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Abstract  

Cutaneous melanomas arise through causal pathways involving interplay between 

exposure to ultraviolet radiation and host factors, resulting in characteristic patterns of 

driver mutations in BRAF, NRAS and other genes. To gain clearer insights into the 

factors contributing to somatic mutation genotypes in melanoma, we collected clinical and 

epidemiologic data, performed skin examinations, and collected saliva and tumor 

samples from a community-based series of 414 patients aged 18 to 79, newly diagnosed 

with cutaneous melanoma. We assessed constitutional DNA for 9 common 

polymorphisms in MC1R. Tumor DNA was assessed for somatic mutations in 25 different 

genes. We observed mutually exclusive mutations in BRAFV600E (26%), BRAFV600K (8%), 

BRAFother (5%), and NRAS (9%). Compared to patients with BRAF wild-type melanomas, 

those with BRAFV600E mutants were significantly younger, had more nevi, fewer actinic 

keratoses, were more likely to report a family history of melanoma and their tumors were 

more likely to harbor neval remnants; BRAFV600K mutations were also associated with 

high nevus counts. Both BRAFV600K and NRAS mutants were associated with older age 

but not with high sun exposure. We also found no association between MC1R status and 

any somatic mutations in this community sample of cutaneous melanomas, contrary to 

earlier reports.  

 

WORD COUNT: 198 
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Introduction 

Melanoma is a potentially lethal cancer arising from the pigment cells, 

melanocytes. While ultraviolet (UV) radiation from sunlight is the principal environmental 

cause for these cancers, there is increasing evidence that the effect of UV radiation on 

melanocytes is not the same for all people (1). Epidemiologic observations originally led to 

the concept that melanomas may arise through one of several pathways under a 

‘divergent pathway model’ for melanoma (2). This model suggested at least two different 

causal pathways to melanoma development, one pertaining to host susceptibility and 

nevus prevalence and the other associated with chronic sun exposure. Subsequent 

investigations strongly suggested that the molecular profile of tumors for several 

oncogenes including BRAF and NRAS reflected these causal pathways (2-5). Several 

studies have now illustrated that melanomas arising on the trunk tend to occur in younger 

individuals and are associated with adjacent melanocytic nevi and BRAF mutations, and 

these appear biologically distinct from melanomas arising on chronically sun-exposed 

sites, such as the head and neck, which tend to occur in older individuals carrying other 

mutation profiles including NRAS mutations (2-4, 6-11). More recent data have emerged 

suggesting that different genotypes exist within BRAF-mutant melanoma, and that 

melanomas harboring BRAFV600K mutations are associated with older age, male sex, 

higher levels of sun exposure, and poorer prognosis than BRAF V600E melanomas (12-

14). Thus, there appear to be marked differences in the associations between sun 

exposure, melanocyte susceptibility and host characteristics with a suite of melanoma 

mutations, strongly suggestive of different causal pathways to melanoma development.  

The melanocortin-1 receptor (MC1R) gene is a key determinant of human 

pigmentation with specific variants linked to red hair and melanoma risk (15, 16). An 

interaction between germline MC1R variants and somatic BRAF mutations was reported 

in tumors from US and Italian populations (5, 17), suggesting that people carrying 
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germline MC1R variants had a greater risk of developing a melanoma harboring a BRAF 

mutation in skin not damaged by sunlight. Analyses of Spanish and Austrian samples 

found no association between germline MC1R variants and somatic BRAF mutations 

across all tumor samples, but did observe a modest trend between germline MC1R 

status and somatic BRAF mutations in melanomas of the trunk [OR 1.8 (0.8-4.1, p=0.1] 

but an inverse association between MC1R and BRAF for melanomas of the head and 

neck [OR 0.3 (0.1-0.8), p=0.02] (9). However, the association between germline MC1R 

variants and somatic BRAF mutations has not been replicated in other populations, 

including studies from the USA (18), Australia (6) and Germany (19). Indeed, Scherer 

and colleagues (19) observed significantly lower frequencies of somatic BRAF mutations 

in carriers of MC1R variants. These conflicting findings across different populations 

underscore the complexity of gene-environment interactions for melanoma.  

Given the emergence of novel therapies targeting somatic mutations in melanoma, 

coupled with the desire to develop evidence-based primary prevention programs, there is 

a need to catalog the frequency of mutations in large samples of melanoma patients and 

to understand the mechanisms through which they arise. Here, we present the findings of 

an investigation into the epidemiologic, histologic and genotypic associations with 

melanoma mutations, comprising a large, community-based sample of 414 primary 

cutaneous invasive melanoma patients arising in a high-incidence population exposed to 

very high levels of ambient UV radiation.  
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Results 

Subject characteristics 

A total of 766 patients with primary invasive melanoma were recruited for the 

parent epidemiological study (20), (32% female) with a mean age of 58 years. The 

majority of melanomas were classified histologically as SSM (72%), with the remainder 

classified as LMM (13%), nodular (5%) and unclassified (10%). Tumors were generally 

thin; 65% were Clark level II, and 82% had Breslow thickness ≤1 mm. The analyses 

presented here were restricted to 414 patients for whom sufficient material was remaining 

for somatic mutation analysis (Figure S1). There were no significant differences between 

those genotyped (n=414) and those not (n=352), in terms of sex (71% vs 65% males) or 

melanoma thickness distribution (84% vs 81% ≤1mm) but participants not genotyped 

were slightly older (56.3 years vs 59.8, p=0.04) and were more likely to have melanomas 

of the head and neck (9.2% vs 17.6%, p <0.001) and of the lentigo maligna subtype 

(15.7% vs 24.7%, p=0.005). 

 

Mutation Frequencies 

Mutations were identified using the MelaCarta multiplex assay (Agena 

Bioscience); mutually exclusive BRAF-mutant and NRAS-mutant tumors occurred at 

frequencies of 38.7% (V600E 67%, V600K 31%, Other 12%) and 9.2% (Q61H 5%,     

Q61K 37%, Q61L 24%, Q61R 34%), respectively (Table 1 and Table S1). Further 

statistical analysis was performed for the BRAF and NRAS mutant samples, due to the 

low frequencies of mutations in other genes.  

 

Clinical and Pathologic Characteristics of lesions 

Overall, patients older than 70 years were significantly less likely to have 

BRAFV600E mutant melanomas than BRAF wild-type melanomas (OR 0.08, 95% CI 0.03-
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0.19, but were more likely to have melanomas harboring BRAFV600K or NRAS mutations 

(Table 2 and Table S2). BRAFV600E mutations were significantly more frequent in 

melanomas from women (p=0.01), whereas NRAS mutations were more common in 

melanomas from men (p=0.01). We observed that BRAFV600E (p=0.01) and BRAFV600K 

(p=0.047) mutant melanomas were more likely to harbor somatic mutations in other 

genes on the ‘melanoma panel’ than NRAS mutant melanomas (Table 2 and Table S2).  

Although numbers were small, melanomas carrying somatic mutations in KRAS or 

EPHB6 were more likely to carry additional mutations than melanomas without these 

mutations (Table S3).  While the prevalence of BRAF and NRAS mutations differed 

somewhat by histological subtype and anatomic site, the differences were not statistically 

significant. We found no statistical evidence that the risks of BRAFV600E or BRAFV600K 

mutations differed by Clark level or tumor thickness, but somewhat against expectation, 

we found melanomas with NRAS mutations were significantly less likely to have marked 

dermal elastosis (OR 0.26, 95%CI 0.07-0.95; p=0.03). Melanomas with BRAFV600E 

mutations were significantly more likely to have contiguous neval remnants than wild-type 

melanomas (OR 1.94, 95% CI 1.14-3.31; p=0.02), but melanomas carrying other BRAF 

or NRAS mutations were not significantly associated with this feature. 

 

Phenotypic and environmental factors associated with BRAF and NRAS Mutations 

We observed strong positive associations between increasing nevus count and 

risk of BRAFV600E (p-trend=0.03) or BRAFV600K (p-trend=0.02) mutations (Table 3 and 

Table S4), but no associations with NRAS mutations. In contrast, there were inverse 

associations between the numbers of excised skin cancers and BRAFV600E mutational 

status (p-trend=0.04); numbers of skin cancers were also inversely associated with 

BRAFV600K mutations although the trend was of marginal significance (p-trend=0.06). The 

measure of cumulative sun exposure (summed from a matrix capturing recreational and 
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occupational sun exposure for all career episodes since leaving high school) showed an 

unusual pattern of association with BRAFV600E and BRAFV600K mutations. Although not 

statistically significant, relative risks of BRAF-mutant melanoma were higher for patients 

with intermediate categories of cumulative sun exposure than for those with the highest 

levels of sun exposure. No consistent associations between markers of cumulative sun 

exposure and risks of NRAS mutant melanoma were observed, although it was notable 

that risk estimates were less than unity for all categories of solar keratosis counts and for 

having 3 or more skin cancers excised (Table 3). There were no consistent associations 

between hair or eye color and risks of any type of BRAF mutations or NRAS mutations, 

however patients with BRAFV600K mutant melanomas were significantly more likely to 

have blue/gray eye color (OR 2.38, 95% CI 1.00-5.65; p=0.049). In addition, patients with 

BRAFV600E mutant melanomas were significantly less likely (p-trend=0.02) to report 

having any extent of facial freckling as a teenager compared with patients with BRAF 

wild-type melanomas; associations between freckling and other mutation types were not 

significant. A family history of melanoma was associated with BRAFV600E mutation status 

(OR 1.85, 95% CI 1.06-3.21; p=0.03). Other characteristics were assessed for 

associations with BRAF/NRAS mutational status, but in the main these were 

unremarkable (Table S5).  

 
Somatic mutations and MC1R Variants  

84% of melanoma patients in this series carried one of the nine common MC1R 

variants, with 53% carrying red hair color variants (RHC) and 31% carrying non red hair 

variants (NRHC) (Table S6 and S7). As expected, MC1R status was associated with red 

hair color (p<0.001) and skin type determinants such as susceptibility to burn (p<0.001), 

propensity to tan (p<0.001) and was inversely associated with nevus counts (p=0.02) 

(Table 4). There was no association between germline MC1R variants and somatic BRAF 

or NRAS mutations in melanoma samples overall (Table 5 and S8). In site-specific 
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analyses (trunk melanoma; head and neck melanoma), we found no evidence that the 

risks of BRAF mutations were associated with MC1R variants, regardless of the type of 

variant. We repeated the analyses by excluding patients with LMM subtype but this made 

no material difference to our conclusions (Table S9). We also observed no association 

between the number of MC1R polymorphisms and either BRAF (p=0.38) or NRAS 

(p=0.83) mutation status.  
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Discussion 

We assessed the frequency of somatic mutations in 25 putative ‘melanoma genes’ 

in a large community-based series of 414 primary cutaneous invasive melanomas. 

Mutation prevalences were less than 2.5% for all genes except BRAF and NRAS, which 

occurred mutually exclusively at frequencies of 39% and 9%, respectively. Previous 

community-based series of primary cutaneous melanomas have reported BRAF 

mutations at frequencies ranging from 32% to 39% in Australian populations, 20-22% in 

Spanish, Austrian and German populations, 44% and 64% in Italian populations, and 

43% in the USA (4, 6, 9, 19, 21). In all prior series, BRAFV600E mutations were at least 3 

to 4-fold more common than BRAFV600K mutations, as we found. Importantly, we found 

that BRAF-mutant melanomas were significantly more likely than wild-type BRAF 

melanomas to carry mutations in other genes on the melacarta panel, whereas NRAS 

mutant melanomas were not. 

As we expected, we found that the somatic mutation status of melanomas was 

correlated with a number of clinical and phenotypic features. BRAFV600E mutant 

melanomas were more likely than wild-type BRAF melanomas among women, younger 

patients, and those with high nevus counts, contiguous neval remnants adjacent to the 

tumor, and a family history of melanoma. These findings accord with previous studies 

examining BRAF status and characteristics of patients with cutaneous melanoma (4, 22). 

In addition, patients with BRAFV600E tumors were less likely than those with wild-type 

BRAF tumors to have phenotypic features indicative of high cumulative sun exposure 

such as high numbers of actinic keratoses or a history of prior skin cancer excisions,. 

Earlier reports have suggested that melanomas carrying BRAFV600K mutations 

have been exposed to higher levels of cumulative sun exposure than other melanomas, 

but we found no evidence to support that conclusion (12-14). In our large series, patients 

with BRAFV600K melanomas were significantly less likely than patients with wild-type 
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BRAF melanomas to report prior history of non-melanoma skin cancer, and were not 

significantly different in terms of self-reported lifetime sun exposure, numbers of actinic 

keratoses or dermal elastosis adjacent to the melanoma. Even though the series reported 

here is the largest and most comprehensively annotated to date, the number of cases 

with BRAFV600K mutations was still modest (n=33) and so our study suffers from lack of 

statistical power to explore these associations fully. Pooling data from comparable 

studies to increase the sample size would permit more definitive assessments of the role 

of cumulative sun exposure in the development of BRAFV600K melanomas. We note with 

interest however, that BRAFV600K melanomas were even more strongly associated with 

total nevus count than BRAFV600E melanomas, providing strong evidence that these 

tumors arise through a ‘nevus-prone’ pathway. 

A synergistic relationship between germline MC1R variants and somatic BRAF 

mutations was suggested by Landi and colleagues (5), whereby people with MC1R 

variant genotypes carried a significantly increased risk of developing BRAF-mutant 

melanoma in skin not damaged by sunlight. Analyses of Spanish and Austrian samples 

found a modest trend between germline MC1R status and somatic BRAF mutations in 

melanomas from trunk sites with an inverse association between MC1R and BRAF for 

melanomas of the head and neck (9), other studies conducted in North Carolina  (18), 

Australia (6) and Germany (19) have not observed associations between MC1R status 

and increased risk of somatic BRAF mutations. This latest investigation, comprising a 

community-based sample of 414 patients with cutaneous melanoma of predominantly 

northern European and Anglo-Celtic ancestry exposed to high levels of ambient UV 

radiation, also found no association between germline MC1R variants and somatic BRAF 

mutations. These conflicting findings across different populations highlight the complexity 

of gene-environment interactions in the development of melanoma. The model proposed 

by Thomas et al 2010 to explain this discordance illustrated opposing effects of MC1R 
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status and highlighted a role for pigmentation in photo-protection and generation of 

oxidative stress (23). The allele frequencies of seven common nonsynonymous MC1R 

variants (V60L, D84E, V92M, R151C, R160W, R163Q, and D294H) differ significantly 

between Northern European (France, Netherlands, Britain/Ireland) and Southern 

European populations (Italy and Greece) (24). We also observed this difference in our 

cancer cohorts with over 60% of the Australian, USA and German cohorts carrying one of 

the MC1R RHC variants, while the Spanish, Austrian and Italian cohorts MC1R RHC 

carries only accounted for less than 45% (Table S6).  The downstream effects of MC1R 

on cellular function appears to vary depending on the polymorphisms, and thus it is 

possible that the discordance between studies could relate to the variation in MC1R allele 

frequencies in the different populations as well as the differences in environmental 

conditions and patterns of UVR exposure.  

Melanoma risk is intricately associated with pigmentation characteristics, and 

genome-wide association studies have revealed a number of genetic variants involved in 

pigmentation, including MC1R, ASIP, OCA2, SLC45A2, TYRP1 and TYR (25, 26). The 

discordant results across studies examining solely MC1R status as a determinant for 

developing somatic BRAF mutant melanoma may also be due to the confounding role of 

other pigmentation genes. It must also be noted that the relatively small sample size of all 

studies examining the association of MC1R variants and BRAF-mutant melanoma, we 

cannot rule out the possibility that the differences in results are attributable to chance 

alone. To expand this work, our future focus needs to be on modeling the complex 

regulation of pigmentation as a factor of genetic interactions and through larger studies or 

meta-analyses. 

Strengths of our study include the population-based sampling frame and the 

detailed epidemiologic data (including physician counts of nevi and actinic keratoses, 

blinded to genotype status) accompanying the tumor specimens. The call rate for somatic 
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mutations was high using the MelaCarta platform, with mutation status determined for 

98% of samples genotyped. Although we did not fully sequence the entire MC1R gene, 

the variants genotyped in this study comprise over 95% of the non-synonymous changes 

observed (27). We do not believe that further sequencing to identify rare MC1R variants 

could materially alter our null findings. A potential weakness was the relatively limited 

number of samples for analysis due to insufficient tumor material remaining for mutation 

analysis after sections had been cut for diagnostic purposes. This is to be expected from 

a community-based study conducted in Queensland, Australia where the vast majority of 

patients present with thin melanomas (<1mm). To assess possible selection bias, we 

compared the prevalence of phenotypic (including skin type, hair and eye color, freckling 

density and counts of nevi and actinic keratosis) and histological (contiguous neval 

remnants, thickness, anatomic site) characteristics as well as the age and sex among 

those participants with tumor blocks available for analysis and those without. We found 

that those participants whose tumors were not genotyped were slightly older and were 

more likely to have melanomas of the head and neck and of the lentigo maligna subtype 

than those who were genotyped, but in other respects were not significantly different. 

Given these features, it is possible that our sample may have had a higher prevalence of 

BRAF mutations than melanomas arising in the general population, although there is no 

reason to conclude that the associations between BRAF mutation statues and phenotype 

or other factors would differ.  

In conclusion, these data from a large, well-characterized, community-based 

sample of cutaneous melanomas provide robust estimates of the somatic mutation 

frequencies of putative ‘melanoma genes’. The study confirmed that BRAF-mutant 

melanomas differ from wild-type melanomas for associations with sun exposure, nevus 

propensity and host characteristics, with largely similar patterns of association for 

BRAFV600E and BRAFV600K melanomas. There was no evidence that MC1R status 
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conferred particular risks of mutations in BRAF, NRAS or other. Taken together, these 

findings highlight the diversity of mutation profiles in melanoma and the heterogeneity of 

pathways through which these cancers arise.  
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Materials & Methods 
Subjects 

We compared the prevalence of BRAF and NRAS mutations in formalin-fixed 

paraffin-embedded melanoma specimens from 414 patients ascertained from southern 

Queensland (latitude 27oS), Australia. Detailed descriptions of subject selection and data 

collection for this study have been described previously (20, 28). Briefly, eligible patients 

were residents of greater Brisbane, Australia who were diagnosed between April 1, 2007 

and September 30, 2010 with a histologically confirmed primary invasive cutaneous 

melanomaarising on the head, neck or trunk. Those with metastatic melanoma or a 

previous diagnosis of melanoma were not eligible. No acral lentiginous melanoma, 

spitzoid or nevoid lesions were included in this study. Of 1456 eligible patients for the 

initial epidemiologic study, 808 (55%) completed questionnaires and 766 (53%) provided 

written informed consent to obtain specimens of archived melanoma tissue, and 414 

(28%) patients had sufficient tissue remaining for mutation analysis (Figure S1). The age, 

sex, site and histology subtype distribution of the 414 patients that were genotyped 

differed from the 352 patients who were not, as described above. 

Approval to perform this study was given by the Human Research Ethics 

Committee of the QIMR Berghofer Medical Research Institute. The study adhered to The 

Declaration of Helsinki and all participants gave their informed written consent to take 

part. 

 

Histological assessment 

At the time of histological diagnosis, collaborating dermatopathologists assessed 

the extent of solar elastosis in the skin adjacent to the melanoma using a scale of four 

categories (nil, mild, moderate and marked,) as previously described (20, 28). In addition, 

they assessed each tumor’s histological type, tumor thickness, and the presence of neval 
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remnants adjacent to the tumor. The anatomical site of each melanoma was abstracted 

from the pathology report and was confirmed directly with the patient. 

   

DNA Isolation 

Hematoxylin and eosin stained sections of each patient’s melanoma were 

assessed for areas of normal and tumor tissue, and the percentage of tumor cells was 

recorded. Formalin-fixed paraffin-embedded tissue sections were dissected to select 

areas where melanoma cells dominated over stromal cells. Punch biopsy’s (2 mm) were 

taken from each tumor block and deparaffinized in xylene and washed twice in absolute 

ethanol. DNA was isolated using Qiagen GeneRead DNA FFPE Kit (Qiagen, Germany), 

with additional proteinase K digestion at 56oC for 3 hours. DNA quantification was 

determined by spectrophotometry Qubit (Life Technologies, Carlsbad, CA). Saliva 

samples were also collected and DNA was extracted for MC1R genotyping from saliva 

samples using Oragene saliva kits (DNA genotek, Ottawa, ON, Canada) following the 

manufacturer’s instructions. 

 

Genotyping 

Genotyping was performed on the mass spectrometric genotyping platform using 

an optimized multiplex assay of 25 common mutations found in melanomas (MelaCarta 

Panel, Agena Bioscience, San Diego, CA), which includes AKT3, BRAF, CDK4, CXCR4, 

CTNNB1, EPHA10, EPHB6, ERBB4, GNA1, GNAQ, KIT, KRAS, MEK, MET, NEK10, 

NRAS, PDGFRA, PIK3CA, PTK2B, ROR2, EGFR, IDH1, JAK2, ATK1 and ABL1. An 

optimized multiplex assay of all nine common variants of MC1R (I155T, R142H, D84E, 

R160W, D294H, V92M, R163Q, V60L, R151C) were used as previously described (29). 

Participants with none of the MC1R variants listed above were classified as wild-type 

‘WT’ for these analyses. People carrying one or more of the red hair color ‘RHC’ alleles 
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(R142H, D84E, R160W, D294H, R151C) were classified as ‘RHC’ variants, and people 

carrying one or more non red hair color ‘NRHC’ alleles (I155T, V92M, R163Q, V60L) 

were classified as ‘NRHC’ variants (Table S6 and S7). People carrying both ‘RHC’ and 

‘NRHC’ alleles were classified as ‘RHC’ variants (Table S7). 

 

Phenotypic characteristics and sun exposure history 

Relevant exposure data (including sun exposure history and skin sensitivity) were 

collected from study participants through a self-completed, structured questionnaire as 

described previously (28). After completing the questionnaire, each participant was 

examined by the same dermatologist, who recorded hair and eye color and counted the 

number of melanocytic nevi (defined as brown to black pigmented macules or papules of 

any size which are darker than the surrounding skin). Using a standard international 

protocol (30), nevi were counted on the back, neck, face and upper limbs (left and right) 

using a transparent plastic stencil. The numbers of actinic keratoses (defined as 

superficial, rough scaly areas with erythematous background and ill-defined margins) 

were counted on the dorsum of hands and forearms, and on the face. 

 

Statistical analysis 

We performed simple cross-tabulations and calculated Pearson’s chi-square 

and/or Fischer’s exact test (for cells with expected count of less than 5) as a measure of 

statistical association. We used multivariable logistic regression to calculate odds ratios 

(ORs) and 95% confidence intervals (CIs) as measure of association between 

patient/tumor characteristics and mutation status. We included terms for age stratum 

(<40, 40-49, 50-59, 60-69, 70+ years) and sex to control for possible confounding 

introduced by the study design. P-values less than 0.05 were considered as statistically 

significant and all such tests were 2-sided. We tested for trend by including each 
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category as an ordinal variable in the multivariable model, with category values taken as 

the midpoint of the range. All analyses were performed using the SAS 9.4 statistical 

software package (SAS institute, Cary, NC).  
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Table 1. Spectrum and frequency of mutations in primary cutaneous melanoma 
samples  
 
Gene No Freq (%) 
BRAF 
    V600E 
    V600K 
    Other 

160 
 
 
 

 38.7 
       66.9 
       20.6 
       12.5 

CDK4 5 1.2 
CTNNB1 1 0.2 
EPHB6 10 2.4 
ERBB4 6 1.5 
GNA11 2 0.5 
GNAQ 1 0.2 
KIT 4 1.0 
KRAS 10 2.4 
MEK 3 0.7 
MET 1 0.2 

NRAS 
     Q61H 
     Q61K 
     Q61L 
     Q61R 

38 
 
 
 
 

  9.2 
5.3 

36.8 
23.7 
34.2 

PDGFRA 2 0.5 
PIK3CA 6 1.5 
PTK2B 3 0.7 
JAK2 1 0.2 
ABL1 2 0.5 
No mutations were observed in AKT3, CXCR4, EPHA10, NEK10, ROR2, EGFR, IDH1 
and ATK1. 
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Table 2. Association between clinical and pathologic characteristics with 
BRAF/NRAS mutation status in cutaneous melanoma 
  

Characteristic 

Age and sex adjusted OR (95% CI) 

BRAF V600E* 
(n=107) 

BRAF V600K* 
(n=33) 

Other BRAF 
mutation* (n=20) 

Any NRAS 
mutation# 

(n=38) 
Age (years)     

   <50 1.00 (Reference) 1.00 (Reference) 1.00 (Reference) 1.00 (Reference) 
   50-59 0.28 (0.15-0.51) 0.94 (0.27-3.28) 0.66 (0.19-2.28) 5.81 (1.59-21.22) 

   60-69 0.14 (0.08-0.28) 0.90 (0.28-2.92) 0.75 (0.25-2.30) 6.28 (1.78-22.18) 

   ≥70 0.08 (0.03-0.19) 2.24 (0.75-6.66) 0.13 (0.02-1.15) 3.75 (0.94-14.96) 

Age (continuous) 0.93 (0.91-0.95) 1.02 (0.99-1.05) 0.98 (0.95-1.02) 1.03 (1.00-1.05) 

Sex     

   Female 1.00 (Reference) 1.00 (Reference) 1.00 (Reference) 1.00 (Reference) 
   Male 0.53 (0.33-0.86) 1.68 (0.66-4.24) 2.11 (0.60-7.44) 3.89 (1.35-11.21) 
Number of other somatic 
mutations    

 

   1 1.00 (Reference) 1.00 (Reference) 1.00 (Reference) 1.00 (Reference) 
   >1 5.94 (1.46-24.21) 4.71 (1.02-21.74) 1.82 (0.27-12.52) 0.56 (0.15-2.07) 
Histological type of 
melanoma    

 

   SSM 1.00 (Reference) 1.00 (Reference) 1.00 (Reference) 1.00 (Reference) 
   NM 0.70 (0.21-2.36) 0.38 (0.05-3.03) 0.68 (0.08-5.72) 2.08 (0.64-6.79) 

   LMM 0.40 (0.12-1.41) 0.67 (0.19-2.40) - 0.83 (0.27-2.54) 

   Not stated (n=41)     

Clark level     

   2 1.00 (Reference) 1.00 (Reference) 1.00 (Reference) 1.00 (Reference) 
   ≥3 0.71 (0.42-1.23) 0.70 (0.32-1.53) 0.51 (0.18-1.47) 3.01 (1.49-6.09) 

Tumor thickness (mm)     

   ≤1.0 1.00 (Reference) 1.00 (Reference) 1.00 (Reference) 1.00 (Reference) 
   >1.0 0.74 (0.36-1.53) 0.71 (0.26-1.97) 0.48 (0.10-2.18) 0.67 (0.41-2.67) 
Anatomical site of 
melanoma    

 

   Trunk 1.00 (Reference) 1.00 (Reference) 1.00 (Reference) 1.00 (Reference) 
   Head or neck 1.00 (0.53-1.90) 1.64 (0.72-3.72) 0.44 (0.10-1.98) 0.61 (0.24-1.54) 

Dermal elastosis     

   Nil or mild 1.00 (Reference) 1.00 (Reference) 1.00 (Reference) 1.00 (Reference) 
   Moderate 0.84 (0.41-1.73) 2.49 (0.90-6.97) 0.30 (0.06-1.44) 1.09 (0.47-2.52) 

   Marked 0.95 (0.44-2.05) 1.53 (0.50-4.67) 0.37 (0.08-1.82) 0.26 (0.07-0.95) 

   Missing (n=50)     
Contiguous neval 
remnants    

 

   No 1.00 (Reference) 1.00 (Reference) 1.00 (Reference) 1.00 (Reference) 
   Yes 1.94 (1.14-3.31) 1.20 (0.54-2.65) 1.47 (0.54-3.94) 1.52 (0.74-3.10) 

   Not stated (n=9)     
     
*Comparison group were samples wild-type for BRAF  
# Comparison group were samples wild-type for NRAS 
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Table 3. Association between phenotypic and environmental factors with 
BRAF/NRAS mutation status in cutaneous melanoma 
  

Characteristic 
Age and sex adjusted OR (95% CI) 

BRAF V600E* 
(n=107) 

BRAF V600K* 
(n=33) 

Other BRAF 
mutation* (n=20) 

Any NRAS 
mutation# (n=38) 

Total nevus count 
(quartiles)     

   0-29 1.00 (Reference) 1.00 (Reference) 1.00 (Reference) 1.00 (Reference) 

   30-59 1.80 (0.72-4.48) 2.25 (0.73-6.96) 0.45 (.10-2.05) 0.54 (0.20-1.47) 

   60-119 2.26 (0.91-5.59) 2.36 (0.67-8.34) 1.04 (0.29-3.76) 0.73 (0.27-1.97) 

   120+ 2.90 (1.16-7.29) 5.03 (1.38-18.38) 0.74 (0.18-3.15) 0.93 (0.33-2.62) 

Total number of solar 

keratoses 
   

 

   0 1.00 (Reference) 1.00 (Reference) 1.00 (Reference) 1.00 (Reference) 
   1-4 0.64 (0.33-1.26) 1.00 (0.31-3.25) 1.61 (0.40-6.69) 0.44 (0.17-1.13) 
   5-9 0.52 (0.19-1.40) 0.43 (0.08-2.44) 0.51 (0.05-5.22) 0.51 (0.16-1.63) 
   10+ 0.45 (0.18-1.12) 1.43 (0.43-4.80) 2.57 (0.57-11.58) 0.45 (0.17-1.21) 

Skin cancers excised     

   0   1.00 (Reference) 1.00 (Reference) 1.00 (Reference) 1.00 (Reference) 

   1-2 0.68 (0.34-1.35) 0.65 (0.37-1.15) 1.01 (0.32-3.17) 1.33 (0.57-3.14) 

   3+ 0.48 (0.24-0.97) 0.45 (0.26-0.79) 0.35 (0.09-1.35) 0.76 (0.33-1.79) 

Cumulative sun exposure 

(adult yrs) 
   

 

   <1.6 1.00 (Reference) 1.00 (Reference) 1.00 (Reference) 1.00 (Reference) 

   1.6-2.8 1.98 (0.93-4.20) 2.23 (0.63-7.85) 1.59 (0.36-6.96) 0.98 (0.31-3.11) 

   2.8-4.5 2.17 (0.95-4.97) 2.01 (0.55-7.27) 1.89 (0.45-7.97) 0.70 (0.21-2.35) 
   >4.5 1.74 (0.67-4.48) 1.04 (0.25-4.28) 1.10 (0.21-5.80) 1.42 (0.45-4.44) 

Hair color as a teenager     

   Black/dark brown 1.00 (Reference) 1.00 (Reference) 1.00 (Reference) 1.00 (Reference) 

   Light brown 0.95 (0.50-1.80) 1.88 (0.81-4.35) 1.23 (0.31-4.82) 1.03 (0.47-2.27) 

   Red/auburn 0.90 (0.40-2.03) - 3.46 (0.89-13.48) 0.68 (0.21-2.22) 

   Blond 1.69 (0.85-3.37) 1.23 (0.39-3.92) 2.44 (0.61-9.83) 0.65 (0.22-1.93) 

Eye color     

   Brown 1.00 (Reference) 1.00 (Reference) 1.00 (Reference) 1.00 (Reference) 

   Blue/grey 1.33 (0.70-2.54) 2.38 (1.00-5.65) 1.05 (0.28-3.98) 0.75 (0.27-2.09) 

   Green/hazel 0.74 (0.37-1.48) 0.55 (0.15-1.94) 0.66 (0.18-2.45) 1.24 (0.52-2.96) 

Freckling as a teenager     

   None 1.00 (Reference) 1.00 (Reference) 1.00 (Reference) 1.00 (Reference) 

   A few 0.50 (0.27-0.93) 0.69 (0.29-1.65) 1.49 (0.47-4.75) 0.94 (0.42-2.06) 

   Some 0.47 (0.22-1.03) 0.79 (0.26-2.45) 1.06 (0.23-4.88) 1.83 (0.72-4.65) 

   Many 0.34 (0.12-0.97) 0.83 (0.21-3.31) 2.56 (0.49-12.41) - 
Family history of 

melanoma 
   

 

   No 1.00 (Reference) 1.00 (Reference) 1.00 (Reference) 1.00 (Reference) 

   Yes 1.85 (1.06-3.21) 1.24 (0.51-3.03) 0.56 (0.17-1.84) 0.44 (0.16-1.23) 

*Comparison group were samples wild-type for BRAF  
# Comparison group were samples wild-type for NRAS 
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Table 4. Association between MC1R and phenotypic characteristics 
  

 
Any MC1R variant  

(n=637) 
n (%) 

RHC 
(n=399) 
n (%) 

NRHC 
 (n=238) 

n (%) 

WT  
(n=120) 
n (%) 

     
Hair color as a 
teenager    

 

   Black/dark brown 194 (30.5) 99 (24.8) 95 (39.9) 54 (45.0) 
   Light brown 209 (32.8) 120 (30.1) 89 (37.4) 40 (30.3) 
   Red/auburn 97 (15.2) 91 (22.8) 6 (2.5) 4 (3.3) 
   Blond 136 (21.4) 88 (22.1) 48 (20.2) 22 (18.3) 
   missing (n=1)        

 p=0.001 p<0.001 p=0.76 ref 
Eye color     
   Brown 411 (64.5) 255 (63.9) 156 (65.6) 68 (56.7) 
   Blue/grey 136 (21.4) 82 (20.6) 54 (22.7) 28 (23.3) 
   Green/hazel 90 (14.1) 62 (15.5) 28 (11.8) 24 (20.0) 

 p=0.18 p=0.33 p=0.09 ref 
Freckling as a 
teenager    

 

   None 201 (31.6) 98 (24.6) 103 (43.3) 65 (54.2) 
   A few 256 (40.2) 165 (41.5) 91 (38.2) 37 (30.8) 
   Some 118 (18.5) 83 (20.8) 35 (14.7) 12 (10.0) 
   Many 62 (9.7) 53 (13.3) 9 (3.8) 6 (5.0) 

 p<0.001 p<0.001 p=0.18 ref 
Total nevus count 
(quartiles)    

 

   0-29 152 (23.9) 105 (26.3) 47 (19.8) 14 (11.7) 
   30-59 169 (26.5) 114 (28.6) 55 (23.1) 33 (27.5) 
   60-119 145 (22.8) 81 (20.3) 64 (26.9) 34 (28.3) 
   120+ 171 (26.8) 99 (24.8) 72 (30.3) 39 (32.5) 

 p=0.02 p=0.004 p=0.28 ref 
Propensity to burn     
   Never/Rarely 46 (7.2) 19 (4.8) 27 (11.3) 20 (16.7) 

   Sometimes 174 (27.3) 102 (25.6) 72 (30.3) 49 (40.8) 

   Mostly 187 (29.4) 128 (32.1) 59 (24.8) 29 (24.2) 
   Always 230 (36.1) 150 (37.6) 80 (33.6) 22 (18.3) 

 p<0.001 p<0.001 p=0.01 ref 
Propensity to tan     
   Never 74 (11.6) 63 (15.8) 11 (4.6) 5 (4.2) 
   Lightly 199 (31.2) 137 (34.4) 62 (26.1) 18 (15.0) 
   Moderately 283 (44.4) 166 (41.6) 117 (49.2) 61 (50.8) 
   Deeply 81 (12.7) 33 (8.3) 48 (20.2) 36 (30.0) 

 p<0.001 p<0.001 p=0.05 ref 
     

RHC-red hair color (MC1R variants- R142H, D84E, R151C, R160W, D294H) 
NRHC- non red hair color (MC1R varaints-V60L, V92M, R163Q, I155T) 
All p-values are from multivariable logistic regression models adjusted for age and sex 
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Table 5. Association between MC1R variants and somatic BRAF and NRAS 
mutations in cutaneous melanoma 
  

MC1R 

Age and sex adjusted OR (95% CI)  

BRAF V600E 
(n=107) 

  BRAF V600K 
(n=33) 

Any BRAF 
mutation 
(n=160) 

Any NRAS 
mutation 

(n=38) 
All melanomas     
   WT/WT 1.00 (Reference) 1.00 (Reference) 1.00 (Reference) 1.00 (Reference) 

   Any variant 1.13 (0.58-2.20) 0.80 (0.32-2.02) 1.32 (0.75-2.32) 1.13 (0.47-2.74) 

   RHC variant 1.08 (0.53-2.20) 0.49 (0.17-1.43) 1.17 (0.64-2.14) 1.01 (0.39-2.59) 

   NRHC variant 1.23 (0.58-2.59) 1.30 (0.48-3.55) 1.53 (0.82-2.86) 1.37 (0.56-3.40) 

Trunk melanomas     

   WT/WT 1.00 (Reference) 1.00 (Reference) 1.00 (Reference)  

   Any variant 1.38 (0.65-2.92) 0.68 (0.25-1.88) 1.46 (0.77-2.77)  

   RHC variant 1.20 (0.53-2.70) 0.42 (0.13-1.41) 1.24 (0.63-2.47)  

   NRHC variant 1.67 (0.72-3.86) 1.14 (0.38-3.39) 1.80 (0.89-3.65)  

Head and neck 
melanomas    

 

   WT/WT 1.00 (Reference) 1.00 (Reference) 1.00 (Reference)  

   Any variant 0.40 (0.08-1.94) 1.88 (0.18-19.42) 0.87 (0.24-3.13)  

   RHC variant 0.51 (0.09-2.85) 0.94 (0.08-11.08) 0.87 (0.22-3.42)  

   NRHC variant 0.16 (0.01-2.13) 5.26 (0.48-58.0) 0.61 (0.10-3.63)  

     
RHC-red hair color (MC1R variants- R142H, D84E, R151C, R160W, D294H) 
NRHC- non red hair color (MC1R varaints-V60L, V92M, R163Q, I155T) 
 


