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ABSTRACT 
 
This paper presents research work that aims at developing a robust method for condition assessment of real-life 
concrete structures for the detection of small cracks at an early stage of development. A method is presented that 
utilises an unsupervised one-class support vector machine (SVM).Measured acceleration data from the current state 
of a structure are used as input parameter. The first singular value of the measured response data is utilized for 
training and testing of new data sets. Two damage identification approaches are demonstrated, one implementing the 
SVM for each measurement sensor separately, and another one implementing the SVM for all sensors combined. 
The use of one-class SVM is well suited for the condition assessment in structural health monitoring since they can 
detect the advancement of cracks by assigning progressively negative decision values. The presented method is based 
on unsupervised and non-model-based approaches, and hence there is no need for any representative numerical/finite 
element model of the structure to be created. To demonstrate the feasibility of the method in the detection and 
assessment of gradually evolving deterioration, it is tested on a replicate structure of a concrete jack arch which is a 
main structural component on the Sydney Harbor Bridge – one of Australia’s iconic structures. The test structure is a 
concrete cantilever beam with an arch section which is located on the eastern side of the bridge underneath the bus 
lane. A cut is introduced to the structure using a saw and its length is progressively increased in four stages while the 
depth is kept constant; these four damage cases correspond to less than 0.5% reduction in the first three vibrational 
modes of the structure which is considered a very small damage. It is demonstrated that the presented method can 
reliably detect the progression of the crack in the structure and thus can enable the real-time monitoring of 
infrastructures.   
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INTRODUCTION 
 
All civil structures have finite lives, and they begin to deteriorate as soon as they are put into service, due to 
processes such as corrosion, fatigue, erosion, wear and overloading. To ensure the safety and reliability of ageing 
infrastructures, the concept of structural health monitoring (SHM) was developed in the 1960s and is applied 
today by infrastructure owners and authorities to assess the health condition of a structure. SHM enables early 
and reliable damage detection and health assessment, and thereby prevents catastrophic failures and allows the 
extension of a structure’s lifespan. In general, SHM covers continuous, global and automated monitoring 
practices that aim at detecting, locating and estimating any introduced damaged or any growth of inherent faults 
in a structure and enables the decision making on actions of safety measures and the predication on a structure’s 
residual life, following Rytter’s hierarchy (Rytter, 1993).  
 
The fundamental questions for the design of a SHM system are, as stated in (Cross et al. 2013); what can be 
measured that correlates to damage, how to measure it, and, importantly, how to use the raw measurements to 
make inferences and decisions about structural condition. To date, the most common measurements for SHM 
systems are the vibration responses of a structure (Makki Alamdari et al. 2014). These global measurements 
contain information about the mass, stiffness and damping of a structure and can thereby reflect structural 
changes due to damage. Measurements of acceleration along with strain are the most commonly used quantities 
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in SHM systems, but also other measurements such as acoustic emissions, electrical impedance are being 
employed. An ideal SHM system comprises of a large number of heterogeneous sensors installed across the 
structure at various locations.  
After the collection of raw measurements, a SHM system faces two challenges, one is feature extraction and the 
other is pattern recognition. Since damage fingerprints are typically deeply embedded in the raw measurements, 
a parameter must be formulated that extracts the damage features from the measured raw data. This feature 
extraction process usually also involves dimensional reduction. Some traditional damage sensitive parameters 
are resonant frequencies, mode shapes, modal flexibilities, modal stiffness and modal strain energy. Feature 
extraction methods include modal analysis and statistical methods such as principal component analysis or 
singular value decomposition.  
 
Once a particular feature has been extracted, it must be classified using pattern recognition techniques to 
determine whether it has arisen from the damaged or undamaged structure, and at higher levels of SHM, 
classified as to the location, type and severity of the damage if present (Cross et al., 2013). Pattern recognition 
techniques include supervised learning approaches such as neural networks, support vector machines and 
Gaussian processes (Worden et al., 2011) and novelty detection such as outlier analysis and the use of statistical 
process control charts(Worden et al., 2004). While supervised learning approaches require data from damaged 
states of a structure, novelty detection methods only rely on data from the undamaged condition of a structure, 
which is most often the case for practical applications of in-situ structures.  
 
This paper presents a damage identification method that is applicable to SHM systems of in-situ structures where 
only data of the current (undamaged) state is available. The method uses acceleration response measurements as 
raw data and applies single value decomposition (SVD) as feature extraction technique and one-class support 
vector machine for pattern recognition. The method is validated on experimental data from a laboratory test 
structure that represents a replica of a concrete jack arch from the Sydney Harbor Bridge. Progressive damage of 
four stages is inflicted to the test structure and the vibrational responses are captured by a number of 
accelerometers at the healthy and each damaged state. Two damage identification approaches using the presented 
method are demonstrated, one approach implements the SVM for each measurement sensor separately, and the 
other approach implements it for all sensors combined. The results show that both approaches are robust in 
detecting the presence of damage. The second approach is also successful in reliably indicating the progression 
of damage. 
 
BACKGROUND 
 

Support Vector Machine 
 
Support Vector Machine (SVM) (Cortes & Vapnik, 1995) is a supervised learning technique with strong theoretical 
foundations based on the Vapnik-Chervonenkis theory. It has a strong regularization property, which is the ability to 
generalize a model to new data. These characteristics help to overcome overfitting, which is a common issue for 
neural networks. Furthermore, SVM can unify different types of discriminant functions such as linear, polynomial, 
radial basic functions in the same framework. 
 
In the context of this paper, xis a feature vector extracted from sensor data,          the label of x, where y = −1 
means that x is recorded from a damaged bridge component and y = +1 means that x is measured from a healthy 
component. We want to find a hyperplane with maximum margin that separates the points with labels y = +1 from 
those having y = −1.  
 
The classification model is a function, f          . It is in the form:               ) where ‘.’ is the dot 
product, sgn(x) = +1 if x > 0 and sgn(x) = −1 otherwise. w and b are the parameters of the model and can be learned 
from training data. Given a set of n training samples,             

 , the training process determines the model 
parameters w and b by minimizing the classification error on the training set while still maximizing the margin. 
Mathematically, it is equivalent to the following minimization problem: 
 

            
 
 
          

        (1) 
                                                       (2) 

 
where    is a slack variable for controlling how much training error is allowed and   is the variable for controlling the 
balance between    (the training error) and w (the margin). The problem can be transformed to the dual form using 
Lagrangian multiplier: 
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                        (3) 

                                               (4) 
 
This problem can be solved using quadratic programming. The learned classification model              
                    will be used to determine if a new data instance is coming from a healthy or damaged 
bridge component. A health score for a new data instance, denoted as xnew, can be generated as               . 
 
One-class Support Vector Machine 
 
Due to the limited availability of damaged data for supervised learning, unsupervised or one-class approach is more 
practical. In this work, we use one-class SVM (Schölkopf et al. 2001), (Schölkopf et al., 1999) for damage detection. 
The algorithm is to find a small region containing most of healthy data points. They do that by mapping data into a 
feature space using a kernel function and then separating them from the origin with maximum margin. The Kernel 
function is a function that corresponds to an inner product in the feature space. This makes the algorithm to fit the 
hyperplane in a transformed high-dimensional feature space although we cannot linearly separate the two classes in 
the original feature space. Using the settings of supervised SVM learning with the origin as a second class, the one-
class learning process can be formed as the following optimization problem: 
 
            

 
 
      

  
    

              (5) 
                                                     (6) 

 
where v has similar function as C in supervised SVM and n represents the number of training examples. 
 
It is worth noting that the training dataset        

  in this case only contains feature vectors and no label information is 
provided. Once the model is obtained, health score can be created in the same way as the supervised learning as 
                   . A negative health score from a new data instance will indicate it is an anomaly, which is 
likely damage. 
 
Feature Extraction 
 
The method used in this paper is based on the Frequency Domain Decomposition (FDD) technique, which uses 
Singular Value Decomposition (SVD) of the spectral matrix. This section aims to provide a theoretical background 
of FDD. 
 
Suppose a system under white Gaussian excitation. The relation between an unknown input and the measured 
response can be expressed by: 
 
    ( ) ( ) ( ) ( )T

xx ffG H G HZ Z Z Z          (7) 
 
where xxG is am × m Power Spectral Density (PSD) matrix of the responses and ffG is a n × nPSD matrix of the input 
excitation. His am × n Frequency Response Function (FRF) matrix. Under assumption of a white Gaussian input and 
lightly damped system, it can be proved that the PSD of response corresponds to Eigen-parameters of the system 
[(Brincker et al., 2000)].  
 
In FDD, the first step is to estimate the PSD matrix of the response. At each frequency, the PSD matrix is 
decomposed by taking the SVD of the matrix as: 
 
     ( ) H

xxG U UZ  6           (8) 
 

Where U and6  are m × m unitary matrix of singular vectors and diagonal matrix of singular values, respectively. In 
this study, the first singular value of 6 at each frequency coordinate is utilized as damage sensitive feature and 
training of the model is performed according to the estimated first singular values of the measured responses at the 
healthy state of the structure. 
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EXPERIMENTAL CASE STUDY 
 
The experimental set-up for this study is a reinforced concrete jack arch, which is one of the major structural 
components of the Sydney Harbor Bridge. There are 800 concrete jack arches on the underside of the deck of the bus 
lane, see Figure.1(a). For the bridge management, it is critical to detect any structural deterioration in the arches as 
early as possible in order to schedule the required inspection and repair. A steel reinforced concrete beam was 
manufactured with a similar geometry to those on the Sydney Harbor Bridge, see Figure.1(b). The length of the 
specimen was 2000 mm, the width was 1000 mm and the depth was 374 mm, see Figure.2(a) and (b). 
 
A 16-channel NI PCI-6133 data acquisition was used to capture the force and resultant acceleration time histories. To 
measure the structure’s vibrational response, the structure was excited using an impact hammer with steel tip, which 
was applied on the top surface of the specimen just above the sensor A9, see Figure.2 (a). The acceleration response 
of the structure was collected by 10 uniaxial PCB 352C34 accelerometers placed at the front face of the jack arch 
termed A1, A2, …, A10, see Figure.2(a). Measurement were recorded for 2 seconds at a sampling rate of 8 kHz, 
resulting in 16000 samples for each event.  
 
After testing the benchmark structure in its healthy condition, a crack was gradually introduced to the specimen 
between sensors A2 and A3 with four levels of crack dimensions: (75 × 50) mm, (150 × 50) mm, (225 × 50) mm and 
(270 × 50) mm, see Figure.2 (c), (d), (e) and (f). A total of 190 impact test responses were collected from the healthy 
condition and at each level of damage severity. 
 
In order to investigate the impact of damage on the natural frequencies, at each damage case, a comparison was 
made on the measured frequency responses. Figure.3 compares the Fast Fourier Transform (FFT) of four damage 
cases and the healthy state. As expected, the discrepancy is more obvious at higher frequencies, higher than 
500 Hz, in this case, and there is not much distinguishable difference in frequencies lower than 500 Hz. It was 
realized that the change in the first three natural frequencies between the healthy state and all damage cases was 
less than 0.5% which corresponds to very small damage.  
 

 
(a) 

 
(b) 

 
Figure 1. Illustration of (a) the bus lane on the Sydney Harbour Bridge, (b) one of the concrete jack arches 

underneath the bus lane. 
 
DAMAGE IDENTIFICATION RESULTS 
 

First Approach: Implementation of SVM for Each Sensor Location 
 
Two different approaches were implemented to build and train a model utilizing one-class support vector machine. In 
the first approach, for each sensor location and for all events, 190×5 (190 events for each state of the structure 
including one healthy state and four damage states), the features in the frequency domain were created as follows. 
For every vibration event, the data from each accelerometer were standardized to have zero mean and one standard 
deviation. Then the data were converted to the frequency domain to generate the power spectral density. Only half of 
the samples (8000) were used since the frequency spectra were mirrored with respect to the Nyquist frequency; 
hence, there were 8000 feature elements for each event. All 190 events from the healthy state of the structure were 
implemented to train the model. A separate model was constructed for each sensor location. The remaining data from 
four damage cases were implemented for the testing and an accuracy of 99% was effectively obtained for all sensor 
locations showing that all damage cases were correctly identified as a separate class. Then testing was separately 
performed for each damage case. All 190 events from each damage case were utilized for testing to detect the 
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progress of damage in the structure. The results of the testing for all 10 sensors locations and four damage states are 
depicted in Figure 4.  
 

(a) (b) 

(c) (d) 

(e) (f) 
 

Figure 2. Test specimen: (a) intact structure with arrow indicating the cut, (b) support of the structure, (c) 
damage case 1: 75 mm damage cut, (d) damage case 2: 150 mm damage cut, (e) damage case 3: 225 mm 

damage cut and (f) damage case 4: 270 mm damage cut. 

 
Figure 3. Comparison of the FFT of response in the healthy case and four damage cases for sensor location A4  
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The horizontal axis in each graph indicates the event index including 190×4= 760 events in total and each circle 
refers to one of these events. The vertical axis refers to the decision values. The four damage cases are 
differentiated by four colours. The first 190 events refer to damage case 1, the second 190 events refer to damage 
case 2, the third 190 events refer to damage case 3 and the last 190 events refer to damage case 4. The average of 
all decision values for each damage case is calculated and illustrated by a big black point. A line connects the 
averages of all decision values at each damage case as shown in Figure 4. 
 
As illustrated, almost all obtained decision values are negative which indicates the fact that the testing data are 
not from the same class as the trained data which corresponds to the healthy state of the structure. On the other 
hand, it can be observed that with an increasing damage severity, an overall decrement trend in decision values is 
obtained, however, this is not the case for sensor A2 from damage case 1 to damage case 2. Also, it can be seen 
that there is very small variation in the connecting line at most sensors from damage case 3 to damage case 4 
meaning that most sensors cannot detect the progress of the crack in the structure from case 3 to case 4.  
 
From this demonstration, it can be concluded that an individually trained ML model for each sensor is able to 
detect the presence of damage in the structure (a negative decision value is obtained for an event from a damaged 
state). Moreover, the progress of the crack in the structure can also be identified for most sensors. 
 

 
  

 
Figure 4. Damage identification results applying SVM for each sensor location 

 

Second Approach: Implementation of SVM for All Sensor Locations 
 
In the second exercise, the SVD approach was implemented as follows. At each frequency coordinated, the 
power spectral matrix was constructed. This matrix will be a 10 by 10 symmetric matrix. Then by applying 
SVD, the singular values of the constructed matrix were estimated for each frequency spectrum. The first and 
second singular values from the healthy state of the structure were utilised to train the model and then testing 
was conducted using the first and second singular values of each damage case. The obtained decision values are 
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presented in Figure 5 and Figure 6 for first and second singular values, respectively. The set-up of the graphs is 
the same as for Figure.4.  
 
As illustrated, almost 99% of the tested data is correctly identified as unhealthy event since the obtained decision 
value is negative. In addition, using this approach, the progress of damage is correctly identified as a decreasing 
trend in the damage index line is obtained.  
 
This demonstration illustrates that training and testing the model using all sensor data results in a more robust 
indication of the crack progression in the structure. An interesting finding is that not only the first singular value 
can successfully assess the crack growth in the structure but also the second singular value can reliably detect its 
progression.  

 
 

 
 

Figure 5. Damage identification results using first singular value 

 

 
 

Figure 6. Damage identification results using second singular value 
 

CONCLUSION 

This work presented a damage detection methodology using a machine learning algorithm. A structural benchmark 
model was learnt using one-class SVM on a structural component of the Sydney Harbor Bridge and then was tested 
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with data from damaged states of the structure. This approach suits real situations where data from a damaged state 
are not available for supervised learning. To demonstrate the method, an artificial damage was inflicted to the test 
structure and its severity was increased in four stages. Then new events were tested against the benchmark model to 
detect damage. Two different exercises were conducted to detect the presence and progress of damage in the 
structure. In the first approach, a model was constructed for each sensor location and in the second approach a model 
was constructed using the first and second singular value of the power spectral matrix. It was demonstrated that both 
approaches can reliably detect the presence of damage in the structure; however, the second approach is more 
superior in the detection of the crack progression in the structure. These findings indicate that the application of 
unsupervised learning along with the implementation of one-class SVM can provide a robust separation of two states 
of a structure (healthy and damaged) and can successfully evaluate the progression of damage, which is critical for 
structural condition assessment.   
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