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ABSTRACT 
 
Alkali-activated cement (AAC), also known as “geopolymer”, has been extensively investigated over the past 
40 years and has been developed from laboratory mock ups to real structural usage in construction in the last 
decade. While numerous life cycle analyses and carbon accounting studies show the “green potential” of this 
material compared to Portland cement, some authors state that the high alkali concentration in AAC is a 
potentially unstable factor which may lead to, for example, efflorescence. This paper presents a critical thinking 
on the literature and some new experimental work regarding the possibility of efflorescence in AAC products. 
Subjects of the discussion include: (1) the role of alkalis in AACs, (2) the effect of alkali concentration on 
efflorescence, (3) the effect of solid precursor selection on efflorescence, (4) the effect of curing scheme and 
chemical additives on efflorescence, and (5) the impacts of efflorescence on the microstructural properties of 
AACs. Particular attention is given to the relationship between pore structure and efflorescence behaviour, and 
consequently the mechanical properties of AACs suffering from either efflorescence or alkali loss (by leaching). 
The changes in sodium aluminosilicate hydrate (N-A-S-H) gels due to efflorescence or alkali loss are critical to 
the durability of AACs. This paper emphasizes that the nature of the solid precursor and the pore structure of the 
resulting AAC are the two most important factors that control efflorescence rate. However, considering its 
alkaline nature, it seems difficult or impossible to avoid this issue in AAC products, although kinetically 
controlled diffusion of alkalis using phase transformation techniques may help to mitigate efflorescence. 
Efflorescence in AAC is a “skin issue” that needs to be carefully treated. It is recognized to be different from the 
visually similar, but chemically distinct, efflorescence that occurs in Portland cement based materials.  
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INTRODUCTION  
 
Alkali-activated cement (AAC) technology has shown potential in converting solid industrial wastes into 
greener cement. The environmental benefit of applying AAC technology mainly lies in the reduction of CO2 
emissions and energy consumption, which are issues of wide concern for the sustainable development of the 
cement and concrete industries (Damtoft et al. 2008). McLellan et al. (2011) pointed out that the unit emissions 
of greenhouse gas in making AAC binder depend on the source location, the energy source and the mode of 
transport. The counting of the four mixtures using typical Australian fly ashes indicated potential for a 44–64% 
reduction in greenhouse gas emissions. More recently, Heath et al. (2014) showed that AAC manufacture can 
reduce CO2 emissions by about 40% when clay minerals are used to replace the widely used fly ash and slag. 
These have been the main forces driving the current research and development of AAC.  
 
The use of AAC to fabricate concretes is still rare in industry compared to normal Portland cement concretes. 
Apart from the challenges in supplying consistent raw materials and the cost issues, there are still a variety of 
technical problems remaining, either unclear or un-solved (van Deventer J.S.J. et al., 2012). Efflorescence is one 
such problem which has been raised as a concern in some AAC formulations and this has been discussed briefly 
by Bernal et al. (2014), and more recently, systematically investigated by Zhang et al. (2014).  
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Looking back to efflorescence occurring in Portland cement based masonry and concrete, the most common 
efflorescence is formation of calcium carbonate, which involves six basic and coupled processes: dissolving of 
CO2(g) in H2O at air-water interface on the surface of products, conversion of CO2 to aqueous species, release of 
alkali(s), dissolution of Ca(OH)2, diffusion of reactants through solution and precipitation of calcium carbonate 
(Dow et al. 2003). The products are whitish, structurally harmless but aesthetically undesirable. To avoid and 
mitigate efflorescence, the first principle is to reduce the alkali concentration of cements so as to reduce the 
solubility and absorption rate of CO2 from the ambient environment (Dow et al. 2003). However, in AAC 
systems, the concentrations of Na and K usually contain much higher soluble alkali metal concentrations than 
conventional cement. Burciaga-Díaz et al. (2010) mentioned that alkali-activated slag based materials show 
significant efflorescence and some have also shown negative impacts on the mechanical properties of the 
binders. It must be noted that alkali-activated slag contains higher concentration of calcium than alkali-activated 
metakaolin and fly ash systems, and this may lead to certain differences in the specific effects of efflorescence. 
Škvára et al. (2012) reviewed 25 fly ash-based mixes and reported that the total alkali content required in fly ash 
based AAC binders to meet reasonable workability and mild curing (>50°C) for strength development mainly 
ranges from 30 to150 g/kg (expressed as Na2O to total mass of paste), which is 8.4 to 42 times higher than in 
Portland cement paste (assuming 0.5% Na2O in cement and w/c = 0.4 for paste). This raises particular attention 
to the efflorescence issue in the application of AAC.  
 
In literature and in our previous investigation, observations of many AAC mixes did find efflorescence that 
rapidly occurred on drying surfaces when samples were in contact with water and under highly humid 
atmosphere conditions. A number of factors have been reported to affect the extent of efflorescence in AAC: 
alkali metal type (Škvára et al. 2009; Škvára et al. 2012), raw materials (Temuujin et al. 2009; Najafi Kani et al. 
2012) and reaction conditions (Burciaga-Díaz et al. 2010; Najafi Kani et al. 2012; Zhang et al. 2014).  
 
The aim of this paper is to briefly discuss the results found in literature and our current experiments (not yet 
published). The role of alkalis in AACs (low calcium systems) and the effect of alkali concentration on 
efflorescence are discussed. Particular interest is given to the different efflorescence behaviours of AACs that 
were prepared with fly ashes sourced from different power stations. The suggestions are made based on the 
understanding of the effect of the curing scheme and chemical additives on efflorescence. The importance of 
this issue is highlighted by the observations of the microstructural properties of AACs which were subjected to 
efflorescence.  
 
FACTORS AFFECTING EFFLORESCENCE  
 

Roles and States of Alkalis in AACs 
 
An AAC is usually formed by the reaction between the two parts of materials: an alkali activator and a reactive 
aluminosilicate precursor, which are usually metakaolin and fly ash or their blends. Slag is also very common in 
AAC manufacture but it can form high calcium gels, which are substantially different to low calcium gels that 
are formed in the AAC systems discussed. In this paper we mainly focus on the low calcium systems. There 
have been plenty of research into the molecular structure of AAC gels, a three-dimensional alumino-silicate 
network configured with SiO4 and AlO4 tetrahedrons and by oxygen bridges, with positive ions (Na+, K+) 
present to compensate the negative charge of Al that is present in coordination 4. This role is widely accepted 
and generally agreed on in most literature. However, there are some differences regarding the state of alkali 
metals.  
 
According to Duxson et al. (2005), sodium has two states, with one present with aluminium inside gel structures 
and the other present in pore solutions, neutralizing the charge of Al(OH)4

- group. In other words, sodium can 
partially form Na-O-Al(Si) in gel structure, in which the Na-O bond is relatively intense, and partially form 
Na(H2O)n

+, in which Na is weakly associated with water molecules. This is in agreement with the leaching 
result and deconvolution of 23Na MAS NMR spectra for alkali activated fly ash (Fernández-Jiménez et al. 2009). 
If it is assumed that the Na-O in gel structure is relatively stable in hydration conditions (contact with water 
molecules), similar to the Na-O in dehydrated zeolite, the soluble sodium must be limited, i.e. a certain fraction 
of sodium ions cannot be readily leached. Najafi Kani et al. (2012) ground AAC pastes (could be very fine) and 
used the stable leaching method at a water to solid ratio of 20:1 and reported that after 24 h the leached alkali is 
1-7%, depending on the Si/Na and Na/Al ratios. Zhang et al. (2014) crushed alkali activated fly ash pastes into 
1.25-1.5 mm particles, used the stable leaching method at water/solid ratio of 25:1 and found that after 24 h the 
leached sodium is 12-16%, depending on the activator type, curing temperature and slag replacement. These 
results are in agreement with the above hypothesis.  
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Škvára et al. (2012) crushed AAC pastes into particles under the size of 0.5 mm and used the dynamic leaching 
method (regularly change leaching solution with fresh water) and found that the alkalis can be almost 
completely leached from the binder after 150 days. In comparison with zeolite leaching behaviour (usually 
extremely slow in water), they concluded that the alkalis (Na and K) were only weakly bonded in the form of 
Na(H2O)n

+. This might not be true. Lloyd et al. (2010) measured the alkali concentration in the extracted pore 
solutions of typical alkali activated binders with 7% Na2O provided from activator. If we assume that all of the 
sodium presents in the form of Na(H2O)n

+ in pore solution, and furthermore we assume that in 100 g binder, the 
pore water (free water) is 10 g and the structural water is 5 g, the sodium concentration is estimated to be higher 
than 20000 mM, which is far from the measured values of Lloyd et al. (2010), 600 to 1600 mM for the alkali 
activated fly ash systems. In fact, it is well known that the alkalis bound in zeolite frame structure may have 
different states, and each state having its own ion exchange capacity. Therefore, we state here the hypothesis 
that alkalis in AAC have different states (more than the two discussed above), and each state has its own 
leaching rate.  
 
Nevertheless, a large amount of the alkalis are highly moveable, either due to the excessive utilization of 
activator or the inherent neutralization of  Al(OH)4

- in pore solution, or both; hence the efflorescence can be 
potentially intense for AACs. 
 
Effect of Alkali Concentration on Efflorescence 
 
The results obtained by Najafi Kani et al. (2012) showed that the extent of leaching alkalis increased with Na/Al 
increasing from 0.61 to 1.23, and the severity of efflorescence of dry samples after immersion also increased. 
Fig.1 shows our current experiments of examining efflorescence rate on two fly ash-based AACs, GP(L) and 
GP(H), which were prepared by the activation of sodium silicate solution at different dosages: GP(L) contained 
3.9% Na2O (expressed as Na2O to fly ash mass ratio, excluding the Na2O originating from fly ash) while GP(H) 
contained 4.6% Na2O. In GP(L) mixing a small amount of additional water was used to achieve similar 
workability as GP(H). The samples were cured in sealed moulds, initially 24 hours at RH = 90 ± 10%, 25 ± 1°C, 
followed by 12 hours curing at 75 ± 1°C and naturally cooled down to 25 ± 1°C and allowed further 7 days of 
ageing. Specimens were removed from the moulds and put in ambient air with the bottom immersed in water at 
a depth of 0.5-1 mm. Efflorescence occurs on the surface of GP(L) more rapidly. Tiny white products were 
observed after 1.5 hours (not presented here), and after only 2 hours, evidently efflorescence products could be 
seen on its surface above the wet line. In comparison, GP(H) started to exhibit visible efflorescence after 2 hours. 
The leaching analysis of the crushed samples, as a quantitative method of assessing efflorescence potential 
(Zhang et al. 2014), showed that the two AACs have very close sodium releasing rate and fraction (not shown). 
It means that GP(H) has higher efflorescence potential as the absolute amount of leached alkali is higher. This 
result indicates that lowering the alkali concentration in an AAC by reducing the amount of sodium silicate 
activator may not be a good practical method to mitigate efflorescence. In fact, other factors, such as gel 
composition (as a result of varied reaction extent of fly ash due to the change of activation conditions) and pore 
features (size and volume), can also influence the efflorescence rate. 
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Figure 1 Efflorescence of hardened alkali-activated fly ash pastes in contact with water 
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Effect of Solid Raw Materials and Curing Scheme 
 
Fly ashes collected from different power stations vary substantially in their chemistry and physical nature, and 
the slow reaction of some fly ash sources leads to temptation to add excessive alkali to the mix to accelerate 
hardening, which can then lead to efflorescence. Figure 2 shows the efflorescence behaviour of AACs GPG and 
GPM, which were prepared by 12 M NaOH solution activation of fly ashes obtained from Gladstone and 
Millmerran power stations (Queensland, Australia), respectively. The curing conditions were the same as 
described earlier. GPG shows much slower efflorescence rate compared to GPM. 

      
        

(a) GPG                                                      (b) GPM 
Figure 2 Efflorescence of hardened AAC pastes in contact with water for 24 hours 

 
The addition of slag into fly ash-based AACs has been shown to significantly reduce the efflorescence rate; 
however, it does not alter the efflorescence potential (Zhang et al. 2014). In fact it increases the total amount of 
leached alkali. Similar results were reported for natural pozzolan-based AAC (Najafi Kani et al. 2012). The 
addition of 6-8% slag increased the extent of alkali leaching. Therefore, the blending of slag is most likely to 
provide beneficial reductions in permeability rather than changing the binding nature of alkalis. Najafi Kani et al. 
(2012) suggested using alumina-rich admixtures, such as calcium aluminate cement, to reduce the efflorescence. 
This is probably because of the high reactivity of these additives and the high concentration of Al in the derived 
gels, which may require increased amount of alkali ions for charge balance. This mechanism is supported by the 
previous work by Temuujin et al. (2009). They reported that the efflorescence was more intensive in AACs that 
were prepared by preliminarily heated (500°C and 800°C) fly ashes, in which the quantities of amorphous 
phases were slightly reduced.   
 
Curing scheme is one of the most critical factors that affects efflorescence of AACs. Najafi Kani et al. (2012) 
have shown that curing at ≥65°C provided a significant effect in efflorescence reduction. This was verified in a 
previous investigation (Zhang et al. 2014). This is because hydrothermal curing can change the local structure 
and improves the crystallinity of AAC gels. The transition of amorphous gels into more ordered or crystallized 
zeolite seems to reduce the alkali release rate and extent (Fernández-Jiménez et al. 2009). From this point of 
view, the use of some fine crystalline particles in raw materials as seeds to induce crystallization may help to 
reduce the efflorescence. 
 
IMPACT OF EFFLORESCENCE 
 

The Evolution of Microstructure  
 
The effect of efflorescence on the microstructure of AACs GP(L) and GP(H) is shown in Figure 3. The observed 
areas are the surface parts of each sample after 28 days of ambient ageing (in air) and accelerating efflorescence 
(with bottom immersed in water as described above). The crushed particles near the surface were solidified 
using resin, polished and washed in acetone using an ultrasonic washer to remove lose particles.  
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Figure 3 Scanning electron micrograph of AACs after 28 days of ageing under ambient air and accelerating 
efflorescence conditions 

 
After the accelerating efflorescence procedure, GP(L) becomes more porous when compared to its 
corresponding samples after ageing in ambient air. Given that the same polishing and washing procedures were 
used for all the samples, the porous microstructure in cross-section implies the binder may be softer or less 
strong after efflorescence. The loss of alkalis due to the intensive efflorescence in these two binders is likely to 
be harmful for strength development. The cross-section of GP(H) after the accelerating efflorescence 
programme shows the same microstructural feature. 
 
Compressive Strength Development 
 
To date, there is very limited information about the effect of efflorescence on the mechanical properties of 
AACs. Burciaga-Díaz et al. (2010) have shown the degradation of alkali-activated slag binders due to 
efflorescence (mainly carbonation of excessive Na2O) after 360 days of curing. Škvára et al. (2012) proposed 
that the leaching of alkalis from well matured AACs does not affect the strength significantly; they attributed the 
observed slight strength loss to the ‘lower cohesion forces between the gel particles’ when samples were 
immersed. We made direct comparison by measuring the specimens after demoulding, air-ageing and 
accelerating efflorescence recently. Figure 4 shows the compressive strengths of GP(L) and GP(H). After 28 
days of ageing, the compressive strengths of the pastes in air all increase by 20 to 35% from their demoulding 
strengths, while the efflorescence samples show much less increase in strength compared to their strength at 
demoulding.  
  

GP(L)-air GP(L)-efflorescence 

GP(H)-air GP(H)-efflorescence 
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Figure 4 Compressive strengths of well matured AACs after demoulding, air-aging and accelerating 

efflorescence for 28 days 
 

It is evident that efflorescence has a negative influence on strength development. When an AAC paste is placed 
in simulated efflorescence conditions, water can be drawn into the pores of the solid matrix by capillary suction, 
and evaporate from the sample surface. The internal alkalis are able to diffuse towards the surface, providing 
Na+ for the precipitation of sodium carbonates, until an equilibrium (saturation) condition between the pore 
solution and the crystals is reached. The reduced alkali concentration in the matrix due to diffusion will affect or 
suppress the later activation of residual precursors. In addition, the crystallization pressure due to the 
precipitation of sodium carbonates in the pores of the binder may also introduce inner stress, and affect the 
mechanical properties of AAC. Further investigation is required to make a comparison of fully matured 
specimens (strength remains constant in air) and specimens subjected to efflorescence, to reveal the exact 
mechanical impact of efflorescence. 
 
CONCLUSIONS 
 
In this brief review paper we discussed efflorescence occurring in fly ash-based AACs. This phenomenon is 
distinct from that which occurs in Portland cement based materials. The high concentration and high mobility of 
alkalis in normal AAC systems make efflorescence an inborn process. Some progress has been made to 
understand these efflorescence mechanisms and the factors that influence them. It must be highlighted that the 
addition of Al-rich additives and the adoption of hydrothermal curing have been confirmed to be effective 
methods to reduce efflorescence rate. Other aspects, such as how efflorescence will affect the microstructure and 
properties, remain to be established. 
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