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ABSTRACT.  

The effects of constant rearing temperatures on the development and survival of Amblypelta 

nitida, A. lutescens lutescens (Hemiptera: Coreidae) and their egg parasitoid, Anastatus sp. 

(Hymenoptera: Eupelmidae), were studied in the laboratory. Amblypelta nitida and A. l. 

lutescens survival and development was studied at 10, 15, 20, 25, 30 and 35°C. The 

development rate of both species increased linearly with increasing temperature but insects 

only developed to adults at 20, 25 and 30°C; at these temperatures, mean development times 

for A. nitida were 87, 64 and 29 days and for A. l. lutescens they were 93, 65 and 31 days 

respectively. No eggs of either species hatched at 10°C and only A. l. lutescens eggs hatched 

at 35°C. At all temperatures at which insects developed beyond the first instar, mortality rates 

were highest in the second instar for both species. Lower developmental threshold 

temperatures to complete development were 15.9°C and 17.1°C for A. nitida and A. l. 

lutescens respectively; A. nitida required 421 degree-days and A. l. lutescens required 404 

degree-days to complete development. Anastatus sp. completed development at all six study 

temperatures and development times decreased from 54 days at 17.5°C to 16 days at 30°C; 

similarly Anastatus sp. survival increased with increasing temperature. The lower 

developmental threshold temperature and degree-days required for Anastatus sp. to complete 

development were 15.0°C and 234 degree-days respectively. Results are discussed with 

respect to the different geographical distributions of A. nitida and A. l. lutescens and likely 

interactions with Anastatus sp.. 
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Introduction 

The fruitspotting bug, Amblypelta nitida Stål and the banana-spotting bug, A. lutescens 

lutescens Distant (Hemiptera: Coreidae) are native polyphagous insect pests of a wide range 

of tropical and subtropical fruit and nut crops on the east coast of Australia (A. nitida ≈23°S 

150°E- ≈34°S 151°E and A. l. lutescens ≈10°S 142°E- ≈27°S 153°E; Danne et al. 2014). 

Collectively they are referred to as fruitspotting bugs and they are economically damaging to 

horticultural crops including avocado, custard apple, papaya, cashew, cocoa, durian, guava, 

kiwifruit, lychee, low-chill stone fruit, persimmon and macadamia (Fay et al. 2009). The life 

cycles of both A. nitida and A. l. lutescens consist of an egg and five nymph stages before the 

development of the imago (Ironside 1978). Both A. nitida and A. l. lutescens feed on flowers 

and fruit, and A. l. lutescens also feeds on the terminal growth of papaya, mango, cashews and 

macadamia plants (Fay 2002). When feeding, fruitspotting bugs inject salivary sucrase into 

the plant tissue; this generates an osmotically driven outflow from the surrounding cells and 

leaves sunken lesions from the collapsed tissue (Miles 1987, Miles and Taylor 1994). 

Fruitspotting bugs damage plant tissue both as nymphs and adults so, to reduce crop damage, 

reducing the numbers of early instar nymphs is desirable. Insecticides remain the primary 

method of control for fruitspotting bugs in Australia (Danne et al. 2014), however, the 

possibility of developing integrated pest management strategies, including biological control, 

is now being explored (Danne et al. 2014). 

Despite the significance of fruitspotting bugs as pests, little is known about the effect 

of temperature on their growth and development. Waite (2000) showed that A. l. lutescens 

took longer to develop than A. nitida at three constant temperatures (20, 25 and 30°C), but 

investigation of a wider range of temperatures is required to more accurately estimate lower 

developmental threshold temperatures and the thermal constants (degree-days, DD) for 

development through specific stages for the two species.  
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Few studies have investigated the effects of temperature on the development and 

survival of Coreidae. In Tasmania, Australia, Steinbauer (1997) found that the minimum 

developmental threshold temperatures for eggs of two Eucalypt-feeding coreids, Amorbius 

obscuricornis (Westwood) and Gelonus tasmanicus (Le Guillou), were 11.8 and 10.8°C 

respectively, and that the corresponding degree-days required to complete development were 

147 and 136. Egwuatu and Ajibola Taylor (1977) found that mean immature development 

times of the legume pest Acanthomia (= Clavigralla) tomentosicollis Stål (Hemiptera: 

Coreidae) decreased with increasing temperature (43 days at 20°C and 12 days at 36°C). Total 

immature mortality of A. tomentosicollis ranged between 23% and 63% at the eight study 

temperatures (20-36°C), with highest immature mortality occurring at the upper and lower 

temperatures studied (20°C, mortality=63% and 36°C, mortality=56%) (Egwuatu and Taylor 

1977).  Similarly, Fargo and Bonjour (1988) showed that mean immature development times 

for the cucurbit pest Anasa tristis DeGeer (Hemiptera: Coreidae) decreased from 79 days at 

20°C to 23 days at 37.8°C. Total immature mortalities at temperatures between 23.3 and 

37.8°C were very low, but at 20°C only 3% of the initial cohort survived to adult and 40°C no 

adults developed. The lower temperature threshold for A. tristis was 15.6°C, and it was 

estimated that it would take 376.5 degree-days to complete neonate to adult development 

(Fargo and Bonjour 1988).  

The hymenopteran parasitoid Anastatus sp. (Eupelmidae) was among a suite of 

parasitoids collected from eggs of A. l. lutescens in north Queensland in 1993 (Fay and Huwer 

1993). In glasshouse conditions parasitism rates of A. l. lutescens eggs by Anastatus sp. can 

be high (>90%) and the parasitoid can be reared in factitious hosts (Fay and De Faveri 1997). 

As a first step in exploring the potential of this parasitoid for biological control, its thermal 

requirements for development need to be understood relative to those of its hosts.  

This is the first study on the developmental biology of Anastatus sp. attacking A. 
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nitida in Australia, although a previous study investigated the temperature relationships 

between Anastatus biproruli and its host, Biprorulus bibax (Hemiptera: Pentatomidae) (James 

1993).  Understanding the effects of temperature on the developmental biology of Anastatus 

sp. is a fundamental step for mass rearing and release programs for biological control of 

Amblypelta spp.. Temperature significantly affected the longevity and fertility of adult 

Anastatus semiflavidus Gahan, an egg parasitoid of the range caterpillar, Hemileuca oliviae 

Cockerell (Lepidoptera: Saturnidae) (Mendel et al. 1987). Anastatus semiflavidus did not 

oviposit at temperatures ≤ 15°C, but the intrinsic rate of increase increased with increasing 

temperature between 20 and 35°C (Mendel et al. 1987). The effectiveness of A. semiflavidus 

as a biological control agent of H. oliviae is thus likely to be affected by cold temperatures. In 

New Mexico, peak H. oliviae oviposition occurs between September and November; A. 

semiflavidus parasitism rates are likely to be higher earlier in this period and may be 

significantly depressed in years experiencing cold autumn temperatures (Mendel et al. 1987).  

The objectives of this study were to determine the relative temperature requirements 

for development of A. nitida, A. l. lutescens and the parasitoid Anastatus sp. This was 

achieved by investigating the effects of a range of constant rearing temperatures that was 

commensurate with the temperatures experienced by these species across their distributions 

(Danne et al., 2014). The development and survival rates of Amblypelta nitida and A. l. 

lutescens were measured between 10 and 35°C while the effects of a narrower range of 

temperatures (17.5- 30°C) was investigated on their egg parasitoid, Anastatus sp. The data 

were then used to estimate the stage-specific lower developmental thresholds and the thermal 

constants (degree-days) for A. nitida and A. l. lutescens and the lower developmental 

thresholds and the thermal constants (degree-days) required for both pest species and the 

parasitoid to complete egg-adult development. These important parameters are necessary for 

the development of simulation models to investigate likely spatial and temporal host-
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parasitoid relationships between Anastatus sp. and A. nitida and A. l. lutescens throughout 

their distributions in Australia. This is an essential next step in assessing the potential of 

Anastatus sp. as a biological control agent for fruitspotting bugs. 

 

Materials and Methods 

Insects 

Amblypelta nitida and A. lutescens lutescens were obtained from BioResources Pty. 

Ltd., Samford, Queensland, Australia and originated from colonies established from adult 

insects collected in northern New South Wales and northern Queensland respectively. 

Separate colonies were prepared by placing approximately 30 pairs of adults of each species 

into a different wooden framed cage that consisted of three separate sections; a bottom and an 

upper frame (each 40 cm × 40 cm × 4 cm), each supporting a single layer of fiberglass mesh 

(mesh size 0.25 mm
2
) (Cyclone Pty. Ltd., Dandenong South, Victoria, Australia) and a middle 

section (40 cm × 40 cm × 10 cm). The three sections were held in place by rubber bands that 

passed through hooks on the external sides of each section. The fiberglass mesh provided 

ventilation and an oviposition substrate. Insects were fed commercially sourced green beans 

(Phaseolus vulgaris L.) that had been washed in detergent and rinsed in tap water. Green 

beans were secured within twisted rubber bands attached to hooks inside the cages and 

changed daily. Colonies of both species were maintained in an incubator at 27 ± 1°C, 80 ± 2% 

RH, 12: 12 (L: D) h and freshly eclosed adults were added to each colony regularly to 

maintain egg production. Amblypelta nitida and A. l. lutescens tend to lay eggs on the upper 

fiberglass mesh surface in the cages and eggs were harvested by turning rearing cages upside 

down under a white light source to attract bugs to the new upper mesh surface. The lower 

frame was then removed and replaced with a clean frame containing fresh green beans. Eggs 

were removed from the cage by levering them off the fiberglass mesh, beans or wooden frame 
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using a small piece of flexible plastic. Eggs were harvested in this manner daily and were 

used immediately in experiments. Frame sections were cleaned using a dilute bleach solution 

and warm water before being reused.   

Anastatus sp. was originally collected from parasitized A. l. lutescens in coastal areas 

of northern Queensland. They were supplied in parasitized Antheraea pernyi Guérin-

Méneville (Lepidoptera: Saturniidae) eggs glued to cardboard sheets (BioResources Pty. Ltd. 

Samford, Queensland, Australia). Rearing cages consisted of a wooden, glass-topped box (30 

× 40 × 120 cm) with fiberglass mesh sides for ventilation. The culture was maintained in a 

temperature-controlled room at 25 ± 1°C, 80% RH, 12: 12 (L: D) h and adult parasitoids were 

fed honey and a saturated solution of sucrose.  

 

Development and Survival of A. nitida and A. l. lutescens at Constant Temperatures 

Immature development and mortality rates for A. nitida and A. l. lutescens were investigated 

at six constant temperatures: 10, 15, 20, 25, 30 and 35°C. Eggs of each species were collected 

between 08:00 and 10:00 daily and transferred individually into labeled 70 ml plastic 

containers, the open ends of which were covered by fine nylon mesh was that was secured in 

place with a rubber band. After each daily collection of eggs, the eggs and containers were 

randomly divided into 6 groups and each group was allocated to one of the six test 

temperatures. Containers were labeled with the date that the egg was laid and transferred to an 

incubator set at the appropriate temperature, RH  40%, 12: 12 (L: D) h (fluorescent light, 

120 microEinsteins); this process was repeated daily until approximately 120 eggs of each 

species were set up per temperature. Upon egg hatch, each neonate nymph was provided with 

a portion of a washed green bean and a water-saturated dental wick. Individual eggs/ nymphs 

were monitored daily until they died or developed to adults; beans and wicks were changed 
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every 3-4 days. Mortality and molting time data were recorded and used to construct life 

tables for each species at each rearing temperature. 

 

 

Development and Survival of Anastatus sp. at Constant Temperatures  

Immature development and mortality rates of Anastatus sp. developing in eggs of A. nitida 

were recorded at six constant temperatures: 17.5, 20, 22.5, 25, 27.5 and 30°C. Newly emerged 

male and female Anastatus sp. were allowed to mate overnight in a mesh cage (30 × 30 × 40 

cm) (25 ± 2°C°C, 80% RH, 12: 12 (L: D) h) and provided with water-saturated dental wicks 

and honey as a food source. The next day, female Anastatus sp. were individually transferred 

into labeled 70 ml plastic containers, the open ends of which were covered by fine nylon 

mesh was that was secured in place with a rubber band. A 1-2 day old A. nitida egg was 

placed into each container with the female Anastatus sp. and the insects incubated at 25 ± 

1°C, 80% RH, 12: 12 (L: D) h for oviposition. After 24 hours, female Anastatus sp. were 

removed from containers. The parasitoid-exposed eggs produced in this way were then 

randomly allocated to one of the constant temperatures, RH  40%, 12: 12 (L: D) h 

(fluorescent light, 120 microEinsteins). Approximately 200 Anastatus sp.-exposed A. nitida 

eggs were placed at each temperature; they were monitored daily and the time of adult 

Anastatus sp. emergence from each was recorded. Approximately one month after the first 

adult Anastatus sp. eclosed from eggs at a given temperature all remaining A. nitida eggs that 

had not hatched or yielded an adult parasitoid were dissected. Anastatus sp. eggs could not be 

found within host eggs but dead parasitoid larvae, pupae and pharate adults were recorded. 

The immature Anastatus sp. mortality data recorded in eggs incubated at each test temperature 

were combined with adult Anastatus sp. emergence data at that temperature to construct 
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partial life tables for immature Anastatus sp. developing in A. nitida eggs at each test 

temperature. 

 

Statistical Analysis 

Overall development times for A. nitida and A. l. lutescens at different temperatures were 

analyzed by two-way ANOVA with Amblypelta species and temperature as the main effects. 

The effect of rearing temperature on the pre-imaginal development rates of A. nitida, A. l. 

lutescens and Anastatus sp. was analyzed by linear regression. All statistical analyses were 

performed using GraphPad Prism version 6.00 for Mac (GraphPad Software Inc., 2015).  

 

Results 

Development and Survival of A. nitida and A. l. lutescens at Constant Temperatures.  

Ambylpelta nitida did not complete pre-imaginal development at temperatures below 20°C or 

above 30°C and no A. nitida eggs hatched at either 10 or 35°C (Table 1). At the remaining 

test temperatures, 44, 82, 89 and 88% of A. nitida eggs hatched at 15, 20, 25 and 30°C 

respectively (Table 1). Some A. nitida individuals (n = 9; 7% of test insects) developed to the 

2
nd

 instar at 15°C, but none completed development to the third instar (Table 1; Fig 1a). Total 

immature A. nitida survivorship was highest at 30°C and 47% of the initial cohort completed 

pre-imaginal development at this temperature. At the three temperatures at which A. nitida 

completed development, mortality was highest during the 2
nd

 instar (Table 1; Fig 1b-d).  

Similarly A. l. lutescens did not complete pre-imaginal development at temperatures 

below 20°C or above 30°C and no A. l. lutescens eggs hatched at 10°C (Table 1). At the 

remaining test temperatures, 5, 95, 92, 88 and 37% of A. l. lutescens eggs hatched at 15, 20, 

25, 30 and 35°C respectively (Table 1). All of the A. l. lutescens that hatched at 15°C died as 

neonate larvae (Table 1; Fig 2a). Total immature survivorship was highest at 30°C for A. l. 
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lutescens and 62% of the initial cohort completed pre-imaginal development at this 

temperature. At the three temperatures at which A. l. lutescens completed development, 

mortality was highest during the 2
nd

 instar (Table 1; Fig 2b-d).  

Temperature significantly affected the total development time (egg to adult) for both 

A. nitida and A. l. lutescens (F2, 212= 1180; P<0.001; Table 2) and A. l. lutescens took longer to 

complete development than A. nitida (F1, 212= 8.14; P=0.005; Table 2) but there was no 

significant interaction between Amblypelta species and temperature with respect to total 

development time (F2, 212= 1.71; P=0.312; Table 2). 

There was a significant linear relationship between temperature and development rate 

of immature insects at specific stages of development and for egg- adult development for both 

A. nitida and A. l. lutescens (Fig 3; Table 3). The estimated lower developmental threshold 

(95% CI) for A. nitida eggs (11.3°C (11.0-11.5)) was significantly lower than that for A. l. 

lutescens eggs (14.1°C (13.6-14.5)) (Table 3) but, based on overlapping 95% confidence 

intervals, there were no differences between the estimated lower developmental thresholds at 

any of the other developmental stages (Table 3). Overall, the lower developmental threshold 

for A. nitida was 15.9°C (15.0- 16.7) and it was estimated that 421 degree-days were required 

for it to complete development (Table 3) while the lower developmental threshold for A. l. 

lutescens was 17.1°C (16.1- 17.9) and it was estimated that 404 degree-days were required for 

it to complete development (Table 3). 

 

Development and Survival of Anastatus sp. at Constant Temperatures.  

Anastatus sp. completed pre-imaginal development at all six constant temperatures 

investigated (Table 4). Anastatus sp. eggs could not be found in the dissected host eggs but 

dead Anastatus sp. that had developed to the larval, pupal and pharate adult stages were 

recorded and partial life tables constructed (Table 4). Absolute parasitism rates of eggs 
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incubated at each test temperature could not be determined due to the undetectability of 

parasitoid eggs but the number of adult wasps developing from eggs at 17.5°C and 20°C was 

much lower than at higher temperatures (Table 4). Similarly, the proportion of larvae, pupae 

and pharate adults that died within host eggs was greater at temperatures ≤ 22.5°C than at 

higher temperatures (Table 4).  

The time required for Anastatus sp. to complete development from egg to adult (mean 

(± SE)) was 53.6 (±2.1), 39.6 (±0.4), 33.0 (±0.4), 21.5 (±0.3), 17.9 (±0.3) and 15.5 (±0.2) 

days at 17.5, 20, 22.5, 25, 27.5 and 30°C respectively. The development rate of pre-imaginal 

Anastatus sp. increased linearly with increasing temperature (F1, 455= 2561; P < 0.001; Fig. 4) 

and the lower threshold for development was estimated to be 14.3°C (13.8- 14.7)) and 238 

degree-days were required for it to complete pre-imaginal development (Fig. 4).  

 

Discussion 

As expected, temperature had a significant effect on the development and survival of 

fruitspotting bugs, A. nitida and A. l. lutescens, and their egg parasitoid, Anastatus sp.. Both 

species of fruitspotting bug only completed immature development at temperatures between 

20 and 30°C and survival rates were maximized at 30°C for each species (Table 1). At 

temperatures outside of this range, both species suffered considerable mortality as eggs and 

early instars (Table 1). At temperatures between 20 and 30°C, most mortality was suffered by 

second instar nymphs of both species; this demonstrates the sensitivity of this stage and the 

detrimental impact that unfavorable conditions at this stage of development can have on 

generational survival. 

Overall, A. l. lutescens took longer to complete development than A. nitida (Table 2), 

a similar finding to that reported previously (Waite et al. 2000). However, in the current study 

development times for A. nitida and A. l. lutescens at 20 and 25°C were much longer than 
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those recorded by Waite et al. (2000), while at 30°C the development time for A. l. lutescens 

was much shorter. Differences in methodologies probably explain these apparent disparities. 

The current study used much larger sample sizes than those used by Waite et al. (2000), cf. n≥ 

120 per temperature treatment in this study and n= 28-87 per temperature treatment in the 

previous study). Further, Waite et al., (2000) introduced additional insects, that were 

previously reared at unspecified temperatures, into the experiment to supplement the numbers 

in treatments that had suffered high mortality. Introducing an insect to a modified rearing 

temperature will affect its development rate compared with insects reared under constant 

temperatures (Bahar et al. 2012) and introduction of an insect that has already entered a given 

instar will incorrectly estimate the time that it typically takes to complete development 

through that instar at the new test temperature.  

There were clear contrasts between the developmental and survival rates in response 

to high and low temperatures between A. nitida and A. l. lutescens (Tables 1-3, Figs. 1-3). For 

example, at 15°C some A. nitida individuals (7% of initial cohort) were able to complete 

development to the 2
nd

 instar but no A. l. lutescens were able to do so (Table 1) and at 35°C 

no A. nitida eggs hatched but more than a third of A. l. lutescens eggs hatched at this 

temperature and some individuals (2% of initial cohort) completed development to the 3
rd

 

instar (Table 1). Further, the estimated overall lower developmental threshold for A. nitida 

was 15.9 °C, while it was 17.1°C for A. l. lutescens (Table 3, Fig 3). Differences in 

temperature requirements for egg development were also detected at low temperatures for the 

two species; the lower threshold for development of A. nitida eggs was estimated at 11.3°C, 

while it was estimated at 14.1°C for A. l. lutescens (Table 3, Fig 3).  These differences are 

consistent with the lower temperatures experienced by A. nitida in its more southerly 

geographical distribution (≈34°S 151°E- ≈ 23°S 150°E) and the higher lower temperatures 

experienced by A. l. lutescens in its more northerly distribution (≈27°S 153°E- ≈10°S 142°E) 
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(Donaldson 1983; Danne et al. 2014), but it would be useful to investigate the thermal 

requirements of further populations of each species collected from different locations within 

their range. 

Anastatus sp. completed pre-imaginal development within A. nitida eggs at all six 

study temperatures (17.5- 30°C) (Table 4). Adult emergence rates were much higher at 

temperatures ≥22.5°C than at lower temperatures (Table 4). It was not possible to find 

Anastatus eggs in A. nitida hosts and consequently it is not possible to estimate absolute 

parasitism rates; however, as all host eggs were exposed to parasitism in the same manner 

prior to allocation to different test temperatures it can be assumed that parasitism rates were 

comparable between rearing temperatures. At 17.5°C and 20°C the number of adults that 

eclosed and the number of dead larvae, pupa and pharate adults dissected from eggs was very 

low compared with higher temperatures (Table 4). This indicates that Anastatus sp. eggs and/ 

or small larvae suffered significant mortality at these temperatures, but the remains could not 

be found in dissected eggs. Similarly, Anastatus sp. developing at 22.5°C suffered significant 

mortality as larvae and pupae, while mortalities suffered by these stages at temperatures of 

≥25°C were much lower (Table 4). Thus, although Anastatus sp. could develop at all 

temperatures between 17.5°C and 30°C, immature stages suffered significant mortality at 

temperatures ≤ 22.5°C. This is likely to preclude its establishment and limit its effectiveness 

as a biological control agent of A. nitida at more southerly latitudes within its distribution, 

where temperatures in this range occur frequently, particularly in winter. 

This is the first study on the effect of temperature on the development and survival of 

Anastatus sp. in Australia. In a previous study James (1993) found that development rates of 

A. biproruli increased linearly between 17.5 and 35°C and in this study a similar relationship 

between development rate and rearing temperature was established for Anastatus sp. (Fig. 4). 

The lower developmental threshold temperature for Anastatus sp. was estimated to be 14.3°C 
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(Fig. 4), 3°C higher than the threshold temperature for host A. nitida egg development but 

only 0.2°C higher than the threshold temperature for egg development of A. l. lutescens 

(Table 3, Fig. 3). In order to complete pre-imaginal development Anastatus sp. requires 238 

degree days at temperatures above 14.3°C. For biological control programs, knowledge of the 

lower developmental threshold temperature for parasitoids and the degree-day requirements 

for completion of pre-imaginal development above this temperature can be useful for 

selecting agents with similar climatic requirement to those of their hosts. Parasitoids and hosts 

with similar thermal requirements are more likely to remain synchronized throughout 

seasonal temperature fluctuations, while markedly different thermal requirements of host and 

parasitoids are likely to result in seasonal disruption of the host-parasitoid relationship.  

Caution must be taken in extrapolating laboratory-generated data to field situations 

where temperature fluctuations at the scale of the micro-environment of insects are difficult to 

measure, especially for insects with mobile immature stages that may exhibit, for example, 

‘basking’ behavior (Steinbauer and Clarke 1998). In addition, degree-day models assume that 

development rate is only a function of temperature, however, for polyphagous insects such as 

A. nitida and A. l. lutescens host plant can also significantly affect development. For example, 

preliminary findings suggest that A. l. lutescens nymphs may develop faster on papaya plants 

than when fed green beans (Huwer 1996). Photoperiod and humidity also affect insect 

development rates (Rahim et al. 1991, Steinbauer 1997, Sakashita et al. 1997, Wang et al. 

2013, Zerbino et al. 2013). However, as the effects of these factors are difficult to quantify 

and as they are usually less important than temperature effects they are typically not 

considered in degree-day models.   

This study provides important baseline data on the effect of temperature on the 

development of A. nitida and A. l. lutescens, and their egg parasitoid, Anastatus sp. and its 

likely effect on host-parasitoid relationships. As such it provides the basic information 
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required for the development of simulation models to investigate how A. nitida- Anastatus sp. 

and A. l. lutescens- Anastatus sp. relationships are likely to vary both geographically and vary 

seasonally. The development of such models, and further experimentation to refine and model 

parameters, will be important next steps in assessing the likely performance of Anastatus sp. 

in different fruit growing regions at different times of the year and as such will inform 

whether inoculative or inundative releases of Anastatus sp. for the biological control of A. 

nitida and A. l. lutescens are likely to be appropriate. 
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Table 1. Life tables for A. nitida and A. l. lutescens at constant rearing temperatures. 

 A. nitida  A. l. lutescens 

Temp. °C  Life stage lx
 a
 dx

 b qx
 c  Life stage lx

 a
 dx

 b qx
 c 

10 Egg 125 125 1.000  Egg 123 123 1.000 

 1
st
 instar 0    1

st
 instar 0   

15 Egg 126 70 0.556  Egg 123 117 0.951 

 1
st
 instar 56 47 0.839  1

st
 instar 6 6 1.000 

 2
nd

 instar 9 9 1.000  2
nd

 instar 0   

 3
rd

 instar 0        

20 Egg 127 23 0.181  Egg 122 6 0.049 

 1
st
 instar 104 8 0.077  1

st
 instar 116 10 0.086 

 2
nd

 instar 96 51 0.531  2
nd

 instar 106 66 0.623 

 3
rd

 instar 45 16 0.356  3
rd

 instar 40 19 0.475 

 4
th

 instar 29 2 0.069  4
th

 instar 21 3 0.143 

 5
th

 instar 27 1 0.37  5
th

 instar 18 1 0.056 

 Adult 26    Adult 17   

25 Egg 140 16 0.114  Egg 122 10 0.082 

 1
st
 instar 124 6 0.048  1

st
 instar 112 7 0.063 

 2
nd

 instar 117 88 0.752  2
nd

 instar 105 47 0.448 

 3
rd

 instar 30 5 0.167  3
rd

 instar 58 15 0.259 

 4
th

 instar 25 2 0.080  4
th

 instar 43 9 0.209 

 5
th

 instar 23 3 0.130  5
th

 instar 34 3 0.088 

 Adult 20    Adult 31   

30 Egg 129 15 0.116  Egg 120 15 0.125 

 1
st
 instar 114 4 0.035  1

st
 instar 105 9 0.086 

 2
nd

 instar 110 26 0.236  2
nd

 instar 96 9 0.094 

 3
rd

 instar 84 6 0.071  3
rd

 instar 87 5 0.057 

 4
th

 instar 78 9 0.115  4
th

 instar 82 5 0.061 

 5
th

 instar 69 8 0.116  Adult 77 3 0.039 

 Adult 61     74   

35 Egg 127 127 1.000  Egg 134 85 0.634 

 1
st
 instar 0    1

st
 instar 49 21 0.429 

      2
nd

 instar 28 25 0.893 

      3
rd

 instar 3 3 1.000 

      4
th

 instar 0   



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

 20 

a
  lx, number of individuals living at beginning of a stage 

b
 dx, number of individuals dying by end of a stage 

 
c
 qx, proportion individuals entering a stage that died in that stage
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Table 2. Mean development times (±SE) in days for Amblypelta nitida and A. l. lutescens at constant rearing temperatures. 

 
   Time (days) to complete development of stage (±SE) 

 Temp. °C n Egg 1
st
 instar 2

nd
 instar 3

rd
 instar 4

th
 instar 5

th
 instar Total

a 

A. nitida 15 126 31.9 (±0.4) 11.4 (±0.3) - - - - - 

 20 127 12.6 (±0.1) 5.0 (±0.04) 21.9 (±1.0) 14.7 (±0.9) 14.5 (±0.8) 17.7 (±0.5) 86.7 (±2.6) 

 25 140 8.3 (±0.1) 3.0 (±0.03) 20.0 (±2.0) 12.7 (±1.6) 9.9 (±0.6) 10.3 (±0.5) 63.5 (±2.1) 

 30 129 6.0 (±0.1) 2.0 (±0.01) 5.3 (±0.2) 5.2 (±0.2) 5.1 (±0.2) 5.9 (±0.1) 29.4 (±0.4) 

          

A. l. lutescens 15 123 31.3 (±1.0) - - - - - - 

 20 122 17.0 (±0.2) 6.0 (±0.05) 17.2 (±0.6) 18.3 (±1.4) 16.6 (±0.7) 17.5 (±0.4) 92.5 (±2.3) 

 25 122 9.3 (±0.1) 3.5 (±0.06) 14.7 (±0.8) 12.2 (±0.5) 11.8 (±0.8) 12.2 (±0.5) 64.7 (±1.6) 

 30 120 5.3 (±0.1) 2.2 (±0.05) 6.1 (±0.2) 5.4 (±0.2) 5.6 (±0.2) 6.5 (±0.1) 30.8 (±0.5) 

 35 134 5.1 (±0.1) 2.2 (±0.09) 5.7 (±1.8) - - - - 

a Total development time was significantly affected by temperature (F2, 212= 1180; P<0.001) and A. l. lutescens took longer to complete 

development than A. nitida (F1, 212= 8.14; P=0.005) but there was no significant interaction between Amblypelta species and temperature 

(F2, 212= 1.71; P=0.312). 
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Table 3. Linear regression parameters for stage-specific and egg-adult development of A. nitida and A. l. lutescens over a range of 

constant rearing temperatures.  

  Linear regression parameters Slope differences   

Stage of 

development 

 

Species 

 

F (df); P 

 

R
2
 

 

y- intercept (±SE) 

 

Slope (±SE) 

 

F (df); P 

 

DD
a
 

 

Tmin
b
 (95% CI) 

Egg A. nitida 13300 (1, 395); <0.001 0.971 -0.101 (±0.002) 0.0089 (±0.0001) 
62 (1,782); <0.001 

111 11.3 (11.0 - 11.5) 

 A. l. lutescens 2860 (1, 387); <0.001 0.881 -0.149 (±0.005) 0.0106 (±0.0002) 91 14.1 (13.6- 14.5) 

1st instar A. nitida 8839 (1, 395); <0.001 0.964 -0.388 (±0.008) 0.0293 (±0.0003) 
30 (1,662); <0.001 

34 13.3 (13.0- 13.5) 

 A. l. lutescens 1302(1, 395); <0.001 0.796 -0.323 (±0.018) 0.0248 (±0.0007) 40 13.0 (12.2- 13.7) 

2nd instar A. nitida 204 (1, 156); <0.001 0.567 -0.304 (±0.032) 0.0170 (±0.0011) 
6.4 (1,342); =0.012 

59 17.9 (16.4- 19.1) 

 A. l. lutescens 230 (1, 186); <0.001 0.552 -0.227 (±0.024) 0.0133 (±0.0009) 75 17.0 (15.5- 18.2) 

3
rd

 instar A. nitida 198 (1, 130); <0.001 0.604 -0.226 (±0.028) 0.0142 (±0.0010) 
1.1 (1,274); =0.289 

70 15.9 (14.0- 17.3) 

 A. l. lutescens 260 (1, 144); <0.001 0.643 -0.280 (±0.027) 0.0157 (±0.0010) 64 17.8 (16.4- 18.9) 

4
th
 instar A. nitida 258 (1, 116); <0.001 0.690 -0.218 (±0.024) 0.0140 (±0.0009) 

0.3 (1, 243); =0.585 
71 15.5 (13.9- 16.8) 

 A. l. lutescens 169 (1, 127); <0.001 0.571 -0.254 (±0.031) 0.0148 (±0.0011) 67 17.1 (15.3- 18.6) 

5
th
 instar A. nitida 707 (1, 105); <0.001 0.871 -0.183 (±0.012) 0.0118 (±0.0004) 

1.5 (1,225); =0.231 
85 15.5 (14.5-16.3) 

 A. l. lutescens 456 (1, 120); <0.001 0.792 -0.175 (±0.014) 0.0110 (±0.0005) 91 15.9 (14.7-17.0) 

Egg- adult A. nitida 743 (1, 105); <0.001 0.876 -0.038 (±0.002) 0.0024 (±0.0001) 
0.6 (1,225); =0.450 

421 15.9 (15.0- 16.7) 

 A. l. lutescens 621 (1, 120); <0.001 0.838 -0.042 (±0.003) 0.0025 (±0.0001) 404 17.1 (16.1- 17.9) 
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a DD= degree days 

b 
Tmin= lower temperature threshold for development  
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Table 4. Partial life tables for Anastatus sp. reared in A. nitida eggs at constant 

temperatures. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

a
  lx, number of individuals living at beginning of a stage 

b
 dx, number of individuals dying by end of a stage 

 
c
 qx, proportion individuals entering a stage that died in that stage. 

  

Temp. 

°C  

Life stage lx
 a
 dx

  qx
 c 

17.5 larva/ pupa 11 2 0.182 

 pharate adult 9 4 0.444 

 adult 5   

     

20 larva/ pupa 15 2 0.133 

 pharate adult 13 7 0.539 

 adult 6   

     

22.5 larva/ pupa 117 30 0.256 

 pharate adult 87 7 0.081 

 adult 80   

     

25 larva/ pupa 59 0 0 

 pharate adult 59 3 0.051 

 adult 56   

     

27.5 larva/ pupa 101 10 0.099 

 pharate adult 91 5 0.055 

 adult 86   

     

30 larva/ pupa 81 1 0.012 

 pharate adult 80 0 0 

 adult 80   
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Graphical abstract 
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Highlights 
 

 Neither Amblypelta nitida nor A. l. lutescens completed development 
<20ºC or >30ºC 
 

 A. nitida: lower development threshold= 15.9ºC; 421-DD to complete 
development 

 

 A. l. lutescens: lower development threshold= 17.1ºC; 404-DD to 
complete development 

 

 Both Amblypelta spp. suffered greatest mortality in 2nd instar at all 
temperatures 

 

 Anastatus sp.: lower development threshold= 15.0ºC; 234-DD to 
complete development 


