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Abstract

Advances in photonics will lead to breakthroughs in technology with a similar impact to

that resulted from the development of electronics. At the quantum level, photons exhibit some

unique features, such as non-classical correlations and bosonic bunching. The manipulation

of these quanta of light foresee the construction of quantum devices capable of outperform-

ing their classical counterparts in the purposes for which they are built. Despite a significant

progress in developing quantum technologies, several unsolved issues certainly remain: Efficient

quantification of quantum correlations in a system, and manipulation of multiple photons at

once, are two of such hurdles to be overcome. In this thesis, we tackle these two issues and

present experimental progress towards their solution. We first explore quantum entanglement

between two single-photons and its effect on phases appearing on the system’s wavefunction.

The observed phases revealed an intimate connection between entanglement—a purely quan-

tum phenomena—and geometric and topological structures of abstract manifolds: A special

case of geometric phases was found to increase monotonically with the amount of entanglement

in the system, thus serving as an alternative measure of quantum correlations. We then em-

ployed a system of three single-photons, and two concatenated entangling gates, as the basis

of a quantum simulation protocol: A three-particle quantum simulator, mimicking the entan-

gling evolution of two particles, is used to experimentally demonstrate that the overhead in

measuring concurrence—a measure of two-particle entanglement—can be significantly reduced

down to measuring only two observables. At this point, increasing the number of photons

being handled proved extremely difficult; the low efficiency of photon sources based on para-

metric downconversion—the gold-standard and only source at-the-time used for multi-photon

experiments—imposed a hard limit on countrates and hence the number of photons to be ma-

nipulated. We thus then focused on overcoming this obstacle: We studied a solid-state emitter

and its performance as a multi-photon source. We employed a quantum dot-cavity system to

show that streams of tens of indistinguishable single-photons are produced, whose temporal-

to-spatial demultiplexing serves as a novel kind of multi-photon source. A three-photon source

was then built and employed in the first demonstration of multi-photon interference from a

solid-state source: We implemented a BosonSampling device with a source that is between

one and two orders-of-magnitude more efficient than its downconversion counterpart. The main

limiting factors for scaling to higher photon numbers were identified to be not intrinsic to the

solid-state emitter, but determined by low detector efficiencies and the probabilistic nature of

the demultiplexing scheme. Future improvements on these limitations are expected to allow the

generation of sources with a higher number of single-photons, a task that has to date remained

otherwise impossible.
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Overview

P
hoton sources based on spontaneous parametric downconversion have been to date

the workhorse for most optical quantum information processing protocols [1]. These

sources proved being very useful in proof-of-principle experiments, serving in the

demonstration of several seminal works—such as quantum teleportation [2], entangling quan-

tum logic gates [3], bipartite- [4] and multi-partite entanglement [5, 6], and loophole-free Bell

tests [7, 8], to name only a few. However, it is well recognised that the two-decades old tech-

nology presents serious difficulties regarding scalability: Experiments so far consisted mostly of

two-photon protocols, and only one eight-photon realisation has been reported [6]. The inher-

ent low efficiency of the downconversion process makes it extremely difficult to experimentally

study quantum phenomena with higher numbers of single-photons.

The content of this thesis represents my efforts—in collaboration with my co-authors—on

developing new approaches for reducing two current limitations in quantum information and

quantum photonics. Two main results can then be outlined from this work: The first result is

with regards to reducing the difficulty in quantifying entanglement in quantum systems; and

the second result deals with the implementation of a new kind of multi-photon source based on

a semiconductor quantum dot embedded in a micropillar cavity, where the issue of scalability

has been addressed and a source with promising scalable potential was obtained.

Parts of this thesis

This work is primarily a thesis by publication. Three chapters (Chapters 2, 3, and 4) are

published peer reviewed papers, and one chapter (Chapter 5) is a manuscript submitted and

currently under review. All of which I am the lead author, having dealt with a substantial load

in each project. The thesis is made of two parts, Parts I and II, whose content is organised as

follows.

Part I: Photons: A Reduced Measurement Overhead for Entangle-

ment

Chapter 1 presents the concept of a source of single-photons. I discuss the theoretical concept of

an ideal single-photon source, and what experimentalists refer to as one. We provide a general

overview of the current state-of-the-art of photon sources, considering the advantages and

disadvantages that different systems have to offer. The chapter ends with a brief description

of the experimental properties of two kinds of sources used in this thesis, one is based on

1



parametric downconversion, and the other one employs a sample with semiconductor quantum

dots developed by our collaborators in the group of Prof. Pascale Senellart in Paris.

In Chapter 2 we study phases appearing in the evolving state of two single-photons entangled

in their polarisation. These phases appear as a shift in the interferometric modulation of a

two-photon coincidence measurement; as such they differ to previously studied one-particle

phases and belong a 6-dimensional parameter space describing the joint-state of two-photons.

Specific bi-local evolutions are chosen to enforce that the dynamical component of the gained

phase vanishes and only its geometrical (or topological) nature is observed. Theoretically, we

found that one special kind of geometric phases vanishes for all separable—unentangled—states

and monotonically increases with the amount of entanglement—quantified, e.g., by the tangle

(concurrence squared)—between the particles. In this sense, it serves as an alternative method

to quantify entanglement in a system of two particles without the necessity of full tomographic

reconstruction techniques [9].

Chapter 3 describes the experimental demonstration of a quantum simulation protocol [10]

introduced by our collaborators in the group of Prof. Enrique Solano in Bilbao. In this Embed-

ding Quantum Simulator, the addition of one ancillary qubit allows for the efficient measurement

of entanglement monotones: Measuring only either two or six observables—depending on the

dimension of the system’s Hilbert space—is sufficient to extract the “strength” of multipartite

quantum correlations. We built a three-qubit quantum simulator that mimics the evolution of

two qubits undergoing an entangling dynamics, for which we used a source of three photons

(plus a fourth trigger photon) and two control-sign gates implemented with linear-optics. The

simulated concurrence of the evolving system was obtained by measuring only two observables,

instead of the fifteen that full state tomography requires.

Part II: Multi-Photon Experiments with Solid-State Emitters

Given the difficulty in continuing increasing the number of single-photons being manipulated

from a downconversion source, we turned our efforts into exploring a novel technology that pre-

sented great potential as a single-photon source. This is based on solid-state emitters—quantum

dots coupled to micropillar cavity structures—with much higher efficiency than downconversion

processes, thus with potential to overcome previous limitations and ultimately replacing the

older technology.

In Chapter 4, we first focused on implementing an efficient setup for collecting the emitted

light from the quantum dot-micropillar system. As a result, a source brightness at the output

of a single-mode fibre of 14% was obtained: About one in seven laser pulses results in a high-

quality single-photon that can be directly used. We then showed that this source emits streams

of tens of single-photons that remain highly indistinguishable. Each of these consecutive pho-

tons are produced by independent laser pulses, which contrasts favourably to downconversion

sources, where photons generated from independent pump-events exhibit a strongly decreased

indistinguishability.

Chapter 5 presents the concluding experiment of this thesis. The source developed in Chap-

2



ter 4 is temporal-to-spatial demultiplexed into a source that can be run as multiple partially-

indistinguishable single-photons. Operated as a 3-photon source, it is used in a BosonSam-

pling protocol, where the developed source is between one and two orders-of-magnitude more

efficient than previous equivalent downconversion sources.
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CHAPTER 1

Sources of single-photons

I
nteraction with light is amongst the earliest ways by which we begin learning what

is around us. Before we even realise what light is, its importance became clear as it

represents a window through which we explore our world. But what is light? From “rays

from fire” according to the Greeks twenty-five centuries ago, through wave and corpuscular

theories put forward by Hook and Newton, light is to date understood as radiation of the

electromagnetic field. Its quanta is the photon: An elementary “indivisible” particle (not made

of other sub-particles), carrier of the electromagnetic force.

Several processes are known by which photons are produced: Charges subject to acceleration

lose energy by radiating a continuous photon flux; the annihilation of an electron and its

antiparticle the positron results in the creation of two photons; and the decay of an atomic

excited state produces a single photon with a well defined energy. Thermal radiation—due to

thermal motion of charges—is an example of the former case, and can be explained in terms of

classical physics. The latter two cases, on the other hand, are examples of quantum phenomena

at high and low energies, respectively. In this work we focus on sources that emit—in principle—

only one photon at the time: A single-photon source.

1.1 The wish-list

An ideal single-photon source satisfies the following wish-list [1]:

1. The source is deterministic, or “on-demand”: Photon emission can occur at any time, as

defined by a user.

2. 100% source efficiency: Every attempt does result in the emission of a photon.

3. 0% multiple-photon emission: Only a single-photon Fock state is emitted.

4. 100% photon indistinguishability: All emitted photons are indistinguishable from one

another.

Also, arguably with less immediate importance than the other characteristics, another desirable

feature of an ideal single-photon source is that it can be operated at an arbitrarily fast repetition

rate, limited only by photon lifetimes.
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The above mentioned idealised characteristics are, obviously, only possible in a theoretical

concept. In practice, the literature considers a device as a single-photon source to that satisfying

(at least partially) characteristic (3) of the wish-list. Experimental implementations to date

have met, to some extent, one or more of such features simultaneously, being different physical

systems better suited than others at different characteristics. Therefore, depending on the

particular application the experimenter has in mind, an “approximate” single-photon source

from one or another system can suffice.

Below we briefly describe the different kinds of single-photon sources with respect to the

mentioned wish-list. For characteristics (3) and (4), we provide experimental results obtained

during this PhD candidature with two kinds of sources, with bulk non-linear crystals and with

solid-state emitters, located at UQ’s Quantum Technology Laboratory (QTLab).

1.1.1 On-demand single-photon sources

For on-demand photon generation, some physical systems naturally1 lead to the emission of a

single photon with an inherently high probability: Atomic and atom-like systems in which the

relaxation of an excited state of a single electron in the emitter results in the creation of one2

photon. Examples of sources of the former kind are atoms with two-level [2] and multi-level

energy structures [3, 4, 5], and trapped ions [6, 7, 8]; while atomic-like systems include single-

molecules [9, 10, 11, 12], and solid-state emitters such as color centers in diamonds [13, 14, 15]

and quantum dots (QDs) [16, 17, 18, 19].

On the other hand, non-linear crystals—media where the dielectric polarisation is non-

linearly modulated by electric fields—can also produce pairs of photons by parametric fluores-

cence. This process, called Spontaneous Parametric Downconversion (SPDC), generates photon

pairs in two modes3 [20, 21], where the detection of a downconverted photon in one mode her-

alds [22] the presence of a single-photon4 in the other mode. Although this generates a heralded

single-photon source, the downconversion process is probabilistic and inefficient, producing sin-

gle photons at random instances. Therefore SPDC does not constitute an on-demand source and

is inherently non-deterministic. There are however ongoing efforts to overcome this inherently

low-efficiency by using active spatial- and temporal-multiplexing methods [23, 24, 25].

The “on-demand”, or “deterministic”, term in these sources refers to an intrinsic high effi-

ciency (virtually up to a unity probability) of photon emission into a free (arbitrary) propagation

mode, without considering, e.g., whether such mode has a high or low degree of directionality

1In this context “naturally” means without explicit implementation of demultiplexing schemes. Thus it refers
to processes with intrinsic high efficiency.

2Subject to experimental conditions that lead to measuring non-perfect single-photon statistics. For example,
pump pulses with a temporal duration of similar scale than relaxation times leading to emission of more than
one photon per excitation cycle, recapture processes due to non-resonant excitation schemes, or slow detectors
not able to resolve time-bins with vanishing photon statistics.

3The output of downconversion is an infinite weighted sum of two-mode n-Fock states: A two-mode squeezed
vacuum state.

4A heralded SPDC source can produce single-photon statistics if operated at low pump powers. However,
at higher powers contribution from higher-order photon Fock states become appreciable and introduce noise to
the obtained statistics.
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or if its transversal mode is suitable for efficient collection and interconnect with further optical

circuits. An on-demand source can thus exhibit poor collection efficiency and still remain as

an inefficient way of producing single photons for practical purposes.

1.1.2 Efficient and bright sources

Efficiency

For a source to be efficient one typically requires that the emitted photon also exhibits a well-

defined spatial mode with a high degree of directionality, and preferably with a transverse

mode as close as possible to the TEM00 single-mode. This can be done by coupling the emitter

to a photonic structure [26] that imprints its mode onto the emitted light. Achieving this

is technologically more challenging for atomic sources than for single-molecule and solid-state

emitters.

Single-molecules can be located within an “optical antenna” that alters its molecular dipole,

efficiently converting the 4π solid-angle emission into a well defined mode with a high degree

of directionality [27, 28, 29, 30]. However, they present a complex transverse mode that is not

straightforwardly convertible into a more versatile mode, such as that of a single-mode fibre.

Solid-state quantum dots, on the other hand, can be coupled to cavity structures enhancing

the emission into a (cavity) mode that resembles a better approximation to a TEM00 mode and

thus can be efficiently collected by a single-mode fibre for further use [31, 32, 33, 34, 35, 36, 37];

or enhancing emission into modes within an integrated circuit where the exterior coupling can

be circumvented by performing state preparation, processing, and detection within the same

integrated chip [38, 39, 40]. Emitter-cavity mode coupling has to date been realised via either

a probabilistic or a deterministic approach: The first consists of fabricating a large number

of devices and eventually finding some that exhibit the desired coupling [31, 32]; whereas the

latter method5 consists on the deterministic fabrication of a structure around the emitter, where

coupling is achieved in every—thus the term deterministic—device fabricated [33, 34, 35, 36, 37].

Brightness

A successful emitter-structure coupling results in large probabilities of collecting the emitted

light. This leads to the definition of source brightness : The probability per laser pump pulse6

of collecting7 a single-photon at the first lens of the experimental setup. The experimenter

extracts this measure by carefully determining the optical loses from the first lens all the way

down to the efficiency of the employed detectors, and then correcting the detected count-rates

to find the photon rates before the first lens. Under this definition, large brightnesses have been

demonstrated, in some cases reaching near unity values.

5This deterministic fabrication method was first introduced in the literature by our collaborators in Paris,
who provide the quantum dot samples we used in the experiments of the second part of this thesis.

6A source brightness can also be considered for CW pumped sources. However, the quantum dot based
experiments performed in this thesis employed a pulsed scheme, thus we refer here only to this case.

7This refers to those photons that are captured and refracted within the numeric aperture of the collecting
lens.
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The definition of brightness at the first lens has been useful to characterise and compare

various sources from the same or different systems, irrespective of the setup efficiency. However,

one criticism is that it lacks of practical meaning. Every experiment—before the realisation

of this thesis—would report systematically incredibly large brightness however accompanied

with low detected rates, resulting in a gap of several orders-of-magnitude between the reported

brightness and actual detected rates. This lead to the necessity of obtaining large photon fluxes

at a point in an experimental setup that can be easily interconnected with further experiments,

such as at the output of a single-mode fibre. One can then define an absolute brightness8 as the

probability per laser pump pulse of generating a high-purity, spectrally isolated, single-photon

at the output of a single-mode fibre9. As part of the results obtained in this thesis, the first

high absolute brightness demonstrated in any physical system was obtained, reaching a record

value of 14%, as explained in detail in Chapter 4.

1.1.3 Single-photon purity

Photon sources can produce a variety of states: A light-bulb is a source of thermal light10; the

output of a laser is in good approximation a coherent state; and an excited state of an electron

in an atom decays producing one photon. A relevant quantity in the characterisation of these

different kinds of sources is the second-order autocorrelation function g(2)(τ) [41]:

g(2)(τ) =

〈
â†(t)â†(t+ τ)â(t+ τ)â(t)

〉

〈â†(t)â(t)〉2
, (1.1)

where â and â† are respectively the annihilation and creation operator. Equation (1.1), when

evaluated at zero delay τ=0, can be written as:

g(2)(0) = 1 +
(∆n)2 − n

n2 , (1.2)

with (∆n)2 =〈n̂2〉−〈n̂〉2 the field variance, n̂=â†â the number operator, and n=〈n̂〉 the average

photon number. The explicit form in Eq. (1.2) is particularly useful, as it is simply given

in terms of the mean photon number and variance, quantities characterising the field. The

thermal, coherent, and Fock states are exemplified below.

Thermal state

A thermal state can be written as:

ρ̂th =
∞∑

m=0

nm

(n+ 1)m+1 |m〉〈m|, (1.3)

8This term has been suggested and introduced to the literature (other groups already started using it) as a
result of the work done in this PhD candidature.

9The inclusion of “high-purity”, and “spectrally isolated” features are here used to maintain consistency
with the definition considered in Chapter 4.

10Any object produces thermal light as a result of the thermal motion of charges within the object.
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where |m〉 is m-th excited Fock state. The variance of this state is:

(∆n)2 = n (n+ 1) , (1.4)

thus, in virtue of Eq. (1.2), it follows:

g
(2)
thermal(0) = 2. (1.5)

Coherent state

The coherent state takes the form:

|α〉 = e−
|α|2
2

∞∑

n=0

αn√
n!
|n〉, (1.6)

with α ∈ C an amplitude parameter such that n=|α|2. The variance of this state is smaller

than for the thermal state, and equals the mean photon number:

(∆n)2 = n. (1.7)

This results in:

g
(2)
coherent(0) = 1. (1.8)

Fock state

A Fock state |n〉, n ∈ N, has an exact photon occupation number—consequently an undefined

phase—resulting in a vanishing variance for any |n〉:

(∆n)2 = 0, ∀n. (1.9)

Therefore one obtains the second-order autocorrelation function at zero delay:

g
(2)
Fock(0) = 1− 1

n
. (1.10)

Note that two regimes are identified based on the autocorrelation function: A classical regime,

with g(2)(0)>1, where light is said to be “bunched” (photons tend to form groups distributed

in time); and the non-classical regime with “antibunched” photons (photons are more evenly

separated in time), with 0≤g(2)(0)<1, and where the maximally antibunched state of light is

the single-photon Fock state |n〉=|1〉, in which case the the autocorrelation function takes its

minimum value g(2)(0)=0. The coherent state, with g(2)(0)=1, represents a boundary between

the two scenarios.

A comparison between these distributions at the single-photon level occurs for small n. Fig-

ure 1.1 shows the cases discussed above for n=5, n=2, and n=1. Note that the characteristic

(3) of the wish-list—that is, 0% multiple-photon terms—is only satisfied for the single-photon
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n = 1
Thermal State Coherent State

n = 1
Fock State

n = 1

Thermal State Coherent State Fock State

Coherent State Fock State

n = 5
Thermal State

n = 5 n = 5

(a)

(b)

(c)

n = 2 n = 2 n = 2

Figure 1.1: Photon number probability distribution. Thermal, coherent, and Fock states for

(a) n=5, (b) n=2, and (c) n=1.

Fock state. Nonetheless, the literature is quite forgiving on what it considers as a single-

photon source: A non-classical source of light whose photon number statistics exhibits more

antibunching than the two-photon Fock state |n〉=|2〉—that is, a source with g(2)(0)<0.5. Note

that purity here then refers to what extent the output of the photon source approximates to

a single-photon Fock state, thus the ideal pure single-photon source holds for g(2)(0)=0, or

alternatively a single-photon purity11 of 1−g(2)(0)=1.

1.1.4 Photon indistinguishability

The indistinguishability of bosonic particles, such as the photon, leads to unique quantum phe-

nomena without classical akin. It has enabled a broad range of applications, from quantum

teleportation [42, 43], to linear-optics quantum computing [44, 45]. First observed by Hong,

Ou, and Mandel [46]—thereby called the Hong-Ou-Mandel (HOM) effect—in the bunching12 of

two photons at the output of a balanced 2×2 beamsplitter when both photons are indistinguish-

11It is convenient to refer to 1−g(2)(0) as the single-photon purity because its value is 0% at the classical
boundary, and 100% for the ideal case.

12Photons leave always at the same output of the beamsplitter. The cases where photons leave in different
outputs are suppressed due to two-photon quantum interference (HOM effect).
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1.2. Quantum dot based photon source

able13. Phenomenom observed to date in a variety of physical systems, including atoms [47],

ions [48], color centers [49], single molecules [50], superconducting circuits [51], parametric

downconversion [46, 52], and quantum dots [53].

This effect is a consequence of the symmetric bosonic nature14. If the state describing all

degrees of freedom of two photons is symmetric before the beamsplitter, then after the path

degree-of-freedom introduced by the beamsplitter the output state contains only bunched events

as to remain symmetric. Conversely, if the state before the beamsplitter is antisymmetric15

in one degree-of-freedom, e.g., with an odd-mode Hermite-Gaussian transverse profile, or an

entangled state in the antisymmetric Bell state |Ψ−〉, then the spatial degree-of-freedom at the

output is antibunched [54]—that is, in the antisymmetric spatial-mode configuration—as to

enforce an overall output symmetric state for the bosonic particles.

In idealised conditions, this effect is seen as the complete suppression of coincidence counts

at the output of a balanced beamsplitter. However, in a more general case, when a linear-device

characterised by the transfer matrix L is used, photons with a degree of indistinguishability

quantified by I are detected at its output with a coincidence probability [55]:

c =
(1 + I)

2
|per(L)|2 +

(1− I)

2
|det(L)|2 , (1.11)

with per(L) the permanent of L, and det(L) the determinant.

Below we present two kinds of photon sources located at the QTLab, one based on quantum

dots, and the other based on spontaneous parametric downconversion, and present measure-

ments of their single-photon purities and photon indistinguishability.

1.2 Quantum dot based photon source

A quantum dot is a semiconductor nanocrystal of a given band gap surrounded by another

host semiconductor of a larger band gap. The host semiconductor provides a potential barrier

such that electrons and holes16 within the inner semiconductor are confined to nanometer-size

scales17 in all three spatial dimensions, resulting in the quantisation of electronic levels and thus

the possibility of emitting discrete quanta of light. See Refs. [26, 56] for detailed discussions of

the use of quantum dots as single-photon sources.

By either optically or electrically pumping this solid-state emitter, excitons (bound states of

an electron and a hole) are created in the quantum dot, whose relaxation results in the creation

of a photon. Other states, such as biexcitons (bound states between two excitons) and trions

13The photons need to be indistinguishable in every degree-of-freedom, including spectra, polarisation, and
time of arrival at the interface of the beamsplitter.

14The state describing a bosonic system remains unchanged after any pair-wise exchange of bosons.
15An antisymmetric state picks up a π phase factor upon exchange of bosons.
16A hole is the absence of an electron. It is considered as if it was a (positively charged) quasi-particle that

interacts with the electrons within the quantum dot as to simplify mathematical calculations of the motion of
electrons in the material.

17The size of a quantum dot determines the energy of the emitted photons. The larger the quantum dot is,
the lower the energy of its emitted light.
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(composed of two electrons and one hole, or two holes and one electron) are also very appealing

for the emission of entangled photons [57, 58, 59] or preparing spin qubits [60, 61, 62, 63],

respectively.

The radiative decay of one exciton should lead to the emission of only one photon with the

same properties every time (indistinguishable). However, experimental pumping conditions are

essential in the resulting statistics of the emitted light. Three regimes based on the energy of

the pump are identified:

1. Above-band excitation. The quantum dot is excited above the band gap of the host semi-

conductor. Some of the excitons created on the host material are captured by the wet-

ting layer—the first layer made of the inner semiconductor where the quantum dots are

formed—to then decay non-radiatively18 via a phonon assisted process into the inner en-

ergy levels of the quantum dot. At this stage a final radiative decay results in the emission

of a photon. This pumping scheme is experimentally attractive because the large energy

difference between that of the quantum dot and the pump allows to straightforwardly

isolate emission modes from laser light, e.g., by using a dichroic filter or a monochro-

mator. However, recombination of electron-hole pairs in the semiconductor occurs at

timescales not much shorter than the radiative recombination of the quantum dot, then

more than one photon per excitation pulse can be generated due to recombination of car-

riers within the same relaxation process. Only moderate single-photon purities are thus

obtained in this excitation regime, with typical g(2)(0) values in the 0.10−0.50 range.

Two photon interference visibilities, accounting for both non-ideal purity and decreased

indistinguishability, are rather low with this scheme, often also in the 10−50% range.

2. Quasi-resonant excitation. The energy of the pump corresponds to one of the higher

excited states of the quantum dot, e.g., in its p-shell. The state rapidly decays into the

first excited state of the quantum dot where radiative recombination leads to the emission

of a photon. In this scheme, interaction occurs directly between the pump light and the

quantum dot, and more pump power is needed due to the small cross section of the

emitter. An improved single-photon purity is observed, with g(2)(0) often under 0.05, and

in some conditions reaching values below 0.01. A time jitter remains in the preparation

of the exciton, as it results from a decay of higher excited states, which in combination

with pure dephasing—caused by random charges near the quantum dot that randomly

shift the transition energy of the quantum dot—result in non-ideal indistinguishabilities,

with typical values reaching the 70% mark.

3. Resonant excitation. The laser pump energy is matched to the quantum dot first excited

state. This represents the optimal regime to operate the source at: A coherently controlled

quantum dot, as evidenced by the observation of Rabi oscillations, is deterministically

prepared in the exciton state at a π-pulse preparation19. Both single-photon purities and

18A non-radiative process is that where the decay in energy level does not involve light emission. Conversely,
a radiative decay leads to the emission of a photon.

19First maximum of the Rabi oscillation.
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indistinguishability can reach near-optimal values under this excitation scheme. However,

this regime is experimentally more challenging because the straightforward colour-filtering

is no longer possible, and other techniques—e.g., orthogonal polarisation of excitation and

collection modes—must be used to suppress the pump laser light.
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Figure 1.2: Purity of a single-photon from a quantum dot. (a) Depiction of the quantum dot

based single-photon source. (b) Coincidence detection at the output of a HBT setup measures

the second-order autocorrelation function. (c) Single-photon purities of the same quantum dot

with excitation occurring above band (left), resulting in g(2)(0)=0.165±0.001, or on the p-shell

(right), exhibiting a near-ideal purity with g(2)(0)=0.006 ± 0.001. These values are obtained

by integrating the detected counts, without any background correction, within a 2 ns window

around zero delay divided by the average of the 10 adjacent peaks.

Our experimental apparatus at the QTLab, to date, allows us to excite the quantum dot in

the former two regimes. Figure 1.2(a) shows the schematics of the setup. A sample—fabricated

by our collaborators in the group of Prof. Pascale Senellart in Paris, first studied in Ref. [33]—

consisting of quantum dots deterministically coupled to micropillar cavities is located inside

a closed-cycle cryostat at a temperature of T=15 K, corresponding to the emitter-cavity res-

onance20. Laser pulses at 80 MHz repetition rate, wavelength λpump below 922 nm21, excite

the quantum dot either on its p-shell22 (λpump=909.3 nm), or above-band (λpump=820.0 nm).

20The sample contains multiple devices, each of them will have a different resonance temperature, mostly
within the 10−20 K range.

21This is the cut-off wavelength of the dichroic filter.
22This is one of multiple wavelengths with which the quantum dot can get excited. The measurements in

Chapters 4, and 5 used a different p-shell state at λ=905.3 nm.
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1.2. Quantum dot based photon source

A microscope objective with N.A.=0.3 is used in confocal configuration to focus the pump

light to a diameter size of ∼ 3 µm, close to the diameter of the micropillar cavity, and simul-

taneously collects the emitted photons. A dichroic mirror separates the emission mode from

the pump, and a band-pass filter with a FWHM=0.85 nm is used to further suppress any

scattered laser light. The emitted single-photons, with λ=932.3 nm, are then collected in a

single-mode fibre. In Figure 1.2(b), a standard Hanbury-Brown and Twiss setup measures the

second-order autocorrelation function of the emitted fluorescence. Experimental results of a

g(2)(∆t) measurement are shown in Fig. 1.2(c) at low pump powers under above-band (left),

and quasi-resonant (right) excitation.
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Figure 1.3: Two-photon interference from a quantum dot. (a) Schematics of the experimental

setup. Two consecutive photons traverse an unbalanced Mach-Zehnder interferometer (between

the calcite displacer and 50:50 fibre beamsplitter), and their polarisation are set, by means of

quarter- (QWP) and half-wave plates (HWP), to either parallel (exhibiting photon bunching),

or orthogonal configuration (corresponding to completely distinguishable particles). (b) HOM

measurement results. The suppression of the peak around zero delay is a signature of two-

photon quantum interference. A clear improvement is observed under quasi-resonant excitation

with I∼70%, as compared to above-band pump where I∼10% is observed.

In order to measure the indistinguishability between consecutively emitted photons, we use

the setup depicted in Fig. 1.3(a). Two consecutive photons separated by 2.2 ns are proba-

bilistically split in a calcite displacer; an optical path delay of the same length is introduced

in one spatial mode; and both photons, in different temporal bins, probabilistically meet in a

50:50 beamsplitter. A suppression of coincidence counts around zero delay results from a fi-

nite degree of indistinguishability. Figures 1.3(b) shows HOM measurements under above-band

(left) and quasi-resonant (right) excitation for both orthogonally-polarised photons (red)—thus

completely distinguishable—and parallel-polarised photons (blue) exhibiting photon bunching.
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1.3. SPDC source

1.3 SPDC source

In Spontaneous Parametric Downconversion, a non-linear crystal is pumped by laser light and

occasionally one pump photon of higher energy is converted into two photons of lower energies,

such that energy and momentum are conserved. In our case at the QTLab, a beta-barium

borate (BBO) crystal is pumped by a frequency-doubled mode-locked femtosecond Ti:Sapphire

laser operating at a 76 MHz repetition rate. The state at the output of this process is a

two-mode squeezed state, and it can be written as [45]:

|ΨSPDC〉 =

√
1− |λ|2

∞∑

n=0

λn|n, n〉, (1.12)

where λ is the squeezing parameter (|λ|2 is proportional to the laser pump power), and |n, n〉 is

the two-mode n-photon Fock state. Thus, the probability of creating n photon pairs is simply

given by p(n)=(1− |λ|2)|λ|2n.

Here, it is useful to notice that p(n+1)/p(n)=|λ|2. That is, the ratio between the probability

of creating n+1 photon pairs to that of n pairs is determined by—and increases monotonically

with—|λ|. Therefore, although mostly consisting of vacuum, if one wishes to operate |ΨSPDC〉
as a heralded single-photon source |1, 1〉—where the detection of one photon flags the presence

of its twin photon—then the source must be run at low pump powers to achieve |λ| � 1, so

that the probability of creating |2, 2〉 states (or other higher-order terms) in Eq. (1.12) remains

negligible compared to the only non-zero order state of interest |1, 1〉. These higher-order terms

are responsible of degrading the visibility of two-photon interference experiments and thus

decreasing the performance of quantum information protocols [64].
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Figure 1.4: Probability of detecting |n〉 with a non number-resolving detector after setup losses

characterised by a transmittance t=0.3. The dashed vertical line indicates a region (left), with

n<4, containing the “stronger” terms contributing to |ΨSPDC〉.

However, keeping |λ| too small importantly reduces the available count rates in an exper-

iment. We must therefore optimise a trade-off for how large |λ| can be as to provide decent
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1.3. SPDC source

event rates while simultaneously being small enough to minimise the impact of higher-order

terms. It turns out that these terms are more likely to be detected after setup loses. This

can be seen from considering a simple model for optical losses: losses in one spatial mode are

assumed to be the result of tracing out the reflecting port of a beam-splitter with transmittance

t. It can be shown that, with an “on-off” detector, the term |n〉 is measured with a probability

pt(n)=1 − (1 − t)n, see Fig. (1.4). Limited detector efficiency can also be modeled as optical

loss followed by detection with unity efficiency.

It is clear from the above that a pump-dependent analysis must be carried out to quan-

tify the impact of higher-order terms on the performance of SPDC sources. First, we pa-

rameterise |λ| in relation to the employed pump powers. This should be done at the lowest

powers available, where detected rates of singles and coincidences reveal the corresponding

value for |λ|2. Then, |λ|2 is simply proportional to the pump power. Furthermore, to compare

its brightness against solid-state sources, here we use the average photon number per mode

µ=〈n̂ ⊗ Î〉=〈Î ⊗ n̂〉=|λ|2/(1 − |λ|2) as the brightness for SPDC sources. This is a reasonable

brightness parameter as it represents, in the limit |λ| � 1, the probability per laser-pulse for one

downconverted event to reach the first setup lens, and it also accounts for small contributions

from higher-order events intrinsic to this source.
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Figure 1.5: Heralded second-order autocorrelation function in our SPDC source. A high-purity

single-photon source (g
(2)
SPDC(0)<0.03) is obtained for a brightness µ<0.01.

The second-order autocorrelation function in a SPDC source is measured for one downcon-

verted mode conditioned on the detection of its partner: A (heralding) detector is located on

one arm (mode), and a standard Hanbury-Brown and Twiss (HBT) setup23 is placed on the

other arm with two detectors at its output. By measuring single counts, double, and triple

coincidences, the heralded g
(2)
SPDC(0) is obtained via [65]:

g
(2)
SPDC(0) =

ch,1,2ch

ch,1ch,2

, (1.13)

where ch is the singles count rate on the heralding arm, ch,1 (ch,2) is the coincidence count

23This consists of one balanced 2× 2 beamsplitter and one detector at the each output.
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1.3. SPDC source

rate between the heralding detector and the first (second) detector at the output of the HBT

setup, and ch,1,2 is the triple coincidence count rate between the heralding, first, and second

detector. Figure 1.5 shows our measured g
(2)
SPDC(0) as a function of the SPDC brightness µ.

The SPDC single-photon purity is degraded with increasing brightness, and high purity levels

(g
(2)
SPDC(0)<0.03) are found only for low values of brightness (µ<0.01).
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Figure 1.6: Photon indistinguishability in our SPDC source. Indistinguishability monotonically

decreases with brightness. Dashed lines indicate that highly indistinguishable photons (I>99%)

are obtained only for a brightness µ<0.01.

Spontaneous parametric downconversion provides photons with high degrees of indistin-

guishabilities. Figure 1.6 shows the indistinguishability between photons of the same down-

converted pair for various values of brightness. Previous works have identified the higher-order

terms to be the main cause of performance degradation [64], thus this observed decreased in-

distinguishability24 with increasing brightness is primarily due to the higher-order terms and

do not originate from a “true” increase of photon distinguishability.

24Strictly speaking, it is the two-photon interference visibility the one that is decreased, but “indistinguisha-
bility” is still used for consistency with the rest of the work.
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CHAPTER 2

Observation of entanglement-dependent

two-particle holonomic phase
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Holonomic phases, geometric and topological, have long been an intriguing aspect of physics.

They are ubiquitous, ranging from observations in particle physics to applications in fault

tolerant quantum computing. However, their exploration in particles sharing genuine quantum

correlations lack in observations. Here we experimentally demonstrate the holonomic phase

of two entangled-photons evolving locally, which nevertheless gives rise to an entanglement-

dependent phase. We observe its transition from geometric to topological as the entanglement

between the particles is tuned from zero to maximal, and find this phase to behave more resilient

to evolution changes with increasing entanglement. Furthermore, we theoretically show that

holonomic phases can directly quantify the amount of quantum correlations between the two

particles. Our results open up a new avenue for observations of holonomic phenomena in

multi-particle entangled quantum systems.
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2.2. Two-particle holonomic phase

2.1 Introduction

I
n differential geometry, holonomy accounts for the difference between a parallel-transported

vector along a geodesic—i.e. shortest path—and any other curve. It is a direct manifestation

of the geometry and topology of a given curved space. A physical system evolving in its own

multi-dimensional parameter space will exhibit holonomies as a result of these geometric and

topological structures. Consequently, holonomies have physical manifestations, ranging from

Thomas precession to the Aharonov-Bohm effect.

In quantum systems, the holonomy manifests as a phase imparted on the wavefunction [1].

When the quantum parameter space is simply connected, holonomies are continuous-valued

with respect to continuous deformations of the trajectory. These are geometric phases [2] and

they depend on the space’s curvature. Conversely, when the parameter space is not simply-

connected discrete-valued topological phases appear [3, 4]. We refer to both geometric and

topological as holonomic phases.

Holonomies are of fundamental interest and have important applications, for example, in

holonomic quantum computation [5, 6, 7, 8], where matrix-valued geometric phase transforma-

tions play the role of quantum logic gates. This scheme has received a great deal of attention

due to its potential to overcome decoherence [9], and has recently been experimentally realized

in different architectures [10, 11].

In the quantum regime, holonomic phases have been observed in particles encoding one

qubit [12, 13, 14], as well as two particle systems encoding uncorrelated two-qubit states [15].

In addition, topological phases have been observed in classical systems emulating the behaviour

of entanglement, for example, so-called non-separable states between the polarization and trans-

verse modes of a laser [16], or pseudo-entanglement in NMR [17]. Lacking up to now, however,

is the exploration of holonomic phases between genuinely entangled quantum particles.

Here we demonstrate both geometric and topological phases appearing in the joint wave-

function of two separate, and genuinely-entangled, particles whose correlations can be tuned

from vanishing to maximal.

2.2 Two-particle holonomic phase

To better elucidate two-qubit holonomic phases, consider an arbitrary two-qubit pure state

written in its Schmidt decomposition:

|ψ(0)〉 = e−iβ/2 cos
α

2
|namb〉+ eiβ/2 sin

α

2
|n⊥am⊥b 〉, (2.1)

where α ∈ [0, π] and β ∈ [0, 2π] parametrise the Schmidt sphere [18] of a correlation space,

and |namb〉, |n⊥am⊥b 〉 are orthogonal product states defining the Schmidt basis, see Fig. 2.1a, b.

While a treatment of the two-qubit space can be carried out formally [19], it is more intuitive

to represent evolutions in it with the trajectories that the reduced density matrices, ρa and

ρb, undertake on their corresponding local Bloch spheres together with the curve that α and β
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2.2. Two-particle holonomic phase

project onto the Schmidt sphere.

For a non-maximally entangled state, |ψ(0)〉 has preferred directions, given by unit vectors

â and b̂, on each qubit’s Bloch sphere. That is, the reduced density matrix of, say, system a

is given by ρa=Trb(|ψ〉〈ψ|)=1
2

(I + cosα â · ~σ), where ~σ= (σx, σy, σz) denote the Pauli matrices.

Accordingly, |ψ(0)〉 spans a six-dimensional parameter space.

Figure 2.1: a) A cyclic Schmidt evolution with θS=2π. Left and middle spheres show trajectories

traced out in the local Bloch spheres of each qubit defined in the Schmidt basis. Here, they

evolve at a single point and therefore enclose no area, leading to no gain in holonomic phase.

The right sphere represents the trajectory spanned by the evolution of α and β in the Schmidt

sphere. In contrast to the local trajectories, a holonomic phase still arises as a result of the

area enclosed by this trajectory. Equivalent Schmidt evolutions of non-entangled states induce

a zero holonomic phase. b) In contrast, segmented evolutions defined by angles sa and sb

induce holonomies appearing from both local and Schmidt spheres. The parameters sa and sb

define the opening angles for the projected curves of ρa and ρb onto the local Bloch spheres.

In the right sphere, a rotation angle 2(sa+sb) = β around |namb〉 also contributes to the

holonomy. Equivalent evolutions of non-entangled states induce a non-zero holonomic phase.

c) Depiction of the double-connected parameter space of maximally entangled states: SO(3) in

R3 with a border at S2
π. This border is a 2-sphere of radius π with identified antipodal points.

Blue trajectories represent arbitrary evolutions for one homotopy-class along which no phase

is gained. Red curves represent evolutions of the other homotopy-class after which a π phase

appears on the wave-function.

From the state |ψ(0)〉, an entanglement-induced holonomic phase will appear as a result of

the special “Schmidt evolution”. We define a Schmidt evolution as a bi-local rotation of θS, of

both qubits around their preferential directions â and b̂, see Fig. 2.1a. The holonomic phase of

this evolution is calculated—in the standard way—as a difference [20]

Φh = ΦP − Φdyn, (2.2)

with ΦP= arg〈ψ(0)|ψ(τ)〉 the Pancharatnam [21] and Φdyn=Im
∫ τ

0
〈ψ(t)|ψ̇(t)〉dt the dynamical

phase, and |ψ(t)〉, t ∈ [0, τ ], denotes the evolving state.
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While usually Φh is regarded as a geometric phase only [20], its value arises from both the

geometry (curvature) and topology (connectedness) of the parameter space. It has therefore

become more routine to identify parts of Φh as being of either geometric or topological ori-

gin [22]. For instance, maximally-entangled two-qubit pure states (MES) can only induce a

phase of topological origin regardless of their evolution [3, 4, 22].

Canonically, the amount of entanglement in a two-qubit state can be measured by the tangle

T (concurrence squared [23]). In a pure system as given in Eq. 2.1, it is determined by the

relative populations of the Schmidt basis: T = sin2 α, and ranges from 0 for separable states

up to 1 for maximally-entangled states. Consequently, a Schmidt evolution will give rise to, see

Appendix, an entanglement-induced holonomic phase given by:

Φent
h = arg

(
cos θS−i

√
1−T sin θS

)
+θS

√
1−T. (2.3)

Importantly, Φent
h behaves monotonically with the amount of entanglement, measuring 0 for

separable states and its maximum for MES (value depended on θS). For instance, for the

evolution depicted in Fig. 2.1a, θS=2π, and Φent
h = −2π

(
1−
√

1− T
)
. While there are extensive

theoretical studies of holonomic phases in mixed, as well as pure, entangled systems [24, 25, 26],

it remains an open question as to whether a holonomic phase quantifying entanglement can be

found for mixed states.

Recalling that experimentally it is the total Pancharatnam phase that is observed [27], we

can choose evolutions for which the dynamical component vanishes, ensuring the total phase

gained is holonomic in nature only. We achieve this using the the bi-local segmented evolutions

characterised by the opening angles sa and sb on qubits a and b respectively, see Fig. 2.1b.

These trajectories are connected geodesics, meaning any dynamical phase is identically zero.

However, not being Schmidt evolutions, the holonomic phase arises from trajectories in both

local and Schmidt spheres, but importantly remains monotonic with entanglement:

Φh = ∓ arctan
(√

1− T tan(2s)
)
, (2.4)

where the sign is − (+) if the joint state is more populated in |namb〉 (|n⊥am⊥b 〉) of the Schmidt

basis, see Appendix, and s defines the evolution undertaken by |ψ(0)〉. In Eq. (2.4), the opening

angles sa=sb=s.

One important feature of the state in Eq. (2.1) is the change that occurs to the parameter

space as a result of increasing tangle. As T→1, previously separated states in the two-qubit

parameter space become less distinguishable, and eventually some become identical at T=1.

At this point the parameter space collapses from six to three dimensions represented by the

double-connected SO(3) ball [3, 4], see Fig. 2.1c. Spaces of this kind—not simply connected—

allow state trajectories that are topologically distinct, i.e. cannot be continuously transformed

into one another.

Trajectories in the SO(3) ball are classified by two different homotopy-class families: those

that cross the border S2
π—a 2-sphere of radius π—an odd number of times and those crossing
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it an even number of times (zero included). Physically, crossing S2
π l-times results in a lπ phase

on the wavefunction. For instance, if α=π/2 in the Schmidt evolution shown in Fig. 2.1a, then

its trajectory in SO(3) crosses S2
π twice, picking up a 2π topological phase.

2.3 Experimental implementation

In order to observe the entanglement-dependent holonomic phase given by Eq. (2.4), we im-

plement a method, depicted in Fig. 2.2, that works as follows: We generate a two-qubit state,

|ψ〉, in the polarization of two single-photons whose tangle can be tuned from T=0→1 [28, 29].

Upon meeting at the first 50:50 beam-splitter BS1 of the interferometer depicted in Fig. 2.2a,

the photons are subject to non-classical interference [30], after which they exit via the same

spatial mode. Regardless of the specific form of |ψ〉, photon bunching can always be achieved

by engineering other degrees of freedom if necessary [31]. Consequently, the joint state of the

system, |ψ〉, remains in either of the two paths of the interferometer, whose optical path lengths

are equal. The joint state then undergoes a polarization evolution, composed of two auxiliary

evolutions Ŭ and U in separate paths of the interferometer.

Figure 2.2: a) Depiction of the experimental method. Two indistinguishable photons, encoding

a two-qubit entangled state |ψ〉 in their polarization, pass through an interferometer and are

detected in coincidence with avalanche-photo-diodes (APD) at the output. Due to the Hong-

Ou-Mandel effect at the first beam-splitter BS1, a coincidence signal c after the exit of the

interferometer through BS2, cannot distinguish between different paths travelled in the inter-

ferometer. The resulting holonomic phase gained by the evolved state |ψ′〉=U†Ŭ ⊗ U†Ŭ |ψ〉, as

well as the phase φ, thus appear as a modulation in the coincidence given by c ∝ |e2iφ|ψ〉+|ψ′〉|2.

b) Experimental implementation of the method. Single photons are injected via single-mode fi-

bre couplers (FC) into a displaced-Sagnac interferometer configuration, composed of one 50:50

beam-splitter (BS) and three mirrors M1-3. Polarisation evolution is performed using two

common-path quarter wave-plates QWP and two semi-circular half wave-plates HWP in sepa-

rate optical paths. Mirror M3 is rotated via a micro-translation stage to control φ.

The information about which-path the photons followed is erased by a second 50:50 beam-

splitter BS2, after which point the photons are detected. As such, the two-photon coincidence

signal, c, will exhibit interference behaviour modulated by all relative phases between the two

arms of the interferometer. That is, caused by a physical optical path-difference phase φ and
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the Pancharatnam phase ΦP arising from the polarization evolutions.

We prepared the initial polarization-entangled state |ψ〉= cos α
2
|HH〉 + sin α

2
|V V 〉, where

α is a tuneable parameter defining the amount of entanglement T= sin2 α, and |H〉 and |V 〉
denote the horizontal and vertical polarizations. The state is injected into a displaced-Sagnac

interferometer configuration, shown in Fig. 2.2b, where no active path locking is required. Using

the notation σ1=|H〉〈H| − |V 〉〈V | and σ2=|H〉〈V |+ |V 〉〈H|, we choose an evolution

U ≡ U†Ŭ = ei
π
4
σ2e−i

π
2

(σ1 sin s+σ2 cos s)ei
π
4
σ2 , (2.5)

where s equals the opening angles of the corresponding geodesic trajectories in the local spaces,

see Fig. 2.1b. Since the evolutions Ŭ and U are chosen to induce no dynamical phase, from

Eq. 2.2 the Pancharatnam phase matches the holonomic phase. Thus by controlling the variable

phase φ—introduced by slightly rotating the mirror M3 of the interferometer, see Fig. 2.2b—the

two-photon coincidence will modulate as:

c =
1

4

∣∣∣e2iφ|ψ〉+ (U†Ŭ⊗U†Ŭ)|ψ〉
∣∣∣
2

=
1

2
[1 + v cos(2φ− Φh)] , (2.6)

where v=|〈ψ|ψ′〉| is the interference visibility and Φh= arg〈ψ|ψ′〉 is the holnomic phase gained

during the effective evolution |ψ′〉=U⊗U |ψ〉. Consequently, we can determine Φh by measuring

coincidence modulation as a function of φ, see Appendix.

The polarization evolution in Eq. 2.5 is implemented using quarter- Q and half-wave-plates

H in the arrangement U=Q(−π
4
)H(π

4
− s

2
)Q(−π

4
), where the arguments inside parentheses in-

dicate the angle of the wave-plate optic axis in the laboratory frame. This unitary evolution is

built from auxiliaries in separate arms of the interferometer, given by Ŭ=Q(−π
4
)H(π

4
− s

4
)Q(−π

4
)

and U=Q(π
4
)H(−π

4
− s

4
)Q(π

4
). Physically, we perform these evolutions using two common-path

quarter-wave-plates with angles fixed at −π
4

and two semi-circular half-wave-plates, one in each

path, see Fig. 2.2b.

Figure 2.3a shows our predicted and measured results for Φh, as a function of entanglement

represented by α, and the opening angle s of the trajectories. The solid and dashed black lines

in Fig. 2.3b show theoretical predictions for the bipartite holonomic phase for a fitted value of

tangle, T=0.01 ± 0.01. In this case the holonomy is simply the sum of individual geometric

phases Φsep
h =∓ (s+s).

Conversely, as the amount of entanglement increases to a maximum, i.e. as α→π/2, the

holonomic phase becomes less affected by changes in the trajectory angle s. Instead, two

attractors at Φh=0 and Φh=π appear, becoming its only possible values when T=1, shown by

the solid-red curves in Fig. 2.3b. Thus, the tuning from α=0→ α=π/2 results in a geometric-

to-topological transition of the holonomic phase. The solid and dashed blue curves in Fig. 2.3b

show our measurements for the fitted value of tangle, T=0.99± 0.01.

This reported tangle is the best-fitted value to our data using Eq. (2.4). To confirm the

presence of a high amount of entanglement, we carried out a full quantum state tomography of
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Figure 2.3: Experimental results. a) In a cyclic colour-scale, predicted (left) and measured

(right) results for Φh=− arctan (cos(α) tan(2s)) (equivalent to Eq. (2.4)). Centres of the rect-

angular measured data blocks represent the corresponding (α, s) coordinates. b) The black data

points and theoretical curves correspond to measurements of holonomic phases with an initial

state |HH〉 (solid curve) and |V V 〉 (dashed curve) for a fitted level of tangle, T=0.01±0.01.

Blue data points and theoretical curves show the extent to which we observe the topologi-

cal behaviour of Φh for a highly entangled state. Here the data is fitted to a state tangle of

T=0.99±0.01, for the cases in which |ψ(0)〉 is more populated by |HH〉 (α=π/2−ε) shown by

the solid curve, and |V V 〉 (α=π/2+ε) given by the dashed curve, for 0<ε�1. The red curve

corresponds to the theoretical ideal case of T=1. Errors are calculated via Poissonian counting

statistics. c) Depiction of cyclic (I,V) and non-cyclic (II,III,IV) evolutions of MES in a plane of

the double-connected SO(3) ball. Green, red and blue coloured-curves denote the first, second

and third part of each evolution, respectively. Evolution III for which s=π/4, marks the switch

between two distinct homotopy-classes, those that cross the S2
π border zero times (I and II)

and one time (IV and V).

the two-photon state, resulting in a tangle of Ttomo=0.959± 0.001, see Appendix.

As discussed previously, when T=1, the corresponding evolutions follow trajectories in the

double-connected SO(3) space, thus giving rise to two topologically distinct paths. Figure 2.3c

shows the corresponding paths for five such evolutions, for which the trajectory with s=π
4

represents the switch between two the distinct homotopy-classes.

Experiments [16, 17] observing such topological phases have been realised with cyclic evo-

lutions using classical states that are formally equivalent to a MES, corresponding to the top

and bottom data points at α=π/2 in Fig. 2.3a. In contrast, we additionally demonstrated

topological behaviour for explicitly non-cyclic evolutions, see Fig. 2.3c, of genuinely entangled

quantum systems.
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2.4 Discussion

We experimentally demonstrated that the wavefunction of a pair of qubits picks up a phase

factor of holonomic nature in both cyclic and non-cyclic evolutions. In contrast to conventional

measurements of single-qubit holonomic phases [12, 13], the phase shift observed in our work is

dependent on genuine quantum correlations. We find that the holonomic phase becomes more

resilient to evolution changes with increasing entanglement, which indicates that quantum

correlations can be utilised to enhance holonomic robustness and there may be advantages in

using not only geometric but the full range of holonomic phases. Naturally, this leads to the

question as to whether more general forms of quantum correlations—most notably discord [32]—

could be the underlying reason for this enhancement.

Finally, we derived an entanglement-induced holonomic phase that can be used to quantify

the amount of quantum correlations between a pair of pure-state qubits. This result provides

a measurable quantity arising solely from entanglement and it is a step in gaining a broader

understanding of the geometric interpretation of quantum correlations. We expect that this

work will strongly motivate new proposals for more robust holonomic quantum computation

and trigger observations of holonomies in multi-partite entangled states of qubits or higher-

dimensional qudit systems.
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2.5 Appendix

2.5.1 Calculation of holonomic phase of entanglement

Consider the arbitrary initial two-qubit pure state written in its Schmidt decomposition,

|ψ(0)〉 = cos
α

2
e−iβ/2|namb〉+ sin

α

2
eiβ/2|n⊥am⊥b 〉, (2.7)

which is then subject to a rotation of both qubits around their preferential directions â and b̂ in

their corresponding local Bloch spheres. That is, a bi-local rotation US(θ)=U
S(n)
a (θ)⊗US(m)

b (θ)

such that U
S(k)
j (θ) = exp

(
−iθσ(k)

j /2
)

, where θ is the angle of rotation, σ
(k)
j = η|kj〉〈kj| −

η|k⊥j 〉〈k⊥j |, and η is the sign of cosα. The holonomic phase of such evolution can be calculated

from the formula

Φh = arg〈ψ(0)|ψ(θ)〉 − Im

∫ θ

0

〈ψ(θ′)|ψ̇(θ′)〉dθ′, (2.8)

where ΦP= arg〈ψ(0)|ψ(θ)〉 and Φdyn=Im
∫ θ

0
〈ψ(θ′)|ψ̇(θ′)〉dθ′ are the Pancharatnam and dynam-

ical phases respectively. This gives,

arg〈ψ(0)|ψ(θ)〉 = arg (cos θ − iη cosα sin θ)

= arg (cos θ − i| cosα| sin θ) , (2.9)

and

Im

∫ θ

0

〈ψ(θ′)|ψ̇(θ′)〉dθ′ = Im

∫ θ

0

−iη cosαdθ′

= −| cosα|θ. (2.10)

Using the expression for the tangle T= sin2 α, we find the holonomic phase of entanglement to

be

Φent
h = arg

(
cos θ−i

√
1−T sin θ

)
+θ
√

1−T, (2.11)

which for θ=2π takes the form

Φent
h = −2π

(
1−
√

1− T
)
. (2.12)

2.5.2 Holonomic phase in evolutions with vanishing dynamical phase

In our experiment we prepare the initial polarization-entangled state |ψ〉= cos α
2
|HH〉+sin α

2
|V V 〉,

where |H〉 and |V 〉 denote horizontal and vertical polarizations respectively. We choose bi-local

evolutions U ⊗ U , with

U = ei
π
4
σ2e−i

π
2

(σ1 sin s+σ2 cos s)ei
π
4
σ2 , (2.13)
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where σ1=|H〉〈H| − |V 〉〈V |, σ2=|H〉〈V | + |V 〉〈H| and s equals the opening angles of the tra-

jectories projected onto the Bloch spheres. For this particular evolution, one can demonstrate

that the dynamical phase vanishes at every step of the evolution. Then the holonomic phase is

calculated as

Φh = arg (cos 2s− i cosα sin 2s)

= − arctan (cosα tan 2s) . (2.14)

Using cosα=η
√

1− T=±
√

1− T, where the sign is + (−) if |HH〉 (|V V 〉) is more populated,

we find that

Φh = ∓ arctan
(√

1− T tan(2s)
)
. (2.15)

For equally-populated states (maximally-entangled states) the sign is irrelevant and the holo-

nomic phase Φh= arg(cos 2s) is topological, being Φh=0 for cos 2s ≥ 0, and Φh=π for cos 2s < 0.

2.5.3 Measurement of the coincidence signal

Ideally, two parameters, s and α, define the probability of detecting a coincidence event in the

experimental set-up described in the main text:

c=
1

2
[1 + vt cos(2φ− Φh)] , (2.16)

with vt=
√

(cos 2s)2 + (cosα sin 2s)2, and Φh=−arctan (cosα tan 2s). Then, if N pairs of single-

photons enter the set-up, theoretically we would observe a coincidence signal

ct =
N

2
[1 + vt cos(2φ− Φh)] , (2.17)

which predicts a reference, i.e. s=0, theoretical visibility:

vr
t≡
(
cr,max

t − cr,min
t

)
/
(
cr,max

t + cr,min
t

)
=1, ∀α, (2.18)

where max (min) stands for maximum (minimum) value with respect to φ.

Experimentally, however, we observe the reference counts dropping to a minimum of non-

zero N0 events, which decreases the signal visibility. Imperfect 50:50 beamsplitter reflec-

tion:transmission ratio, and higher-order photon pairs—mainly present in pulsed-pumped down-

conversion sources—can decrease visibilities in interference experiments. However, in our case

the former is measured to be 46:54 at the source-wavelength (820nm) and the latter are negli-

gible as ours is a cw-pumped down-conversion source. Accordingly, these issues have a minor

contribution on the reduced visibility. On the other hand, if fully distinguishable photons (out-

side the Hong-Ou-Mandel dip) enter our set-up, one can show that the reference interference

probability oscillates between 1 and 1/2, giving a visibility of 1/3, which is in agreement with

our observations outside the dip, see Fig. 2.5a. Thus, the degree of photon-distinguishability
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Figure 2.4: Counted coincidence events. The reference signal (solid black curve) was obtained

from finding N i and N i
0 by imposing si=0 and αi=iπ/20, i = 0, 1, ..., 20 and averaging them

to obtain N=11911 and N0=1616, the phase origin, i.e. φ=0, is set to be the average of their

phases. Black points and dashed black curve represent the collected coincidence counts and

best sinusoidal fit for (s, α)=(0, 8
20
π). Blue, red and green points and curves correspond to the

predicted experimental coincidence signal (solid curves) ce, see Eq. (2.19), and best sinusoidal

fits (dashed curves) for (s, α)=( 7
10
π
2
, 8

20
π), (s, α)=( 6

10
π
2
, 11

20
π) and (s, α)=( 3

10
π
2
, 12

20
π), respectively.

plays an important role and accounts for the reduced visibility, which in our experiment we

believe arises from a temporal mode mismatch between the single photons.

The maximum and minimum number of experimental reference counts, cr,max
e =N, cr,min

e =N0,

give an experimental reference visibility vr
e = (N −N0) / (N +N0). Then, the correction for

the experimental coincidence signal is given by

ce =
(N −N0)

2
[1 + vt cos(2φ− Φh)] +N0, (2.19)

from where we can calculate the experimental visibility

ve = vtv
r
e, (2.20)

and, alternatively, write the experimental signal as

ce =
(N +N0)

2
[1 + ve cos(2φ− Φh)] , (2.21)

with 0 ≤ ve ≤ (N −N0) / (N +N0).

The path-difference phase φ is introduced by rotating a mirror mounted on a motorised

stage capable of rotations in steps of ∼ 10−5 degrees, see Fig. 2b in main text. Complete cycles

(φ→ 2π) are obtained by physical rotations of the mirror of the order ∼ 10−4 degrees.

The reference coincidence signal, i.e. for Φh=0, was obtained by imposing s=0 and averaging

all phase offsets by varying α between α=0 and α=π in steps of ∆α=π/20. A maximum in the

reference signal is equivalent to ∼ 12, 000 coincidence events collected in 5 seconds. We measure

∼ 10 kHz coincidences from the source, accordingly our set-up has ∼ 24% overall transmission.
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The experimental errors arise from instabilities, e.g. small mechanical fluctuations in the mirror

position (< 10−5 degrees), to which the Sagnac interferometer is sensitive to, in addition to

inevitable random errors from Poissonian photon-counting statistics. Figure 2.4 shows our

recorded coincidence signals for four cases.

2.5.4 Measurement of Φh without Hong-Ou-Mandel interference

Although the presented data in the main text was taken with indistinguishable photons (inside

the Hong-Ou-Mandel dip), qualitatively similar measurements were obtained with distinguish-

able photons by moving the modes outside of the dip, see Fig. 2.5. Given our particular

evolutions however, it can be shown that the anti-bunching terms observed when there is a de-

gree of distinguishability between the photons (absent in the completely indistinguishable case)

do not alter the measured holonomic phases, Φh. Instead, they show up merely as a background

of counts, reducing the overall signal-to-noise ratio of the interference traces shown in Fig. 2.5.

It was therefore not imperative to obtain perfect indistinguishability in order to measure the

holonomic phases. Yet, any amount of indistinguishability will enhance the signal-to-noise ratio

above that of the completely distinguishable case. A comparison between our measurements

outside the Hong-Ou-Mandel dip (fully distinguishable) and the corresponding data inside the

Hong-Ou-Mandel dip (indistinguishable), are shown in Fig. 2.5a-c.
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Figure 2.5: Indistinguishable-distinguishable cases comparison. Counted coincidences in-

side (blue dots) and outside (red dots) the Hong-Ou-Mandel dip for a) (s, α)=(0, 9
20
π), b)

(s, α)=( 4
10
π
2
, 14

20
π) and c) (s, α)=( 3

10
π
2
, 3

20
π). Curves represent best sinusoidal fits for the corre-

sponding data. Inside and outside the dip we obtain N=11911, N0=1616, and Nout=10000,

Nout
0 =5068, respectively. Which, from Eq. (2.20), predicts an outside/inside visibility ratio of

0.43. The observed visibility ratios are 0.41, 0.42 and 0.44 for a), b) and c), respectively.
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2.5.5 Source of polarization entangled photon pairs

The experimental setup for producing two-photon polarization entangled states is shown in

Fig. 2.6a). Figure 2.6b) shows the reconstruction of the entangled state via quantum state

tomography: It reveals a tangle [23] of Ttomo=0.959± 0.001, and a fidelity F=0.988± 0.001 to

the state |Ψ+〉= (|HV 〉+ |V H〉) /
√

2.

Figure 2.6: Experimental depiction of two-photon polarization entangled source.

a) A pair of polarization entangled single-photons are produced via spontaneous parametric

downconversion in a 10 mm long custom periodically-poled KTiOPO4 (cpKTP) nonlinear crys-

tal [28]. A continuous wave pump centered at 410 nm is output from a laser diode (410nmLD)

with its polarization controlled by a half-wave (HWP1) and quarter-wave plate (QWP). The

pump is incident on a dual-wavelength polarizing beam-splitter (PBS) [29] which together with

mirrors M1 and M2 make up the Sagnac loop. The superposition of counter-propagating pump

modes in the Sagnac loop destroys the ‘which path’ information of the downconverted fields

resulting in an entangled two-photon state that can be tuned from |HV 〉 + eiφ|V H〉 → |HV 〉
by means of the HWP1 on the pump field. HWP2 is custom made to suit both the pump at

410 nm and the downconverted light at 820 nm, it works to flip the reflected vertically polar-

ized pump mode from |V 〉 → |H〉 for phase matching in the cpKTP crystal. A dichroric mirror

(DM) and long pass filters (not shown) before each fibre coupler (FC) separate and block the

pump light from being coupled to the output FCs. b) Experimental results from a quantum

state tomography of the polarization entangled two-photon state ρexp.
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Measuring entanglement is a demanding task that usually requires full tomography of a

quantum system, involving a number of observables that grows exponentially with the number

of parties. Recently, it was suggested that adding a single ancillary qubit would allow for the

efficient measurement of concurrence, and indeed any entanglement monotone associated to

antilinear operations. Here, we report on the experimental implementation of such a device—an

embedding quantum simulator—in photonics, encoding the entangling dynamics of a bipartite

system into a tripartite one. We show that bipartite concurrence can be efficiently extracted

from the measurement of merely two observables, instead of fifteen, without full tomographic

information.
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3.1 Introduction

E
ntanglement is arguably the most striking feature of quantum mechanics [1], defining

a threshold between the classical and quantum behavior of nature. Yet its experimen-

tal quantification in a given system remains challenging. Several measures of entanglement

involve unphysical operations, such as antilinear operations, on the quantum state [2, 3], and

thus its direct measurement cannot be implemented in the laboratory. As a consequence, in

general, experimental measurements of entanglement have been carried out mostly via the full

reconstruction of the quantum state [4]. While this technique—called quantum state tomogra-

phy (QST)—has been widely used when dealing with relatively low-dimensional systems [5, 6],

it is known to become rapidly intractable as the system size grows, being outside of exper-

imental reach in systems with ∼ 10 qubits [7]. This difficulty lies in having to measure an

exponentially-growing number of observables, 22N−1, to reconstruct N -qubits. Such constraint

can be relaxed somewhat by using, for example, multiple copies of the same quantum state [8],

prior state knowledge in noisy dynamics [9], compressed sensing methods [10], or measuring

phases monotonically dependent on entanglement [11]. However, measuring entanglement in

scalable systems remains a challenging task.

An efficient alternative is to embed the system dynamics into an enlarged Hilbert-space

simulator, called embedding quantum simulator (EQS) [12, 13], where unphysical operations are

mapped onto physical transformations on the simulator. The price to pay, comparatively small

in larger systems, is the addition of only one ancillary qubit and, usually, dealing with more

involved dynamics. However, measuring the entanglement of the simulated system becomes

efficient, involving the measurement of a low number of observables in the EQS, in contrast to

the 22N−1 needed with full tomography.

In this Letter, we experimentally demonstrate an embedding quantum simulator, using it to

efficiently measure two-qubit entanglement. Our EQS uses three polarization-encoded qubits in

a circuit with two concatenated controlled-sign gates. The measurement of only 2 observables

on the resulting tripartite state gives rise to the efficient measurement of bipartite concurrence,

which would otherwise need 15 observables.

3.2 The Embedding protocol

We consider the simulation of two-qubit entangling dynamics governed by the Hamiltonian

H=−gσz ⊗ σz, where σz=|0〉〈0|−|1〉〈1| is the z-Pauli matrix written in the computational

basis, {|0〉, |1〉}, and g is a constant with units of frequency. For simplicity, we let ~=1. Un-

der this Hamiltonian, the concurrence [2] of an evolving pure state |ψ(t)〉 is calculated as

C= |〈ψ(t)|σy ⊗ σyK|ψ(t)〉|, where K is the complex conjugate operator defined as

K|ψ(t)〉=|ψ(t)∗〉. (3.1)
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3.2. The Embedding protocol

Notice here the explicit dependance of C upon the unphysical transformation K. We now

consider the dynamics of the initial state |ψ(0)〉=(|0〉+|1〉)⊗(|0〉+|1〉)/2. Under these conditions

one can calculate the resulting concurrence at any time t as
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Figure 3.1: (a) Qubits 1 and 2 evolve via an entangling Hamiltonian H during a time inter-

val t, at which point quantum state tomography (QST) is performed via the measurement

of 15 observables to extract the amount of evolving concurrence. (b) An efficient alternative

corresponds to adding one extra ancilla, qubit 0, and having the enlarged system—the embed-

ding quantum simulator (EQS)—evolve via H(E). Only two observables are now required to

reproduce measurements of concurrence of the system under simulation.

C = | sin(2gt)|. (3.2)

The target evolution, e−iHt|ψ(0)〉, can be embedded in a 3-qubit simulator. Given the state of

interest |ψ〉, the transformation

|Ψ〉 = |0〉 ⊗ Re|ψ〉+ |1〉 ⊗ Im|ψ〉, (3.3)

gives rise to a real-valued 3-qubit state |Ψ〉 in the corresponding embedding quantum simula-

tor. The decoding map is, accordingly, |ψ〉=〈0|Ψ〉+i〈1|Ψ〉. The physical unitary gate σz⊗I4

transforms the simulator state into σz⊗I4|Ψ〉=|0〉⊗Re|ψ〉−|1〉⊗Im|ψ〉, which after the decoding

becomes 〈0|Ψ〉−i〈1|Ψ〉=Re|ψ〉−iIm|ψ〉=|ψ∗〉. Therefore, the action of the complex conjugate

operator K corresponds to the single qubit rotation σz⊗I4 [12, 14]. Now, following the same

encoding rules: 〈ψ|OK|ψ〉=〈Ψ|(σz−iσx)⊗O|Ψ〉, with O an observable in the simulation. In the
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3.2. The Embedding protocol

case of O=σy⊗σy, we obtain

C = |〈σz ⊗ σy ⊗ σy〉 − i〈σx ⊗ σy ⊗ σy〉|, (3.4)

which relates the simulated concurrence to the expectation values of two nonlocal operators in

the embedding quantum simulator. Regarding the dynamics, it can be shown that the Hamil-

tonian H(E) that governs the evolution in the simulator is H(E)=−σy⊗(ReH)+iI2⊗(ImH) [12].

Accordingly, in our case, it will be given by H(E)=gσy⊗σz⊗σz.
Our initial state under simulation is |ψ(0)〉=(|0〉+|1〉)⊗(|0〉+|1〉)/2, which requires, see

Eq. (3.3), the initialization of the simulator in |Ψ(0)〉=|0〉⊗ (|0〉+ |1〉)⊗ (|0〉+ |1〉) /2. Under

these conditions, the relevant simulator observables, see Eq. (3.4), read 〈σx⊗σy⊗σy〉= sin (2gt)

and 〈σz⊗σy⊗σy〉=0, from which the concurrence of Eq. (3.2) will be extracted. Therefore,

our recipe, depicted in Fig. 3.1, allows the encoding and efficient measurement of two-qubit

concurrence dynamics.
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b)
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Figure 3.2: Quantum circuit for the embedding quantum simulator. (a) 4 controlled-sign gates

and one local rotation Ry(φ) implement the evolution operator U(t)=exp
(
−igσ(0)

y ⊗σ(1)
z ⊗σ(2)

z t
)

,

with φ = gt. (b) A reduced circuit employing only two controlled-sign gates reproduces the

desired three-qubit dynamics for inputs with the ancillary qubit in |0〉.

To construct the described three-qubit simulator dynamics, it can be shown (see Ap-

pendix) that a quantum circuit consisting of 4 controlled-sign gates and one local rotation

Ry(φ)=exp (−iσyφ), as depicted in Fig. 3.2(a), implements the evolution operator:

U(t)=exp [−ig (σy⊗σz⊗σz) t] , (3.5)
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reproducing the desired dynamics, with φ = gt. This quantum circuit can be further reduced if

we consider only inputs with the ancillary qubit in state |0〉, in which case, only two controlled-

sign gates reproduce the same evolution, see Fig. 3.2 (b). This reduced subspace of initial states

corresponds to simulated input states of only real components.

3.3 Experimental implementation

We encode a three-qubit state in the polarization of 3 single-photons. The logical basis is

encoded according to |h〉≡|0〉, |v〉≡|1〉, where |h〉 and |v〉 denote horizontal and vertical polar-

ization, respectively. The simulator is initialized in the state

|Ψ(0)〉=|h〉(0)⊗
(
|h〉(1) + |v〉(1)

)
⊗
(
|h〉(2) + |v〉(2)

)
/2 (3.6)

of qubits 0, 1 and 2, and evolves via the optical circuit in Fig. 3.2 (b).

3.3.1 The setup

Figure 3.3 is the physical implementation of Fig. 3.2 (b), where the dimensionless parameter

φ=gt is controlled by the angle φ/2 of one half-wave plate. The two concatenated controlled-sign

gates are implemented by probabilistic gates based on two-photon quantum interference [15,

16, 17], see Appendix.

In order to reconstruct the two three-qubit observables in Eq. (3.4), one needs to collect

8 possible tripartite correlations of the observable eigenstates. For instance, the observable

〈σx⊗σy⊗σy〉 is obtained from measuring the 8 projection combinations of the states

{|d〉, |a〉}⊗{|r〉, |l〉}⊗{|r〉, |l〉},

where |d〉=(|h〉+|v〉)/
√

2, |r〉=(|h〉+i|v〉)/
√

2, and |a〉 and |l〉 are their orthogonal states, respec-

tively. To implement these polarization projections, we employed Glan-Taylor prisms due to

their high extinction ratio. However, only their transmission mode is available, which required

each of the 8 different projection settings separately, extending our data-measuring time. The

latter can be avoided by simultaneously registering both outputs of a projective measurement,

such as at the two output ports of a polarizing beam splitter, allowing the simultaneous record-

ing of all 8 possible projection settings. Thus, an immediate reconstruction of each observable

is possible.

Our source of single-photons consists of four-photon events collected from the forward and

backward pair emission in spontaneous parametric down-conversion in a beta-barium borate

(BBO) crystal pumped by a 76 MHz frequency-doubled mode-locked femtosecond Ti:Sapphire

laser. One of the four photons is sent directly to an avalanche photodiode detector (APD)

to act as a trigger, while the other 3 photons are used in the protocol. This kind of sources

are known to suffer from undesired higher-order photon events that are ultimately responsible
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Figure 3.3: Experimental setup. Three single-photons with wavelength centered at 820 nm

are injected via single-mode fibers into spatial modes 0, 1 and 2. Glan-Taylor (GT’s) prisms,

with transmittance th=1 (tv=0) for horizontal (vertical) polarization, and half-wave plates

(HWP’s) are employed to initialize the state. Controlled two-qubit operations are performed

based on two-photon quantum interference at partially polarizing beam-splitters (PPBS’s).

Projective measurements are carried out with a combination of half-wave plates, quarter-wave

plates (QWP’s) and Glan-Taylor prisms. The photons are collected via single-mode fibers and

detected by avalanche photodiodes (APD’s).

of a non-trivial gate performance degradation [19, 18, 20], although they can be reduced by

decreasing the laser pump power. However, given the probabilistic nature and low efficiency

of down-conversion processes, multi-photon experiments are importantly limited by low count-

rates, see Appendix. Therefore, increasing the simulation performance quality by lowering

the pump requires much longer integration times to accumulate meaningful statistics, which

ultimately limits the number of measured experimental settings.

As a result of these higher-order noise terms, a simple model can be considered to account

for non-perfect input states. The experimental input n-qubit state ρexp can be regarded as

consisting of the ideal state ρid with certain probability ε, and a white-noise contribution with

probability 1−ε, i.e. ρexp=ερid+(1−ε)I2n/2
n. Since the simulated concurrence is expressed in

terms of tensorial products of Pauli matrices, the experimentally simulated concurrence becomes

Cexp=ε| sin(2gt)|.

3.3.2 Three-qubit protocol

In Fig. 3.4, we show our main experimental results from our photonic embedding quantum sim-

ulator for one cycle of concurrence evolution taken at different pump powers: 60 mW, 180 mW,

and 600 mW—referred as to 10%, 30%, and 100% pump, respectively. Figure 3.4 (a) shows
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Figure 3.4: (a) Theoretical predictions (top) and experimentally measured (bottom) fractions

involved in reconstructing 〈σx⊗σy⊗σy〉 (left) and 〈σz⊗σy⊗σy〉 (right), taken at gt=π/4 for a

10% pump. (b) Extracted simulated concurrence within one evolution cycle, taken at 10%

(blue), 30% (green), and 100% (red) pump powers. Curves represent C=Cpp| sin(2gt)|, where

Cpp is the maximum concurrence extracted for a given pump power (pp): C10%=0.70 ± 0.07,

C30%=0.57 ± 0.03 and C100%=0.37 ± 0.02. Errors are estimated from propagated Poissonian

statistics. The low count-rates of the protocol, see Appendix, limit the number of measured

experimental settings, hence only one data point could be reconstructed at 10% pump.

theoretical predictions (for ideal pure-state inputs) and measured fractions of the different pro-

jections involved in reconstructing 〈σx⊗σy⊗σy〉 and 〈σz⊗σy⊗σy〉 for 10% pump at gt=π/4.

From measuring these two observables, see Eq. (3.4), we construct the simulated concurrence

produced by our EQS, shown in Fig. 3.4 (b). We observe a good behavior of the simulated con-

currence, which preserves the theoretically predicted sinusoidal form. The overall attenuation

of the curve is in agreement with the proposed model of imperfect initial states. Together with

the unwanted higher-order terms, we attribute the observed degradation to remaining spectral

mismatch between photons created by independent down-conversion events and injected to in-

puts 0 and 2 of Fig. 3.3—at which outputs 2 nm band-pass filters with similar but not identical

spectra were used.

3.3.3 Two-qubit protocol

We compare our measurement of concurrence via our simulator with an explicit measurement

from state tomography. In the latter we inject one down-converted pair into modes 0 and 1 of

Fig. 3.3. For any value of t, set by the wave-plate angle φ, this evolving state has the same

amount of concurrence as the one from our simulation, they are equivalent in the sense that

one is related to the other at most by local unitaries, which could be seen as incorporated in

either the state preparation or within the tomography settings.

Figure 3.5 shows our experimental results for the described two-photon protocol. We ex-

tracted the concurrence of the evolving two-qubit state from overcomplete measurements in

quantum state tomography [4]. A maximum concurrence value of C=1 is predicted in the ideal
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Figure 3.5: Concurrence measured via two-qubit quantum state tomography (QST) on the

explicit two-photon evolution, taken at 10% (blue), 30% (green), and 100% (red) pump pow-

ers. The corresponding curves indicate C=Cpp| sin(2gt)|, with Cpp the maximum extracted

concurrence for a given pump power (pp): C10%=0.959 ± 0.002, C30%=0.884 ± 0.002, and

C100%=0.694±0.006. Errors are estimated from Monte-Carlo simulations of Poissonian counting

fluctuations.

case of perfect pure-state inputs. Experimentally, we measured maximum values of concurrence

of C10%=0.959±0.002, C30%=0.884±0.002 and C100%=0.694±0.006, for the three different pump

powers, respectively. For the purpose of comparing this two-photon protocol with our embed-

ding quantum simulator, only results for the above mentioned powers are shown. However, we

performed an additional two-photon protocol run at an even lower pump power of 30 mW (5%

pump), and extracted a maximum concurrence of C5%=0.979± 0.001. A clear and pronounced

decline on the extracted concurrence at higher powers is also observed in this protocol. How-

ever, a condition closer to the ideal one is reached. This observed pump power behavior and

the high amount of measured concurrence suggest a high-quality gate performance, and that

higher-order terms—larger for higher pump powers—are indeed the main cause of performance

degradation.

While only mixed states are always involved in experiments, different degrees of mixtures

are present in the 3- and 2-qubit protocols, resulting in different extracted concurrence from

both methods. An inspection of the pump-dependence, see Appendix, reveals that both meth-

ods decrease similarly with pump power and are close to performance saturation at the 10%

pump level. This indicates that in the limit of low higher-order emission our 3-qubit simu-

lator is bounded to the observed performance. Temporal overlap between the 3 photons was

carefully matched. Therefore, we attribute the remaining discrepancy to spectral mismatch

between photons originated from independent down-conversion events. This disagreement can

in principle be reduced via error correction [21, 22] and entanglement purification [23] schemes

with linear optics.
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3.4 Discussion

We have shown experimentally that entanglement measurements in a quantum system can be

efficiently done in a higher-dimensional embedding quantum simulator. The manipulation of

larger Hilbert spaces for simplifying the processing of quantum information has been previously

considered [24]. However, in the present scenario, this advantage in computing concurrence orig-

inates from higher-order quantum correlations, as it is the case of the appearance of tripartite

entanglement [25, 26].

The efficient behavior of embedding quantum simulators resides in reducing an exponentially-

growing number of observables to only a handful of them for the extraction of entanglement

monotones. We note that in this non-scalable photonic platform the addition of one ancillary

qubit and one entangling gate results in count rates orders of magnitude lower as compared to

direct state tomography on the 2-qubit dynamics. This means that in practice absolute integra-

tion times favor the direct 2-qubit implementation. However, this introduced limitation escapes

from the purposes of the embedding protocol and instead belongs to the specific technology

employed in its current state-of-the-art performance.

This work represents the first proof-of-principle experiment showing the efficient behavior

of embedding quantum simulators for the processing of quantum information and extraction

of entanglement monotones. This validates an architecture-independent paradigm that, when

implemented in a scalable platform, e.g. ions [7, 13], would overcome a major obstacle in

the characterization of large quantum systems. The relevance of these techniques will thus

become patent as quantum simulators grow in size and currently standard approaches like

full tomography become utterly unfeasible. We believe that these results pave the way to

the efficient measurement of entanglement in any quantum platform via embedding quantum

simulators.
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3.5 Appendix

3.5.1 Quantum circuit of the embedding quantum simulator

Following the main text, the evolution operator associated with the embedding Hamiltonian

H(E)=gσy⊗σz⊗σz can be implemented via 4 control-Z gates (CZ), and a single qubit rotation

Ry(t). These gates act as

CZij = |0〉〈0|(i) ⊗ I(j) + |1〉〈1|(i) ⊗ σ(j)
z , (3.7)

Ri
y(t) = e−iσ

(i)
y gt ≡ (cos(gt)I(i) − i sin(gt)σ(i)

y ), (3.8)

with σz=|0〉〈0|−|1〉〈1|, and σy=−i|0〉〈1|+i|1〉〈0|. The indices i and j indicate on which particle

the operators act. The circuit for the embedding quantum simulator consists of a sequence of

gates applied in the following order:

U(t) = CZ02CZ01R0
y(t)CZ

01CZ02. (3.9)

Simple algebra shows that this expression can be recast as

U(t) = cos(gt)I(0) ⊗ I(1) ⊗ I(2) − i sin(gt)σ(0)
y ⊗ σ(1)

z ⊗ σ(2)
z

= exp
(
−igσ(0)

y ⊗ σ(1)
z ⊗ σ(2)

z t
)
, (3.10)

explicitly exhibiting the equivalence between the gate sequence and the evolution under the

Hamiltonian of interest.

3.5.2 Linear optics implementation

The evolution of the reduced circuit is given by a Ry(t) rotation of qubit 0, followed by two

consecutive control-Z gates on qubits 1 and 2, both controlled on qubit 0, see Fig. 3.6 (a).

These logic operations are experimentally implemented by devices that change the polarization

of the photons, where the qubits are encoded, with transformations as depicted in Fig. 3.6 (b).

For single qubit rotations, we make use of half-wave plates (HWP’s), which shift the linear po-

larization of photons. For the two-qubit gates, we make use of two kinds of partially-polarizing

beam splitters (PPBS’s). PPBS’s of type 1 have transmittances th=1 and tv=1/3 for horizontal

and vertical polarizations, respectively. PPBS’s of type 2, on the other hand, have transmit-

tances th=1/3 and tv=1. Their effect can be expressed in terms of polarization dependant

input-output relations—with the transmitted mode corresponding to the output mode—of the

bosonic creation operators as

a
†(i)
p,out =

√
tpa
†(i)
p,in +

√
1− tpa†(j)p,in (3.11)

a
†(j)
p,out =

√
1− tpa†(i)p,in −

√
tpa
†(j)
p,in, (3.12)
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where a
†(i)
p,in (a

†(i)
p,out) stands for the i-th input (output) port of a PPBS with transmittance tp for

p-polarized photons.
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Figure 3.6: (a) Circuit implementing the evolution operator U(t)=exp
(
−igσ(0)

y ⊗σ(1)
z ⊗σ(2)

z t
)

,

if the initial state is |Ψ(0)〉=|0〉(0)⊗
(
|0〉(1) + |1〉(1)

)
⊗
(
|0〉(2) + |1〉(2)

)
/2. (b) Dual-rail represen-

tation of the circuit implemented with linear-optics. Red (blue) lines represent trajectories

undertaken by the control qubit (target qubits).

Our circuit is implemented as follows: the first Ry(t) rotation is implemented via a HWP

oriented at an angle θ = gt/2 with respect to its optical axis. The rest of the target cir-

cuit, corresponding to the sequence of two control-Z gates, can be expressed in terms of the

transformation of the input to output creation operators as

bhchdh → bhchdh

bhchdv → bhchdv

bhcvdh → bhcvdh

bhcvdv → bhcvdv

bvchdh → bvchdh

bvchdv → −bvchdv
bvcvdh → −bvcvdh
bvcvdv → bvcvdv, (3.13)

where b≡a†(0), c≡a†(1), and d≡a†(2) denote the creation operators acting on qubits 0, 1, and

2, respectively. These polarization transformations can be implemented with a probability of

1/27 via a 3-fold coincidence detection in the circuit depicted in Fig. 3.6 (b). In this dual-rail

representation of the circuit, interactions of modes c and d with vacuum modes are left implicit.

The σx and σz single qubit gates in Fig. 3.6 (b) are implemented by HWP’s with angles π/4
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and 0, respectively. In terms of bosonic operators, these gates imply the following transforma-

tions,

σx : bh → bv, bv → bh (3.14)

σz : dh → dh, dv → −dv. (3.15)

According to all the input-output relations involved, it can be calculated that the optical

elements in Fig. 3.6 (b) implement the following transformations

bhchdh → bhchdh/(3
√

3)

bhchdv → bhchdv/(3
√

3)

bhcvdh → bhcvdh/(3
√

3)

bhcvdv → bhcvdv/(3
√

3)

bvchdh → bvchdh/(3
√

3)

bvchdv → −bvchdv/(3
√

3)

bvcvdh → −bvcvdh/(3
√

3)

bvcvdv → bvcvdv/(3
√

3), (3.16)

if events with 0 photons in some of the three output lines of the circuit are discarded. Thus, this

linear optics implementation corresponds to the evolution of interest with success probability

P = (1/(3
√

3))2 = 1/27.

3.5.3 Photon count-rates

Given the probabilistic nature and low efficiency of down-conversion processes, multi-photon

experiments are importantly limited by low count-rates. In our case, typical two-photon rates

from source are around 150 kHz at 100% pump (two-photon rates are approx. linear with pump

power), which after setup transmission (∼80%) and 1/9 success probability of one controlled-

sign gate, are reduced to about 13 kHz (1 kHz) at 100% (10%) pump. These count-rates make

it possible to run the two-photon protocol, described in the main text, at low powers in a

reasonable amount of time. However, this situation is drastically different in the three-photon

protocol, where we start with 500 Hz of 4-fold events from the source, in which case after

setup transmission, 1/27 success probability of two gates, and 50% transmission in each of two

2 nm filters used for this case, we are left with as few as ∼100 mHz (∼1 mHz) at 100% (10%)

pump (4-fold events reduce quadratically with pump). Consequently, long integration times

are needed to accumulate meaningful statistics, imposing a limit in the number of measured

experimental settings.
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3.5.4 Pump-dependence

To estimate the effect of power-dependent higher-order terms in the performance of our pro-

tocols, we inspect the pump power dependence of extracted concurrence from both methods.

Fig. 3.7 shows that the performances of both protocols decrease at roughly the same rate with

increasing pump power, indicating that in both methods the extracted concurrence at 10%

pump is close to performance saturation.

Figure 3.7: Measured concurrence vs pump power. The concurrence is extracted from both two-

qubit quantum state tomography (QST) and the three-qubit embedding quantum simulator

(EQS). Straight lines are linear fits to the data. Slopes overlapping within error, namely

−0.0030 ± 0.0001 from QST and −0.0035 ± 0.0007 from EQS, show that both methods are

affected by higher-order terms at the same rate.

818 819 820 821 822 823
λ (nm)0.0

0.2

0.4

0.6

0.8

1.0
Transmission

Filter A
Filter B

Figure 3.8: Spectral filtering. The measured transmission for both filters used in our three-qubit

protocol qualitatively reveals the remaining spectral mismatch.

The principal difference between the two methods is that in the three-qubit protocol one of

the photons originates from an independent down-conversion event and as such will present a

slightly different spectral shape due to a difficulty in optimizing the phase-matching condition
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for both forward and backward directions simultaneously. To reduce this spectral mismatch, we

used two 2 nm filters at the output of the two spatial modes where interference from independent

events occurs, see Fig. 3.8. Note that not identical spectra are observed. This limitation would

be avoided with a source that presented simultaneous high indistinguishability between all

interfering photons.
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CHAPTER 4

Scalable performance in solid-state

single-photon sources
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†Present address: Centre of Excellence for Quantum Computation and Communication Technology,

School of Physics, University of New South Wales, Sydney, New South Wales 2052, Australia

‡Present address: Joint Quantum Institute, National Institute of Standards and Technology,

University of Maryland, Gaithersburg, MD, USA

The desiderata for an ideal photon source are high brightness, high single-photon purity,

and high indistinguishability. Defining brightness at the first collection lens, these properties

have been simultaneously demonstrated with solid-state sources, however absolute source effi-

ciencies remain close to the 1% level, and indistinguishability only demonstrated for photons

emitted consecutively on the few nanosecond scale. Here we employ deterministic quantum dot-

micropillar devices to demonstrate solid-state single-photon sources with scalable performance.

In one device, an absolute brightness at the output of a single-mode fibre of 14% and purities

of 97.1–99.0% are demonstrated. When non-resontantly excited, it emits a long stream of pho-

tons that exhibit indistinguishability up to 70%—above the classical limit of 50%—even after 33

consecutively emitted photons, a 400 ns separation between them. Resonant excitation in other

devices results in near-optimal indistinguishability values: 96% at short timescales, remaining

at 88% in timescales as large as 463 ns, after 39 emitted photons. The performance attained

by our devices brings solid-state sources into a regime suitable for scalable implementations.
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4.1 Introduction

Photon indistinguishability—responsible for unique quantum phenomena with no classical coun-

terpart, notably photon bunching via interference [1]—has been demonstrated in various phys-

ical systems [2, 3, 4, 5, 6, 7, 8, 9], resulting in a broad range of applications in photonic

quantum technologies [10], including quantum teleportation [11, 12], generation of entangled

photon sources [13, 14, 15], and linear-optics quantum computation [16, 17]. However, achiev-

ing conclusive indistinguishability, i..e. above 50% (the classical limit), while simultaneously

displaying high single-photon purity and high absolute brightness is experimentally challenging.

Semiconductor quantum dots (QDs) inserted in photonic structures [18, 19, 20, 21, 22] are a

rapidly improving technology for generating bright sources of indistinguishable single-photons.

Addressing the excited states of the quantum dot using a non-resonant scheme early showed

two-photon interference visibilities in the 70%−80% range [8], yet with limited collection ef-

ficiencies. Improvements in the efficiency have been made by deterministically placing the

quantum dot in the centre of a photonic micro-cavity. Here the acceleration of photon emission

into well defined cavity modes [23], due to Purcell enhancement, has enabled two-photon inter-

ference visibilities in the same range, with simultaneous efficiencies at the first collection lens

around 80% [9]. Near-unity indistinguishability, in turn, has been achieved in recent years under

strictly-resonant excitation of the quantum dot [24, 25, 26], whereas the recent development of

electric control on deterministically coupled devices [27]—thus with scalable fabrication—has

now enabled strictly-resonant excitation in combination with Purcell enhancement, resulting

in near-optimal single-photon sources [28] with visibilities reaching the 99% mark, simulta-

neous state-of-the-art extraction efficiency of 65% and polarised brightness at the first lens

around 16%.

Although impressive, the reported efficiencies in these demonstrations are defined at the

first lens, and poor optical collection results in low photon count rates available in practice.

Consequently, absolute brightnesses remain around the 1% mark, too low for practical scal-

able applications [10]. In addition, direct measurements of indistinguishability via two-photon

interference, so far, only employed photons consecutively emitted with a few nanosecond sep-

aration, while a key question regarding the scalable potential of the developed sources is to

determine how many consecutive photons exhibit high indistinguishability. A recent work ob-

tained on quantum dots in microlenses reported a 40 % drop in the indistinguishability over

10 ns only [29].

In the present work, we demonstrate high absolute brightness and generation of indistin-

guishable photons consecutively emitted over 463 ns. Our measurements were performed on

various quantum dot-micropillar devices, all obtained using a deterministic—thus scalable—

technology. Using a simple micropillar (Device 1) [9], we demonstrate a high-purity single-

photon source with an absolute brightness of 14%. That is, about one in seven laser pulses

creates a high-purity single-photon at the output of a single-mode fibre. We also demonstrate

robust and conclusive quantum interference between consecutively emitted photon pulses up
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to a first and thirty-third, separated by 400 ns. Interference visibilities, under non-resonant

excitation, reach maximum values of 70% in short timescales, decreasing to plateaus above 60%

at longer temporal separations, and remain above the classical limit of 50% even at high pump-

powers. Using electrically controlled pillar devices [28] (Devices 2 and 3) we demonstrate,

under strictly resonant-excitation, indistinguishability reaching near-optimal values: 96% at

short timescales, remaining above 88% at 463 ns separation.

4.2 Absolute brightness

Device 1 contains self-assembled InGaAs QDs grown by molecular beam epitaxy, positioned in

between two layers of GaAs/AlAs distributed Bragg reflectors, consisting of 16 (36) pairs acting

as a top (bottom) mirror. Note that Device 1 is a pillar from the same batch as in Ref. [9]. Low-

temperature in situ lithography [30] was employed to fabricate micropillars centred around a

single QD with 50 nm accuracy. The sample is mounted on a closed-cycle cryostat and is

optically pumped by 5 ps laser pulses at 80 MHz repetition rate with wavelength tuned to

905.3 nm, corresponding to one of the quantum dot excited states in its p-shell. We optimised

our collection efficiency by judicious choice of optical elements, achieving an efficiency budget

as follows. After emission from the micropillar, single-photons travel across the following el-

ements, with measured transmittances ηelem, before reaching detectors: two cryostat windows

with ηcryo=(96 ± 1)%; a microscope objective (Olympus LMPLN10XIR) with N.A.=0.3 and

ηobj=(91±1)%; a dichroic mirror (Alluxa filters) used to separate single-photons from the laser

path, with a measured attenuation at 905 nm bounded to > 60 dB extinction, while no appre-

ciable loss is recorded at wavelengths corresponding to single-photon emission, we thus consider

ηdich=1; 6 mirrors and 2 lenses, with an overall transmission of ηml=(95± 1)%; and a 0.85 nm

FWHM band-pass filter (Alluxa filters) with ηbp=(91 ± 1)% used to ensure that any residual

scattered laser light is filtered out. Remaining losses are due to coupling to a single-mode

fibre, where we estimate a fibre-coupling efficiency of ηfc=(65 ± 4)%, by comparing collection

with a multimode fibre assumed to have a unity coupling efficiency. This results in an overall

transmission of our optical setup of ηsetup=(49± 3)%.

We characterise this device in terms of absolute brightness and purity, see Fig. 4.1. We

detect large count-rates in a silicon avalanche photodiode (APD), as shown in the saturation

measurements in Fig. 4.1a. The saturation curves are fitted to R0 (1− exp (−P/P0)), where R0

is an asymptotic rate value, and P0 is the saturation power. The inset figure shows Device 1

spectra with varying temperature T . The energy of the QD transition varies like the band

gap of the semiconductor with temperature [31], whereas the cavity mode energy follows the

temperature variation of the refractive index. Adjusting the temperature thus allows tuning

the QD-cavity resonance. For the measurements presented in Fig. 4.1, the neutral exciton line

is brought in resonance at T=15 K. The count-rates in pulsed configuration reach values as

high as 3.6 MHz. In fact, for this measurement a known loss must be introduced in the optical

path in order to properly quantify the available count-rates, as they are beyond the APD’s
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1

0

(a)

(b)

15K

13K

Figure 4.1: Absolute brightness and purity of Device 1. a) Detected count rates at T=15 K

(red), with the QD in resonance with the cavity mode, and 13 K (blue), with the QD slightly

detuned from the cavity. Solid curves represent fits to R0 (1− exp (−P/P0)), with P0=197 µW,

and R0=3.8 MHz for T=15 K, and R0=3.4 MHz for T=13 K. Inset: QD spectra with varying

temperature. b) Power-dependent g(2)(0) at T=15 K. Note that even three times above the

saturation pump power the photon purity remians > 97%. Top inset shows the autocorrelation

measurement for P=1P0, and bottom inset zooms into the zero delay resolving the non-zero

g(2)(0) from experimental noise.

(Perkin-Elmer SPCM-AQR-14-FC) linear regime. This allows us to accumulate a high amount

of statistics with notably short integration times. For instance, the inset in Fig. 4.1b shows

a g(2)(∆t) measurement—second-order autocorrelation function with g(2)(0)=0 corresponding

to an ideal single-photon state—at P=P0, yielding a value of g(2)(0)=0.0130 ± 0.0002, where

the small error is reached with an integration time of only 29 seconds. We in fact used about

half the available counts after selecting one linear polarisation emitted by our device. Thus,

in our setup, the same amount of statistics is achieved four times faster when the polariser

is removed. Remarkably, we observe low multi-photon emission at all pump-powers, with a

measured maximum value of g(2)(0)=0.0288 ± 0.0002 at P=3P0. We thus observe a single-

photon purity 1−g(2)(0) above 97% even at maximum brightness. These values were extracted

from integrating raw counts in a 2 ns window—sufficiently larger than the < 0.5 ns lifetime [9]—
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around the peak at zero delay compared to the average of the 10 adjacent lateral peaks, without

any background subtraction. Error bars in this work are deduced from assuming poissonian

statistics in detected events.

Our APD efficiency of 32%—measured using the approach of Ref. [32]—80 MHz pump

rate, and 3.6 MHz detected count rate corresponds to an absolute brightness—the probability-

per-laser-pulse of finding a spectrally-isolated high-purity single-photon at the output of a

single-mode fibre—of 14%, the highest reported to date. Such absolute brightness represents

a clear improvement over what has been previously achieved with quantum dot-based photon

sources. For instance, a drastic contrast between performance at the first lens and actual de-

tected count rates has been common until now, e.g., reporting a brightness as high as 72%

while detecting 65 kHz [33], or 143 MHz collected on the first lens but only 72 kHz available on

detection [34]. Detected rates of 4.0 MHz at the single-photon level have been reported [35],

however without coupling into a single-mode fibre and at the cost of high multi-photon contri-

bution with g(2)(0)=0.4. In fact, our source greatly exceeds, in terms of absolute brightness,

the performance of any other single-photon source from any physical system, including the well

established Spontaneous Parametric DownConversion source—so far considered as the premier

photon source—where the equivalent (triggered) absolute brightness is well below 1%.

We note that, given our setup collection efficiency of ηsetup=49%, Device 1 exhibits—for the

neutral exciton state—a brightness at the first lens of 29%. Deducing the exciton lifetime from

the correlation curves at low excitation power, we estimate the Purcell factor of the device to

be around Fp=2, and the fraction of emission into the cavity mode around 66%. Considering

an output coupling efficiency of 90%, the measured brightness in the first lens could reach 60%

with a unity probability to find the QD in the neutral exciton state. However, as evidenced in

the inset of Fig. 4.1a, the present QD also presents an non-negligible probability to emit from

the positively- or negatively-charged exciton transition that are brought in resonance at higher

temperatures. As a result, the probability of the quantum dot to be in the neutral exciton is

reduced leading to the measured 29% brightness at the first lens. Note that this instability

of the charge state was not observed originally in the devices under study, see Ref. [9], but

appeared after sample accidental freezing.

4.3 Long timescale indistinguishability

We now explore the indistinguishability of photons emitted by Device 1 with various tempo-

ral distances. We perform our measurements at T=13 K to reduce phonon-induced dephas-

ing [36], which is sufficiently close to the quantum dot cavity resonance at T=15 K. Note

that contrary to most reports, the phonon sideband here is not filtered out by the 0.85 nm

bandpass filter used to further suppress the laser light. Figure 4.2a depicts our experimental

setup. Single-photons are injected into an unbalanced Mach-Zehnder interferometer with a

variable fibre-based path-length difference designed to match—by using multiple fibres of dis-

tinct lengths—an integer multiple of 12.5 ns up to 400 ns. Polarisation control—polariser (Pol)
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and a half-wave plate (HWP)—and a polarising beamsplitter (PBS) behave as a beamsplitter

with tuneable reflectivity, thus balancing the photon-flux entering the interference point in-

side a fibre-beamsplitter (FBS) closing the Mach-Zehnder configuration. Quarter-wave plates

(QWPs) and HWPs are used to tune the polarisation of interfering photons in parallel or or-

thogonal configuration. Time-correlation histograms from the output of this interferometer

reveal the indistinguishability of photons emitted with a temporal distance ∆τe. Fully distin-

guishable photons—e.g., with orthogonal polarisation—meeting at a 50:50 beamsplitter result

in a 50 % probability of being detected simultaneously at the output of the beamsplitter. This

results in the peak around ∆t=0 of the time-correlation measurement being about half of those

at ∆t>0, with the exception of peaks at ∆t=∆τe, which larger suppression indicates that the

interfering photons were emitted with a temporal distance ∆τe. In general it can be shown

for a pure single-photon source, see Appendix, that the areas A∆t centered around ∆t are

given by Ak=N , A−∆τe=N(1−R2), A∆τe=N(1−T 2), and A0=N ((R2 + T 2)− 2RT V ), where

k= ± 12.5 ns,±25 ns, ..., and excludes peaks at ±∆τe, N is an integration constant, R is the

beamsplitter reflectivity, and T =1−R.

We use the visibility V to quantify the degree of indistinguishability of the source. Since

the measured visibility depends both on the photon source and on the apparatus used to

characterise it the latter must be accounted for. Ideally the apparatus is a beamsplitter of

reflectivity R=0.5; in our experiment R=0.471, T =0.529, and the visibility V is thus,

V =
R2 + T 2 − A0/A

2RT , (4.1)

where A is taken as the average value of Ak. Note that since the g(2)(0) values are intrinsic

to the source, and hence affect any process in which we wish to use it, we do not correct for

non-zero g(2)(0) in Eq. (4.1). The deduced V therefore corresponds to the raw two-photon

interference visibility, and quantifies the degree of photon indistinguishability.

Figure 4.2b shows histograms for the indistinguishability of orthogonal- and parallel-polarised

photons at ∆τe=50 ns and P=P0. In virtue of Eq. (4.1), and measured R=0.471, we obtain

V P0
50ns=(0.71±0.01)% in orthogonal configuration (red histogram), and V P0

50ns=(60.31±0.60)% for

parallel-polarised photons (blue histogram), where V P
∆τe

denotes visibility taken at a power P

and temporal delay ∆τe. We observe higher visibilities at lower powers and shorter delays. For

instance, the measurements in Fig. 4.2c were taken at P=0.5P0, and reveal V 0.5P0
12.5ns=(67.52±0.78)%

at a temporal delay (blue histogram) of ∆τe=12.5 ns. Remarkably, we find that indistinguisha-

bility is robust in the temporal domain. Even after 33 consecutive emitted photons (orange

histogram), at ∆τe=400 ns, it only decreases to V 0.5P0
400ns =(59.97±0.76)%. That is, less than 8%

visibility decrease in ∼ 400 ns. All V values with the non-resonant scheme are obtained without

any background correction.

To thoroughly examine the indistinguishability properties of Device 1, we carried out power-

and temporal-dependent measurements, see Fig. 4.3a. All these measured V are within the

50%−70% range, thus showing conclusive quantum interference at all measured powers and

timescales. The large available photon flux allows us to gather more than 100 visibility values
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(b)

(c)

APD
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QWP

dichroic
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V P0
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50ns=(0.71±0.01)% ⊥

V 0.5P0
12.5ns=(67.52±0.78)% V 0.5P0

400ns =(59.97±0.76)%

FBS

(a)

temporal
fine

tuning

first lens

Figure 4.2: Two-photon interference between temporally-distant photons. a) A simple unbal-

anced Mach-Zehnder interferometer with a path-length difference of ∆τe probes the indistin-

guishability of two photons emitted with the same ∆τe temporal separation. b) Interference

histograms of orthogonal- (red) and parallel-polarised (blue) photons with ∆τe=50 ns, at satu-

ration of the quantum dot. (Note the suppression at ∆τe, see text for details). c) Interference

of parallel-polarised photons with ∆τe=12.5 ns (blue) and ∆τe=400 ns (orange), taken at

P=0.5P0. A temporal offset of 3.5 ns has been introduced between histograms for clarity.

with measurement errors sufficiently small to identify an interesting behaviour in this nar-

row visibility range. At any given ∆τe, V is linear in P , see Appendix, and we simply use

V=V max
∆τe

+m∆τeP to characterise the P -dependence of V at fixed ∆τe. Conversely, at fixed

P , V decreases monotonically and asymptotically in ∆τe, flattening to fixed values at longer
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timescales.

We model this behaviour by considering a time-dependent wandering of the spectral line

as the origin of the temporal modulation. That is, the frequency of every emitted pho-

ton ω(t)=ω0+δω(t) varies in time according to some wandering function δω(t) occurring in

timescales much larger than the photon lifetime. Our problem is then equivalent to finding the

mutual interference visibility between independent sources with finite frequency detuning [37],

which is given by V (0)/ (1 + δω2
r) in the case where V (0) is the degree of indistinguishability

for each source alone (equal value for both), and δωr is the ratio of the frequency detuning to

the spectral linewidth of the sources (equal linewidth for both). If this mismatch arises due to

spectral wandering within the same source, then the time-averaged relative detuning squared is

given by 2δω2
r (1− exp (−∆τe/τc)), with τc a characteristic wandering timescale, see Appendix

for more details. We thus derive the visibility of temporally-distant photons:

V (∆τe) =
V (0)

1 + 2δωr
2 (1− e−∆τe/τc)

. (4.2)

To obtain a statistically meaningful temporal behaviour, we used the fitted values of V at

0.5

0.55

0.6

0.65

(a) (b)

Figure 4.3: Power- and temporal-dependent two-photon interference. a) Over >100 measured

visibilities (red points) showing conclusive quantum interference, i.e. V >0.5, at all measured

powers and timescales. Coloured surface is an interpolation to the data. b) Fitted values of

V at different ∆τe (bottom axis), for P=0 (red), P=P0 (green), and P=2P0 (blue), showing

interference between a first and n-th consecutive emitted photon (top axis). Curves are fits to

our model in Eq. (4.2).

different ∆τe, for powers P=0, P=P0, and P=2P0. These values are plotted in Fig. 4.3b and

are in good agreement with our model in Eq. (4.2). In the limit of low powers, we obtain

V (0)=(72.8 ± 2.4)%, τc=(45.5 ± 19.1) ns, and δωr=(29.4 ± 3.1)%; whereas at high powers, at

P=2P0, these parameters are V (0)=(59.0 ± 2.0)%, and δωr=(19.3 ± 4.5)%. The maximum

degree of indistinguishability V (0) decreases only by 13.8% with increasing power, evidencing

a slight increase of pure dephasing of the exciton transition. On the contrary, the relative

amplitude of the spectral wandering decreases by 34%, evidencing that spectral diffusion is
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significantly reduced at higher powers, as recently observed in nanowire based devices [38].

Note that the large relative error in τc is due to a small relative decay in V , an uncertainty

that increases with increasing power. Thus—although it is reasonable to assume that τc itself

is power-dependent—we extracted τc only at P=0 and used it as a fixed parameter for the fits

at higher powers.

The decrease of the indistinguishability by few percents for temporally distant photons

demonstrates a very limited spectral diffusion in our micropillar devices. This observation is

in striking contrast to previous measurements on single photon sources based on alternative

approaches for efficient photon extraction, such as nanowires [38], or micro lenses [29]. A signif-

icantly lower stability of the electrostatic environment of the QD can reasonably be attributed

to the close proximity of free surfaces in the latter. Indeed, as indicated by the observation of

three emission lines from the same QD, even the micropillar devices under study do not provide

a fully stable charge state for the QDs, an effect that we observe to be dependent on the quality

of the etched surfaces. This makes strictly resonant spectroscopy difficult without an additional

non-resonant excitation, a situation also observed in other micropillar devices [26].

Therefore, to explore the indistinguishability of temporally-distant photons under strictly

resonant excitation, we turn to electrically controlled micropillars and present data on two de-

vices, Device 2 and Device 31. These devices consist of quantum dots deterministically coupled

to micropillars embedded in cylindrical gated structures with p- and n-contacts respectively

defined on the top and bottom sides of the device, resulting in an effective p-i-n diode structure

onto which an electric field can be applied. (See Ref. [28] for a detailed description of the

device). We perform our measurements at T=9 K and tune the emission into cavity-resonance

via an applied bias voltage of −0.3 V. This sample is cooled by gas exchange in a closed-cycle

cryostat, and is pumped by shaped 15 ps laser pulses at 82 MHz repetition rate. The experi-

mental setup used for photon collection is reported in Ref. [28], and the appartus used for the

temporal-dependent measurements is conceptually identical to that in Fig. 4.2a.

Resonant-excitation allows us to probe two-photon interference in a regime excelling in in-

distinguishability performance. Indeed, for Device 2 we obtain V π
12.2ns=(95.0±1.0)% at a short

temporal separation, decreasing only to V π
158.5ns=(90.6±1.7)% at long timescales, see Figs. 5.4a,

and 5.4b. We observe a high single-photon purity quantified by g(2)(0)=0.015 ± 0.007 at π-

pulse, see Fig. 5.4c, where the non-vanishing g(2)(0) primarily consists of background noise

and thus a value 1−g(2)(0) of 98.5% represents a lower bound on the intrinsic single-photon

purity. Indistinguishability measurements at various temporal distances, see Fig. 5.4d, reveal

plateaus at high values: Up to a first and fourteenth photon, separated by ∼ 150 ns, exhibit an

indistinguishability greater than 90%. The curve is a fit to Eq. (4.2), with a maximum indis-

tinguishability value of V (0)=96.6%, τc=54.4 ns, and δωr=17.8%. The reproducibility of our

results, thanks to a deterministic fabrication, is evidenced by similar indistinguishability values

obtained on Device 3: V π
12.2ns=(96.1±0.8)% at a short temporal delay, and V π

463ns=(87.8±1.6)%

for a first and thirty-ninth photon separated by 463 ns. These values of indistinguishability are

1The measurements under strictly-resonant excitation were performed by our collaborators in the group of
Prof. Pascale Senellart. Those involved in these measurements are listed as authors of the published work.
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(b)(a)

(c) (d)

V π
158.5ns=(90.6±1.7)%V π

12.2ns=(95.0±1.0)% Device 2 Device 2

Device 2
Device 2
Device 3

Figure 4.4: Temporal-dependent indistinguishability under strictly resonant excitation. Two-

photon interference histograms with Device 2 of parallel-polarised photons at a) ∆τe=12.2 ns,

and b) ∆τe=158.5 ns, under a π-pulse preparation. c) Second-order autocorrelation measure-

ment at π-pulse. d) Indistinguishability between a first and n-th consecutive emitted photon

from Device 2 (blue) and Device 3 (red). Indistinguishability remains robust in the temporal

domain, decreasing only by 4.4% in ∼ 159 ns (down to 90.6%) for Device 2, and by 8.3% in

∼ 463 ns (down to 87.8%) for Device 2 . The curve is a fit of the data from Device 2 to

Eq. (4.2).

corrected for the measured background noise arising from detector dark counts: The experimen-

tal setup used for these resonant-excitation measurements presents a low collection efficiency,

thus an integration of raw detected counts that includes the background noise, which at zero de-

lay is as large as non-vanishing counts due to photon dinstinguishability, would under-estimate

the intrinsic degrees of indistinguishability in our devices, see the Appendix for details on this

method. No correction for non-vanishing g(2)(0) was included.

Note that a high absolute brightness with this recently developed technology is yet to be

achieved. However, since the mode profile of connected pillars is the same as isolated ones [27]

and a photon extraction efficiency at the first lens of 65% has been reported on this sample [28],

the same experimental methods as before should allow even higher absolute efficiencies than

the 14% reported here.
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4.4 Discussion and conclusion

We provided here strong evidence that our sources emit long streams of indistinguishable pho-

tons. Under non-resonant excitation, even a first and a thirty-third consecutive photon, sep-

arated by 400 ns, display conclusive quantum interference. For a fixed pump power, photon

indistinguishability decreases only a few percent—about 8% at low powers and less than 4% at

higher powers—before flattening to fixed values at longer timescales. This contrasts favourably

to previous works, where photon indistinguishability has been observed to decrease by 40%

in only 10 ns [29]. Moreover, under strictly-resonant excitation, photon indistinguishability

between a first and thirty-ninth photon remained at 88%. Interestingly, the observation of only

small reductions in the temporal domain indicate that non-unity indistinguishability under

non-resonant excitation is mainly caused by homogenous broadening of the spectral linewidth

(governing coherence times at short temporal delays), and a limited inhomogeneous broaden-

ing (governing effective coherence times at longer temporal delays). The relative amplitude of

the spectral diffusion at saturation is similar for both resonant and non-resonant excitation.

However, Device 1 operates in a limited Purcell regime whereas Devices 2 and 3 operate with a

Purcell factor around 7−10, leading to an increased radiative exciton linewidth. From this, we

conclude that, although the application of an electrical bias in p-i-n diode structures allows a

good control of the QD charge states, it does not lead to a significant decrease in the spectral

wandering phenomena. The excellent indistinguishability observed in Devices 2 and 3 arises

mainly from reduced pure dephasing of the exciton state, increased Purcell factor and reduced

time jitter in a resonant excitation scheme.

Our reported indistinguishability values correspond to the longest temporal delays here

studied, at a particular pump repetition rate of 80 MHz: It only represents a lower bound on the

number of photons we can generate—limited by radiative lifetimes in the order of a few hundred

picoseconds—that can be further used in quantum information processing protocols with solid-

state sources [39]. Previous works investigating noise spectra in resonance fluorescence have

shown evidence of long streams of near transform-limited photons [40] in timescales potentially

reaching seconds [41]. In fact, Device 2 has recently been shown to emit photons with near

transform-limited linewidth in a millisecond timescale [42], in which case we would expect that

our devices are producing at least hundreds of thousands of highly indistinguishable single-

photons.

Our findings are especially relevant in implementations with time-bin encoded degrees of

freedom, such as some recently proposed schemes of linear-optics quantum computing with

time-bin encoding [43, 44], where the indistinguishability of temporally-distant photons will

directly determine quantum fidelities of the implemented protocols. Scaling solid-state multi-

photon sources by combining multiple independent emitters remains challenging, as atomic

growth accuracy or complex individual electric control over multiple devices is needed. These

requirements can be circumvented by making use of a single photon source emitting a long

temporal stream of highly indistinguishable photons that can be demultiplexed by fast active
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optics.

A high absolute brightness will be critical for successfully implementing multi-photon ex-

periments with these sources, where their downconversion counterparts currently require ex-

perimental runs of hundreds of hours [45, 46]. The key role of high emission yields in these

devices has been made explicit in the recent demonstration of a solid-state based multi-photon

experiment [47], realised with Device 1, where integration times outperformed those in equiv-

alent downconversion implementations by two-orders of magnitude. Achieving high absolute

efficiencies, and thus allowing the scaling of multi-photon experiments to larger photon num-

bers, becomes feasible due to Purcell-enhancement of deterministically-coupled quantum dot-

micropillar devices [9, 27, 28, 37, 48]. This necessary condition is unlikely to be found by chance

with non-deterministic approaches, with reported [48] device yields of ∼0.01% [26]. Thus, the

deterministic fabrication, high absolute brightness, and long timescale indistinguishability of

our devices will enable large-scale applications that have been heretofore impossible.
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4.5 Appendix

4.5.1 Areas in time-correlation histograms

Here we deduce the area distribution of the time-correlation measurements described in the

main text. For simplicity, we first consider two (fully-distinguishable) single-photons distributed

in time-bins {t1, t2}, entering an unbalanced Mach-Zehnder interferometer composed of a first

50:50 beamsplitter and a second beamsplitter with reflectanceR (transmittance T =1−R). Our

task is to find all possible output distributions leading to a coincidence detection between events

separated in time by ∆t. There are two timescales relevant in such coincidence measurements:

the difference in occupied time-bins δt=|t2−t1|, and the temporal delay inside the unbalanced

interferometer ∆. By inspecting this reduced scenario, we can find that there are 8 events

leading to a coincidence detection, as depicted in Fig. 4.5. This results in local patterns of peak

areas A∆t given by: A−δt−∆=R2, A−δt=2RT , and A−δt+∆=T 2, the local pattern around −δt;
and Aδt−∆=R2, Aδt=2RT , and Aδt+∆=T 2, the local pattern around δt. From this, we find

simple rules for the time-correlation measurement of an array of single-photons distributed in

arbitrary time-bins {ti} passing through a ∆-unbalanced Mach-Zehnder:

rule 1 : Find all possible temporal delays δt relating each pair of photons within the given

time-bin distribution.

rule 2 : Around each ±δt, assign the relative frequency of events {R2, 2RT , T 2} at temporal

delays ∆t={±δt−∆,±δt,±δt+∆}.

δt
∆

50:50 R:T

−δt

δt
∆

50:50 R:T

−(δt−∆)

δt
∆

50:50 R:T

−(δt+∆)

δt
∆

50:50 R:T

−δt

∆t = −δt−∆

∆t = −δt

∆t = −δt+∆

δt
∆

50:50 R:T

δt

δt
∆

50:50 R:T

δt−∆

δt
∆

50:50 R:T

δt+∆

δt
∆

50:50 R:T

δt

∆t = δt−∆

∆t = δt

∆t = δt+∆

frequency : 2RT

frequency : R2

frequency : T 2

frequency : 2RT

frequency : R2

frequency : T 2

Figure 4.5: Two consecutive single-photons separated by δt passing through a ∆-unbalanced

Mach-Zehnder interferometer. 8 outcome distributions, occurring with a given relative fre-

quency, lead to a coincidence signal between events separated in time by ∆t. The relative delay

∆t is positive if a detector in the upper output fires first, and it is negative in the opposite case.

We note that these two simple rules describe different interesting histograms relevant in the

literature. For instance, by simply identifying the involved parameters, one can find histograms

of g(2)(∆t) measurements of arbitrary |n〉 Fock states by considering n single-photons occupying
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the same time-bin, resulting in distributions agreeing with g(2)(0)=1−1/n, or the well known

5-peak structures in two-photon interference experiments involving pairs of photons separated

by ∆τe < 12.5 ns repeated every 12.5 ns.

Now, the experiment described in the main text is the particular case of an infinitely long

stream of single-photons separated by a fixed δt=12.5 ns, and passing through an unbalanced

interferometer with ∆=∆τe. Under this consideration, and following rule 1 and rule 2, we

derive the distribution of areas A∆t, given by: Ak=N , A−∆τe=N(1−R2), A∆τe=N(1−T 2), and

A0=N ((R2 + T 2)− 2RT V ), with k= ± 12.5 ns,±25 ns, ..., excluding peaks at ±∆τe, and N

an integration constant. The visibility term V in A0 appears from noticing (in virtue of rule 1

and rule 2 ) that the area at ∆t=0 for fully-distinguishable photons is AV=0
0 =N(R2 + T 2),

and then one simply uses the well-known relation V=
(
1−A0/A

V=0
0

)
(R2+T 2) / (2RT ), with

A0 relating the coincidence rate at zero delay of photons with non-zero V indistinguishability.

4.5.2 Visibility power-dependence

Following the main text, the interference visibility V of two photons separated in time by ∆τe ex-

hibits a linear-dependence in the pump power P . For a given ∆τe, we measure V at various val-

ues of P , up to three saturation powers P=3P0, and fit the data to V=V max
∆τe

+m∆τeP . Figure 4.6

shows the power-dependence of V for ∆τe=12.5 ns, ∆τe=50 ns, and ∆τe=400 ns. The fitted pa-

rameters are V max
12.5ns=(70.3±0.3)%, m12.5ns=−(6.1±0.2)% at short timescales; V max

50ns =(65.0±0.3)%,

m50ns=−(4.4±0.2)% at moderate timescales; and V max
400ns=(60.8±0.3)%, m400ns=−(3.6±0.2)% at

the longest timescales explored in this work.

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0.50

0.60

0.70

P�P0

V

12.5 ns
50 ns
400 ns

classical limit

Figure 4.6: Power-dependence of V for ∆τe=12.5 ns (orange), ∆τe=50 ns (purple), and

∆τe=400 ns (brown). Curves are fits to V=V max
∆τe

+m∆τeP . V is above 50% (the classical

limit) at all powers and timescales here explored.
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4.5.3 Visibilities of temporally-distant photons

The interference visibility of two photons from two sources a and b reads [37]:

V =

(
γaγb
γa + γb

)
(γa + γb + γ∗a + γ∗b )

[(γa + γb + γ∗a + γ∗b )/2]2 + δω2
, (4.3)

where the γi are the radiative rates, γ∗i the pure dephasing rates, and δω the frequency detuning

between the two sources. If the interfering photons are emitted by the same quantum dot, we

assume that γa=γb=γ and γ∗a=γ
∗
b=γ

∗ are constant, but only the frequency ω=ω0 + δω(t) varies

over time (i.e. spectral wandering) around a central value ω0. This model makes sense here as

the timescale over which ω varies is much larger than the radiative lifetime. Then Eq. (4.3)

reduces to:

V =

〈
V (0)

1 + δω2
r

〉
, (4.4)

where we have used V (0)=γ/(γ+γ∗) the ”intrinsic” degree of indistinguishability, and δωr=δω/(γ+

γ∗) the ratio between the frequency detuning and the spectral linewidth γ + γ∗.

One can define a time correlation function for the frequency fluctuations as

F (∆τe) =< δω(t)δω(t+ ∆τe) >=< δω2 > f(∆τe), (4.5)

then, the frequency difference as a function of the delay ∆τe can be expressed as

< δω2(∆τe) > = < (δω(t+ ∆τe)− δω(t))2 >

= 2 < δω2 > (1− f(∆τe)). (4.6)

A common assumption is to assume an exponential correlation function

f(∆τe) = e−∆τe/τc , (4.7)

with τc a characteristic wandering timescale. Which is expected for a Markovian dynamics of

the environnement. An additional input which is required is the distribution for δω. Generally

one assumes a Gaussian distribution, but for simplicity, and without loss of generality, we take

a two-value distribution δω = ±
√
< δω2 >, so that:

V (∆τe) =

〈
V (0)

1 + δω2
r(∆τe)

〉

=
V (0)

1 + 〈δω2
r(∆τe)〉

=
V (0)

1 + 2δω2
r (1− e−∆τe/τc)

(4.8)
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4.5.4 Extraction of visibility under resonant excitation

Here we describe the methods to extract the raw and corrected two-photon interference vis-

ibilities under strictly-resonant excitation and π-pulse preparation, see Fig. 4.7. Figure 4.7a

shows the interference histogram of two photons separated by ∆τe=12.2 ns, from which a visi-

bility is extracted via V= (R2 + T 2−A0/A) / (2RT ), where A0 is the area of the peak around

∆t=0, and A is taken as the average area of 14 adjacent peaks (excluding the peak at ∆τe).

These areas are taken as the integrated counts within a temporal window of 2 ns (considerably

longer than the subnanosecond lifetimes) around ∆t=k × 12.2 ns, with k=0, 2, 3, ..., 15, see

Fig. 4.7b. The resulting integrated areas are shown in Fig. 4.7c, from which we extract a raw

V π
12.2ns=(89.0± 1.5)%.

(a) (b)

(c) (d)

Figure 4.7: Method to extract the raw and corrected interference visibilities. a) Interference his-

togram of two photons separated by ∆τe=12.2 ns. b) Subset of data involved in the evaluation

of V . c) Integrated counts from data in b). d) Measured background in between peaks.

As described in the main text, the remaining non-vanishing area at ∆t=0 is indeed quite

small and it is on the order of experimental noise. We take into account this noise by in-

tegrating coincidence counts within a 2 ns window but now located in between peaks, that

is at ∆t=(m + 1/2) × 12.2 ns, with m=1, 2, ..., 14, see Fig.4.7d. After subtracting the aver-

age of these background counts to the areas in Fig.4.7c, we obtained the corrected visibility

V π
12.2ns=(95.0±1.0)%. These same methods were employed for all measurements under strictly-

resonant excitation. Figure 4.8 shows both raw and corrected visibilities for two devices (De-

vice 2 and 3) extracted with this method.

Measurements under quasi-resonant excitation, as described in the main text, exhibit a

noise level < 1%, and therefore no noise-correction was employed.
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Figure 4.8: Indistinguishability vs temporal distance. Blue squares are corrected indistinguisha-

bilities taken with Device 2, and red stars are the corrected values taken with Device 3. Black

squares are raw values from Device 2, and gray stars are raw values from Device 3.
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Boson Sampling with single-photon Fock states

from a bright solid-state source
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A BosonSampling device is a quantum machine expected to perform tasks intractable

for a classical computer, yet requiring minimal non-classical resources as compared to full-scale

quantum computers. Photonic implementations to date employed sources based on inefficient

processes that only simulate heralded single-photon statistics when strongly reducing emission

probabilities. BosonSampling with only single-photon input has thus never been realised.

Here, we report on a BosonSampling device operated with a bright solid-state source of

highly-pure single-photon Fock states: the emission from an efficient and deterministic quantum

dot-micropillar system is demultiplexed into three partially-indistinguishable single-photons,

with purity 1−g(2)(0) of 0.990±0.001, interfering in a 6×6 linear optics network. Our demulti-

plexed source is between one and two orders-of-magnitude more efficient than current heralded

multi-photon sources based on spontaneous parametric downconversion, allowing us to com-

plete the BosonSampling experiment faster than previous equivalent implementations. This

intrinsic source superiority places BosonSampling with larger photon numbers within near

reach.

80



5.1. Introduction

5.1 Introduction

A
core tenet of computer science is the Extended Church-Turing thesis, which states that

all computational problems that are efficiently solvable by physically realistic machines

are efficiently simulatable with classical resources. In 2011 Aaronson and Arkhipov introduced

BosonSampling, a quantum protocol for efficiently sampling the output of a multimode

bosonic interferometer [1, 2, 3, 4, 5]: a problem apparently intractable with classical compu-

tation. When scaled to many bosons this model of intermediate—i.e. non-universal—quantum

computation will provide the strongest evidence against the Extended Church-Turing thesis.

The most experimentally accessible boson is the photon: to date full BosonSampling

protocols have been performed using up to 4 photons [6, 7, 8, 9, 10], and protocol validations

with up to 6 photons [11]. These initial assays are well short of the numbers of single photons

required to probe the Extended Church-Turing thesis: scalable photonic technology is required.

The three core technologies needed for scalable quantum photonics are: single-photon sources

[12, 13, 14, 15, 16]; large interferometric networks, with current integrated and programmable

technology [17, 18, 19, 11]; and efficient photon detection, with demonstrated number resolu-

tion [20, 21], and efficiencies of up to 95% [22].

To date, BosonSampling implementations employed photons obtained from spontaneous

parametric downconversion, which output is far from ideal single-photon Fock states, |ψ〉=|1〉,
instead producing primarily vacuum with a small admixture of pairs of photons:

|ψ〉=
√

1−|λ|2
∞∑

n=0

λn|nn〉, (5.1)

where |λ|�1. A non-heralded 2n-photon source can be built by using n downconverters, but

it can only be used in specific protocols where the impact of higher photon-numbers is min-

imised [23]; alternatively, it can be operated as a heralded n-photon source by detecting n

photons—one from each downconverter—to herald the presence of their n single-photon part-

ners. Multi-photon rates for state-of-the-art pulsed downconversion sources [24, 25, 26, 27],

pumped at a standard 80 MHz repetition rate, range from ∼300 kHz for 2 photons—thus,

yielding heralded single-photons at that rate—down to ∼3 mHz for 8 photons—accordingly, 4

heralded single-photons at that rate. For as little as 6 heralded single-photons, the rate (∼1

per year) becomes less than the detection rate of gravitational waves [28].

Recent progress with time-multiplexing schemes [29] can potentially increase these heralded

multi-photon rates in future experiments. Using downconversion to manipulate many single-

photons remains, however, challenging to date, which has prevented the scaling of BosonSam-

pling to larger photon numbers. In an effort to lessen this hurdle, an extended version of the

protocol—named randomized [4], or “Scattershot” [10], BosonSampling—exploits heralding

as a mean to increase, by a binomial factor, the number of valid inputs to the protocol: Boson-

Sampling then becomes scalable with probabilistic, but heralded, downconversion sources.

Quantum-dots in photonic structures [30, 31, 32, 33, 34] have been recently shown to produce
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5.2. Source of multiple single-photon Fock states

long streams of indistinguishable single-photons with large emission yields [35, 36]. Efficient

temporal-to-spatial demultiplexing of these sources will enable multi-photon experiments at

scales heretofore impossible. Here we implement a BosonSampling device operated with a

bright demultiplexed source of three highly-pure single-photon Fock states from the emission

of a deterministic quantum dot-micropillar system [31]. The high source brightness allows us

to implement multi-photon sources markedly more efficient than their downconversion counter-

parts, completing the BosonSampling protocol faster than in previous implementations. Our

results prove solid-state sources an appealing candidate to constitute the basis for future quan-

tum photonics, in particular for the implementation of BosonSampling with larger photon

numbers.

5.2 Source of multiple single-photon Fock states

Laser pulses with a repetition rate of RL=80 MHz and wavelength centred at 905 nm provide

quasi-resonant excitation of an InGaAs quantum-dot deterministically coupled to a micropillar

cavity, which itself is housed in an optically accessable cryostat (Cryo) system at 13 K. See

refs. [31, 35] for a detailed description of this quantum dot-micropillar system. An optimised

collection efficiency results in a record probability per pump-pulse of finding an spectrally-

isolated single-photon at the output of a single-mode fiber—an absolute brightness—of up to

η0=0.14. As a result, our core source generates up to ∼11 MHz of single-photons, modulo detec-

tor efficiencies, from which 3.6 MHz are detected with an avalanche photodiode (APD) of 32%

quantum efficiency [35]. The absolute brightness depends on the laser pump power P according

to η=η0

(
1−e−P/P0

)
, with P0=150 µW the saturation power. Under quasi-resonant excitation,

single-photon sources based on non-gated quantum dots are subject to small and random fre-

quency jitter—known as spectral diffusion—due to charges near the solid-state emitter [37, 38].

This results in the emission of photons with partial indistinguishability, which in our case is

around 50–70% depending on the exact pump conditions [35]. We choose to operate our source

at P=1.2P0, at which point it exhibits a single-photon purity 1−g(2)(0) of 0.990±0.001, where

g(2)(0)=0 holds for an ideal |n〉=|1〉 Fock state. Our source remains highly pure even at high

pump powers, with a purity of 0.976 ± 0.001 at 3P0, see Appendix. Temporal to spatial de-

multiplexing of the source could be achieved with an active, temporally-varying, switcher, such

that each of n consecutive single-photons is routed into a different spatial channel, resulting

in a scalable method to demultiplex n events from a 1-photon source into one event of an

n-photon source. A simpler alternative is to implement a passive demultiplexer as depicted in

Fig. 5.1(a). Here, photon routing occurs by using an array of n−1 chained beamsplitters with

tuned transmittances as to evenly distribute, with probability 1/n, each single-photon into one

of n possible outputs. The high absolute brightness in our core source allows us to readily

operate 2-, 3-, and 4-photon sources with this method. Figures 5.1(b)-(d) show the detected,

and generated—corrected for detector efficiencies—count-rates of our demultiplexed n-photon

source: n single-photons in the same temporal mode at the output of n single-mode fibres.
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Figure 5.1: Experimental setup. (a) A dichroic mirror (DM), and a 0.85 nm FWHM band-pass

filter (BP) isolate single-photon emission at 932 nm from the 905 nm excitation laser, which

is then collected by a single-mode fibre (SMF). A passive demultiplexer composed of beam-

splitters with tunable transmittances—half-wave plates (HWP), and polarising beam-splitters

(PBS)—and compensating delay lines of 12.5 ns probabilistically converts three consecutive

single photons into separate spatial modes at the input of the BosonSampling circuit. The

6×6 linear network is composed of polarisers (Pol), half-wave plates, a 3×3 non-polarising fibre

beam-splitter (FBS), and polarising fibre beam-splitters (PFBS). Six APDs are used to record

two- and three-fold correlation measurements to sample from the output distribution of the

BosonSampling device. (b)-(d) Detected and generated n-photon rates obtained directly

from the demultiplexed source. The generated rates include a factor of (1/0.3)n to describe our

source modulo detector efficiencies (30% in average for the used APDs). The 4-photon count-

rates are obtained from the demultiplexer in (a) with an extra tunable beam-splitter. Curves

are fits to c
(n)
max(1−e−P/P0)n, with c

(2)
max=186.4 kHz, c

(3)
max=2202 Hz, and c

(4)
max=8.8 Hz, denoting

maximum n-photon generated rates.

To estimate the efficiency of our source, we define the n-photon probability per trial

p
(n)
pt =c(n)

gen/Rtrial, (5.2)

the probability of generating a spectrally-isolated n-photon event, at the output of n single-

mode fibres, per experimental attempt. Here, c
(n)
gen is the n-photon generated rate, and Rtrial

is the “trial” rate. This allows us to compare multi-photon sources from different systems

based solely on their efficiency, irrespective of external parameters, such as detector efficiencies,

and pump rates. For an explicit comparison, we compute p
(n)
pt for various partially heralded

3-photon sources used in previous BosonSampling experiments, see Fig. 5.2. Our solid-state

based 3-photon source is superior to its downconversion counterparts by one to two orders-

of-magnitude, see Appendix for details on this comparison. Note that this is achieved using

a non-scalable—scaling as 1/nn—probabilistic demultiplexer. We thus expect our n-photon

efficiency to increase super-exponentially (∝ nn) with an active demultiplexer.
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Figure 5.2: Multi-photon source efficiency. n-photon probability per trial, p
(n)
pt , for our 2-,

3-, and 4-photon source taken at 1.2P0 (solid circles), and at 3P0 (dashed circles). The p
(n)
pt

is estimated for various downconversion 3-photon sources (grey circles) employed in previous

BosonSampling experiments. Our 3-photon source is between one to two orders of magnitude

more efficient than the downconversion cases. Note that only partial heralding was employed in

all downconversion implementations. A fully heralded n-photon source, a necessary condition

to produce true single-photon Fock state statistics with downconversion, is thus further orders-

of-magnitude less efficient than our sources.

5.3 BosonSampling with solid-state photon sources

Using this method, 2 and 3 partially-indistinguishable single-photons are used as inputs into

the BosonSampling 6×6 linear network L, consisting of 3 spatial- and 2 polarisation-encoded

modes, see Fig. 5.1(a). The relative temporal delay between photons is fine-tuned as to erase

their temporal distinguishability, and the use of polarising fibre beam-splitters ensures that

they are indistinguishable in polarisation.

We first input N=2 single-photons, and characterise the M=6-mode L network—in general

a non-unitary transfer matrix due to inevitable optical losses—using the method described in

ref. [39], see Appendix. Following the theoretical model developed in ref. [40], 2 photons with

a degree of indistinguishability quantified by I, entering L in inputs {i, j} and exiting from

outputs {k1, k2} lead to a 2-fold coincidence probability:

p(2) =

(
1 + I

2

) ∣∣per(L)
∣∣2 +

(
1− I

2

) ∣∣det(L)
∣∣2 , (5.3)

given by the permanent (per) and determinant (det) of the submatrix L formed with rows i, j

and columns k1, k2 of L. Note that Eq. (5.3) reduces to the well-known formula p(2)=
∣∣per(L)

∣∣2

in the ideal case of perfect indistinguishability, i.e. I=1.

We measured all
(
M
N

)
=15 outputs in which photons exit L in different modes, so-called

no-collision events. Peak areas in temporal-correlation measurements at these outputs allow

us to extract—in a single experimental run—both the sampling distribution resulting from

the Boson Sampler—that is, with partially-indistinguishable photons—and that of a (classi-
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5.3. BosonSampling with solid-state photon sources

cal) distinguishable sampler arising from completely distinguishable particles. Given an output

configuration k, coincidences detected under the area A0
k around zero delay ∆t=0 are sub-

ject to two-photon interference: they determine the Boson Sampler distribution by measuring

p
(2)
k =A0

k. Conversely, photons leading to coincidences around ∆t= ± l×(12.5 ns), for l inte-

.  .  . .  .  . .  .  . .  .  . .  .  . .  .  .

a

b

(a)

(b)

I1,2 = 0.520 I1,3 = 0.643I2,3 = 0.540

Figure 5.3: Two-photon BosonSampling. (a) Temporal-correlation measurements at no-

collision outputs for 2 photons entering at different inputs. Coincidences around ∆t=0 (blue

peaks) result from two-photon interference and are thus governed by Eq. (5.3). The position of

reduced areas (orange peaks) indicates the temporal distance in emission from the quantum-dot:

For inputs {1, 2}, and {2, 3}, photons were emitted after one laser repetition rate 1/RL=12.5 ns,

thus reduced areas appear at ±1/RL; similarly, appearing at ±25 ns for {1, 3}, with photons

emitted separated by 2 laser repetition rates. Coincidences outside ∆t=0 (orange peaks and

grey peaks) involve non-interfering photons, thus contain only classical information. (b) Coinci-

dences at zero delay from the 15 no-collision outputs give the distribution of the Boson Sampler

(blue bars), with theoretical distributions (empty bars) given by I1,2=0.520, I2,3=0.540, and

I1,3=0.643, for their respective input; whereas coincidences outside zero delay determine that

of the distinguishable sampler (red bars), with theoretical distribution (empty bars) obtained

by assuming zero indistinguishability in Eq. (5.3). Note that strong output configurations in

the classical sampler tend to have a larger reduction when observed in the Boson Sampler. A

complete sampled distribution is obtained with 10 minutes integration time; and, in average,

a total of ∼ 40000 2-fold events are collected for any given distribution. Error bars (small

light-coloured bars) are deduced from assuming poissonian statistics in detected events.

ger, do not interfere, and one would expect that these distributions contain information of a

classical sampler. Indeed, following ref. [35], one can deduce that the distinguishable sampler

distribution is measured via p
(2)
k (0)=2Ark−Ank−Apk, where Ark is a reference area (average in grey

peaks), Ank is the reduced area at negative ∆t (left orange peak), and Apk is the reduced area
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5.3. BosonSampling with solid-state photon sources

at positive ∆t (right orange peak) as shown in Fig. 5.3(a). Measuring only no-collision events,

however, does not provide access to the entire output distribution, thus to obtain probabilities

we normalise the measured distributions to the corresponding theoretical prediction according

to Eq. (5.3)—that is, the sum of experimentally obtained probabilities within the no-collision

subspace is matched to that as in theory; and, given a 2-photon input {i, j}, Ii,j is extracted

from the measured output distribution, see Appendix.

Figure 5.3(b) shows our 2-photon BosonSampling results. Experimental distributions

for the Boson Sampler (blue bars) are shown for 3 different 2-photon inputs, and their theo-

retical distributions (empty bars) are obtained with pair-wise indistinguishabilities I1,2=0.520,

I2,3=0.540, and I1,3=0.643, respectively; in agreement with independently measured indistin-

guishabilities via two-photon interference on a 2 × 2 beamsplitter, see Appendix. For the dis-

tinguishable sampler (red bars), the theoretical distribution (empty bars) is calculated by using

Ii,j=0, ∀i, j in Eq. (5.3). To quantify the agreement between theory and experiment, we employ

the statistical fidelity F=
∑

i

√
pthi p

exp
i between normalised theoretical and experimental distri-

butions. For our 2-photon BosonSampling, we find an average fidelity of F=0.9984±0.0007

across the six sampled distributions in Fig. 5.3(b), where the error here is one standard deviation

among the six fidelity values.

We now tune the source to input N=3 single-photons into the {1, 2, 3} mode. In this case,

the probability of detecting a 3-fold coincidence at outputs of L is [40]:

p(3) = t†6

(
I +

∑

i 6=j

ρi,jIi,j + ρ̃
∏

i 6=j

√
Ii,j
)
t6, (5.4)

with I, the 6×6 identity operator; t6, a 6-component quantity that depends on the permanent,

determinant, and immanants of 3× 3 submatrices T ; and the ρi,j, and ρ̃ matrices as explicitly

defined in the Appendix. Eq. (5.4) reduces to p(3)= |per(T )|2 in the ideal case of perfect

indistinguishability between all particles, i.e. Ii,j=1, ∀i, j.
Verifying the output distribution of a BosonSampling device involves calculating a num-

ber of (modulus squared) matrix permanents. This task is in general computationally hard to

implement efficiently on a classical computer. The complete result of a large-scale BosonSam-

pling machine is thus likely to be, even in principal, unverifiable. It has been even argued that

a large-scale BosonSampling experiment will fail to distinguish its data from the (trivial)

uniform distribution—i.e., one in which every output configuration is equally probable [41].

In light of this, some methods have been proposed and demonstrated for the validation of

BosonSampling: circumstantial evidence is provided to support that a BosonSampling

machine is indeed functioning according to the laws of quantum mechanics, by ruling out that

the experimentally obtained data originates from, e.g., the uniform distribution, or a sampler

with distinguishable particles [42, 43, 44, 11].

Figure 5.4 shows our experimental results for the 3-photon Boson Sampler. In Fig. 5.4(a),

the previously determined 2-photon indistinguishabilities Ii,j are used as input for the theoreti-

cal distribution (empty bars) according to Eq. (5.4), and experimental probabilities (blue bars)
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.  .  . .  .  .
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Figure 5.4: Three-photon BosonSampling. (a) A total of 20 no-collision 3-fold simultaneous

coincidences are recorded to obtain the Boson Sampler distribution (blue bars); the theoretical

distribution (empty bars) is obtained from Eq. (5.4) and by using the previously determined

pair-wise indistinguishability parameters. Error bars (light-coloured bars) are deduced from

poissonian statistics in measured events. We apply the validation of BosonSampling protocol

against the uniform sampler (b), and distinguishable sampler (c). A counter (blue dots) is

updated for every 3-fold event and at any point a positive value validates the data as being

obtained from a Boson Sampler as opposed to either a uniform or distinguishable sampler, see

Appendix. The final data set contains a total of 6725 3-fold events collected in 9 hours, that is

∼1000 per 80 minutes; a faster rate than in previous BosonSampling experiments.

are obtained by measuring the
(
M
N

)
=20 3-fold simultaneous—i.e. around ∆t=0—coincidences

for no-collision events normalised to the theoretical prediction. We find the 3-photon Boson-

Sampling fidelity F=0.997±0.006, where the error here results from propagated poissonian

statistics. In Figs. 5.4(b),(c), we apply the validation of BosonSampling protocol to our

data. We record 3-fold coincidences in steps of 30 seconds, in which time a counter is up-

dated. For each detected 3-fold coincidence, the counter is either increased or decreased in

one unit, and it is designed, see Appendix, such that after an experimental run a positive

value validates the data as obtained from the Boson Sampler distribution, whereas a negative

counter indicates it originates from the uniform sampler, see Fig. 5.4(b), or the distinguishable

sampler, see Fig. 5.4(c). We observed overall increasing positive counters, thus validating our

BosonSampling device by ruling out the alternative hypotheses.

5.4 Discussion

We experimentally demonstrated multi-photon interference with a highly-efficient solid-state

source: a BosonSampling device implemented with single-photon Fock states emitted by a

deterministic quantum dot-micropillar system. A temporal to spatial demultiplexing scheme re-

sulted in multi-photon sources between one to two orders-of-magnitude more efficient than their

downconversion versions, which allowed us to complete the BosonSampling protocol faster

than in previous experiments [6, 7, 8, 9]. An active source demultiplexing would further boost

our multi-photon efficiency super-exponentially—with the number of photons—potentially en-

abling BosonSampling with larger photon numbers.
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Furthermore, we directly observed the effect of partial distinguishability: Our results follow

closely the sampling of permanents and immanants of matrices with contributions modulated

by photon indistinguishability. Moreover, by exploiting temporal-correlation measurements we

showed that both classical and quantum 2-photon sampling distributions can be obtained simul-

taneously, which can be readily extended to multi-fold temporal-dependent measurements in a

larger BosonSampling experiment. Potentially, this could motivate new validation protocols

exploiting statistics that include this temporal degree of freedom.

The impact of partial distinguishability in BosonSampling has been studied theoreti-

cally [45, 46, 40, 47], and reported experimentally [40]. However, identifying experimentally

this property in isolation is challenging. Previous experiments with downconversion exhibit

photon-statistics polluted by higher-order terms [23], which can be mistakenly interpreted as

decreased photon-indistinguishability. In fact, in many cases these higher-order terms, and not

photon distinguishability, are the main cause of performance degradation in downconversion-

based protocols [48, 49]. The pathway to maximise indistinguishability in efficient solid-state

sources is well known: resonant excitation of the quantum-dot results in near-optimal values

of photon indistinguishability [33, 34], in which case the obtained output distributions will be

close to the sampling of only permanents—functions belonging to the #P complexity class, in

which the main complexity arguments of BosonSampling apply.

We believe our results pave the way to the forthcoming advent of quantum-dot based quan-

tum photonics, in which a future BosonSampling implementation with efficiently demulti-

plexed and resonantly-pumped solid-state sources may finally see the Extended Church-Turing

thesis put to serious test.
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5.5 Appendix

5.5.1 Single-photon purity

Figure 5.5 shows the single-photon purity of our source from autocorrelation measurements at

1.2, and 3 times the saturation power P0.

(a)
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∆t(ns)
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)
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Figure 5.5: Second-order autocorrelation function g(2)(∆t) (log scale). A Hanbury Brown and

Twiss experiment results in coincidences every 1/RL=12.5 ns. Decreased detected events—

antibunching—at ∆t=0 indicates non-classical states of light, where an ideal single-photon

Fock state exhibits g(2)(0)=0. We measure (a) g(2)(0)=0.010 ± 0.001 at P=1.2P0, and (b)

g(2)(0)=0.024± 0.001 at P=3P0, resulting in single-photon purities 1−g(2)(0) of 0.990± 0.001

and 0.976± 0.001, respectively.

5.5.2 n-photon probability per trial

In the main text, the n-photon probability per trial, p
(n)
pt , is defined as the probability of generat-

ing a spectrally-isolated n-photon event, at the output of n single-mode fibres, per experimental

attempt. Here, we expand on this concept, and elaborate on what we consider as a “trial”, or

“experimental attempt”.

First, a relevant concept of n-photon efficiency is that taken at a point in which the source is

readily useful, for which reason we consider n-photon events after all spectral filtering needed to

perform the experiment; at the output of single-mode fibres as to straightforwardly interconnect

it with a given protocol setup; and only the probability of generating the event—corrected

for detector efficiencies—is considered to be insensitive to different detector performances at

different operating wavelengths.

Secondly, different sources—either from the same, or from different systems—involve distinct

experimental attempts to generate them. For instance, a 3-photon source can be obtained from:

1) A second-order downconversion event generated from 1 single laser pulse, this generates two

pairs of photons, one of which is used to partially herald the source.

2) First-order downconversion events from 2 laser pulses in a double-pass pump configuration,

which generates one pair in the forward direction, one pair in the backward direction, and one

of the four photons is used to partially herald the source.
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Ref. c
(3)
det (Hz) ηd Rtrial(Hz) p

(3)
pt

This Work (3P0) 51 (0.3)3 2.7×107 7.1×10−5

This Work (1.2P0) 20 (0.3)3 2.7×107 2.8×10−5

[40] 91 (0.6)4 8×107 8.7×10−6

[8] 39 (0.6)4 8×107 3.7×10−6

[25] 20 (0.6)4 8×107 1.9×10−6

[43] 20 (0.6)4 8×107 1.9×10−6

[10] 9 (0.6)4 8×107 8.4×10−7

[6] 6 (0.6)4 8×107 5.8×10−7

Table 5.1: 3-photon source efficiency. Parameters used in estimating p
(3)
pt . For our work,

we measured an average detector efficiency of 0.3, and three detectors were used. For the

other references, we assumed a detector efficiency of 0.6, the expected value at downconversion

wavelengths, and four detectors (three plus heralding) were used.

3) Consecutive single-photon emission from a quantum dot generated after 3 laser pulses, as it

is the case in our experiment.

In the above examples, distinct approaches will lead to a different amount of attempts per

unit of time to generate a 3-photon event. Assuming a pulsed laser with a standard 80 MHz

repetition rate: For 1), we attempt to produce the source 8×107 times a second. For 2),

although twice the number of pulses per second are sent into a non-linear crystal, we still

attempt 8×107 times a second to generate the source. In 3), one needs 3 pulses to generate the

state, thus the number of attempts per second is reduced to ∼ 2.7×107.

Taken this into account, we can calculate p
(n)
pt :

p
(n)
pt =

c
(n)
gen

Rtrial

=
c

(n)
det

ηdRtrial

, (5.5)

where c
(n)
det (c

(n)
gen) is the detected (generated) n-photon rate; nd is the total efficiency account-

ing for all detectors employed, e.g., a non-heralded downconversion n-photon source uses n

detectors, whereas a fully heralded one uses 2n; and Rtrial is the rate of trials.

Table 5.1 summarizes the specific values employed to calculate the 3-photon p
(3)
pt , which

was used in the comparison between our source and those used in previous BosonSampling

experiments with downconversion. The detected rates c
(3)
det used in refs. [40, 8] were obtained

via private communication, and rates of 90.5 Hz, and 38.7 Hz were provided. For refs [25, 43],

the 20 Hz 4-photon rates (3-photon plus heralding) were obtained from the manuscripts. For

ref. [10], 35 kHz, and 20 kHz 2-photon rates are reported in the Supplementary Materials, from

where a 4-photon rate (3-photon plus heralding) of 35 kHz ∗ 20 kHz/(80 MHz) = 8.75 Hz is

derived. For ref. [6], a detected 4-photon rate of 1.2 kHz is reported at 100% pump power,

which after spectral filtering of 3 photons (measured filter transmission of 0.5), and 20% pump

power operation, is reduced to a 4-photon rate (3-photon plus heralding) of 6 Hz. The values

reported for our sources are extracted from the power dependent n-photon saturation curves,

and we employed the parameters ηd=(0.3)n, and Rtrial=8×107/n Hz for estimating p
(n)
pt .
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5.5.3 Expected rates

The expected n-photon count-rate is:

c(n)=
(
η0

(
1− e−P/P0

)
ηsetup

)n( 1

n

)n
RL, (5.6)

where η0=0.14 is the measured maximum absolute brightness, η0

(
1− e−P/P0

)
is the absolute

brightness at a given relative pump power P/P0, ηsetup accounts for the experimental setup

transmission and detection efficiencies, the factor (1/n)n is due to the probabilistic nature of

the demultiplexer, and RL is the laser’s repetition rate.

We operate our source at RL=80 MHz. The measured optical transmission of our demul-

tiplexer is ηdemux=0.650, arising from 3 polarizing beam-splitters, 15 AR-coated mirrors, and

single-mode fibre couplers; which together with an average detector efficiency of ηdet=0.30 re-

sults in a setup efficiency of ηsetup=ηdemuxηdet=0.195. At P/P0=3, these parameters predict,

according to Eq. (5.6), detecting count-rates of c(2)=13.5 kHz, c(3)=52 Hz, and c(4)=0.14 Hz, in

good agreement with the actual detected count-rates c
(2)
det=15.1 kHz, c

(3)
det=51 Hz, and a discrep-

ancy to the measured c
(4)
det=0.06 Hz can be attributed to a relatively large measurement error,

see Fig. 5.1 of the main text.

Our BosonSampling setup contains a free-space preparation stage with ηprep=0.723,

an average coupling into single-modes of a 3×3 fibre beam-splitter of ηfc=0.877, transmis-

sion of such fibre beam-splitter of ηfbs=0.678, and an average transmission of polarizing fibre

beam-splitter of ηpfbs=0.767. This results in a combined BosonSampling setup efficiency

of ηBS
setup=ηdemuxηprepηfcηfbsηpfbsηdet=0.064; which at P/P0=1.2, according to Eq. (5.6), predicts

c(3)=0.73 Hz, the total 3-fold count-rate that we would expect with completely distinguishable

particles fed into the BosonSampling experiment. This is consistent with our measured total

3-fold count-rate of 0.21 Hz (6725 3-fold events collected in 9 hours) in an experiment performed

with partially-indistinguishable particles.

5.5.4 Transfer matrix

The linear network is composed by a 3×3 fibre beam-splitter, defining 3 spatial modes; and 3

polarizing fibre beam-splitters, giving access to 2 polarization-encoded modes; which combined

result in a 6×6 network. Stress applied on these fibres before the experiment tunes a network

L to an unknown configuration, which is then characterized with the method introduced in

ref. [39]. This method consists of measuring: the probability |Li,j|2 of a photon entering L in

input i and exiting in output j, and phase factors arg(Li,j) obtained from classical interference

patterns. These measurements allow to reconstruct the complex elements Li,j. For all mea-

surements presented in the main text, inputs 1, 2, and 3 of L are used. The transfer matrix L
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in this subspace is given by:

L=




0.314 0.160 0.251 0.578 0.576 0.188

0.561 −0.157 + 0.151i −0.319 + 0.440i −0.388− 0.033i 0.331− 0.127i −0.120− 0.226i

0.473 0.352 + 0.409i −0.054− 0.025i 0.249− 0.206i −0.559 + 0.112i 0.085− 0.118i


 .

(5.7)

Measurement errors arise primarily from obtaining |Li,j |2, due to power instabilities of the laser light

used for the characterization. The relative errors in these measurements are all <0.01, with an average

value of 0.007.

5.5.5 Pair-wise indistinguishability

In a BosonSampling experiment, the main parameters changing the output distribution are particle

distinguishability—originating from either spectral, spatial, or temporal mismatch—and higher-order

photon terms. The high single-photon purity of our source, as shown in Fig. 5.5, evidences that

higher-order terms have a negligible impact. The major parameter that modulates the output of our

experiment is thus the pair-wise photon indistinguishability Ii,j between photons at inputs {i, j}.
We can obtain an independent estimate of this by comparing experiment to a theoretical model,

where Ii,j is allowed to vary, and then minimize their variation distance d=1/2
∑

k

∣∣∣p(2),exp
k − p(2),th

k

∣∣∣
between experimental and theoretical distributions. As described in the main text, p(2),exp is nor-

malised to
∑

k p
(2),th
k . This being relevant when computing d as distributions for different degrees of

indistinguishability have different normalisation factors. For a given 2-photon input {i, j}, Ii,j is taken

as that at the global minimum in d. We obtain I1,2=0.520, I2,3=0.540, and I1,3=0.643, see Fig. 5.6.

d

I

d

I

d

I

{1, 2}Input: {2, 3}Input: {1, 3}Input:

Figure 5.6: Variation distance d between experimental and theoretical distributions. d is a

global minimum at I1,2=0.520, I2,3=0.540, and I1,3=0.643 for its corresponding 2-photon input.

The variation distances at these points are respectively d1,2=0.019, d2,3=0.037, and d1,3=0.023.

These values are obtained with both experimental and theoretical distributions normalised to

the non-unity theoretical normalisation factor. When the distributions are normalised to unity,

the variation distances are d1,2=0.028, d2,3=0.049, and d1,3=0.055, respectively.

We carried out time-correlated measurements of two-photon interference on a 2×2 beam-splitter to

independently verify these degrees of indistinguishability. It has been shown in ref. [35] that the indis-

tinguishability of two photons emitted by a semiconductor quantum dot depends on their emission tem-

poral distance ∆te. When both photons are emitted with the same polarisation from the quantum dot,

their indistinguishability decreases monotonically in ∆te. In our case we obtain Ibs12.5ns=0.6360±0.0063
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for photons emitted with ∆te=12.5 ns, and Ibs25ns=0.6252±0.0065 for ∆te=25 ns, see Fig. 5.7. Note

that for these measurements photons are emitted with the same polarisation from the quantum dot.

The amount of indistinguishability I1,3=0.643, involving photons emitted with ∆te=25 ns, and

Ibs25ns=0.6252±0.0065 are in good agreement. Both I1,2=0.520, and I2,3=0.540 involve photons emitted

with ∆te=12.5 ns, therefore the minimisation method finds similar values, these however present some

discrepancy with Ibs12.5ns=0.6360±0.0063. The quantum dot presents a small fine structure splitting of

the exciton line, which in turn reduces the indistinguishability of photons emitted from two orthogonal

emissions. Inputs {1, 2}, and {2, 3} in the BosonSampling experiment contain photons separated

by the first polarising beam-splitter in the source demultiplexer (see main text), thus they are emitted

with orthogonal polarisations from the quantum dot and exhibit a reduced value of indistinguishability

compared to photons emitted with the same polarisation, consistent with the obtained values.

∆te=12.5ns ∆te=25ns

∆t (ns) ∆t (ns)

Figure 5.7: Two-photon interference on a 2 × 2 beam-splitter. Temporal-correlation measure-

ments result in a series of peaks from which the degree of indistinguishability can be directly

extracted via I=(R2+T 2−A0/A)/(2RT ), with R=0.471 the beam-splitter reflectance, T=1−R,

A the average peak area outside ∆t=0 (excluding reduced peaks at ∆te), and A0 the peak area

around ∆t=0. See ref. [35] for a derivation of this formula. We obtain Ibs12.5ns=0.6360±0.0063 for

∆te=12.5 ns, and Ibs25ns=0.6252±0.0065 for ∆te=25 ns. Errors are estimated from propagated

poissonian statistics.

5.5.6 Three-photon interference

We employ the theoretical model introduced in ref. [40] to describe the interference of 3 photons,

labeled 1, 2, and 3, scattered across a linear network L. In such case, the probability of detecting a

3-fold coincidence at the output {o1, o2, o3} of L is:

p(3) = t†6

(
I + ρ1,2I1,2 + ρ2,3I2,3 + ρ1,3I1,3 + ρ̃

√
I1,2

√
I2,3

√
I1,3

)
t6; (5.8)
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where

t6 =




1√
6
per(T )

1√
6
det(T )

1
2
√

3
imm(T ) + 1

2
√

3
imm(T213)

1
6 imm(T )− 1

3 imm(T132)− 1
6 imm(T213) + 1

3 imm(T312)
1
6 imm(T ) + 1

3 imm(T132) + 1
6 imm(T213) + 1

3 imm(T312)

− 1
2
√

3
imm(T ) + 1

2
√

3
imm(T213)




, I =




1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1




,

ρ1,2 =




1 0 0 0 0 0

0 −1 0 0 0 0

0 0 1 0 0 0

0 0 0 −1 0 0

0 0 0 0 1 0

0 0 0 0 0 −1




, ρ2,3 =




1 0 0 0 0 0

0 −1 0 0 0 0

0 0 −1
2 −

√
3

2 0 0

0 0 −
√

3
2

1
2 0 0

0 0 0 0 −1
2 −

√
3

2

0 0 0 0 −
√

3
2

1
2




,

ρ1,3 =




1 0 0 0 0 0

0 −1 0 0 0 0

0 0 −1
2

√
3

2 0 0

0 0
√

3
2

1
2 0 0

0 0 0 0 −1
2

√
3

2

0 0 0 0
√

3
2

1
2




, ρ̃ =




2 0 0 0 0 0

0 2 0 0 0 0

0 0 −1 0 0 0

0 0 0 −1 0 0

0 0 0 0 −1 0

0 0 0 0 0 −1




,

I1,2, I2,3, and I1,3 are pair-wise indistinguishability values; T is a 3× 3 submatrix built with rows 1,

2, and 3, and columns o1, o2, and o3 of L; Ta,b,c is the matrix T with rows 1, 2, and 3 rearranged in

order o1, o2, and o3; and the permanent (per), determinant (det), and immanant (imm) of a 3 × 3

matrix are defined as:

per



a b c

d e f

g h i


 = aei+ bfg + cdh+ ceg + bdi+ afh,

det



a b c

d e f

g h i


 = aei+ bfg + cdh− ceg − bdi− afh,

imm



a b c

d e f

g h i


 = 2aei− bfg − cdh.

5.5.7 Validation of BosonSampling

Aaronson and Arkhipov proposed a protocol to test data against the uniform sampler [42], as a

counterargument to the claim [41] that a large-scale BosonSampling implementation would fail to

distinguish the experimental data even from that of the trivial one. The method—used in Fig. 5.4(b)
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in the main text—exploits available information of the sampling device—the transfer matrix L—

to define an estimator Pest=
∏n
i=1

∑n
j=1

∣∣Li,j
∣∣2, with Li,j the n×n submatrix of the m×m transfer

matrix in an experiment involving n bosons in m modes. Unlike the permanent, Pest is efficiently

computable—thus, the protocol is scalable—and yet is correlated with the Boson Sampler probabilities.

For the uniform distribution, the probability of one photon entering L in input i and exiting in output

j is a constant (uniform) value
∣∣Li,j

∣∣2 =1/m across any input/output setting, thus the estimator

takes the form P u
est= (n/m)n. If the sampling device is functioning correctly, one expects to observe

more probable events more often; thus the method simply consists of computing Pest for every event

observed, and keeping track of a counter that is increased in one unit if Pest>P
u
est, and decreased in

one unit otherwise. A resulting positive counter then validates the BosonSampling experiment by

rejecting the hypothesis that the data originates from the uniform sampler. Experimental evidence

supporting that this method works, even with small data samples and experimental imperfections,

was reported in refs. [43, 44].

A different protocol, used in Fig. 5.4(c) in the main text, to test the data against a distinguish-

able sampler was proposed and demonstrated by Spagnolo et. al. [43]. This method, based on the

likelihood ratio test, computes the relative—i.e., normalised to the no-collision space—quantum and

classical probabilities, pQ and pC , for every observed output event; a counter is increased in one unit if

pQ>pC , and decreased in one unit otherwise. At the end of an experimental run a positive counter val-

idates a correct functioning of the BosonSampling machine by rejecting the distinguishable sampler

hypothesis.
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CHAPTER 6

Discussion and Conclusion

P
hotonic quantum technologies [1] rely on the ability of controllably manipulating quanta of

light. In the interplay of a large number of single-photons, the appearance of nonclassical

correlations between the particles’ degrees-of-freedom allows for the implementation of (quan-

tum) protocols and algorithms that are markedly more efficient in performing certain tasks than their

classical counterparts [2]. For instance, for the factorisation of large integers—in particular, semiprime

numbers—it is believed that no efficient classical algorithm exists, the most efficient known algorithm

requiring a sub-exponential time1, whereas a quantum algorithm—Shor’s algorithm [3]—is known to

solve the integer factorisation problem in polynomial time. Moreover, a scalable quantum computer

can in-principle be built entirely using single-photons, detectors, and linear optical networks [4], with

computational power growing exponentially with the number of single-photons being handled. How-

ever, even quantifying to what extent these particles are quantum-mechanically correlated is a hard

problem on its own, as usually an exponentially growing number of measurements are required in

the full reconstruction of multi-photon states [5]. Furthermore, generating a large number of these

single-photons in the first place is an exceedingly difficult task to achieve. The most developed and

foremost used techniques for photon generation work well for producing the smallest numbers, with

probabilities of generating multiple single-photons rapidly vanishing for only a handful of particles. In

this work we tackled these issues and presented experimental progress towards efficient multi-photon

manipulation. Below we summarise the findings contained in this thesis.

Chapter 2 presented the first experimental observation of geometric phases in a system of genuinely

entangled quantum particles: Two single-photons entangled in their polarisation evolve under bi-local

unitaries; as a result, their joint wavefunction picks up a phase factor of geometric and topological

nature that depends on the particles’ degree of entanglement. In the trivial case—with unentan-

gled particles—the system is composed of two separate and non-interacting subsystems, thus it is no

surprising that the total geometric phase is simply the sum of geometric phases acquired by each sub-

system alone. A more interesting behaviour occurs when the particles exhibit non-zero entanglement:

A non-vanishing total geometric phase appears even for evolutions that result in zero geometric phases

of each reduced subsystem. These entanglement-induced geometric phases are not determined by tra-

jectories on local parameter spaces of the particles’ polarisation states, but instead they are related to

curves on a correlation space—the Schmidt sphere—spanned by the parameters of the state’s Schmidt

decomposition. It is this kind of geometric phase that vanishes only for unentangled particles, and its

value increases monotonically with entanglement measures, such as concurrence [6]. A new quantity

that can measure quantum entanglement without full state reconstruction is then found.

1The running time of the algorithm grows slower than exponential but faster than polynomial with respect
to the size of the number.
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A system of three single-photons is then employed in Chapter 3. A three-qubit state, encoded in

the photons’ polarisation, evolves via non-local entangling unitaries implemented with linear optics.

Under an appropriate mapping [7], simple and physical operations on the tripartite system mim-

ics implementing the complex conjugation—an unphysical transformation—on a simulated state of

two qubits undergoing an entangling dynamics. This allowed to obtain the bipartite concurrence—a

quantity that involves complex conjugation of states—by simply measuring two observables in the

simulator three-qubit state. This proof-of-principle experiment was the first demonstration of an

architecture-independent protocol for reducing the overhead in measuring entanglement.

The measured two-photon countrates for the experiment in Chapter 2 was about ∼ 2 kHz, whereas

for Chapter 3 the three-photon (plus a fourth trigger) countrate was in the order of ∼ 1 Hz (at low

pump powers as to increase the quality of the results). This drastic decrease, due to the probabilistic

and inefficient nature of parametric downconversion, lead us to turn our attention into solid-state

emitters with inherent superior photon-emission efficiencies. The state-of-the-art for solid-state based

photon sources presented large emission yields at the first collection lens, up to several tens of mega-

hertz; however, available photon rates remained very low in practice, and a mismatch of several

orders-of-magnitude between rates at the first lens and rates available in practice was common in the

literature. In Chapter 4, we implemented the first single-photon source producing large emission yields

at the output of a single-mode fibre, a point in which all photons can be directly used in further exper-

iments. We also found that the photons produced by this source remained mutually indistinguishable

even when emitted distant in time. This property is in direct contrast to downconversion sources,

where photons emitted by independent laser pulses typically exhibit a markedly reduced photon indis-

tinguishability. Demultiplexing the stream of high-yield and highly-indistinguishable single-photons

offered the possibility of producing multi-photon states with higher countrates than downconversion.

In Chapter 5 we implemented a simple demultiplexing scheme to convert three consecutive single-

photons—distributed in different temporal modes but sharing the same spatial mode—into three pho-

tons distributed in different spatial modes occurring simultaneously: a three-photon source. Thanks

to the high brightness of our source, we implemented a BosonSampling device run with a source

between one and two orders-of-magnitude more efficient than previous downconversion sources. This

represented the first BosonSampling device that used only single-photon Fock states at its input;

previous experiments would have required independent heralding of each input photon to do so, a task

that is virtually impossible with downconversion due to the extremely low countrates that it would

generate.

Throughout this thesis, we have thus reported experimental advances towards more efficient multi-

photon manipulation, effectively overcoming hurdles inherent to downconversion, and finalising by re-

porting the first multi-photon experiment realised with a solid-state based source. Hence, to conclude,

for all the above mentioned: Enabling multi-photon experiments with solid-state emitters in this my

personal farewell to downconversion.
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