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ABSTRACT

A global-local higher order model taking into account transverse normal deformation is presented for the analysis
of laminated composite plates subjected to the actual temperature field. The in-plane temperature field is
expressed as a harmonic series expansion whereas the nonlinear temperature profile across the thickness direction
is determined by solving the heat conduction equation. The validity of the proposed model is verified by
comparing results with existing publications. Moreover, influence of the temperature fields along the thickness
direction on the thermal behaviors of laminates is also investigated. A merit of the present model is that transverse
shear stresses can be evaluated directly from the constitutive equations without stress smoothing.
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INTRODUCTION

With the increased use of composite materials in thermal environments, the thermal stress analysis of laminated
composite materials has aroused considerable interests. Thermal deformation and stress in laminates have been
analyzed by using equivalent single-layer models (ESLMs) (Reddy and Hsu 1980, Kheider and Reddy 1991, Kant
and Khare 1994, Rohwer et al. 2001, Cho and Oh 2003, Wu and Chen 2006), in which the unknown variables are
independent of the number of layers. More ESLMs for thermomechanical problems of laminated plates can be
found in the review articles by (Tauchert 1991), (Noor and Burton 1992) and (Argyris and Tenek 1997). In
addition, (Cho et al. 1989) and (Murakami 1993) used layerwise models to predict thermal response of
multilayered plates. Based on the Reissner mixed variational theorem (RMVT), (Carrera 2000) employed the
mixed layerwise model to predict thermal stresses of multilayered plates. In the mixed layerwise model, the
transverse stress fields and the displacement fields within each layer are independently assumed.

Most of the previous research was concerned with the constant and linear temperature fields through the thickness
of laminates. (Carrera 2002) studied the influence of the temperature fields on the response of multilayered plates.
Analytical and numerical results showed that the temperature fields obtained by solving the heat conduction
equation and the assumed linear temperature fields lead to rather different stresses and displacements. Moreover,
Carrera concluded that the advanced zig-zag models could not produce accurate thermal stresses for temperature
fields derived from the heat conduction equation. On the other hand, (Robaldo 2006) used finite element method
based on layerwise model to investigate the influence of temperature profile on thermal response of multilayered
plates. Layerwise model is more accurate than ESLMs, however this model is computationally expensive with
increasing number of layers because the number of unknown variables depends on the number of layers of the
laminate. Moreover, this model is unable to satisfy the continuity condition of transverse shear stresses at
interfaces. In this paper, the global-local higher order model is used to analyze thermal response of laminated
plates under temperature fields derived from the differential heat conduction equation in the thickness direction as
proposed by (Tungikar and Rao 1994). In the finite element implementation, by means of the quadrilateral
element DKQ developed by (Batoz and Tahar 1982), C! continuity of transverse displacement at the element
interfaces is enforced.

GLOBAL-LOCAL HIGHER-ORDER THEORY

In the present model, the initial displacement fields are written as follows:
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where u;,v; and w, present global components of displacement; f and \72‘ are local displacements up to

order § kz ; Lii and ﬁf are local displacement of order ¢ ,f as shown in eqn (3); the superscript k represents the
layer order of laminated plates. The global coordinates associated with the plate are x, y, z. The reference plane (
z=0) is taken at the mid-surface of the laminate. The local coordinates for a layer are denoted by x, y, &,

where ¢, €[—1,1]. The relations between global coordinates and local coordinates are depicted in Figure 1. The

global-local higher order theory has been studied (Wu and Chen 2006) and conclusion has been drawn that the
fifth-order global-local theory is adequate for the problems of multi-layered plates. Based on the fifth-order in-
plane components, the global displacement components are written as follows

ug(x,y,2) ZZM xy
6(x.z2 sz x,y) @)

way, Zzwxy

The local components can be written as

ku2( )

ﬁLk(x,y, ) Mlk(x»y)
\if(x,y, ) kVIk(X,)’) kvz( ) 3)
ML(X,% ) k”}(x’y)
9?(%% ) gk"s( ’Y)
where &} =@, z—b;a;, = 2 2—Z b = zkﬂ iik
k+1 k k+1 k

Displacement continuity conditions

There are 6n+15 unknown variables in the initial displacement fields. By enforcing the displacement continuity
conditions, 4(n-1) unknown variables can be eliminated. The continuity conditions proposed by (Li and Liu 1997)
can be written as

I’TIlj('x’y>Zk):ﬁLkil(xayazk)
ﬁi(xayazk):ﬁiil(x:yazk)
vf(x:yazk):‘jfil(xayazk)
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where k =2,3,4,---n 4)

Transverse shear stress continuity conditions

By imposing the continuity conditions of transverse shear stresses at interfaces, 2(n-1) unknown variables can be
eliminated. The transverse shear stress continuity conditions are given by

k - k-1 +
sz (X, V> 2 ): sz (xa Vs Zp

ol ey )= (evz)
where z;' and z;; are respectively the z-coordinates at the top and at the bottom of the k' ply.
Now the number of unknown variables is reduced to 21. Further enforcing the free conditions of the transverse
shear stresses on the upper and the lower surfaces, the number of independent unknowns is reduced to 17. Thus,
the final displacement fields for cross-ply laminated plates are

©)
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where detailed expression for CD;‘ and W are given in (Wu Zhen and Chen Wanji, 2009).

1

TEMPERATURE FIELD

The initial temperature field proposed by (Tungikar and Rao 1994) is given by

T(x,y,z)= f(z)sin(mmc/a)sin(nzy/b) (7
where m and n are the wave number on the two principle directions of the plate; a and b are length and width
of the laminated plate, respectively.

fle)=Tpe" ®)
T, is a constant and s is an unknown parameter. The Fourier equation of heat conduction for homogeneous
orthotropic is given by
o°T o°T o°T
Ki—5+K, 7—+K;——=
0°x o’y 0°z

where K,, K,, K, are the thermal conductivities in the x, y and z directions. Substituting equations (7) and

0 )

(8) into equation (9), expressions for unknown parameter s is given by

512 =i\/ K (mz/a) + K,(nz/b)

10
X, (10)
Hence, the temperature field for the kth layer is given by
T (x, y,2)= (Clk coshs,;z+C) sinhszz)sin(mﬂ:x/a)sin(n;zy/b) (11)

The temperature field equation (11) can also be found in Tungikar and Rao’s paper and Carrera’s paper. Enforcing
the continuity conditions of temperature and heat flux g_ at interfaces as well as temperature boundary conditions

on the upper and lower surfaces, 2N constants C; and C é‘ can be determined. Continuity conditions of the
temperature and the heat flux along the thickness direction at interfaces are given by

T y.5 )= (w320 (12)
qzk (x, Y, Z;): qzk_l (x, y,z,j,l) where kK =2,34,---n (13)
The heat flux for the kth ply is given by
or"
q: =K; —— (14)
0z

THE FOUR-NODE QUADRILATERAL LAMINATED PLATE ELEMENT

The strain components in the higher-order shear deformation theory possess first and second derivatives of
transverse displacement w, and C®and C' continuity transverse displacement functions are required.

Transverse displacement function w* satisfying C° continuity condition

Firstly, the transverse displacement function w is given by

WZiNiWiJFiNjo (15)
i=1 j=5

where N, is the shape function of the 8-node serendipity element.
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To obtain the 4-node quadrilateral element, w; at the mid-node along the element boundary can be eliminated

using the Hermite cubic polynomials. For instance, using parameters €, and w, at nodes 1 and 2, the

interpolation of displacement W, can be written as

W, :ZZ:Hiwi+ZleaQYi (16)
where . .
H =L+ LL(L~L,)
Hy =L, +L1,(L, - L)
Hy =(LLy + Ly (L~ L))S, /2
Hyy =(-L Ly + LL,(L ~ L,))S, /2

(17

in which 6, is the tangential slopes at the node i (-=1,2) on the boundary; S, is the length between nodes 1 and

S S
2, Li=1- S_ and L, = S_ in which S is the coordinates along the 1-2 edge. Substituting L, =L, =0.5 in
1 1

equation (16), wy at the mid-node 5 on the 1-2 boundary is given by

1
wy = §(4w1 +8,0, +4w, —S5,0,,) a8)

where 6, (j=1,2,5) on 1-2 boundary are given by

QX]- .
esj:[_ml fl]{a} (=1.2.5) (19)

Y

where [,m are the direction cosines normal to the boundary. Substituting equation (19) in equation (18), the
following equation for w, can be obtained

w

W5=é[4 —mlsl glsl 4 mlSI _€1S1]4 "

(20)
Similarly other mid-node parameters w, ( j =6,7,8) are expressed by nodal parameters [w, 6, 9}7]7

( j =1~4). Substituting mid-node parameters w, ( j =5~ 8) into equation (15), finally, an explicit expression

for the C° continuity displacement function can be written as follows

w'=Fgq

21)
7
where F=[r F, F,].q={w.wow,| and
F, =0.5(mNg /S, —m,Ny/S,)+ N>
F. =—0.125m Ny +m;N,) (22)

F,, = 0.125(¢,m, Ny + € ym,Ny)
NE = (&) en), i=1.234.

Other shape functions, namely, [E F, Fy,-] (i = 2,3,4) can be obtained by cyclic permutation.
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Transverse displacement function w" satisfying C'! continuity condition

To obtain the transverse displacement function w” satisfying C! continuity condition, the rotation function of the
thin plate quadrilateral element DKQ (Batos and Tahar 1982) is adopted as C!-continuity requirement is satisfied
at the inter-element boundaries in strict sense and continuity condition in the element in an average sense (Chen
and Cheung 1997). The explicit expressions for rotations of element DKQ are given by

o _x
{9% q (23)

N=[N, N, N, N,]

where (24)

— pP. P, P,

N,=| ' ¥ WJ , (j=1234) (25)
’ LQJ Qy Qy
B =15(mNs/S, —myNg/S,)
P, =-0.75(m N +m;Ng)+ N
P, =0.75(lymy N5 + £ ymy Ng)
O, =15(-(,Ns/S, +t,Ng/S,)
0, =0.75(¢,m N5 + ( ;m,Ny) (26)
0, =—0.75(({Ns + (3Ng) + Ny’

with Y14 . X41

X
0, = Va1 S my = 12 0, = my, =
2 2 2 2 \/ 2 2 \/ 2 2
VX2 T Yo VX2t Yo X41t Yia X4t Yia

Vo1 =Yoo = Yo Y12 =X = X5 Yia= V1 = Vas X4 =Xy—X

Using the rotations function of DKQ element, the second derivatives of transverse displacement function w*
satisfying C! continuity condition is given by

s

o*w _ 00,
o’ ox
o*w" 00,
= 27)
oy” 0y
o*w" 1[0, . 99,
oxoy 2\ ox oy
Displacement functions
In terms of nodal variables and shape functions, primary displacement unknowns can be expressed as follows
4
U=)NU,
i=1
4
we = Z(Fiwo,i + F W +Fuwo )
i=1
L&
w = Z(Fi*wo,i +in*w0,xi +Fyi*W0,yi) (28)
i=1
where U = [uo Vo W ou Uy, U U, Us V, Vv, Yy, ViV, V5]~
Strain matrix and stiffness matrix
According to linear strain-displacement relations, the strain for the Kt/ layer can be written as follows:
g =ou*=[B, B, B, B, (29)

where 5 =[5 & 8¢ 651 ., andfori=1,2,3,4
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The detailed expression of the strain matrix can be obtained by the method proposed by (Wu et al. 2005, 2014).

From strain matrix B of the refined nonconforming element, the element stiffness matrix K¢ is given by
L
K= (ﬂBT de)i 30
[ ] Z:; » O,Bdxdyflz (30)
On solving the global stiffness equation, nodal displacement {5 e} for load vector {r} can be obtained
>l fod=tr) (1)
NUMERICAL EXAMPLES

To assess the performance of the proposed model for laminates under actual temperature field, two examples are
presented. Owing to symmetry, only one-quarter of the laminated plate has been modeled. The plate geometry and
a 4 x 4 mesh configuration are shown in Figure 2. The following publications are referred to for comparison.
(Robaldo 2006) -T7;: Layerwise finite element results according to actual temperature profile through the
thickness direction.
(Robaldo 2006) -7, : Layerwise finite element results according to the assumed temperature profile.
(Kapuria and Achary 2004) Exact thermo-elasticity solution.
HZIGT (Kapuria and Achary 2004) Analytical results based on higher order zig-zag model including transverse
normal deformation. Transverse shear stresses are calculated using the 3D equilibrium equations.
ZIGT (Kapuria and Achary 2004) Analytical results based on higher order zig-zag model neglecting transverse
normal deformation. Transverse shear stresses are calculated using the 3D equilibrium equations.

Example 1. Simply-supported 3-ply square plate (0°/90°/0°) subjected to actual temperature field
T,(z)sin —sin % and assumed temperature field 7, (z)sin —sin % . Actual temperature profile through the
a a

thickness direction 7;(z) can be obtained by solving heat conduction equation as discussed in the section of
TEMPERATURE FIELD. Temperatures at the top and bottom surfaces are 7, =1 and 7, =—1, respectively.

2
Linear through-the-thickness temperature profile 7,(z) is assumed as T, (z):T()IZ where 7;, =1.

Distributions of two temperature profiles along the thickness direction can be found in Figure 3. The material
constants are given as follows

E,/E, =25, G,7/E, =05, Gy /E;, =02, v,p = v =0.25
oy /a; =1125, K, =36W/m’C, K; =0.96W /m’C

where L and T respectively represent directions parallel and perpendicular to the fibers. The displacements and
stresses are normalized by

7. (0.6/2
ﬁ(a/2,0,z)=—u(ac/li’0’z); fyz(o,b/z,z)=—r’“(bi a -2
L TL

In-plane displacements for both the assumed and the actual temperature fields are compared with results of
layerwise model in Figure 4. It is found that the present results agree well with those of layerwise model.
Moreover, the difference of in-plane displacements between the actual temperature field and the assumed
temperature field is quite noticeable. Furthermore, the influence of temperature profile on the transverse shear
stress can be seen in Figure 5.
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Example 2. Simply-supported 3-ply square plate (0°/90°/0°) subjected to specified temperature fields
T,(z)sin —Sln% and T,(2) Sln—SIH% . For temperature profile 75(z), temperatures at the top and bottom
a a

surfaces are defined as 7, =1 and 7, =1. However, temperatures at the top and bottom surfaces for 7,(z) are

T, =1 and T, =—1, respectively. Temperature fields 75(z) and 7,(z) are shown in Figures 6 and 7. The

material constants used are given as follows
E, =181GPa, E, =103GPa, G, =7.17GPa, G, =2.87GPa, v,; =0.28, v, =0.33

a, =0.02x10°/K , o, =22.5x10°/K ,K, =1.5W/mK, K, =0.5W/mK
The displacements and stresses are normalized by

ﬁ(a/2,0,z)=w, v(o,b/z,z)zw, v—v(o,o,z):loof(ﬂ’
aarTy aa;T, a o, T,
o 0,0,Z 2 L
5.00.9= 700D & (00.5-200D 7 (a/2,0,2)= 2@ 20DL
rfrio ) arLrly o, E Toh
7..(0,b/2,z)L
f}’z(oab/zaz):M, TO =1
o E.Tyh

Distributions of through-the-thickness displacements and stresses for plates under temperature profile 75(z)

obtained from the present model are compared with the exact thermo-elasticity solutions and the existing zig-zag
models (HZIGT and ZIGT) in Figures 8-11. It is found that the present results agree well with exact solutions
whereas higher order zig-zag model (HZIGT) as well as ZIGT seems less accurate. Moreover, transverse shear

stresses 7, computed directly from constitutive equations are also in good agreement with the exact solutions.

Results for displacements and stresses of laminated plates subjected to temperature profile 7,(z) are presented in
Figures 12-14.

CONCLUSIONS

Thermal response of laminated composite plates under actual temperature field has been studied by using the
global-local higher-order theory. The results are compared with exact solutions and those previously published.
From the comparison, the following conclusions can be drawn:

1.  When the actual temperature field through the thickness direction differs significantly from the assumed
temperature field over a thick plate, the two temperature profiles do lead to very different thermal
response.

2. Higher-order zig-zag model neglecting transverse normal deformation is not adequate for the thermal
problems of laminated plates subjected to general temperature fields.

3. Compared with higher-order zig-zag models, the present model usually gives more accurate results for
the thermal response of laminated plate. For a laminated plate with different thickness and materials at
each ply, the transverse shear stress can be determined directly from the constitutive equations.
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