= β. As t ≥ 1, this allows us

to assume without loss of generality that (m,m,m) ∈ Tα, for all α ∈ [µ], or equivalently

(m,m,m) ∈ S. Applying the construction from Theorem 3.3.7 to these transversals of

Bm, we obtain a circulant (µ,m− t,m)-latin trade, which we denote as Q = (Q1, . . . , Qµ).

As (m,m,m) ∈ S, then each (r, c, r + c) ∈ Tα \ S has r + 1 6≡ 1, c + 1 6≡ 1, and

r + c + 1 6≡ 1. Then Q has its (1, 1) cell empty as c + 1 6≡ 1, and the symbol 1 will

not appear in the first row as r + c + 1 6≡ 1. The first column of Qα contains cells

{(m − c + 1, 1, r + 1) | (r, c, r + c) ∈ Tα \ S}, for α ∈ [µ]. As r + 1 6≡ 1, the symbol 1

45

does not appear in the first column. By the circulant nature, we also have (i, i) /∈ S(Q)

and i /∈ Ri(Q)∩Ci(Q), for i ∈ [m]. Then Q is an idempotent circulant (µ,m− t,m)-latin

trade.

We can then exploit the existence of two [30] and three (see chapter 2) transversals of

given intersection as:

Theorem 3.3.9. For odd integer m ≥ 5, there exists an idempotent circulant (2,m−t,m)-

latin trade for t ∈ [m] \ {m− 2,m− 1} except, perhaps, when (t,m) = (2, 5).

Theorem 3.3.10. For odd integer m ≥ 33 with m = 18I + 9 + 2d, 0 ≤ d < 9, and

m = 22I ′ + 11 + 2d′, 0 ≤ d′ < 11, there exists an idempotent circulant (3,m− t,m)-latin

trade, for t ∈ {max(1,min(d′+ 3, d)), . . . ,m}\{m−5, . . . ,m−1}, except, perhaps, when:

• m = 51 and t = 29,

• m = 53 and t = 30.

3.4 New Constructions for idempotent (µ, k,m)-latin

trades

In this section, we will consider block theoretic constructions that are able to determine

the spectrum of (3, k,m)-latin trades for all but a small list of values of k and m.

3.4.1 Computer search for small orders

If B = {(a1, . . . , aµ)cl | 1 ≤ l ≤ k}, Algorithm 1 of [7] can be used to show B is the base

row of a (µ, k,m)-latin trade. If for each (a1, . . . , aµ)cl it further holds that:

46

• aα 6= 1, for all α ∈ [µ];

• cl 6= 1; and

• aα 6= cl,

then B is the base row of an idempotent (µ, k,m)-latin trade. As the result of a compu-

tational search, we introduce the following base rows of idempotent (3, k,m)-latin trades:

• k = 5

3− IB5
7 ={(3, 4, 5)2, (5, 7, 4)3, (7, 5, 2)4, (2, 3, 7)5, (4, 2, 3)6}

3− IB5
8 ={(3, 4, 6)2, (8, 2, 4)3, (6, 8, 3)4, (4, 6, 2)5, (2, 3, 8)6}

3− IB5
9 ={(3, 6, 9)2, (6, 2, 7)3, (2, 7, 3)4, (9, 3, 6)5, (7, 9, 2)8}

3− IB5
11 ={(5, 7, 9)2, (7, 2, 8)3, (9, 8, 7)4, (2, 9, 5)6, (8, 5, 2)9}

3− IB5
12 ={(4, 5, 8)2, (11, 2, 5)3, (8, 11, 4)5, (5, 8, 2)6, (2, 4, 11)8}

• k = 6

3− IB6
8 ={(3, 4, 6)2, (5, 8, 2)3, (8, 2, 5)4, (2, 6, 3)5, (4, 5, 8)6, (6, 3, 4)7}

3− IB6
9 ={(3, 6, 7)2, (7, 4, 5)3, (6, 2, 3)4, (4, 7, 6)5, (2, 5, 4)6, (5, 3, 2)7}

3− IB6
10 ={(5, 8, 9)2, (9, 2, 4)3, (2, 5, 3)4, (4, 3, 8)5, (3, 9, 2)6, (8, 4, 5)7}

3− IB6
11 ={(3, 4, 10)2, (6, 9, 4)3, (10, 2, 6)4, (2, 6, 3)5, (4, 3, 9)6, (9, 10, 2)7}

3− IB6
12 ={(3, 9, 11)2, (7, 2, 5)3, (11, 5, 3)4, (2, 7, 9)5, (5, 3, 7)6, (9, 11, 2)7}

3− IB6
13 ={(8, 11, 13)2, (13, 8, 9)3, (9, 2, 8)4, (3, 9, 2)5, (2, 3, 11)6, (11, 13, 3)7}

• k = 7

3− IB7
m ={(3, 4, 6)2, (7, 6, 5)3, (6, 2, 7)4, (2, 9, 3)5, (9, 7, 2)6, (5, 3, 4)7, (4, 5, 9)8},

for m ≥ 9

47

• k = 8

3− IB8
m ={(3, 4, 5)2, (2, 6, 7)3, (7, 8, 2)4, (9, 2, 6)5, (8, 5, 3)6, (4, 3, 9)7, (6, 9, 4)8,

(5, 7, 8)9}, for m ≥ 10

• k = 9

3− IB9
m ={(3, 4, 5)2, (5, 8, 7)3, (7, 2, 9)4, (9, 6, 2)5, (11, 9, 8)6, (2, 11, 3)7, (4, 3, 6)8,

(6, 5, 4)9, (8, 7, 11)10}, for m ≥ 11

• k = 10

3− IB10
m ={(3, 4, 5)2, (2, 6, 4)3, (6, 5, 9)4, (9, 10, 2)5, (11, 2, 10)6, (10, 11, 3)7, (4, 3, 7)8,

(7, 8, 11)9, (5, 7, 8)10, (8, 9, 6)11}, for m ≥ 12

• k = 11

3− IB11
m ={(3, 4, 5)2, (5, 6, 8)3, (7, 2, 10)4, (9, 11, 3)5, (11, 10, 2)6, (13, 8, 11)7,

(2, 13, 9)8, (4, 3, 6)9, (6, 5, 4)10, (8, 7, 13)11, (10, 9, 7)12}, for m ≥ 13

• k = 12

3− IB12
m ={(3, 4, 5)2, (2, 6, 4)3, (6, 2, 3)4, (8, 9, 11)5, (11, 12, 8)6, (13, 3, 12)7,

(12, 13, 2)8, (4, 10, 13)9, (7, 5, 6)10, (5, 8, 9)11, (10, 11, 7)12, (9, 7, 10)13},

for m ≥ 14

• k = 13

3− IB13
m ={(3, 4, 5)2, (5, 6, 4)3, (2, 5, 10)4, (9, 10, 12)5, (11, 13, 2)6, (13, 2, 9)7,

(15, 12, 13)8, (12, 15, 3)9, (4, 3, 8)10, (6, 7, 15)11, (8, 9, 7)12, (10, 11, 6)13,

(7, 8, 11)14}, for m ≥ 15

48

• k = 14

3− IB14
m ={(3, 4, 5)2, (2, 6, 4)3, (6, 2, 3)4, (8, 9, 2)5, (10, 3, 13)6, (13, 14, 12)7,

(15, 13, 14)8, (14, 15, 11)9, (4, 5, 6)10, (7, 12, 15)11, (5, 11, 10)12,

(11, 7, 8)13, (9, 10, 7)14, (12, 8, 9)15}, for m ≥ 16

• k = 15

3− IB15
m ={(3, 4, 5)2, (5, 6, 4)3, (2, 5, 6)4, (8, 2, 9)5, (11, 13, 14)6, (13, 15, 12)7,

(15, 12, 2)8, (17, 14, 15)9, (14, 3, 17)10, (4, 17, 3)11, (6, 7, 10)12,

(10, 11, 8)13, (9, 10, 7)14, (7, 9, 11)15, (12, 8, 13)16}, for m ≥ 17

• k = 16

3− IB16
m ={(3, 4, 5)2, (2, 6, 4)3, (6, 2, 3)4, (8, 9, 2)5, (4, 3, 10)6, (13, 12, 15)7,

(15, 16, 13)8, (17, 15, 16)9, (14, 17, 6)10, (16, 5, 17)11, (5, 7, 14)12,

(7, 14, 8)13, (10, 13, 12)14, (12, 11, 7)15, (11, 8, 9)16, (9, 10, 11)17},

for m ≥ 18

• k = 17

3− IB17
19 ={(3, 4, 5)2, (5, 6, 4)3, (2, 5, 6)4, (8, 2, 3)5, (10, 11, 12)6, (13, 14, 15)7,

(15, 17, 19)8, (17, 13, 14)9, (19, 16, 17)10, (16, 19, 2)11, (4, 3, 16)12,

(6, 8, 7)13, (9, 7, 11)14, (11, 9, 10)15, (7, 12, 9)16, (14, 15, 13)17,

(12, 10, 8)18}

3− IB17
m ={(3, 4, 5)2, (2, 6, 4)3, (6, 2, 3)4, (8, 9, 7)5, (10, 5, 11)6, (14, 15, 16)7,

(16, 17, 15)8, (18, 14, 17)9, (15, 16, 14)10, (17, 18, 2)11, (4, 13, 18)12,

(7, 3, 8)13, (12, 8, 10)14, (5, 11, 13)15, (11, 7, 6)16, (13, 12, 9)17,

(9, 10, 12)18}, for m ≥ 20

49

• k = 18

3− IB18
m ={(3, 4, 5)2, (2, 6, 4)3, (6, 2, 3)4, (8, 9, 2)5, (4, 3, 8)6, (11, 8, 12)7,

(15, 16, 17)8, (17, 18, 16)9, (19, 15, 18)10, (16, 17, 15)11, (18, 19, 6)12,

(5, 7, 19)13, (7, 5, 9)14, (9, 14, 13)15, (12, 11, 7)16, (14, 13, 10)17,

(13, 10, 14)18, (10, 12, 11)19}, for m ≥ 20

Theorem 3.4.1. There exist idempotent (3, k,m)-latin trades for m ≥ k + 1 when:

• k = 4 and 5|m;

• k = 5, except when m = 6 and perhaps when m = 10, 13; and

• 6 ≤ k ≤ 18.

Proof. The previously stated base rows, along with the idempotent (3,m − 1,m)-latin

trades of Theorem 3.3.5 complete the cases for 7 ≤ k ≤ 18. For k = 6, we can use the

previously stated base rows along with an idempotent (3, 6, 7)-latin trade from Theorem

3.3.5 with Theorem 3.3.4. For k = 5, there exists idempotent (3, 5,m)-latin trades for

m ∈ {7, 8, 9, 11, 12}. Using these (3, 5,m)-latin trades in Theorem 3.3.1 will, after two

iterations, yield the required (3, 5,m)-latin trades for Theorem 3.3.4 with k′ = 14. For

k = 4, there exists an idempotent (3, 4, 5)-latin trade by Theorem 3.3.5, on which we can

repeatedly apply Theorem 3.3.1 to get the result. If an idempotent (3, 5, 6)-latin trade

existed, then adding the cells {(i, i, i) | 1 ≤ i ≤ n} to each of the partial latin squares

of the idempotent (3, 5, 6)-latin trade would yield an ordered triple of idempotent latin

squares of order 6 that are pairwise disjoint in each cell not on the main diagonal. Using

a computer we searched for such ordered triples of idempotent latin squares by testing all

possible triples of idempotent latin squares of order 6. None existed, and so there does

not exists an idempotent (3, 5, 6)-latin trade.

We conjecture that the two unresolved cases with k = 5 and m = 10, 13 both exist.

50

3.4.2 Extended Multiplication Construction

Lemma 3.4.2. Take n ≥ 3 and m ≥ 4. If n = 6, let y be a positive integer with

µ < y ≤ m
4

. If n 6= 6, let y be a positive integer with µ < y ≤ m
2

. If there exists an

idempotent (µ, k,m)-latin trade for each k ∈ {0, y, y + 1, . . . ,m− 1}, then there exists an

idempotent (µ, k,mn)-latin trade for each k ∈ {0, y, y + 1, . . . ,mn− 1}.

Proof. In the case that n 6= 6, Theorem 3.3.3 yields idempotent (µ, k,mn)-latin trades

for k ∈ {
∑n

i=1 yi | y1 ∈ {0, y, y + 1, . . . ,m− 1} and yi ∈ {0, y, y + 1, . . . ,m}, 2 ≤ i ≤ n} =

{0, y, y+ 1, . . . ,mn−1} (yi, with 2 ≤ i ≤ n, may equal m as there exists a (3,m,m)-latin

trade by Theorem 3.2.6).

Now we consider the case when n = 6. Applying Theorem 3.3.2 using an idempotent

(µ, k,m)-latin trade and a (1, 2, 2)-latin trade (which exists by Theorem 3.2.5) yields an

idempotent (µ, 2k, 2m)-latin trade for each k with y ≤ k ≤ m − 1. Applying Theorem

3.3.1 to the idempotent (µ, k,m)-latin trades yields idempotent (µ, k, 2m)-latin trades

for each k with y ≤ k ≤ m − 1. Considering these, along with the existence of an

idempotent (µ, 2m−1, 2m)-latin trade from Theorem 3.3.5, yields idempotent (µ, k′, 2m)-

latin trades for k′ ∈ Γ = Γ1 ∪ Γ2, where Γ1 = {0} ∪ {y, y + 1, . . . ,m − 1} and Γ2 =

{2y, 2y+ 2, . . . , 2m− 2}∪{2m− 1}. Applying Theorem 3.3.3 with l = 3, using the above

idempotent (µ, k′, 2m)-latin trades with k′ ∈ Γ along with (µ, 2m, 2m)-latin trades and

(µ,m, 2m)-latin trades that exist by Theorem 3.2.6 and Theorem 3.3.1, yields idempotent

(µ, k′′, 6m)-latin trades for each k′′ ∈ {
∑3

i=1 yi | y1 ∈ Γ and y2, y3 ∈ Γ ∪ {m, 2m}}.

It holds that {
∑3

i=1 yi | y1 ∈ Γ2 and y2, y3 ∈ Γ2∪{2m}} = {6y, 6y+2, . . . , 4y+2m−4, 4y+

2m−2}∪{4y+2m−1, 4y+2m, . . . , 6m−1}, and also that {
∑3

i=1 yi | y1 ∈ Γ1 and y2, y3 ∈

Γ1 ∪ {m}} = {0} ∪ {y, y + 1, . . . ,m} ∪ {2y, 2y + 1, . . . , 2m} ∪ {3y, 3y + 1, . . . , 3m− 1} =

{0}∪{y, y+ 1, . . . , 3m−1} as y ≤ m/4 implies both m ≥ 2y and 2m ≥ 3y. Then it holds

that {
∑3

i=1 yi | y1 ∈ Γ and y2, y3 ∈ Γ ∪ {m, 2m}} ⊇ {0} ∪ {y, y + 1, . . . , 3m− 1} ∪ {4y +

51

2m−1, . . . , 6m−1} = {0}∪{y, . . . , 6m−1}, as m ≥ 4y, and so the proof is complete.

There does not exist a pair of orthogonal latin squares of order 2, so we do not have

a similar result to this lemma when n = 2. This leaves us with two cases that are of

particular interest, as they are not covered by Lemma 3.4.2: m = p and m = 2p, for

p a prime. The next two subsection contain constructions that will be used to fill the

spectrum IS3
m for certain m = p and m = 2p.

3.4.3 Packing construction

The following theorem uses µ-way latin trades of order λ and volume s in the construction

of (µ, s,m)-latin trades, for certain integers m ≥ λ2 + 2λ+ 1. Afterwards we will modify

the resulting structures to yield idempotent (µ, s,m)-latin trades. The 3-way intersection

problem for latin squares has been studied previously, and this will yield the 3-way latin

trades we need in order to apply this construction, which we detail later.

Theorem 3.4.3. Suppose there exists a µ-way latin trade of volume s and of order λ.

For every m = λ(λ + a) + b, where 0 < b < λ, a ≥ b + 1, and gcd(m,λ) = gcd(λ, b) = 1,

there exists a (µ, s,m)-latin trade.

In order to prove this theorem, we construct the (µ, s,m)-latin trade as follows.

Construction 3.4.4. Suppose there exists a µ-way latin trade U = (U1, . . . , Uµ) of volume

s, order λ, and using symbol set Ω = [λ]. Let m = λ(λ+a)+b, where a and b are integers

with 0 < b < λ, a ≥ b + 1, and gcd(m,λ) = gcd(λ, b) = 1. Let Uα[f] be the array

obtained from Uα by replacing each occurrence of symbol i with symbol bi + f (mod m),

where bi = i(λ+ a− 1) for each 1 ≤ i ≤ λ, α ∈ [µ], and 0 ≤ f < m.

We construct Rα, an m×m array of cells for each α ∈ [µ]. For each f ∈ {0, . . . ,m− 1},

consider the λ× λ block of cells within Rα given by Bf = {(i, j) | λf < i ≤ λ(f + 1), f <

52

1 . . . λ

1
...

λ

B0

λ+ 1
...

2λ

B1

2λ+ 1
...

3λ

B2

(λ+ a− 1)λ+ 1

...

(λ+ a)λ

Bλ+a−1

Bλ+ab
m = (λ+ a)λ+ b

a

λ− b

Figure 3.1: An illustrative example of the placement of blocks in Construction 3.4.4

j ≤ f + λ}, with i, j taken mod m, but 0 is identified with m such that 1 ≤ i, j ≤ m.

This placement of the blocks of cells in Rα is displayed visually in Figure 3.1. Notice

Bf ∩ Bg = ∅ for each 0 ≤ f, g < m, f 6= g. Place Uα[f] into the cells Bf of Rα, for each

0 ≤ f < m, and leave every other cell empty. Then cell (λf + i′, f + j′) ∈ Bf is filled in

Rα with the symbol Uα[f](i′, j′), for 1 ≤ i′, j′ ≤ λ.

The following proof verifies that the Rα form a (µ, s,m)-latin trade.

Proof. We will show that the collection of µ m × m arrays R = (R1, . . . , Rµ) defined

by Construction 3.4.4 form a (µ, s,m)-latin trade. We begin by showing that R forms a

53

µ-way latin trade of order m. This amounts to showing that each Rα forms a partial latin

square, as then by construction it is clear that the µ partial latin squares form a µ-way

latin trade of order m. To this end, we must verify that any symbol appears in a column

of Rα at most once, and that any symbol appears in a row of Rα at most once.

To show the symbols that appear in a column of Rα are distinct, we will consider a specific

symbol bλ = λ(λ + a − 1). This symbol appears only in the block of cells Bj(λ+a−1) of

Rα, for 0 ≤ j ≤ λ − 1. The columns of the block of cells Bj(λ+a−1) of Rα are exactly

those columns c with j(λ + a − 1) < c ≤ j(λ + a − 1) + λ. For 0 ≤ j ≤ λ − 1, the sets

of integers {j(λ + a − 1) + 1, . . . , j(λ + a − 1) + λ} are each disjoint, and in the range

1 to m. That is to say that two distinct block of cells Bf and Bf ′ containing bλ do not

intersect column-wise, and as a column within each block of cells Bf of Rα can contain

bλ at most once, we can conclude that bλ appears in each column of Rα at most once. By

construction, (r, c, bλ) ∈ Rα if and only if (r+ λ, c+ 1, bλ + 1) ∈ Rα, and so symbol bλ + 1

appears in each column of Rα at most once. Repeating this argument, we see that every

symbol will appear in each column of Rα at most once.

To show the symbols that appear in a row of Rα are distinct, we consider a specific symbol

a − b − 1 = bλ + (λ + a − 1) −m, which we denote as bλ+1. This symbol appears in the

block of cells Bj(λ+a−1) of Rα, for 1 ≤ j ≤ λ. The rows of the subsquare Bj(λ+a−1) of Rα

are exactly those rows r with jλ(λ + a − 1) < r ≤ jλ(λ + a − 1) + λ, or equivalently

m − j(λ + b) < r ≤ m − j(λ + b) + λ once we consider r to be taken modulo m. For

1 ≤ j ≤ λ, the sets of integers {m− j(λ+ b) + 1, . . . ,m− j(λ+ b) + λ} are each disjoint.

As λ(λ + b) < λ(λ + a) < m, these sets of integers only contain values in the range 1 to

m. That is to say that two distinct blocks of cells Bf and Bf ′ that both contain bλ+1 do

not intersect row-wise, so we can conclude that bλ+1 appears in each row of Rα at most

once. By construction, (r, c, bλ+1) ∈ Rα if and only if (r+ λ, c+ 1, bλ+1 + 1) ∈ Rα, and so

bλ+1 + 1 appears in each row of Rα at most once. Repeating this argument, we see that

54

every symbol will appear in each row of Rα at most once. We have now shown that the

Rα form a µ-way latin trade of order m.

Now we show that Rα is s-homogeneous, for each α ∈ [µ]. For α ∈ [µ], the construction

filled each of the m blocks Bf of Rα with s cells, for 0 ≤ f < m. As no overlap occurs

between the blocks Bf , Rα was filled by precisely sm filled cells. By construction, if cell

(r, c) is filled in Rα, then it holds that (r, c, e) ∈ Rα if and only if (r+λ, c+1, e+1) ∈ Rα.

Then row r (column c, symbol e) must contain the same number of filled cells as row r+λ

(column c+ 1, symbol e+ 1). We can repeat this argument m− 1 times to show each row

and column will have the same number of filled cells, and that each each symbol will have

the same number of occurrences in Rα (for the row case, we have used the assumption

that gcd(m,λ) = 1). Then this implies the sm filled cells are spread evenly amongst the

m rows, columns, and symbols. This gives s filled cells per row, s filled cells per column,

and s occurrences per symbol.

This shows that each Rα is s-homogeneous, and so the proof is complete.

Example 3.4.5. We demonstrate this technique using a 2-way latin trade of volume s = 7

and of order λ = 3 given by the pair of partial latin squares:

1 2 3

3 1

2 3

2 3 1

1 3

3 2

We will take a = 2 and b = 1, giving the order of the resulting trade as λ(λ+ a) + b = 16.

Then b1 = 4, b2 = 8, and b3 = 12. Using the first of the above partial latin squares of

order 3 and volume 7 in the construction gives a partial latin square of order 16 that is

7-homogeneous:

55

4 8 12 1 9 2 6

12 4 13 1 15 3 7

8 12 10 14 2 7 15

5 9 13 2 10 3 7

13 5 14 2 16 4 8

9 13 11 15 3 8 16

6 10 14 3 11 4 8

14 6 15 3 1 5 9

10 14 12 16 4 9 1

7 11 15 4 12 5 9

10 15 7 16 4 2 6

2 11 15 13 1 5 10

8 12 16 5 13 6 10

7 11 16 8 1 5 3

3 12 16 14 2 6 11

11 9 13 1 6 14 7

We can use the second partial latin square of order 3 and volume 7 to construct a similar

partial latin square of order 16 that is 7-homogeneous. Together, these partial latin squares

form a 2-way 7-homogeneous latin trade of order 16.

Theorem 3.4.6. Suppose there exists a µ-way latin trade of volume s and of order λ,

with λ ≥ 1. For every m = λ(λ + a) + b, where 0 < b < λ, a ≥ b + 1, and gcd(m,λ) =

gcd(λ, b) = 1, there exists a circulant idempotent (µ, s,m)-latin trade.

Proof. Consider the µ arrays R1, . . . , Rµ from Construction 3.4.4. Define the array R̄α by

the set of ordered triples R̄α = {(σ1(r), c, σ2(e)) | (r, c, e) ∈ Rα} with σ1(r) = λ−1·(r−1)−1

(mod m) and σ2(e) = e − 2(λ + a − 1) (mod m), for each α ∈ [µ], where λ−1 is the

unique inverse of λ (mod m) which exists by the assumption that gcd(m,λ) = 1. Both

56

σ1 and σ2 are permutations of [m]. As the Rα form a (µ, s,m)-latin trade, the R̄α also

form a (µ, s,m)-latin trade as the three properties of Definition 3.1.1 are invariant under

permutation swaps of the rows, columns, and symbols.

Since (r, c, e) ∈ Rα implies (r + λ, c + 1, e + 1) ∈ Rα by construction, it follows that

(r, c, e) ∈ R̄α implies (r + 1, c + 1, e + 1) ∈ R̄α, and so R̄α is a circulant (µ, s,m)-latin

trade.

We show that 1 /∈ R1(R̄α), 1 /∈ C1(R̄α), and (1, 1) /∈ S(R̄α). Noting that σ−1
1 (1) = 2λ+ 1

and σ−1
2 (1) = 2λ + 2a − 1, this is equivalent to showing 2λ + 2a − 1 /∈ R2λ+1(Rα),

2λ+ 2a− 1 /∈ C1(Rα), and (2λ+ 1, 1) /∈ S(Rα).

We first show that 2λ+ 2a− 1 /∈ R2λ+1(Rα). The symbol 2λ+ 2a− 1 appears only in the

blocks Bj(λ+a−1)+b+3λ+2a−1 of Rα for 0 ≤ j ≤ λ− 1, hence it only appears within the rows

T = ∪λ−1
j=0{λ(j(λ+ a− 1) + b+ 3λ+ 2a− 1) + 1, . . . , λ(j(λ+ a− 1) + b+ 3λ+ 2a− 1) +λ}.

If we perform a change in variables, sending j to λ− 2− j, then T = ∪λ−2
j=0{λ+ 1 + j(λ+

b), . . . , 2λ+ j(λ+ b)}∪{m− b+ 1, . . . ,m}∪{1, . . . , λ− b}, which does not contain 2λ+ 1.

Then the symbol 2λ+ 2a− 1 does not appear in the row 2λ+ 1.

Secondly we show that 2λ+ 2a− 1 /∈ C1(Rα). The symbol 2λ+ 2a− 1 appears exactly in

the blocks Bj(λ+a−1)+b+3λ+2a−1 of Rα, for 0 ≤ j ≤ λ−1. These blocks only use the columns

∪λ−1
j=0{j(λ+a−1)+b+3λ+2a, . . . , j(λ+a−1)+b+3λ+2a+λ−1} = ∪λ−3

j=0{j(λ+a−1)+

b+3λ+2a, . . . , j(λ+a−1)+b+3λ+2a+λ−1}∪{2, . . . , λ+1}∪{λ+a+1, . . . , λ+a+λ}.

As such, the column with index 1 does not contain 2λ+ 2a− 1.

Thirdly we show that (2λ + 1, 1) /∈ S(Rα). Suppose for the sake of contradiction that

(2λ + 1, 1) ∈ S(Rα). Then there must be some block Bf ′ that contains cell (2λ + 1, 1),

0 ≤ f ′ ≤ m− 1. As B1 = {(i, j) | λ+ 1 ≤ i ≤ 2λ, 2 ≤ j ≤ 1 + λ}, Bf ′ cannot contain the

cell (2λ, 2). Then Bf ′ must either have exactly the rows {2λ+ 1, . . . , 3λ}, or have exactly

the columns {m− λ+ 2, . . . ,m} ∪ {1}.

57

The former implies Bf ′ contains exactly the same rows as B2. As the first rows are the

same, f ′λ+ 1 ≡ 2λ+ 1 mod m, and as gcd(λ,m) = 1, we have f ′ = 2. But then B2 must

contain cell (2λ + 1, 1), which when we look at the columns implies λ + 2 ≥ m + 1. As

m ≥ λ(λ+ 2) + 1 and λ ≥ 1, this is impossible.

The later implies Bf ′ = B1−λ = Bm+1−λ. Then each of the m rows are represented at least

once in the set of λ + 1 blocks {Bm+1−λ, Bm+2−λ, . . . , Bm−1} ∪ {B0, B1}, but these λ + 1

blocks only use λ rows each, and so λ(λ + 1) rows in total. This implies m ≤ λ(λ + 1),

which contradicts the fact that m = λ(λ+ a) + b and that a > b ≥ 1.

Then none of the cases are possible, forming a contradiction, and so (2λ+ 1, 1) /∈ S(Rα).

This completes the proof.

The three-way intersection problem for latin squares has been studied in [1], where the

authors consider three latin squares L1, L2, L3 of order n with common intersection P =

L1∩L2 = L1∩L3 = L2∩L3. The collection of partial latin squares (L1 \P,L2 \P,L3 \P)

forms a 3-way latin trade of volume n2 − |P | and of any order n′ greater than or equal

to n (as we allow empty rows and columns in 3-way latin trades). We can thus interpret

the results of [1] in terms of 3-way latin trades and combine them with Theorem 3.4.6 to

yield:

Theorem 3.4.7. For λ ≥ 3, there exists circulant idempotent (3, k,m)-latin trades for

m = λ(λ+ a) + b, where 0 < b < λ, gcd(λ, b) = 1, and a ≥ b+ 1, and:

• k ∈ {0, 9}, for λ = 3;

• k ∈ {0, 9, 12, 15, 16}, for λ = 4;

• k ∈ {0, 9, 12, 15, 16} or 18 ≤ k ≤ 25, for λ = 5;

• k ∈ {0, 9, 12} or 15 ≤ k ≤ λ2, for λ ≥ 6.

58

3.4.4 Construction via RPBDs

Definition 3.4.8. A (v,M, λ) pairwise balanced design, denoted PBD(v,M, λ), is a pair

(V,B), with V a set of v symbols and B a set of subsets of V (each subset is called a

block) with sizes from M , such that each pair of elements of V can be found in exactly λ

blocks of B.

Definition 3.4.9. A resolvable (v,M, λ, n) pairwise balanced design, which we denote by

RPBD(v,M, λ, n), is a pair (V,B) along with n resolution classes R1, . . . , Rn, such that

(V,B) is a PBD(v,M, λ), the sets R1, . . . , Rn partition B, and each symbol appears in

precisely one block of each resolution class.

Theorem 3.4.10. Suppose there exists a RPBD(v,M, 1, n + 1), (V,B), with resolution

classes R1, . . . , Rn and R∞. Suppose there exists integers di ≥ 1, 1 ≤ i ≤ n, such that

for each b ∈ Ri there exists an idempotent (µ, |b| − di, |b|)-latin trade and integer d∞ ≥ 0

such that for each b ∈ R∞ there exists a (µ, |b| − d∞, |b|)-latin trade. Then there exists a

(µ, v + n−
∑n

i=1 di − d∞, v)-latin trade.

The following construction was suggested by Prof. L. Zhu, which is a modification of a con-

struction for sets of idempotent latin squares (see [82], page 188). After the construction,

we will give a proof to show that the construction yields Theorem 3.4.10.

Construction 3.4.11. Take (V,B), a RPBD(v,M, 1, n + 1) with resolution classes R∞

and R1, . . . , Rn. Suppose there are integers di ≥ 1, 1 ≤ i ≤ n, such that for each b ∈ Ri

there exists an idempotent (µ, |b| − di, |b|)-latin trade, and integer d∞ ≥ 0 such that for

each b ∈ R∞ there exists a (µ, |b| − d∞, |b|)-latin trade. We impose an arbitrary total

ordering < on V . For a block b ⊆ V , define bh to be the hth smallest symbol in b when b

is considered under the ordering imposed on V , for 1 ≤ h ≤ |b|. That is {b1, . . . , b|b|} = b

and bi < bi+1 for 1 ≤ i ≤ |b| − 1.

59

We construct µ v × v arrays, T1, . . . , Tµ, each with rows and columns indexed by V . For

each 1 ≤ i ≤ n and each block b ∈ Ri, let S = (S1, . . . , Sµ) be an idempotent (µ, |b|−di, |b|)-

latin trade on the set of symbols Ω = [|b|]. For each block b ∈ R∞, let S = (S1, . . . , Sµ)

be a (µ, |b| − d∞, |b|)-latin trade on the set of symbols Ω = [|b|]. Whenever (r, c, e) ∈ Sα
put (br, bc, be) into Tα, for 1 ≤ r, c ≤ |b|. Note that if (r, c) is empty in Sα for any

1 ≤ r, c ≤ |b|, then (br, bc) is left empty in Tα.

Proof. Consider the µ v × v arrays T = (T1, . . . , Tµ) from Construction 3.4.11. We will

show that T is a (µ, v + n−
∑n

i=1 di − d∞, v)-latin trade.

During the construction, any single cell (r, c, e) ∈ Tα with |{r, c, e}| ≤ 2 must have been

constructed using some x ∈ R∞, as the other blocks were replaced during the construction

by idempotent (µ, k,m)-latin trades, which would imply |{r, c, e}| = 3 by the definition

of idempotent µ-way latin trades.

Suppose the construction filled two cells (r1, c1, e1) and (r2, c2, e2) of Tα such that the two

cells have two of three indices the same. Let a and b be the values of the two identical

indices (for example if the two cells we are observing are (r, c, e1), (r, c, e2) ∈ Tα with e1 6=

e2, then a = r and b = c). If distinct blocks x and y were used respectively to construct

(r1, c1, e1) and (r2, c2, e2), then {a, b} ⊆ x ∩ y. By the definition of a PBD(v,M, 1),

|x ∩ y| ≤ 1, and so a = b. Then |{r1, c1, e1}| ≤ 2 and |{r2, c2, e2}| ≤ 2, and so x, y ∈ R∞,

which implies |x∩ y| = 0 as x and y are distinct blocks in the same resolution class. This

forms a contradiction, as a ∈ x ∩ y. So any two filled cells that have two of three indices

the same were both filled during construction using the same block.

As we filled µ-way latin trades into Tα from these blocks, it follows that no cell was filled

twice, each row contains each symbol at most once, and each column contains each symbol

at most once. Then each Tα is a partial latin square.

To see T forms a µ-way latin trade, it is enough to note that S(Tα) must be the same for

60

each α ∈ [µ]; that each filled cell (r, c) was filled differently in each Tα, α ∈ [µ]; and that

each row (resp. column) contains setwise the same symbols, each of which are clear from

the construction. Then the µ arrays Tα form a µ-way latin trade of order v.

We are left to show T is (v + n −
∑n

i=1 di − d∞)-homogeneous. To show that there are

v + n −
∑n

i=1 di − d∞ filled cells in each row, observe that for each symbol r and each

resolution class Ri, there is precisely one block bi such that r ∈ bi ∈ Ri, for each i with

1 ≤ i ≤ n or i = ∞. Then any filled cells in row r are in the cells bi × bi for some i

with 1 ≤ i ≤ n or i = ∞. There are |bi| − di filled cells in the intersection of row r

and the block of cells bi × bi, for 1 ≤ i ≤ n and i = ∞, showing row r has a total of∑n
i=1(|bi|−di)+(|b∞|−d∞) = v+n−

∑n
i=1 di−d∞ filled cells. The proof is analogous for

the number of filled cells per column and for the number of occurrences of each symbol.

This shows T is a µ-way latin trade of order v that is (v+n−
∑n

i=1 di−d∞)-homogeneous,

so we are done.

Theorem 3.4.12. Suppose there exists a RPBD(v,M, 1, n + 1), (V,B) with resolution

classes R1, . . . , Rn and R∞. Suppose there exists integers di ≥ 1, 1 ≤ i ≤ n, such that for

each b ∈ Ri there exists an idempotent (µ, |b|−di, |b|)-latin trade and integer d∞ ≥ 1 such

that for each b ∈ R∞ there exists an idempotent (µ, |b| − d∞, |b|)-latin trade. Then there

exists an idempotent (µ, v + n−
∑n

i=1 di − d∞, v)-latin trade.

Proof. Consider the µ v × v arrays T = (T1, . . . , Tµ) from Construction 3.4.11 using

idempotent (µ, |b| − di, |b|)-latin trades to fill in the squares b× b, for blocks b ∈ R∞.

The proof of Theorem 3.4.10 shows T is a (µ, v+n−
∑n

i=1 di−d∞, v)-latin trade. We show

that T is idempotent. Assume for the sake of contradiction that T is not idempotent.

Then there exists a (r, c, e) ∈ Tα with at least two of the three indices r, c, e the same.

This only occurs when the block x with {r, c, e} ⊆ x and x ∈ Ri was used along with a

non-idempotent (µ, k, |x|)-latin trade to construct the cell (r, c, e) ∈ Tα. But there is no

61

such x as each of the (µ, k, |x|)-latin trades are idempotent. Then T is idempotent.

We wish to choose an RPBD(v,M, 1, n + 1) with resolution classes R1, . . . , Rn and R∞

such that there will exist idempotent (µ, |b|−di, |b|)-latin trades for each b ∈ Ri, for some

di ≥ 1 and i ∈ {1, . . . , n,∞}. By making M contain as few values as possible, we can limit

the number of idempotent (µ, k,m)-latin trades that are required to exist, as |b| ∈M . A

resolvable transversal design is a RPBD(αn, {α, n}, 1, n+ 1), and so suits our purposes as

|M | ≤ 2. We are able to modify the resolvable transversal design by removing elements

in order to yield RPBD(v,M, 1, n + 1) such that v can be any positive integer, while M

contains as few values as possible.

Definition 3.4.13. A transversal design TD(α, n) of order n and block size α, is a triple

(V,G,B) such that:

1. V is a set of αn elements;

2. G is a partition of V into α subsets (called the groups), each of size n;

3. B is a collection of subsets of V (called the blocks), each of size α ; and

4. every unordered pair of elements of V appears in precisely one block of B, or one

group of G, but not both.

Definition 3.4.14. A resolvable transversal design RTD(α, n) of order n and block size

α, is a triple (V,G,B) such that B can be partitioned into n resolution classes R1, . . . , Rn,

such that each Ri is a partition of V into n classes.

The following two lemmata are well known (See III.3.2 and III.3.3 in [33]).

Lemma 3.4.15. A RTD(α, n) is equivalent to a TD(α + 1, n).

Lemma 3.4.16. For n a prime power and α ≤ n, there exists a TD(α+ 1, n) and hence

there exists a RTD(α, n).

62

Construction 3.4.17. Consider a RTD(α, n) (V,G,B) with resolution classes R1, . . . , Rn,

and let G = {G1, . . . , Gα}. We take 0 ≤ x ≤ n, 0 ≤ γ ≤ α and 0 ≤ u ≤ n − x. We

will form a RPBD(v,M, 1, n+ 1), (V̂ , B̂), by deleting a set of (n− x)γ + u points, which

we label as V̄ . The points V̄ that we delete will be n − x points from Gi for each i with

α − γ + 1 ≤ i ≤ α, and u points of Gα−γ. Each point that was removed from a group is

also removed from any block that contains it. This gives point set V̂ = V \ V̄ , block set

B̂ = {b \ V̄ | b ∈ G∪B}, and n+ 1 resolution classes R̂i = {b \ V̄ | b ∈ Ri} for 1 ≤ i ≤ n

and R̂∞ = {b \ V̄ | b ∈ G}.

This results in a RPBD(nα− nγ + xγ − u,M, 1, n+ 1) with M = {α− (γ + 1), . . . , α} ∪

{x, n− u, n}.

It will be useful to summarize the results of this section, which yield the following lemma:

Lemma 3.4.18. Take n a prime power and positive integers α, x, γ, and u such that

α ≤ n, 0 ≤ x ≤ n, 0 ≤ γ ≤ α, and 0 ≤ u ≤ n − x. Suppose there exists integers di ≥ 1,

1 ≤ i ≤ n and d∞ ≥ 1, such that for each b with α − (γ + 1) ≤ b ≤ α there exists

an idempotent (3, b − di, b)-latin trade when 1 ≤ i ≤ n, and for each b ∈ {x, n − u, n}

there exists an idempotent (3, b − d∞, b)-latin trade. Then there exists an idempotent

(3, v + n−
∑n

i=1 di − d∞, v)-latin trade, where v = nα− nγ + xγ − u.

Proof. For these values of n, α, x, γ, and u, Lemma 3.4.16 gives us a RTD(α, n), which

we can use in Construction 3.4.17 to yield a resolvable pairwise balanced design that can

be used in Theorem 3.4.12 along with the given idempotent (3, b− di, b)-latin trades that

have been assumed to exist, for i ∈ {1, . . . , n,∞}, to yield the result.

63

3.5 Result when µ = 3

We will develop an inductive proof for the existence of idempotent (3, k,m)-latin trades

for m > 194, however we will require the knowledge of the existence of a great deal of base

cases. To this end, we will use a computer program to combine the results so far stated

in this chapter to deduce the spectrum IS3
m for m ≤ 218. We will create two computer

programs, Program A and Program B, which are implemented in C++ [62].

We begin by finding the spectrum IS3
m for m ≤ 5618 using Program A. The value

5618 = 2 · 532 was chosen as there was some difficulty filling in the spectrum IS3
5618 later

on, stemming from the fact that not enough is known about IS3
2·53, and so Lemma 3.4.2

cannot be used to fill in the spectrum IS3
5618. We split the computation into four parts.

Parts 1, 2, and 4 are straightforward to program, but there is some complications with

Part 3. We begin with a (5618 + 1) × (5618 + 1) array of booleans A = [ak,m], where

we set ak,m = false for each 0 ≤ k,m ≤ 5618. When we find that there does exist an

idempotent (3, k,m)-latin trade, we set ak,m = true.

PART 1: As there trivially exists an idempotent (3, 0,m)-latin trade, we set a0,m = true

for each 0 ≤ m ≤ 5618. As the existence of idempotent (3, k,m)-latin trades in Theorem

3.3.5, Theorem 3.3.10, Theorem 3.4.1, and Theorem 3.4.7 do not depend on the existence

of smaller idempotent (3, k′,m′)-latin trades, we set ak,m = true for these values.

We can use the idempotent (2, k1, 2m
′ + 1)-latin trades of Theorem 3.3.9 when 3 ≤ k1 <

2m′ + 1, 2m′ + 1 ≥ 5, and (k, 2m′ + 1) 6= (3, 5), along with the (2, k2,m2)-latin trades of

Theorem 3.2.5 for 2 ≤ k2 ≤ m2, with ki = 2 only if mi is even, with Theorem 3.3.2 to yield

an idempotent (3, k1k2, (2m
′ + 1)m2)-latin trade. This does not depend on the existence

of smaller idempotent (3, k,m)-latin trades, so we set ak1k2,(2m′+1)m2 = true under these

conditions.

PART 2: Theorem 3.3.1 and Theorem 3.3.3 each require the knowledge of the existence

64

of smaller idempotent (3, k,m)-latin trades, however we can gather this information from

what we have stored in A. Theorem 3.3.3 also uses the existence of non-idempotent

(3,m,m)-latin trades, and a non-idempotent (3, 5, 6)-latin trade (an example of a (3, 5, 6)-

latin trade is shown in the next section).

PART 3: Programming Lemma 3.4.18 is not completely straightforward, as the time

required can be quite large if not done with due care. We implement Lemma 3.4.18 twice.

The first implementation uses d∞ = 1, and the second implementation uses γ = 0. Both of

these restrictions speed up the computation immensely, and the values not covered by one

are covered by the other. By first looping over α and γ, we can store the values of di such

that there exists an idempotent (3, b−di, b)-latin trade for each b with α−γ− 1 ≤ b ≤ α.

Then we are able to find the possible values of
∑n

i=1 di without much extra computation

as we increase n, by storing the previously computed values of
∑n−1

i=1 di.

PART 4: We once again apply the procedure for Theorem 3.3.1, which fills in a couple of

gaps in the spectrum introduced incidentally in Part 3.

Performing this computation gives the following lemma:

Lemma 3.5.1. For 14 ≤ m ≤ 5618, there exists idempotent (3, k,m)-latin trades for

5 ≤ k ≤ m except, perhaps, for those values in Table 3.1.

We need to extend the base results further, which we achieve by way of another computer

program, Program B. We begin with an array of 218 + 1 booleans B = [bm], where we set

bm = false for each 0 ≤ m ≤ 218. When we find that there exists idempotent (3, k,m)-

latin trades for every 5 ≤ k ≤ m, we set bm = true. We begin by setting the values of bm

to be true when the values ak,m each are true for 5 ≤ k ≤ m. Then Lemma 3.4.2 with

y = 5 tells us that we can set bnm to be true whenever m ≥ 10, bm is true, n ≥ 3, and if

n = 6 then m ≥ 20.

In the case that m is a prime or twice a prime, we can apply Theorem 3.4.1 and Theorem

65

3.4.7 to yield idempotent (3, k,m)-latin trades for 5 ≤ k ≤ l1, and we can apply Lemma

3.4.18 with x = 7 to yield idempotent (3, k,m)-latin trades for l2 ≤ k ≤ m, for some

integers l1, l2. To save computation, we only consider Lemma 3.4.18 with γ ∈ {0, 1}

and d∞ = 1. Note that this means (3, b − d∞, b)-latin trades always exist for b ≥ 7,

as stated in Theorem 3.3.5. Our program checks if bα−2 = bα−1 = bα = true for each

α ≥ 16 and n ≥ α. In this case, we assume di ≤ α − 7. Then the conditions of

a (3, α − (γ + 1) − di, α − (γ + 1))-latin trade existing hold independently of whether

γ = 0 or γ = 1. Then it will be more convenient to write u′ = γ(n − 7) + u. If

so, for each m = nα − u′ with n ≥ α, 0 ≤ u′ ≤ 2(n − 7), and m a prime or twice

a prime, we know that there exists an idempotent (3, k,m)-latin trade for each k with

m + n − n(α − 7) − 1 = 8n − u′ − 1 ≤ k ≤ m − 1. To find the existence of idempotent

(3, k,m)-latin trades with 5 ≤ k < 8n−u′−1, we find the greatest λ with m = λ(λ+a)+b,

a > b, gcd(m,λ) = 1, and λ ≥ 5. Then Theorem 3.4.7 yields the existence of idempotent

(3, k,m)-latin trades with 18 ≤ k ≤ λ2. There exists idempotent (3, k,m)-latin trades

for 5 ≤ k ≤ 17 by Theorem 3.4.1. If 8n − u′ − 1 ≤ λ2, then there exists an idempotent

(3, k,m)-latin trade for 5 ≤ k ≤ m− 1, and so we set bm to be true.

Performing this computation gives the following lemma:

Lemma 3.5.2. For 14 ≤ m ≤ 218, there exists idempotent (3, k,m)-latin trades for

5 ≤ k ≤ m except, perhaps, for those values in Table 3.1.

We have been able to apply Lemma 3.4.18 in this computation as we have been able to

run a procedure to check which integers n are prime powers. In order to create a theoretic

construction, we restrict the prime powers that we use, so that n is of the form 2p, for an

integer p. We are then able to show, despite this restriction, that Lemma 3.4.18 can yield

a large portion of the spectrum of (3, k,m)-latin trades for all m ≥ 218.

Lemma 3.5.3. Take p ≥ 10. Suppose there exists idempotent (3, k′,m′)-latin trades for

5 ≤ k′ ≤ m′ − 1 and 2p−2 − 6 ≤ m′ ≤ 2p. Then there exists idempotent (3, k,m)-latin

66

trades for 14 · 2p ≤ k ≤ m and 22p−2 < m ≤ 22p.

Proof. Take α = n = 2p, p ≥ 10, 0 ≤ γ ≤ γmax, γmax = 2p − 2p−2 + 5, x = 7, and

0 ≤ u ≤ n − 7. We assume the existence of idempotent (3, k′,m′)-latin trades when

5 ≤ k′ ≤ m′−1 and α− (γmax +1) ≤ m′ ≤ α, noting that α− (γmax +1) = 2p−2−6. There

exists a (3,m′ − 1,m′)-latin trade for m′ ∈ {7, n− u, n} by Theorem 3.3.5, as m′ ≥ 7.

Then Lemma 3.4.18 with these idempotent (3, k′,m′)-latin trades yields an idempotent

(3,m + n −
∑n

i=1 di − d∞,m)-latin trade with m = nα − γ(n − 7) − u, where 1 ≤ di ≤

α − (γ + 1) − 5 for 1 ≤ i ≤ n, and d∞ = 1. Taking di ≤ α − (γ + 1) − 5 assures

us that m′ − di ≥ 5 for each m′ with α − (γ + 1) ≤ m′ ≤ α, and so an idempotent

(3,m′ − di,m′)-latin trade exists by our assumptions.

Then this procedure yields an idempotent (3, k,m)-latin trade for each k ∈ {m+n−n(α−

(γ+1)−5)−1, . . . ,m−1} = {7γ+7n−u−1, . . . ,m−1} ⊇ {14n, . . . ,m−1}, which holds for

each m = nα−γ(n−7)−u within nα−(γmax +1)(n−7) ≤ m ≤ nα. In particular, it holds

that nα−(γmax+1)(n−7) = 22p−(2p−2p−2+6)(2p−7) = 2p−2−3·2p−2+42 ≤ 22p−2 and so

there exists an idempotent (3, k,m)-latin trade for 22p−2 ≤ m ≤ 22p and 14·2p ≤ k ≤ m−1,

showing the result.

Theorem 3.5.4. For m ≥ 5, there exists an idempotent (3, k,m)-latin trade for 5 ≤ k ≤

m−1 except possibly for those values in Table 3.1 and when (k,m) ∈ {(5, 6), (5, 10), (5, 13)}.

Proof. Define P (r) to be the statement “There exists idempotent (3, k,m)-latin trades

for each 5 ≤ k ≤ m− 1 and 2r−1 − 6 ≤ m ≤ 2r”.

Lemma 3.5.2 shows P (r) is true for 9 ≤ r ≤ 18. Assume for the sake of strong induction

that P (r) is true for 9 ≤ r < R, with R ≥ 19. Then P (dR
2
e − 1) and P (dR

2
e) are true, as

9 ≤ dR
2
e−1 < R. This makes the premise of Lemma 3.5.3 with p = dR

2
e true, and so there

exists an idempotent (3, k,m)-latin trade for 14 · 2dR2 e ≤ k ≤ m− 1 and 2R−1 ≤ m ≤ 2R,

67

as 22dR
2
e−2 ≤ 2R−1 and 2R ≤ 22dR

2
e. As P (R − 1) is true, we can apply Theorem 3.3.4

with k′ = 2R−2 and for each k ∈ {5, . . . , 2R−2−1}, which yields idempotent (3, k,m)-latin

trade for 5 ≤ k ≤ 2R−2− 1 and 2R−1 ≤ m ≤ 2R. As 14 · 2dR2 e ≤ 2R−2− 1, this shows there

exists an idempotent (3, k,m)-latin trade for 5 ≤ k ≤ m − 1 and 2R−1 ≤ m ≤ 2R, and

so P (R) is true. By strong induction, P (r) is true for r ≥ 9. Theorem 3.4.1 and Lemma

3.5.2 complete the result when 5 ≤ m < 28 − 6.

3.6 Results

As ISµm ⊆ Sµm, the results of Theorem 3.5.4 also yield the existence of (3, k,m)-latin trades

for identical values of k and m. There are a few more non-idempotent (3, k,m)-latin trades

that we can find.

There does not exist a large set of idempotent latin squares of order n = 6, however there

does exist a (4, 5, 6)-latin trade given by:

(2, 3, 4, 5) • (1, 4, 5, 3) (5, 2, 1, 4) (3, 5, 2, 1) (4, 1, 3, 2)

• (3, 2, 5, 4) (6, 3, 4, 5) (4, 5, 2, 6) (5, 6, 3, 2) (2, 4, 6, 3)

(1, 4, 5, 3) (4, 5, 3, 6) (5, 1, 6, 4) • (6, 3, 1, 5) (3, 6, 4, 1)

(4, 5, 2, 1) (5, 6, 4, 2) • (1, 4, 6, 5) (2, 1, 5, 6) (6, 2, 1, 4)

(5, 1, 3, 2) (6, 3, 2, 5) (3, 5, 1, 6) (2, 6, 5, 1) (1, 2, 6, 3) •

(3, 2, 1, 4) (2, 4, 6, 3) (4, 6, 3, 1) (6, 1, 4, 2) • (1, 3, 2, 6)

Here, the partial latin squares have been concatenated, so that cell (r, c) has been filled

with the ordered 4-tuple given by (t1(r, c), t2(r, c), t3(r, c), t4(r, c)), where the four partial

68

latin squares Ti = [ti(r, c)], 1 ≤ i ≤ 4, form the (4, 5, 6)-latin trade. Then this yields a

non-idempotent (3, 5, 6)-latin trade.

Applying Theorem 7 of [7] to the combination of a (3, 5, 6)-latin trade and a (3, 5, 7)-latin

trade yields a (3, 5, 13)-latin trade. There exists a (3,m,m)-latin trade for m ≥ 3 by The-

orem 3.2.6, and a (3,m, 2m)-latin trade by applying Theorem 7 of [7] to the combination

of two (3,m,m)-latin trades. Then the primary result of this chapter, combined with

previous results [7], can be written as the following theorem:

Theorem 3.6.1. For m ≥ 4 there exists a (3, k,m)-latin trade for 4 ≤ k ≤ m except,

perhaps, for those unstared values in Table 3.1 and for (k,m) = (4, 11), and except for

those values with (k,m) ∈ {(4, 6), (4, 7)}. For m ≥ 3, there exists a (3, 3,m)-latin trade

only when 3|m.

This leaves us with 194 exceptions for which we do not know if a (3, k,m)-latin trade

exists, and 2 exceptions when we know that there does not exist a (3, k,m)-latin trade.

3.7 Future work

Given the relative success of finding base rows from Theorem 3.4.1, where the program

terminated rather early within the search space, it seems reasonable that (3, k,m)-latin

trades with values in Table 3.1 could exist, and we can use this as evidence towards a

conjecture:

Conjecture 3.7.1. There exists a (3, k,m)-latin trade exactly when k = 3 and 3|m, and

when 4 ≤ k ≤ m, except in the cases that (k,m) ∈ {(4, 6), (4, 7), (4, 11)}.

It also seems that similar techniques used in this chapter could be used to fill in the

spectrum of (4, k,m)-latin trades. In addition, it may be of interest to investigate the

spectrum of circulant (µ, k,m)-latin trades.

69

m k
22 19
23 19, 20, 21
26 19, 21, 23
29 19, 20, 21, 22, 23, 24, 25, 26, 27
31 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29
34 19, 21, 23, 25, 27, 29, 31
37 33, 34, 35
38 19∗, 21, 23, 25, 27, 29, 31, 33, 35
41 35, 36, 37, 38, 39
43 36, 37, 38, 39, 40, 41
46 27, 29, 31, 33, 35, 37, 39, 41, 43
53 50, 51
58 29∗, 31, 33, 35, 37, 39, 41, 43, 45, 47, 49, 51, 53, 55
59 55, 56, 57
62 31∗, 33, 35, 37, 39, 41, 43, 45, 47, 49, 51, 53, 55, 57, 59
74 35, 37∗, 39, 41, 43, 45, 47, 49, 51, 53, 55, 57, 59, 61, 63, 65, 67, 69, 71
82 41∗, 43, 45, 47, 49, 51, 53, 55, 57, 59, 61, 63, 65
86 51, 53, 55, 57, 59, 61, 63, 65, 67, 69
94 51, 53, 55, 57, 59, 61, 63, 65
106 53∗, 55, 57, 59, 61, 63, 65, 67, 69
122 59, 61, 63, 65, 67, 69, 71, 73, 75, 77
134 67∗, 69, 71, 73, 75, 77, 79, 81, 83, 85, 87, 89, 91, 93
146 83, 85, 87, 89, 91, 93, 95, 97, 99, 101
158 83, 85, 87, 89, 91
194 97∗, 99, 101

Table 3.1: Values where no idempotent (3, k,m)-latin trade is known to exist with 6 ≤
k ≤ m − 1. The starred values indicate when a non-idempotent (3, k,m)-latin trade is
known to exist.

70

A µ-way latin trade (Q1, . . . , Qµ) can be said to be primary if there is no µ-way latin

trade (R1, . . . , Rµ) such that Rα (Qα. A µ-way latin trade is said to be minimal if there

is no partial latin square R (Q1 such that there exists a 2-way trade (R,R′). Primary

(2, k,m)-latin trades were conjectured to exist for 3 ≤ k ≤ m in [30]. It would be of

interest to investigate primary and minimal (µ, k,m)-latin trades in the future.

71

Chapter 4

Enumeration of MNOLS

4.1 Introduction

The study of mutually orthogonal latin squares (MOLS) is a subject that has attracted

much attention. Such interest has been stimulated by the relevance of the field, with ap-

plications in error correcting codes, cryptographic systems, affine planes, compiler testing,

and statistics (see [58]). Although, as it is well known, there exists a set of n− 1 MOLS

of order n when n is a prime or a prime power, the largest number of MOLS of order n

known to exist when n is even is generally much smaller and such sets of MOLS are hard

or impossible to find; there does not exist 2 MOLS of order 6, and it is unknown whether

three MOLS of order 10 exists or not.

Based upon the significance and usefulness that is exhibited in the study of MOLS,

Raghavarao, Shrikhande, and Shrikhande [76] introduced a modification to the defini-

tion of orthogonality to overcome restrictions for the even order case. Recall that a pair

of latin squares L1, L2 of even order n are called nearly orthogonal if the superimposition

of L1 and L2 contains each ordered pair of symbols (l, l′) exactly once, except in the case

72

l = l′, where no such pair occurs, and in the case l ≡ l′ + n/2 (mod n), where such pairs

occur twice. We consider collections of µ latin squares of order n that are pairwise nearly

orthogonal, which are denoted as collections of µ MNOLS of order n. Traditionally these

collections are unordered sets, although we will also consider ordered lists.

An orderly algorithm is a way of generating all examples of some combinatorial object,

such that all equivalence classes appear in the generation, but during the generation no

two objects constructed are equivalent. This technique is typically attributed to [45] and

[77]. A similar technique, called canonical augmentation [67], has been used to generate

latin rectangles by augmenting a row at a time (see also [57][71]). This is not the only

method of enumerating latin rectangles, and a variety of enumerative techniques have

been applied to solve it (see [72] and the citations contained within). Recently, this

work has lead to the enumeration of MOLS for order less than or equal to 9 [42]. In a

similar vein, we will perform three orderly algorithms that generate collections of cyclic

µ MNOLS of order n under several equivalences. See [55] for a general reference on this

kind of enumeration problem.

The pioneering work [76] on sets of µ MNOLS of order n investigated an upper bound

on µ when n is fixed, and they showed that if there exists a set of µ MNOLS of order n,

then µ ≤ n/2 + 1 for n ≡ 2 (mod 4) and µ ≤ n/2 for n ≡ 0 (mod 4). In the case that a

set of µ MNOLS of order n obtains this bound, it is called a complete set of µ MNOLS

of order n.

The authors proceeded to explore the existence of sets of µ MNOLS of order n by inves-

tigating µ cyclic MNOLS of order n; that is each latin square L has (r, c, e) ∈ L if and

only if (r, c+ 1, e+ 1) ∈ L for all r, c ∈ [0, n− 1], recalling that the entries are taken mod

n. The sets of µ MNOLS of order n that were found included single examples of sets of

two cyclic MNOLS of order 4, three cyclic MNOLS of order 6, and three cyclic MNOLS

of order 8, demonstrating that the bound is tight for n = 4. It was later shown [75] that

73

there does not exist four MNOLS of order 6, and so the bound is not tight for n = 6.

Further results [61] showed sets of three MNOLS of order n exist for even n ≥ 358.

The authors also introduced a concept of equivalence between sets of µ cyclic MNOLS

of order n called isotopic equivalence (details in Section 4.2). They found the number of

isotopically non-equivalent sets of µ cyclic MNOLS of order n for n ≤ 12. The number of

these sets of µ cyclic MNOLS of order n is given in Table 1.1.

The existence of three cyclic MNOLS of orders 48k+ 14, 48k+ 22, 48k+ 38, and 48k+ 46

when k ≥ 0 was documented in [35], and also in [36], which verified that there exists a

set of three MNOLS of order n for all even n ≥ 6, except perhaps when n = 146.

In the current chapter, we find the maximum µ such that there exists a set of µ cyclic

MNOLS of order n for n ≤ 16, as well as providing a full enumeration of sets and lists

of µ cyclic MNOLS of order n under a variety of equivalences with n ≤ 16. This will

resolve in the negative a conjecture of [61] that proposed the maximum µ for which a set

of µ cyclic MNOLS of order n exists is dn/4e + 1 (the maximum µ appears erroneously

as dn/8e+ 1 in the original conjecture [78], and the maximum value we have written was

the intended conjecture).

4.2 Further definitions

We will enumerate both ordered lists and unordered sets of µ MNOLS of order n. A set

of µ MNOLS of order n is a set {L1, . . . , Lµ} such that Li, Lj are nearly orthogonal for

1 ≤ i, j ≤ µ, i 6= j. A list of µ MNOLS of order n is an ordered list (L1, . . . , Lµ) such that

Li, Lj are nearly orthogonal for 1 ≤ i, j ≤ µ, i 6= j. This distinction will be important

when we enumerate collections of µ MNOLS of order n. We will write collection when

a statement holds for either a list or set. A list of µ MNOLS of order n (L1, . . . , Lµ) is

74

reduced if L1 has its first row and column in natural order.

We assume the 3 components of such a triple are taken mod n, so that (r, c, e + n) =

(r, c+ n, e) = (r + n, c, e). We also write L(r, c) = e when (r, c, e) ∈ L.

Define an ordering / on the set of all latin squares of order n as follows: for two latin

squares, L and M , we have L / M if and only if either L = M or there is some i, j ∈

{1, . . . , n} such that L(i, j) < M(i, j) and L(i′, j′) = M(i′, j′) whenever either i′ < i or

both i′ = i and j′ < j. It can be proved that this is a total ordering.

Take the total order C on lists on µ MNOLS of order n to be such that for two lists of µ

MNOLS of order n, L = (L1, . . . , Ln) and M = (M1, . . . ,Mn), we have L CM if either

L = M or there is 1 ≤ β ≤ µ such that Lβ / Mβ and Lβ′ = Mβ′ for β′ < β. Such an

ordering is known as dictionary ordering when we consider a list of µ latin squares of

order n to be an element of ([n]3)n
2·µ.

Given a group G and set Ω, a function h : Ω × G → Ω is a group action if for all α ∈ Ω

and a, b ∈ G, h(h(α, a), b) = h(α, ab) and h(α, e) = α, where e ∈ G is the identity element

of G. Then Ω is a G-space when equipped with such a group action. The orbit of α ∈ Ω

is α ·G = {h(α, g) | g ∈ G}, and the stabilizer of α ∈ Ω is Gα = {g ∈ G | h(α, g) = α}. If

there is just one orbit, Ω is a transitive G-space.

Consider the group actions on group G = S3
n (the direct product Sn×Sn×Sn) and set Ω,

where Ω is a set of collections of latin squares of order n. Given a (σR, σC , σE) ∈ S3
n and a

collection of latin squares L ∈ Ω, we define h : Ω× S3
n → Ω by setting h(L, (σR, σC , σE))

to be the collection of latin squares that is obtained by uniformly permuting the rows

(resp. columns, symbols) of the latin squares in L by σR (resp. σC , σE). Clearly Ω must

be defined so that h : Ω×G→ Ω. As a form of shorthand, we write L(σR, σC , σE) instead

of h(L, (σR, σC , σE)).

Two lists of µ MNOLS of order n, L and N , are list-isotopic if there exists (σR, σC , σE) ∈

75

S3
n withN = L(σR, σC , σE). Two sets of µ MNOLS of order n are isotopic if some ordering

of the latin squares within each set gives two list-isotopic lists of µ MNOLS of order n.

Two lists of µ MNOLS of order n, L and N , are set-isotopic if forgetting the order on

the lists gives two isotopic sets of µ MNOLS of order n. Clearly the number of sets of µ

MNOLS of order n that are distinct up to isotopy is the same as the number of lists of µ

MNOLS of order n up to set-isotopy.

4.3 Cyclic MNOLS

We take I = In ∈ Sn to be the identity permutation of order n, τ = τn ∈ Sn to be the

permutation that is a cyclic shift of size one, i.e. τ(j) ≡ j+ 1 (mod n) for 0 ≤ j < n, and

mx = mx,n ∈ Sn to be the permutation defined as mx(j) = j · x (mod n) for 0 ≤ j < n,

where 1 ≤ x < n and gcd(x, n) = 1. In the following four lemmata, we describe those

(σR, σC , σE) ∈ S3
n such that given a collection of cyclic MNOLS L, L(σR, σC , σE) is also

a collection of cyclic MNOLS. For the following, recall that each component of a triple

(r, c, e) ∈ L is taken modulo n.

Taking a collection of µ MNOLS of order n, L, if L(σR, σC , σE) is a collection of µ MNOLS

of order n then it is immediate clear that σE(y+n/2) = σE(y)+n/2 for all 0 ≤ y ≤ n/2−1,

in order to preserve near orthogonality. The converse is also true:

Lemma 4.3.1. Consider a collection of µ MNOLS of order n, L, along with (σR, σC , σE) ∈

S3
n such that σE(y+n/2) ≡ σE(y)+n/2 mod n, for all 0 ≤ y < n/2. Then L(σR, σC , σE)

is also a collection of µ MNOLS of order n.

Proof. Take latin squares L1 6= L2 to be in L and latin squares L′1, L
′
2 to be L1 and L2

with rows, columns, and symbols permuted by σR, σC , and σE. Consider the multisets

P = {(e, e′) | (r, c, e) ∈ L1 and (r, c, e′) ∈ L2 for r, c ∈ {0, . . . , n − 1}} and also P ′ =

76

{(e, e′) | (r, c, e) ∈ L′1 and (r, c, e′) ∈ L′2 for r, c ∈ {0, . . . , n− 1}}. The ordered pair (e, e′)

appears in P if and only if the ordered pair (σE(e), σE(e′)) appears in P ′. As each pair

(e, e+ n/2) appear twice in P (recalling that each symbol is taken modulo n), then each

pair (σE(e), σE(e+n/2)) = (σE(e), σE(e)+n/2) appear twice in P ′. No pair (e, e) appears

in P ′, or else (σ−1
E (e), σ−1

E (e)) would appear in P , which we know it does not. Each other

possibility (e, e′) clearly appears precisely once in P ′ because (σ−1
E (e), σ−1

E (e′)) appeared

precisely once in P . Therefore the conditions are satisfied for L′1 and L′2 to be nearly

orthogonal to each other, and so L′ is a collection of µ MNOLS of order n.

Permuting the rows in a collection of cyclic MNOLS does not destroy the cyclic property:

Lemma 4.3.2. Consider a collection of µ MNOLS of order n, L, and permutation σR ∈

Sn. If L is cyclic, then so is L(σR, I, I).

Proof. Consider latin squares L ∈ Land L′ ∈ L(σR, I, I) such that L′ is the latin square

that is obtained by permuting the row indexes of L by σ. For every cell (r, c, e) ∈ L′,

there must be a cell (σ−1(r), c, e) ∈ L. As L is cyclic, (σ−1(r), c + 1, e + 1) ∈ L, but this

must mean that (σ(σ−1(r)), c + 1, e + 1) = (r, c + 1, e + 1) ∈ L′. This implies L(σR, I, I)

is cyclic.

Simultaneously cycling the columns and symbols has no effect on a collection of cyclic

MNOLS:

Lemma 4.3.3. Consider a collection of µ cyclic MNOLS of order n, L. Then L =

L(I, τ i, τ i), for 0 ≤ i < n, recalling τ(x) = x+ 1 mod n for x ∈ {0, . . . , n− 1}.

Proof. Consider latin squares L ∈ L and L′ ∈ L(I, τ i, τ i) such that L′ is obtained by

permuting the column and symbol indexes of L by τ i. As L is cyclic, for every cell

77

(r, c, e) ∈ L, there must be a cell (r, c − i, e − i) ∈ L. But then (r, τ i(c − i), τ i(e − i)) =

(r, c, e) ∈ L′. The result follows.

If uniformly permuting the columns and the symbols of a collection of MNOLS does not

remove the cyclic property, then the permutation applied must be of a certain form:

Lemma 4.3.4. Consider a collection of µ MNOLS of order n, L, and permutations

σC , σE ∈ Sn such that σE(y + n/2) ≡ σE(y) + n/2 mod n, for all 0 ≤ y < n/2. If

both L and L(I, σC , σE) are cyclic, then σC = mx · τσC(0) and σE = mx · τσE(0), where

x = σE(1)− σE(0) = σC(1)− σC(0) and gcd(x, n) = 1.

Proof. Take L ∈ L and L′ ∈ L(I, σC , σE), so that cell (r′, c′, e′) ∈ L if and only if cell

(r′, σC(c′), σE(e′)) ∈ L′. For each symbol i there is a row r with (r, 0, i) ∈ L, and because

L is cyclic (r, 1, i+ 1) ∈ L. Then (r, σC(0), σE(i)), (r, σC(1), σE(i+ 1)) ∈ L′, and because

L′ is cyclic, σE(i+ 1)− σE(i) = σC(1)− σC(0). Thus σE(i+ 1)− σE(i) is independent of

i and so set σE(i + 1) − σE(i) = x. This gives σE(1) − σE(0) = σC(1) − σC(0) when we

take i = 0. This also gives σE(i) = σE(0) + i · x, or equivalently σE = mx · τσE(0). Since

σE is a permutation, we must have gcd(x, n) = 1.

For each column j there is a row r with (r, j, 0) ∈ L, and because L is cyclic (r, j +

1, 1) ∈ L. Then (r, σC(j), σE(0)), (r, σC(j + 1), σE(1)) ∈ L′, and because L′ is cyclic,

σC(j+ 1)−σC(j) = σE(1)−σE(0) = x for all 0 ≤ i < n. This gives σC(j) = σC(0) + j ·x,

or alternately σC = mx · τσC(0).

These facts come together to tell us exactly the form of any (σR, σC , σE) ∈ S3
n such that

both L and L(σR, σC , σE) are cyclic MNOLS:

Lemma 4.3.5. Consider collection of µ cyclic MNOLS of order n, L and N . Then

78

N = L(σR, σC , σE) if and only if there exists integers 0 ≤ x, j′ < n with gcd(x, n) = 1,

such that N = L(σR,mx,mx · τ j
′
).

Proof. The reverse implication is clear, so we show the forward implication. Because

N = L(σR, σC , σE) is cyclic, then L(I, σC , σE) is cyclic by Lemma 4.3.2, which by Lemma

4.3.4 implies σC = mx · τσC(0) and σE = mx · τσE(0) for some x with gcd(x, n) = 1. But

then N = L(σR,mx · τσC(0),mx · τσE(0)) = L(σR,mx,mx · τσE(0)−σC(0)) by Lemma 4.3.3

with i = −σC(0). Taking j′ = σE(0)− σC(0) yields the result.

This aligns with previous work of Li and van Rees [61] on isomorphisms of (t, 2m)-

difference sets, which are equivalent to set-isotopisms of t MNOLS of order 2m.

4.4 Group actions for cyclic MNOLS

Let Cµ
n be the set of all lists of µ cyclic MNOLS of order n. From the previous section,

not every (σR, σC , σE) ∈ S3
n and L ∈ Cµ

n has L(σR, σC , σE) ∈ Cµ
n . In fact, Lemma 4.3.5

informs us of those (σR, σC , σE) that can be used.

Given a list of µ cyclic MNOLS of order n, L = (L1, . . . , Lµ), define the permutations

mx, τ , rσ : Cµ
n → Cµ

n by L ·mx = L(I,mx,mx), L · τ = L(I, I, τ), and L · rσ = L(σ, I, I),

for σ ∈ Sn, 1 ≤ x ≤ n− 1, and gcd(x, n) = 1. When L is cyclic, so is each of L ·mx, L · τ ,

and L · rσ by Lemma 4.3.5. Further, Lemma 4.3.5 yields that if L and L(σR, σC , σE) are

both cyclic MNOLS, there always exists σ ∈ Sn and 1 ≤ j, x ≤ n with gcd(x, n) = 1 such

that L(σR, σC , σE) = ((L · rσ) · τ j) ·mx.

Define M = {mx | 1 ≤ x ≤ n − 1 and gcd(x, n) = 1}, T = {τ i | 0 ≤ i ≤ n − 1}, and

R = {rσ | σ ∈ Sn}, each of which form a group under composition.

Given a list of µ cyclic MNOLS of order n, L = (L1, . . . , Lµ), we define the permutations

79

sσ : Cµ
n → Cµ

n by L · sσ = (Lσ(1), . . . , Lσ(µ)), for σ ∈ Sµ. Let S = {sσ | σ ∈ Sµ}, which

forms a group under composition. The orbit of these permutations on L, L · S, contains

as its elements any list of µ MNOLS of order n that becomes the set {L1, . . . , Lµ} when

we forget the ordering on the list.

We have previously defined a reduced list of µ MNOLS of order n, but we are yet to define

a reduced set of µ MNOLS of order n. Take L to be a list of µ MNOLS of order n. Notice

that the least element under C in the orbit L · 〈R〉 is a reduced list of µ MNOLS of order

n. We call the least element, say (L1, . . . , Lµ), under C in the orbit L · 〈R, S〉 set-reduced ,

and further we call the set {L1, . . . , Lµ} reduced .

From here, we will just consider the group actions h : Cµ
n × G → Cµ

n , where G is any

subgroup of 〈M,T,R, S〉. As Cµ
n is a G-space, it can be uniquely expressed as a disjoint

union of transitive G-spaces [18], specifically Cµ
n is the disjoint union of the orbits {L ·G |

L ∈ Cµ
n}, each of which is a transitive G-space.

The orbits L · 〈M,T,R, S〉 for L ∈ Cµ
n are called the set-isotopy classes of Cµn , and two

lists in the same set-isotopy class are called set-isotopic. The stabilizer Iss(L) = {α ∈

〈M,T,R, S〉 | L·α = L} is called the set-autotopy group of L, and each contained element

is called a set-autotopy of L. The number of distinct orbits L·〈M,T,R, S〉 over all L ∈ Cµ
n

is the number of sets of µ MNOLS of order n distinct up to isotopy. Note that 〈M,T,R, S〉

has order φ(n) · n · n! · µ!.

We will also be interested in the subgroups 〈M,T,R〉 ≤ 〈M,T,R, S〉, 〈R, S〉 ≤ 〈M,T,R, S〉,

〈R〉 ≤ 〈M,T,R, S〉, and 〈S〉 ≤ 〈M,T,R, S〉. Their orbits are called, respectively, the list-

isotopy classes, set-reduced classes, the list-reduced classes, and the set classes of Cµn . We

call the stabilizers of L ∈ Cµn , respectively, Isl(L), Reds(L), Redl(L), and Set(L). The

number of distinct orbits under these subgroups are respectively the number of lists dis-

tinct up to isotopy, the number of reduced sets, the number of reduced lists, and the

number of sets of µ MNOLS of order n.

80

This paper will find for n ≤ 16 and for each 2 ≤ µ ≤ 5:

1. the number of isotopy classes of sets of µ cyclic MNOLS of order n;

2. the number of isotopy classes of lists of µ cyclic MNOLS of order n;

3. the number of reduced sets of µ cyclic MNOLS of order n;

4. the number of reduced lists of µ cyclic MNOLS of order n;

5. the number of sets of µ cyclic MNOLS of order n;

6. the number of lists of µ cyclic MNOLS of order n;

For any L ∈ Cµ
n , both Redl(L) and Set(L) contain only the identity permutation L·e = L,

hence |Redl(L)| = 1 and |Set(L)| = 1, and so the orbit L · 〈R〉 has size n! and the orbit

L·〈S〉 has size µ!, independent of the choice of L. Each set-isotopy class can be partitioned

into classes corresponding to the other subgroups, and is closed in the sense that two lists

or sets that are equivalent under any of the equivalences must appear in the same set-

isotopy class. Our primary approach for the computer search for this problem is to find a

list of µ MNOLS of order n that represents each set-isotopy classes, and count how many

classes of each type appear within this set-isotopy class:

Lemma 4.4.1. Given L ∈ Cµn :

1. the number of list-isotopy classes within the set-isotopy class of L is:

µ! · |Isl(L)|/|Iss(L)|;

2. the number of set-reduced classes within the set-isotopy class of L is:

φ(n) · n · |Reds(L)|/|Iss(L)|;

3. the number of list-reduced classes within the set-isotopy class of L is:

φ(n) · n · µ! · |Redl(L)|/|Iss(L)| = φ(n) · n · µ!/|Iss(L)|;

81

4. the number of set classes within the set-isotopy class of L is:

φ(n) · n · n! · |Set(L)|/|Iss(L)| = φ(n) · n · n!/|Iss(L)|; and

5. the number of lists within the set-isotopy class of L is:

φ(n) · n · µ! · n!/|Iss(L)|.

Proof. By the orbit-stabilizer theorem.

4.5 Canonical forms

Given a partition of Cµn as Cµn = ∪αi=1Ci with Ci ∩ Cj = ∅ for 1 ≤ i < j ≤ α, a canonical

form is a function f : Cµn → Cµn such that for all L,M∈ Ci, f(L) = f(M) and f(L) ∈ Ci.

We will say the lists within Im(f) are canonical. We call M ∈ Ci with M = f(M)

the canonical representation of Ci (each of these M are canonical). This allows us to

represent each class of lists of µ latin squares of order n by a single list of µ MNOLS of

order n.

Typically, enumerations involving latin squares [54][72] utilize a conversion from a latin

square to a labeled graph where an isotopism applied to the latin square corresponds to

a certain relabeling of the vertices of the graph. Programs such as nauty [70] can be

used to find a canonical labelling of a graph, and by comparing the canonical labeling of

two graphs that correspond to two latin squares, it is easy to evaluate whether the two

latin squares are isotopic or not. Such programs are useful because they are the fastest

implemented solutions for the graph isomorphism problem, which is in NP , and hence

also for determining when two latin squares are isotopic or not.

During initial investigations it was found that the greatest portion of time taken by our

enumeration programs was spent calculating which pairs of latin squares were nearly or-

thogonal. Of these pairs of latin squares, only a small portion were nearly orthogonal and

82

would then go on to be checked for isotopisms, so isotopism checking occurred relatively

infrequent compared to checking for nearly orthogonality. This is atypical for latin square

based enumeration problems, as it is common that the greatest amount of time is spent

on isotopism checking. So while external software to find canonical representations of

classes of MNOLS may very well speed up our program, this speed up will be negligible.

Due to this, we have opted to use an explicit canonical form that is easy to explain.

We will use a canonical form with the property that removing the last latin square of any

list of µ MNOLS of order n that is canonical yields a list of µ− 1 MNOLS of order n that

is canonical. Then, as will be in two of our three algorithms, our approach is to use all

lists of µ−1 MNOLS of order n that are canonical, and extend these to lists of µ MNOLS

of order n that are canonical. We also wish to have some knowledge about which latin

squares we can append in order to avoid, as much as possible, creating a list of µ MNOLS

of order n that are not canonical.

Let Mi ∈ Ci be such that Mi C L for each L ∈ Ci. In this chapter we will consider the

canonical form f defined by f(L) = Mi, for L ∈ Ci. For example if we take Ci to be

the list-reduced classes, the canonical representation of each class is the unique list of µ

MNOLS of order n amongst the class that is reduced.

This aligns with our previous definition of reduced lists of µ MNOLS of order n, so rather

that saying such a list is canonical, we will now say it is list-reduced . If instead we take Ci

to be the set-reduced classes, we call the canonical representation of each class set-reduced .

Similarly we say a list is set-canonical if we take the partition of Cµ
n into set-isotopy classes,

and list-canonical if we take the partition of Cµ
n into list-isotopy classes.

Lemma 4.5.1. Given the partition of Cµn into set-isotopy classes and f a canonical form:

1. The number of set-isotopy classes in Cµn is |Im(f)|.

2. The number of list-isotopy classes in Cµn is
∑
L∈Im(f) µ! · |Isl(L)|/|Iss(L)|.

83

3. The number of set-reduced classes in Cµn is
∑
L∈Im(f) φ(n) · n · |Reds(L)|

|Iss(L)| .

4. The number of list-reduced classes in Cµn is LR =
∑
L∈Im(f) φ(n) · n · µ!/|Iss(L)|.

5. The number of set classes in Cµn is
∑
L∈Im(f) φ(n) · n · n!/|Iss(L)| = LR · n!

µ!
.

6. The number of lists in Cµn is
∑
L∈Im(f) φ(n) · n · µ! · n!/|Iss(L)| = LR · n!.

Proof. A consequence of Lemma 4.4.1.

4.6 Algorithms

There has been a history of errors in the enumeration of latin squares (this history is

described in [69]). As such, it has become standard practice in the enumeration of latin

squares and related structures to run at least two distinct programs to enumerate using two

different methods, and check the results are identical. We present 3 different algorithms

that when implemented arrived at the same results for µ ≥ 2 and n ≤ 14. The results of

this computation were independently verified by Fatih Demirkale. One of these algorithms

when implemented found a result for µ ≥ 2 and n = 16.

Any cyclic latin square can be generated by its first column. As such, we look for lists of

µ columns of size n that can generate lists of µ cyclic MNOLS of order n.

Algorithm A constructs all list-reduced lists of µ cyclic MNOLS of order n. Algorithm B

and Algorithm C will only construct the set-canonical representations of each set-isotopy

class, with the difference being that Algorithm B uses a basic depth first search, while

Algorithm C saves information of those cyclic latin squares that may be used, and uses

that to reduce repeated calculations.

Algorithm A works by using the canonical representation of a list-reduced class of (µ− 1)

cyclic MNOLS of order n, and adding possible cyclic latin squares in order to yield lists

84

of µ cyclic MNOLS of order n that are list-reduced, where 2 ≤ µ ≤ µ. In the case the

result is set-canonical, we calculate |Reds(L)|, |Isl(L)|, and |Iss(L)|. Whether or not the

result was set-canonical, we continue to add more cyclic latin squares recursively. After

completion, we merge the results and use Lemma 4.5.1 to find the total number of classes.

Algorithm B works by using the set-canonical representation of a set-isotopy class of (µ−1)

cyclic MNOLS of order n, and adding possible cyclic latin squares in order to yield lists of

µ cyclic MNOLS of order n before checking whether the resulting lists are set-canonical,

where 2 ≤ µ ≤ µ. If a result, say L, is set-canonical, it is the canonical representation of

a set-isotopy class of µ cyclic MNOLS of order n. In such a case, we calculate |Reds(L)|,

|Isl(L)|, and |Iss(L)|, before continuing to add more cyclic latin squares recursively. After

completion, we merge the results and use Lemma 4.5.1 to find the total number of classes.

Algorithm C begins by generating all columns that could be used to generate the second

latin square in a list of list-reduced two MNOLS of order n (See Algorithm A). It then

places those columns that form set-canonical MNOLS in list1, those that do not have 1

as their first entry in list2, and throwing away those that have 1 as their first entry but do

not form set-canonical MNOLS. For each A ∈ list1, create a list list3 that contains each

B ∈ list2 such that (A,B) generates a list of two cyclic MNOLS of order n. Construct a

graph with vertices in list3, and edges connecting points B1 and B2 if (B1, B2) generates a

list of two cyclic MNOLS of order n. Then each clique (e1, . . . , eα) corresponds to (α+ 2)

cyclic MNOLS of order n, generated by (I, A, e1, . . . , eα). For each clique, if the generated

(α+ 2) cyclic MNOLS of order n, L, is set-canonical, we calculate |Reds(L)|, |Isl(L)|, and

|Iss(L)|. After completion, we merge the results and use Lemma 4.5.1 to find the total

number of classes.

Finding cliques is usually a hard problem. This is not an issue for our calculations as

the clique size of our problem turns out to be very small. In fact, no cliques of size three

existed in our graph, and the computation time to prove this was negligible within our

85

Algorithm 1: Algorithm A

input : An integer µ with µ < µ;
A list of µ columns (C1, . . . , Cµ) that generate a list of µ cyclic MNOLS of order
n that is list-reduced;

output: The quadruple of integers ((1),(2),(3),(4)), a count of the number of lists of µ
columns (C1, . . . , Cµ, Dµ+1, . . . , Dµ) that generate lists of µ cyclic MNOLS of
order n that are (1) list-reduced, (2) set-reduced, (3) list-canonical, and (4)
set-canonical;

1 sum← (0, 0, 0, 0);
2 function extend1(µ,C1, . . . , Cµ)
3 function extend1(µ,C1, . . . , Cµ)
4 for columns P that form a permutation do
5 for i = 1 : µ do
6 if The pair of columns (Ci, P) does not generate two cyclic MNOLS of order n

then
7 go to the next possible column.

8 L ← the list of µ cyclic MNOLS of order n generated by (C1, . . . , Cµ, P)
9 if µ = µ− 1 then

10 if L is set-canonical then
11 sum← sum+ (1, 1, 1, 1)
12 else
13 if L is list-canonical then
14 sum← sum+ (1, 1, 1, 0)
15 else
16 if L is set-reduced then
17 sum← sum+ (1, 1, 0, 0)
18 else
19 sum← sum+ (1, 0, 0, 0)

20 else
21 sum← sum+ extend1(µ+ 1, C1, . . . , Cµ, P);

22 return sum;

86

Algorithm 2: Algorithm B

input : An integer µ with µ < µ;
A list of µ columns (C1, . . . , Cµ) that generate a list of cyclic µ MNOLS of order
n that is set-canonical;

output: A multiset of ordered triples, store, that for each set-isotopy class of µ MNOLS
of order n with canonical representative L that can be generated from
(C1, . . . , Cµ, Dµ+1, . . . , Dµ), store contains one triple (Iss(L), Isl(L),Reds(L));

1 store← ∅;
2 procedure extend2(µ,C1, . . . , Cµ)
3 for columns P that form a permutation do
4 for i = 1 : µ do
5 if The pair of columns (Ci, P) does not generate a list of two cyclic MNOLS of

order n then
6 break, and go to the next possible column P .

7 L ← the list of µ+ 1 cyclic MNOLS of order n generated by (C1, . . . , Cµ, P)
8 if L is set-canonical then
9 if µ = µ− 1 then

10 store← store ∪ {(Iss(L), Isl(L),Reds(L))}
11 else
12 store← store ∪ extend(µ+ 1, C1, . . . , Cµ, P)

13 return store

87

program as a whole.

Algorithm 3: Algorithm C

input : 1/ A list, list1, that contains all lists of columns such that C ∈ list1 implies
the pair of columns (I, C) generates a list of two cyclic MNOLS of order n that
is set-canonical;
2/ A list, list2, that contains all lists of columns such that C ∈ list2 implies the
pair of columns (I, C) generates a list of two cyclic MNOLS of order n that is
list-reduced and C does not contain 1 as its first element;

output: A multiset of ordered triples, store, that for each set-isotopy class of µ cyclic
MNOLS of order n with canonical representative L, store contains one triple
(Iss(L), Isl(L),Reds(L));

1 store← ∅;
2 vert(graph)← ∅;
3 edge(graph)← ∅;
4 for C1 ∈ list1 do
5 list3← ∅
6 for C2 ∈ list2 do
7 if (C1, C2) generates a list of two cyclic MNOLS of order n then
8 list3← list3 ∪ C2

9 vert(graph)← list3
10 for C3 ∈ list3 do
11 for C4 ∈ list3 do
12 if (C3, C4) generates a list of two cyclic MNOLS of order n then
13 edge(graph)← edge(graph) ∪ {C3, C4}

14 for all cliques (α1, . . . , αµ−2) of size µ− 2 such that for each µ with µ ≤ µ the list of
µ MNOLS generated by (I, C1, α1, . . . , αµ−2) is set-canonical do

15 L ← the list of µ cyclic MNOLS of order n generated by (I, C1, α1, . . . , αµ−2)
16 store← store ∪ {(Iss(L), Isl(L),Reds(L))}

4.7 Results and conclusions

The counts that were found appear in Tables 4.1, 4.2, 4.3, and 4.4. Comparing these

results to the previously known cases in Table 1.1, we see that the new values of particular

88

significance are when µ = 3 and n ∈ {10, 12, 14, 16}, when µ = 4 and n ∈ {12, 14, 16},

and when µ = 5 and n ∈ {14, 16}. The results when µ = 5 disproves Conjecture 5.2 of

[61] that proposed the maximum µ for which a set of µ cyclic MNOLS of order n exists

is dn/4e + 1, as there does not exist five MNOLS of order 14 and five MNOLS of order

16 as predicted by the conjecture.

For n = 14, the search using Algorithm A consumed 372.7 days of CPU time, using

Algorithm B consumed 19.695 hours of CPU time, and using Algorithm C consumed

3.956 hours of CPU time. Algorithm C consumes a great deal more memory than the

other methods. We ran Algorithm C for n = 16, which consumed 154.05 days of CPU

time and over 7GBs of RAM was required. This method therefore would have to be

significantly modified to reduce the memory usage if an attempt was made for running it

with parameters n = 18.

n 4 6 8 10 12 14 16

set-isotopy 1 2 9 68 1140 19040 489296
set-reduced 2 12 136 2340 52608 1589056 62516224
list-isotopy 1 3 12 128 2224 38000 977696
list-reduced 4 24 256 4640 105216 3178112 125026304

Table 4.1: The number of two cyclic MNOLS of order n under the given equivalence.

n 4 6 8 10 12 14 16

set-isotopy 0 1 1 73 4398 429111 70608753
set-reduced 0 6 16 2920 211104 36031716 9037728896
list-isotopy 0 2 6 438 26388 2574306 423652518
list-reduced 0 12 96 17520 1266624 216190296 54226373376

Table 4.2: The number of three cyclic MNOLS of order n under the given equivalence.

We say a list of µ cyclic MNOLS of order n is of type type 0 if it is isotopically equivalent to

a list of reduced µ cyclic MNOLS of order n, L = (L1, . . . , Lµ), with (0, 0, 1), (1, 0, 0) ∈ L2,

89

n 4 6 8 10 12 14 16

set-isotopy 0 0 0 1 2 117 14672
set-reduced 0 0 0 20 96 8638 1870592
list-isotopy 0 0 0 12 48 2484 350730
list-reduced 0 0 0 480 2304 207312 44879616

Table 4.3: The number of four cyclic MNOLS of order n under the given equivalence.

n 4 6 8 10 12 14 16

set-isotopy 0 0 0 0 0 0 0

Table 4.4: The number of five cyclic MNOLS of order n under the given equivalence.

and is of type 1 otherwise. A set of µ MNOLS of order n is of type 0 if fixing the order

in some way gives a list of µ MNOLS of order n of type 0, and is of type 1 otherwise.

A collection of µ cyclic MNOLS of order n contains a row-intercalate of difference d if

two of its latin squares L and M have two rows r, r′ with r < r′ and r′ − r = d such that

(r, 0, e) ∈ L if and only if (r′, 0, e) ∈M , and also (r′, 0, e′) ∈ L if and only if (r, 0, e′) ∈M ,

for some e, e′ ∈ {0, . . . , n−1}. Then it is clear that a collection of µ cyclic MNOLS of order

n is of type 0 if and only if it contains a row-intercalate of difference d and gcd(d, n) = 1.

Clearly set-isotopy preserves type. In Tables 4.5, 4.6, 4.7, 4.8, 4.9, and 4.10 we show the

number of set-isotopy classes of each type. Observe that the proportion of set-isotopy

classes that are of type 0 increases as µ increases. This may be of interest in future

searches for sets of µ cyclic MNOLS of order n where µ is relatively large. Considering

each type individually may allow more efficient construction of those set-isotopy classes

with non-trivial set-autotopy group , as each set-autotopy must map row-intercalates to

row-intercalates. Note that |Reds(L)| = 1 for n = 14, so we omit the column for |Reds(L)|

in this case.

90

|Iss(L)| |Isl(L)| #Type 0 #Type 1 #Total

1 1 3618 15186 18804
2 1 0 80 80
2 2 46 88 134
3 3 2 14 16
6 6 1 5 6

total: 3667 15373 19040

Table 4.5: The two cyclic MNOLS of order 14, by their type and autotopy group sizes.

|Iss(L)| |Isl(L)| #Type 0 #Type 1 #Total

1 1 202382 226436 428818
2 2 146 57 203
3 1 24 63 87
6 2 1 2 3

total: 202553 226558 429111

Table 4.6: The three cyclic MNOLS of order 14, by their type and autotopy group sizes.

|Iss(L)| |Isl(L)| #Type 0 #Type 1 #Total

1 1 67 26 93
2 1 3 8 11
2 2 1 0 1
3 1 4 7 11
6 2 1 0 1

total: 76 41 117

Table 4.7: The four cyclic MNOLS of order 14, by their type and autotopy group sizes.

91

|Iss(L)| |Isl(L)| |Reds(L)| #Type 0 #Type 1 #Total

1 1 1 106794 380686 487480
2 1 1 12 822 834
2 2 1 260 660 920
4 2 1 0 12 12
2 1 2 46 0 46
4 2 2 4 0 4

total: 107116 382180 489296

Table 4.8: The two cyclic MNOLS of order 16, by their type and autotopy group sizes.

|Iss(L)| |Isl(L)| |Reds(L)| #Type 0 #Type 1 #Total

1 1 1 36845488 33760273 70605761
2 2 1 2326 666 2992

total: 36847814 33760939 70608753

Table 4.9: The three cyclic MNOLS of order 16, by their type and autotopy group sizes.

|Iss(L)| |Isl(L)| |Reds(L)| #Type 0 #Type 1 #Total

1 1 1 11146 3401 14547
2 1 1 28 79 107
2 2 1 7 2 9
2 1 2 8 0 8
4 1 4 1 0 1

total: 11190 3482 14672

Table 4.10: The four cyclic MNOLS of order 16, by their type and autotopy group sizes.

92

Chapter 5

Conclusion

This thesis has investigated a variety of concepts related to latin squares. In its chapters,

we have established new results towards the existence and enumeration of three different

structures, each related to latin squares.

In the second chapter we looked at the spectrum of µ transversals, of the back circulant

latin square Bn, with common intersection. This included a number of basic constructions

(subsection 2.2.1), a computer search when n was small (subsection 2.2.2), and a more

substantial construction (subsection 2.2.3). This principal construction requires certain

sets of µ partial transversals that occur in a given subsquare of Bn. In section 2.3, we

investigated these partial transversals when µ = 3, 4, providing a number of examples

that were found with aid of a computer. This solved Question 1.3.1 for µ = 3, 4 for a

majority of cases, the results being summarized in Theorem 2.1.3 and Theorem 2.1.4. As

an application of this work, we showed that µ transversals of Bn that intersect stably in t

points could be used to construct (µ, n− t, n)-latin trades (Theorem 2.4.2, for application

to µ = 3, 4 see Theorem 2.4.4 and Theorem 2.4.5).

There are three future directions that we envisage for this study. First, we could find

93

the required sets of µ partial transversals for the principal construction when µ ≥ 5.

For µ = 5, 6, this might be achieved by a computer search. For µ ≥ 7, the amount of

computation required appears to be unreasonably large, so it would be of interest to find a

theoretical method to create the particular partial transversals required for the principal

construction. Second, other constructions would need to be created, as the principal

construction cannot construct examples when the intersection size of the transversals is

very small or large, and when n is small. Third, it would be of interest to find when sets

of µ transversals of common intersection do not exist, which we believe is what happens

for the cases when the intersection of transversals is close to n.

In the third chapter, we investigated (µ, k,m)-latin trades. We used a variety of construc-

tions to find idempotent (µ, k,m)-latin trades, namely:

• Basic constructions (Section 3.3)

• Computer searches (Subsection 3.4.1)

• Extended multiplication construction (Lemma 3.4.2)

• Packing construction (Theorem 3.4.3)(for µ = 3, see Theorem 3.4.7)

• RPBD construction (Theorem 3.4.12) (for µ = 3, see Lemma 3.4.18)

We combined these constructions in an inductive argument to yield (3, k,m)-latin trades

for all but 196 exceptions (k,m), where m ≤ 194. This solves Question 1.3.2 with µ = 3

outside of these exceptions.

An obvious first direction for future work is to establish the existence of the 196 possible

exceptions. Adding to this, solving Question 1.3.2 with µ = 4 should be achievable using

constructions presented in this thesis. For the cases with µ ≥ 5, future work will require

greater effort. This is due to the fact that we need to know the spectrum of µ transversals

94

in Bn with common intersection for Theorem 3.3.8, and we need to know the spectrum

of volumes for µ-way latin trades of any fixed order for the RPBD construction (this has

been done for µ = 4 recently [4]).

In the fourth chapter, we investigated collections of mutually nearly orthogonal latin

squares. The particular problem we dealt with was the enumeration of the number of

collections of µ cyclic MNOLS of order n under a number of equivalences. We were able

to construct 3 algorithms to solve this problem (see Section 4.6). The more advanced of

these algorithms, Algorithm C, constructed representatives for each set-isotopy class of

lists of µ MNOLS of order n, for n ≤ 16 and µ ≤ 5. An integral part of this enumeration

was knowing the form of any isotopism between µ cyclic MNOLS (Theorem 4.3.5) and

having a canonical form, which we defined explicitly (Section 4.5). An amount of work

went into optimizing the code for memory storage and running time, which was essential

in order for the computation to complete in a reasonable amount of time.

There are a few directions for future work. For an immediate generalization, it seems

it may be possible (with some difficulty) to solve the order 18 case, but the order 20

case seems impossible with present technology. A similar technique to ours was used

to enumerate four MOLS of order 14 that can be created by difference matrices [81], so

future work may also include similar investigations into MOLS. Alter [5] asked whether

the number of reduced latin squares seemed to be divisible by an increasingly large number

of twos, and further work has investigated this [16][72]. The number of set-isotopy classes

of 3 cyclic MNOLS of order 12, 14, 16 are respectively 2 ·3 ·733, 33 ·23 ·691, and 36 ·96857.

There could perhaps be a similar phenomenon here with the divisibility by threes, so

it may also be interesting to investigate divisibility properties of the number of cyclic

MNOLS.

95

Bibliography

[1] P. Adams, E.J. Billington, D.E. Bryant, and Mahmoodian E.S. “The three-way

intersection problem for Latin squares”. In: Discrete Math. 243.1-3 (2002), pp. 1–19

(cit. on pp. 8, 14, 58).

[2] P. Adams, E.J. Billington, D.E. Bryant, and A. Khodkar. “The µ-way intersection

problem for m-cycle systems”. In: Discrete Mathematics 231.1-3 (2001), pp. 27–56

(cit. on p. 14).

[3] P. Adams, E.J. Billington, D.E. Bryant, and E.S. Mahmoodian. “On the possible

volumes of µ-way Latin trades”. In: Aequationes Math. 63.3 (2002), pp. 303–320

(cit. on p. 14).

[4] P. Adams, E.S. Mahmoodian, H. Minooei, and M. Mohammadi Nevisi. “The four-

way intersection problem for latin squares”. In: arXiv:1408.6725 (2015) (cit. on

pp. 8, 95).

[5] R. Alter. “How many Latin squares are there?” In: Amer. Math. Monthly 82 (1975),

pp. 632–634 (cit. on p. 95).

[6] L.D. Andersen. Chapter on The history of latin squares. Research Report Series R-

2007-32. Department of Mathematical Sciences, Aalborg University., 2007 (cit. on

p. 1).

96

[7] B. Bagheri Gh., D.M. Donovan, and E.S. Mahmoodian. “On the existence of 3-way

k-homogeneous Latin trades”. In: Discrete Mathematics 312.24 (2012), pp. 3473–

3481 (cit. on pp. 10, 35, 38, 40–43, 46, 69).

[8] B. Bagheri Gh. and E.S. Mahmoodian. “On the existence of k-homogeneous Latin

bitrades”. In: Util. Math. 85 (2011), pp. 333–345 (cit. on pp. 35, 41, 42).

[9] R. Bean. “Latin trades on three or four rows”. In: Discrete Math. 306.23 (2006),

pp. 3028–3041 (cit. on p. 9).

[10] R. Bean, H. Bidkhori, M. Khosravi, and E.S. Mahmoodian. “k-homogeneous Latin

trades”. In: Bayreuth. Math. Schr. 74 (2005), pp. 7–18 (cit. on pp. 35, 41, 42).

[11] E.J. Billington. “Combinatorial trades: a survey of recent results”. In: Designs, 2002

Math. Appl., 563, Kluwer Acad. Publ., Boston, MA, 2003 (2003), pp. 47–67 (cit. on

p. 35).

[12] R.C. Bose and S.S. Shrikhande. “On the construction of sets of mutually orthogonal

Latin squares and the falsity of a conjecture of Euler”. In: Trans. Amer. Math. Soc.

95 (1960), pp. 191–209 (cit. on p. 2).

[13] R.C. Bose and S.S. Shrikhande. “On the falsity of Euler’s conjecture about the non-

existence of two orthogonal Latin squares of order 4t+2”. In: Proc. Nat. Acad. Sci.

U.S.A. 45 (1959), pp. 734–737 (cit. on p. 2).

[14] R.C. Bose, S.S. Shrikhande, and E.T. Parker. “Further results on the construction of

mutually orthogonal Latin squares and the falsity of Euler’s conjecture.” In: Canad.

J. Math. 12 (1960), pp. 189–203 (cit. on p. 2).

[15] J.W. Brown and E.T. Parker. “More on order 10 turn-squares”. In: Ars Combin. 35

(1993), pp. 125–127 (cit. on p. 6).

[16] J. Browning, D.S. Stones, and I.M. Wanless. “Bounds on the number of autotopisms

and subsquares of a Latin square.” In: Combinatorica 33.1 (2013), pp. 11–22 (cit. on

p. 95).

97

[17] J.M. Browning, P.J. Cameron, and I.M. Wanless. “Bounds on the number of small

Latin subsquares”. In: J. Combin. Theory Ser. A 124 (2014), pp. 41–56 (cit. on

p. 17).

[18] P. Cameron. Permutation Groups. Cambridge University Press, 1999 (cit. on p. 80).

[19] N.J. Cavenagh. “A superlinear lower bound for the size of a critical set in a Latin

square”. In: J. Combin. Des. 15.4 (2007), pp. 269–282 (cit. on p. 9).

[20] N.J. Cavenagh. “A uniqueness result for 3-homogeneous Latin trades”. In: Com-

ment. Math. Univ. Carolin. 47.2 (2006), pp. 337–358 (cit. on pp. 10, 35, 41).

[21] N.J. Cavenagh. “Embedding 3-homogeneous Latin trades into abelian 2-groups”.

In: Comment. Math. Univ. Carolin. 45.2 (2004), pp. 191–212 (cit. on p. 10).

[22] N.J. Cavenagh. “Latin trade algorithms and the smallest critical set in a Latin

square”. In: J. Autom. Lang. Comb. 8.4 (2003), pp. 567–578 (cit. on p. 9).

[23] N.J. Cavenagh. “The theory and application of Latin bitrades: a survey”. In: Math.

Slovaca 58.6 (2008), pp. 691–718 (cit. on pp. 9, 35).

[24] N.J. Cavenagh, D.M. Donovan, and A. Drápal. “3-homogeneous Latin trades”. In:

Discrete Math. 300.1-3 (2005), pp. 57–70 (cit. on pp. 9, 35, 41, 42).

[25] N.J. Cavenagh, D.M. Donovan, and A. Drápal. “4-homogeneous Latin trades”. In:

Australas. J. Combin. 32 (2005), pp. 285–303 (cit. on pp. 35, 41, 42).

[26] N.J. Cavenagh, D.M. Donovan, and A. Khodkar. “On the spectrum of critical sets

in back circulant Latin squares”. In: Ars Combin. 82 (2007), pp. 287–319 (cit. on

p. 9).

[27] N.J. Cavenagh, D.M. Donovan, and E. Şule Yazıcı. “Minimal homogeneous Latin

trades”. In: Discrete Math. 306.17 (2006), pp. 2047–2055 (cit. on p. 10).

98

[28] N.J. Cavenagh, C. Hämäläinen, and A.M. Nelson. “On completing three cycli-

cally generated transversals to a latin square”. In: Finite Fields Appl. 15.3 (2009),

pp. 294–303 (cit. on p. 7).

[29] N.J. Cavenagh, J.S. Kuhl, and I.M. Wanless. “Longest partial transversals in plexes”.

In: Ann. Comb. 18.3 (2014), pp. 419–428 (cit. on p. 10).

[30] N.J. Cavenagh and I.M. Wanless. “On the number of transversals in Cayley tables

of cyclic groups”. In: Discrete Appl. Math. 158.2 (2010), pp. 136–146 (cit. on pp. 7,

14, 15, 41, 42, 46, 71).

[31] Y. Chang. “The existence of a large set of idempotent quasigroups of order 62”. In:

J. Combin. Math. Combin. Comput. 32 (2000), pp. 213–218 (cit. on p. 44).

[32] Y. Chang. “The spectrum for large sets of idempotent quasigroups”. In: J. Combin.

Des. 8.2 (2000), pp. 79–82 (cit. on p. 44).

[33] C. J. Colbourn and J. H. Dinitz, eds. Handbook of Combinatorial Designs. 2nd ed.

Discrete Mathematics and its Applications (Boca Raton). Chapman & Hall/CRC,

2007 (cit. on pp. 1, 6, 9, 11, 62).

[34] D. Curran and G.H.J. Van Rees. “Proceedings of the Eighth Manitoba Confer-

ence on Numerical Mathematics and Computing (Univ. Manitoba, Winnipeg, Man.,

1978)”. In: Congress. Numer., XXII (1979), pp. 165–168 (cit. on p. 9).

[35] F. Demirkale, D.M. Donovan, and A. Khodkar. “Direct constructions for general

families of cyclic mutually nearly orthogonal Latin squares”. In: J. Combin. Des.

23.5 (2015), pp. 195–203 (cit. on pp. 12, 74).

[36] F. Demirkale et al. “Difference Covering Arrays and Pseudo-Orthogonal Latin Squares”.

In: Graphs and Combinatorics (2015), pp. 1–22 (cit. on pp. 12, 74).

[37] D.M. Donovan and J. Cooper. “Critical sets in back circulant Latin squares”. In:

Aequationes Math. 52.1-2 (1996), pp. 157–179 (cit. on p. 7).

99

[38] D.M. Donovan, J.G. LeFevre, and G.H.J. van Rees. “On the spectrum of critical

sets in Latin squares of order 2n”. In: J. Combin. Des. 16.1 (2008), pp. 25–43 (cit. on

p. 9).

[39] A. Drápal and T.S. Griggs. “Homogeneous toroidal Latin bitrades”. In: Ars Combin.

96 (2010), pp. 343–351 (cit. on p. 10).

[40] A. Drápal and T. Kepka. “Exchangeable partial groupoids I”. In: Acta Univ. Car-

olin. Math. Phys. 24.2 (1983), pp. 57–72 (cit. on p. 8).

[41] P.J. Dukes and J. Howell. “Solution of the intersection problem for Latin squares

of different orders”. In: J. Combin. Math. Combin. Comput. 80 (2012), pp. 289–298

(cit. on p. 8).

[42] J. Egan and I.M. Wanless. “Enumeration of MOLS of small order”. In: Math. Comp.

85.298 (2016), pp. 799–824 (cit. on p. 73).

[43] L. Euler. Investigations on a new type of magic square. Translated by Ho, A. and

Klyve, D. (cit. on p. 1).

[44] L. Euler. “Recherches sur une nouvelle espece de quarres magiques”. In: Verhan-

delingen uitgegeven door het zeeuwsch Genootschap der Wetenschappen te Vlissin-

gen 9 (1782), pp. 85–239 (cit. on p. 1).

[45] I.A. Faradžev. “Generation of nonisomorphic graphs with a given distribution of the

degrees of vertices. (Russian)”. In: Algorithmic studies in combinatorics (Russian)

185 (1978), pp. 11–19 (cit. on p. 73).

[46] C.M. Fu and H.-L. Fu. “The intersection of three distinct Latin squares”. In: Matem-

atiche (Catania) 44.1 (1989), pp. 21–45 (cit. on p. 8).

[47] C.M. Fu, H.-L Fu, and S.H. Guo. “The intersections of commutative Latin squares”.

In: Ars Combin. 32 (1991), pp. 77–96 (cit. on p. 8).

100

[48] C.M. Fu, Y.H Gwo, and F.C. Wu. “The intersection problem for semi-symmetric

Latin squares.” In: J. Combin. Math. Combin. Comput. 23 (1997), pp. 47–63 (cit. on

p. 8).

[49] C.M. Fu, W.C. Huang, Y.H. Shih, and Y.J. Yaon. “Totally symmetric Latin squares

with prescribed intersection numbers”. In: Discrete Math. 282.1-3 (2004), pp. 123–

136 (cit. on p. 8).

[50] H.-L. Fu. “More results on the intersections of Latin squares”. In: J. Inform. Optim.

Sci. 11.3 (1990), pp. 525–535 (cit. on p. 8).

[51] H.-L. Fu. “On the construction of certain trypes of latin squares with prescribed

intersections”. PhD thesis. Auburn university, 1980 (cit. on p. 8).

[52] M. J. Grannell, T. S. Griggs, and M. Knor. “Biembeddings of symmetric configu-

rations and 3-homogeneous Latin trades”. In: Comment. Math. Univ. Carolin. 49.3

(2008), pp. 411–420 (cit. on p. 41).

[53] C. Hämäläinen. “Partitioning 3-homogeneous Latin bitrades”. In: Geom. Dedicata

133 (2008), pp. 181–193 (cit. on p. 41).

[54] A. Hulpke, P. Kaski, and P.R.J. Österg̊ard. “The number of Latin squares of order

11”. In: Math. Comp. 80.274 (2011), pp. 1197–1219 (cit. on p. 82).

[55] P. Kaski and P.R.J. Österg̊ard. Classification algorithms for codes and designs. Al-

gorithms Comput. Math. 15, Springer, 2006 (cit. on p. 73).

[56] A.D. Keedwell. “Critical sets in latin squares and related matters: an update”. In:

Util. Math. 65 (2004), pp. 97–131 (cit. on p. 9).

[57] G. Kolesova, C.W.H. Lam, and L. Thiel. “On the number of 8× 8 Latin squares”.

In: J. Combin. Theory Ser. A 54.1 (1990), pp. 143–148 (cit. on p. 73).

[58] C. Laywine and G. Mullen. Discrete mathematics using latin squares. Wiley-Interscience

Series in Discrete Mathematics and Optimization, 1998 (cit. on p. 72).

101

[59] J.G. Lefevre, D.M. Donovan, and A. Drápal. “Permutation representation of 3 and

4-homogeneous Latin bitrades”. In: Fund. Inform. 84.1 (2008), pp. 99–110 (cit. on

pp. 35, 41).

[60] J.G. Lefevre and T.A. McCourt. “The disjoint m-flower intersection problem for

Latin squares”. In: Electron. J. Combin. 18.1 (2011), Paper 42, 33 pp (cit. on p. 8).

[61] P.C. Li and G.H.J van Rees. “Nearly orthogonal Latin squares”. In: J. Combin.

Math. Combin. Comput. 62 (2007), pp. 13–24 (cit. on pp. 11–13, 74, 79, 89).

[62] T.G. Marbach. 3-Way k-homogeneous Latin trades - Programs A and B. url: htt

ps://github.com/triliu/3WaykHomogeneousLatinTrades (cit. on p. 64).

[63] T.G. Marbach. “On the intersection of three or four transversals of the back circulant

latin square Bn”. In: Australas. J. Combin. 65.1 (2016), pp. 84–107 (cit. on p. 7).

[64] T.G. Marbach and L. Ji. “The spectrum for 3-way k-homogeneous Latin trades”.

In: Electron. J. Combin. 22.4 (2015), Paper 4.1, 23pp (cit. on p. 10).

[65] T.M. Marbach, F. Demirkale, and D.M. Donovan. “The Enumeration of Cyclic

MNOLS”. In: arXiv:1512.00997 (2015) (cit. on p. 13).

[66] T.A. McCourt. “On defining sets in Latin squares and two intersection problems,

one for Latin squares and one for Steiner triple systems”. In: Bull. Aust. Math. Soc.

82.2 (2010), pp. 351–352 (cit. on p. 8).

[67] B.D. McKay. “Isomorph-free exhaustive generation”. In: J. Algorithms 26.2 (1998),

pp. 306–324 (cit. on p. 73).

[68] B.D. McKay, J.C. McLeod, and I.M. Wanless. “The number of transversals in a

latin square”. In: Des. Codes Cryptogr. 40 (2006), pp. 269–284 (cit. on p. 6).

[69] B.D. McKay, A. Meynert, and W.J. Myrvold. “Small Latin Squares, Quasigroups

and Loops”. In: J. Combin. Des. 15.2 (2007), pp. 98–119 (cit. on pp. 6, 84).

102

https://github.com/triliu/3WaykHomogeneousLatinTrades
https://github.com/triliu/3WaykHomogeneousLatinTrades

[70] B.D. McKay and A. Piperno. “Practical Graph Isomorphism, II”. In: J. Symbolic

Comput. 60 (2014), pp. 94–112 (cit. on p. 82).

[71] B.D. McKay and I.M. Wanless. “Most Latin squares have many subsquares”. In: J.

Combin. Theory Ser. A 86.2 (1999), pp. 322–347 (cit. on p. 73).

[72] B.D. McKay and I.M. Wanless. “On the number of Latin squares”. In: Ann. Comb.

9.3 (2005), pp. 335–344 (cit. on pp. 73, 82, 95).

[73] S. Milici and G. Quattrocchi. “On the intersection problem for three Steiner triple

systems.” In: Ars Combin. 24.A (1987), pp. 175–194 (cit. on p. 14).

[74] E.B. Pasles. “Mutually nearly orthogonal latin squares and their applications”. PhD

thesis. Temple University, 2004 (cit. on pp. 11, 12).

[75] E.B. Pasles and D. Raghavarao. “Mutually nearly orthogonal Latin squares of order

6”. In: Util. Math. 65 (2004), pp. 65–72 (cit. on pp. 12, 73).

[76] D. Raghavarao, S.S. Shrikhande, and M.S. Shrikhande. “Incidence matrices and

inequalities for combinatorial designs”. In: J. Combin. Des. 10.1 (2002), pp. 17–26

(cit. on pp. 11, 12, 72, 73).

[77] R.C. Read. “Every one a winner or how to avoid isomorphism search when catalogu-

ing combinatorial configurations.” In: Algorithmic aspects of combinatorics (Conf.,

Vancouver Island, B.C., 1976). Ann. Discrete Math. 2 (1978), pp. 107–120 (cit. on

p. 73).

[78] G.H.J. van Rees. “Private communication”. 2015 (cit. on p. 74).

[79] B. Smetaniuk. “On the minimal critical set of a Latin square”. In: Utilitas Math.

16 (1979), pp. 97–100 (cit. on p. 9).

[80] L. Teirlinck and C.C. Lindner. “The construction of large sets of idempotent quasi-

groups”. In: European J. Combin. 9.1 (1988), pp. 83–89 (cit. on p. 44).

103

[81] D.T. Todorov. “Four Mutually Orthogonal Latin squares of order 14”. In: J. Com-

bin. Des. 20.8 (2012), pp. 363–367 (cit. on pp. 3, 95).

[82] W.D. Wallis. Combinatorial Designs. Monographs and Textbooks in Pure and Ap-

plied Mathematics, 1988 (cit. on p. 59).

[83] I.M. Wanless. “A generalisation of transversals for Latin squares”. In: Electron. J.

Combin. 9.1 (2002), R12 (cit. on p. 6).

[84] I.M. Wanless. “Diagonally cyclic Latin squares”. In: European J. Combin. 25.3

(2004), pp. 393–413 (cit. on p. 7).

[85] I.M. Wanless. “Transversals in Latin squares”. In: Quasigroups Related Systems 15.1

(2007), pp. 169–190 (cit. on p. 7).

[86] I.M. Wanless. “Transversals in Latin squares: a survey. Surveys in combinatorics

2011”. In: London Math. Soc. Lecture Note Ser. 392 (2011), pp. 403–437 (cit. on

p. 14).

[87] I.M. Wanless and B.S. Webb. “The existence of latin squares without orthogonal

mates”. In: Des. Codes Cryptog. 40.1 (2006), pp. 131–135 (cit. on p. 6).

104

Appendix A

Appendix

105

A.1 Base blocks for Chapter 2

b+ d intersect result

9 0 8 6 7 2 0 1 5 3 4
7 8 6 1 2 0 4 5 3
5 3 4 8 6 7 2 0 1
4 5 3 7 8 6 1 2 0

9 1 7 8 6 2 0 1 4 5 3
8 5 3 7 0 6 1 2 4
6 4 5 8 0 7 3 1 2
5 7 8 3 0 2 6 4 1

10 0 8 9 5 2 0 1 6 7 3 4
7 5 8 1 9 0 2 4 6 3
6 4 2 9 7 3 8 0 5 1
5 3 4 7 8 9 1 6 0 2

11 0 10 7 5 2 0 1 9 6 8 3 4
7 9 6 1 2 0 10 8 4 5 3
8 4 2 10 3 9 0 5 7 1 6
6 3 10 7 1 2 8 9 0 4 5

Table A.1: µ = 4 and b = 9.

106

b+ d intersect result

12 0 10 7 5 2 0 1 9 11 8 3 4 6
7 11 6 1 2 0 10 3 9 5 8 4
8 9 2 4 1 11 0 5 10 6 7 3
5 3 4 11 6 10 1 9 0 8 2 7

13 0 12 7 5 2 0 1 11 3 8 10 4 9 6
8 6 12 1 2 0 4 11 9 3 10 5 7
10 11 2 4 1 3 0 7 12 9 6 8 5
5 3 4 11 12 7 2 0 10 1 9 6 8

14 0 12 7 5 2 0 1 13 3 8 11 4 10 6 9
8 6 12 1 2 0 4 11 13 3 9 5 10 7
10 13 2 4 1 3 0 5 12 9 6 11 7 8
5 3 4 7 12 9 2 0 10 13 11 1 8 6

15 0 14 7 5 2 0 1 12 3 4 13 6 10 8 11 9
8 6 14 1 2 0 4 7 13 3 12 9 11 5 10
12 9 2 4 1 3 0 13 8 5 14 11 6 10 7
5 3 4 9 10 11 2 0 14 1 13 7 12 8 6

16 0 14 7 5 2 0 1 12 3 4 15 6 11 8 13 9 10
8 6 14 1 2 0 4 7 15 3 12 9 13 5 10 11
12 9 2 4 1 3 0 13 8 5 14 15 6 10 11 7
5 3 4 11 12 7 2 0 10 1 15 13 14 9 6 8

Table A.2: µ = 4 and b = 9.

b+ d intersect result
17 0 16 7 5 2 0 1 8 3 4 15 12 9 6 13 14 10 11

8 6 16 1 2 0 4 7 14 3 10 5 15 11 12 13 9
14 9 2 4 1 3 0 5 16 13 6 7 8 15 11 12 10
5 3 4 15 10 7 2 0 8 1 14 16 13 9 6 11 12

Table A.3: µ = 4 and b = 9.

107

b+ d intersect result
9 2 8 6 7 2 0 1 5 3 4

7 5 8 2 0 3 6 4 1
6 8 5 2 0 7 4 1 3

9 3 7 5 8 2 0 3 6 4 1
6 3 8 2 4 7 5 0 1
4 7 8 2 3 6 0 5 1

Table A.4: µ = 3 and b = 9.

b+ d intersect result
11 0 10 8 9 5 2 0 1 6 7 3 4

9 10 6 7 1 2 0 8 4 5 3
8 9 10 2 7 1 3 0 6 4 5
7 5 3 10 8 9 4 2 0 6 1

11 1 10 8 9 5 2 0 1 6 7 3 4
9 7 5 3 10 0 6 8 2 4 1
8 9 4 10 3 0 5 7 1 6 2
7 5 10 8 4 0 9 2 6 1 3

11 2 10 8 9 5 2 0 1 6 7 3 4
9 7 10 4 2 0 5 8 6 1 3
8 9 5 10 2 0 3 7 4 6 1
7 10 6 9 2 0 8 3 1 4 5

11 3 8 9 10 4 2 0 5 7 1 6 3
8 10 5 2 9 7 0 3 1 6 4
8 5 3 10 7 9 4 0 1 6 2
8 4 9 3 10 2 7 5 1 6 0

Table A.5: µ = 4 and b = 11.

108

b+ d intersect result
12 3 9 11 6 7 2 0 1 10 8 5 3 4

8 5 7 2 9 11 1 10 6 3 0 4
6 9 3 11 5 8 1 10 0 7 2 4
5 7 11 3 8 9 1 10 2 0 6 4

13 3 12 9 7 5 2 0 1 10 11 6 8 3 4
7 9 6 3 1 12 10 2 11 5 8 4 0
6 9 12 2 4 10 3 0 11 7 8 1 5
5 9 10 4 12 1 2 7 11 0 8 6 3

14 3 12 13 7 5 2 0 1 3 11 9 10 6 4 8
10 13 6 4 2 0 11 12 1 3 8 5 9 7
8 13 5 9 2 0 3 11 12 1 6 10 7 4
7 13 8 6 2 0 12 1 4 10 11 9 5 3

15 3 14 11 7 5 2 0 1 3 12 13 8 10 4 6 9
8 9 14 6 2 0 1 13 11 3 4 12 10 5 7
10 8 6 11 2 0 1 5 14 12 13 9 7 3 4
9 7 8 13 2 0 1 14 4 11 12 3 6 10 5

16 3 14 15 7 5 2 0 1 3 4 13 11 9 6 12 10 8
12 8 6 7 2 0 1 15 13 14 10 3 4 5 11 9
9 7 8 13 2 0 1 14 6 3 15 12 10 11 4 5
8 9 14 6 2 0 1 5 12 15 4 11 13 10 7 3

Table A.6: µ = 4 and b = 11.

109

b+ d intersect result
17 3 16 13 7 5 2 0 1 3 4 14 15 9 6 11 8 12 10

12 8 6 7 2 0 1 16 14 15 10 3 4 5 13 11 9
9 7 8 15 2 0 1 13 16 3 4 5 11 14 12 10 6
8 9 12 6 2 0 1 5 15 7 14 16 10 13 11 3 4

18 3 16 13 7 5 2 0 1 3 4 17 15 9 6 11 8 14 12 10
12 8 6 7 2 0 1 17 14 16 10 3 4 5 15 13 11 9
9 7 8 17 2 0 1 11 16 3 4 5 15 13 14 10 6 12
8 9 12 6 2 0 1 5 10 15 16 14 17 3 13 7 4 11

19 3 18 13 7 5 2 0 1 3 4 17 6 16 8 9 10 14 15 11 12
12 8 6 7 2 0 1 15 16 18 10 3 4 5 17 13 14 9 11
9 7 8 17 2 0 1 11 18 3 4 5 12 16 13 15 6 14 10
8 9 12 6 2 0 1 5 14 15 18 7 17 3 16 11 4 10 13

20 3 18 13 7 5 2 0 1 3 4 19 6 15 8 9 10 17 14 16 11 12
12 8 6 7 2 0 1 19 14 11 18 3 4 5 17 9 16 13 15 10
9 7 8 17 2 0 1 15 16 3 4 5 6 19 12 18 13 14 10 11
8 9 12 6 2 0 1 5 18 15 10 7 19 3 16 14 17 11 4 13

21 3 20 13 7 5 2 0 1 3 4 9 6 19 16 11 8 18 10 17 14 12 15
12 8 6 7 2 0 1 19 20 13 10 3 4 5 18 9 15 16 17 11 14
9 7 8 19 2 0 1 17 12 3 4 5 6 18 20 11 14 15 10 16 13
8 9 12 6 2 0 1 5 14 11 18 15 19 3 4 20 17 7 16 13 10

Table A.7: µ = 4 and b = 11.

b+ d intersect result

11 4 9 10 8 5 2 0 1 6 7 3 4
10 6 7 8 2 0 9 1 5 3 4
7 9 6 10 2 0 5 8 1 3 4

11 5 10 8 6 9 2 0 1 4 7 5 3
10 7 9 4 2 0 6 8 1 5 3
10 6 7 8 2 0 9 1 4 5 3

Table A.8: µ = 3 and b = 11.

110

b+ d intersect result
15 1 14 12 13 9 7 5 2 0 1 10 11 6 8 3 4

13 14 12 8 5 3 11 0 10 1 2 9 4 6 7
12 13 11 14 4 10 3 0 2 9 1 5 7 8 6
11 9 14 5 8 4 13 0 6 12 10 7 1 2 3

15 2 14 12 13 9 7 5 2 0 1 10 11 6 8 3 4
13 14 10 11 12 4 2 0 3 1 9 7 5 8 6
12 13 14 7 5 8 2 0 10 11 1 4 9 6 3
11 9 12 6 14 10 2 0 13 8 3 1 4 7 5

15 3 14 12 13 9 7 5 2 0 1 10 11 6 8 3 4
13 14 12 8 6 7 2 0 1 11 9 10 4 5 3
11 13 10 7 14 12 2 0 1 4 6 9 3 8 5
12 10 8 13 11 14 2 0 1 5 3 7 9 4 6

15 4 14 12 13 9 7 5 2 0 1 10 11 6 8 3 4
13 11 14 8 10 5 2 0 1 12 9 7 3 4 6
12 14 9 10 13 5 2 0 1 11 8 3 4 6 7
11 13 10 12 14 5 2 0 1 4 6 9 7 8 3

15 5 14 12 13 9 7 5 2 0 1 10 11 6 8 3 4
13 11 14 8 10 5 2 0 1 12 7 9 3 6 4
12 14 9 10 13 5 2 0 1 11 6 3 7 8 4
11 13 10 14 12 5 2 0 1 6 3 8 9 7 4

Table A.9: µ = 4 and b = 15.

111

b+ d intersect result
15 15 14 12 13 9 7 5 2 0 1 10 11 6 8 3 4
16 16 14 12 15 13 7 5 2 0 1 3 11 9 10 6 4 8
17 17 14 15 16 10 7 5 2 0 1 3 13 11 12 8 6 4 9
18 18 16 17 12 10 7 5 2 0 1 3 15 13 11 14 8 6 4 9
19 19 16 17 18 10 7 5 2 0 1 3 . . .

4 15 13 11 14 8 6 12 9
20 20 18 19 14 10 7 5 2 0 1 3 . . .

4 17 15 16 12 9 6 8 13 11
21 21 20 17 14 10 7 5 2 0 1 3 4 . . .

18 19 15 13 9 6 16 8 11 12
22 22 20 21 14 10 7 5 2 0 1 3 4 . . .

19 6 16 18 13 8 9 17 15 11 12
23 23 22 19 14 10 7 5 2 0 1 3 4 21 . . .

6 20 17 13 8 9 18 11 15 16 12
24 24 22 23 14 10 7 5 2 0 1 3 4 9 6 . . .

21 19 15 20 11 8 18 12 17 13 16
25 25 24 21 14 10 7 5 2 0 1 3 4 9 6 22 . . .

23 15 20 11 8 19 12 13 18 16 17
26 26 24 25 14 10 7 5 2 0 1 3 4 9 6 23 8 . . .

22 18 11 12 13 20 21 17 15 19 16
27 27 26 23 14 10 7 5 2 0 1 3 4 9 6 25 8 . . .

24 18 11 12 13 22 15 19 21 16 20 17
28 28 26 27 14 10 7 5 2 0 1 3 4 9 6 11 8 25 . . .

22 17 12 13 24 15 23 20 18 16 21 19
29 29 28 25 14 10 7 5 2 0 1 3 4 9 6 11 8 27 . . .

24 17 12 13 26 15 16 22 20 18 23 21 19

Table A.10: µ = 4 and b = 15 (Only one partial transversal is needed in each case).

112

A.2 Program details

A.2.1 More details

In this appendix, we will give some further details of our implementation of Algorithm C

from Chapter 4.

Permutation objects and representing cyclic MNOLS

A list of cyclic MNOLS can be represented by the first column of each of the contained

latin squares:

0 1 2 3

1 2 3 0

2 3 0 1

3 0 1 2

,

1 2 3 0

3 0 1 2

0 1 2 3

2 3 0 1

→

0 1

1 3

2 0

3 2

In our program, we will often store a list of cyclic MNOLS in this array notation. Any

column which may be a column in this array notation must be a permutation. As each

column in this array notation is a permutation, we will often use a permutation object to

hold these potential columns. We will say that two permutations are nearly orthogonal if

the corresponding latin squares are nearly orthogonal.

These permutation objects are initiated to hold the identity permutation. One of the key

functions on the permutation object is the next() function. The next() function modifies

the current permutation in the permutation object to be the next lexicographically higher

permutation.

For example, say the permutation object Perm contained the permutation (0, 1, 2, 3, 4, 5).

After calling Perm.next(), Perm will contain the permutation (0, 1, 2, 3, 5, 4), and after

calling it a second time Perm will contain the permutation (0, 1, 2, 5, 3, 4).

113

Rather than stepping through every permutation like this, it will be possible to skip over

a great number of them. Suppose the permutation object Perm contains the permutation

(2, 1, 3, 4, 5, 0). This permutation is not nearly orthogonal to the identity permutation

(0, 1, 2, 3, 4, 5) because both contain the symbol 1 in the second entry. If we wish to

find the next permutation that is nearly orthogonal to the identity permutation, clearly

the next few permutations of (2, 1, 3, 5, 0, 4), (2, 1, 3, 5, 4, 0), etc. will each have the same

problem of containing the symbol 1 in the second entry. For this, we use the function

Perm.next(incorrect_digit), which modifies the current permutation in the permuta-

tion object to be the next lexicographically higher permutation that no longer contains

an incorrect digit at index incorrect_digit. In this case, the result of the function call

Perm.next(1) would mean Perm would contain the permutation (2, 3, 0, 1, 4, 5).

CheckMNOLS

This function was run many times, so we spent some effort to optimize it. The fastest

method we could find is the one presented here. Given two permutations Q and P , we

wish to return whether the two are nearly orthogonal or not. Recall that this means each

difference P (i)−Q(i) occurs exactly once, except when the difference is 0, where no such

differences occur, and when the difference is n/2, where there are two such occurrences.

We constructed an array temp_all (which is declared externally). The purpose of this

array is to hold the number of occurrences of each difference, although we modify this

slightly by initializing temp_all[0]=1 and temp_all[n/2]=-1. Whenever a difference of

diff is found, we increase temp_all[diff] by 1. Thus, if Q and P are nearly orthogonal,

after this process temp_all[i]=1 for 0 ≤ i ≤ n− 1. Programming in this way simplifies

the branching conditions of the function.

114

Check Canonical and Count Autotopisms

Our rudimentary method for both these functions cycle through every group action of

〈M,T,R, S〉 and apply it to the incoming list of MNOLS, Z. For Check_Canonical, we

ensured each of these was larger than or equal to Z. For Count_Autotopisms, we counted

how many group actions (of each of the groups we are concerned with) returned Z.

OpenMP

We used the API openMP to split the computation into multiple threads. The function

omp_set_num_threads determines how many threads our program will be split into. We

found that n threads worked more efficiently that using more or less threads.

When programming multithreaded applications, we have to be careful of race conditions.

This is when two threads simultaneously read or write at the same memory address,

causing the program to have a bug. To this end, we use atomics and locks. The line

#pragma omp atomic causes the next line to be done in serial. We have used this for

most memory stores that are not local. The functions omp_set_lock and omp_unset_lock

respectively set and unset a variable. If the variable has been locked by a thread, another

thread cannot enter that segment in the code until the original thread has unlocked the

variable. These are used when we wish to lock several lines of code, rather than just

changing one variable.

Unraveled cliques

This program in general required us to solve the clique problem. However, as we were

searching for five MNOLS of order 16, the corresponds clique would be a clique of size

3, which is small. In the code presented here, we have unraveled the clique problem. On

finding an edge of our graph, rather than adding that edge to a graph object, we have

115

looped through the other possible vertices and tried to find a third vertex to form a clique

of size 3. Although this slows down our code slightly, this slowdown in negligible. This

simplifies our code and gives us more confidence that it is error free.

A.2.2 Code

#include <stdio.h>
#include <tchar.h>

#include <omp.h>
#include <ctime>

#include <fstream>
#include<string>

#include <list>
#include <algorithm>
#include <vector>
#include <stdio.h>
#include <iostream>
using namespace std;

//Input: two integers
//Output: the greatest integer that divides both input integers
int GCD(int a, int b) {
if (a == 0) {
return b;

}
if (b == 0) {
return a;

}
if (a <= b) {
if (b%a == 0) {
return a;

}
return GCD(b - (b / a)*a, a);

}
else {
return GCD(b, a);

}
}

//Input: integer ’n’
//Output: n!
int factorial(int n) {
if (n < 1) { return 0; }
int temp = 1;
for (int i = 2; i <= n; i++) {
temp *= i;

}
return temp;

}

//Input: integer ’n’

116

//Output: Eulers totient function of ’n’ (i.e. the number of invertible
elements in mod n)

int totient(int n) {
int temp = 0;
for (int i = 1; i < n; i++) {
if (GCD(i, n) == 1) {
temp++;

}
}
return temp;

}

//Creates an object that imitates a permutation
class Permutation
{
public:
int get(int i);
void set(int Place_i, int value);
Permutation() {};

//Input: size ’k’
//Creates a permutation object of size ’k’
Permutation(int k) {
//on initialization, we set this permutation object to be the identity

permutation
not_Finished = true;
Store = new int[k];
kk = k;
for (int i = 0; i < k; i++) {
Store[i] = i;

};
}
int size_k() { return kk; }
void next();
void next(int);
void reset();
void reset(int);
bool notFinished() { return not_Finished; }
void setFinished() { not_Finished = false; }
int reverseGet(int i);
void del();
void Print() {
for (int i = 0; i < kk; i++) {
cout << Store[i] << ’ ’;

}
cout << ’\n’;

}
private:
bool not_Finished;
int *Store;
int kk;

};

//Input: a symbol ’i’
//Output: the index of the current permutation that containing symbol ’i’
int Permutation::reverseGet(int i) {
for (int j = 0; j < kk; j++) {
if (Store[j] == i) {

117

return j;
}

}
return -1;

}

//Input: an index ’i’
//Output: the symbol of the current permutation at index i
int Permutation::get(int i)
{
int d;
d = Store[i];
return d;

}

//Caution: Dangerous function
//Input: an index ’Place_i’ and a symbol ’value’
//Result: this permutation object changes the value in index ’Place_i’ to be

value ’value’
void Permutation::set(int Place_i, int value)
{
Store[Place_i] = value;

}

//Result: this permutation object is set to contain identity permutation
(0,1,....,kk-1)

void Permutation::reset() {
for (int i = 0; i < kk; i++) { Store[i] = i; };
not_Finished = true;

}

//Input: an index ’from_position’
//Result: those entries of perm from index ’from_position’ to index ’kk’-1 are

placed in accending order
void Permutation::reset(int from_position) {
sort(Store + from_position, Store + kk);

}

//Input: an index ’incorrect_digit’
//Result: this permutation object is set to be the next highest (w.r.t

lexicographic ordering) possible
// permutation such that the value in index ’incorrect_digit’ has

changed
void Permutation::next(int incorrect_digit) {

//In this case, we have run out of permutations
if (incorrect_digit<0) {
not_Finished = false;
return;

}
//Swaps perm(incorrect digit_ with the next largest perm(i) with i>

incorrect_digit,
// and sorts all the perm(i’) with i’>incorrect_digit into natural order.
int smallest_greaterthen_id = kk;
for (int i = incorrect_digit + 1; i<kk; i++) {
if (Store[i] < smallest_greaterthen_id && Store[i]>Store[incorrect_digit])

{
smallest_greaterthen_id = Store[i];

118

}
}
//If none to swap with, try increasing from a smaller index
if (smallest_greaterthen_id == kk) {
next(incorrect_digit - 1);
return;

}
else {
for (int i = incorrect_digit + 1; i<kk; i++) {
if (Store[i] == smallest_greaterthen_id) {
//Perform swap
Store[i] = Store[incorrect_digit];
Store[incorrect_digit] = smallest_greaterthen_id;
reset(incorrect_digit + 1);
break;

}

}
}

}

//Result: this permutation object is set to be the next highest (w.r.t
lexicographic ordering) possible permutation

void Permutation::next()
{
next(kk - 1);

}

//Result: delete this permutation object’s free store data
void Permutation::del() {
delete[] Store;

}

//Input: two integers ’n’,’r’
//Output: the number of r-subsets in an n-set
int nCr(int n, int r) {
int prod = 1;
//int temp = n;
for (int i = 0; i < r; i++) {
prod *= (n - i);

}
for (int i = 1; i <= r; i++) {
prod /= i;

}
return prod;

}

//Input: two permutations ’Q’,’P’ and a set of integers ’temp_all’
//Output: true, if the permutations ’Q’,’P’ are nearly orthogonal
// false, otherwise.
//Note: temp_all is an input to save on allocation time of declaring locally
bool checkMNOLS(Permutation &Q, Permutation &P, unsigned __int64* temp_all) {

119

int n = P.size_k();

//temp_all is a device that holds the number of possible differences
//when filling in temp_all with differences, it will be convinient to fail

if the number of differences exceeds 1
// if the difference is neither 0 nor n/2, then we cannot have more or less

than 1 occurance of that difference
// if the difference is 0, then we should fail. Set temp_all[0] = 1 at

initiation, so any occurance of difference 0 causes a fail
// if the difference is n/2, then we should only fail after 2 occurance.

Set temp_all[0] = -1 at initiation, so exactly two occurance of
difference n/2 will not cause a fail

//reset ’temp_all’
for (int i = 0; i < n; i++) {
temp_all[i] = 0;

}
//we can have two symbols that are n/2
temp_all[n / 2] = -1;
//we can have zero symbols that are 0
temp_all[0] = 1;

int diff;
int Q_i;
int P_i;
int numb_this_diff;

//for each index i, calculate the difference of the two permutations at
index i,

// if this difference has temp_all[difference] <1, increase
temp_all[difference]

// otherwise, these permutations are not nearly orthogonal.
// -Update permutation object P to next permutation without a

similar issue to this permutation
// -Return false for this entire checkMNOLS function.
for (int i = 0; i < n; i++) {
Q_i = Q.get(i);
P_i = P.get(i);
diff = (P_i - Q_i < 0) ? P_i - Q_i + n : P_i - Q_i;
numb_this_diff = temp_all[diff];
//each difference can occur once, exept for a difference of 0 (which never

occurs) and a difference of n/2 (which occurs twice)
if (numb_this_diff == 1) {
//this is a fail at position i
P.next(i);
return false;

}
else {
//increase numb_this_diff by one
temp_all[diff]++;

}
}

//If no problems were found, these permutations are nearly orthogonal, so
return true.

return true;
}

//Input: two arrays of integers ’smaller’,’larger’

120

//Output: returns true if ’smaller’ is less than ’larger’ under the total
ordering <| defined in the chapter

bool lower(unsigned __int64** smaller, unsigned __int64** larger, int n, int
k) {

for (int i = 0; i<k; i++) {
for (int j = 0; j < n; j++) {
if (smaller[i][j] < larger[i][j]) {
return true;

}
else if (smaller[i][j] > larger[i][j]) {
return false;

}
}

}
return false;

}

//Input: an array of integers, representing a list of MNOLS
//Output: true if the array of integers represents a set-canonical list of

MNOLS.
//Method: We create every list of MNOLS is the same set-canonical as this list

of MNOLS, and check this list is the least under the canonical form
described in the chapter

//Note: other variables are tools for the calculations, either for the array
size or as pre-defined memmory.

bool Check_Canonical(unsigned __int64** Z, unsigned __int64 n, unsigned
__int64 k, unsigned __int64** B1, unsigned __int64** C1, unsigned
__int64** D1, unsigned __int64** E1) {

bool result = true;
for (int alpha = 0; alpha < n; alpha++) {

for (int i = 0; i < n; i++) {
for (int j = 0; j < k; j++) {
B1[j][i] = (Z[j][i] + alpha) % n;

}
}

//apply m_x to B to get C
for (int x = 1; x < n; x++) {

//we require gcd(x,n)=1
if (GCD(x, n) == 1) {
for (int i = 0; i < n; i++) {
for (int j = 0; j < k; j++) {
E1[j][i] = (B1[j][i] * x) % n;

}
}

//permuting the order of the list
Permutation sigma(k);
for (sigma.reset(); sigma.notFinished(); sigma.next()) {
for (int i = 0; i < n; i++) {
for (int j = 0; j < k; j++) {
C1[sigma.get(j)][i] = E1[j][i];

}
}

//Reorder so the list is in reduced order
for (int i = 0; i < k; i++) {

121

for (int j = 0; j < n; j++) {
D1[i][C1[0][j]] = C1[i][j];

}
}

//fail if the resulting list of MNOLS is lower than the
original

if (lower(D1, Z, n, k)) {
result = false;

}
}

sigma.del();

}
}

}
return result;

}

//Input: two arrays of integers, each representing a list of MNOLS
//Output: true if the two arrays are identicle, false otherwise
bool equal(unsigned __int64** Compare, unsigned __int64** Base, int n, int k) {

for (int i = 0; i<k; i++) {
for (int j = 0; j < n; j++) {
if (Compare[i][j] != Base[i][j]) {
return false;

}
}

}
//equal
return true;

}

//Input: an array of integers, representing a list of MNOLS, which we denote
as L

//Output (via the input pointer ’results’): true if the array of integers
represents a set-canonical list of MNOLS.

//Method: We check which group actions are in Is_s(L),
Is_l(L),Red_s(L),Red_l(L)

//Note: other variables are tools for the calculations, either for the array
size or as pre-defined memmory.

void Count_Autotopisms(unsigned __int64** Z, unsigned __int64** B, unsigned
__int64** C, unsigned __int64** D, unsigned __int64**E, unsigned
__int64**Reorder, int n, int k, unsigned __int64* results) //bool&
reset_to_fini, int***Store, int*count_MNOLS, vector<Holder>& MNOLS3,

{

for (int i = 0; i < 5; i++){
results[i] = 0;

}
//start searching through setw, with and without reduction
unsigned __int64 S_count = 0;
unsigned __int64 RS_count = 0;
Permutation sigma(k);
for (sigma.reset(); sigma.notFinished(); sigma.next()) {

122

for (int i = 0; i<k; i++) {
for (int j = 0; j < n; j++) {
C[i][j] = Z[sigma.get(i)][j] % n;

}
}

if (equal(C, Z, n, k)) {
S_count++;

}
//place the MNOLS into reduced order
for (int i = 0; i<k; i++) {
for (int j = 0; j < n; j++) {
D[i][C[0][j]] = C[i][j] % n;

}
}

if (equal(D, Z, n, k)) {
RS_count++;

}
}
sigma.del();
results[3] = RS_count; //the size of Red_s(L)
results[4] = S_count; //the size of Set(L)

unsigned __int64 MTR_count = 0;
unsigned __int64 MTRS_count = 0;

//apply tau^alpha
for (int alpha = 0; alpha<n; alpha++) {
for (int i = 0; i<k; i++) {
for (int j = 0; j < n; j++) {
E[i][j] = (Z[i][j] + alpha) % n;

}
}

//apply m_x to B
for (int x = 1; (x<n); x++) { // && (reset_to_fini == false)

//we require gcd(x,n)=1
if (GCD(x, n) == 1) {
for (int i = 0; i<k; i++) {
for (int j = 0; j < n; j++) {
B[i][j] = (E[i][j] * x) % n;

}
}

//place the MNOLS into reduced order
for (int i = 0; i<k; i++) {
for (int j = 0; j < n; j++) {
Reorder[i][B[0][j]] = B[i][j] % n;

}
}
if (equal(Reorder, Z, n, k)) {
MTR_count++;

}

Permutation sigma(k);
for (sigma.reset(); sigma.notFinished(); sigma.next()) {

for (int i = 0; i<k; i++) {

123

for (int j = 0; j < n; j++) {
C[i][j] = B[sigma.get(i)][j] % n;

}
}

//place the MNOLS into reduced order
for (int i = 0; i<k; i++) {
for (int j = 0; j < n; j++) {
D[i][C[0][j]] = C[i][j] % n;

}
}
if (equal(D, Z, n, k)) {
MTRS_count++;

}
}
sigma.del();

}
}

}

if (MTRS_count == 0){
cout << "we detected it here!\n";
for (int i = 0; i<k; i++) {
for (int j = 0; j < n; j++) {
cout << Z[i][j] << ’ ’;

}
cout << ’\n’;

}
}

results[0] = 1;
results[1] = MTRS_count; //the size of Is_s(L)
results[2] = MTR_count; //the size of Is_l(L)
return;

}

// we run this whole program for an individualy choice of the order of the
Latin squares n

#define n 16

int main()
{

omp_lock_t writelock3;
omp_lock_t writelock4;
omp_lock_t writelock5;

omp_init_lock(&writelock3);
omp_init_lock(&writelock4);
omp_init_lock(&writelock5);

int MNOLS_counter2 = 0;
int* count = new int[n];
for (int i = 0; i < n; i++) {
count[i] = 0;

}

124

cout << n;

vector<vector<__int8>> Canonical_Columns;
vector<vector<__int8>> Potential_Third_Columns;

vector<vector<vector<__int8>>> Canonical_Columns_partial(n);
vector<vector<vector<__int8>>> Potential_Third_Columns_partial(n);

unsigned __int64 COUNT_2way_Total = 0;
unsigned __int64 COUNT_2way_Canonical = 0;

//For each mu, we create an array for the results of each type
// For each list of MNOLS in set-canonical form, L, of type t we perform:

StoreResults(mu)Type(t)[Is_s(L)][Is_l(L)][Red_s(l)]++;
unsigned __int64*** StoreResults2Type0;
unsigned __int64*** StoreResults2Type1;
unsigned __int64*** StoreResults3Type0;
unsigned __int64*** StoreResults3Type1;
unsigned __int64*** StoreResults4Type0;
unsigned __int64*** StoreResults4Type1;
unsigned __int64*** StoreResults5Type0;
unsigned __int64*** StoreResults5Type1;

StoreResults2Type0 = new unsigned __int64**[n*n];
StoreResults2Type1 = new unsigned __int64**[n*n];
StoreResults3Type0 = new unsigned __int64**[n*n];
StoreResults3Type1 = new unsigned __int64**[n*n];
StoreResults4Type0 = new unsigned __int64**[n*n];
StoreResults4Type1 = new unsigned __int64**[n*n];
StoreResults5Type0 = new unsigned __int64**[n*n];
StoreResults5Type1 = new unsigned __int64**[n*n];
for (int j = 0; j < n*n; j++){
StoreResults2Type0[j] = new unsigned __int64*[6 + 1];
StoreResults2Type1[j] = new unsigned __int64*[6 + 1];
StoreResults3Type0[j] = new unsigned __int64*[6 + 1];
StoreResults3Type1[j] = new unsigned __int64*[6 + 1];
StoreResults4Type0[j] = new unsigned __int64*[6 + 1];
StoreResults4Type1[j] = new unsigned __int64*[6 + 1];
for (int k = 0; k < 6 + 1; k++){
StoreResults2Type0[j][k] = new unsigned __int64[6 + 1];
StoreResults2Type1[j][k] = new unsigned __int64[6 + 1];
StoreResults3Type0[j][k] = new unsigned __int64[6 + 1];
StoreResults3Type1[j][k] = new unsigned __int64[6 + 1];
for (int m = 0; m < 6 + 1; m++){
StoreResults2Type0[j][k][m] = 0;
StoreResults2Type1[j][k][m] = 0;
StoreResults3Type0[j][k][m] = 0;
StoreResults3Type1[j][k][m] = 0;

}
}

}
for (int j = 0; j < n*n; j++){
StoreResults4Type0[j] = new unsigned __int64*[24 + 1];
StoreResults4Type1[j] = new unsigned __int64*[24 + 1];
for (int k = 0; k < 24 + 1; k++){
StoreResults4Type0[j][k] = new unsigned __int64[24 + 1];
StoreResults4Type1[j][k] = new unsigned __int64[24 + 1];
for (int m = 0; m < 24 + 1; m++){
StoreResults4Type0[j][k][m] = 0;

125

StoreResults4Type1[j][k][m] = 0;
}

}
}
for (int j = 0; j < n*n; j++){
StoreResults5Type0[j] = new unsigned __int64*[120 + 1];
StoreResults5Type1[j] = new unsigned __int64*[120 + 1];
for (int k = 0; k < 120 + 1; k++){
StoreResults5Type0[j][k] = new unsigned __int64[120 + 1];
StoreResults5Type1[j][k] = new unsigned __int64[120 + 1];
for (int m = 0; m < 120 + 1; m++){
StoreResults5Type0[j][k][m] = 0;
StoreResults5Type1[j][k][m] = 0;

}
}

}

//count_2MNOLS stores how many
[1]set-isotopy/[2]list-isotopy/[3]set-reduced/[4]list-reduced/[5]set
classes and [6]lists in C^n_(mu)

unsigned __int64 **count_2MNOLS;
count_2MNOLS = new unsigned __int64*[n + 1];
for (int i = 0; i < n + 1; i++) {
count_2MNOLS[i] = new unsigned __int64[6]; //long int
for (int j = 0; j < 6; j++){
count_2MNOLS[i][j] = 0;

}
}

//The primary function of this section is to develop Canonical_Columns and
Potential_Third_Columns

// Canonical_Columns form the possible second columns of a list is MNOLS that
are set-isotopic

// Potential_Third_Columns the possible third/fourth/fifth columns of a list
is MNOLS that are set-isotopic

unsigned __int64 start1 = (std::clock());
int max_k = 5;
omp_set_num_threads(n);

#pragma omp parallel for
for (int first_pos = 0; first_pos < n; first_pos++){

////////////set up local variable///////////
unsigned __int64 temp[n];
unsigned __int64 temp2[n];
bool reset_to_fini = false;
Permutation I(n);
Permutation A(n);
//Permutation H(n);
unsigned __int64* temp_all = new unsigned __int64[n];
//for (Permutation A(n); A.notFinished() == true; A.next()){

unsigned __int64* results = new unsigned __int64[5];

unsigned __int64**Z = new unsigned __int64*[max_k];
unsigned __int64** BBB = new unsigned __int64*[max_k];
unsigned __int64** CCC = new unsigned __int64*[max_k];
unsigned __int64** DDD = new unsigned __int64*[max_k];
unsigned __int64** EEE = new unsigned __int64*[max_k];

126

unsigned __int64** FFF = new unsigned __int64*[max_k];

for (int i = 0; i < max_k; i++) {
Z[i] = new unsigned __int64[n];
BBB[i] = new unsigned __int64[n];
CCC[i] = new unsigned __int64[n];
DDD[i] = new unsigned __int64[n];
EEE[i] = new unsigned __int64[n];
FFF[i] = new unsigned __int64[n];
for (int j = 0; j < n; j++) {
Z[i][j] = 0;
BBB[i][j] = 0;
CCC[i][j] = 0;
DDD[i][j] = 0;
EEE[i][j] = 0;
FFF[i][j] = 0;

}
}

////////////finished defining local variable///////////

//Increase the permutation A until the first entry is first pos
while (A.get(0) != first_pos){
A.next(0);

}

//repeat the following until all permutations starting with ’first_pos’
are exhausted

while (A.notFinished() && A.get(0) == first_pos) {
reset_to_fini = false;

//Check this permutation ’A’ is nearly orthogonal to the identity
permutation

if (reset_to_fini == false) {
if (checkMNOLS(I, A, temp_all) == false) {
reset_to_fini = true;

}
}

//set up some variable for later
if (reset_to_fini == false) {
//A.Print();

//check if canonical 2MNOLS
for (int i = 0; i < max_k; i++) {
for (int j = 0; j < n; j++) {
BBB[i][j] = 0;
CCC[i][j] = 0;
DDD[i][j] = 0;
EEE[i][j] = 0;

}
}
for (int i = 0; i < n; i++) {
Z[0][i] = i;
Z[1][i] = A.get(i);

}

//If we finished this without setting reset_to_fini =true, then (I,A)
represents a possible list of MNOLS

}

127

//if the permutations (I,A) are a list of MNOLS
if (reset_to_fini == false) {
if (COUNT_2way_Total % 1000 == 0){
cout << COUNT_2way_Total << " ";

}
if (COUNT_2way_Total % 10000 == 0){
A.Print();

}
//if A is a potential second column in a list of MNOLS that are

set-canonical (implies first entry is 1 & canonical)
if (A.get(0) == 1){
if (Check_Canonical(Z, n, 2, BBB, CCC, DDD, EEE)){

//count how many lists of 2 cyclic MNOLS under each equivalence that
correspond to the set-canonical list of MNOLS (I,A)

Count_Autotopisms(Z, BBB, CCC, DDD, EEE, FFF, n, 2, results);
if (results[1] != 0){

#pragma omp atomic
count_2MNOLS[n][0] += results[0];

#pragma omp atomic
count_2MNOLS[n][1] += totient(n) * n * results[3] / results[1];

#pragma omp atomic
count_2MNOLS[n][2] += totient(n) * n * factorial(2) * 1 /

results[1];
#pragma omp atomic

count_2MNOLS[n][3] += factorial(2) * results[2] / results[1];
#pragma omp atomic

count_2MNOLS[n][4] += totient(n) * n * results[4] / results[1];
//divided by n!

#pragma omp atomic
count_2MNOLS[n][5] += totient(n) * n * factorial(2) / results[1];

//divided by n!

}

//Store based on types
if (Z[1][1] == 0){

#pragma omp atomic
StoreResults2Type0[results[1]][results[2]][results[3]]++;

}
else{

#pragma omp atomic
StoreResults2Type1[results[1]][results[2]][results[3]]++;

}

//Save this column in a vector of all possible second columns
vector<__int8> temp;
for (int i = 0; i < n; i++){
temp.push_back(A.get(i));

}
Canonical_Columns_partial[first_pos].push_back(temp);

#pragma omp atomic
COUNT_2way_Canonical++;

}
#pragma omp atomic

COUNT_2way_Total++;
}
else{
//otherwise, this column could be the third/fourth/etc column

128

//Save this column in a vector of all possible third/etc columns
vector<__int8> temp;
for (int i = 0; i < n; i++){
temp.push_back(A.get(i));

}
Potential_Third_Columns_partial[first_pos].push_back(temp);

#pragma omp atomic
COUNT_2way_Total++;

}
A.next();

}
}

}

//As we have done this over several threads, put spread out lists into a
common list

for (int first_pos = 0; first_pos < n; first_pos++){
for (int i = 0; i < Canonical_Columns_partial[first_pos].size(); i++){
Canonical_Columns.push_back(Canonical_Columns_partial[first_pos][i]);

}
Canonical_Columns_partial[first_pos].clear();
for (int i = 0; i < Potential_Third_Columns_partial[first_pos].size(); i++){
Potential_Third_Columns.push_back(Potential_Third_Columns_partial[first_pos][i]);

}
Potential_Third_Columns_partial[first_pos].clear();

}
Canonical_Columns_partial.clear();
Potential_Third_Columns_partial.clear();

//the list is produced
cout << "the number of second columns is " << COUNT_2way_Total << " and " <<

COUNT_2way_Canonical << ’\n’;
cout << "the list Potential_Third_Columns has size " <<

Potential_Third_Columns.size() << " and Canonical_Columns has size " <<
Canonical_Columns.size() << ", which is produced in time: " <<
(std::clock() - start1) / (double)CLOCKS_PER_SEC << ’\n’;

//create variables to store results
unsigned __int64 COUNT_3way_Canonical = 0;
unsigned __int64 COUNT_4way_Canonical = 0;
unsigned __int64 COUNT_5way_Canonical = 0;

unsigned __int64 **count_3MNOLS;
count_3MNOLS = new unsigned __int64*[n + 1];
for (int i = 0; i < n + 1; i++) {
count_3MNOLS[i] = new unsigned __int64[6];
for (int j = 0; j < 6; j++){
count_3MNOLS[i][j] = 0;

}
}
unsigned __int64 **count_4MNOLS;
count_4MNOLS = new unsigned __int64*[n + 1];
for (int i = 0; i < n + 1; i++) {

129

count_4MNOLS[i] = new unsigned __int64[6];
for (int j = 0; j < 6; j++){
count_4MNOLS[i][j] = 0;

}
}
unsigned __int64 **count_5MNOLS;
count_5MNOLS = new unsigned __int64*[n + 1];
for (int i = 0; i < n + 1; i++) {
count_5MNOLS[i] = new unsigned __int64[6];
for (int j = 0; j < 6; j++){
count_5MNOLS[i][j] = 0;

}
}

//create an output list for the lists of MNOLS
string file_name_3 = "3MNOLS-n";
file_name_3 += to_string(_Longlong(n));
file_name_3 += ".txt";

string file_name_4 = "4MNOLS-n";
file_name_4 += to_string(_Longlong(n));
file_name_4 += ".txt";

string file_name_5 = "5MNOLS-n";
file_name_5 += to_string(_Longlong(n));
file_name_5 += ".txt";

std::ofstream file_to_be_appended;
file_to_be_appended.open(file_name_3, ios::out);
file_to_be_appended.close();
file_to_be_appended.open(file_name_4, ios::out);
file_to_be_appended.close();
file_to_be_appended.open(file_name_5, ios::out);
file_to_be_appended.close();

int count_doneThreads = 0;
struct pair_vec
{
vector<__int8> first, second;

};
vector<pair_vec> List_all;
bool reset_to_fini_1 = false;

//for each possible second column...
omp_set_num_threads(n);

#pragma omp parallel for // ordered schedule(dynamic, 1)
for (int first = 0; first < Canonical_Columns.size(); first++) {

cout << count_doneThreads++ << ’ ’;

//Every 1000 threads, we output some details as to the current state of
the program

if (count_doneThreads % 1000 == 0){

cout << "time = " << (std::clock() - start1) / (double)CLOCKS_PER_SEC <<
’\n’;

cout << " \n mu=2\n";

130

cout << "total set-iso classes: " << count_2MNOLS[n][0] << "\n";
cout << "total set-red classes: " << count_2MNOLS[n][1] << "\n";
cout << "total list-red classes: " << count_2MNOLS[n][2] << "\n";
cout << "total list-iso classes: " << count_2MNOLS[n][3] << "\n";
cout << "total set classes (divided by n!): " << count_2MNOLS[n][4] <<

"\n";
cout << "total lists (divided by n!): " << count_2MNOLS[n][5] << "\n";
cout << ’\n’;

cout << " \n mu=3\n";
cout << "total set-iso classes: " << count_3MNOLS[n][0] << "\n";
cout << "total set-red classes: " << count_3MNOLS[n][1] << "\n";
cout << "total list-red classes: " << count_3MNOLS[n][2] << "\n";
cout << "total list-iso classes: " << count_3MNOLS[n][3] << "\n";
cout << "total set classes (divided by n!): " << count_3MNOLS[n][4] <<

"\n";
cout << "total lists (divided by n!): " << count_3MNOLS[n][5] << "\n";
cout << ’\n’;

cout << " mu=4\n";
cout << "total set-iso classes: " << count_4MNOLS[n][0] << "\n";
cout << "total set-red classes: " << count_4MNOLS[n][1] << "\n";
cout << "total list-red classes: " << count_4MNOLS[n][2] << "\n";
cout << "total list-iso classes: " << count_4MNOLS[n][3] << "\n";
cout << "total set classes (divided by n!): " << count_4MNOLS[n][4] <<

"\n";
cout << "total lists (divided by n!): " << count_4MNOLS[n][5] << "\n";
cout << ’\n’;

cout << " mu=5\n";
cout << "total set-iso classes: " << count_5MNOLS[n][0] << "\n";
cout << "total set-red classes: " << count_5MNOLS[n][1] << "\n";
cout << "total list-red classes: " << count_5MNOLS[n][2] << "\n";
cout << "total list-iso classes: " << count_5MNOLS[n][3] << "\n";
cout << "total set classes (divided by n!): " << count_5MNOLS[n][4] <<

"\n";
cout << "total lists (divided by n!): " << count_5MNOLS[n][5] << "\n";
cout << ’\n’;

}

//define local variables, for use in functions without having to redefine
variables

unsigned __int64* results = new unsigned __int64[5];
reset_to_fini_1 = false;
unsigned __int64**Z = new unsigned __int64*[max_k];
unsigned __int64** BBB = new unsigned __int64*[max_k];
unsigned __int64** CCC = new unsigned __int64*[max_k];
unsigned __int64** DDD = new unsigned __int64*[max_k];
unsigned __int64** EEE = new unsigned __int64*[max_k];
unsigned __int64** FFF = new unsigned __int64*[max_k];
for (int i = 0; i < max_k; i++) {
Z[i] = new unsigned __int64[n];
BBB[i] = new unsigned __int64[n];
CCC[i] = new unsigned __int64[n];
DDD[i] = new unsigned __int64[n];
EEE[i] = new unsigned __int64[n];
FFF[i] = new unsigned __int64[n];
for (int j = 0; j < n; j++) {
Z[i][j] = 0;

131

BBB[i][j] = 0;
CCC[i][j] = 0;
DDD[i][j] = 0;
EEE[i][j] = 0;
FFF[i][j] = 0;

}
}

bool reset_to_fini_2 = false;
vector<vector<__int8>> List;
vector<vector<__int8>> List_3rdColumn;
vector<vector<__int8>>::const_iterator i2;
vector<vector<__int8>>::const_iterator i3;

//Fill the possible columns into the permutations P1, etc.
Permutation P1(n), P2(n), P3(n);
for (int i = 0; i < n; i++) {
P1.set(i, Canonical_Columns[first][i]);

}

unsigned __int64* temp_all = new unsigned __int64[n];

//reset local variables
for (int i = 0; i < max_k; i++) {
for (int j = 0; j < n; j++) {
BBB[i][j] = 0;
CCC[i][j] = 0;
DDD[i][j] = 0;
EEE[i][j] = 0;

}
}
for (int i = 0; i < n; i++) {
Z[0][i] = i;
Z[1][i] = Canonical_Columns[first][i];

}

//we now move onto the third column
List.empty();
List_3rdColumn.empty();
if (reset_to_fini_1 == false){
for (unsigned __int64 second = 0; second <

Potential_Third_Columns.size(); second++) {

//The permutation object P2 holds the third permutation
for (int i = 0; i < n; i++) {
P2.set(i, Potential_Third_Columns[second][i]);

}

//check that P1 and P2 (thinking of them as columns) are nearly
orthogonal

if (checkMNOLS(P1, P2, temp_all) == 1) {
reset_to_fini_2 = false;

//load P2 into Z for Check_Canonical and Count_Autotopisms later
for (int i = 0; i < n; i++) {
Z[2][i] = Potential_Third_Columns[second][i];

}

132

//develops List, which is all posiible third/fourth/fifth columns
if (reset_to_fini_2 == false) {
vector<__int8> temp;
for (int i = 0; i < n; i++) {
temp.push_back(Z[2][i]);
//temp[i] = Z[2][i];

}
List.push_back(temp);

}

//if this one so happen to be canonical, then we have a list of 3
cyclic MNOLS that are set-canonical

if (reset_to_fini_2 == false) {
if (Check_Canonical(Z, n, 3, BBB, CCC, DDD, EEE) == true) {
vector<__int8> temp;
for (int i = 0; i < n; i++) {
temp.push_back(Z[2][i]);
//temp[i] = Z[2][i];

}
List_3rdColumn.push_back(temp);

//store results
#pragma omp atomic

COUNT_3way_Canonical++;

Count_Autotopisms(Z, BBB, CCC, DDD, EEE, FFF, n, 3, results);
if (results[1] != 0){

#pragma omp atomic
count_3MNOLS[n][0] += results[0];

#pragma omp atomic
count_3MNOLS[n][1] += totient(n) * n * results[3] / results[1];

#pragma omp atomic
count_3MNOLS[n][2] += totient(n) * n * factorial(3) * 1 /

results[1];
#pragma omp atomic

count_3MNOLS[n][3] += factorial(3) * results[2] / results[1];
#pragma omp atomic

count_3MNOLS[n][4] += totient(n) * n * results[4] / results[1];
//divided by n!

#pragma omp atomic
count_3MNOLS[n][5] += totient(n) * n * factorial(3) /

results[1]; //divided by n! // * results[4] was here

}

//store type information
if (Z[1][1] == 0){

#pragma omp atomic
StoreResults3Type0[results[1]][results[2]][results[3]]++;

}
else{

#pragma omp atomic
StoreResults3Type1[results[1]][results[2]][results[3]]++;

}
}

}
}

}

//We now come to the part of the program where we create a graph and look for
a clique.

133

//As we mentioned previously, we have unrolled the clique problem

//At the present time, the first and second columns are fixed.
Permutation temp1(n), temp2(n), temp3(n);

//we develop temp1 (column three) and temp2 (column four)
for (unsigned __int64 i = 0; i < List_3rdColumn.size(); i++){
for (int k = 0; k < n; k++){
temp1.set(k, List_3rdColumn[i][k]);

}
for (unsigned __int64 j = 0; j < List.size(); j++){
for (int k = 0; k < n; k++){
temp2.set(k, List[j][k]);

}
//if the third and fourth columns are nearly orthogonal
if (checkMNOLS(temp1, temp2, temp_all) == true){
//we currently have a list of 4 cyclic MNOLS

for (int l = 0; l < n; l++) {
Z[2][l] = List_3rdColumn[i][l];
Z[3][l] = List[j][l];

}
if (Check_Canonical(Z, n, 4, BBB, CCC, DDD, EEE) == true) {

//If we get here, we have found a list of 4 cyclic MNOLS that are
set-isotopic, so store the results

#pragma omp atomic
COUNT_4way_Canonical++;

Count_Autotopisms(Z, BBB, CCC, DDD, EEE, FFF, n, 4, results);
if (results[1] != 0){

#pragma omp atomic
count_4MNOLS[n][0] += results[0];

#pragma omp atomic
count_4MNOLS[n][1] += totient(n) * n * results[3] / results[1];

#pragma omp atomic
count_4MNOLS[n][2] += totient(n) * n * factorial(4) * 1 /

results[1];
#pragma omp atomic

count_4MNOLS[n][3] += factorial(4) * results[2] / results[1];
#pragma omp atomic

count_4MNOLS[n][4] += totient(n) * n * results[4] / results[1];
//divided by n!

#pragma omp atomic
count_4MNOLS[n][5] += totient(n) * n * factorial(4) /

results[1]; //divided by n! // * results[4] was here

}

if (Z[1][1] == 0){
#pragma omp atomic

StoreResults4Type0[results[1]][results[2]][results[3]]++;
}
else{

#pragma omp atomic
StoreResults4Type1[results[1]][results[2]][results[3]]++;

}

//print to file
string found_MNOLS = "";
for (int i = 0; i < 4; i++) {
for (int j = 0; j < n; j++) {
found_MNOLS.append(to_string(Z[i][j]));

134

found_MNOLS.append(" ");
}
found_MNOLS.append("\n");

}
found_MNOLS.append("\n");

omp_set_lock(&writelock4);
file_to_be_appended.open(file_name_4, ios::out | ios::app);
file_to_be_appended << found_MNOLS;
file_to_be_appended.close();
omp_unset_lock(&writelock4);
found_MNOLS.clear();

//At this point, we could store this third and fourth column as
an edge in a graph.

//Instead, we search for a fifth column to form a list of 5
cyclic MNOLS that are set-isotopic

for (unsigned __int64 k = 0; k < List.size(); k++){
for (int l = 0; l < n; l++){
temp3.set(l, List[k][l]);

}
if (checkMNOLS(temp1, temp3, temp_all) == true){
if (checkMNOLS(temp2, temp3, temp_all) == true){
for (int l = 0; l < n; l++) {
Z[4][l] = List[k][l];

}
if (Check_Canonical(Z, n, 5, BBB, CCC, DDD, EEE) == true) {

//we have found a list of 5 cyclic MNOLS that are
set-isotopic, so store the results

if (COUNT_5way_Canonical==0){
cout << "we have a five way!\n";
for (int a = 0; a < 5; a++){
for (int b = 0; b < n; b++){
cout << Z[a][b] << ’ ’;

}
cout << ’\n’;

}
cout << ’\n’;

}
Count_Autotopisms(Z, BBB, CCC, DDD, EEE, FFF, n, 5,

results);

#pragma omp atomic
count_5MNOLS[n][0] += results[0];

#pragma omp atomic
count_5MNOLS[n][1] += totient(n) * n * results[3] /

results[1];
#pragma omp atomic

count_5MNOLS[n][2] += totient(n) * n * factorial(5) * 1 /
results[1];

#pragma omp atomic
count_5MNOLS[n][3] += factorial(5) * results[2] /

results[1];
#pragma omp atomic

count_5MNOLS[n][4] += totient(n) * n * results[4] /
results[1]; //divided by n!

#pragma omp atomic
count_5MNOLS[n][5] += totient(n) * n * factorial(5) /

results[1]; //divided by n! // * results[4] was here

#pragma omp atomic

135

COUNT_5way_Canonical++;

if (Z[1][1] == 0){
#pragma omp atomic

StoreResults5Type0[results[1]][results[2]][results[3]]++;
}
else{

#pragma omp atomic
StoreResults5Type1[results[1]][results[2]][results[3]]++;

}

//print to file
string found_MNOLS = "";
for (int i = 0; i < 5; i++) {
for (int j = 0; j < n; j++) {
found_MNOLS.append(to_string(Z[i][j]));
found_MNOLS.append(" ");

}
found_MNOLS.append("\n");

}
found_MNOLS.append("\n");

omp_set_lock(&writelock5);
file_to_be_appended.open(file_name_5, ios::out | ios::app);
file_to_be_appended << found_MNOLS;
file_to_be_appended.close();
omp_unset_lock(&writelock5);
found_MNOLS.clear();

}
}

}

}

}
}

}
}

}

//clear stored data
List.clear();
List.resize(0);

for (int i = 0; i < max_k; i++) {
delete[] Z[i];
delete[] BBB[i];
delete[] CCC[i];
delete[] DDD[i];
delete[] EEE[i];

}
delete[] Z;
delete[] BBB;
delete[] CCC;
delete[] DDD;
delete[] EEE;
List.clear();
delete[] temp_all;

136

}

//Print results
bool print_m;
bool print_j;

cout << "\n";

cout << "mu=2\n";

for (int m = 0; m < 6 + 1; m++){
print_m = false;
for (int j = 0; j < n*n; j++){
for (int k = 0; k < 6 + 1; k++){
if (StoreResults2Type0[j][k][m] > 0 || StoreResults2Type1[j][k][m] >

0){
print_m = true;
cout << "(is_s {j},is_l {k},red_s {m},t1,t2,all) = (" << j << ’,’ <<

k << ’,’ << m << ’,’ << StoreResults2Type0[j][k][m] << ’,’ <<
StoreResults2Type1[j][k][m] << ’,’ << StoreResults2Type0[j][k][m]
+ StoreResults2Type1[j][k][m] << ")\n";

}
}

}
}
cout << ’\n’;

cout << "mu=3\n";

for (int m = 0; m < 6 + 1; m++){
print_m = false;
for (int j = 0; j < n*n; j++){
for (int k = 0; k < 6 + 1; k++){
if (StoreResults3Type0[j][k][m] > 0 || StoreResults3Type1[j][k][m] >

0){
print_m = true;
cout << "(is_s {j},is_l {k},red_s {m},t1,t2,all) = (" << j << ’,’

<< k << ’,’ << m<< ’,’ << StoreResults3Type0[j][k][m] << ’,’ <<
StoreResults3Type1[j][k][m] << ’,’ <<
StoreResults3Type0[j][k][m] + StoreResults3Type1[j][k][m] <<
")\n";

}
}

}
}
cout << ’\n’;

cout << "mu=4\n";
for (int m = 0; m < 24 + 1; m++){
print_m = false;
for (int j = 0; j < n*n; j++){
for (int k = 0; k < 24 + 1; k++){
if (StoreResults4Type0[j][k][m] > 0 || StoreResults4Type1[j][k][m] >

0){
print_m = true;

137

cout << "(is_s {j},is_l {k},red_s {m},t1,t2,all) = (" << j << ’,’
<< k << ’,’ << m << ’,’ << StoreResults4Type0[j][k][m] << ’,’
<< StoreResults4Type1[j][k][m] << ’,’ <<
StoreResults4Type0[j][k][m] + StoreResults4Type1[j][k][m] <<
")\n";

}
}

}
}
cout << ’\n’;

int max_j;
cout << "mu=5\n";

for (int m = 0; m < 120 + 1; m++){
max_j = 0;
print_m = false;
for (int j = 0; j < n*n; j++){
for (int k = 0; k < 120 + 1; k++){
if (StoreResults5Type0[j][k][m] > 0 || StoreResults5Type1[j][k][m] >

0){
print_m = true;
cout << "(is_s {j},is_l {k},red_s {m},t1,t2,all) = (" << j << ’,’

<< k << ’,’ << m << ’,’ << StoreResults5Type0[j][k][m] << ’,’
<< StoreResults5Type1[j][k][m] << ’,’ <<
StoreResults5Type0[j][k][m] + StoreResults5Type1[j][k][m] <<
")\n";

}
}

}
}
cout << ’\n’;

cout << " \n mu=2\n";
cout << "total set-iso classes: " << count_2MNOLS[n][0] << "\n";
cout << "total set-red classes: " << count_2MNOLS[n][1] << "\n";
cout << "total list-red classes: " << count_2MNOLS[n][2] << "\n";
cout << "total list-iso classes: " << count_2MNOLS[n][3] << "\n";
cout << "total set classes (divided by n!): " << count_2MNOLS[n][4] <<

"\n";
cout << "total lists (divided by n!): " << count_2MNOLS[n][5] << "\n";
cout << ’\n’;

cout << " \n mu=3\n";
cout << "total set-iso classes: " << count_3MNOLS[n][0] << "\n";
cout << "total set-red classes: " << count_3MNOLS[n][1] << "\n";
cout << "total list-red classes: " << count_3MNOLS[n][2] << "\n";
cout << "total list-iso classes: " << count_3MNOLS[n][3] << "\n";
cout << "total set classes (divided by n!): " << count_3MNOLS[n][4] <<

"\n";
cout << "total lists (divided by n!): " << count_3MNOLS[n][5] << "\n";

cout << ’\n’;

138

cout << " mu=4\n";
cout << "total set-iso classes: " << count_4MNOLS[n][0] << "\n";
cout << "total set-red classes: " << count_4MNOLS[n][1] << "\n";
cout << "total list-red classes: " << count_4MNOLS[n][2] << "\n";
cout << "total list-iso classes: " << count_4MNOLS[n][3] << "\n";
cout << "total set classes (divided by n!): " << count_4MNOLS[n][4] <<

"\n";
cout << "total lists (divided by n!): " << count_4MNOLS[n][5] << "\n";

cout << ’\n’;

cout << " mu=5\n";
cout << "total set-iso classes: " << count_5MNOLS[n][0] << "\n";
cout << "total set-red classes: " << count_5MNOLS[n][1] << "\n";
cout << "total list-red classes: " << count_5MNOLS[n][2] << "\n";
cout << "total list-iso classes: " << count_5MNOLS[n][3] << "\n";
cout << "total set classes (divided by n!): " << count_5MNOLS[n][4] <<

"\n";
cout << "total lists (divided by n!): " << count_5MNOLS[n][5] << "\n";

cout << ’\n’;

cout << "COUNT_2way_Canonical=" << COUNT_2way_Canonical<<’\n’;
cout << "COUNT_2way_Total=" << COUNT_2way_Total << ’\n’;
cout << "COUNT_3way_Canonical" << COUNT_3way_Canonical << ’\n’;
cout << "COUNT_4way_Canonical" << COUNT_4way_Canonical << ’\n’;
cout << "COUNT_5way_Canonical" << COUNT_5way_Canonical << ’\n’;

cout << "List_all size =" << List_all.size() << " ";
cout << "MNOLS_counter2=" << MNOLS_counter2 << ’\n’;

cout << "time = " << (std::clock() - start1) / (double)CLOCKS_PER_SEC <<
’\n’;

return 0;
}

139

	List of Figures
	List of Tables
	Index
	Introduction
	Brief History
	Definitions
	Questions
	Transversals in latin squares
	-way k-homogeneous latin trades
	Mutually nearly orthogonal latin squares

	Transversals in the back circulant latin squares
	Introduction
	Results
	Basic results
	Computer search
	Principal construction

	Application to =3,4
	Existence of partial transversals in subsquares
	=3
	=4

	Application to latin trades
	Conclusion and future work

	-way k-homogenous latin trades
	Introduction
	Literature review
	Idempotent generalization of basic constructions
	New Constructions for idempotent (,k,m)-latin trades
	Computer search for small orders
	Extended Multiplication Construction
	Packing construction
	Construction via RPBDs

	Result when =3
	Results
	Future work

	Enumeration of MNOLS
	Introduction
	Further definitions
	Cyclic MNOLS
	Group actions for cyclic MNOLS
	Canonical forms
	Algorithms
	Results and conclusions

	Conclusion
	Bibliography
	Appendix
	Base blocks for Chapter 2
	Program details
	More details
	Code

