Effect of birth weight on adulthood renal function: A bias adjusted meta-analytic

approach

^{1,4} Sumon Kumar Das (sumon.das@uq.net.au, sumon@icddrb.org)

¹ Munim Mannan (mannan.munim@uq.net.au)

⁴ Abu Syed Golam Faruque (gfaruque@icddrb.org)

⁴Tahmeed Ahmed (tahmeed@icddrb.org)

^{1,2,3} Harold David McIntyre (David.McIntyre@mater.org.au)

¹ Abdullah Al Mamun (mamun@sph.uq.edu.au)

¹ School of Public Health, The University of Queensland, Brisbane, Australia,

² Mater Clinical School, University of Queensland, Brisbane, Australia

³ Mater Medical Research Institute, Raymond Tce, South Brisbane, Qld 4101

⁴ International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b)

Short title: Birth weight on adulthood renal function

Word count: 4265

This article has been accepted for publication and undergone full peer review but has not been through the copyediting, typesetting, pagination and proofreading process which may lead to differences between this version and the Version of Record. Please cite this article as doi: 10.1111/nep.12732

This article is protected by copyright. All rights reserved.

Corresponding Author

Sumon Kumar Das

School of Public Health,

The University of Queensland,

Brisbane, Australia

Centre for Nutrition and Food Security (CNFS)

International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b)

68 Shaheed Tajuddin Ahmed Sarani

Mohakhali, Dhaka 1212, Bangladesh

Email: sumon.das@uq.net.au, s.das1@uq.edu.au, sumon@icddrb.org

Accepted

ABSTRACT

While the association between low birth weight (LBW; <2500 g) and development of adult chronic renal disease (CKD) is inconsistently reported, less information is available regarding association of high birth weight (HBW; ≥4000 g) with CKD. We undertook a systematic review and meta-analysis on studies published before 30 September 2015 and report associations between birth weight and renal function. Blood [Glomerular filtration rate (GFR)] and urine [Microalbuminuria/Albumin excreation rate (AER)/urinary albumin creatinine ratio (ACR)] parameters were used to define CKD. Three different effect size estimates were used (odds ratio, regression coefficient, and mean difference). The odds of developing CKD in the life course among those born LBW was 1.77 (95% CI:1.42, 2.20) times and 1.68 (1.27, 2.33) times, assessed by blood and urine parameters respectively. Higher risk was also observed among Asian and Australian populations (blood: OR 2.68; urine: OR 2.28), individuals aged \leq 30 years (blood: OR2.30; urine: OR 1.26), and \geq 50 years (blood: OR 3.66; urine: OR 3.10), people with diabetes (blood: OR2.51), and aborigines (urine: OR 2.32). There was no significant association between HBW and CKD. For every one kg increase in BW, the estimated GFR increased by 2.09 ml/min/1.73 m² (1.33-2.85) and it was negatively associated with LogACR (B-0.07, 95% CI: -0.14, 0.00). LBW inborn had lower mean GFR -4.62 (-7.10, -2.14) compared to normal BW. Findings of this study suggest that LBW increased the risk of developing CKD and HBW did not show any significant impact.

INDEX WORDS: Birth weight, renal function, systematic review, meta-analysis

INTRODUCTION

Over the last decades, the burden of chronic disease has increased at an alarming rate ^{1.4}. Evidence from the recent past shows increasing prevalence of kidney disease, which has adversely affected the health system as well as imposing an enormous social and community burden globally irrespective of country economic status ^{5, 6}. Several epidemiological and experimental studies suggested that most of the chronic diseases including chronic kidney disease (CKD) are linked with in utero life as first stated by Barker's hypothesis of "early origins of late disease" ⁷. This is supported by Bernner's hypothesis, which proposes that an inborn nephron deficit due to intra-uterine growth retardation (IUGR) or low birth weight (LBW) predicts long term risks of hypertension, renal impairment or decreased glomerular function, age adjusted glomerulosclerosis and later CKD or end stage renal disease (ESRD) ⁸. Moreover, further adverse events during extra-uterine life or life style during pregnancy may exacerbate the ramifications on renal function resulting in CKD ⁹.

The association between LBW and CKD is not consistent due to heterogeneity in age of diagnosis, geographical diversity and ethnic variation. Moreover, use of different biomarkers and formulae to determine CKD might also contribute to heterogeneity ¹⁰. Usually, glomerular filtration rate (GFR) is one of the easiest methods; but the use of different formulas and different biomarkers for example serum creatinine, serum cystatin are still of great concerns ¹¹. Further, microalbuminuria is also a well-recognized biomarker for early prediction and diagnosis of CKD ¹².

White SL et al. in 2009 made an attempt to harmonize such inconsistencies by including findings of all studies published before January 2008, and estimated the risks of albuminuria,

ESRD and low estimated GFR (eGFR) as odds ratios (ORs) of 1.81, 1.58, and 1.79 among respectively newborns with LBW ¹⁰. However, the study used traditional methods without controlling for heterogeneity across studies and reported the outcomes only in OR as a measure of effect size. Another review by Rong XU et al. in 2010 examined the role of LBW in pathogenesis of CKD and included studies which reported mean difference of GFR between LBW and normal weight as control ¹³. This study also had similar methodological limitations.

Recent studies consistently found that HBW increased obesity or metabolic risk irrespective of age and sex, which is explained by the over-nutrition hypothesis ^{14, 15}. This might suggest that HBW is likely to increase the risk of CKD through the obesity pathways. However, no such associations have ever been described for newborns with high birth weight (HBW) and the available analyses do not consider the linear associations between LBW and renal function using different biomarkers. Thus, the present appraisal aimed to determine the pooled estimation of association of birth weight (LBW and HBW) with CKD by using different biomarkers (blood and urine), including a variety of estimates of effect sizes and models. Moreover, we also aimed to determine the at risk population by including other factors such as geographical diversity, age differentials, effect of underling predictors such as diabetes and hypertension and ethnic difference.

Acc

METHODS

Search strategy

A systematic review of all published study findings irrespective of age, sex and ethnicity was undertaken in accordance with preferred reporting items for Systematic Review and metaanalysis guideline in PubMed (www.ncbi.nlm.nih.gov), Embase and Scopus till October 28, 2015. We searched for articles examining the association of birth weight and renal failure (chronic kidney disease) across different age groups. To search the articles no limits were inserted and references from the relevant literature were hand searched and used to identify additional relevant studies. The key words used for searching were, "birth weight, low birth weight/LBW, infant-low birth weight, high birth weight, foetal/fetal growth retardation, intrauterine growth retardation or IUGR, foetal/fetal development, small for Gestational age/SGA" with "kidney, renal, kidney function, renal function, kidney failure, renal failure, kidney disease, renal disease, kidney function impairment, renal function impairment, chronic kidney disease/CKD, glomerular filtration rate/GFR, glomerular filtration, proteinuria". We retrieved 15,565 articles and based on the information related to topic, abstract and full-text articles, a total of 15,514 studies were rejected, as they clearly did not meet the inclusion criteria (see below). A total of 51 studies were finally included for this study. The search strategy is described in detail in the online appendix.

Inclusion and exclusion criteria

Studies were included if they: 1) were published in the English language; 2) used the following study designs - cohort, case-control, cross-sectional, randomized control trial; 3) included people of any age >1 year, sex and ethnicity; 4) assessed the association of LBW with CKD by odds ratio, regression co-efficient and mean difference. The exclusion criteria were: 1) case reports, qualitative reports, comments, letters and reviews 2) animal or experimental models, 3) renal impairment or assessment of renal function as neonate and less than one year, and 4) other renal pathology such as minimal change nephropathy, immunoglobulin A nephropathy, and nephritic syndrome.

Data extraction and quality appraisal

A standard data extraction form summarizing the study design and other relevant raw data was completed for each article by an independent reviewer following PICOS guideline ¹⁶ (**Table S1**). Studies reporting their outcomes in odds ratios were synthesized. In some cases the effect sizes were transformed, that is converted into odds ratio (OR) when the necessary data for calculation were available. Data synthesis was also undertaken for standard error (SE) and standard deviation (SD) among studies with linear association or mean difference. A quality-scoring instrument (**Table S2**) was developed based on standard bias criteria for observational studies to adjust for study deficiencies. **This instrument meets the criteria of New Castle Ottawa score (selection, completeness and outcome) for both cohort and case-control studies ^{17, 18}. Following the standard procedure quality scoring was done by two reviewers. Any disagreement in the scoring was resolved by consensus and each item**

that was not deficient was given a point. These were then summed to form a univariate quality score (**Table S3**).

Primary analysis

Three different outcomes have been measured: 1) estimation of risk by Odds ratio; 2) estimation of linear association by regression coefficient; and 3) estimation of risk by mean difference. Pooled estimations were equated for each outcome based on assessment of renal function by two biomarkers separately: blood (eGFR) and urine [Microalbuminuria/Albumin excretion rate (AER)/urinary albumin creatinine ratio (ACR)]. To adjust for bias, the pooled estimates were obtained using three different meta-analytic models, given that the random effects (RE) model ¹⁹ is known to underestimate the statistical error which could lead to overconfident results ²⁰⁻²². Two other statistical approaches were used - the bias adjusted quality effects (QE) model ¹⁷ and its bias unadjusted variant called the inverse variance heterogeneity (IVhet) model ²³. The quality effects (QE) model adds a synthetic bias variance based on relative quality ranking. However, both the QE and the IVhet models use quasilikelihood based variance structure without distributional assumptions and thus have coverage probabilities for the confidence interval (CI) well within the 95% nominal level. Both have been documented to have a better performance when compared to the RE method ²³. Heterogeneity was determined to be present when the value of τ^2 was greater than zero and/or the Q-statistic was significant at a $P < 0.10^{24}$. All analyses were done using MetaXL version 2.0²⁵.

Sensitivity analysis and publication bias

Sensitivity analyses were performed with the aim to evaluate the robustness of our metaanalysis by changing selection criteria of the studies based on their regional difference, age of assessment (<30 years, 31-50 years, and 51 and above years), presence of potential predictors such as diabetes, and ethnicity variation. Finally, analysis of the effect of potential unpublished studies was undertaken to evaluate the possibility of publication bias within this meta-analysis. Publication bias was assessed via funnel plots as well as Peter's regression (when the effect size was calculated in OR) and Egger's regression. For Peter's and Egger's regression, asymmetry of the studies was considered if the intercept of regression deviated from zero with $P < 0.10^{26}$.

RESULTS

Study characteristics

Overall characteristics

A total of 51 ²⁷⁻⁷⁷ relevant papers finally met the inclusion and exclusion. Of them, 36 followed a cohort design ^{27-30, 32, 34, 36-44, 46-53, 56, 57, 59, 62, 63, 66, 67, 71-77}, nine a case-control design ^{31, 35, 45, 54, 58, 60, 61, 64, 69, 70} and five were of cross-sectional design ^{29, 33, 55, 61, 65} while one was a randomised control trial ⁶⁸. Most of them collected birth weight retrospectively by chart-review with only 4 studies collecting birth weight prospectively ^{37, 39, 50, 62} from birth records. One recorded self-reported ³⁰ birth weight and three did not mention their methodology ^{43, 54, 60}. Eight studies included patients attending hospitals or clinics where they were enrolled ³⁷.

^{45, 56, 61, 66, 67, 71, 74}, while the remainder were community based. One community based study was conducted among kidney donors ⁵². A total of 2269188 individuals were assessed, including a single study from Norway⁴⁷ which comprised a population of more than 2 million. A total of three studies were conducted among aboriginal populations: two from Australia^{29, 40} and one from Canada⁴⁹. Considering the age of assessment of renal function, 22 studies assessed renal function at less than 30 years ^{28, 32, 33, 36, 40, 42, 43, 46, 47, 51, 54, 55, 58-62, 67,} ^{70, 73, 74, 77}. Of these 11 were at paediatric and adolescent age group ^{33, 40, 43, 51, 55, 60-62, 73, 74, 77}. On the other hand, there were five studies that had assessed renal function at aged 50 years and above ^{34, 45, 48, 50, 52} and the rest were at middle age (30-50 years). Four studies did not mention age clearly ^{35, 56, 72, 76}. Two studies included twins ^{57, 59}. In total 438 monozygotic and 287 dizygotic twins were studied. Most of the studies either used blood or urine parameters to assess renal function; while only four studies analysed both specimens ^{36, 44, 50, 55}. Blood was used for estimation of GFR to define CKD or ESRD^{31, 35, 38, 41, 42, 44, 45, 47, 52, 76} from serum creatinine; while microalbuminuria was used to determine CKD from urine to estimate urinary albumin creatinine ration (ACR) ^{27, 29, 32, 33, 36, 37, 39, 50, 52, 53, 55-57, 62, 68, 72} and albumin excretion rate (AER)^{28, 34, 39, 40, 43, 65-67, 69, 74} to ascertain the association with birth weight. Moreover, five studies reported very low birth weight ^{36, 55, 58, 60, 62}.

Studies estimated the risk of CKD or ESRD, and mean difference, most of them considered newborns with birth weight <2500 g and compared with those of normal birth weight (2500-3999 g). However, one study estimated ponderal index (lower 3rd percentile) ³⁴, two studies estimated birth weight percentile ^{39, 42} and one study considered intra uterine growth retardation ⁶². Ten studies reported the association between HBW and CKD ^{27, 31, 35, 38, 39, 43, 44, 47, 49, 54}

Study quality

Of 36 studies included in meta-analysis, 21 estimated the effect size in OR ^{27-35, 37-41, 43-45, 47, 49,} ^{52, 54}, six studies estimated regression coefficients ^{36, 46, 48, 50, 51, 53}, eight studies measured as mean difference ⁵⁵⁻⁶², four of the studies estimated both OR and mean difference ^{29, 32, 39, 52}, one study reported both OR and regression coefficient ⁴², one measured both mean difference and regression coefficient ³⁶. Four studies used cross-sectional samples ^{29, 33, 55, 61} and six were case-control ^{31, 35, 45, 54, 58, 60} study designs, suggesting a possible source of designspecific bias. Most of the studies had well documented study designs and inclusion criteria except for two studies that reported this poorly ^{29, 40}. Six studies examined confounding factors extensively (≥ 7 confounders) ^{37, 43, 44, 47, 50, 52}, while 13 studies did not include any confounding factors ^{28, 29, 35, 41, 46, 49, 55-58, 60, 62, 74} and the remainder of the studies included one to seven confounders to measure the association. Only eight studies were conducted in populations with diabetes and/or hypertension and/or family history of CKD, diabetes, or hypertension ^{27, 28, 34, 38, 39, 43, 44, 50}. Only seven studies estimated risk or association adjusted for single maternal factors (gestational age ^{39, 51}, maternal diabetes ^{42, 43, 53}, maternal BMI ⁵³, ⁵⁴). One study included four factors for adjustment (maternal age, diabetes, preeclampsia and renal function) ⁴² and another study considered three factors (age, marital status and preeclampsia) to measure the association between birth weight and renal function ⁴⁷. Two studies considered the behavioural factor of smoking ^{37, 48}. All but four studies ^{30, 43, 54, 60} recorded documented (birth record) birth weight. Studies estimating risk for CKD used standard cut-offs [either eGFR (<60 ml/min/1.73 m2) or ACR (≥30 g/mol)]; however, some studies considered CKD by ACR \geq 2.5 g/mol ^{37, 39, 49} and four considered AER >15 g/mol ²⁸, ^{34, 39, 43}], while four studies assessed ESRD ^{31, 35, 38, 47}. The quality was assessed for all the studies individually, and the corresponding quality scores are shown in Supporting

Information Table S3. The quality assessment was summed into a univariate score with a maximum of 15 points and studies ranged between 4 and 15.

Meta-analysis

Newborns with LBW were at 1.77 (95% CI: 1.42, 2.20) and 1.68 (1.27, 2.33) times higher risk of CKD in later life assessed by blood and urine respectively (Figure 2). On the other hand, in newborns with HBW, overall risk of CKD at adulthood was 1.09 (0.91-1.32) times higher than normal birth weight individuals and for blood it was 1.04 and for urine 1.11 (Figure 3).

Two pooled linear estimations were undertaken due to heterogeneity across studies in measuring renal function. Firstly, for eGFR, every 1 kg increase in birth weight was positively associated with a change in eGFR of 2.09 ml/min/1.73 m² (95% CI: 1.33, 2.85). On the other hand, log transformed ACR was significantly and negatively associated [-0.07 (-0.14, 0.00)] with birth weight (Figure 4).

Two separate pooled estimates were calculated for GFR and ACR to determine mean differences. The pooled estimate for GFR revealed that individuals with LBW had lower mean GFR 4.62 ml/min/1.73 m² (95% CI: -7.10, -2.14) compared to their counterpart with normal birth weight (Figure 5). However, lower mean ACR 1.09 (-2.32, 0.14) was found among individuals with LBW, which was not statistically significant.

In sensitivity analyses, Asians and Australians were at greater risk (OR: blood - 2.68; urine - 2.28) compared to Europeans (OR: blood - 1.85; urine - 1.56) and individuals from USA and

Canada (1.59; 1.64) (Table 4). Individuals aged above 50 years were at higher risk (3.66; 3.10) compared to middle aged participants (31-49 years). However, higher risks were also observed among the young adult and paediatric age group (2.30; 1.26) compared to middle age (30-49 years) participants. Individuals with diabetes were at higher chance of developing CKD compared to non-diabetic people as assessed by blood (2.51 vs. 1.85) (Table 4). LBW aborigines were at higher risk of CKD in adulthood compare to non-aborigines (2.32 vs. 1.50) assessed by urine only (Table 4).

Publication bias

The funnel plots were symmetrical (for all the studies which measured the risk in OR, linear association and mean difference) suggesting no publication bias. Further, Peter's regressions for OR were examined and publication bias was not found for LBW with CKD for blood (regression coefficient: 0.001; P = 0.03) or for urine (regression coefficient: 0.002; P=0.04). For HBW there was some evidence of bias (regression coefficient: with CKD for blood (regression coefficient: 0.001; P = 0.03) or for urine (regression coefficient: 0.002; P=0.04). For HBW there was some evidence of bias (regression coefficient: with CKD for the association between BW and GFR (-0.020; P=0.96) and ACR (0.025; P=0.36) on Egger's regression also included zero, suggesting absence of publication bias in the studies included in this meta-analysis. Therefore, publication bias does not appear to be an important consideration for this study. On the other hand, regression coefficient for mean difference for eGFR (2.21, p=0.004) and ACR (0.70; p=0.020) indicated presence of publication bias.

DISCUSSION

Predisposition towards pathophysiological changes in smaller or immature kidneys includes lower numbers of nephrons at birth or early loss of nephrons. Later (mal) adaptive mechanisms include increased capillary pressure and glomerular hypertrophy resulting in intraglomerular hypertension which accelerates nephron attrition and progression towards CKD among newborns with LBW ^{8, 78, 79}. In the present study, inborn with LBW were at 1.77 and 1.68 times higher risk for CKD compared to normal birth weight newborns, which is consistent with the previous study published in 2008 ¹⁰ that reported increased odds of 1.73 with both combined blood and urine measures. We found both blood and urine analyses have similar sensitivity in detecting renal impairment, whilst urine analysis has potential practical advantages, as it is a non-invasive and cost effective method.

Newborns with HBW are also at 1.09 times higher risk of CKD at later life, though the association is not statistically significant. We found ten studies which ascertained the association between HBW and CKD ^{27, 31, 35, 38, 39, 43, 44, 47, 49, 54}. Only one study) among Pima Indians with diabetes) showed high odds ratio for CKD, which did not appear representative of the general population ²⁷. This might be due to intrauterine diabetes exposure as reported by Nelson ²⁷, as HBW may be associated with later development of autoimmune disease ⁸⁰⁻⁸², metabolic syndrome ¹⁴ and ESRD due to diabetic nephropathy ³¹. Alternatively, it might be linked with sustained excess weight gain leading to overweight and obesity. A recent review among individuals with renal disease ⁸³. Several other longitudinal studies also demonstrate an association between obesity and incidence of CKD at adulthood especially among adults ⁵⁰.

⁸⁴. Moreover, association with overweight first detected at a younger age with increased risk of CKD had also been documented ⁸⁵.

We also estimated other pooled associations between birth weight and renal function such as linear association (beta coefficient), and mean difference. In all cases, the magnitude of association between birth weight and CKD was also similar to that of risk estimation between LBW and CKD. For example in the linear model, every 1 kg increase in birth weight was positively associated with change in eGFR of 2.09 ml/min/1.73 m². Considering mean difference, newborns with LBW had lower GFR by 4.62 ml/min/1.73 m² compared to their counterpart with normal birth weight which is higher than the previous estimation done by Rong XU in 2010 ⁸⁶.

LBW newborns from Asia and Australia appear to be more at risk of CKD compared to European, and American and Canadians. Recent studies show that the prevalence of CKD has been increasing in most of the Asian countries. Taiwan, Japan, South Korea, Malaysia and India are within the top 20 countries globally with highest annual incidence of CKD ⁶. A study from Singapore also reported higher odds (2.09) of CKD among 6th grade school children with LBW ³³. A study from Japan has also demonstrated a positive correlation between the annual incidence of LBW and of ESRD ⁷⁶. Such correlations could not be estimated for other Asian countries, perhaps due to poor national birth registration systems as well as unavailability of life course health status registers ⁸⁷. However, prevalence of LBW is 15% based on available records of birth weight in developing and least developed countries, with higher prevalence (25%) in South Asians according to UNICEF ⁸⁷. On the other hand, among the Australian population the odds of CKD among LBW individual in adulthood was also higher. According to the Australian Diabetes, Obesity and Lifestyle Study (AusDiab) the

prevalence of CKD among the general population over the last decade increased from 4% to 5% (20% percent increase) with an incidence of impaired eGFR of 0.4% per year ⁸⁸.

Food contamination is currently a great public health threat, especially in developing countries. As the kidney is the main organ responsible for extracting and eliminating all the consumed health hazardous additive chemicals⁸⁹, resultant hyper activation of the glomerular membrane and toxic sedimentation might alter the renal homeostasis. Moreover, unplanned urbanization reduces open space, which compounds the risks of sedentary lifestyle and lower physical activity. These factors, in addition to environmental pollution may also increase the risk of diabetes and hypertension. Diabetes accelerates progression of vascular disease and carries a substantially increased risk of renal failure, while hypertension causes nephrosclerosis. Thus, both diabetes and hypertension are major predictors for renal impairment and the development of CKD. In the present study, odds of CKD were higher among diabetics compared to non-diabetics born with LBW. Among Australians, diabetes itself is responsible for 35% of all newly diagnosed ESRD, whereas hypertension and atherosclerosis account for 15%⁸⁸. It has also been observed that aboriginal LBW newborns in Australia^{29, 40} and Canada⁴⁹ are at higher risk of CKD in later life, which once again strengthens the evidence for vulnerability to chronic disease in these populations as reported elsewhere 90, 91.

Age of onset of CKD is another area of controversy due to inconsistency in the assessment of renal function. Though CKD is thought to a disease of older age due to degenerative changes and organ malfunction, young children born with LBW are also at greater risk ^{33, 40, 51, 55, 60, 61, 73, 74, 77}. It is difficult to precisely explain the complex relationship between the pathway(s) potentially connecting LBW and CKD in early life and young adulthood, and to define which

specific factors contribute to disease progression mostly due to different causes of CKD in children and adult. Evidences showed higher albuminuria may depends on ethnicity^{29,} ^{32, 64}, high blood pressure ⁹² due to raised natriuresis (also hormone or hormone like substance involvement ⁹³) or alteration of Na⁺/K⁺-ATPase activity ³². Change in body weight with environmental exposure and relationship between LBW with early onset of other metabolic disorder for example diabetes ⁹⁴ in addition lower number of nephrons might be alternatively speculated the relation of LBW with CKD among pediatric and early adult age groups; however, further studies are needed in this area. However, interestingly no evidence of CKD was found among kidney donors with LBW ⁵². This could be due to post donation well-maintained life-style and behaviour or selection pre donation for overall health and normal renal function. A significant relationship has also been reported between LBW and ESRD among females³⁵. This could be biologically based - sex differences in kidney size and BW with CKD have reported elsewhere ⁴⁴. However, such a differential might also be caused by creatinine-based sex adjusted estimation of GFR formulae ⁹⁵. Conversely, a significant association between LBW and CKD was reported only among males by Li S et.al. 44.

Maternal pre-pregnancy and pregnancy events, and life-style and behavioral factors such as diabetes, eclampsia or pre-eclampsia; smoking and alcohol consumption are important predictors which are recorded in only 3 studies. All of these are not merely confounders but also may be intermediate factors in the causal pathway of compromised organogenesis in utero and incipient nephropathy in offspring at adulthood reported elsewhere ²⁸. Only a few studies have estimated the risk of CKD by adjusting for the participants' life-style and behavioral factors ^{37, 42, 48}. Moreover, maternal nutrition during gestation (especially under nutrition) has been linked to impaired renal function in the twin offspring. For example, as

reported by Painter RC ³⁷, mid trimester Dutch pregnant mothers who were exposed to famine had higher rates of offspring microalbuminuria at age 50. Positive associations between intra-pair differences in size at birth and subsequent intra-pair differences in creatinine clearance in later life suggest that the relationship between birth weight and subsequent kidney function is robust to confounding by maternal and early life factors. However, no significant increase in the prevalence of microalbuminuria or albumin excretion rate was observed for individuals exposed to intrauterine maternal starvation during the 3-year siege of Leningrad ⁵⁰. Moreover, maternal obesity is also associated with malformations of offspring urogenital system ⁹⁶ which again could be related with maternal diabetes though the findings are not consistent ⁹⁷.

STREGTHS AND LIMITATIONS

Retrospective collection of birth weight from a record in most of the studies accentuated the chance of misclassification bias due to uncertainty in availability of valid records from all the study participants as well as lack of opportunity to compare with individuals without any record. Limited availability of information regarding maternal pre-pregnancy and pregnancy events are other concerns. Only 3 studies considered such potentially important information–especially relating to diabetes and eclampsia ^{42, 43, 47}. Such information was also lacking for study participants. Moreover, age of assessment, study designs other than longitudinal study, risk estimation by odds ratio, use of different biomarkers for defining CKD were other limitations. Despite all of these potential limitations, the use of biomarker based independent analysis, the use of three different effect size estimates to determine associations between LBW and CKD, the use of three different models for pooled estimations as well as several sensitivity analyses with extra effort for controlling bias were the strengths.

CONCLUSIONS

Findings from the present study indicate a relationship between LBW and CKD. Newborns with LBW are at greater risk of developing CKD or impairment of renal function in adulthood. The causal relationship could be linked with organogenesis. Lack of information regarding maternal, perinatal and antenatal lifestyle and behaviour and the offspring's' sociodemographic indicators at adulthood, limits definitive conclusions. However, the progression of renal impairment in LBW newborns is still of great concern, even after identifying potential confounders. Given the epidemic of diabetes and our finding that at least one-third of people with diabetes experienced CKD and LBW, this risk is of great importance. Further, prevalence in Asia is particularly high and diabetes is also associated with social disadvantage people as seen in aboriginal groups. LBW needs to be examined in conjunction with other risk factors and diseases such obesity, hypertension, and coronary heath disease in terms of its relative contribution to later renal disease. Moreover, the potential association between HBW and CKD, though not significant in this meta-analysis, needs to be explored in detail given the progression of the global epidemic of overweight and obesity.

ACKNOWLEDGEMENT

We sincerely acknowledge Scott Macintyre, Librarian, The University of Queensland for his support in literature searching.

CONFLICT OF INTEREST

The authors have declared that no competing interest exists.

REFERENCES

- Danaei G, Finucane MM, Lu Y, Singh GM, Cowan MJ, Paciorek CJ *et al.* National, regional, and global trends in fasting plasma glucose and diabetes prevalence since 1980: systematic analysis of health examination surveys and epidemiological studies with 370 country-years and 2.7 million participants. *Lancet.* 2011.378: 31-40.
- Farzadfar F, Finucane MM, Danaei G, Pelizzari PM, Cowan MJ, Paciorek CJ *et al.* National, regional, and global trends in serum total cholesterol since 1980: systematic analysis of health examination surveys and epidemiological studies with 321 countryyears and 3.0 million participants. *Lancet.* 2011.**377:** 578-86.
- 3. Danaei G, Finucane MM, Lin JK, Singh GM, Paciorek CJ, Cowan MJ *et al.* National, regional, and global trends in systolic blood pressure since 1980: systematic analysis of health examination surveys and epidemiological studies with 786 country-years and 5.4 million participants. *Lancet.* 2011.377: 568-77.
- 4. Ng M, Fleming T, Robinson M, Thomson B, Graetz N, Margono C *et al.* Global, regional, and national prevalence of overweight and obesity in children and adults during 1980-2013: a systematic analysis for the Global Burden of Disease Study 2013. *Lancet.* 2014.**384:** 766-81.
- 5. The global issue of kidney disease. *Lancet.* 2013.**382:** 101.
- 6. Jha V, Garcia-Garcia G, Iseki K, Li Z, Naicker S, Plattner B *et al.* Chronic kidney disease: global dimension and perspectives. *Lancet.* 2013.**382:** 260-72.
- 7. Barker DJ, Osmond C. Low birth weight and hypertension. *Bmj.* 1988.297: 134-5.
- 8. Brenner BM, Lawler EV, Mackenzie HS. The hyperfiltration theory: a paradigm shift in nephrology. *Kidney Int.* 1996.**49:** 1774-7.

- Brennan KA, Olson DM, Symonds ME. Maternal nutrient restriction alters renal development and blood pressure regulation of the offspring. *Proc Nutr Soc.* 2006.65: 116-24.
- 10. White SL, Perkovic V, Cass A, Chang CL, Poulter NR, Spector T *et al.* Is low birth weight an antecedent of CKD in later life? A systematic review of observational studies. *Am J Kidney Dis.* 2009.**54:** 248-61.
- 11. Levey AS, Stevens LA, Schmid CH, Zhang YL, Castro AF, 3rd, Feldman HI *et al.* A new equation to estimate glomerular filtration rate. *Ann Intern Med.* 2009.**150:** 604-12.
- 12. de Jong PE, Gansevoort RT. Focus on microalbuminuria to improve cardiac and renal protection. *Nephron Clin Pract.* 2009.**111:** c204-10; discussion c211.
- 13. Xu R, Zuo L. Low birthweight and chronic kidney disease. *Nephrology (Carlton)*.
 2010.15 Suppl 2: 18-22.
- 14. Boney CM, Verma A, Tucker R, Vohr BR. Metabolic syndrome in childhood: association with birth weight, maternal obesity, and gestational diabetes mellitus. *Pediatrics*. 2005.**115**: e290-6.
- 15. Yu ZB, Han SP, Zhu GZ, Zhu C, Wang XJ, Cao XG *et al.* Birth weight and subsequent risk of obesity: a systematic review and meta-analysis. *Obes Rev.* 2011.12: 525-42.
- 16. Stroup DF, Berlin JA, Morton SC, Olkin I, Williamson GD, Rennie D *et al.* Meta-analysis of observational studies in epidemiology: a proposal for reporting. Meta-analysis Of Observational Studies in Epidemiology (MOOSE) group. *Jama.* 2000.283: 2008-12.
- 17. Doi SA, Thalib L. A quality-effects model for meta-analysis. *Epidemiology*. 2008.19: 94-100.

- 18. Doi SA, Thalib L. An alternative quality adjustor for the quality effects model for meta-analysis. *Epidemiology*. 2009.20: 314.
- DerSimonian R, Laird N. Meta-analysis in clinical trials. *Control Clin Trials*. 1986.7:
 177-88.
- 20. Noma H. Confidence intervals for a random-effects meta-analysis based on Bartletttype corrections. *Stat Med.* 2011.**30:** 3304-12.
- 21. Poole C, Greenland S. Random-effects meta-analyses are not always conservative.
 Am J Epidemiol. 1999.150: 469-75.
- 22. Senn S. Trying to be precise about vagueness. *Stat Med.* 2007.26: 1417-30.
- 23. Doi SA, Barendregt JJ, Khan S, Thalib L, Williams GM. Simulation comparison of the quality effects and random effects methods of meta-analysis. . . *Epidemiology* 2014.
- 24. Takkouche B, Cadarso-Suarez C, Spiegelman D. Evaluation of old and new tests of heterogeneity in epidemiologic meta-analysis. *Am J Epidemiol*. 1999.**150**: 206-15.
- 25. Meta excel. <u>http://www.epigear.com/index_files/metaxl.html</u>.
- 26. Egger M, Davey Smith G, Schneider M, Minder C. Bias in meta-analysis detected by a simple, graphical test. *Bmj.* 1997.315: 629-34.
- 27. Nelson RG, Morgenstern H, Bennett PH. Birth weight and renal disease in PimaIndians with type 2 diabetes mellitus. *Am J Epidemiol.* 1998.148: 650-6.
- 28. Rudberg S, Stattin EL, Dahlquist G. Familial and perinatal risk factors for microand macroalbuminuria in young IDDM patients. *Diabetes*. 1998.47: 1121-6.
- 29. Hoy WE, Rees M, Kile E, Mathews JD, Wang Z. A new dimension to the Barker hypothesis: low birthweight and susceptibility to renal disease. *Kidney Int.* 1999.56: 1072-7.

- 30. Poulter NR, Chang CL, MacGregor AJ, Snieder H, Spector TD. Association between birth weight and adult blood pressure in twins: historical cohort study. *Bmj.* 1999.**319**: 1330-3.
- 31. Lackland DT, Bendall HE, Osmond C, Egan BM, Barker DJ. Low birth weights contribute to high rates of early-onset chronic renal failure in the Southeastern United States. *Arch Intern Med.* 2000.160: 1472-6.
- 32. Vasarhelyi B, Dobos M, Reusz GS, Szabo A, Tulassay T. Normal kidney function and elevated natriuresis in young men born with low birth weight. *Pediatr Nephrol.* 2000.15: 96-100.
- Ramirez SP, Hsu SI, McClellan W. Low body weight is a risk factor for proteinuria in multiracial Southeast Asian pediatric population. *Am J Kidney Dis.* 2001.38: 1045-54.
- 34. Yudkin JS, Martyn CN, Phillips DI, Gale CR. Associations of micro-albuminuria with intra-uterine growth retardation. *Nephron.* 2001.**89:** 309-14.
- 35. Dyck R, Klomp H, Tan L, Stang MR. An association of maternal age and birth weight with end-stage renal disease in Saskatchewan. Sub-analysis of registered Indians and those with diabetes. *Am J Nephrol.* 2003.**23:** 395-402.
- 36. Keijzer-Veen MG, Schrevel M, Finken MJ, Dekker FW, Nauta J, Hille ET *et al.* Microalbuminuria and lower glomerular filtration rate at young adult age in subjects born very premature and after intrauterine growth retardation. *J Am Soc Nephrol.* 2005.16: 2762-8.
- 37. Painter RC, Roseboom TJ, van Montfrans GA, Bossuyt PM, Krediet RT, Osmond C et al. Microalbuminuria in adults after prenatal exposure to the Dutch famine. *J Am Soc Nephrol.* 2005.16: 189-94.

- 38. Fan ZJ, Lackland DT, Lipsitz SR, Nicholas JS. The association of low birthweight and chronic renal failure among Medicaid young adults with diabetes and/or hypertension. *Public Health Rep.* 2006.**121**: 239-44.
- 39. Fagerudd J, Forsblom C, Pettersson-Fernholm K, Saraheimo M, Waden J, Ronnback M *et al.* Low birth weight does not increase the risk of nephropathy in Finnish type 1 diabetic patients. *Nephrol Dial Transplant.* 2006.21: 2159-65.
- 40. Haysom L, Williams R, Hodson E, Roy LP, Lyle D, Craig JC. Early chronic kidney disease in Aboriginal and non-Aboriginal Australian children: remoteness, socioeconomic disadvantage or race? *Kidney Int.* 2007.**71:** 787-94.
- 41. Salmi AI, Hoy W, Kondalsamy-Chennakesavan S. Adult chronic kidney disease patients have lower birth weight than the general Australian population. *J Am Soc Nephrol.* 2007 **18:824A**, (abstr SAU-PO1076):
- 42. Hallan S, Euser AM, Irgens LM, Finken MJJ, Holmen J, Dekker FW. Effect of Intrauterine Growth Restriction on Kidney Function at Young Adult Age: The Nord Trøndelag Health (HUNT 2) Study. *American Journal of Kidney Diseases*. 2008.**51**: 10-20.
- 43. Maahs DM, Snively BM, Beyer J, Imperatore G, Bell R, Mayer-Davis EJ *et al.* Birth weight [corrected] and elevated albumin to creatinine ratio in youth with diabetes: the SEARCH for Diabetes in Youth study. *Pediatr Nephrol.* 2008.**23:** 2255-60.
- 44. Li S, Chen SC, Shlipak M, Bakris G, McCullough PA, Sowers J *et al.* Low birth weight is associated with chronic kidney disease only in men. *Kidney Int.* 2008.73: 637-42.
- 45. Salmi AI, Hoy WE, Kondalsamy-Chennakes S, Wang Z, Healy H, Shaw JE. Birth weight and stages of CKD: a case-control study in an Australian population. *Am J Kidney Dis.* 2008.**52:** 1070-8.

- 46. Hannawi S, Salmi I, Healy H, Atkins R, Shaw J. Birthweight predicts glomerular filtration rate. *Nephrology Dialysis Transplantation*. 2012.**27:** ii18.
- 47. Vikse BE, Irgens LM, Leivestad T, Hallan S, Iversen BM. Low birth weight increases risk for end-stage renal disease. *J Am Soc Nephrol.* 2008.**19:** 151-7.
- 48. Harrison SL, Mann KD, Pearce MS. Early life influences kidney function at age 6364 years, but so does adult body size: results from the newcastle thousand families birth cohort. *PLoS One*. 2013.8: e66660.
- 49. Oster RT, Luyckx VA, Toth EL. Birth weight predicts both proteinuria and overweight/obesity in a rural population of Aboriginal and non-Aboriginal Canadians. *Journal of Developmental Origins of Health and Disease*. 2013.4: 139-145.
- 50. Silverwood RJ, Pierce M, Hardy R, Sattar N, Whincup P, Ferro C *et al.* Low birth weight, later renal function, and the roles of adulthood blood pressure, diabetes, and obesity in a British birth cohort. *Kidney International.* 2013.**84:** 1262-1270.
- 51. Bakker H, Gaillard R, Franco OH, Hofman A, van der Heijden AJ, Steegers EAP *et al.* Fetal and Infant Growth Patterns and Kidney Function at School Age. *Journal of the American Society of Nephrology.* 2014.**25:** 2607-2615.
- 52. Berglund D, MacDonald D, Jackson S, Spong R, Issa N, Kukla A *et al.* Low birthweight and risk of albuminuria in living kidney donors. *Clinical Transplantation*. 2014.28: 361-367.
- 53. Hoy WE, White AV, Tipiloura B, Singh GR, Sharma S, Bloomfield H *et al.* The influence of birthweight, past poststreptococcal glomerulonephritis and current body mass index on levels of albuminuria in young adults: the multideterminant model of renal disease in a remote Australian Aboriginal population with high rates of renal disease and renal failure. *Nephrol Dial Transplant.* 2014.1-7.

- 54. Hsu CW, Yamamoto KT, Henry RK, De Roos AJ, Flynn JT. Prenatal risk factors for childhood CKD. *J Am Soc Nephrol*. 2014.25: 2105-11.
- 55. Vanpée M, Blennow M, Linné T, Herin P, Aperia A. Renal function in very low birth weight infants: Normal maturity reached during early childhood. *The Journal of Pediatrics*. 1992.**121:** 784-788.
- 56. McAllister AS, Atkinson AB, Johnston GD, McCance DR. Relationship of endothelial function to birth weight in humans. *Diabetes Care*. 1999.**22:** 2061-6.
- 57. Bo S, Cavallo-Perin P, Scaglione L, Pagano G. Lack of association of fibrinogen, lipoprotein(a), and albumin excretion rate with low birthweight. *Int J Clin Lab Res.* 2000.30: 203-5.
- 58. Kistner A, Celsi G, Vanpee M, Jacobson SH. Increased blood pressure but normal renal function in adult women born preterm. *Pediatr Nephrol.* 2000.**15:** 215-20.
- 59. Gielen M, Pinto-Sietsma SJ, Zeegers MP, Loos RJ, Fagard R, de Leeuw PW *et al.* Birth weight and creatinine clearance in young adult twins: influence of genetic, prenatal, and maternal factors. *J Am Soc Nephrol.* 2005.**16:** 2471-6.
- 60. Rodriguez-Soriano J, Aguirre M, Oliveros R, Vallo A. Long-term renal follow-up of extremely low birth weight infants. *Pediatr Nephrol.* 2005.**20:** 579-84.
- 61. Lopez-Bermejo A, Sitjar C, Cabacas A, Vazquez-Ruiz M, Garcia-Gonzalez MM, Mora C *et al.* Prenatal programming of renal function: the estimated glomerular filtration rate is influenced by size at birth in apparently healthy children. *Pediatr Res.* 2008.64: 97-9.
- 62. Bacchetta J, Harambat J, Dubourg L, Guy B, Liutkus A, Canterino I *et al.* Both extrauterine and intrauterine growth restriction impair renal function in children born very preterm. *Kidney Int.* 2009.**76:** 445-52.

- 63. Sandeman DD, Reza M, Phillips DI, Barker DPJ, Osmond C, Leatherdale BA. Why do some type 1 diabetic patients develop nephropathy?Apossbile role of birth weight. *Diabet Med.* 1992. **9:S36A**, (suppl 1; abstr P93):
- 64. Rossing P, Tarnow L, Nielsen FS, Hansen BV, Brenner BM, Parving HH. Low birth weight. A risk factor for development of diabetic nephropathy? *Diabetes*. 1995.44: 1405-7.
- 65. Vestbo E, Damsgaard EM, Froland A, Mogensen CE. Birth weight and cardiovascular risk factors in an epidemiological study. *Diabetologia*. 1996.**39:** 1598-602.
- 66. Yudkin JS, Phillips DI, Stanner S. Proteinuria and progressive renal disease: birth weight and microalbuminuria. *Nephrol Dial Transplant*. 1997.**12 Suppl 2:** 10-3.
- 67. Erbey J, Libman I, Wilson R, Gower I. Low birth weight and early development of microalbuminuria in insulindependent diabetes. . *Diabetes and Metabolism*. 1997.46:S122A, (suppl 1; abstr):
- 68. Johnsen SP, Sorensen HT, Thulstrup AM, Norgard B, Engberg M, Lauritzen T. Fetal growth and urinary albumin excretion among middle-aged Danes. *Scand J Urol Nephrol.* 2001.**35:** 314-8.
- 69. Eshoj O, Vaag A, Borch-Johnsen K, Feldt-Rasmussen B, Beck-Nielsen H. Is low birth weight a risk factor for the development of diabetic nephropathy in patients with type 1 diabetes? A population-based case-control study. *J Intern Med.* 2002.**252:** 524-

8.

70. Iotova V, Madjova V, Tzaneva V. Does size at birth influence the development of microalbuminuria in young patients with type 1 diabetes mellitus? *Endocrinologia*. 2002.7: 23-29

- 71. Laganovic M, Kuzmanic D, Zeljkovic-Vrkic T, Pecin I, Dika Z, Jelakovic B. Kidney volume and albuminuria as markers of birth weight-blood pressure relationship in essential hypertension. *Kidney Blood Press Res.* 2009.**32:** 399-404.
- 72. Huxley RR, Neil HA. Does maternal nutrition in pregnancy and birth weight influence levels of CHD risk factors in adult life? *Br J Nutr*. 2004.**91:** 459-68.
- 73. Iacobelli S, Loprieno S, Bonsante F, Latorre G, Esposito L, Gouyon JB. Renal function in early childhood in very low birthweight infants. *Am J Perinatol.* 2007.24: 587-92.
- 74. Kwinta P, Klimek M, Drozdz D, Grudzien A, Jagla M, Zasada M *et al.* Assessment of long-term renal complications in extremely low birth weight children. *Pediatr Nephrol.* 2011.**26:** 1095-103.
- 75. Cassidy-Bushrow AE, Wegienka G, Barone CJ, Valentini RP, Yee J, Havstad S *et al.* Race-specific relationship of birth weight and renal function among healthy young children. *Pediatric Nephrology.* 2012.**27:** 1317-1323.
- 76. Ichikawa T, Fukuda M, Wakamatsu-Yamanaka T, Sato R, Naito T, Togawa H *et al.*Low birth weight and end-stage renal disease: demographic analysis by region in
 Japan. *Clinical and Experimental Nephrology.* 2012.16: 596-603.
- 77. Flynn JT, Ng DK, Chan GJ, Samuels J, Furth S, Warady B *et al.* The Effect of Abnormal Birth History on Ambulatory Blood Pressure and Disease Progression in Children with Chronic Kidney Disease. *Journal of Pediatrics*. 2014.**165**: 154-+.
- 78. Hughson M, Farris AB, 3rd, Douglas-Denton R, Hoy WE, Bertram JF. Glomerular number and size in autopsy kidneys: the relationship to birth weight. *Kidney Int.* 2003.63: 2113-22.

- 79. Manalich R, Reyes L, Herrera M, Melendi C, Fundora I. Relationship between weight at birth and the number and size of renal glomeruli in humans: a histomorphometric study. *Kidney Int.* 2000.**58:** 770-3.
- 80. Jacobsson LT, Jacobsson ME, Askling J, Knowler WC. Perinatal characteristics and risk of rheumatoid arthritis. *Bmj.* 2003.**326:** 1068-9.
- 81. Stene LC, Magnus P, Lie RT, Sovik O, Joner G. Birth weight and childhood onset type 1 diabetes: population based cohort study. *Bmj.* 2001.**322:** 889-92.
- 82. Mostafavi B, Akyuz S, Jacobsson ME, Nilsen LV, Theander E, Jacobsson LH. Perinatal characteristics and risk of developing primary Sjogren's syndrome: a casecontrol study. *J Rheumatol.* 2005.**32:** 665-8.
- 83. Wang Y, Chen X, Klag MJ, Caballero B. Epidemic of childhood obesity: implications for kidney disease. *Adv Chronic Kidney Dis.* 2006.**13:** 336-51.
- 84. Singh AS, Mulder C, Twisk JW, van Mechelen W, Chinapaw MJ. Tracking of childhood overweight into adulthood: a systematic review of the literature. *Obes Rev.* 2008.9: 474-88.
- 85. Silverwood R, Pierce M, Kuh D, Savage C, Ferro C, Nitsch D. Childhood body mass index trajectory and chronic kidney disease at age 60-4 years. *Nephrology Dialysis Transplantation*. 2012.**27:** ii388.
- 86. Xu R, Zuo L. Low birthweight and chronic kidney disease. *Nephrology*. 2010.15: 18-22.
- 87. Low Birthweight Unicef. www.unicef.org/...pdf/15_LowBirthweight_D7341Insert_English.pd (accessed on 4th April, 2015).
- 88. The Australian Diabetes, Obesity and Lifestyle Study (AusDiab). . 2012.
- 89. Dangerous Food Additives: Food additives are making you sick, the FDA knows it and does not do a thing about it. Are you? *People for Ethical Living*. (accessed on 21

October 2015) <u>http://peopleforethicalliving.com/health-and-fitness/food-choices-</u> <u>mutrition/dangerous-food-additives/</u>. *People for Ethical Living*.

- 90. Gracey M. Why closing the Aboriginal health gap is so elusive. *Intern Med J.* 2014.44: 1141-3.
- 91. Bruce SG, Riediger ND, Lix LM. Chronic disease and chronic disease risk factors among First Nations, Inuit and Metis populations of northern Canada. *Chronic Dis Inj Can.* 2014.34: 210-7.
- 92. Nilsson PM, Ostergren PO, Nyberg P, Soderstrom M, Allebeck P. Low birth weight is associated with elevated systolic blood pressure in adolescence: a prospective study of a birth cohort of 149378 Swedish boys. *J Hypertens*. 1997.**15**: 1627-31.
- Cowley AW, Jr. Genetic and nongenetic determinants of salt sensitivity and blood pressure. *Am J Clin Nutr.* 1997.65: 587s-593s.
- 94. Barker DJ, Hales CN, Fall CH, Osmond C, Phipps K, Clark PM. Type 2 (non-insulin-dependent) diabetes mellitus, hypertension and hyperlipidaemia (syndrome X): relation to reduced fetal growth. *Diabetologia*. 1993.36: 62-7.
- 95. Cirillo M, Anastasio P, De Santo NG. Relationship of gender, age, and body mass index to errors in predicted kidney function. *Nephrol Dial Transplant*. 2005.20: 1791-
- 96. Queisser-Luft A, Kieninger-Baum D, Menger H, Stolz G, Schlaefer K, Merz E. Does maternal obesity increase the risk of fetal abnormalities? Analysis of 20,248 newborn infants of the Mainz Birth Register for detecting congenital abnormalities. *Ultraschall Med.* 1998.**19:** 40-44.
- 97. Watkins ML, Rasmussen SA, Honein MA, Botto LD, Moore CA. Maternal obesity and risk for birth defects. *Pediatrics*. 2003.**111:** 1152-8.

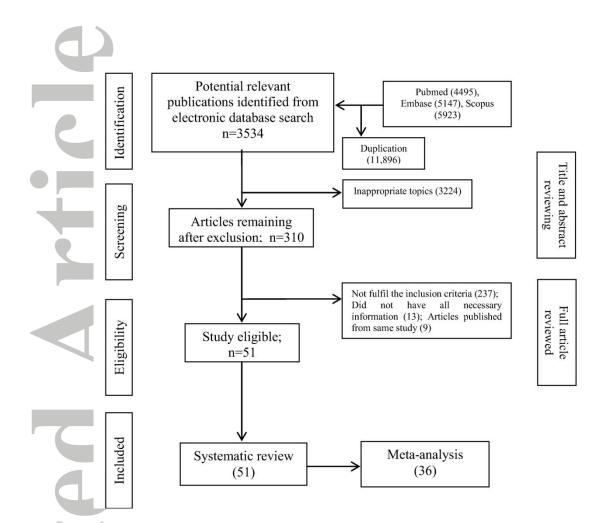
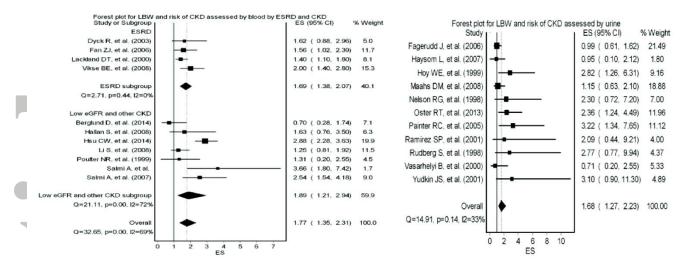
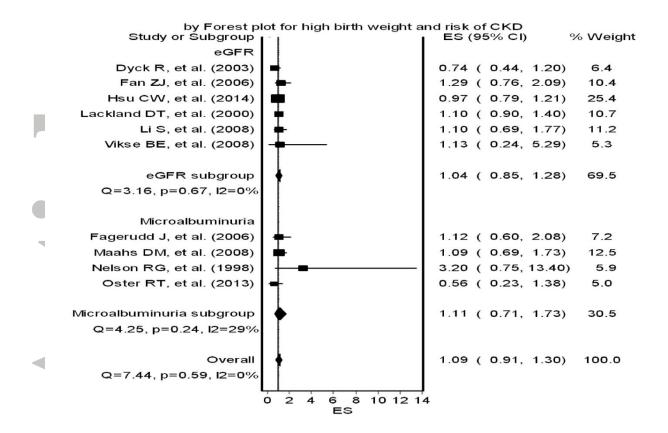
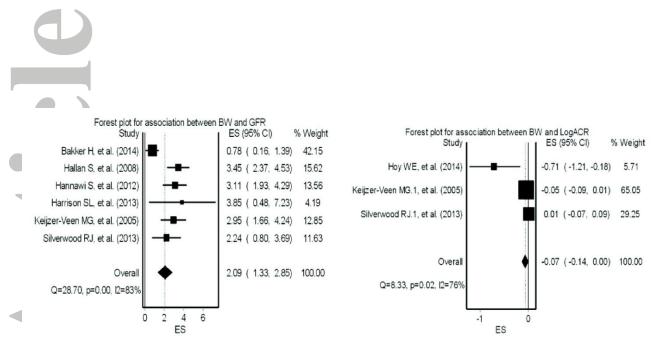



Figure 1: Selection framing of literature for systematic review and meta-analysis

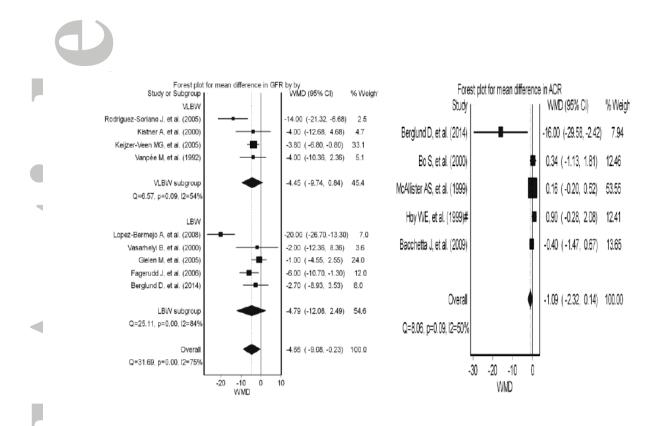

Acceb

CKD: chronic kidnev disease: LBW: Low birth weight: ESRD: End stage of renal disease (eGFR<15 ml/min/1.73 m²


Figure 2: Meta-analysis of the risk of chronic renal disease among inborn with low birth weight assessed by blood and urine at adulthood

Accepted

HBW: high birth weight; CKD: Chronic Kidney


Figure 3: Meta-analysis of the risk of chronic renal failure among inborn with high birth with

BW: Birth weight; GFR: Glomerular filtration rate; ACR: Albumin creatinine ratio

Figure 4: Meta-analysis of the linear association between birth weight and glomerular filtration rate, and log transformed albumin creatinine ration

Accepte

ACR: Albumin creatinine ration; GFR: Glomerular filtration rate; NBW: Normal birth weight; LBW: Low birth weight: WED: Weighted mean difference; VLBW: Very low birth weight

Figure 5: Meta-analysis of the difference of glomerular filtration rate and albumin

creatinine ration between LBW and NBW people in adulthood

Acce

	Study name	Place	Study design	N	Age (year; mean±SD) and sex	Patient's character; birth weight (g) [mean±SD; range]	Specimen; Biomarker	Findings	Exposure (reference)	OR/β (95% CI)	Adjusted/Potentia l predictors
1		United States	Chort study	30 8	34±6; both sex	Pima and closely- related Tohono O'odham	Urine; Microalbum inuria: ACR≥30 mg/g	Significant U-shaped association between BW & microalbuminuria prevalence	BW<2,500 g (vs. 2,500-4,499 g)	2.3 (0.72, 7.2)	Age, sex, duration of DM, hemoglobin A1c, mean arterial BP
						Indians with Type 2 DM; [3382±575; 1619-5386]			HBW ≥4500 g	3.2 (0.75- 13.4)	
2	Rudberg S, et al. (1998) ²⁸	Sweden	Nested case- control study, populati on- based cohort	21 4	Cases, 20.2±4.0; controls, 18.7±5.1; both sex	IDDM (controls matched for DM duration) [case:3573±5 83; control:3614± 465]	Urine; Microalbum inuria: AER≥15 micg/min	No significant association between LBW and microalbuminuria prevalence	BW <2,500 g (v ≥2,500 gm)	2.77 (0.77, 9.94)	Unadjusted
3	Hoy WE,	Australi	Cross-	21	20-38	High-risk	Urine;	LBW associated with	BW <2,500	2.82 (1.26,	Age, sex, BMI,

Table 1: Summary tables of studies measure Chronic Renal Disease and use effect size as Odds ratio/Beta-coefficient

This article is protected by copyright. All rights reserved.

	et al. (1999) ²⁹	a	sectional	7	(range); both sex	Aboriginal community; [2712±460; (1470-4080)]	Microalbum inuria: ACR≥300 mg/g	high rates of macroalbuminuria in high-risk community	g (v ≥2,500 g)	6.31)	SBP
4	Poulter NR, et al. (1999) ³⁰	United Kingdo m	Retrospe ctive cohort study	26 02	45.5; female	Volunteers for registry of adult twins	eGFR<10th sex specific percentile (MDRD Study equation)	No association between LBW and eGFR among twin female (<i>unpublished analysis</i>)	BW <2,500 g (v 2,500- 3,999 g)	1.31 (0.20, 2.55)	Age, sex, SES
5	Lackland DT, et al. (2000) ³¹	USA	Case- control study	26 90	34 (median); both sex	Cases had recent dialysis; Controls	ESRD	LBW significantly contribute to early onset of ESRD	BW <2,500 g (v 3,000- 3,499 g)	1.40 (1.1, 1.8)	Unadjusted
6	40					matched for age, sex, ethnicity; [black:3210; white:3361]		HBW does not significantly contribute to early onset of ESRD	HBW ≥4000 g	1.1 (0.9, 1.4)	
6	Vasarhel yi B, et al. (2000) 32	Hungar y	Cohort study	12 6	18-22 (range); both sex	Healthy adolescents	Urine; Microalbum inuria: ACR≥30 mg/g	No association between LBW and kidney function observed	BW <2,500 g (v 2,500- 3,999 g)	0.71 (0.20, 2.55)	Sex
7	Ramirez SP, et al.	Singap	Cross-	13	12; both	Children at 6 th grade level or	Urine; Proteinuria:	Trend toward for LBW in children with	BW <2,500 g (v ≥2,500	2.09 (0.44,	Sex, ethnicity, prematurity,

	$(2001)^{33}$	ore	sectional	26	sex	12-years	≥1+ (≥30	proteinuria	g)	9.21)	current weight,
						under pilot	mg/dL of				mean arterial BP
						national	protein) by				
						screening	dipstick				
						program;					
						[3173±607]					
8	Yudkin	United	Cohort	81	61.4±7.4;	Born in Ware,	Urine;	Significant trend	Ponderal	3.10 (0.90,	Age, sex, BMI,
	JS, et al.	Kingdo	study	8	both sex	Hertfordshire,	Microalbum	toward higher	index in	11.30)	SBP, region,
	(2001) ³⁴	m				Preston,	inuria:	prevalence of	lower		fasting glucose
						Lancashire;	AER>20	microalbuminuria with	3 rd percentil		
						[3402±561]	micg/min	lower ponderal index	e (v highest		
							_	-	3rd)		
									,		

	Study name	Place	Study design	N	Age (year; mean±SD) and sex	Patient's character	Biomarker	Findings	Exposure (reference)	OR/β (95% CI)	Adjusted/Potentia l predictors
9	Dyck R, et al. (2003) ³⁵	Canada	Case- control study	87 8	Both sex	Indian & other Saskatchewan people; controls	ESRD	LBW significantly associated with ESRD in white female HBW did not	BW <2,500 g (v 2,501- 3,999 g) HBW	1.62 (0.88, 2.96) 0.74 (0.44,	Unadjusted
10	Keijzer- Veen MG, et al. (2005) ³⁶	The Netherl ands	Cohort study	42 2	19.3±0.2; both sex	Born with a gestational age <32 wk.	GFR LogACR	associated with ESRD Birth weight (SDs) was associated with GFR and Log ACR in young adults born very preterm	<u>>4000 ∞</u>	1 20) 2.95 (1.66, 4.24)* -0.05 (- 0.09, - 0.01)*	Sex
1	Painter RC, et al. (2005) ³⁷	The Netherl ands	Cohort study	72 4	48-53; both sex	Singletons born during Dutch famine (1944-1945); [3352±471]	Microalbum inuria: ACR≥2.5 g/mol	Exposure to famine mid gestation significantly associated with higher rates of offspring microalbuminuria at 50 years	Exposure to famine mid gestation (v non exposed)	3.22 (1.34, 7.65)	Age, sex, BMI, smoking, SES, SBP, IGT/NIDDM, cholesterol, ECG abnormalities
1 2	Fan ZJ, et al. (2006) ³⁸	United States	Cohort study	75 05	18-50; ESRD, 33.9±0.1;	Medicaid beneficiaries (low income) with DM	ESRD	LBW significantly associated with ESRD, particularly in those with both DM &	BW <2,500 g (v 2,500- 3,999 g)	1.56 (1.02, 2.39)	Age, sex, ethnicity, DM, hypertension

Table 1: Summary tables of studies measure estimated Chronic Renal Disease and use effect size as Odds ratio/Beta-coefficient (continuation)

	C										
	•	5			normal; 37.6±0.6) ; both sex	&/or hypertension		hypertension HBW was not associated with ESRD	HBW ≥4000 g	1.29 (0.79, 2.09)	
1 3	Fagerudd J, et al. (2006) ³⁹	Finland	Cohort study	15 43	33±10; both sex	Type 1 DM with an age at onset <36 years, with insulin therapy	Diabetic nephropathy : AER> 200 micg/min, 300 mg/24 h; ACR	No association between LBW and development of diabetic nephropathy No association between	BW <10th percentile (v 50th- 90th percentile) BW >90	0.99 (0.61, 1.62)	Gestational age
	7					initiated within 1 year after diagnosis	>2.5/3.5 mg/mmol (M/F), or ESRD	HBW and development of diabetic nephropathy	percentile (v 50th- 90th percentile)	1.12 (0.60, 2.08)	
1 4	Haysom L, et al. (2007) ⁴⁰	Australi a	Cohort study	13 82	8.81±2.02	Aboriginal & non- Aboriginal elementary school children	Microalbum inuria: ACR≥30 mg/g	No association between LBW and AEC (<i>unpublished analysis</i>)	BW <2,500 g (v 2,500- 3,999 g)	0.95 (0.10, 2.12)	Age, sex, ethnicity, SES
1 5	Salmi A, et al. (2007) ⁴¹	Australi a	Cohort study	45 02	≥25.0	Healthy adults	eGFR<10th sex specific percentile (Taylor equation)	LBW significantly associated with eGFR & 10 th percentile for sex	BW <2,500 g (v ≥2,500 g)	2.54 (1.54, 4.18)	Unadjusted

	Study name	Place	Study design	N	Age (year; mean±SD) and sex	Patient's character	Biomarker	Findings	Exposure (reference)	OR/β (95% CI)	Adjusted/Potentia l predictors
16	Hallan S, et al. (2008) ⁴²	Norwa y	Cohort study	74 57	20-30; VSGA: 24.2±2.8; SGA: 24.7±2.9; AGA: 24.7±2.9; both sex	VSGA: 2448±311; SGA:2851±2 53; AGA: 3499±411	eGFR<10th sex specific percentile (MDRD Study equation)	IUGR significantly associated with low- normal kidney function, effects less consistent in female	BW <3rd v 10th-90th percentile (2,450 v 2,870-4,190 g)	1.63 (0.76, 3.5) 3.45 (2.37, 4.53)*	Age, smoking, education, maternal factors (age, DM, kidney function, preeclampsia)
17	Maahs DM, et al. (2008) ⁴³	United States	Cohort study	37 14	12.3; both sex	Youth younger than 20 years with	Urine; Microalbum inuria: AER>20 micg/min	LBW was not significantly associated with elevated ACR HBW was not significantly associated with elevated ACR	LBW<2500 g (v ≥2,500- 4,000 g) HBW>4000 g	1.15 (0.63, 2.1) 1.09 (0.69, 1.73)	DM duration, age, sex, HbA1c%, gestational diabetic, ethnicity, DM type, BMI, SBP, DBP
18	Li S, et al. (2008) ⁴⁴	United States	Retrospe ctive cohort study	12 36 4	18-75; mean age: 49.1-13.5 both sex	Volunteers with DM, HTN, or family history of CKD, DM,	CKD: ACR 30 mg/g or eGFR<60 mL/min/1.7 3 m ²	LBW significantly associated with CKD only among male This article is pro	BW <2,500 g (v 3,000- 3,999 g) HBW	1.25 (0.81, 1.92) 1.10 (0.69, yright. All righ	Age, race, education, insurance, region, DM, HTN, CVD, family history of

Table 1: Summary tables of studies measure estimated Chronic Renal Disease and use effect size as Odds ratio/Beta-coefficient (continuation)

	C												
						or HTN; 3195±781	(MDRD Study equation)		≥4000 g	1.77)	kidney disease, HTN control		
19	Salmi A, et al. (2008) ⁴⁵	Austra lia	Case- control study	56 7	60.3±15; both sex	Cases were patient attended the Nephrology department. Controls were sex and closely matched age participated in AusDiab study; [case:3270±6 20; control:3460± 590]	CKD stages 2-5: eGFR 60-90 mL/min/1.7 3 m ² with proteinuria hematuria or eGFR<60 mL/min/1.7 3 m ² (MDRD Study equation), or on dialysis therapy	LBW significantly more prevalent in patients with CKD compared with age- & sex- matched controls	BW <2,500 g (v 2,500- 3,999 g)	3.60 (1.70, 7.60)	Age, sex, diabetes, hypertension, glomerulonephritis, and reno-vascular disease		
20	Hannaw i S, et al. (2012) ⁴⁶	Austra lia	Cohort study	10 17	29-30	As like as Salmi A, et al. (2008)	eGFR (mL/min/1. 73 m ²)	Birth weight was strongly associated with eGFR		3.17 (2.00, 4.35)*			
21	Vikse BE, et al.	Norwa y	Retrospe ctive cohort	2.2 mil lio	Age ESRD onset	Record linkage study of all	ESRD	LBW & BW for gestational age significantly associated	BW <2,500 g (v 2,500- 4,499 g)	2.00 (1.4, 2.8)	Sex, birth year, birth order, congenital		
	This article is protected by copyright. All rights reserved.												

	study	n	21.2±8.9; both sex	Norwegian children born 1967-2004	with risk of ESRD	HBW ≥4000 g	3.2 (0.75, 13.4)	malformation, multiple delivery, maternal factors (age, marital status, preeclampsia)
B								
					This article	is protected by co	pyright. All rig	hts reserved.

	Study name	Place	Study design	N	Age (year; mean±SD) and sex	Patient's character	Biomarker	Findings	Exposure (reference)	OR/β (95% CI)	Adjusted/Potentia l predictors	
2 2	Harrison SL, et al. (2013) ⁴⁸	United Kingdo m	Cohort study	33 5	63-64; both sex	Cohort of the Newcastle Thousand Families study	eGFR (mL/min/1. 73 m ²)	BW was significantly positively associated with eGFR.		3.85 (0.48, 7.23)*	Sex, smoking and BMI	
2 3	Oster RT, et al. (2013) ⁴⁹	Canada	Cohort study	14 39	32.1±17.2 (5-90); both sex	Canadian aboriginal	Dipstick- positive proteinuria	LBW was significantly associated with proteinuria	LBW≤2500 g (v≥2,500 g)	2.36 (1.24, 4.49)	Age and sex	
	40						and/or ACR>2.74 in females or >1.94 in males	HBW was not associated with proteinuria	HBW≥4000 g	0.56 (0.23, 1.38)		
2 4	Silverwo od RJ, et	United Kingdo	Cohort study	21 98	62-64	Singleton children born	C (eGFRcys)	LBW was significantly associated with renal		2.24 (0.80, 3.69)*	Age, sex, self- reported diabetes	
	This article is protected by copyright. All rights reserved.											

Table 1: Summary tables of studies measure estimated Chronic Renal Disease and use effect size as Odds ratio/Beta-coefficient (continuation)

				-		-		-			-
	al. (2013)	m				in 1 week in March 1946 in England, Scotland, and Wales	LogACR	disease		0.010 (- 0.065, 0.085)*	and midlife SBP trajectory, treatment of DM and HTN at 60–64, SBP at 60–64; overweight at 36
2 5	Bakker H, et al. (2014) ⁵¹	Netherl ands	Cohort study	64 82	6; both sex	Generation R study	eGFR	Higher gestational age- adjusted birth weight was associated with higher eGFR		0.78 (0.16, 1.39)*	Gestational age
2 6	Berglund D, et al. (2014) ⁵²	United States	Cohort study	21 6	52.2± 9.6; both sex	Living donor nephrectomie s	GFR using the plasma clearance of non- radioactive iohexol<60 mL/min/1.7 3 m ²	BW was not associated with GFR	LBW<2500 g	0.70 (0.28, 1.74)	Age, sex, BMI, time from donation, SBP, DBP
2 7	Hoy WE, et al. (2014) ⁵³	Australi a	Retrospe ctive Cohort study	65 5	15-39 (26.2)	Remote aboriginal people	LogACR	BW was associated log transformed ACR		-0.71 (- 1.21, - 0.18)*	Age, BMI at follow-up, a previous post streptococcal glomerulo-nephritis
2	Hsu CW, et al.	United	Case- control	22 02	<1-35;	Cases were individuals	Diagnosed by ICD-9	LBW significantly	LBW<2500 g (v ≥2,500	2.88 (2.28,	Maternal DM,

8	(2014) ⁵⁴ States	study	6	both sex	with renal	codes [renal	increased risk of CKD	g)	3.63)	BMI, and smoking
					dysplasia/	dysplasia/				
					dyspidsid/	dyspidsid/	HBW was not	HBW≥4000	0.97 (0.79.	Maternal BMI and
					aplasia and	aplasia				
					obstructive	753.0/753.1	associated with risk of	g	1.21)	smoking

Note: *effect size in beta coefficient otherwise odds ratio; ACR: albumin creatinine ratio; AER: albumin extrication rate; BMI: body mass index; BW: Birth weight; CKD: chronic renal disease; DM: diabetes mellitus; ELBW: extreme low birth weight; HBW: High birth weight; GFR: Glomerular filtration rate; eGRF: estimated GFR; LBW: low birth weight; IGT: impaired glucose tolerance test; IDDM: insulin dependent diabetes mellitus; MDRD: modified diet for renal disease; NIDDM: non-insulin dependent diabetes mellitus; SGA: Small for gestation; SPB: systolic blood pressure; DBP: diastolic blood pressure.

đ A C C C C D

	Study	Place	Study	Age	Patient's	Biomarke	Findings	Adjusted/P	LB	W		Con	trol	
	name		design	(year; mean ±SD) and sex)	character	r		otential predictors	N	BW	GFR	N	BW	GFR
1	Vanpée M, et al. (1992) ⁵⁵	Sweden	Cross- section al study	8	18 months post- conceptual age infants	GFR	#Renal function markedly reduced during the neonatal period in very low birth weight infants		22	VLB W (GA 28.2± 1.5 weeks)	103± 12	25		107±1 0
2	Hoy WE, et al. (1999) ²⁹ #	Australi a	Cohort study	20-38	Adults aged over 20 years and above	ACR (Urine)	LBE contributes to renal disease compared to higher birth weight	Unadjusted	1 1 1	2220± 270	3.1±5 .64	20 6	2960± 330	2.2±4. 03
							Т	his article is pr	otec	ted by co	pyright.	All rig	hts reserv	ved.

Table 2: Summary tables of studies measure mean difference of different biomarker for assessment of renal function

3	McAllist er AS, et al. (1999) ⁵⁶	Ireland	Cohort study	_	Healthy Caucasian volunteers, half low BW, half normal BW, all full term	ACR	No significant differences in mean serum creatinine, ACR. or AER between subjects with BW 2.500 v 3,000-4,000 g		1 2	28.0± 0.21	0.6±0 .58	12	27.9± 0.29	0.44± 0.24
4	Bo S, et al. (2000) ⁵⁷	Italy	Cohort study	33.7± 7.5	Twins without a familial history of diabetes and hypertension	ACR (Urine)	No significant correlation between BW & AER		3 6	2440± 610	3.19± 3.69	36	2719± 0.06	2.84± 2.59
5	Kistner A, et al. (2000) ⁵⁸	Sweden	Case- control study	26±1. 9	Women selected from hospital records & birth register, 15 preterm, 18 full- term SGA (BW 2,600 g), 17 full-term appropriate BW	GFR	No significant differences in GFR between preterm and full term with appropriate BW individuals	Unadjusted	1 5	1293± 283	103± 11	17	3720± 313	107±1 4
6	Vasarhel yi B, et al. (2000) ³² #	Hungar y	Cohort study	20-22	Healthy adolescents	GFR	No association between LBW and kidney function observed	Sex	4 9		127± 22	16		125±1 7

			1	I	1	Ι		1	1		1	1	
7	Gielen M, et al. (2005) ⁵⁹ ands	Cohort study	25.6± 4.7	Monozygotic and dizygotic twins	GFR (24-h CC)	No significant difference in creatinine clearance between twins who both had LBW as compared with twins who both had a HBW	Unadjusted	304	2131± 270	93±3 4	34 9	2878± 314	94±22
8	Keijzer- Veen The MG, et al. (2005) ³⁶ #	Cohort study	19.3± 0.2		GFR	GFR was significantly lower among SGA compared to AGA	Sex	2 1 5	1144± 259	105.1 ±16	20 7	1496± 317	108.9 ±15.4
9	Rodrigu ez- Soriano Spain J, et al. (2005) ⁶⁰	Case- control study	6.1- 12.4 (8.6)	School-age children. Case were born with BW<1000g; controls were health children of same age	GFR	GFR is significantly diminished in school-age children born with extreme prematurity	Unadjusted	4 0	540- 100	117± 17	43		131±1 7
						Т	his article is pr	otec	ted by co	pyright.	All rig	hts reserv	ved.

1 0 Fagerud d J, et al. Finland (2006) ³⁹ #	Cohort study	33±9	Percipients with a diagnosis of type 1 diabetes (E10 in ICD-10) attending the diabetic and renal out patient clinics and dialysis units	GFR (CC)	End-stage renal disease were equally prevalent in the various birth weight groups		1 5 4	2510± 210 [†]	90±2 6	62 2	2810± 190 [†]	69±29
0												
t												
					-	This article is pi	rotec	ted by co	pyright.	All rig	hts reser	ved.

	Study	Place	Study	Age	Patient's	Biomarke	Findings	Adjusted/P	LB	W		Con	trol	
	name		design	(year; mean ±SD) and sex)	character	r		otential predictors	N	BW	GFR	N	BW	GFR
1	Lopez- Bermejo A, et al. (2008) ⁶¹	Spain	Cross- section al study	9.5 ± 0.4; both sex	Healthy school- age children	GFR	Significant decrease in the eGFR was evident between lower and upper tertail of BW-SD score	Age, sex, GA, BMI		-2.0 to -0.7	101± 7.49		-0.1 to 1.6	121±1 4.99
1 2	Bacchett a J, et al. (2009) ⁶²	France	Cohort study	5.8- 10.3 (7.6±1 .3)	IUGR (BW<1000g and/or <32 wk GA); normotrophic (premature children with a BW above -2 SD and birth, and height at discharge above -2 SD for corresponding	ACR	Inborn with IUGR were at risk of decrease ACR during childhood	Unadjusted	23	IUGR	1.5±1 .2	11	Norm otrop- hic	1.9±1. 6

Table 2: Summary tables of studies measure mean difference of different biomarker for assessment of renal function (continuation)

					GA						
1 3	Berglun d D, et al. (2014) ⁵² #	United States	Cohort study	41±10 .3	Nephrectomies living donor free from diabetes, hypertension and have a GFR > 80 mL/min	GFR ACR (Blood)	Birth weight was not associated with GFR <60 ml/min/1.73m2, but was associated with albuminuria	1 5	 69.6± 11.9 4.0±2 6.7	20 1	 72.3± 11.6 20±10

Note: ACR: albumin creatinine ratio; AGA: Appropriate for gestational age; BMI: body mass index; BW: Birth weight; CC:Creatinine clearance GA: Gestational age; GFR: Glomerular filtration rate; LBW: low birth weight; SGA: Small for gestation; SPB: systolic blood pressure; DBP: diastolic blood pressure; VLBW: very low birth weight; †ponderal index (kg/m³); #detail describe in Table 1;

LCCCED

Table 3: Summary of the studies not included in the meta-analysis

	Study name	Place	Study design	N	Age (avg.)	Patient character	Method/Bio markers used	Findings
1	n DD et al.	United Kingdo m	Cohort study	45	<40; both sex	Patient of T1DM	Microalbumi nuria or proteinuria	Individuals with albuminuria/ proteinuria had significantly lower BW than those without nephropathy
2	P. et al.	Denmar k	Case- control	36 6	Cases, 41.0±9.3 ; controls, 42.1±9.8 ; both sex	Patients with IDDM with or without diabetic nephropathy	Diabetic nephropathy (persistent AER ≥300 mg/24 h)	Prevalence of diabetic nephropathy significantly higher in LBW women compared with high BW; no significant difference in men
3	E et a	Denmar k	Cross- section al study	62 0	48 (median)	Offspring of participants excluding subjects with DM or overt nephropathy	AER	No significant relationship between BW & AER
4	JS, et al.	United Kingdo m	Cohort study	23 6	46-54; both sex	Study of participants born in & around Leningrad from January 1941-July 1942 before & during siege of Leningrad	AER	Consistent relationships of short stature with microalbuminuria and nephropathy in diabetic and non- diabetic individuals.
5	et al	United States	Cohort study	67	26.8; both sex	Patients with IDDM; mean duration of IDDM 18.1 years	Early onset albuminuria (AER ≥200 micg/min, onset at 21.8 y IDDM duration)	No association between LBW and shorter duration of IDDM at first presentation of albuminuria
6		Denmar k	Nested study	54 5	40.7±5.6	Participants available birth	ACR	No significant associations between

	(2001) ⁶⁸		(popula tion- based RCT)			records		BW, birth length, or ponderal index and ACR adjusted for age, BMI, smoking, alcohol consumption
7	Eshoj O, et al. (2002) ⁶⁹	Denmar k	Case- control study	10 2	38 (median) ; both sex	Patient of T1DM	Diabetic nephropathy (AER ≥200 micg/min and/or ESRD)	No significant correlation between BW and AER or difference in prevalence of LBW between cases and controls
8	Iotova et al. (2002) ⁷⁰	Bulgari a	Case- control study	90	With MA, 20.9±2.6 ; no MA, 19.4±3.4	Adolescents with T1DM	Microalbumi nuria	Subjects with microalbuminuria had significantly lower BW than controls
9	Laganovi c et al. (2002) ⁷¹	Croatia	Cohort study	72	38	Patients with mild form of essential hypertension	Microalbumi nuria	No difference in albumin excretion between subjects with BW 3,250 g and others
1 0	Huxley RR, et al. (2004) ⁷²	United Kingdo m	Cohort study	13 7	both sex	Offspring of pregnant mothers who participated in a wartime dietary survey	ACR	No significant relationship between BW and ACR adjusted for age, gender, BMI, parental social class and current social class
1 1	Iacobelli S, et al. (2007) ⁷³	France	Cohort study	96	7.2±0.6		Urine microlabumi n	VLBW infants is not correlated with urine microlabumin
1 2	Kwinta P, et al. (2011) ⁷⁴	Poland	Cohort study	11 6	6.7; both sex	Case children born as ELBW infants; control born full-term	AER	No significant difference in AER between inborn with ELBW and full-term
1 3	Cassidy- Bushrow AE, et al.	United States	Cohort study	15 2	25±35 (30)	African and non-African American	LogGFR	BW is associated with renal function in African American

	(2012) 75						children
1 4	Ichikawa T, et al. (2012) ⁷⁶ Japan	Cohort study			The numbers of LBW (<2,500 g) babies and ESRD need dialysis in 11 prefectures of Japan was included.	ESRD	The annual incidence of LBW was positively correlated with annual incidence of ESRD
1 5	Flynn JT, et al. (2014) ⁷⁷ United States	Cohort study	33 2	1-16 (12)	Children born with normal and abnormal weight [LBW (<2500 g), premature birth (<36 wk.), SGA (BW <10 th percentile of GA)]	GFR	Abnormal birth history did not significant GFR in this cohort of children with CKD adjusted for age, sex and height

Accepte

 Table 4: Sensitivity analysis

	Biomarker						
Characters	Blood	Urine					
LBW and CKD							
Geography							
USA and Canada	1.59 (1.15,	1.64 (1.06,					
USA and Canada	2.20)	2.55)					
Furana	1.85 (1.36,	1.56 (0.95,					
Europe	2.53)	2.55)					
A sis and Assetuation	2.68 (1.73,	2.28 (1.17,					
Asia and Australia	4.15)	4.43)					
Age*							
-20	2.30 (1.76,	1.26 (0.79,					
≤ 30 years	3.00)	1.99)					
21 - 2	1.57 (1.54,	1.90 (1.28,					
31-50 years	4.18)	2.84)					
	3.66 (1.8,	3.10 (0.90,					
\geq 51 years	7.42)	11.3)					
Individual with Diabetic							
	2.51 (1.99,	1.38 (0.96,					
Diabetic	3.17)	1.99)					
	1.85 (1.41,	2.18 (1.46,					
Non-diabetic	2.420	3.27)					
Ethnic origin		,					
		2.32 (1.43,					
Aborigine	-	3.75)					
		1.50 (1.08,					
Non-aborigine	-	2.09)					
HBW and CKD (overall)		,					
Geography							
USA and Canada	1.10 (0.9	91, 1.32)					
Europe		61, 2.06					

*Total 20 studies included in the analysis

#Only limited to studies used urine sue to none of the studies among aboriginal population used blood specimen

