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Abstract

In the last decade, video content analysis has attracted increasing research interest in the fields

of multimedia and computer vision. With the explosive growth of videos on the web and other

multimedia sources, it is important for many applications to build effective models that can help us

automatically analyse the videos. Among different video content analysis tasks, event detection,

recognition, recounting and retrieval in unconstrained cases are the most challenging, because

events often consist of miscellaneous spatial-temporal semantics such as various objects, human

actions and scenes. In order to better analyse the events contained in videos, scholars have tried to

either design powerful visual features or build effective models. However, several technical issues

have not yet been well addressed. These include, for example, how to reduce the computational

complexity of the hash model training procedure for video event retrieval when given more training

videos, how to integrate the spatial and temporal information well in videos for event detection,

and how to make use of contextual information to enhance the model training. This thesis focuses

on building effective and efficient models for video event detection, recognition and retrieval, and

it contains the following four parts:

The first part aims to design a generic model Max-margin adaptive model (MMA) for video

pattern recognition. The MMA model adopts the advantages of semi-supervised learning and trans-

fer learning, which can utilize both labelled and unlabelled videos for model training. It considers

the data distribution consistency between labelled videos and unlabelled auxiliary videos from a

statistical perspective by learning an optimal mapping function. It also broadens the geometric

margin between positive-labelled videos and negative-labelled videos to improve the robustness of

the model.

The second part aims to build a deep spatial-temporal model for multimedia event detection

(MED). In our setting, each video follows a multiple instance assumption, where its visual seg-

ments contain both spatial and temporal properties of events. Regarding these properties, we try

to implement the MED system by a two-step deep training model: unsupervised recurrent video

reconstruction and supervised fine-tuning, to improve the generality of the model and boost the

event detection accuracy.

In the third part, we propose a context based framework for web video event recognition.
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Different from content based video recognition tasks, our proposed framework considers the prop-

erties of both video content and web documents. Web videos often describe large-granular events

and carry very limited textual information. In this work we first construct an event knowledge

base by deeply mining the semantic information from web documents, then propose a Two-view

adaptive regression model (TVAR) that explores the intrinsic correlation between the visual and

textual cues of the web videos to learn reliable classifiers.

In the fourth part, we set out a hashing model Visual State Binary Embedding (VSBE) for

scalable video event retrieval. The VSBE model can preserve the essential semantic information

of the videos in binary codes to ensure effective retrieval performance. Compared with other video

binary embedding models, one advantage of our proposed method is it only needs a limited number

of key frames from the training videos for hash model training, so the computational complexity is

much lower in the training phase. At the same time, we apply the pair-wise constraints generated

from the visual states to sketch the local properties of the events at the semantic level, so accuracy

is also guaranteed.
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Chapter 1

Introduction

In this chapter, we give a brief introduction of the research in this thesis, including the background,

problem characterization, contributions, and the organization of the thesis.

1.1 Background

In the last decade, video content analysis has attracted increasing research interest in the fields of

multimedia and computer vision. The significance of this research is growing due to many novel

applications such as video indexing, retrieval, description, monitoring, surveillance, etc. Recently,

significant research effort has been witnessed in developing new video content analysis models,

which aim at automatically helping people find the videos that are related to pre-defined events.

The focus of this thesis is to address the issues of high-level or complex event analysis in

large-scale videos. The definition of an “event” varies under different circumstances, and till now

there has not been agreement or consensus on it. In some cases, some people define an event as a

significant occurrence of a sequence of activities at specific locations and time [3], which involves

a “4W” concept (What, Who, Where and When). This definition is often used for social media

analysis, such as event sentiment analysis on Twitter [79] and topic sequence modelling for social

events [111]. In the research fields of multimedia and computer vision, an event is often defined

as a semantic pattern that involves complex objects, scenes, activities and their interactions [35].

To clarify, in this thesis we only focus on multimedia event analysis.

Usually an event has one or more of the following properties:

1



2 INTRODUCTION

• It is a complex activity occurring at a specific place and time;

• It involves the interaction between people and/or other objects in some specific scenarios;

• It consists of a number of processes and activities that are loosely or tightly organized, which

have either spatial or temporal semantic relationships;

• It is directly observable from the videos.

Based on the above properties, complex event analysis in large-scale videos is much more

challenging than other tasks like action recognition [98, 94] or near-duplicate detection [50]. In

general, the difficulties of video event analysis can be summarized as follows:

First of all, different events have different granularities, which make them difficult to under-

stand, describe and recognize. For example, in some applications one may be interested in building

models to detect some small granular events from the videos such as repairing an appliance and

parkour, and sometimes we aim to find the large-granular event-related videos, such as Wedding

of Prince William and Kate Middleton.

Second, different events have their unique characteristics. For example, some of them are

sensitive to types of static evidence (e.g. human gestures or scenes), while others are sensitive to

dynamic cues (e.g., motions or action sequences).

Third, the semantic information contained in the videos is hard to be directly represented by

visual features, and semantically similar patterns often have vastly different visual representations.

Fourth, it is expensive to obtain sufficient video data to get robust models because manually

labelling the videos for training data is quite labour-intensive.

Last but not least, when dealing with large-scale video datasets, it is extremely time and mem-

ory consuming to train reliable models.

1.2 Research topics

In this thesis we mainly focus on the following two tasks: video event detection & recognition,

and video event retrieval.
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FIGURE 1.1: The general framework of video event detection & recognition

1.2.1 Video event detection & recognition

This task is mainly based on supervised or semi-supervised learning techniques, which are spe-

cially designed at a higher level of video content analysis. It can be formally defined as: given

some video event kits that contain the instances of the pre-defined event, train a set of models

that can automatically find the video recordings for these events based on pre-computed metadata.

Similar to other video content analysis tasks such as action recognition and concept annotation,

event detection & recognition aims to train a set of classifiers using a limited number of videos to

predict the event labels of the test videos. The framework of this task is illustrated in Figure 1.1.

The top part of the framework is the offline processing. The first step is to extract the raw

visual features from the training videos, and then the system applies a data quantization method

to represent the videos as high-dimensional feature vectors for further processing. The key step of

the offline processing is to apply a learning approach to train a set of models based on these feature

vectors. In the online procedure, the testing videos are processed using the same approach as for

the training videos, and the models trained in the offline procedure can be applied to predict the

event labels or decision values in the testing video sets automatically.
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FIGURE 1.2: The general framework of video event retrieval

1.2.2 Video event retrieval

The definition of this task can be described as: given a query, search the semantically similar

videos from large video databases at the event level. The query can be either a text keyword or

a video clip. This task aims to design an indexing method to facilitate efficient event retrieval in

large-scale video databases, and in this thesis we only focus on content-based retrieval, i.e., the

query is a video clip. Compared with content-based video retrieval and near-duplicate retrieval,

event retrieval in unconstrained video databases is much more challenging, because the indexing

model is built at a high-semantic level rather than the visual or low-semantic level. The general

framework of this task is described in Figure 1.2.

The framework of video event retrieval is similar to event detection & recognition as mentioned

above, but there two major differences. First, the models trained in this task are used for indexing,

rather than classification; second, given a query video, we do not know the exact event category

it belongs to, and the search result should be semantically related to the given query video at the

event level.
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1.3 Problem formulations

In this section we describe the specific research problems in this thesis, as well as the motivations

for research and the formulation of these problems.

1.3.1 Analysing the data distributions of the visual features

Automatic discovery of complex patterns has been proved to be helpful to assist video event anal-

ysis tasks [58, 60], so it is important to build effective models with a limited number of training

instances. The challenges of video pattern recognition are multi-folds. First, the “semantic gap”

between low-level content features and high-level semantic descriptors is hard to bridge. High-

level pattern recognition involves a variety of unstructured concepts ranging from simple objects

or actions to highly abstract events, and these patterns usually contain very rich contextual infor-

mation with miscellaneous spatial and temporal cues. Second, the low-level features are usually

noisy, which may seriously aggravate the recognition difficulty. Third, it is expensive to obtain suf-

ficient video data to get robust recognizers because manually labelling the videos for training data

is quite time-consuming and labour-intensive, especially when there are very few positive labelled

instances available.

To overcome the above difficulties in complex video pattern recognition tasks, we aim to build

a novel model to comprehensively analyse the data distribution by transforming the original data

into a lower dimensional feature space. In the obtained lower dimensional feature space, both

labelled and unlabelled videos are then used together to optimize the target prediction function.

1.3.2 Building a robust spatial-temporal deep model for event detection

Recently, the learned visual features from a pre-trained convolutional neural network (CNN) have

been shown to have a far superior performance than hand-crafted features. Specifically in the task

of video event detection, Xu et al. proposed an effective video representation method based on

the pre-trained CNN model [100]. Applying the VLAD quantization method [33] on the pooling

layer and fully-connected layer, the detection performance is outstanding on the TRECVID MED

dataset. However, this video representation is unsequenced, so it loses all the temporal information.
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Although the occurrences of static patterns are considered as evidence to discriminate for whether

a video contains a pre-defined event (e.g., bee keeping), some events are still temporally sensitive

(e.g., felling a tree).

Based on the above observation, we attempted to build a robust spatial-temporal deep model

for large-scale video event detection. In our setting, each video follows a multiple instance as-

sumption, where its visual segments contain both the spatial and temporal properties of events.

1.3.3 Incorporating the web information into event recognition models

In real world applications, we are often more interested in “large” granular events (e.g., Beijing

Olympic opening ceremony and Wedding of Prince William and Kate Middleton), which may be

viewed from different spatial and temporal perspectives, and contain very rich semantics. For this

kind of event analysis, there exists a huge semantic gap between visual cues and event descriptors.

These descriptors include audio signals and texts, and both of them can help us better understand

the events contained in visual contents. In this case, one promising strategy is to explore the

semantic information of videos for assistance of event analysis tasks. For this purpose one may

extract some semantics from the contextual information as prior knowledge about these events.

On video websites like YouTube, some auxiliary cues, such as acoustic signals and texts (titles,

tags and descriptions) that are associated with the corresponding videos, and can serve as precious

resources for event analysis. However, how to utilize these auxiliary texts for automatic video

event recognition is a big challenge. The reasons are two-fold:

• The existing texts associated with videos often contain incomplete and imprecise informa-

tion, which is probably not relevant to the videos themselves. In order to obtain comprehen-

sive and precise descriptions of events from the semantic view, an intuitive way is to utilize

a universal knowledge base (e.g., WordNet or FrameNet) to enrich the semantics. However,

such a kind of knowledge base mainly describes the term correlations but falls short of expla-

nations of the specific events, especially for emerging and evolving events happening around

us.

• Text information and visual features are highly heterogeneous modalities. Although both

are imperative for event analysis and are complementary to each other, they are from totally
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FIGURE 1.3: An illustration of two completely heterogeneous features for event Beijing Olympic open-
ing ceremony 2008.

different perspectives and may characterize different aspects of the events. Taking the event

Beijing Olympic opening ceremony for example (see Figure. 1.3), the visual information of

a relevant video is mainly about the fireworks or other significant visual phenomena, while

the textual cues are expressed as The world watches in wonder as this glittering event raises

the curtain on the Beijing 2008 Summer Olympic Games, which is an overall description

about this event. Obviously, in most cases the visual information and textual cues are taken

from different aspects of the events, i.e., neither of them could be well described by the other.

Therefore, it is not suitable to directly make the existing texts of videos as the intermediate

semantic representations. In this case the two-view model seems to be more appropriate for

video event recognition tasks. Since these events can be viewed from both videos and texts,

two independent models, one for each of them can be trained together. In the testing phase,

since videos under the unconstrained circumstances do not contain any text information,

knowledge adaptation from texts to videos is necessary. However, till now there have not

been any effective approaches to simultaneously explore and make use of the visual and

textual correlations in video event analysis.
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In order to solve the problem of incomplete and imprecise semantic description, we tried to

explore the ubiquitous web documents to build an event knowledge base for video semantic anal-

ysis. Using existing search engines, it is quite easy to gain access to the event-relevant documents,

from which the event semantic structures generated can be used to describe events with abundant

semantics under specific event contexts. With the help of this knowledge base, the partial texts

accompanying the videos can be greatly enriched. Based on the enriched textual cues, we further

tried to propose a model that can correlate the semantics to visual features and obtain an effective

model for video event recognition.

1.3.4 Analysing the event-relevant visual states for large-scale video event

retrieval

In multimedia content analysis tasks, a video can be represented either as a flat vector by feature

aggregation, or as a sequence of feature vectors. However, a flat video vector may lose the internal

structure of the video itself. On the other hand, representing a video as a sequence of feature

vectors is deemed to increase the computational complexity significantly, especially when we need

an efficient search within large-scale video datasets.

In many real-time applications, the technique of binary embedding, which is often called hash-

ing, has been extensively adopted to encode high-dimensional feature vectors into compact binary

codes, resulting in fast computation by XOR operators in the Hamming space to approximate

the distance between feature vectors, thus achieving scalable information retrieval. Till now a

variety of hashing models have been proposed and widely applied to the near-duplicate content

search [93, 90, 53] and visual tracking [48, 57]. However, there are several issues when applying

binary embedding approaches for video event analysis. On one hand, most hashing approaches are

mainly designed at the visual level rather than the semantic level, with the result that a “semantic

gap” may exist between the visual representation and event description. On the other hand, the

transformation from the real number space into the binary space may cause severe information

loss, in particular the loss of the spatial and temporal information describing complex patterns in

videos. In addition, in order to train a reliable hashing model, a large number of training videos

are needed, which is both time and memory consuming.
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To overcome the above difficulties, we aimed to design a video binary embedding framework

to facilitate the scalable video event retrieval, which can effectively reduce the computational com-

plexity of the hash model training while ensuring the retrieval accuracy.

1.4 Main contributions

We have designed effective solutions for the research problems above, and evaluated these models

by conducting comprehensive experiments on several real-world video datasets. We explain our

contributions in the following subsections.

1.4.1 Max-margin adaptive model for complex video pattern recognition

As introduced in subsection 1.3.1, most existing semi-supervised learning methods have failed to

analyse video data distributions or effectively bridge the “semantic gap” between low-level visual

features and high-level descriptors.

In this work we propose a generic model by learning a mapping matrix to transform the original

feature space into a lower dimensional subspace, which can effectively reduce the data distribution

disparity between labelled and unlabelled videos and also maximize the margin between the videos

from different pattern categories. The iterative optimization solution to the objective function of

MMA can use very limited labelled source data and a large number of unlabelled auxiliary data

for complex video pattern recognition. The experiments were conducted on two public datasets

including CCV 1 for video object/event detection and HMDB 2 for action recognition. Our results

demonstrated that the proposed MMA model is very effective on complex video pattern recognition

tasks, and outperforms the state-of-the-art algorithms.

1.4.2 Robust spatial-temporal deep model for multimedia event detection

To address the issued described in 1.3.2 we propose a robust video event detection model, which

consists of two major steps: unsupervised recurrent learning and supervised fine-tuning. The

1http://www.ee.columbia.edu/dvmm/CCV/
2http://serre-lab.clps.brown.edu/resources/HMDB/
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contributions of this work are as follows:

• We propose to utilize the recurrent neural network to reconstruct the video representation

in an unsupervised approach, which does not need the label information of the videos, and

such a model can incorporate both the spatial and temporal information of the videos;

• In the supervised training phase, the parameters are optimized from better locations in high-

dimensional space, thus boosting detection performance;

• We have conducted extensive experiments on the challenging TRECVID MED 2014 dataset,

and have demonstrated that our proposed system can achieve very promising detection per-

formance in MED tasks.

1.4.3 Web video event recognition by semantic analysis from ubiquitous

documents

In order to solve the problem of incomplete and imprecise semantic description as discussed in

subsection 1.3.3, we explored ubiquitous web documents to build an event knowledge base for

video semantic analysis. The contributions of this work are summarized as follows:

• We have constructed an event knowledge base by deeply mining ubiquitous web documents.

The knowledge base contains a set of event semantic graphs (ESGs), each of which corre-

sponds to an event. An ESG represents an event with affluent textual words (as nodes) as

well as their mutual correlations (as edges) in different hierarchical layers, which can be

utilized to enhance the textual cues of videos;

• We propose a Two-View Adaptive Regression (TVAR) learning model, which can jointly

explore the intrinsic correlation between enriched textual and visual cues for video event

recognition. An efficient iterative algorithm is proposed for the optimization of the model;

• We have conducted extensive empirical studies on two real-world web video datasets, one

of which is a new dataset created by ourselves for public use. The results show promising

improvements over state-of-the-art approaches.
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1.4.4 Scalable video event retrieval by visual state binary embedding

In order to solve the problems described in subsection 1.3.4, we propose an efficient hash model

of Visual State Binary Embedding (VSBE). In this model, we define a novel metric to evaluate

the representativeness of each key frame in a given video by considering its three importance

measures at the video-level, event-level and global-level respectively. The importance of a frame

at the video-level is measured by its representativeness to the video it belongs to. The event-level

importance is designed to measure the relevance of a frame to its belonging event. The global

importance is simply the frequency of a specific visual pattern in all videos. By considering the

three importance measures, a number of highly representative key frames are then selected to

sketch the semantic cues. The visual information contained in these selected key frames can reveal

the most important semantics of the videos, and they are also descriptive to the corresponding

events. Such kind of visual information from the training video corpus will be used to form the

semantic constraints for learning the binary embedding functions. In the retrieval phase, each

query video is first represented as a binary matrix, where each row stands for a key frame. Thus,

the semantic information of the video is preserved in the retrieval phase. Finally, the distance

between the two videos is efficiently calculated by XOR operation in the Hamming space.

The key contributions of this work are summarized as follows:

• We study key frame representativeness through a novel quantified measurement, and define

a new concept of visual state to capture the semantics of videos;

• We propose a new binary coding model VSBE, which only uses a limited number of selected

frames for the training of binary embedding functions, resulting in a significantly boosted

training efficiency when dealing with large-scale video datasets;

• The proposed VSBE model can integrate the constraints given by the importance of the

visual states, and an efficient iterative algorithm is designed for its optimization;

• Comprehensive experiments on the challenging TRECVID MED video dataset have been

conducted, which confirm the performance superiority of the proposed model compared

with state-of-the-art video event retrieval approaches.
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1.5 Thesis organization

The rest of this thesis is organized as follows: In Chapter 2, we review the field of video event

analysis and summarize the relevant techniques such as visual feature extraction and hashing. In

Chapter 3 we present a content based semi-supervised model MMA for general video pattern

recognition, which can be applied in action recognition and constrained video event recognition.

In Chapter 4 we analyse the spatial-temporal structure of the videos, and propose a deep neural

network with a two-step optimization procedure: unsupervised recurrent auto-encoding and super-

vised fine-tuning. In Chapter 5 we introduce a context based web event recognition framework

that can deeply explore the semantic information from ubiquitous web documents to enhance the

performance of video event recognition. In Chapter 6, we focus on integrating the semantic infor-

mation into the hashing model for scalable video event retrieval tasks. Finally the conclusion and

the possible future research directions suggested by the thesis are given in Chapter 7.



Chapter 2

Literature Review

In this chapter we give a comprehensive review of video event analysis, including the most recent

related work of machine learning, computer vision, and other techniques.

2.1 Overview

We organize the research of video event analysis into three different key areas: visual feature

representations, event detection & recognition models, and event retrieval models. The design of

real systems mainly depends on the contexts of applications, and these three key parts are displayed

in Figure 2.1.

The review of visual feature representations will be discussed first in Section 2.2, because this

is the most basic technique applied in various video content analysis tasks. Then in Section 2.3

we review the recent models for event detection & recognition. Finally in Section 2.4 we give a

brief summary of event retrieval models and relevant techniques.

2.2 Visual feature representations

In multimedia content analysis and computer vision, visual feature representation plays a critical

role in different tasks. Specifically, a well-designed feature should be robust against variations and

can well describe the visual properties of the videos. In this section we will discuss two kinds of

visual features that are commonly used: hand-crafted features and learned features.

13
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FIGURE 2.1: Three key parts of video event analysis

2.2.1 Hand-crafted features

Usually a video is represented as a sequence of frames, which contains both static and dynamic

information. The static information is just reflected by the frame-based features, but the dynamic

information is much more complex.

A video frame can be represented using a global feature or a set of discriminative local features.

The global features are mainly based on the overall distribution of colour, texture or edge infor-

mation, such as GIST and colour histogram. However, the global features fail to capture the local

properties of the video frames. The idea of the local feature is to identify the local patches, then de-

scribe them in a meaningful manner. One of the most well-known local features is scale-invariant

transform (SIFT) [54], which partitions a patch into equal-sized grids, each of which is described

by a histogram of gradient orientations. There are several extensions of the SIFT feature, such as

colour SIFT [2] and PCA-SIFT [42], which are widely used in describing the static properties of

the video frames. Extracting visual features from all frames of the videos is extremely time and

memory consuming, so a practical way for feature extraction is to sample the frames. In some

cases the video has rapid visual changes, and the frames should be carefully sampled and selected,

because a low-sampling rate may lead to the loss of important information, while a high-sampling

rate usually results in redundancies.

Although single-frame based visual features are the most straightforward ways to describe



2.2 VISUAL FEATURE REPRESENTATIONS 15

video content, they fail to depict the inter-frame changes, i.e., the dynamic properties of the videos.

Unlike single-frame based features, spatial-temporal features take the time dimension of the videos

into account. For example, Laptev extended the Harris corner patch detector [47] to locate spatial-

temporal interest points (STIP), which are represented by the concatenation of HOG and HOF

descriptors. Similarly, MoSIFT adds optical flow to the SIFT descriptor, which can be applied

in video motion analysis [11]. In order to enhance the descriptive ability in videos from both

spatial and temporal perspectives, densely sampling the interesting points and adding trajectory

information are helpful. Wang et al. proposed the Dense Trajectories to sketch the spatial-temporal

properties of the videos for action recognition. In this method, the interest points are densely

selected from the frames and represented as the concatenations of trajectories, HOG/HOF, and

MBH features [87]. They further boosted performance by estimating the camera motion and

employing the human bounding boxes, and named the feature Improved Trajectories (IDT) [89].

Till now, IDT is still one of the best visual features for video motion analysis. However, the

calculation of IDT is extremely time-consuming, needing unaffordable computational resources in

real-world scenarios. In addition, Wang et al. proposed a motion feature named Expanded Relative

Motion Histogram of BoW (ERMH-BoW), to encode both motion and the interactions between

different objects/scenes [86].

2.2.2 Learned features

Recently, based on deep learning techniques, the learned visual features from the pre-trained con-

volutional neural network (CNN) show a markedly superior performance to hand-crafted features

in image processing. The CNN model is an extension of traditional back-forward propagation

neural network, which usually contains several convolutional layers, max-pooling layers and fully-

connected layers. Popular CNN models such as AlexNet [44] and VGG net [75] were trained on

a large image corpus ImageNet, with the result that the error rate of image classification has been

continually decreasing over the last few years. The data from inter-mediate layers has a powerful

descriptive ability thus it can be used as the static visual feature for a variety of multimedia content

analysis tasks.

Variations of CNN models have also been designed for 3D video data. For example, Dutran
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et al. proposed a 3D CNN framework for action recognition [80], and Karpathy et al. designed a

CNN model for video classification [41]. Although the deep-learned CNN feature has achieved

exceptional performance on 2D image data, its variations on 3D video data are less satisfactory.

Till now there is still no deep model available for universal video analysis tasks.

2.2.3 Visual feature quantization methods

After extracting the raw visual features, the next step for further video processing is to pool these

raw features into feature vectors. The simplest way is to use the bag-of-visual-words model

(BoWs). By applying this method, a feature vector can be represented as a sparse vector of the

occurrence of words, i.e., a sparse histogram over the pre-computed vocabulary. The vocabulary

with K centres is generated by conducting the clustering algorithms on an interest point set sam-

pled from sufficiently large videos. One of the disadvantages of the BoWs model is that it ignores

the relationships among spatial-temporal patches in the high-dimensional space, which are signif-

icant in video representation. In order to solve this problem, Fisher Vector (FV) [65] and Vector

of Locally Aggregated Descriptors (VLAD) [33] have been proposed, both of which have great

advantages over the BoWs. The FV applies the Gaussian Mixture Model (GMM) to generate K

components from the sampled visual descriptors, and the mean and covariance deviation vectors

of each component are concatenated as a sparse and long vector. A variation of FV, the improved

Fisher Vector (IFV), applies the non-linear additive kernel and normalization to enhance discrim-

inative ability [66]. VLAD is a simplified version of FV. In this method, the K components are

obtained in the same way as the BoWs, which omits the covariance. Recently, some extensions of

VLAD such as the Riemannian version of VLAD [19], and VLAD-k [40] have been proposed,

which can further enhance the traditional VLAD method.

Specifically in the task of video event detection, Xu et al. proposed an effective video repre-

sentation method based on the pre-trained CNN model [100]. Applying the VLAD quantization

method on the pooling layer and fully-connected layer, the detection performance is even better

than IDT. However, this video representation is unsequenced, thus losing all the temporal informa-

tion.
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2.3 Event detection & recognition models

When given the visual feature representations, event recognition & detection can be achieved by

a variety of supervised or semi-supervised methods. This is a typical machine learning technique,

which contains both training and testing procedures. Here we discuss some content based models

and context based models, which have appeared in the last few years.

2.3.1 Content based models

The content based models are trained on the event-related videos without any auxiliary informa-

tion. One of the popular models in a range of computer vision and multimedia content analysis

applications is kernel-based classification. Among different kernel-based classifiers, support vector

machines (SVMs) with Gaussian or χ2 kernels are widely used in a variety of tasks such as action

recognition. Specifically in video event detection & recognition, SVM is often used as a baseline

method, although some other models have been proposed in the recent years. For example, Ma

et al. proposed an SAIR method that can automatically learn an intermediate representation from

low-level features together with a classifier for MED [59]. Gan et al. proposed a flexible CNN

specifically for video event detection and evidence recounting [21].

In recent years, multi-view learning (MVL) has shown its significance in solving many com-

puter vision problems. One assumption of MVL is that the target data can be observed from several

conditionally independent sources, with these different views being complementary to each other.

Thus the integration of these views can generate robust predictive models. MVL has been ex-

tensively applied in supervised learning [110, 108, 68, 20], unsupervised learning [27, 88], semi-

supervised learning [56, 103, 94, 55, 72] and transfer learning [109, 98]. Specifically in video

event detection, Xu et al. proposed a weighting scheme to evaluate the importance of different

visual features [101]. Natarajan et al. combined several visual features and a two-step strategy

employing multi-model and late fusion methods for MED [63]. Nikolaos proposed a two-phase

approach using non-linear discriminant analysis to identify the event-related subspace, then used a

linear SVM to learn the final model in the derived subspace [24].

Besides the above introduced methods, there has been a plethora of literature advocating the

use of temporal analysis of video event detection. For example, in Lai et al.’s work, temporal
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information has been proved to achieve a better detection performance compared with the flat

vector representation [46]. Similarly, Kevin et al. designed a method to learn the temporal structure

based on the hidden Markov model for event detection [78]. Vignesh et al. also tried to learn the

temporal embeddings [70], and Remi et al. built a temporal partitioning model for video analysis

[81]. Yu et al. analysed temporal information for the surveillance video event detection task [12].

2.3.2 Context based models

In many video content analysis tasks, bridging the low-level visual features and high-level de-

scriptors by prior knowledge is necessary because videos often carry very rich semantics. The

contextual information can be obtained from multiple sources such as auxiliary videos, images

and texts, and such information can be considered as the prior knowledge to enhance the perfor-

mance of the models. For example, Habibian et al. proposed a multimedia embedding method that

integrates the information crawled from web pages to translate the visual concepts into texts [28].

Merler et al. used 180 pre-trained textual words to formalize the videos as semantic model vectors

for event recognition [62]. Ma et al. designed a method that can utilize visual attributes from mul-

tiple video sources for the task [60]. Chen et al. leveraged loosely labelled web videos and web

images for video event recognition [10]. Similarly, Krishinamoorthy et al. utilized the knowledge

mined from web documents for video description [43], and Wan et al. proposed a graph-based

approach that can enrich the texts from web for video retrieval [85]. Ramanathan et al. proposed a

method based on natural language descriptors for action recognition [69]. The influence of online

videos was also studied to understand how social events were propagated in social websites [51].

Context based models are often considered as a kind of multi-task learning. For example, Chang

et al. proposed a unified model for multimedia event recounting and detection [9].

2.4 Video event retrieval

Different from the video event detection & recognition task that tries to learn a set of classifiers, the

video event retrieval aims to design an indexing model to store the video data in a compact way for

fast search. In the retrieval phase, given a query video, we do not know the exact event category it
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belongs to, and the search result should be semantically related to the query video at the event level.

Since the exhaustive search in the real number space is extremely time-consuming, it is necessary

to apply some indexing techniques to facilitate the computation when there are large numbers of

videos in the database. Generally speaking, there are two classes of indexing techniques: hashing

and product quantization.

2.4.1 Hashing

To accelerate information retrieval in large multimedia databases, one of the most promising ap-

proaches is to embed the high-dimensional data into binary codes, which is often called hash-

ing [91, 92]. Recently, many learning based hashing algorithms have been proposed[95, 97,

105, 90, 53, 25, 73, 74], and these are mainly used in the nearest neighbour search of image

data. In addition, cross-media hashing methods have been proposed for heterogeneous media re-

trieval [76, 31, 112]. In many multimedia retrieval applications, binary embedding approaches

are mainly designed at the visual level rather than the semantic level, so it is difficult to embed the

complex structures into binary codes for videos. Until now there is still only a very limited number

of hashing methods specifically designed for unconstrained video event retrieval. One representa-

tive hashing model is the inductive hashing via structural learning proposed by Ye et al., which is a

supervised hashing model [104]. This model attempts to learn the hash functions by discriminating

event classes at the video level. As the first attempt to encode the frames into binary codes at the

video level, it has three limitations: first, it requires all the key frames for hash model training, so

the time complexity is extremely high; second, the proposed optimization approach needs several

tens of iterations to converge, so the learning speed is very slow; third, it adopts hinge loss in the

objective function, which can be considered as a “hard” margin, and the objective function value

can barely satisfy this condition.

2.4.2 Product quantization

Product Quantization (PQ) [32] is another promising indexing approach for multimedia content

retrieval. The idea is to decompose the space into a Cartesian product of low-dimensional sub-

spaces and to quantize each subspace separately, so a vector can be represented by a short code
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composed of its subspace quantization indices. The Euclidean distance between two vectors can

be efficiently estimated from their codes based on a pre-trained code book. The optimal space de-

composition is important for the PQ performance, so the Optimized Product Quantization (OPQ)

[22] and Locally Optimized Product Quantization (LOPQ) [39] have been designed by rotating

the original data to the optimal location in order to improve the approximation of data distribution.

In some video event analysis tasks, PQ is also used to encode the high-dimensional feature

vectors to speed up computation. For example, in [71], Revaud et al. proposed a circulant temporal

encoding method for video event retrieval, and PQ is applied to encode the video frames into

compact codes. In [100], the VLAD pooling on the CNN features makes for very high dimensions

of the feature vectors, so PQ is used to reduce the memory and accelerate the computation, while

the accuracy remains almost the same.

2.5 Summary

In this chapter we illustrated some key research topics in video event analysis, including visual

feature representation and learning models. Motivated by the literatures in this chapter, we are

interested in applying some machine learning techniques to build effective and novel models for

video event detection, recognition and retrieval. For example, the MMA model in Chapter 3 adopts

the concept of transfer learning, and the TVAR model in Chapter 5 is mainly inspired by multi-

view learning and intermediate visual representation. In the next four chapters, we will introduce

our proposed models for effective video event analysis in detail.



Chapter 3

Max-margin adaptive model for complex

video pattern analysis

3.1 Overview

Using unlabelled data to assist the model training in a semi-supervised approach is a common

approach in many applications. The assumption of semi-supervised learning is that the samples

with similar data distributions are more likely to share the same labels. However, such assumption

does not always hold. Another challenge is there is a “semantic gap” between low-level features

and high-level descriptors. To overcome the above difficulties in complex video pattern recognition

tasks, we specifically consider the data distribution of the visual features in our proposed MMA

model. This adaptive model aims to obtain a mapping matrix which can be used to transform the

original data into a lower dimensional feature space, with the objective of not only minimizing the

data distribution disparity between labelled and unlabelled data but also maximizing the margins

between positive labelled videos and negative labelled ones for a given pattern. In the obtained

lower dimensional feature space, both labelled and unlabelled videos are then used together to

optimize the target predict function.

21
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3.2 Max-margin adaptive model

3.2.1 Problem formulation

Generally speaking, video pattern recognition can be considered as a supervised or a semi-supervised

learning task. Suppose the labelled source video collection is represented as a matrix Xs =

{xs1,xs2, . . . ,xsns
} ∈ Rm×ns , where each column is a video sample, and ns and m are the num-

bers of training samples and the dimension of the feature vectors respectively. Given a label, its

existence on all the training videos is represented as a vector ys = [ys1, y
s
2, . . . , y

s
ns

] ∈ {−1, 1}ns×1.

Similarly the auxiliary video collection is Xa = {xa1,xa2, . . . ,xana
} ∈ Rm×na , and na is the number

of auxiliary videos. The target is to utilize both labelled training videos and unlabelled auxiliary

ones to get a robust recognizer for a specified pattern recognition task in unseen video sets.

Different from binary or multi-class classification problems, video pattern recognition aims to

find the has-a correlations between the specified patterns and videos instead of is-a ones. Since

there are many hidden patterns in the videos, most of them may be redundant and even have

negative effects. Here we want to build a robust recognizer that can both effectively utilize the

unlabelled auxiliary videos and select the most discriminative feature components to identify the

predefined patterns.

Given that the discriminative information in labelled videos is quite limited, the MMA model

can utilize a large number of unlabelled videos to assist the pattern recognition tasks. In real-world

applications, the unlabelled auxiliary videos can be acquired by searching the keywords of users’

interests from public video sources such as YouTube. However, the following reasons make it

difficult to fully take advantage of auxiliary videos and get a robust recognizer in semi-supervised

learning approaches: 1) the quality of auxiliary videos varies, i.e., the videos from public sources

are often quite noisy; and 2) the number of positive labelled videos is much smaller than the number

of negative labelled videos, leading to highly imbalanced numbers, and 3) the data distribution of

the videos from different sources may be varied.

The MMA model jointly considers two optimization objectives: 1) minimizing the loss func-

tion and corresponding regularization; and 2) finding a discriminative subspace by learning a linear
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mapping matrix that can simultaneously minimize the data distribution difference between train-

ing data and auxiliary data and maximize the margin between positive labelled videos and negative

labelled ones for a pattern.

Suppose C and ξ = [ξ1, ξ2, . . . , ξns ] are the penalty cost and hinge loss for the labelled training

data. We can construct a standard linear SVM model as follows:

min
w,b

1
2
w>w + C

ns∑
i=1

ξi

s.t. ysi (w
>xsi + b) ≥ 1− ξi

ξi ≥ 0,∀ i = 1, 2, . . . , ns.

By solving this problem, the decision function is:

f(x) = w>x + b (3.1)

where w is a weight vector and b is a bias.

However, this supervised learning algorithm can neither utilize unlabelled auxiliary data, nor

consider the most discriminative feature components from the perspective of data distributions. As

we know, usually only a subset of the features has positive effect for the recognition of a particular

pattern while other features are redundant or even negative. So in our framework, instead of

obtaining a global classifier on the original feature vector x, we use a mapping matrix Θ ∈ Rr×m

(r < m) to transform the original vector space to a new subspace x′, i.e.,

x′ = Θx (3.2)

Thus, the linear decision function becomes:

f(x) = u>Θx + b (3.3)

where u is the corresponding weight vector in the subspace.

In order to take advantage of unlabelled data, we want to minimize the data distribution dispar-

ity to improve the performance. The MMD (maximum mean discrepancy) [7] is defined as:



24 MAX-MARGIN ADAPTIVE MODEL FOR COMPLEX VIDEO PATTERN ANALYSIS

dist(Xs, Xa) = || 1

ns

ns∑
i=1

φ(xsi )−
1

na

na∑
i=1

φ(xai )||H (3.4)

where φ is a function that can transform the original feature space to a higher dimensional Repro-

duced Kernel Hilbert space.

Considering the mapping matrix Θ and the finite data samples, letX = [Xs, Xa] ∈ Rm×(ns+na),

d be a column vector with the first ns entries having the value of 1/ns and last na entries having

the value of −1/na, and let D = dd>. The square empirical MMD with a linear mapping can be

written as:

J(Θ) = dist2(Xs, Xa) = tr(ΘXDX>Θ>) (3.5)

The minimization of J(Θ) can facilitate the model training when there exists data distribution

disparity between labelled data samples and unlabelled auxiliary ones, and the rigorous theorem

is proved in [6] for domain adaptation. Suppose H is a hypothesis space of VC-dimension r and

n = ns = na, for each h ∈ H at least with the probability 1− δ, the empirical risks of a hypothesis

on labelled training data εs and unlabelled auxiliary data εa have the following relationship:

εa ≤ εs + dist(Xs, Xa) + 4

√
2r log(2n) + log(4

δ
)

n
+ λ (3.6)

where λ is a small number. The above relationship indicates that a smaller MMD leads to a smaller

distribution difference between labelled training data and auxiliary data.

Since minimizing the square MMD between training data and auxiliary data does not contain

any label information, it is still unable to get the most discriminative features and to reduce the

redundant ones due to the fact that only a small subset of features contributes to the specified

patterns. Under this circumstance, these useful features are usually disturbed by irrelevant ones,

and we call this phenomenon as “feature submergence”. To solve this problem, we also add another

item Q(Θ) to maximize the margin between positive data and negative data identified with the

label information. Assume the labelled positive video collection is Xs+ = [xs+1 ,xs+2 , . . . ,xs+
n+
s

] ∈

Rm×n+
s and the labelled negative one is Xs− = [xs−1 ,xs−2 , . . . ,xs−

n−s
] ∈ Rm×n−s , where n+

s and n−s

are the numbers of positive samples and negative samples respectively, and Xs = [Xs+, Xs−].

In order to enhance the effect of useful features and shrink the weight values of the redundant
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features to zero, we aim to maximize the MMD between Xs+ and Xs−. Similarly, let h be a

column vector with the first n+
s entries are 1/n+

s and last n−s entries are −1/n−s , H = hh>. This

linear transformation is represented as:

Q(Θ) = dist2(Xs+, Xs−) = tr(ΘXsHXs>Θ>) (3.7)

It can be seen that Q(Θ) can also be considered as a feature selection function. Intuitively,

if two groups of videos are quite similar with each other but belong to different pattern classes,

maximizing Q(Θ) means that the most discriminative features can be identified in the new feature

space. By performing Q(Θ), positive samples can be better separated from negative samples in the

new feature space.

At the same time, by considering the unlabelled auxiliary data, i.e., J(Θ), the final MMA

model can be formulated as the following optimization problem:

min
u,b,Θ

1
2
u>u + C

ns∑
i=1

ξi + 1
2
λ1J(Θ)− 1

2
λ2Q(Θ) + 1

2
η||Θ− I||22

s.t. ysi (u
>Θxsi + b) ≤ 1− ξsi

ξsi ≥ 0,∀ i = 1, 2, . . . , ns

This objective function jointly considers the following goals: (i) minimization of the empirical

risk and hinge loss; (ii) minimization of the distribution disparity between the training data and the

auxiliary data; (iii) maximization of the margin between positive labelled data and negative labelled

data; and (iv) keeping Θ orthoganal. It is conducted for the solution of the weight parameter u, the

bias parameter b, and the mapping matrix Θ which achieves both goals (ii) and (iii).

3.2.2 Solution of the adaptive model

Since the optimization problem is neither convex nor concave, we use a heuristic approach de-

scribed as follows.

By adding the Lagrange multiplier α = [α1, α2, . . . , αns ] and β = [β1, β2, . . . , βns ] on the

constraints of the objective function, we can get:
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L = 1
2
u>u + C

ns∑
i=1

ξsi + 1
2
λ1J(Θ)− 1

2
λ2Q(Θ) + 1

2
η||Θ− I||22

−
ns∑
i=1

αi[y
s
i (u
>Θxsi + b)− 1 + ξsi ]−

ns∑
i=1

βiξi. (3.8)

We can then calculate the partial derivative of Θ,

∂L

∂Θ
= λ1ΘXHX> − λ2ΘXsHXs> + ηΘ−

ns∑
i=1

αsiy
s
iux

s>
i . (3.9)

Let ∂L
∂Θ

= 0, we can arrive at:

Θ = (
ns∑
i=1

αsiy
s
iux

s>
i + I)(λ1XHX

> − λ2X
sHXs> + I)−1. (3.10)

The detailed solution can be achieved by alternatively executing steps 2 and 3, as described

below until convergence:

step 1: Initialize and fix the parameter Θ = I;

step 2: Solve the supervised learning problem, and get the optimal u, which can be solved by

SVM as follows:

min
u,b

1
2
uu> + C

ns∑
i=1

ξi

s.t. ysi (u
>Θxsi + b) ≤ 1− ξi

ξi ≥ 0,∀ i = 1, 2, . . . , ns

with the optimal solution:

u =
ns∑
i=1

α∗i yix
s
i (3.11)

where α∗i is the optimal solution of the dual problem.

step 3: Update Θ by equation (3.10).

When we get the optimal mapping matrix Θ, the data distribution becomes quite suitable for

semi-supervised learning that can enhance the generalization ability of the classifier. Thus, the

final prediction function can be achieved by solving the following semi-supervised problem on u

and b in the mapped feature space:
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min
u,b,{yai }

1
2
u>u + C(

ns∑
i=1

ξsi +
na∑
i=1

ξai )

s.t. ysi (u
>Θ∗xsi + b) ≤ 1− ξsi

yai (u
>Θ∗xai + b) ≤ 1− ξai

ξsi ≥ 0,∀ i = 1, 2, . . . , ns

ξai ≥ 0,∀ i = 1, 2, . . . , na

where ξai and yai are the i-th hinge loss and the pseudo label of auxiliary data respectively, and the

optimization problem can be implemented by TSVM algorithms like [37].

Given a testing video, its original features are first mapped into the new feature space by Θ,

followed by Equation (3) using u and b to predict its pattern.

At last, we give a brief analysis for time complexity of the algorithm: Before applying the two

iterative steps, the right item in equation (3.10) can be pre-computed. The time complexity of SVM

by sequential minimal optimization (SMO) is o(n2.3
s ), and that for matrix operation is o(nsmr).

After achieving the optimal Θ, applying TSVM needs o((ns + 2na)
3). Suppose the iteration time

is T , the overall time complexity for MMA is o(T (n2.3
s + nsmr) + (ns + 2na)

3).

3.3 Experiments and analysis

In this section we conduct the experiments to evaluate the performance of our proposed MMA

model and provide the corresponding analysis.

3.3.1 Dataset and experiment setup

We conduct the experiments on two public datasets.

• Columbia consumer video (CCV) [36]. It is a collection of 20 classes of events or ob-

jects with 4,659 training videos and 4,658 testing ones, and all these videos were captured

by ordinary consumers without post-editing. The 20 events/objects are Basketball, Base-

ball, Soccer, IceSkating, Skiing, Swimming, Biking, Cat, Dog, Bird, Graduation, Birthday,
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WeddingReception, WeddingCeremony, WeddingDance, MusicPerformance, NonMusicPer-

formance, Parade, Beach, and Playground. According to the given label set, most of the

videos contain only one specified pattern, and a small number of them contain more than

one patterns. About 1,000 videos in both training and testing sets do not contain any speci-

fied patterns. So in our experiments, CCV dataset is divided into 20 independent recognition

tasks. For each pattern, only the first 60 positive labelled videos are selected for training,

and the remaining labelled ones are treated as unlabelled auxiliary videos (i.e., their labels

are removed to get the unlabelled auxiliary videos).

• HMDB [45]. This is a human motion dataset for action recognition. There are 51 actions in

this dataset with three different divisions for training and testing. Each action has 70 labelled

videos. Similar to CCV dataset, for each action only the first 30 instances are selected as the

labelled videos for training, and the rest of them are regarded as unlabelled auxiliary videos.

For video features, the combination of several low-level features is preferable for recognition

tasks because of the different perspectives from their observations. The CCV videos are repre-

sented by SIFT (5,000d), STIP (5,000d) and MFCC (4,000d) features. In our experiments, the

three given features were concatenated as 14,000-dimensional vectors, and KPCA was applied

with χ2 kernel to reduce the dimensionality to 6,000. So the final video representations used for

CCV dataset are 6,000d combined features. For HMDB dataset, only STIP feature (4,096d) which

can carry motion information was adopted for the action recognition task.

To evaluate the performance, we use average precision (AP) and normalized detection cost

(NDC) for CCV dataset, and accuracy for HMDB dataset as the evaluation metrics. AP is a single-

valued measurement that can reflect the ranking of the testing data. LetR as the true positive video

in the testing set and Rj is the numbers of relevant videos in the top j list. AP is calculated as:

AP =
1

R

∑
j

Rj

j
× Ej (3.12)

where Ej = 1 if the j-th video is correctly detected and 0 otherwise. AP prefers the high-rank

correct videos, and the model with higher AP is in favour.

Different from AP, NDC uses a flexible way to evaluate the performance. For each event, we

set a recognition threshold to the minimum value of all relevant videos in testing set. If the videos
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TABLE 3.1: MAP comparison of MMA and other algorithms on CCV dataset

SVM SAIR TSVM A-MKL MFCU MLHR MMA

MAP 0.1547 0.1751 0.3001 0.2612 0.3094 0.3109 0.3149

NDC 0.6831 0.6578 0.6371 0.6516 0.6282 0.6335 0.6232

TABLE 3.2: Accuracy comparison of MMA and other algorithms on HMDB dataset

SVM SAIR TSVM A-MKL MFCU MLHR MMA

Accuracy 0.1096 0.1247 0.1454 0.1178 0.1443 0.1456 0.1461

with confidence scores higher than the threshold, they are considered to be relevant. Suppose

PMD and PFA be the missing detection rate and false alarming rate respectively, and PT be the

proportion of true relevant videos, NDC is defined as:

NDC =
γ1 × PMD × PT + γ2 × PFA × (1− PT )

min(γ1 × PT , γ2 × (1− PT ))
(3.13)

where γ1 and γ2 are the weight parameters on the importance of PMD and PFA respectively. In our

evaluation we set γ1 = 80 and γ2 = 1 respectively. It can be seen that the lower the NDC is, the

better performance the model has.

The recognition accuracy is used as a statistical measure of how well the experimental test

correctly identifies or exclude a condition. i.e., the proportion of the true results among the total

number of cases examined.

3.3.2 Experiment results

Comparison with baseline methods

We first compare the proposed method MMA with three baseline methods: χ2-SVM, semantic

analysis via intermediate representations (SAIR) [59] , transductive SVM (TSVM) [37], domain

transfer multiple kernel learning (DTMKL) [18], multiple feature correlation uncovering (MFCU)

[94] and multi-feature mearning via hierarchical regression (MLHR) [103]. SAIR is a supervised

learning algorithm that jointly extracts the intermediate representation implicitly and trains the
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FIGURE 3.1: AP comparison of different algorithms on CCV

FIGURE 3.2: NDC comparison of different algorithms on CCV

objective classifiers. TSVM is an extension of SVM that can utilize unlabelled data to improve the

generalization ability. DTMKL is a tranductive transfer model that can combine several kernels to

achieve the data distribution similarity. Both MFCU and MLHR adopt the multi-view strategy to

locally discover the structure of patterns, and MFCU uses similar subspace mapping strategy like

our MMA model. The comparison of mean AP (MAP) and NDC for CCV dataset is shown in



3.3 EXPERIMENTS AND ANALYSIS 31

FIGURE 3.3: Accuracy comparison of different algorithms on HMDB (partial results)

Table 3.1. We also give AP, NDC and accuracy comparisons of some specified patterns in Figure

3.1, 3.2, 3.3.

From the table and the figures we can see that our proposed MMA model outperforms the other

algorithms on both AP and NDC in average. SAIR algorithm tries to extract some intermediate

feature representations, which is quite similar to the mapping function Θ in our proposed MMA

model, and it outperforms the basic χ2-SVM. However, it cannot discover the latent structure from

unlabelled videos. TSVM utilizes the unlabelled instances and adopts the heuristic approach to

find the maximum margins of different patterns, but it does not use the data distribution informa-

tion. SAIR and TSVM can be considered as complementary methods to each other for pattern

recognition tasks. Although DTMKL uses multiple kernels and their combinations to achieve the

minimization of data distribution, its effect is limited, which can be further improved by semi-

supervised algorithms. MLHR adopts both local and global feature structures and semi-supervised

classification methods to improve the generalization ability, and similarly MFCU uses mapping

strategies for several visual features correspondingly. Both MLHR and MFCU are very competi-

tive algorithms.

Our proposed MMA algorithm can take the advantages of the methods above, and at the same

time utilizes the label information in learning the mapping function, which can maximize the
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FIGURE 3.4: AP effect of different numbers of la-
belled videos on CCV

FIGURE 3.5: Accuracy effect of different numbers
of labelled videos on HMDB

geometric margin between positive labelled video and negative labelled videos for a pattern.

Generally the performance on CCV dataset is better than that on HMDB dataset in our exper-

iment, although the evaluation metrics are different. The reasons could be multi-fold. The most

important reason we believe is due to the visual feature used on HMDB dataset (with STIP feature

only), while three different features are combined in CCV dataset. Another reason is the number

of training instances. Meanwhile, action recognition on HMDB dataset could be more challenging

than object detection on CCV dataset.

The effect of labelled instance numbers

The quantity and quality of labelled data instances play an important role in supervised or semi-

supervised learning. Actually in many machine intelligence systems, manual labeling and expert

annotation still cannot be replaced by unsupervised approaches currently. Similar to other learning

models, the performance of our MMA is also influenced by the number of labelled data instance.

In this experiment, we study the effect of different numbers of labelled videos on the performance

for each pattern, ranging from 20 to 100 for CCV dataset and from 10 to 50 for HMDB dataset

respectively. Curves of AP and NDC are plotted in Figure 3.4 and 3.5.

From the figures we can see that as the numbers of labelled videos increase, both AP and NDC

become better in all algorithms. This is reasonable since more labelled videos contain richer data

distribution information which can benefit pattern recognition tasks.
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FIGURE 3.6: The effect of the mapped dimensionality r on CCV dataset

For HMDB dataset, the accuracy χ2-SVM using all the labelled actions (70 instances for each

action) is around 20% according to [45], and with partial labelled instance and MMA model,

we can also get the satisfactory results, which tells using MMA model with less labelled data

instances, we can also get very satisfactory recognition results.

Sensitivity of r

Since in the MMA model the matrix Θ is used to map the original feature space to a lower dimen-

sional space, the selection of r which is the dimensionality of the new subspace may affect the

recognition performance. We also conducted the experiments with different values of r, ranging

from 1,000 to 4,000 in CCV dataset, and observed the changes of the performance as shown in

Figure 3.6 . It is indicated that there are very tiny fluctuations when the subspace dimensionality

changes, which signifies our MMA model is quite stable and insensitive to the parameter r. A

relatively small r can be chosen for its more compact representations. The similar conclusion can

be proved on HMDB dataset.
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3.3.3 Discussions

Does unlabelled data help

Although semi-supervised learning with unlabelled auxiliary data has been shown more effective

than supervised methods in many datasets, including the two datasets used in this work, it is still

unclear whether it is always an effective approach in all real-world applications. In video content

analysis, when there are large amount of unlabelled data that are near-duplicate to the labelled

samples, semi-supervised learning can boost the performance in most cases. However, when video

data has large intra-class variations and very rich semantics, semi-supervised learning actually

degrades the performance of pattern recognition systems. One explanation is that the consistence

of the data distributions between labelled source data and unlabelled auxiliary data directly affects

the performance. Unfortunately, there is no theoretical proof to provide an accurate error bound

on the performance changes, except experimental results on different datasets.

Early or late feature fusion strategy

Currently there are two feature fusion strategies, including early fusion and late fusion. The former

one combines the features before the conduction of recognition, while the latter one combines the

outputs of models recognized from different features [23, 16, 82, 8]. In our experiments on CCV

dataset, MMA adopts the early fusion strategy while MLHR uses the late fusion strategy. Both

strategies have their merits and demerits, and it is really unclear which one is always better than

the other.

Scalability

For recognition tasks, the improvement of accuracy is often accompanied with the increase of

time complexity. Due to the fact that the proposed MMA model takes several of the advantages

of TSVM and SAIR, the training process needs more time because it involves the large matrix

computation, especially the reverse of the matrix in Equation. 3.10. However, the time complexity

of MMA is much lower than MFCU and MLHR, because the computation of adjacency matrix for

graph decomposition is time-consuming. For large scale pattern recognition tasks, the scalability

can be improved by hashing methods, but it may sacrifice the accuracy.



3.4 SUMMARY 35

Relations with event detection

Compared with event detection, video pattern recognition can be considered as a basic work. One

difficulty of event detection is the large intra-class visual difference but similar semantic descriptor.

Besides, the mutual correlations among different patterns vary under a variety of circumstances.

Thus semi-supervised algorithms and transfer learning models can hardly achieve the satisfactory

results. However, it is worth trying to get appropriate intermediate feature representations, so

unlabelled instances may help improve the detection performance.

3.4 Summary

In this work we proposed a video pattern recognition model called MMA by learning a mapping

matrix Θ to transform the original feature space into a lower dimensional subspace, which can

effectively reduce the data distribution disparity between labelled and unlabelled videos and also

maximize the margin between positive labelled and negative labelled videos. The iterative opti-

mization solution to the objective function of MMA may make use of both labelled source videos

and unlabelled auxiliary videos for complex pattern recognition. The experimental results on two

public datasets demonstrated that the proposed MMA model outperforms the state-of-the-art meth-

ods.

In the next Chapter, we propose a deep model that can combine both static and dynamic prop-

erties. Our model can learn the temporal patterns from static features, to achieve satisfactory

performance in video event detection.
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Chapter 4

Robust spatial-temporal deep model for

multimedia event detection

4.1 Overview

In the last chapter, we proposed a learning model based on intermediate representation and domain

adaptation. Multimedia event detection (MED) is a specific case for video pattern recognition,

which is a much more challenging task. As is distinct from the traditional machine learning tech-

niques as introduced in the last chapter, in this chapter we propose a novel learning framework

based on 3D auto-encoder to sketch the spatial-temporal properties of videos.

Recently, the learned visual features from pre-trained Convolutional Neural Network (CNN)

have shown a much more superior performance than hand-crafted features, and they have been

used in different visual tasks such as pedestrian detection [67] and video classification [41, 80].

Specifically in the task of video event detection, Xu et al. proposed an effective video repre-

sentation method based on a pre-trained CNN model [100]. Applying the VLAD quantization

method [33] on the last pooling layer and two fully-connected layers, the detection performance is

outstanding on the TRECVID MED dataset. However, this video representation is unsequenced,

so it loses all the temporal information. Another issue is that it cannot make use of a large number

of unlabelled videos to acquire prior knowledge, which could help improve the detection perfor-

mance of the MED models. Based on these reasons, we set two goals: 1) we aim to learn the joint

37
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models that can sketch both static and dynamic properties; 2) we aim to find the hidden spatial-

temporal patterns in both labelled and unlabelled videos, as prior knowledge, before we obtain the

final models.

In this work, we propose a novel deep learning framework for MED tasks. First we extracted

the frame-level visual features and applied the temporal segmentation techniques to represent each

video as a sequence of feature vectors. After that, we used the recurrent neural network to learn

the intrinsic temporal properties of the videos in an unsupervised way. Finally, we aggregated the

feature vectors and used an activation layer that connected to the labels. In this way we conducted

a fine-tuning procedure to obtain the final detection model. We undertook extensive experiments

on the TRECVID MED 2014 dataset, and demonstrated that our proposed system can achieve very

promising performance in video event detection tasks.

4.2 A two-step training model for multimedia event detection

In this section, we introduce our proposed spatial-temporal deep learning model specifically de-

signed for MED tasks in detail. Our main idea is to utilize both unsupervised recurrent video

reconstruction and supervised fine-tuning, to construct a model that simultaneously captures the

spatial and the temporal properties of the videos.

4.2.1 Video temporal segmentation

Our framework starts with the video representation. In order to sketch the temporal properties, a

common way is to use frame sequences to represent videos. However, it is extremely time and

memory consuming if we extract the visual features from all frames, so in most applications,

frames are often sampled for further processing. In some cases the video has rapid visual changes,

and it is difficult to sample and select the most appropriate frames, because a low-sampling rate

may lead to the loss of important information, while a high-sampling rate usually results in redun-

dancies. Through our observation, the temporal granularity for MED is comparably large, so a

better option to sketch the spatial-temporal properties of videos is to split each video into several

short segments. By doing so the number of temporal units can be greatly reduced, thus in the
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learning procedure, the computational complexity can be also reduced.

Based on such analysis, we applied the Kernel Temporal Segmentation (KTS) [67] to segment

the videos. Using this approach, the visual features of a video at the frame level were extracted

and the kernel matrix computed to represent the affinities of the frames. Then dynamic program-

ming was applied to discover the changing points, which represent the jumps of the signal. As a

result, each video is represented as a sequence of non-overlapping segments. This kernel temporal

segmentation has originally been used for video summarization, but in our proposed framework,

we have only used it as a pre-processing procedure for the videos, to reduce computational com-

plexities.

Representing a video as a sequence of frame feature vectors or segments for the MED task can

be considered as a kind of multiple-instance learning. However, the detection accuracy reported

in [46] shows that both mi-SVM and MI-SVM have far inferior performances compared to the

SVM trained on the flat vector representation of the videos. This implies we need to build the

model carefully, in order to avoid the negative effect brought by the overly-loose assumption of

multiple-instance learning. In addition, the temporal information should also be incorporated into

the model to improve detection accuracy.

4.2.2 Video re-construction using the GRU auto-encoder

A key step of our proposed framework is to reconstruct the video representation in an unsupervised

way using a recurrent auto-encoder.

The traditional auto-encoder [29] aims to reproduce the input data as a compressed and sim-

ilarly distributed representation. Since in the hidden layer the dimensionality is lower than that

of the input layer, the auto-encoder can be considered to make a non-linear dimensionality reduc-

tion. Normally the auto-encoder is used in the deep multi-layer perceptron (MLP) by pre-training

the weights of the neural networks in a greedy layer-wise approach, which is an unsupervised

procedure.

Unlike the conventional auto-encoder which is mainly used in image processing, we used a

recurrent neural network (RNN) to reconstruct the video representations. An MLP can only map

from input to output vectors, while an RNN can in principle map from the history of previous inputs
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to each output, so it is able to deal with sequential prediction problems, especially for sentence

understanding in natural language processing [26]. In multimedia content analysis, RNNs have

also been used in acoustic novelty detection [61] and video highlight extraction [102]. Among

different RNN models, the Long Short-Term Memory (LSTM) [30] and the Gated Recurrent Unit

(GRU) [13, 14, 38] are the most popular ones, and both of them can overcome the difficulty of

vanished gradient problem [4]. Although there are a number of structural differences between

LSTM and GRU, it is generally unclear which types of gating units have a better performance.

In this work we chose the GRU to reconstruct video representations, the reason being that it has

fewer parameters for optimization, thus the computational complexity is comparably lower than

that for the LSTM.

After the kernel video segmentation introduced in the previous subsection, assume a video

x is represented as a sequence of feature segments x = (x1, . . . , xT ), where xt ∈ Rd is the

visual feature vector of the t-th segment of the video x, t = 1, . . . , T , and T is the number of

the video segments. An RNN based auto-encoder first computes the hidden vector sequence h =

(h1, . . . , hT ), ht ∈ Rd′ , d′ < d, then it computes the output sequence x̃ = (x̃1, . . . , x̃T ), which is

an approximation of x, i. e, x̃ ≈ x.

The GRU has gating units that model the flow of information inside the unit without separate

memory cells. Let hjt be the j-th activation at the time t, which is a linear interpolation between

the previous activation hjt−1 and the candidate activation h̃jt :

hjt = (1− zjt )h
j
t−1 + zjt h̃

j
t (4.1)

where zjt is the update gate that decides how much the unit updates its activation. zjt is computed

by:

zjt = σ(Wzxt + Uzht−1)j (4.2)

where σ is the sigmoid activation function. Wz is the weight matrix for the update gate, and Uz is

the self-connected weight matrix for the hidden layer. The candidate activation h̃jt is computed by:

h̃jt = tanh(Wxt + U(rt � ht−1))j (4.3)
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FIGURE 4.1: The GRU based recurrent auto-encoder.

where W and U are weight matrices for the candidate activation. rt is a set of reset gates and �

is an element-wise multiplication. When rjt is close to 0, the reset gate can make the unit act as

if it is reading the first symbol of an input sequence, allowing it to forget the previous state. rjt is

computed as:

rjt = σ(Wrxt + Urht−1)j (4.4)

where Wr and Ur are the matrices for the reset gate. Similar to other feed-forward neural network

models, the optimization of the GRU can be achieved by gradient descent methods. For further

details of the GRU, please refer to [13].

Our GRU based video reconstruction model is illustrated in Figure 4.1. The input of the

neural network is a 3D tensor, where the first dimension is the number of training videos, the

second dimension is the temporal video segments, and the last one is the dimensionality of the

visual feature vector. The GRU recurrent layer is connected to the input layer, followed by a

dropout layer. The dropout layer is a simple yet effective way to reduce over-fitting and thus is a

major improvement over other regularization methods [77]. After the dropout layer, we apply the

fully-connected layer (FC) with the linear activation that is connected to the output. The output is

exact the same as the input video segments. As a result, we can just apply the L2 loss to optimize

the parameters in the model:

Lu = ‖x̃− x‖2 (4.5)
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FIGURE 4.2: The prediction model for event detection.

The advantages of utilizing unsupervised recurrent learning are summarized as follows: first

of all, it can make a much better initialization of the neural network; second, it can well reflect the

temporal information between video segments; last but not least, a large number of videos without

any label information can be used to enhance the robustness of the model and avoid the over-fitting

problem.

4.2.3 Supervised fine-tuning for event detection models

After the unsupervised recurrent learning, the output from the GRU layer is the reconstruction of

the original video segments. In the supervised learning phase, we just kept the GRU layer, removed

the dropout layer and FC layer as introduced above, and added several new layers: a mean pooling

layer, a new dropout layer and one or more new FC layers. The last FC layer was connected to the

labels of the event categories y = (y1, . . . , yC) with a softmax activation, and C is the number of

event categories. In our experiment, we used the cross-entropy as the loss function:

Ls = −y log f(x)− (1− y) log(1− f(x)) (4.6)

where f is the final prediction function of the model. The supervised learning model is illustrated

in Figure 4.2.

During the supervised training phase, the weight matrix that connects the dropout layer and

label layer was randomly initialized and optimized, while the GRU layer only needed to be fine-

tuned without dramatic fluctuations.
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4.3 Experiments and discussions

4.3.1 Dataset and data pre-processing

We have conducted the event detection experiment on the TRECVID MED Test 2014 dataset [1].

This dataset contains 8,030 training videos, and 23,953 testing videos over 20 complex events

under unconstrained cases, and we have followed the NIST official data split 100Ex to train and

evaluate our model. In the training phase there are approximately 100 positive videos for each

event, while the rest are irrelevant to any pre-defined events. As our proposed framework is able to

deal with a large number of unlabelled videos in a “semi-supervised” way, besides all the labelled

training videos, we randomly select 4,000 videos from the testing set in the procedure of recurrent

video reconstruction described in Section 4.2.2.

Recently the Convolutional Neural Network (CNN) has given a very high accuracy in image

classification. With a GPU device, the deep feature can be efficiently extracted from the raw

images based on a pre-trained CNN model. In our experiment we adopted the VGG ILSVRC

model [75] to obtain the visual features from the videos. In the VGG-net, the first 13 layers are

2D convolutional and max-pooling layers, followed by 3 fully-connected layers. In Xu et al.’s

work, the descriptors from the pool5 layer can be considered as the latent concepts to describe

the local properties of the videos [100]. The output dimension of this layer is a 7 × 7 × 512 data

cubic, thus they can be decomposed into 49 vectors with 512 dimensions. Applying the VLAD

pooling method, the video can be finally represented as a high-dimensional vector, and such video

representation has been proved to outperform the same feature aggregation of 6th and 7th fully-

connected layers. The reason for this is that the fully-connected layers are highly influenced by

the label information of ImageNet, so they have a slight inability to be generalizable. Following

Xu et al.’s work, we extracted the feature from the 5th pooling layer, and applied the VLAD

method to aggregate the latent concepts. As a result, each video segment is represented as a

65,536 dimensional vector.
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4.3.2 Experimental settings

We set different output dimensions of the GRU layer: 128, 256, 512, and 1,024 respectively. In

the dropout layers in both unsupervised and supervised phases, we set the dropout rate to 0.5

without any change. In the optimization procedure, we applied the AdaDelta algorithm [107] to

optimize the parameters in the neural network. The Adadelta algorithm restricts the windows of

accumulated past gradients to the fixed size, and it does not need to set a default learning rate, as it

has been eliminated from the update rule. Theoretically, AdaDelta can achieve faster convergence

than SGD (Stochastic gradient descent) 1 and avoid the fluctuations.

We used Mean Average Precision (MAP) to evaluate the detection performance, which is a

single-valued measurement that reflects the ranking of the model on testing data. The model with

the higher MAP value is in favour.

Our experiment was conducted on a workstation equipped with the Ubuntu operating system

and a GeForce GTS Titan GPU device. We implemented the system based on the Theano package
2, which supports GPU acceleration and automatic gradient calculation. The error threshold of the

model was set to 10−5, and the program ran for about 3 days until convergence.

4.3.3 Baselines

We then compared the event detection performance of our proposed two-step neural network model

with three baseline models: 1)Multiple instance SVM (MI-SVM) [17]; 2) Inferring Temporal

Instance Labels (ITIL) [46]; and 3) VLAD aggregation of the pool5 feature, combined with SVM

as a classifier (LCD+VLAD) [100]. In addition, we also reported the experiment results using the

GRU+FC model in a purely supervised way (GRU+FC+S), i.e., without the unsupervised video

reconstruction step proposed in Section 4.2.2. Our proposed method of applying the unsupervised

GRU auto-encoder and supervised fine-tuning is marked as GRU+FC+US.

1https://en.wikipedia.org/wiki/Stochastic gradient descent
2http://deeplearning.net/software/theano/
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TABLE 4.1: The effect of the dimensions in the GRU layer

Dgru 128 256 512 1024

MAP 0.2856 0.3112 0.3283 0.3282

TABLE 4.2: The effect of the FC layer numbers

Nfc 1 2 3

MAP 0.3084 0.3283 0.3283

4.3.4 Results

Analysis of the impact of parameters

There are two parameters to be pre-set for our proposed framework: The mapping dimension of

the GRU layer in the unsupervised video reconstruction, and the number of fully-connected layers

in the supervised fine-tuning phase.

The dimension in the GRU layer is much smaller than the input data, so the recurrent auto-

encoder is considered as a non-linear dimensionality reduction with the consideration of temporal

information. We set the reduced dimensions Dgru to 128, 256, 512 and 1,024 respectively, and

used a single fully-connected layer to the label layer. The MAP performance is displayed in Table

4.1. The table shows when the dimension of the GRU layer is set to 256 or 512, the model can

ensure similar detection performance.

In the popular deep neural network models, there are generally two or more FC layers that are

connected to the label layer. For example, the VGG net has 3 FC layers. The explanations are

illustrated as follows: first, more FC layers can approximate more complex non-linear structures

in the high-dimensional data space; second, the weights in the “shallower” layers that may reflect

the input data structure are less affected, so this can alleviate the over-fitting problem. We set the

number of FC layers (Nfc) to 1, 2 and 3, and the resulting detection performance of our model is

displayed in Table 4.2.

From the table we can see that when there are more than two FC layers in our network model

during the fine-tuning phase, the detection achieves better performance.
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FIGURE 4.3: The AP comparisons of different models.

TABLE 4.3: The overall MAP comparisons of different models

Model MI-SVM LCD+VLAD ITIL GRU+FC+S GRU+FC+US

MAP 0.1624 0.2805 0.2241 0.3012 0.3283

Comparisons with other MED models

We conducted the MED experiment using all the baseline models: MI-SVM [17], LCD+VLAD [100],

ITIL [46], GRU+FC+S and GRU+FC+US, and the experiment results are displayed in Figure 4.3

and Table 4.3. We can see our proposed two-step learning model outperforms others, so we can

conclude that by simultaneously considering the spatial and temporal information of the video seg-

ments, the data representation of the recurrent auto-encoder can better reflect the intrinsic structure

of the discriminative patterns. Thus our model leads to superior results, and the accuracy is very

close to the MED system implemented by CMU [106].

Figure 4.4 shows the key frames in videos of classes E31 - E35 that are top-ranked by our

proposed model. The red boxes are misclassified videos, i.e., they are irrelevant to the pre-defined

events. We can see that our framework can successfully detect important visual cues for the events.
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FIGURE 4.4: The top 10 ranked videos for events E31 - E35.

4.3.5 Discussions

The success of our proposed two-step learning model for the MED task can be attributed to a num-

ber of factors. First of all, the promise of the video recurrent auto-encoding is that by exploiting

the massive amount of unlabelled video data, we can learn a superior initial value for the weights

in the GRU layer. The self-taught learning step has been proved to result in much better classifiers

in the later supervised learning procedure. Second, after the unsupervised learning to reconstruct

the videos, the weights in the GRU layer can start at a better location in the parameter space than if

they are initialized at random. As a result, the gradient from such a location is more likely to yield

a better minimum in the neural network, because the unlabelled videos have already provided a

significant amount of prior information about the hidden patterns of the input videos. Third, ap-

plying recurrent video reconstruction may help discover some temporal properties of the videos,

which can boost the descriptive power of the learned video representations.

4.4 Summary

In this work we have proposed a novel framework for the MED task by conducting a two-step

learning model. First we used the GRU model as an unsupervised procedure for the recurrent

video reconstruction, and then we used the better initialized GRU layer and mean pooling, to

generate visual features for the final detection model. Our proposed framework simultaneously



48 ROBUST SPATIAL-TEMPORAL DEEP MODEL FOR MULTIMEDIA EVENT DETECTION

considers the spatial and temporal properties of videos, so it can effectively boost the performance

of state-of-the-art MED models.



Chapter 5

Web video event recognition by semantic

analysis from ubiquitous documents

5.1 Overview

In this work, we study the problem of web video event recognition, where web videos often de-

scribe large-granular events and carry limited textual information. Key challenges include how to

accurately represent event semantics from incomplete textual information and how to effectively

explore the correlation between visual and textual cues for video event understanding. We propose

a novel framework to perform complex event recognition from web videos. In order to compen-

sate for the insufficient expressive power of visual cues, we construct an event knowledge base by

deeply mining semantic information from ubiquitous web documents. This event knowledge base

is capable of describing each event with comprehensive semantics. By utilizing this knowledge

base, the textual cues for a video can be significantly enriched. Furthermore, we introduce a two-

view adaptive regression model which explores the intrinsic correlation between visual and textual

cues of the videos to learn reliable classifiers.

The framework proposed in this work is illustrated in Figure 5.1. Given a set of training web

videos, both visual and textual features are firstly extracted. A large number of event-relevant

documents are then collected from web sources by searching event keywords. After that, for each

event an event semantic graph (ESG) is constructed to have a comprehensive representation of the

49
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FIGURE 5.1: The flowchart of the proposed framework.

event semantics. All ESGs form the event knowledge base. By utilizing the ESGs, videos’ textual

cues can be enriched. Finally, we use both enriched textual and visual cues to train a two-view

adaptive regression (TVAR) model and realize the knowledge adaptation from enriched auxiliary

texts to videos for event recognition.

To the best of our knowledge, the proposed framework is the first attempt to utilize event

semantic structures obtained from ubiquitous web documents as the knowledge base for video

event analysis. There are several advantages of this framework. Firstly, compared with knowledge

adaptation from different visual feature sources [10], the auxiliary text source is more accurate in

semantic description and much easier to access. Secondly, web videos and the event knowledge

base generated from web documents are complementary to each other. The resulting coherence is

useful for event understanding. Last but not least, with the help of the generated event knowledge

base, our framework can deal with video events of large granularities with rich semantics.
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5.2 Event Knowledge Base

5.2.1 Knowledge base construction

Videos from web services like YouTube are often attached with some text information such as

titles, tags and descriptions. From the semantic perspective, such textual information is potentially

useful to describe the events. In order to complement the expressive power of the visual cues,

a straightforward way is to make use of this auxiliary semantic information to assist learning a

more effective model, thus enhancing the event recognition performance. The relevant semantic

information could be achieved by searching the event keywords from Google or Bing, and such

descriptions contained in relevant web pages can help enrich the partial texts associated with the

web videos. However, in the learning procedure it is not trivial to directly involve the raw texts

as the intermediate representation, due to the following problems. First, although the videos and

auxiliary texts may be relevant to the same event, they often characterize it from totally different

perspectives, which makes it difficult to achieve consistency between visual features and textual

information. Second, the user-generated texts are often arbitrarily provided to the videos, which

may not give complete and precise descriptions to the events. Third, as a semantic cue, mutual

correlations among textual words are often ignored for event description.

To solve the above problems, we constructed an event knowledge base which consists of a set

of event semantic graphs (ESGs). Each ESG represents an individual event from the semantic

perspective. It is constructed by deeply exploring knowledge from related web documents and is

capable of enriching the event semantics. An ESG is defined as an undirected graph with three

layers. The central layer contains event keywords which are quite general for event description.

The middle layer is constructed by those words extracted from other partial texts1, while the outer-

most layer contains the additional words extracted from the event-relevant web documents2 which

can potentially describe the corresponding events in a more detailed way. In an ESG, the weight

of the edge between two words indicates their mutual correlation in describing the event.

An illustrative example of the ESG for the event APEC Russia is shown in Figure. 5.3. From

1The partial texts refer to the titles, descriptions and tags (but not the event keywords) on the YouTube web pages.
2The web pages were redirected from search results on Google, and we applied the approaches of text pre-

processing to extract the contents from these web pages.
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FIGURE 5.2: An illustration of an ESG formulation.

the figure, the event keywords APEC and Russia are in the central layer of the graph. The words

from other partial texts attached to the videos are in the middle layer, and those words from the

event-relevant web documents are in the outer-most layer of the graph. The value on the edge

between two words indicates their mutual dependency for the specific event.

In order to discover the words’ mutual correlations, a simple yet effective way is to compute

their second-order product approximation of a joint probability distribution. Given two words tm

and tn, their mutual information (MI) is defined as:

MI(tm; tn) = p(tm, tn) log
p(tm, tn)

p(tm)p(tn)
. (5.1)

Instead of building a universal ESG that can globally reveal the word correlations for all events,

we constructed an ESG for each individual event. This is because the semantics of the same textual

words as well as their dependencies may vary dramatically in different event contexts.

Suppose there are c events, and let eq represent the q-th event (q = 1, . . . , c), the conditional

dependency between textual words tm and tn under the event eq is measured by their conditional

mutual information (CMI):

CMI(tm; tn|eq)=p(tm, tn|eq)log
p(tm, tn|eq)

p(tm|eq)p(tn|eq)
. (5.2)

The use of CMI can be intuitively explained as follows: if two words co-occur more frequently

in the texts that describe the event, their correlation should be greater.
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FIGURE 5.3: An illustration of ESG constructed for event APEC Russia 2012.

To construct an ESG for an event, we first calculated the pairwise conditional mutual infor-

mation among words, and then found the maximum weight spanning tree according to the values

of conditional mutual information. In Figure 5.2, we give an illustration of how to formulate a

maximum weight spanning tree with 5 words. The identified maximum weight spanning tree is

taken as the ESG for the event.

Since the graph is a tree-like undirected structure, it is acyclic. If there are Nq nodes in total for

event eq, only (Nq − 1) edges are required to connect all of them. Therefore this property ensures

the simplicity of the textual words propagation without cyclic structures.

All the ESGs form the event knowledge base, which is constructed based on the partial texts

accompanying the videos and the event-relevant web documents. Since the partial texts contain

limited semantics, the event knowledge base may greatly expand the contextual information by

computing the probability of potential relevance from web documents that can also describe the

event. It is expected that such an event knowledge base is able to help users understand the events

comprehensively. How to collect event-relevant web documents will be explained in experiments.
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5.2.2 Textual enrichment with knowledge base

With the aid of external web documents, for each event we built an ESG to describe the corre-

sponding event with rich semantics. Next, we elaborate how to utilize the event knowledge base to

enrich the textual cues for a training video.

We represent all the partial texts accompanying a video as a bag-of-words (BoW) vector x(t) ∈

Rdt×1, where dt is the size of vocabulary. Let X(t) = [x
(t)
1 , . . . , x

(t)
ns ]> ∈ Rns×dt denote the matrix

of all the vectors, where ns is the number of the training videos, and each row of X(t) is a vector.

We use x(t)
h [i] to represent the i-th entry of h-th vector (1 ≤ h ≤ ns and 1 ≤ i ≤ dt), and the value

of it is the term frequency.

The goal of building the ESGs is to enrich the textual cues for each training video. Suppose a

training sample x(t)
h from the q-th event contains the word tm, i.e., x(t)

h [m] > 0. The probability of

tm’s neighbour node tn in the q-th graph that can also be used to describe event eq is calculated as:

p(tn|tm, eq) =
p(tm, tn, eq)

p(tm, eq)
=
p(tm, tn|eq)
p(tm|eq)

. (5.3)

Then, the n-th entry in the vector can be updated as:

x̃
(t)
h [n] = max{x(t)

h [n], x
(t)
h [m]× p(tn|tm, eq)} (5.4)

Using the above update scheme, a set of complementary textual words can be derived using

the constructed ESGs to enhance the original textual cues. Therefore, the updated BoW vector

x̃
(t)
h for a video can be understood as a set of word distribution variables, where more entries have

non-zero values. The updated matrix X̃(t) where each row x̃
(t)
h is the new representation of x̃(t)

h

(1 ≤ h ≤ ns) represents the new textual cues for all training videos.

Note that x̃(t)
h [i] is a real value instead of the discrete one, since the way we enrich the textual

cues is probabilistic. Take the example in Figure. 5.3. Each node in this graph represents a

textual word, and the weight of an edge indicates the conditional mutual information value between

the two connected words. If one video’s partial texts, i.e. the middle layer, contains the words

finance and putin, then potentially summit, vladivstok and budget are complementary to the event

description. Thus the textual cues of the video can be enriched according to the words’ mutual

correlations in the corresponding ESG under this event context.
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The enrichment of the textual cues makes the matrix X̃(t) less sparse. However, the updated

representations carry more textual information, which leads to higher discriminative ability for

better event understanding.

5.3 A two-view regression model for video event recognition

Using the event knowledge base, we can obtain more comprehensive and precise text information

for videos. In order to learn more reliable classifiers for event recognition, it is imperative to

discover the intrinsic correlation between visual and enriched textual cues. However, this is a non-

trivial task because 1) visual and textual cues are highly heterogeneous, and 2) only the visual

cue is available in the testing phase for video event recognition. Based on the above reasons, we

present a two-view adaptive regression (TVAR) model in this section, which can simultaneously

capture their correlations and learn reliable classifiers.

5.3.1 Problem formulation

We represent the low-level visual feature set of the training videos as a matrix X(v) ∈ Rns×dv ,

where dv is the dimension of the visual feature, ns is the number of video samples, and each

row x
(v)
h (1 ≤ h ≤ ns) is a video sample. Here we assume there are multiple target events for

recognition, and Y ∈ Rns×c is the label matrix where c is the number of events. If x(v)
h contains the

k-th event (1 ≤ k ≤ c) then Yhk = 1 else Yhk = −1. To train a recognition model with X(v), X̃(t)

and Y , the objective optimization function of our proposed model can be formalized as follows:

min
f (v),f (t)

Fv(f (v)(X(v)), Y ) + λFt(f (t)(X̃(t)), Y )+

γΛ(f (v)(X(v)), f (t)(X̃(t))) (5.5)

where the first two terms Fv(·, ·) and Ft(·, ·) are the regression functions for visual and textual

cues respectively, and they are balanced by a tunable parameter λ, 0 < λ < 1. The third term

γΛ(·, ·) controls the consistency of the two views.
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The reason to adopt the parameter λ is that the two modelsFv(·, ·) andFt(·, ·) can be optimized

as two 1-dimensional projections, but the two views are completely heterogeneous, thereby they

might show quite different value ranges. The visual view Fv(·, ·) is dominant and its optimal

solution is used for event recognition in the testing phase, whereas the textual view Ft(·, ·) is

auxiliary, so its importance should never be higher than the visual view.

For the low-level visual view of video data, a general model is to minimize the following

objective function:

Fv = loss(f (v)(X(v)), Y ) + αΩ(f (v)) (5.6)

where loss(·, ·) is the loss function, Ω(·) is the regularization term to avoid over fitting, and α is

the balance parameter.

Similarly, with the consideration of the text matrix X̃(t) mentioned in the previous section, the

objective function for the textual view can be described as:

Ft = loss(f (t)(X̃(t)), Y ) + βΩ(f (t)) (5.7)

where the loss function and regularization term are balanced by β.

For the low-level visual view, we followed the SAIR model proposed by Ma et al. [59], which

can simultaneously train an intermediate representation in an unsupervised way and obtain a target

classifier:

min
Wv ,Θ
Fv =

∥∥X(v)ΘWv − Y
∥∥

2,1
+ α‖Wv‖2

F (5.8)

s.t.Θ>Θ = I

where Θ ∈ Rdv×r is the transformation matrix that can map the original feature space to a lower

and condensed r-dimensional subspace (r < dv). Wv = [w1>
v , . . . , wc>v ] ∈ Rr×c is the weight

matrix on X(v) where each column is a weight vector for the corresponding event class. ‖ · ‖2,1 and

‖ · ‖F are `2,1-norm and Frobenius norm respectively.
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The consideration of orthogonal matrix Θ has a two-fold reason: to preserve the most infor-

mation of visual features, and to avoid over-fitting. Since the low-level visual features have much

deeper semantics than natural languages, it is necessary to find an intermediate representation to

bridge the large “semantic gap”, and this joint optimization also ensures the intermediate repre-

sentation can be tightly coupled with the high-level event descriptors. Another explanation for the

adoption of Θ to improve the performance is it can be considered as the hidden layer of the models

to realize the non-linear mapping, which is quite similar to the reason why multi-layer perceptron

has the better performance than logistic regression.

For the textual view of video data, a simple regression model can be applied:

min
Wt

Ft =
∥∥∥X̃(t)Wt − Y

∥∥∥
2,1

+ α‖Wt‖2
F (5.9)

Dissimilar to visual features, here we did not use the transformation matrix because text fea-

tures have comparative more “shallow” semantics and they could be easier to understand by both

humans and machines. In our proposed model it is unnecessary to map the text feature to the lower

dimensional subspace. In the next section and we demonstrate that the adoption of intermediate

subspace transformation on the text feature has a very limited influence on the event recognition

in the experiment.

The above two regression models can be optimized as two 1-dimensional projections. However,

the two views are completely heterogeneous. In order to improve the recognition performance of

f (v) by f (t), we combined the two models by introducing the similarity consistency of the two

views between the two projections:

Λ =
∥∥∥X(v)ΘWv − X̃(t)Wt

∥∥∥
2,1

(5.10)

The above object function plays a key role to adapt the knowledge from textual cues to visual

cues, because it may make some of the feature coefficients shrink to zero to facilitate the improve-

ment of the two models (5.8) and (5.9). In the loss functions and consistency term, we adopted

`2,1-norm based regression, because it has been proved that its minimization is robust to outliers

and efficient in computing [64].
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Now we integrate the three optimization objectives (5.8), (5.9) and (5.10), and formulate them

into a unified model:

min
Θ,Wv ,Wt

∥∥X(v)ΘWv − Y
∥∥

2,1
+ α‖Wv‖2

F+

λ(
∥∥∥X̃(t)Wt − Y

∥∥∥
2,1

+ β‖Wt‖2
F )+

γ
∥∥∥X(v)ΘWv − X̃(t)Wt

∥∥∥
2,1

s.t.Θ>Θ = I (5.11)

When the optimal solutions W ∗
v and Θ∗ were achieved, we could apply them on testing videos

for event recognition since there were no available textual cues in the testing phase. The decision

function on testing videos X(v)
test is:

f (v)(X
(v)
test) = X

(v)
testΘ

∗W ∗
v (5.12)

5.3.2 Solution of the problem

Since the problem (5.11) is neither convex nor concave, and the problem involves the `2,1-norm

which is non-smooth, it is difficult to achieve its global optima. However, we can iteratively

optimize the parameter Wv, Θ and Wt by dividing the formulation (5.11) into three sub quadratic

problems. The solution is described as follows:

Denote X(v)ΘWv − Y = Zv, X̃(t)Wt − Y = Zt, and X(v)ΘWv − X̃(t)Wt = Zvt, where

Zv = [z1
v , . . . , z

n
v ]>, Zt = [z1

t , . . . , z
n
t ]>, and Zvt = [z1

vt, . . . , z
n
vt]. Define diagonal matrices Dv, Dt,

and Dvt with their diagonal elements Dii
v = 1

2‖ziv‖2
, Dii

t = 1
2‖zit‖2

and Dii
vt = 1

2‖zivt‖2
respectively.

The optimization problem (5.11) is equivalent to:
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min
Θ,Wv ,Wt

tr[(X(v)ΘWv − Y )>Dv(X
(v)ΘWv − Y )]+

λtr[(X̃tWt − Y )>Dt(X̃tWt − Y )]+

αtr(W>
v Wv) + λβtr(W>

t Wt)+

γtr[(X(v)ΘWv − X̃tWt)
>Dvt(X

(v)ΘWv − X̃tWt)]

s.t.Θ>Θ = I (5.13)

In this formulation, tr(·) is the trace operator. Calculating the partial derivative of Wv and Wt

and setting them to 0, we can get:

Wv=A−1(Θ>X(v)>DvY +γΘ>X(v)>DvtX̃
(t)Wt) (5.14)

Wt = B−1(λX̃(t)>DtY + γX̃(t)>DvtX
(v)ΘWv) (5.15)

In the above two equations, A = Θ>X̃(v)>DvX̃
(v)Θ + αI + γΘ>X(v)>DvtX

(v)Θ, and B =

λX̃(t)>DtX̃
(t) + λβI + λγX̃(t)>DvtX̃

(t), where I is the identity matrix.

The traditional method to solve Θ is to substitute Eq. (5.14) and (5.15) to objective function

(5.13), and calculate the eigenvalues and eigenvectors. However, due to the complex data distri-

bution and noise, sometimes it is difficult to keep orthogonal constraints feasible, and the time

complexity is very high. To deal with these difficulties, Wen et al. proposed a scalable algorithm

which applies a constraint-preserving update with curvilinear search [96].

It can be proved that alternatively updating Wv, Wt, and Θ can ensure the monotonic decrease

of objective function (5.11) and make it convergent to a local optima. The TVAR algorithm can be

described by Algorithm 1.

We now give a short analysis of the computational complexity of the TVAR algorithm. When

achieving the optimal Wt and Wv by calculating the reverse of the matrices for texts and videos,

the time complexity is O(d3). The solution of Θ needs O(d3). Suppose the number of iteration is

T , since r is smaller than d, the overall time complexity is O(T ∗ d3).
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Algorithm 1: Two-view adaptive regression

Input: Training visual feature matrix X(v), auxiliary text feature matrix X̃(t), label matrix Y ,

mapping parameter r for X(v), regularization parameters α and β, and balancing parameters λ

and γ.

Output: Local optimal solution of Wv, Wt and mapping matrix Θ.

Randomly initialize Wv and Wt;

Randomly initialize Θ and orthogonalize it;

repeat

Compute Zv = [z1
v , . . . , z

n
v ]>, , Zt = [z1

t , . . . , z
n
t ]>, and Zvt = [z1

vt, . . . , z
n
vt];

Set diagonal matrices Dv, Dt, and Dvt with their diagonal elements Dii
v = 1

2‖ziv‖2
,

Dii
t = 1

2‖zit‖2
and Dii

vt = 1
2‖zivt‖2

respectively;

Update Wv using Eq. (5.14);

Update Wt using Eq. (5.15);

Compute Θ using the orthogonality constraint algorithm described in [96];

until Convergence;

Return Wv, Wt and Θ.

5.3.3 Non-linear extensions of TVAR

In our proposed TVAR model, the linear mapping is from both visual and textural cues to label

space. It is commonly known that non-linear models can further improve the recognition perfor-

mance, and so the TVAR model can also be extended to non-linear ones by applying kernel tricks.

When there are basis functions φ : Rdv → Hv and ϕ : Rdt → Hd that can map the visual and

textural feature to high-dimensional spaces, the objective function (5.11) can be written as:

min
φ(Θ),Wv ,Wt

‖φ(X(v))φ(Θ)Wv − Y ‖2,1 + α‖Wv‖2
F+

λ(‖ϕ(X̃(t))Wt − Y ‖2,1 + β‖Wt‖2
F )+

γ‖φ(X(v))φ(Θ)Wv − ϕ(X̃(t))Wt‖2,1

s.t.φ(Θ)>φ(Θ) = I (5.16)
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The solution of the non-linear TVAR (KTVAR) is similar to the linear one, which only needs

to replace the inner-products to kernel functions. Although in many applications the performance

of kernelized models outperforms the linear ones, its computational complexity is higher.

5.4 Experiments and analysis

In this section, we explain how we conducted the experiments on two datasets to evaluate the

performance of our proposed framework, especially on the enrichment of the partial texts by the

event knowledge base and the two-view adaptive regression model.

5.4.1 Datasets and web document collection

UQE50 dataset

Till now there are very few datasets available for context-based video analysis, especially when

we need auxiliary texts to describe “large” granular events. Based on this fact we introduce a

new video dataset UQE50 (UQ Event database with 50 pre-defined video events) for web video

analysis. All videos were downloaded from YouTube. As distinct from other video datasets,

UQE50 is dedicated for video analysis from both content and context views. There are two major

characteristics for UQE50 dataset as follows:

• The granularity of the events is comparably larger than existing video event datasets. The

videos from UQE50 are all from hot events which happened in the last few years, which

may contain very complex patterns that are not only activities or action sequences, but also

event elements like scenes and other minor visual cues. For instance, some events happened

at the same places but lasted a longer time like APEC Russia 2012, and some videos for a

specific event were shot at the same time but from different camera angles like William and

Kate Wedding 2011.

• On some occasions it is quite difficult to understand the events from the videos without any

prior knowledge, so in the UQE50 dataset the partial textual information for each training
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video was collected from the same YouTube web page as the video so as to be able to partly

describe the video content and the corresponding event.

• The events defined in the UQE50 dataset are very ad hoc, i.e., some of the them have very

few positive instances, so the event recognition task turned out to be very difficult.

All the videos in UQE50 were split into two separate subsets for training (2,122 labelled videos

with auxiliary texts, and 1,243 distractors without texts) and testing (1,340 labelled videos and

12,538 distractors). The distractors are completely irrelevant to any events, and in the training

video set, the 1,243 distractors were used for cross-validation and model selection.

In video content analysis tasks, motion features such as Dense Trajectories [87, 89] are usually

used to sketch dynamic properties. For some tasks such as action recognition, the spatial-temporal

information plays a key role in describing the video content. However, these hand-crafted features

may not be well suited for the “large” granular video events which contain much more complex

visual cues such as scenes and objects. Through our observation, for “large” granular events, the

static visual cues of the frames are even more discriminative. Recently, the deep-learned visual

features have shown very promising performance in recognition tasks. For example, Xu et al.

directly utilized the CNN features extracted from the frames for event detection tasks. Without

any motion information, their proposed feature representation even outperforms the state-of-the-

art video features [100].

In the video feature extraction phase, we followed Xu et al.’s approach to extract the 5th pooling

layer of the pre-trained VGG net from the videos [100], and applied the VLAD aggregation

method to represent each video as a 32,768d vector. We also used the vlfeat package3 to extract

the SIFT features from the videos, and processed them in the similar way to the deep feature.

Finally, we conducted the PCA on both visual features and concatenated them to represent each

video as a 512d vector.

For text features, besides the provided partial texts with the videos, we collected the top 200

to 500 documents for each event by searching the event keywords from the Google search engine

and we crawled the web pages. Because the texts from the web pages are quite noisy, we applied

3 http://www.vlfeat.org/
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the following approaches using the Lucene package4 to improve the data quality: 1) we filtered out

all the numbers and the words that start with numbers; 2) we removed the words with more than

15 characters (e.g., urls); and 3) we removed the words that only appear once in the constructed

knowledge base systems. By removing the stop words and stemming, each document is repre-

sented as a 56,183 dimensional BoW vector. After that we applied Latent Dirichlet Allocation

(LDA) [5] model (using the toolbox provided by Mark Steyvers et al. 5), which is able to smooth

the text representation and suppress the influence of noise ([49, 99]), to find 100 topics and then we

calculated the posterior possibilities of each word. Finally the dimensionality of text vectors was

reduced to 100. For text features, the obtained LDA model can approximately reflect the correct

semantic information of events. Even though web documents are influenced by noise, the newly

generated topics are basically close to the events, so these posterior probabilities of the topics can

replace the original text samples as the new training samples.

EVVE dataset

This dataset [71] was created for video event retrieval, in which 13 events are defined6. We used

the 620 query videos for training, and the rest for testing. Since all the videos were downloaded

from YouTube website, the video IDs are provided in this dataset. We downloaded the videos as

well as the partial texts, and extracted the visual and textual features in the same way as described

for the UQE50 dataset.

5.4.2 Experiment setup

Using the partial texts and collected web documents, we constructed two types of knowledge

base: 1)the knowledge base with a universal ESG that globally discovers the words’ correlation

by calculating the MI according to Eq.(5.1), and 2)the knowledge base containing a set of ESGs

for each single event, 50 for UQE50 and 13 for EVVE respectively. Then the partial texts for the

videos were enriched by the knowledge base, as described in section 5.2.

We used the mean average precision (MAP) to measure the performance of the framework.

4https://lucene.apache.org/
5http://psiexp.ss.uci.edu/research/programs data/toolbox.htm
6 http://pascal.inrialpes.fr/data/evve/
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The regularization parameters α, β and γ in our algorithm were tuned in a grid-search scheme,

ranging from 10−3 to 103, and we reported the best results. The mapped dimension r in Θ was set

to 200 without any change in the experiments.

5.4.3 Baseline algorithms

We compared the proposed model TVAR with different algorithms, which are briefly introduced

as follows:

• SVM: the most classical model used in a variety of classification tasks. We adopted the χ2

kernel on low-level visual features of the datasets without any help from the auxiliary text

information.

• SAIR [59]: Semantic Analysis via Intermediate Representation, an effective model for event

detection, which may simultaneously learn a intermediate mapping matrix in an unsuper-

vised way, as well as a classifier.

• CCA and KCCA: Canonical Correlation Analysis and its kernel version, the common ap-

proaches to discover the correlations between two groups of variables. In our experiment we

first conducted CCA and KCCA (with radial basis kernel) on visual and text feature to find

the canonical mapping, and then applied the linear SVM on the testing data in the mapped

canonical space.

• SVM-2K [20]: an extension of standard SVM which aims to identify the relevant subspaces

from two views of the same data, and two classifiers are generated from each view. In

this approach we adopted χ2 kernel and radial basis kernel for visual data and textual data

respectively.

• SVM+ [83]: an extension of SVM that could use privileged information in the correcting

space to augment the decision space. The privileged features are only available in the training

phase. Similar to the setting of SVM-2K, we used χ2 kernel and radial basis kernel in our

experiment.
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FIGURE 5.4: Effect of semantic enrichment

• TVAR and KTVAR: Two-view adaptive regression and its non-linear version (χ2 kernel),

the algorithms proposed in this work.

In the training phase, both low-level visual features and auxiliary text features were treated

as the input and two classifiers (i.e., f (v) for videos and f (t) for texts) which were generated in

SVM-2K and TVAR, while no texts were available in testing phase. Thereby only the model f (v)

from the visual feature’s view was adopted for testing videos in our experiments.

5.4.4 Does semantic enrichment help?

In order to prove the effectiveness of auxiliary text enrichment for our task, we first ran the SVM-

2K and TVAR algorithm (balancing parameters are not optimized) on both original auxiliary texts

and enriched ones, i.e., we used X(t) and X̃(t) separately as text input. In addition, we implement

the semantic enrichment by both knowledge bases using MI and CMI, introduced in Section 5.2

respectively. Here we name SVM-2K-O and TVAR-O for the models assisted by original auxiliary

texts, SVM-2K-UE and TVAR-UE for those enriched by texts with the knowledge base with only

a universal ESG, and SVM-2K-SE and TVAR-SE for models enriched by texts with the knowledge

base that contains a set of ESGs for each event. The bar charts are plotted in Figure 5.4 for the two

datasets.
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FIGURE 5.5: Sensitivity of parameter α and β

We can see that with the help of the knowledge base constructed by web documents, the enrich-

ment of the text information carries more semantic information, and using these models, it boosts

the MAP performance on both the UQE50 and EVVE datasets. Especially, the ESGs constructed

for each event can better sketch the semantic contexts to improve event recognition performance.

5.4.5 Sensitivity of parameter α, β, λ and γ

In the TVAR model, the minimization of the two views’ difference in Eq. (5.10) plays an important

role in knowledge adaptation from text to visual features. For the optimizations of (5.11), we

conducted a 5-fold cross-validation on the training set by first fixing the values of λ and γ with 1

and changing the two parameters α and β ranging from 10−3 to 100, then plotted the 3D bar chart

for AP as in Figure 5.5.

We could see that the value of regularization terms α and β are set to lower values, i.e., 10−3

can ensure the best performance.

Then we set the parameters α, β and γ to 10−3, changed the parameter λ ranging from 0.2 to
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FIGURE 5.6: Sensitivity of parameter λ

1, and observe the recognition accuracy. The curves of AP are drawn in Figure 5.6 for the two

datasets.

At last we fixed the two regularization terms α and β as 10−3, changed the parameter γ in Eq.

(5.11) ranging from 10−3 to 103, and observed how this affects the recognition performance. The

curves of AP are drawn in Figure 5.7 for the two datasets.

5.4.6 Overall comparison

The MAP of event recognition results is displayed in Table 5.1 for the two datasets (with enriched

text features used in CCA, KCCA, SVM-2K, TVAR and KTVAR). Generally speaking, the MAP

in UQE50 is higher than EVVE dataset. Based on both of the datasets, we can conclude that the

auxiliary texts attached with videos have the ability to enhance the description of the events, and

they are eventually beneficial for recognition tasks.

From the table we can see that our proposed model, which obtains the best performance over

most of the events, outperforms the others. Generally the TVAR and KTVAR algorithms improve

the MAP of the second best competitor on the two datasets. SAIR utilizes a mapping matrix to train
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FIGURE 5.7: Sensitivity of parameter γ

TABLE 5.1: MAP comparison of TVAR to other algorithms

SVM SAIR CCA KCCA SVM-2K SVM+ TVAR KTVAR

UQE50 0.2741 0.2835 0.2926 0.3272 0.3457 0.3390 0.3526 0.3612

EVVE 0.1254 0.1332 0.1563 0.1721 0.1848 0.1855 0.2171 0.2294

a set of intermediate feature representation in an unsupervised way, and it can effectively bridge the

information gap between low-level visual features and high-level descriptors, and both SVM and

SAIR are direct classification algorithms when there is no auxiliary information. CCA and KCCA

try to discover the correlations between low-level visual features and auxiliary text features, but the

recognition performance is not so satisfactory in a mapped canonical feature space. The two-view

algorithm SVM-2K can not integrate the two heterogeneous features well. From the comparisons

we can also observe that the performance improvement of SVM+ is similar to that of SVM-2K. Our

proposed TVAR model and its kernelized version are able to integrate the advantages of both SAIR

and SVM-2K by simultaneously bridging the information gap and maximizing the consistency of

the two views, thus achieving the best recognition performance.
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FIGURE 5.8: The correlation of the two-view data

5.4.7 The correlation of the two views

Similarly to SVM-2K, the TVAR runs on both visual data and textual data in the training phase. Eq.

(5.10) shows that the minimization of the two-view difference can achieve knowledge adaptation

from the text to visual cues. We calculated the `2-norm difference between the two models f (v)

and f (t) on the training video set. We then made 2D plots as shown in Figure. 5.8, in which each

dot represents a pair of decision values, and the line is the linear regression result.

From the graphs we can see that the two-view correlation is high, which reveals the two-view

learning strategy is effective in knowledge adaptation.

5.4.8 Do TVAR+ and TVAR- perform well?

Based on the TVAR model, if we simultaneously apply the subspace transformation on both aux-

iliary text features and visual features, the model becomes “TVAR+”, which needs to calculate

another mapping matrix in the optimization procedure. Here we use Θv and Θt to represent the

mapping matrices for visual features and text features respectively. The objective function of

TVAR+ is:
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TABLE 5.2: TVAR,TVAR- and TVAR+

TVAR TVAR- TVAR+

UQE20 0.3526 0.3251 0.3502

EVVE 0.2171 0.1893 0.2134

min
Θv ,Θt,,Wv ,Wt

∥∥X(v)ΘvWv − Y
∥∥

2,1
+ α‖Wv‖2

F+

λ(
∥∥∥X̃(t)ΘtWt − Y

∥∥∥
2,1

+ β‖Wt‖2
F )+

γ
∥∥∥X(v)ΘvWv − X̃(t)ΘtWt

∥∥∥
2,1

s.t.Θ>v Θv = I

Θ>t Θt = I (5.17)

By contrast, if we remove the subspace learning of Θ, the model is similar to SVM-2K, only

with different loss functions and the weighting parameter λ. We call the model without the Θ as

“TVAR-”.

min
Wv ,Wt

∥∥X(v)Wv − Y
∥∥

2,1
+ α‖Wv‖2

F+

λ(
∥∥∥X̃(t)Wt − Y

∥∥∥
2,1

+ β‖Wt‖2
F )+

γ
∥∥∥X(v)Wv − X̃(t)Wt

∥∥∥
2,1

(5.18)

We conducted TVAR+ and TVAR- on the two datasets. The AP values are reported in Table

5.2. We can see that neither TVAR+ nor TVAR- have better recognition performance than TVAR,

which proves that it is necessary to balance the visual and text features in the same semantic level.

5.4.9 Convergence study

As mentioned in Section 5.3, the objective function (5.11) is optimized iteratively by solving its

sub-quadratic problems. In our experiment we also recorded the objective function value for each

iteration, and we display the resulting convergence curves in Figure 5.9.
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FIGURE 5.9: Convergence curves of TVAR algorithm

The figure indicates the alternative optimization for the TVAR model converges within 5 itera-

tions, which proves the computational efficiency is very high.

5.4.10 Relations with MED task

Similarly to the multimedia event detection defined by NIST TRECVID, the event recognition task

also aims to discover event relevant videos from a large number of unconstrained videos, both of

which can be achieved by similar learning approaches. However, there are three major differences

between them:

• From the vision’s view, human motion features play a significant role in MED tasks , but the

importance of this is comparably weaker in our event recognition. Based on this we did not

adopt the motion visual features for model construction.

• The intra-class variance in MED video data is very high, which causes semantically sim-

ilar concepts to have vastly different visual feature representations. In event recognition,

although the videos are recorded from different spatial and temporal perspectives, there are

several near duplicate frames.

• The events defined in MED are with small granularity, and the semantics these videos con-

tain are simpler than our “large” granular event videos. Thus for the recognition task, the

auxiliary texts are of great help to the semantic understanding. However, the assistance of
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texts may have very limited effects on MED performance, because only a small number of

visual cues have correlations with text information.

5.5 Summary

In this work we proposed a novel framework for web video event recognition, which can make

use of video texts and their enrichments to help improve recognition performance. First we built

an event knowledge base consisting of several event semantic graphs, which can enrich the tex-

tual cues given by partial texts appearing with the videos, then with these enriched textual cues

we proposed a two-view adaptive regression algorithm TVAR and its iterative solution approach.

The experimental results on two datasets demonstrated that the proposed framework can greatly

improve video event recognition performance.



Chapter 6

Scalable video event retrieval by visual state

binary embedding

6.1 Overview

In this work we propose a binary embedding model VSBE specifically designed for scalable video

event retrieval. To facilitate fast and accurate video event retrieval, we propose a class-specific

method to evaluate the event-representativeness of the frames in the videos, so only a limited

number of key frames are selected and pair-wise constraints are applied to integrate the semantic

information into hash model training. The advantage of the key frame selection is that it can effec-

tively reduce the memory and time consumption, thus it can deal with large-scale video datasets.

At the same time, the event retrieval accuracy can be ensured. We conducted the experiment on

the challenge TRECVID MED dataset, and have proved the superiority of the VSBE model.

6.2 Visual state binary embedding

6.2.1 Framework

Generally, after pre-processing, a video can be represented as a sequence of key frames. However,

some of these are more informative than others, and can thus better reflect the relevant cues of the

events at a particular time. In other words, those important key frames stand for the key scenes

73
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of events at different stages. As illustrated in Figure 6.1, four frames from two different events

represent four important scenes: dancing, hands with a ring, cutting a tomato and loaves in a dish.

Intuitively, the first two frames are closely related to the event wedding ceremony, while the latter

two can partly describe the event making a sandwich. These frames exemplify visual states as

defined below.

In our work, a visual state is a concept which represents the essence of events. Visual states can

carry more semantics, and in the entire video collection, the most discriminative information can

be well summarized by the visual states to facilitate the training of the binary embedding model.

In this section, we give a detailed explanation of the selection of key frames that contain vi-

sual states and then describe the construction of a binary embedding model with novel semantic

constraints and optimal training methods. To determine which key frames can be considered as

visual states is non-trivial. In addition, to what extent a visual state can describe an event re-

mains an issue, and manually evaluating the importance of the visual states for specified events

is unrealistic because: 1) we do not know how many visual states are necessary to describe the

events well, nor do we know their importance to the corresponding events; and 2) it is extremely

labour-consuming to manually label the frames with the visual states. Thus, we design a group of

importance measures to automatically evaluate the event representativeness of the key frames. A

sequence of visual states can indicate whether a video is relevant to a specific event. Compared

with approaches which try to discover patterns from video motion features, the adoption of visual

state sequences has its own advantages: first, the mid-level visual patterns such as object and mo-

tion could be well expressed by visual states; second, the distance between the two visual states

can better measure semantic similarity instead of visual similarity; last but not least, the sequences

of visual states in videos can both locally describe the temporal information and effectively capture

the event-relevant moments in videos. Once the visual states are determined, they will be repre-

sented by mid-level codes based on the transformation of low-level features. Finally, the query

videos are encoded and match the unlabelled videos for scalable event retrieval.

The framework of the proposed model is described in Figure. 6.2. We first decompose the

videos into key frames; then we conduct the key frame selection procedure based on visual state

evaluation. After that we build the semantic constraints and train the hash models. Finally, each

video is represented as a binary matrix for event retrieval.



6.2 VISUAL STATE BINARY EMBEDDING 75

FIGURE 6.1: An illustration of four visual states representing some aspects for two events wedding
ceremony and making a sandwich
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FIGURE 6.2: The framework of the VSBE model.

In the step visual state evaluation and constraints’ building, we illustrate six key frames that contain several

visual states to reflect the essence of two different events: feeding an animal and grooming an animal. The

green font numbers are the representative abilities of the key frames, and the blue and red lines represent the

intra-event and inter-event constraints, which are measured by positive and negative numbers respectively.

6.2.2 Visual state evaluation

Suppose the positive training video set for the e-th event is denoted as Xe = {Xe
1 , X

e
2 , . . . , X

e
Ce
},

where Ce is the total number of training videos for the e-th event. The q-th training video Xe
q ⊂ Xe
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(q = 1, 2, . . . , Ce) is represented as a sequence ofN e
q key framesXe

q = [xeq(1), xeq(2), . . . , xeq(N
e
q )]> ∈

RNe
q×d, where each row is a d-dimensional visual feature vector of the corresponding frame. The

event training videos have the following properties: 1) the visual content in each video is fairly

focused and smooth, i.e., the visual variance of key frames in the same video is relatively low;

2) different subsets of consecutive key frames may present different stages of an event, and these

stages can reveal the events from different perspectives, for example, a video clip that describes

the event making a sandwich is reflected by the frames at the beginning, middle, and tail of the

video separately; and 3) different key frames may have different representative abilities, where

some may contain more event-descriptive information and some contain less.

Based on the above observations, we aim to select the most representative key frames from

the training videos to form a condensed training set to build up a binary embedding model, where

the efficiency of the training process may be highly improved. We design a group of measures

to evaluate the importance of single frames from different levels, including the video-level, the

event-level and the global level. For each event training set Xe and each key frame from any video

in Xe, we will calculate the frame importance to Xe. Considering the frame x from Xe
q ∈ Xe, we

explain the three importance measures as explained below.

The importance of a frame at the video-level is measured by its representativeness to the video

it belongs to, which is reflected by its visual distance to the dominant visual information carried

by the video. Specifically, we use the average of the feature vectors of all key frames contained by

the video to represent its dominant visual information. Assume a key frame x from video Xe
q is

represented as a feature vector (e.g. SIFT and HOG quantized by VLAD [33]). Let the video-level

importance of x be denoted as V I(x,Xe
q ), which can be calculated by the following equation:

V I(x,Xe
q ) = exp

−
‖x−

Ne
q∑

i=1

xeq(i)/N
e
q ‖2

2

 (6.1)

The larger the value of V I is, the more representativeness the frame x has for the video Xe
q , so

this frame is more likely to sketch the corresponding event.

The event-level importance is designed to measure the relevance of a frame to its belonging

event, which is formally defined as:
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EI(x,Xe)=exp

−‖x−
∑

x′∈Xe,x′ /∈Xe
q ,x
′∈N e(x)

x′/k‖2

2

 (6.2)

whereN e(x) is a set of k-nearest neighbours of x from other videos that belong to the same events

Xe. If the value of EI is small, it implies that the distance from x to its neighbours is large and x

might be an outlier or outstanding frame of the e-th event. A frame with lower EI is less relevant

to the e-th event while a greater value of EI stands for a more powerful descriptive ability of the

frame for the event.

The global-level importance of a frame is defined as:

GI(x,Xe) = exp

−‖x−
∑

x′ /∈Xe,x′∈N g(x)

x′/k‖2

2

 (6.3)

where N g(x) is a set of k-nearest neighbours of x selected from the training videos belonging to

other events. Different from the other two importance measures, the greater value of GI means the

key frame x is unspecific to the event, which in turn implies it has weaker descriptive abilities.

After a coarse evaluation of the above three importance measures of a key frame x, its overall

importance to Xe can be calculated as:

F (x,Xe) =
V I(x,Xe

q )× EI(x,Xe)

GI(x,Xe)
(6.4)

The above equation can be explained as follows: the frequently occurring visual patterns in the

training video set have stronger representative abilities, while the visual patterns appearing inde-

pendently in many event-relevant videos are relatively less important for the event description. The

potential semantic patterns are contained in the key frames with high importance, so, as mentioned

above, we call them visual states of events, based on which the training set of the binary embed-

ding is formed. In our experiments, we found that the first 60% of the key frames are sufficient to

train reliable hash models.

In Figure.6.2 we give an overall explanation of the frame importance, where two events feeding

an animal and grooming an animal share similar visual patterns (e.g., dog) in many frames, but

their representative frames are different. For example, the visual patterns the dog is opening its

mouth and eating the food and a hand is combing the fur of a dog represent the unique static
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properties of the two events. Such kind of difference could be distinguished and high-lightened in

the procedure of visual state evaluation. The frames that show the appropriate patterns (gestures

in the two events) indicate they have more powerful descriptive abilities, thus their importance

values are high. As a result, the two visual states should be far away from each other in binary

embedding. By contrast, in Figure 6.1, the two visual states cutting a tomato and loaves in a

dish are representative to the event making a sandwich, thus they should have the similar data

representations in binary embedding.

By applying importance measures and introducing the concept of visual state, the proposed

VSBE model has two significant advantages: first, event-representative key frames are selected

to reduce the size of the training set and meanwhile remove noise; second, the importance of the

frames is that they convey prior knowledge, based on which semantic constraints are constructed.

Having evaluated the key frames from the training videos, we can formulate some constraints

to facilitate the visual state coding. Assume two frames x, x′ are from the same event Xe, our target

is to let them have a coupled correlation. Let N be the total number of the selected key frames

from all training videos, ind(x) be the index of frame x, and u+
i = [u+

i,1, u
+
i,2, . . . , u

+
i,N ]> be the i-th

intra-event constraint vector. If two frames x and x′ belong to the same event Xe,

u+
i,ind(x) = F (x,Xe)× F (x′,Xe)

u+
i,ind(x′) = −F (x,Xe)× F (x′,Xe) (6.5)

Similarly, let u−j = [u−j,1, u
−
j,2, . . . , u

−
j,N ]> be the inter-event constraint vector. Both u+

i and u−j

are column vectors. If x ∈ Xe, x′ ∈ Xe′ , Xe 6= Xe′ and x′ ∈ N (x), the values in u−j could be set

as:

u−j,ind(x) = F (x,Xe)× F (x′,Xe′)

u−j,ind(x′) = −F (x,Xe)× F (x′,Xe′) (6.6)

From the above two equations we can see that all the pair-wise constraints are weighted by the

importance measures of visual states, which we call the weighted scheme. We will demonstrate

that the weighted scheme plays a significant role in binary embedding, which outperforms the
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approach that equally constructs the pair-wise constraints, which we call the equal scheme, i.e.,

to simply set u+
i,ind(x) = u+

j,ind(x) = 1 and u+
i,ind(x′) = u−j,ind(x′) = −1 in Eq. (6.5) and Eq. (6.6)

respectively.

In order to have a compact representation of the constraints, we concatenate the column vectors

and form two constraint matricesU+ = [u+
1 , u

+
2 , . . . , u

+
M+ ] ∈ RN×M+ andU− = [u−1 , u

−
2 , . . . , u

+
M− ] ∈

RN×M− , whereM+ andM− are the numbers of the intra-event and inter-event constraints, respec-

tively.

In the next subsection, we will introduce how to utilize the two constraint matrices to generate

the binary codes that potentially incorporate the event-relevant visual states.

6.2.3 A visual state binary embedding model

In this subsection, we introduce a visual state binary embedding (VSBE) model to precisely encode

the possible visual states. Without any constraints, spectral hashing[95] is one of the most basic

hashing methods, and the objective function is formulated as:

min
Y

1

2

n∑
i,j=1

‖Yi − Yj‖2Aij = tr(Y >LY )

s.t. Y ∈ {1,−1}n×r

1>Y = 0

Y >Y = I (6.7)

In the above formulation, A is the adjacency matrix, and the value of Aij is calculated as:

Aij = {
exp

−‖xi−xj‖2

σ
xi and xj are k-nearest neighbours

0 otherwise
(6.8)

D is the diagonal matrix such that D1 = A1, where 1 is a column vector with all elements set

as 1. The Ratio Laplacian matrix L is calculated as:

L = D − A (6.9)
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The affinity matrix A is built on the visual level rather than the semantic level. In uncon-

strained videos, semantically similar descriptors may have vastly different visual representations.

Therefore, considering the visual similarity without any constraints is unable to reflect the seman-

tic correlations among different visual states. However, L is still necessary for the VSBE model

because through our observation, most of the training videos have low visual variance, and the

adjacent matrix A makes the frames in the same video have the similar binary embedding.

Our target is to let the visual states from one event have similar binary codes. At the same

time, the binary codes should have the discriminative ability to integrate the visual states of the

corresponding events. In order to achieve this, the proposed model should simultaneously be

visually consistent and incorporate the semantic constraints.

Considering the matrices U+ and U− presented in the previous subsection, it is easy to verify

that U+U+>, U−U−> and L have the same properties:

1. They are symmetric matrices, thus all of them are semi-positive definite;

2. U+U+>1 = U−U−>1 = L1 = 0, i.e.,The smallest eigen values of the three matrices are 0,

with the corresponding eigen vector 1;

Besides L, we impose pair-wise constraints to put the semantically similar visual states into

similar buckets. So the objective function is defined as:

min
Y
tr[Y >(L+ λ(U+>U+ − U−>U−))Y ] (6.10)

where λ is an enforcement parameter to apply the pairwise constraints, and Y is the binary matrix.

By applying U+, the model is able to encode similar visual states with large visual variances from

the intra-class videos to the similar binary embeddings. Similarly, U− can offset the negative

effect caused by visually similar but semantically different visual states from inter-class videos.

Compared with other semi-supervised binary embedding algorithms like semi-supervised circulant

binary embedding [105], the VSBE is more flexible to incorporate the “soft” constraints.

Note that in order to keep the matrix L + λ(U+>U+ − U−>U−) semi-definite, the number of

intra-event constraints should be equal to or greater than the number of inter-event constraints. In

our experiment, for each selected key frame, we randomly choose 5 key frames from the same
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event videos to construct U+, and choose the nearest 5 neighbour frames from the other event-

relevant videos to construct U−.

Given a key frame x ∈ R1×d that contains an event-relevant visual state, we seek to get a set

of linear mapping functions fl(x) = xwl + bl, l = 1, 2, . . . , r, where wl ∈ Rd×1 is the learned

weight vector. So the binary embedding functions can be expressed as hl(x) = sign(fl(x)) =

sign(xwl + bl), l = 1, 2, . . . , r. To have a more compact representation, suppose z ∈ H is the

binary code of x, W = [w1, w2, . . . , wr] ∈ Rd×r is the weight matrix, and b = [b1, b2, . . . , br] is the

bias vector. The binary code z ∈ {−1, 1}1×r of frame x can be expressed as:

z =


h1(x)

...

hr(x)


>

=


sign(xw1 + b1)

...

sign(xwr + br)


>

= sign(xW + b) (6.11)

We intend to discover the relevance of essential visual states contained in the key frames, and

learn the hash functions in a joint optimization framework. Suppose the key frames from the

training videos are represented as a matrix X = [x1;x2; . . . ;xn] ∈ Rn×d, where each row is a

d-dimensional vector. The objective function is given by:

min
Y,W

tr[Y >(L+ λ(U+>U+ − U−>U−))Y ]+

α‖XW − Y ‖2
2 + β‖W‖2

2

s.t. Y ∈ {1,−1}n×r

Y >Y = I (6.12)

The above function has two balance parameters α and β. Note that the problem is equivalent

to the graph partitioning, and the constraint Y ∈ {1,−1}n×r makes it an NP-hard problem. So we

follow the method [95] by removing the binary constraint for practical optimization. Hence the

optimization problem becomes:
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min
Y,W

tr[Y >(L+ λ(U+>U+ − U−>U−))Y ]+

α‖XW − Y ‖2
2 + β‖W‖2

2

s.t. Y >Y = I (6.13)

With the removal of the binary constraint, the optimal Y can be achieved by eigenvalue de-

composition in the real number space. In the binary embedding procedure, we can use Eq. (6.11)

to keep the centring property of the hash codes.

6.2.4 Solution

To solve the joint optimization problem (6.13), we first set the derivative of it w.r.t. W to 0, and

then we get:

W = (αX>X + βI)−1αX>Y (6.14)

Let P = (αX>X + βI)−1αX> so W = PY . By substituting W in Eq. (6.13), it becomes:

min
Y

tr[Y >(L+ λ(U+>U+ − U−>U−))Y ]+

α‖XPY − Y ‖2
2 + β‖PY ‖2

2

s.t. Y >Y = I (6.15)

The above problem is equivalent to:

min
Y

tr[Y >(L+ λ(U+>U+ − U−>U−+

α(XP − I)>(XP − I) + P>P ))Y ]

s.t. Y >Y = I (6.16)

Let V = L+ λ(U+>U+ − U−>U− + α(XP − I)>(XP − I) + P>P ). The optimal Y could

be calculated by computing the first r eigenvectors corresponding to the r smallest eigenvalues of

matrix V .



6.2 VISUAL STATE BINARY EMBEDDING 83

Algorithm 2: The algorithm for VSBE
Input: The selected key frame feature matrix X , constraint matrices U+ and U−, hash bit r,

enforcement parameter λ, and balance parameters α and β.

Output: Local optimal hash mapping matrix of W , the bias vector b, and the visual states

matrix Y .

Randomly initialize W ;

Randomly initialize Y and orthogonalize it;

Compute the affinity matrix according to Eq. (6.8);

Compute matrix L based on Eq. (6.9);

repeat

Update W based on Eq. (6.14);

Compute V = L+ λ(U+>U+ − U−>U− + α(XP − I)>(XP − I) + P>P );

Compute Y by eigen decomposition of V ;

until Convergence;

Compute b by calculating the median numbers of each column of Y ;

Return W , b and Y .

When we get the optimal Y , the bias vector b = [b1, . . . , br]
> can be simply computed by

calculating the median numbers of each column of Y . The overall algorithm for VSBE is described

in Algorithm 2. Similar to the VHDT algorithm proposed by Ye. et al [104], the VSBE algorithm

is solved in an iterative way. However, the time complexity of VSBE is much lower. Given the

pre-computed matrix P , the Laplacian matrix L, and the iterations t, the eigen decomposition

complexity is O(n3), and the computation of W needs O(n × r), so the general time complexity

for VSBE is O(t(n3 + n× r)). Specifically, since we only use the selected frames of the training

videos, the training time is even shorter than using all the key frames. For example, if we use the

top 60% of selected frames according to section 6.2.2, the optimization procedure only takes about

1/5 time compared with that using all frames.
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6.2.5 Video-level distance calculation

In our proposed framework, we first select a set of key frames from the positive training videos,

which contain the possible visual states that could sketch different static properties of the pre-

defined events, so the sequence of frames for a video that contains event-relevant visual states can

also be kept as the discriminative information. With the assumption that the frames within a video

have the low variances, we only need to re-construct the training set using a limited number of

frames, which could greatly reduce the training time and save memory.

Then we use the proposed VSBE model in subsection 6.2.3 and subsection 6.2.4 to encode all

the video key frames, since we do not know the event representative abilities of both query videos

and the database videos. As a result, videos are represented by compact binary matrices, which

will be stored in the database for query purposes.

Assume a binary query video is represented as a binary matrix ZQ = [zQ1 ; zQ2 ; . . . ; zQm] ∈ Hm×r,

with each row being an r-bit binary code generated by Eq. (6.11), and the testing video is ZT =

[zT1 ; zT2 ; . . . , zTm′ ] ∈ Hm′×r. The distance of two frames’ binary codes zQa and zTb is

d(zQa , z
T
b ) =

r∑
l=1

H(zQal, z
T
bl) (6.17)

where H(·, ·) is the Hamming distance.

There are three methods to compute the distance between two videos: sliding-window based

distance, frame-wise distance and DTW (dynamic time warping) distance.

The sliding-window based distance considers the temporally-aligned information of the video

frames. Assume m < m′, the distance between two videos ZQ and ZT can be calculated by the

maximum bit value subtracting the minimum sub-sequence similarity:

dsw(ZQ, ZT ) = min{r − 1

m

a+m∑
a=1

d(zQa , z
T
b )}

b = a−m+ 1, . . . ,m′ −m+ 1 (6.18)

It can be easily seen that the distance is shortest when two videos are both spatially and temporally

aligned. However, such alignment between two videos is too rigid, because the visual patterns in

different videos are often presented in different temporal scales.
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The frame-wise distance between two videos ZQ and ZT is calculated as:

dfw(ZQ, ZT ) =
1

mm′

m∑
a=1

m′∑
b=1

d(zQa , z
T
b ) (6.19)

The frame-wise distance totally ignores the temporal information, and it needs the pair-wise

frame comparison in the retrieval phase, thus it is slower than the sliding-windows based compu-

tation.

DTW is often used to measure similarity between two temporal sequences which may vary in

time or speed 1. In the video retrieval task, it first computes the Hamming distance matrix between

two videos ZQ and ZT , then applies the dynamic programming to find the shortest path. The

calculation of DTW is the slowest among the three distance measures, but it can keep both spatial

and temporal information of the videos.

6.3 Experimental Evaluation

In this section, we conduct the binary embedding and event retrieval experiment on the TRECVID

MED video collection to evaluate the performance of our proposed method VSBE. Then we give

an analysis regarding the experimental results.

6.3.1 Data preparation

The NIST TRECVID provides a series of multimedia event detection (MED) datasets for competi-

tion every year. Here we use the following subsets in our experiment: 1)MED11 event kits(E001-

E015), 2)MED12 event kits (E021-E030), 3)MED11 DEV-T, 4)MED12 Kindred cityscape collec-

tion, 5)MED13 AdHoc event kits (E031-E040), and 6)Progress test collection.

The data setting is described as follows:

• The videos from the positive sets (MED11 event kits, MED12 event kits and MED13 Ad-

Hoc event kits) are split into three subsets, with approximately 100, 50, 50 positive videos

respectively. For each event class, the 100-video set is used for model training, one of the
1https://en.wikipedia.org/wiki/Dynamic time warping
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50-video set is as query video set, and the rest of the labelled videos are injected into the

testing set;

• The MED12 Kindred cityscape collection does not contain any event-relevant videos, i.e.,

all videos from this subset are negative. These videos are injected into the testing set;

• All the videos in MED11 DEV-T are used for testing;

• The videos in the Progress test collection are used for testing;

We conducted two groups of experiments on the dataset. The first group (G1) is on the subsets

1) to 5) as introduced above, because all videos in these subsets are well labelled. As a result, in

the G1 experiment there are 3,500 videos (35 pre-defined events) for hash function training, 1,750

for query, and the rest of the 24,384 videos are for testing.

Then we mixed the Progress test collection 6) into the G1 test set, and conducted a retrieval on

the 122,503 testing videos as the second group (G2) using the model learned in G1.

We extracted the key frames from the videos by the toolbox FFmpeg 2, and applied two kinds

of visual features (SIFT and pre-trained convolutional neural network [34]3) from each key frame

of the videos. We adopted the VLAD quantization proposed in [33] to encode the SIFT descrip-

tor. Then we concatenated the two visual features as 12,288 dimensional vectors. Finally, we

conducted PCA and mapped the 12,288 dimensional vectors to 512 dimensional ones in order to

reduce the noise, as well as the computational complexity.

6.3.2 Experiment settings

We used the mean average precision (MAP) to evaluate the retrieval performance. MAP is a single-

valued measurement that reflects the ranking of the retrieval on testing data. The higher the MAP

value, the more the model is in favour.

In our proposed VSBE model, there are three parameters α, β and λ for tuning, and we con-

ducted a 5-fold cross validation on the training set. We first fixed the value of λ as 1, and tuned α in

2https://www.ffmpeg.org/
3We use the output of the fc6 layer (fully connected layer) in the AlexNet with the output dimensionality 4,096.
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{10−2, 10−1, 100, 101, 102}, β in {10−4, 10−3, 10−2, 10−1, 100} in the grid-search approach respec-

tively. The variation of the MAP with respect to these parameters is shown in Figure 6.3. Then we

fixed α and β, and tuned λ in range {10−2, 10−1, 100, 101, 102}. The sensitivity curve of parameter

λ is shown in Figure 6.4. Finally, we set α = 0.1, β = 0.0001 and λ = 1 without any change in

the experiment.
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To observe the performance affected by different code lengths, we conducted binary encoding

with five different bits by setting the value of r to 16, 32, 64, 128 and 256 respectively.

In the G1 experiment we used the MAP to evaluate the retrieval performance of different re-

trieval models. The MAP is calculated by averaging all AP values for the query videos in each

class. We also plotted the recall curve with different binary hash bits, which is used to reflect the

retrieval effectiveness. In the G2 experiment, we do not have the whole label set, so for each event

class we selected the top ranked 100 videos, manually label them. The retrieval accuracy is the

proportion of the true event-relevant samples in the top-ranked videos in retrieval.

Our experiment was conducted on a PC with Intel(R) Core(TM) i7-3770 @3.40GHz CPU with

8 processors, 16GB RAM, and 64-bit Windows 7 Professional operating system.

6.3.3 Effect of key frame selection

In order to achieve the best performance of our proposed VSBE, in subsection 6.2.2 we designed

a simple method to evaluate the descriptive abilities of the key frames in training videos, and

select a subset of key frames specific to each event. As far as we can see, it is the first attempt

to refine the key frames for video event analysis. There are other key frame selection methods

proposed for some tasks [84, 52], which need manual labels as supervised information, so they

are not suitable in our experiment settings. A comparable selection method is category-specific

video summarization proposed in [67], which can assemble the video sequences by performing

the SVM to get the scores. Given a set of videos represented as key frame sequences, we first

conducted the frame selection using the following methods: 1)random selection (RS) of the key

frames; 2)visual similarity based discriminative technique (VSD) [15]; 3)category-specific video

summarization (VSS) [67]; 4)selection of the key frames through the importance of video-level

(VI) in Eq.(6.1), event-level (EI) in Eq.(6.2) and global-level (GI) in Eq.(6.3) described in Section

6.2.2, respectively; and 5)the integration of the three importance measures (VI-EI-GI) in Eq.(6.4).

We conducted the experiment to compare the performance on the training set when using dif-

ferent proportions of selected key frames, and plotted the MAP curves as shown in Figure 6.6.

From the figure it can be easily seen that by simultaneously considering our proposed measure-

ment in Section 6.2.2 and conducting the key frame evaluation in the VSBE model, we only need to
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select about 60% of the key frames for hash function training to achieve the best MAP. Therefore,

this procedure can significantly reduce the computational burden when dealing with large-scale

training video set. When the selection rate is close to 1, all the selection methods are similar.

A case study on the comparison of these frame selection methods is shown in Figure 6.5. From

the figure we can see that the quality of the selected key frames directly affect the hash model

training. For example, the VSD [15] method can only select the most distinctive frames that

describe every temporal aspects of the videos. In this case study, the video is intuitively relevant

to the event parade, and its visual states can be well described by some frames that contain the

pattern several people are walking together. At the same time, some noisy parts such as video titles,

animals and other irrelevant objects should be excluded in the training procedure. Our proposed

visual state evaluation is class specific, which can measure the frame importance at three different

levels, so it can effectively filter out the irrelevant parts of the videos.

6.3.4 Comparison of different binary embedding methods

We compare our proposed VSBE with different binary embedding models:

• Spectral Hashing (SPH) [95]: One of the most basic unsupervised models for hash function

learning, which utilizes the graph Laplacian eigenvectors to generate compact binary codes

of data points by assuming the data are uniformly distributed in high-dimensional feature

space.

• Binary Codes with Bilinear Projections (BPBC) [25]: A bilinear rotation based algorithm

for learning binary codes for high dimensional vectors.

• Circulant Binary Embedding (CBE) and its semi-supervised extension (SS-CBE) [105]:

A binary embedding model created by mapping the data points with a circulant matrix.

• Video Hashing with both Discriminative commonality and Temporal consistency (VHDT)

[104]: An inductive structural hashing model specially designed for large-scale video re-

trieval, which can explore both the discriminative local visual commonality and temporal

consistency.
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FIGURE 6.5: A visualization of different key frame selection methods

• Visual State Binary Embedding (VSBE): Our proposed model in this work. We use both

equal and weighted schemes as mentioned before building the pair-wise constraints, and

mark them as VSBE-E and VSBE-W respectively.

Note that the first three models (SPH, BPBC and CBE) are mainly used for near-duplicate im-

age search, but VHDT is specifically designed for unconstrained video event retrieval. In addition,

since the above models are used to encode all the key frames in the videos, the time costs in the

retrieval phase are all the same. However, the accuracy of retrievals is quite different.
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6.3.5 Training time and convergence study

We first compared the training time on VHDT and VSBE since both are specifically designed

for video event hashing, and we plotted the bar chart in Figure 6.7. The VHDT model does not

have any key frame selection procedure as a pre-processing stage, so it needs much more training

time. When the number of events and training videos is small, the learning speed of VHDT is

acceptable. However, when there is a large number of training videos, it is extremely time and

memory consuming to train the hash functions. Since our proposed VSBE model only uses about

half of the key frames in model training, and we adopt a different update strategy, the optimization

is much faster. In our experiment, there are 3,500 videos in total which belong to 35 pre-defined

events, but only tens of minutes were spent in model training. Compared with VHDT, our VSBE

model is much more efficient in training hash functions for videos.

As is mentioned in subsection 6.2.4, the objective function (6.13) is optimized by updating

W and Y alternatively. The iterative optimization for VSBE converges within 5 iterations, which

indicates that the objective function values shrink very quickly.
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FIGURE 6.7: The comparison of training times between VHDT and VSBE

6.3.6 Event retrieval comparison

We first conducted the retrieval experiment (r = 128) on the G1 test set using three different

distance calculation approaches introduced in section 6.2.5. In video retrieval tasks, the binary

embedding can significantly accelerate the search speed, with the tolerable information loss, so

we conducted the video event retrieval in both Euclidean space and Hamming space, to compare

the retrieval speed and accuracy. For the retrieval in Euclidean space, we just removed the binary

embedding procedure (Eq. 6.11) described in 6.2.3. The MAP values and retrieval times are

reported in Table 6.1. We can see that in the binary Hamming space, the video retrieval is much

faster than in the real number space. Although the sliding-windows based distance calculation in

the retrieval phase is more time efficient, the accuracy is lower than that of frame-wise calculation

due to the over rigid temporal alignment. The DTW distance achieves the best accuracy, but its

improvement is marginal, and it has a very high computational complexity. This phenomenon

indicates that the temporal evidence of the frames has limited contribution to the event video
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TABLE 6.1: Retrieval performance using different distance calculation methods (r = 128)

Euclidean space Hamming space

MAP Time MAP Time

Sliding-window 0.0184 42m 0.0155 78.4s

Frame-wise 0.0397 227m 0.0368 243.1s

DTW 0.0411 875m 0.0384 536.3s

retrieval accuracy.

Video event retrieval can also be considered as a specific type of “lazy” classification if we

know the pre-defined class of the query video, i.e., the k-nearest neighbour (KNN) algorithm. The

neighbours are taken from a set of samples for which the category is known, which can be thought

of as the training set for the algorithm, though no explicit training step is required. When the data

samples are encoded to binary representations, the computational efficiency is greatly boosted. We

compared the VSBE model and the linear SVM, using the same training and testing settings as G1,

to see their differences. Note that the video representations in the two models are different. Unlike

the binary matrix representation of videos for retrieval, we just used the flat vector representation

in the real number space for SVM. The linear SVMs were trained in the one-versus-all way on the

1,750 query videos. The per-class AP values are displayed in Fig.6.8.

From the figure we can see the AP values of VSBE are lower than SVM in general, and the

reasons are two-folds: first, the information loss in the binary embedding is inevitable; second,

the lazy classifiers usually have worse classification performance than SVMs. Consequently, the

binary embedding model can hardly achieve the same accuracy compared to the supervised event

detection model. However, such retrieval performance is acceptable because in real application

scenarios, we mainly care about the search speed and top-ranked results, rather than the overall

retrieval accuracy.

The MAP of event retrieval on the G1 test set is displayed in Fig. 6.9, and the retrieval accuracy

on the G2 test set is displayed in Fig. 6.10, respectively. In Fig. 6.9, the error bars are also plotted

due to the random constraints and random parameter initialization.

We can see that our proposed VSBE model with weighted scheme (VSBE-W) outperforms the

other models. SPH, BPBC and CBE are unsupervised binary embedding methods, and they are
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FIGURE 6.8: AP comparisons between retrieval and detection model on G1 test set

not designed for video event retrieval, especially in unconstrained cases, so their event retrieval

performances are unsatisfactory. Their semi-supervised extensions can improve the performance

to some extent by incorporating the constraints. However, the SS-CBE is not flexible enough

to integrate the weighted scheme to train the hash functions, thus it does not achieve the best

performance. By adopting the equal scheme, the retrieval performance of VSBE-E is comparable

to VHDT, the state-of-the-art model. When adding the weighted scheme introduced in Section 6.2,

the retrieval accuracy could be further boosted by VSBE-W, which achieves the best performance.

Compared with VHDT, the visual state evaluation and key frame selection in the VSBE model

can simultaneously remove noise and reduce computational complexity. To get a better retrieval

performance, we also noticed that the hash bits and MAP simultaneously increase when r ≤ 128,

and the retrieval time does not have a dramatic change.

The recall curves of different bits on the test set are plotted in Figure 6.11, which also proves

our proposed VSBE model performs best.

In the event retrieval task, the quality of binary embedding can be evaluated by intra-class and

inter-class covariance. Similar to clustering models, it is expected that after the mapping procedure,

the data points with smaller intra-event covariance and greater inter-event covariance are in favour.

With the integration of the semantic information, the mapping function in Eq. (6.11) tries to make
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FIGURE 6.9: MAP comparisons of different encoding models on the G1 evaluation

FIGURE 6.10: Top ranked 100 accuracy comparisons of different encoding strategies in the G2 evaluation
(r = 128)

the visual states in the same event be close with each other in the Hamming space. At the same

time, the visual states from different events are supposed to be far away from each other. In our

VSBE model, we use Eq. (6.5) and Eq. (6.6) to control the intra-event covariance and inter-event

covariance respectively.

To visualize the data mapping of different encoding strategies before binary embedding, we

randomly selected several key frames from three different events, and applied different learning

models. Then we conducted PCA to reduce the dimension to 2, plotting the scatters in Figure 6.12.

From the figure we can see that compared with other mapping strategies, the VSBE with weighted

scheme can better discriminate the visual state clusters.
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FIGURE 6.11: The recall curves of different hash bits settings

6.3.7 Discussion

From the experiments we can see that the integration of prior knowledge in hash function training

can achieve two targets: first of all, in the training phase it can help us select the most representative

frames to sketch the visual states, and filter out the redundant and noisy frames, so the computa-

tional complexity can be effectively reduced; second, in the retrieval phase, the videos represented

by the key frames from the query videos need to be binary encoded to preserve both static and

dynamic properties. Although we need the pair-wise Hamming distance calculation, the retrieval

efficiency is still very high. From the experimental results, we can see that our VSBE model can

both boost the training and ensure the retrieval accuracy. Although it is a semi-supervised method,

which contains some uncertainties in label information, the VSBE model performs even better than
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FIGURE 6.12: The 2D visualization of different mappings

the supervised VHDT method.

Through our observation of the videos of the challenging TRECVID MED dataset, we also

noticed that both visual and semantic structures are quite complex. Some events are sensible to

temporal properties while others are not, so the retrieval performance varies in different event

classes. In the future, we plan to build the model by analysing the spatial-temporal properties and

evaluating the importance of different features (including different visual and audio features), to

further boost the retrieval performance at the event level.

We also noticed that although our proposed VSBE model simultaneously considers the static

and dynamic properties of the videos, the information loss of the video representation is still severe

after binary embedding, especially when there are a large number of null videos (i.e., irrelevant to

any pre-defined events) in the testing set. Another issue is that the VSBE model is inflexible when

there are new event categories, i.e., the model cannot be incrementally trained.
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6.4 Summary

In this chapter, we proposed a novel binary embedding for scalable event retrieval in large un-

constrained video databases. First, we evaluated the representative ability of the key frames from

the event-relevant videos, and select the top ranked frames to sketch visual states. Then we con-

structed the pair-wise constraints as prior knowledge to embed the visual states into binary codes

at the semantic level. Finally, we proposed the VSBE algorithm and its iterative solution. The

experimental results on the challenging TRECVID MED dataset demonstrated that our proposed

VSBE model can both accelerate the training procedure, and boost retrieval accuracy.



Chapter 7

Conclusion and future work

7.1 Conclusion

In this thesis, we first reviewed the relevant techniques for effective video event analysis, including

the visual features, deep learning techniques, and the recently proposed machine learning based

models for event detection, recognition and retrieval.

We mainly focused on how to build effective models for video event analysis in different cases:

• In Chapter 3, we proposed a generic model MMA for complex video pattern recognition.

This model is based on semi-supervised learning and transfer learning, which can learn

a mapping matrix Θ to transform video data from the original feature space to a lower-

dimensional space. This transformation can simultaneously minimize the data distribution

between labelled training videos and unlabelled auxiliary videos, and maximize the margin

between different categories. We conducted the experiment on two public datasets, and

proved the superiority of the proposed MMA model.

• In Chapter 4, we proposed a two-step deep learning model for MED tasks. In the first training

phase, we used the GRU model to train a recurrent auto-encoder for video re-construction.

This is an unsupervised learning procedure, so we could use both labelled and unlabelled

training videos to learn the temporal patterns as prior knowledge. In the second phase,

we only used the labelled training videos to fine-tune the parameters of the model. The

99
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experiment on the challenging TRECVID MED 14 dataset proved that our proposed spatial-

temporal deep model can outperform the state-of-the-art MED method.

• In contrast to the previous two chapters, where we built the content based models, in Chapter

5, we proposed a context based framework for web video event recognition. In this frame-

work, we first collected the pages to construct a event knowledge base, which consists of a set

of event semantic graphs (ESGs). Then we utilized this event knowledge base to enrich the

partial textual information accompanying the web videos. Finally we proposed a two-view

adaptive regression model (TVAR) that can utilize the enriched semantic information to help

training of the recognition model. We evaluated our approach on a public dataset EVVE and

another dataset UQE50, which is a large-scale one collected by ourselves. The experiment

showed that our proposed framework can effectively correlate the semantic information and

the visual features, thus achieving very promising results.

• In Chapter 6, we proposed a binary embedding method for video event retrieval. For this we

first designed a class-specific frame evaluation method, based on the importance measures

at video-level, event-level and global-level respectively. By evaluating the importance, we

only selected a limited number of frames for further processing. After that we proposed a

visual state binary embedding model (VSBE) that can integrate the semantic information

into the hash model training procedure. One advantage of our proposed approach is that it

can effectively alleviate the negative effect caused by noisy and redundant video frames. At

the same time, it can effectively reduce the computational complexity, so it is suitable for the

hash model training with large-scale video datasets. The experiment was conducted on the

unconstrained video dataset TRECVID MED, and proved the effectiveness of our proposed

method.

7.2 Future work

In the future, we plan to continue to explore our research work on video event analysis along the

following directions:
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• We plan to apply the event detection and recognition techniques on some practical appli-

cations such as monitoring indoor activities for public health services. Such tasks require

us to quickly analyse the real-time video data. Most of the existing models have very high

computational complexities, so it is difficult to directly use them in real-world applications.

Besides optimization of the software and hardware systems, one research direction is aimed

at establishing how to build efficient models to efficiently process the video data to meet the

requirements of real-time circumstances.

• We also plan to integrate video event analysis with big data techniques. In the big data era,

we can collect multimedia datasets from different data sources. These datasets are highly

unstructured and heterogeneous, but we can try to discover any potential correlations from

the patterns. As distinct from traditional video analysis approaches that are mainly based on

supervised learning, the analysis of ubiquitous data is mainly unsupervised. As such a kind

of knowledge discovery is consistent with human cognition, we plan to design novel models

that can use big data techniques to effectively analyse large-scale videos.

• The technique of deep learning is becoming increasingly popular in multimedia content anal-

ysis, and we plan to integrate some of the latest deep models for complex video event anal-

ysis. For example, the CNN feature and its variants have achieved very promising perfor-

mance on image data. However, the deep-learned features do not perform well in 3D video

data. One of our future tasks is to investigate and build deep models to better sketch the

spatial-temporal properties of videos for effective event analysis.

• Finally, we plan to integrate the deep learning model into hash function training for scalable

video event retrieval. Recently, deep learning techniques have revealed a very powerful de-

scriptive capability in multimedia content analysis. We noticed that in the traditional binary

embedding procedure, there is a serious information loss when integrating the semantics.

Applying the deep models in hash model training can effectively make the binary encoding

approximate the original data distribution.
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