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ABSTRACT 
 
Modal identification is a technique that can assess modal properties of structures based on vibration data. This 
technique can be categorized into known and unknown input modal identification. Known input modal 
identification, e.g. forced vibration tests, is more economically demanding because of the need of special 
devices to generate artificial loading but the data obtained has higher signal-to-noise ratio. Unknown input 
modal identification, e.g. ambient vibration, could be performed economically with structures under working 
conditions. This study employs a fast Bayesian FFT method to not only identify the modal parameters, such as 
natural frequencies and damping ratios, but also quantify the uncertainties associated with the modal 
identification results. This provides a tool to investigate the uncertainties in the modal identification. In this 
study two numerical examples are used to generate synthetic data for investigating and comparing the 
uncertainties in the known and unknown input modal identification. 
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INTRODUCTION  
 
Modal identification is a process to assess the actual dynamic properties, such as the natural frequencies, 
damping ratios and mode shapes, of structures using vibration data. It is one of the important components in 
vibration control and structural health monitoring. Modal identification can be classified into known and 
unknown input excitation condition. The former usually refers to force vibration test (Edwin 2000; Au and Ni 
2013) using artificial input loading, in which both loading and response of structures are simultaneously 
measured during the test. The latter (Brownjohn 2003; Au 2011; Au 2012; Au et al. 2013; Au and Zhang 2016) 
usually refers to a case where only response is measured during the test, e.g. unknown loading from wind acting 
on buildings. 
 
The known input excitation modal identification requires special devices, such as shaker or impulse hammer, to 
generate the artificial input loading, and hence, it is more economically demanding. However, this approach is 
usually able to achieve a good signal-to-noise (s/n) ratio for the measured vibration data. The unknown input 
excitation modal identification can be performed economically. It assumes the loading is statistically random, 
and hence, it does not require specific knowledge of loading, special device to generate the artificial input 
loading, and can be carried out with structure under working condition. Since the loading is not measured, the 
process of modal identification is more sophisticated. 
 
In the literature different methods have been developed to identify the modal parameters from vibration data for 
known and unknown input excitation modal identification. For the known input excitation condition, half-power 
bandwidth method (Zembaty and Kowalski 2000) and least-square fitting of frequency response function (Maia 
et al. 2003) have been used to determine the modal parameters from vibration data consisting of the input 
loading and responses of structures. For the unknown input excitation condition, natural excitation technique 
(James et al. 1995) and stochastic subspace identification method (Reynders et al. 2007) have been developed 
for ambient modal identification in the literature. 
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There are a number of challenges in determining the modal parameters in practical situation through vibration 
data, such as the limited number of sensors, limited frequency bandwidth in response, modelling error and 
measurement noise. There are always uncertainties associated with the identified modal parameters. Recently a 
Bayesian system identification approach has been proposed to address these challenges (Beck and Katafygiotis 
1998; Papadimitriou et al. 2001; Beck 2010). Time-domain Bayesian formulation for system identification with 
known input excitation data (Yuen and Katafygiotis 2002) and ambient data have been developed in the 
literature (Yuen and Katafygiotis 2001). However, a frequency-domain formulation can provide a more robust 
approach in stochastic modelling of the prediction error that account for the discrepancy between the model and 
measured data. In addition it also allows the modal identification carried out using only the spectral data in a 
selected frequency band dominated by the contributing modes of interest, and hence, it can improve the 
accuracy in the modal identification. In frequency-domain, a Bayesian approach (Yuen and Katafygiotis 2003) 
using fast Fourier transform of vibration data has been developed for unknown input excitation modal 
identification previously. Recently efficient algorithm that allows practical implementation in the modal 
identification has been proposed for known and unknown input excitation condition. The fast Bayesian modal 
identification approach for modal identification of structures has been developed for known single-input force 
vibration (Au and Ni 2013) and unknown input excitation condition (Au 2012). Although methods have been 
developed to quantify the uncertainties associated with the identified modal parameters, the relationship 
between known and unknown input excitation conditions and insights into the uncertainties associated with the 
identified modal parameters are still unclear. 
 
The objective of this study is to investigate the uncertainties associated with identified modal parameters of 
structures under known and unknown input excitation condition. In this study the fast Bayesian approaches for 
known and unknown input excitation condition have been employed to not only identify the modal parameters, 
but also the associated uncertainties. The next section first presents the Bayesian formulations for known and 
unknown input excitation condition, which includes the Bayesian fast Fourier transform (FFT) formulation for 
known and unknown input condition, calculation of posterior uncertainties and definition of modal s/n ratio. 
After that a numerical case study is carried out identify the modal parameters and quantify the associated 
uncertainties. Finally, conclusions are then drawn. 
 
BAYESIAN FFT MODAL IDENTIFICATION THEORY 
 

Bayesian FFT Formulation 
 
In this study the fast Bayesian FFT modal identification approach (Yuen et al. 2002; Au 2012; Au and Ni 2013) 
is employed to not only identify the modal parameters but also their associated uncertainties. The following 
sections briefly explain methods for known and unknown input condition in the modal identification. In the 
context of modal identification, the measured acceleration , where N  is the number of 
samples per measurement channel, is modeled as 
   (1) 
where  is the model acceleration response given by a set of modal parameters  . { j  Rn}  is the 
prediction error that is the discrepancy between the measured response and the model response. Taking FFT on 
Eq. (1), the prediction error model in the frequency domain is 
   (2) 
where  is the FFT of the model acceleration response corresponding to frequency fk = (k  1) /N t . 
 k  Cn  is FFT of the prediction error at frequency fk   and assumed has a flat PSD in the frequency band of 
interest. The FFT of the measured acceleration response  is defined as  

   (3) 

where  t  is the sampling interval and i2 =  1 . For k = 2,3,...,Nq , the FFT corresponds to frequency 
fk = (k  1) /N t , where Nq = int[N / 2]+1 is the frequency index at the Nyquist frequency and int[×]  denotes 

the integer part of its argument. The scaling factor 2 t /N  is defined such that the spectral density is one-
sided with respect to the physical frequency in Hz rather than circular frequency in rad/s. In the modal 
identification the values for k =1 , Nq +1, Nq + 2,...,N  are ignored because the former simply gives a scaled 
sample average of the signal due to the voltage offset of the measurement channel; the latter are the conjugate 
mirror image of those values at k = 2,3,...,Nq , hence, providing no addition information. Thus only (Nq  1)  
FFT values are used in the modal identification. In practice only FFT data within the selected resonant 
frequency band covering the modes of interest are used for modal identification as remaining band contains only 
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negligible or irrelevant information, which tend to increase the error in the modal identification. Hence, the FFT 
data used in the modal identification only over N f  frequencies in the selected resonant frequency bands. 
 
Known Input Modal Identification 
 
For modal identification with measured acceleration response and known input force, the modal parameters to 
be identified consist of the natural frequencies { fi :i =1,...,m}, damping ratios { i :i =1,...,m}  mode shapes 
{ (i)  Rn :i =1,...,m}, modal mass {Mi :i =1,...,m}  and the power spectral density (PSD) of prediction error 
Se . Let  and  are an augmented vector comprising the 
real and imaginary part of  and , respectively. Using the Bayes’ theorem and assuming a non-
informative prior distribution, the posterior probability density function (PDF) of   given the FFT of the 
measured data is given by 

 p  Ẑk{ }( ) µ p  ( ) p Ẑk{ }  ( )   (4) 

where p( ) is the prior PDF that reflects the plausibility of   in the absence of data. A non-informative prior is 
common condition because the variation in the posterior PDF is often dominated by the likelihood function with 
large amount of data, hence, the posterior PDF p( {Ẑk}) is directly proportional to the likelihood function 
p({Ẑk}  ) . The likelihood function in individual frequency is given by (Au and Ni 2013) 

 p Ẑk{ }  ( ) =
1

2 ( )n det Cik( )1/2
exp  

1
2
Ẑk  Zk( )T Ck 1 Ẑk  Zk( )é

ëê
ù
ûúk

Õ   (5) 

where Ck   is the covariance matrix of Ẑk . Since it is assumed that the sample size N  is large, the  and 
 of Ẑk  are asymptotically independent and have a variance of Se / 2 . The likelihood function can be 

simplified and its compact form is 

   (6) 

where  

   (7) 

and hik = [( ik
2  1)+ i 2 i ik( )] 1  is the (complex) transfer function of the ith mode evaluated at frequency fk . 

 ik = fi / fk  is a frequency ratio. Sk  is FFT of the measured acceleration of the moving mass of the shaker at 
frequency fk . Se  is the spectral density of the prediction error and  r (i)= ri (i) . In this study the mode shape 
is normalized such that it is equal to unity at the input degree-of-freedom (dof) I , and hence,  r (I,i) = ri . 
 
It is more convenient to work with the negative log-likelihood function (NLLF), so that 

 p  Ẑk{ }( ) µ exp  L  ( )éë ùû    (8) 

where 

   (9) 

 
For globally identifiable case under the condition of high sampling rate and long duration of data in the modal 
identification, the posterior PDF can be well approximated by a Gaussian PDF, which is equivalent to second 
order approximation of L  ( ) . Let  ̂  be the most probable value (MPV), which maximises the posterior PDF, 
and hence, minimises the NLLF. Consider the second-order Taylor series about  ̂  

 L  ( )  L  ̂( ) +
1
2

   ̂( )T HL  ̂( )    ̂( )   (10) 

where HL ( )  is the Hessian of Eq. (9) at the MPV. Substituting Eq. (10) into Eq. (8), the posterior PDF 
becomes a Gaussian PDF 

 p  Ẑk( ) µ exp  
1
2

   ̂( )T Ĉ 1    ̂( )é
ëê

ù
ûú

  (11) 

where Ĉ  is the posterior covariance matrix and is given by 

 Ĉ =HL  ̂( ) 1
  (12) 

It can be seen that the Gaussian PDF is completely characterised by the MPV and the covariance matrix, hence, 
a fast computation of these quantities is important for practical implementation of the Bayesian method 
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Unknown Input Modal Identification 
 
In unknown input modal identification, the prediction error and modal forces can be modelled as independent 
and identically distributed (i.i.d.) Gaussian white noise and stationary process with a constant spectral density 
matrix, i.e. independent of k, respectively. The modal parameter   to be identified consists of natural 
frequencies { fi :i =1,...,m}, damping ratios { i :i =1,...,m} , mode shapes { (i)  Rn :i =1,...,m} , Hermitian 
PSD matrix of modal forces S  Rm m , and power spectral density of prediction error Se . For large N and small 
time step in the data acquisition, Ẑk  are asymptotically independent at different frequencies and their real and 
imaginary part follow a Gaussian distribution (Yuen and Katafygiotis 2003). The likelihood function p(Ẑk  ) is 
then given by 

 p Ẑk{ }  ( ) = 2 ( ) nN f detCk  ( )
k
Õé
ëê

ù

ûú

 
1
2
exp  

1
2

Ẑk
TCk  ( ) 1 Ẑk

k
åé

ë
ê

ù

û
ú   (13) 

where det(×)  denotes the determinant. The sum and product are over the N f  frequencies in the selected 
frequency band. Ck  depends on  , and is given by 

 Ck =
1
2

 ReHk( )  T  ImHk( )  T

 ImHk( )  T  ReHk( )  T

é

ë

ê
ê

ù

û

ú
ú

+
Se
2
I2n   (14) 

where the first and second term account for the contribution from the model response and prediction error, 
respectively.  = [ (1),...,  (m)]  Rn m  is the mode shape matrix confined to the measured dofs. I2n  is the 
2n  2n   identity matrix. Hk  is the theoretical spectral density matrix of the model response with (i,j) entry 
given by 
 Hk i, j( ) = Sijhikhjk

*   (15) 
where Sij  is the cross spectral density between the ith and jth modal force. The posterior PDF p( Ẑk ) in terms 
of the NLLF L( ) as 
 p  Ẑk( )µ exp  L  ( )éë ùû  (16) 

where the log-likelihood function L( )  is defined as 

 L  ( ) =
1
2

lndetCk  ( ) + Ẑk
TCk  ( ) 1 Ẑké

ë
ù
û

k
å   (17) 

For a sufficiently large amount of data, the posterior PDF can be well-approximated by a Gaussian PDF centred 
at the most probable value. Considering the second order Taylor series about  ̂  with the first term vanishes due 
to optimality of  ̂ , it can be shown that the posterior covariance matrix is equal to the inverse of the Hessian of 
L( ) evaluated at the most probable value. 
 
Posterior Uncertainties 
 
In known and unknown input forced modal identification, the MPV of the modal parameters are determined by 
maximizing p( Ẑk ) , which is equivalent to minimizing NLLF. The posterior covariance matrix is then 
approximated by the inverse of the Hessian of the NLLF. In this study, coefficient of variation (c.o.v.) is used as 
an indicator of the uncertainties associated with the identified modal parameters. The c.o.v. is calculated as the 
ratio of the square root of variance, which is the corresponding diagonal element of the posterior covariance 
matrix, to the MPV value. 
 
Modal Signal-to-noise Ratio 
 
This section defines the modal s/n ratio, and hence, to provide an indication of the quality of the data for modal 
identification and assist interpreting the identification results. A modal s/n ratio is defined as the PSD of 
acceleration response to the PSD of the prediction error as 

  =
S

4Se 
2   (18) 

This is organically defined in the case of unknown input forced modal identification. In the case of known input 
force modal identification, S = SFr

2  
2
 I
2  where SF  is the PSD of the shaker acceleration within the selected 

frequency band and  I  is the mode shape value at the shaker dof. 
 
NUMERICAL CASE STUDIES 
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Effect of Modal Signal-to-noise Ratio 
 
A two-story shear building was considered to study the effect of different levels of measurement noise on 
uncertainties associated with the identified modal parameters. The height of the first and second story of the 
shear building is 4 m and 3 m, respectively. The shear building has uniform mass 5600 kg, and the inter-story 
stiffness of the first and second story is 1.769×107 N/m and 1.244×107 N/m. The natural frequencies are 3.261 
Hz and 11.211 Hz. The damping ratio is assumed to be 1% in all modes. It is assumed that an accelerometer was 
installed at each story to measure the acceleration responses in horizontal direction. The measured responses are 
assumed with sampling rate at 100 Hz. It is assumed that the measured acceleration was contaminated by i.i.d. 
Gaussian white noise with a root PSD of 1×10-6 g / Hz . Pseudo-random excitation with different magnitudes 
and having a flat root PSD from 0.1 Hz to 20 Hz frequency band is applied to the second floor of the shear 
building. The excitation signal was generated by band-passing a Gaussian white noise signal through a second 
order Butterworth filter. 185 s acceleration responses were measured, which covers 10 s before the shaker is 
turned on, 140 sec pseudo-random excitation, and 35 s free vibration after the shaker is turned off. 

 
Figure 1 a) Root PSD spectrum of shaker mass applied on the two-storey shear building and b) corresponding 

root PSD spectrum of acceleration data 
 

Figure 1a shows one of the considered Pseudo-random excitations applied on the second floor of the two-story 
shear building. The root PSD spectrum of the measured acceleration responses at the first and second story of 
the two-story shear building are shown in Figure 1b. Figure 1b shows that two modes are adequately excited 
with their resonance peaks apparent. The known and unknown input fast Bayesian FFT modal identification are 
used to identify the modal parameters, i.e. natural frequencies and damping ratios, and quantify the associated 
uncertainties. In the case of the unknown input modal identification, the two-story shear building is subjected to 
the same excitation as the known input case. However, the measured input loading is not used, and hence, it is 
output-only modal identification. Two modes are identified separately with a single mode ( m =1) assumed 
within each band. In this study the FFT data within frequency bands (3.065 – 3.457 Hz) and (10.539 – 11.884 
Hz) are used to identify the 1st and 2nd mode, respectively. 

 

 
Figure 2 a) Identified 1st mode of natural frequency and b) corresponding posterior c.o.v. versus modal s/n ratios 

(circles: known input; crosses: unknown input; dashed line: true value) 
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Figure 3 a) Identified 1st mode of damping ratio and b) corresponding posterior c.o.v. versus modal s/n ratios 

(circles: known input; crosses: unknown input; dashed line: true value) 
 
Figures 2a and 3a show the identified 1st mode natural frequencies and damping ratios using known and 
unknown input modal identification. The modal s/n ratio rather than the excitation magnitude is shown, as it is 
dimensionless and more informative. The results show that the natural frequencies and damping ratios identified 
by known and unknown input modal identification are close to the true value. However, the natural frequencies 
and damping ratios identified by the known input modal identification have better agreement with the true value 
than the unknown input modal identification. Figures 2b and 3b shows the posterior c.o.v. of the identified 
natural frequencies and damping ratios, respectively. It can be seen that the value of the posterior c.o.v. 
decreases with the increase in the modal s/n ratio. For the case of unknown input modal identification, the 
posterior c.o.v. of natural frequency and damping ratio tend to be a constant at 0.174% and 21.635%, 
respectively, which are much higher than the posterior c.o.v. in the known input excitation modal identification 
(0.003% and 0.491% for natural frequencies and damping ratios). The reason is that the unknown input modal 
identification does not have the loading information, and hence, it always has larger uncertainty associated with 
the identified natural frequencies and damping ratios. The identified natural frequencies and damping ratios and 
the associated posterior c.o.v. for the 2nd mode versus different modal s/n ratios are also shown in Figures 4a and 
5a, and Figures 4b and 5b, respectively. A similar phenomenon is observed in the results for 2nd mode.  
 

 
Figure 4 a) Identified 2nd mode of natural frequency and b) corresponding posterior c.o.v. versus modal s/n 

ratios (circles: known input; crosses: unknown input; dashed line: true value) 

 
Figure 5 a) Identified 2nd mode of damping ratio and b) corresponding posterior c.o.v. versus modal s/n ratios 

(circles: known input; crosses: unknown input; dashed line: true value) 
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Effect of Measured Number of Degrees-of-freedom 
 
The second example is a ten-story shear building. It was used to study the effect of measured number of dofs. 
The ten-storey shear building has uniform floor mass of 100 ton, inter-story stiffness of 177 kN/mm and 
damping ratio of 1% in all modes. The natural frequency of the first two modes are 1 Hz and 2.98 Hz. It is 
assumed that a shaker is installed on the top of the building to generate horizontal excitation. The excitation 
signal is a pseudo-random excitation with a flat root PSD from 0.1 Hz to 20 Hz. This example considers 
increasing number of accelerometers installed from the top to the bottom of the ten-story shear building. The 
sampling rate of each accelerometer is 100 Hz in the simulation and the data is contaminated by i.i.d. channel 
noise with a root PSD of  1×10-6 g / Hz . The data covers 50 s before the shaker is turned on, 500 s forced 
vibration during the shaker is turned on, and 50 s free vibration after the shaker is turned off. Table 1 
summarized the number of measured dof and the locations for the ten-story shear building. 
 

Number of measured dof n Floors with accelerometer installed 
2 10/F, 9/F 
3 10/F, 9/F, 8/F 
4 10/F, 9/F, 8/F, 7/F 
5 10/F, 9/F, 8/F, 7/F, 6/F 
6 10/F, 9/F, 8/F, 7/F, 6/F, 5/F 
7 10/F, 9/F, 8/F, 7/F, 6/F, 5/F, 4/F 
8 10/F, 9/F, 8/F, 7/F, 6/F, 5/F, 4/F, 3/F 
9 10/F, 9/F, 8/F, 7/F, 6/F, 5/F, 4/F, 3/F, 2/F 
10 10/F, 9/F, 8/F, 7/F, 6/F, 5/F, 4/F, 3/F, 3/F, 2/F, 1/F 

Table 1 Summary of the number of measured dof n and locations for the ten-story shear building (shaker located 
at 10/F) 

 
Figure 6 shows the mode shapes for 1st and 2nd mode of the ten-story shear building. The study focuses on 
identifying the natural frequency and damping ratio of the 2nd mode. The reason is that the value of the mode 
shape component at the 7th floor is almost close to zero, which means the accelerometer installed at 7th floor 
does not contain much information of the 2nd mode. This is used to study the effect of the modal information 
measured by each accelerometer on the uncertainties associated with identified natural frequencies and damping 
ratios.  

 
Figure 6 1st and 2nd mode shape of ten-story shear building 

 
Figure 7 shows the modal s/n ratio versus different number of measured dofs for 1st and 2nd mode. For the 1st 
mode, the modal s/n ratio increases with diminishing rate as n increases. This is because the increasing number 
of accelerometers are placed from the top to the bottom on the ten-story shear building and the information 
measured for 1st mode at each dof increases with diminishing rate as evidenced by the mode shape of the 1st 
mode in Figure 6. Different to 1st mode, the modal s/n ratio of the 2nd mode does not increase much even an 
accelerometer is added on 7th floor. The reason is that the mode shape of the 2nd mode having an almost zero 
value component at this floor, which means the accelerometer installed at this floor does not provide much 
information of the 2nd mode. 
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Figure 7 Modal s/n ratio versus the measured number of dofs for ten-story shear building (circles: 1st mode; 

crosses 2nd mode) 
 
Figures 8 and 9 show the posterior c.o.v. of the identified natural frequencies and damping ratio for the 1st mode 
under known and unknown input excitation condition. As expected, the posterior c.o.v. of the identified 
damping ratio is much larger than the identified natural frequency. Comparing the posterior c.o.v. in known and 
unknown input modal identification, the uncertainty associated with the identified modal parameters is always 
larger than that in known input modal identification. This is because the input excitation information is not 
provided, and hence, there is less information available in the modal identification process. Figures 8a and 9a 
show that the posterior c.o.v. of the identified natural frequencies and damping ratios in known input modal 
identification decrease with diminishing rate as the n increases, which is consistent with modal s/n ratio as 
shown in Figure 7. However, the posterior c.o.v. in the unknown input modal identification is insensitivity to n 
as shown in Figures 8b and 9b. 
 

 
Figure 8 Posterior c.o.v. of the identified 1st mode natural frequency using a) known and b) unknown input 

modal identification for ten-story shear building 
 

 
Figure 9 Posterior c.o.v. of the identified 1st mode damping ratio using a) known and b) unknown input modal 

identification for ten-story shear building 
 

Figures 10 and 11 shows the identified 2nd mode natural frequency, damping ratio and the corresponding 
posterior c.o.v. using known and unknown input modal identification. As shown in Figure 7, the modal s/n ratio 
of the 2nd mode does not increase much as the 4th accelerometer (n = 4) is added to the 7th floor, where the value 
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of the mode shape component is almost close to zero, and hence, the accelerometer at the 7th floor does not 
provide much information about the 2nd mode. This is consistent with the posterior c.o.v. of the identified 2nd 
mode natural frequency and damping ratio under known input modal identification as shown in Figures 10a and 
11a. Both figures show that the values of the posterior c.o.v. of the identified natural frequency and damping 
ratio do not reduce after the 4th accelerometer was added at the 7th floor. For unknown input modal identification, 
the values of the posterior c.o.v. are not as sensitive as the results of known input modal identification to n. 

 

 
Figure 10 Posterior c.o.v. of the identified 2nd mode natural frequency using a) known and b) unknown input 

modal identification for ten-story shear building 
 

 
Figure 11 Posterior c.o.v. of the identified 2nd mode damping ratio using a) known and b) unknown input modal 

identification for ten-story shear building 
 
 
CONCLUSIONS 
 
A comparison of the uncertainties associated with the modal parameters in modal identification has been 
presented in this paper. The study employs a frequency-domain fast Bayesian FFT method to identify the modal 
parameters, such as natural frequencies and damping ratios, from vibration data. In addition to identifying modal 
parameters, the fast Bayesian FFT method also quantifies the associated uncertainties in modal identification. 
This study has analysed and compared the uncertainties in known and unknown input condition. In general the 
uncertainties associated with the modal parameters in unknown input modal identification is much larger than 
and as not as sensitive as known input modal identification to modal s/n ratio. This study has compared and 
provided insights on the uncertainties of known and unknown input modal identification. 
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