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ABSTRACT 

From the statistical mechanical viewpoint, relaxation of macroscopic systems and 

response theory rest on a notion of typicality, according to which the behavior of 

single macroscopic objects is given by appropriate ensembles: ensemble averages of 

observable quantities represent the measurements performed on single objects, 

because “almost all” objects share the same fate. In the case of non-dissipative 

dynamics and relaxation toward equilibrium states, “almost all” is referred to 

invariant probability distributions that are absolutely continuous with respect to the 

Lebesgue measure. In other words, the collection of initial micro-states (single 

systems) that do not follow the ensemble is supposed to constitute a set of vanishing, 

phase space volume. This approach is problematic in the case of dissipative dynamics 

and relaxation to nonequilibrium steady states, because the relevant invariant 

distributions attribute probability 1 to sets of zero volume, while evolution commonly 

begins in equilibrium states, i.e. in sets of full phase space volume.  

We consider the relaxation of classical, thermostatted particle systems to 

nonequilibrium steady states. We show that the dynamical condition known as ΩT-

mixing is necessary and sufficient for relaxation of ensemble averages to steady state 

values. Moreover, we find that the condition known as weak T-mixing applied to 

smooth observables is sufficient for ensemble relaxation to be independent of the 

initial ensemble. Lastly, we show that weak T-mixing provides a notion of typicality 

for dissipative dynamics that is based on the (non-invariant) Lebesgue measure, and 

that we call physical ergodicity. 
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I.  INTRODUCTION 
 

 The study of the relaxation of systems made of many microscopic constituents 

obeying deterministic time-reversible equations of motion to stationary states, is long 

and celebrated; it finds its modern roots in Ludwig Boltzmann’s Kinetic Theory. 

Boltzmann’s approach was based on a notion that he called ergodicity [1, 2], which in 

the early XXth century was considered by physicists to be verified for the Hamiltonian 

systems of interest [3]. 

The mathematical notion of ergodicity that is commonly used today is that of 

metric transitivity, and in Hamiltonian dynamics (which preserve phase space 

volumes) it requires that almost all trajectories densely explore the phase space,  M  

say; the trajectories that do not densely explore  M  constitute a set of vanishing phase 

space volume. This implies that (infinite) time averages of observables are equal to 

appropriate equilibrium phase space averages, apart from a set of vanishing phase 

space volume (or zero Lebesgue measure). Roughly, this means that “typically” the 

ensemble members enjoy the same behavior, i.e. those that do not constitute a set of 

vanishing Lebesgue measure.1 

 While the notion of ergodicity based on invariant measures led to many 

insights of physical interest [4-10], the idea of typicality that it entails is problematic 

in the case of dissipative dynamics, such as those of nonequilibrium molecular 

dynamics (NEMD) models. Indeed the invariant measures of such models are singular 

with respect to the Lebesgue measure, as they attribute probability 1 to sets of 

                                                
1 We refer to the time averages as to "observable values", because measurements of macroscopic 
quantities take a time that is large compared to the microscopic characteristic times, and within 
their accuracy they yield the result of very many (ideally infinitely many) interactions between 
measurement tool and system of interest. In phase space, this is commonly represented by an 
(ideally infinite) time average along a given phase space trajectory. Averages over insufficiently long 
times may yield sensibly different values, depending on the systems at hand. In particular, short time 
averages concerning systems of a small number of particles tend to be widely dispersed. 
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vanishing volume. Therefore, in the sense of these invariant measures, “typically” 

means that the exceptions may occupy a set whose volume equals the volume of the 

entire phase space, or that the set of ensemble members that are guaranteed to behave 

in the same way are almost none, from the point of view of the phase space volume. 

Considering that standard experiments leading to nonequilibrium steady states 

(NESS) start in equilibrium states, i.e. with initial conditions in the entire phase space, 

this notion of typicality appears too limited for the statistical mechanical 

interpretation of relaxation of dissipative systems. 

 Our main results are the following: for dissipative dynamics we determine 

conditions for relaxation of averages of physical properties, to steady state values for 

both ensembles and single experiments.  

 In particular, we show that the condition known as ΩT-mixing is necessary 

and sufficient to prove relaxation of the ensemble averages of physical properties to 

steady state values, while usually only sufficient conditions are given. We find that 

the condition known as weak T-mixing (wT-mixing) applied to smooth observables is 

sufficient for relaxation to be independent of the initial ensemble. In turn, wT-mixing 

for integrable functions makes relaxation independent of the initial phase point, apart 

from a negligible (zero volume) set of points, in accord with experimental 

observations in thermodynamic systems.  

 This result bridges for dissipative systems the gap between standard results 

in response theory and observations, in the sense that typicality is referred to the (non-

invariant) Lebesgue measure, i.e. to the whole phase space and not just to a set of 

invariant probability 1. This is what we call physical ergodicity.   
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II. ERGODICITY AND MIXING 

 A stationary state is defined as one for which ensemble averaged physical 

properties does not change with time to within the measureable accuracy. This 

stationary state is typically formed by evolution from some initial (equilibrium) state 

for a transient period until the properties are no longer observed to change.  If the 

stationary state is out of equilibrium, we have a NESS. For such a system, let the 

initial state be described by a probability distribution function f0  on  M , and let the 

evolution of the physical microstates be represented by equations of motion on  M . 

Then, in contrast with the behaviour of averages of physical properties, unless the 

system is at equilibrium, the distribution function evolves from the initial transient f0 , 

taking a different form ft  at every time t, and never stopping its evolution. For 

example the Gibbs entropy of a NESS diverges at a constant rate towards negative 

infinity; ensemble averages of phase variables calculated with ft  may nevertheless 

converge. 

 In dynamical systems theory a steady state is associated with a construct that 

is represented by an invariant probability distribution (an invariant measure, in 

mathematical terms)2 that does not need be associated with a probability density 

function when examined in ostensible phase space. If the dynamics are conservative, 

and the system is at equilibrium, the ensemble amounts to a probability density 

function f0 , but for dissipative systems, the ensemble has a singular distribution of 

phase points in ostensible phase space. In the equilibrium case, the dynamical systems 

terminology refers to invariant measures that are absolutely continuous with respect to 

the Lebesgue measure; in the case of dissipative systems it refers to singular invariant 
                                                
2 An invariant probability distribution would give phase space averages of all properties that are time-
invariant to all limits of accuracy. If this measure has a density (an equilibrium system), then the 
density itself does not change with time. A probability distribution in phase space may be viewed as a 
collection of non-interacting objects in a given state, called an "ensemble".  
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measures. This means that, in this dynamical systems framework, a NESS 

corresponds to a lower dimensional subset A of  M , which has steady state 

probability 1 but zero probability with respect to f0 , because its phase space volume 

vanishes. Therefore, initial points in  M  will not lie on A , apart from those in this 

invariant set of zero volume, and their time evolution will result in the never ending 

collapse of the phase space probability distribution towards a singular measure that 

attributes probability 1 to A .  Following Milnor [11], we refer to the invariant set, A, 

as the NESS attractor. For a system that reaches a steady state, at sufficiently long 

times t the averages calculated with the invariant measure and with the evolved 

density ft  are equal to within some accuracy.3  

 Let us recall a few facts about ergodic theory. Consider a deterministic 

evolution  S
t :M →M , with notation meaning that   S

tΓ∈M  represents the phase at 

time t along a trajectory starting at  Γ ∈M . The first important feature of ergodicity is 

the use of phase space averages to express the infinite time average of an observable 

 O :M →R , mathematically represented by, 

 O(Γ) = lim
t→∞

O(Γ; t) ≡ lim
t→∞

1
t
O SsΓ( )

0

t

∫ d s  (1) 

for a system whose initial microstate is   Γ∈M . Note that in writing (1) we are 

assuming the long time limit exists. We are therefore assuming that at long times a 

state is reached in which the time averages of physical observables are time 

stationary. In an ergodic system, it is postulated that for almost all initial phases  Γ    

 
 
O(Γ)= O(Γ)dµ(Γ)

M
∫ = O

µ
 (2) 

                                                
3 Of course, these zero volume attractors are purely geometric entities, whose connection with 
observable features of physical systems is not direct. 
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where, ⋅ µ  denotes the phase space average with respect to an appropriate probability 

distribution µ  on  M . Because of the limit in time, the averages O
µ

 are invariant 

under the dynamics St . Under metric transitivity, Eq. (2) holds for almost all (with 

respect to ) .  

 There are two equivalent formulations of mixing which, like ergodicity, refer 

to an invariant measure µ , and which are not restricted to conservative dynamics. 

Given two (µ - measurable) sets  and F in  M , mixing is verified if: 

 µ E∩ StF( )− µ E( )µ F( )⎡⎣ ⎤⎦ = µ S− tE∩F( )− µ E( )µ F( )⎡⎣ ⎤⎦ t→∞⎯ →⎯⎯ 0  (3) 

where for a generic measurable set M⊂D , ( ) ∫= D
dD µµ  is the probability of D, and 

( ) 1== ∫MM µµ d  by definition. If µ  has a density f, one may write ( ) ( )∫ ΓΓ=
D

dfDµ

. Equation (3) means that the fraction of the set that was initially in F and is found in 

any other set E at large times, equals the probability of being in F. This happens if the 

evolving set StF  spreads all  over the region of  concerning the steady state. 

Equation (3) is equivalent to the following decay of correlations for all integrable 

observables A and B: 

 

  

A(StΓ)B(Γ)dµ(Γ)− A(Γ)dµ(Γ) B(Γ)dµ(Γ)
M
∫

M
∫

M
∫

⎡

⎣
⎢

⎤

⎦
⎥

= A !St( )B
µ
− A µ B µ

⎡
⎣⎢

⎤
⎦⎥
≡ Cµ (t) t→∞⎯ →⎯⎯ 0

 (4) 

where  A !St  represents the composition of the function A with the time evolution, i.e. 

  
A !StΓ ≡ A StΓ( ) ≡ A Γ t( )( ) , and we have defined the correlation function Cµ .4 

                                                
4 The equivalence of condition (3) for all measurable sets and condition (4) for all integrable functions 

can be understood as follows. In the first place, both Eq. (3) and Eq. (4) imply a loss of memory about 

the initial conditions: Eq. (3) says that the points found in E at time zero could have come from 

µ   Γ∈M

E

 M
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 This result has been used to show that averages over an appropriate initial 

distribution approach those taken over the invariant mixing measure that is preserved 

by the dynamics [13]. For instance, let the initial phase space distribution of the 

system be given by a density  f0 (Γ) , and let the distribution at time t be given by 

 ft (Γ) . Suppose further that the Lebesgue measure is mixing for the dynamics. One 

can then write:  

 

  

A
t
= A Γ( ) ft (Γ)dΓ

M
∫

        = A StΓ( ) f0 Γ( )dΓ
M
∫

       = A !St( ) f0 µmc

 (5) 

where the second equality is due to the equivalence of the Heisenberg and 

Schrödinger representations of phase space averages [7], and ⋅ t  denotes the average 

with respect to µt . Then using the mixing condition (4), 

 
 
lim
t→∞

A !St( ) f0 µmc
= A

µmc
f0 µmc

= A
µmc

 (6) 

where the final equality holds because f0 µmc
= f0 (Γ)d∫ Γ =1 , by definition of 

probability density.  So for systems that are mixing with respect to µmc  (which is 

preserved by the dynamics): lim
t→∞

A
t
= A

µmc
. The conclusion is that ensemble 

                                                                                                                                       
everywhere else in the phase space; Eq. (4) says that the correlation between any two observables is 

lost in time. Secondly, observe that  equals , where the characteristic 

function  is defined by  if  and  if . It follows that Eq. (3) 

holds if correlations between integrable functions, which include , decay. At the same time, linear 

combinations of characteristic functions approximate to arbitrary precision integrable functions, 

therefore the validity of Eq. (3) can be used to imply Eq. (4). [12] 
 

µ E( ) ( ) )(dd ΓΓ= ∫∫ µχµ
M EE

χ ( ) 1=ΓEχ Γ ∈E ( ) 0=ΓEχ Γ ∉E

Eχ
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averages of observables converge from their initial values A 0  to their asymptotic 

values A µ mc
 corresponding to the uniform distribution in phase space [13, 14]. 

Because mixing implies ergodicity, if the ensemble averages in the long time limit 

converge, then time averages commencing from a point on  M  will also converge, 

again apparently implying relaxation.  

 This reasoning can be extended to other invariant densities [13, 15], as well 

as to dissipative dynamics and singular measures [13]. However, in the latter case it 

only refers to sets of zero phase space volume, because the evolving and the 

stationary measures have to be absolutely continuous with respect to each other.  
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III. THE DISSIPATION FUNCTION AND ΩT-MIXING  

 In the present paper we firstly use a notion recently introduced and known as 

ΩT-mixing, in order to study the relaxation of ensembles toward NESS [14, 16-18]. 

Like equilibrium states, NESS have stationary, time independent averages of phase 

functions (e.g. pressure, stress, energy etc.). However unlike equilibrium states, in 

dynamical systems theory the NESS of the dissipative dynamics is characterized by 

an invariant measure that attributes positive probability to sets of dimension lower 

than the ostensible dimension of phase space. 5 With dissipative dynamics, the phase 

space  may contain more than one NESS attractor (i.e. in Milnor’s sense [11]), 

since they occupy only a vanishing volume.  

 To investigate relaxation both at and away from equilibrium, one can rely on 

a quantity introduced in 2000, namely the Dissipation Function  [19, 20]. Given a 

dynamical system   
!Γ =G Γ( )  and an initial distribution f0  on  M , the dissipation 

function integrated over the time interval [0 ,t] is a phase variable defined by: 

 Ω0,t
( f0 ) Γ( ) = Ω( f0 ) SuΓ( )du

0

t

∫ = ln f0 Γ( )
f0 MTStΓ( ) − Λ0,t Γ( )   (7) 

where MT  is the time reversal map, e.g.  M
TΓ ≡ (q1,...qN ,−p1,...,−pN )  for systems of 

N point particles, Λ = div G  is the phase space volume variation rate, and for every 

observable A the subscripts 0,t  denote integration from time 0 to time t along the 

trajectory passing in  Γ  at time 0: 

 
 
A0,t (Γ) = A SuΓ( )du

0

t

∫ . (8) 

                                                
5 Because of this lower dimensionality, functions of the phase space probability density, such as the 
Gibbs entropy, are ill defined in a NESS. Alternatively, if followed in its evolution under dissipative 
dynamics from an initial equilibrium state, the Gibbs entropy diverges at a constant average rate [7]. 
This can also be seen as a consequence of the divergence to positive infinity of the probability density, 
observed from almost any point, combined with the shrinking volume of the occupied phase space.  

 M

Ω
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Usually, the distribution f0  is not invariant and changes in time, but Ω  remains a 

phase variable, because Eq. (7) only refers to the distribution at a single time. As 

stressed by the notation in Eq. (7), Ω depends on f0 , however, for sake of simplicity, 

we will omit the superscript f0  when there is no danger of confusion. Dividing 

 Ω0,t (Γ)  by t and relying on the continuity in time of  f0 (S
tΓ)  and of  Λ(S

tΓ) , the 

instantaneous value Ω  of the dissipation function is obtained from its integral 

representation (7) (see e.g. [16]). 

 Definition (7) requires that for all Γ  where f0 Γ( ) ≠ 0 , f0 MTStΓ( ) ≠ 0 , a 

condition referred to as ergodic consistency. Ergodic consistency guarantees that the 

probability density at one point of a Loschmidt’s trajectory/antitrajectory conjugate 

pair is positive if the corresponding point has positive probability density (i.e. 

Loschmidt trajectory/antitrajectories pairs always exist). 

 When f0  is the equilibrium distribution corresponding to no driving, Ω 

represents the energy dissipation, a quantity that can be computed or measured in 

experimental systems, regardless of how near or far the system is from equilibrium 

[16-23]. If St  and f0  are time reversal invariant (TRI), i.e. MTSt = S− tM T  and 

 
f0 MTΓ( ) = f0 Γ( ) , as appropriate for equilibrium probability densities, Ω is odd with 

respect to time reversal, 
 
Ω MTΓ( ) = −Ω Γ( ) , as appropriate for dissipation. 

Consequently, its average with respect to any TRI distribution  vanishes: Ω f = 0 . 

We make use of this property to introduce the condition called ΩT-mixing, i.e.: 

 
 
lim
t→∞

A !Ss( )Ω
0
ds

0

t

∫ = LA ∈ R . (9) 

f
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Because Ω 0 = 0 ,  
C0 (t) = A !St( )Ω

0  and the correlation function is required by 

(9) to vanish faster than 1/ t . This condition is particularly useful in connection with 

the Dissipation Theorem [24] for the response of a phase variable A, which in general 

terms reads: 

 
 
A t = A !St

0
= A 0 + A !Ss( ) ⋅Ω

00

t

∫ ds  . (10) 

 

III.1  An example: the isokinetic particle system 

 The dissipation function and the ΩT-mixing condition introduced above are 

especially useful in the framework of NEMD models, where Ω can then be identified 

with the energy dissipation rate divided by the instantaneous thermodynamics 

temperature of the underlying equation state the system would relax to if it was so 

allowed.  

 For concreteness, let us discuss these issues in the context of a system of N 

particles subject to the following equations of motion:  

  !qi = pi /m +CiFe, !pi = Fi + DiFe − Siα IKpi + SiFth  (11) 

where Fe  is an external dissipative field (e.g. an electric field applied to a molten 

salt), and the scalars Ci  and Di  couple the system to . Let the Nth  thermostatting 

particles belong to the set th, let Si  be a switch to determine whether particle i is a 

member of the set ( Si = 0, i ∉th , Si = 1, i ∈th ), let the thermostat multiplier [7] α IK  

be chosen to fix the kinetic energy of the thermostatting particles at the value Kth , and 

Fth  be a fluctuating force fixing the momentum of the thermostatting particles, which 

is selected to have Pth = Sipi
i=1

N

∑ = 0 . We assume the interatomic forces Fi , i = 1,...,N , 

are smooth and short ranged functions of the interparticle separation. We also assume 

Fe
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that in the absence of the thermostatting and momentum zeroing forces, the equations 

of motion preserve phase space volumes (i.e.
  
∂
∂Γ i !Γad ≡ Λad (Γ) = 0 ) where 

 Γ ≡ (q1,...,pN )  is the phase space vector and ad, an abbreviation for adiabatic, means 

that the time derivative is calculated with thermostatting and momentum zeroing 

forces turned off. This condition is known as the adiabatic incompressibility of phase 

space, or AI  [7]. 

 We assume the system of particles is subject to infinite checkerboard 

boundary conditions [7] – at least in the direction of the force. This means that 

angular momentum is not a constant of the motion. It also means that dissipation can 

go on forever without the system relaxing to equilibrium. Currents can flow in the 

direction of the force forever. In our system the application of infinite checkerboard 

boundary conditions means that space is translationally homogeneous but 

orientationally anisotropic. There are no walls with normals parallel to the field to 

stop particle currents. The thermostatting particles may be taken to be solid particles, 

like the walls parallel to the field, which can absorb or liberate heat that may be 

required to generate a NESS characterized by a fixed value for the kinetic energy of 

the thermostatting particles. 

 As the initial equilibrium distribution, we select the distribution that is 

invariant for the system (11) with vanishing Fe .  This is referred to as the isokinetic 

canonical distribution: 

 
 
f0 Γ( ) =

exp −βthH0 Γ( )⎡⎣ ⎤⎦δ Pth( )δ Kth Γ( )− Kβ ,th( )
exp −βthH0 Γ( )⎡⎣ ⎤⎦δ Pth( )δ Kth Γ( )− Kβ ,th( )dΓ∫

 (12) 

where 
 
Kth (Γ) = Si pi

2 / 2mi∑  is the kinetic energy of the thermostatting particles and

Kβ ,th = (3Nth − 4) / (2βth ) is the fixed value of the kinetic energy of the thermostatting 

 Γ
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particles.  The number of particles in a unit cell is . The kinetic energy of the 

thermostatting particles is fixed using the Gaussian multiplier α IK , 

 α IK =
Si (Fi + DiFe + SiFth ) ⋅pi

i
∑

Sipi ⋅pi
i
∑ , (13) 

in the equations of motion. Here βth = 1/ kBTth  where kB  is Boltzmann’s constant and 

for isokinetic systems Tth  is the kinetic temperature of the thermostatting particles. It 

is also the equilibrium thermodynamic temperature the system will relax to if it is so 

allowed. Because the total momentum of the system averages to zero, the equilibrium 

internal energy of the N-particles in the unit cell is the average of 

 H0 (Γ) = K(p)+Φ(q)  over the distribution f0 : H0 0
= H0 (Γ) f0 (Γ)dΓ∫ , where  

K(p) andΦ(q)  are respectively the kinetic and potential energy of all the particles in 

the original unit cell. For any particle in the original unit cell and at any time, the 

potential energy may involve interactions with particles that were not, or are not, 

located in the original unit cell. 

 We should now specify the ostensible phase space domain that is not referred 

to explicitly in Eq. (12). In the full canonical ensemble the particle momenta are 

unbounded, however the delta functions in the isokinetic canonical ensemble place 

four constraints on the momenta of some of the particles in the system so this is no 

longer the case. The initial coordinates of the particles will each be within some finite 

range, ±L ,  within the unit cell of the periodic system. Due to the periodicity, any 

particle and its environment is essentially identical to any periodic image of that 

particle. Particles can always be “re-imaged” back into the original unit cell. However 

calculating certain quantities may have spurious discontinuities if this is done. 

Thermodynamic quantities like pressure, internal energy etc. are all continuous in 

N
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time, independent of whether particles are “imaged” in the unit cell. The 

thermostatting region that is unnatural can be made arbitrarily remote from the natural 

system of interest, so that it does not affect the bulk behaviour, cf. Section VI.  

 A key point in the definition (7) of the dissipation function, is that 

 Γ and M
TStΓ  are the initial phase points for a trajectory and its conjugate 

(antitrajectory) respectively. This places constraints on the propagator, St . For a 

system defined by Eq. (11), satisfying AI  and that is initially in equilibrium with 

distribution function (12), it is easy to show that  can be written as: 

  Ω Γ( ) = −βthJ Γ( )V ⋅Fe  (14) 

 where V is the volume of the unit cell of our infinitely periodic system, the 

dissipative flux [7] is given by: 

 
 
[pi
m
Di − FiCi ] iFe

i=1

N

∑ ≡ −J(Γ)V iFe = !H0
ad . (15) 

where  !H0
ad  is the rate of change of H0  according to the adiabatic (unthermostatted 

equations of motion).  Indeed, simple algebra yields [23, 26]:  

 
 
Λ Γ( ) = βth !H0 Γ( )+ J Γ( )V ⋅Fe%& '(   (16) 

and 

 
 

f0 Γ( )
f0 M

TStΓ( ) = exp βth
!H0 S

sΓ( )ds
0

t

∫{ }  (17) 

In fact (14, 15) define what we call the primary dissipation function for this system. If 

the field is set to zero there is no dissipation because the initial distribution is the 

equilibrium distribution for the zero field dynamics (11). In the linear regime, the 

average dissipation function is equal to the so-called entropy production rate. 

 In the case of the equations of motion (11) and initial distribution (12), the 

Dissipation Theorem (10) can be written as: 

 Γ

Ω
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A t ,Fe

= A 0,0 − βthV A !Ss( )J
0,Fe0

t

∫ ⋅Fe ds  (18) 

where the various physical ingredients are explicated, and the notation stresses their 

roles: ⋅ t ,Fe
is the ensemble average with respect to the phase space density  which 

evolves from the initial  according to the full field-dependent dynamics, denoted 

for simplicity by St  instead of SFe
t ; and therefore 

 
A !Ss( )J

0,Fe
 means the average 

with respect to , with the evolution of A carried out with the field-driven dynamics.  

 Expressions (10, 18) are exact, arbitrarily near or far from equilibrium and 

also for systems of arbitrary size. They look similar, but they differ from the linear 

response expressions for the evolution of phase variables in that the time correlation 

functions are those determined with the field driven dynamics in (10, 18), whereas the 

equilibrium time correlation functions appear in linear response theory expressions.  

Equation (18) shows that if the driving field vanishes, the ensemble averages of phase 

functions are time independent, provided  is invariant for the field-free dynamics.  

If the system starts with the equilibrium distribution (12), the distribution is preserved 

by the field free, thermostatted dynamics. 

 Using the definition (9), the average long time response of A given by (18) 

yields a real number in the long time limit, 

 
t→∞
lim A t ,Fe

= A 0,0 + LA,Fe  (19) 

if the system is ΩT-mixing. Property (9) is necessary and sufficient for this result, so 

another statement of ΩT-mixing in the present case is that all phase variables satisfy 

Eq. (19). This result is completely general, because Eq. (10) and its various versions 

are exact and directly derived from the dynamics. Moreover, Eq. (19) affords one “a 

posterior” test to assess whether the given dynamical system is ΩT-mixing or not. 

ft

f0

f0

f0
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Indeed, while the ΩT-mixing condition may either to hold or not, depending on the 

case at hand, analogously to ergodic properties of generic dynamical systems, ΩT-

mixing may not be easy to assess a priori, from mere knowledge of the equations of 

motion, although it is weaker than ergodicity (see Ref. [25] for the case of simple low 

dimensional maps).   

 Current NEMD simulations concerning the validity of the Steady State 

Fluctuation Relation for Ω indicate that for standard choices of parameters, the 

isokinetic model treated in this section is indeed ΩT-mixing [26]. On similar grounds, 

we expect other Gaussian or Nosé-Hoover thermostatted systems in the fluid state to 

be ΩT-mixing. 

 

  



 18 

IV.  CONVERGENCE OF ENSEMBLE AVERAGES UNDER ΩT-MIXING 

 We aim to find the conditions under which convergence of ensemble 

averages also corresponds to relaxation to a NESS for a single system, sampled at 

random in the whole phase space. Let us begin by observing that the NESS attractors 

for dissipative dynamics concentrate probability on sets whose dimension is less than 

that of the ostensible phase space, and that this dimension decreases as the average 

dissipation increases [27]. For some dynamics more than one NESS attractor will 

exist.  Therefore, different systems starting from different phases  could 

evolve towards different asymptotic states yielding different time averages, although 

they all started in the same initial equilibrium state, characterized e.g. by the initial 

distribution 0µ . Because the phase space averages (10, 18, 19) run over all initial 

phases, 
ett A
F,

lim ∞→  would then be a weighted average of the different averages 

pertaining to the different asymptotic states and, as such, it would not necessarily 

represent the results of any single experimental measurement. The problem cannot 

always be cured by separately considering the different basins of attraction in 

because, in general they are too finely intertwined with each other and cannot be 

separated. 

 Let us consider the characteristic function A
aχ  of the invariant set6 

( ){ }aAE Aa =∈= ΓΓ :M , i.e. the set of phases Γ  such that      

                                        (20) 

This set is invariant because of the limit in t, and is disjoint from any other A
bE  with 

ab ≠  because the time average is uniquely determined by Γ. Because time averages 

                                                
6A set E in M⊂E  is called an invariant set for the dynamics if ESESE tt −== . 

  Γ∈M

 M

 
A Γ( ) =

t→∞
lim

1
t
A(SsΓ)ds

0

t

∫ = a
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exist quite generally [28], let us assume that the limit in equation (20) exists for all 

phases except a set of vanishing phase space volume. Then, the union over all a,

∪
R∈a

A
aE , constitutes a set of 0µ -measure 1: 10 =⎟⎟⎠

⎞
⎜⎜⎝

⎛
∈
∪
Ra

A
aEµ . 

 It may happen that ( ) 1ˆ0 =A
aEµ  for a given value â . This means that the time 

averages along single trajectories (single experimental determinations of the property 

A) equal â , apart from trajectories whose initial conditions constitute a set of 

vanishing  0µ  measure. In this case, the ensemble average computed with 0µ  equals 

the time average â , because points leading to time averages other than â  have 

vanishing weight in the ensemble average. In general, this does not need to be the 

case and, as usual in response theory, ΩT-mixing only constitutes a condition for 

relaxation on average, rather than for single experiments. 

 We conclude this section observing that the characteristic function of 

invariant sets, such as the unions of sets like A
aE , obey the ΩT-mixing condition, as it 

can be directly gathered from the definitions. Indeed, for every finite time t, Eq. (10) 

and the equality ( ) ( ) ( )EESE t
t 00 µµµ == − , yield: 

 
 
µt Ea

A( ) = χa
A

t
= χa

A
0
+ χa

A !Ss( )Ω
0

0

t

∫ ds = µ0 Ea
A( ) = χa

A
0

  (21) 

which means  

 
  
χa
A !St( )Ω

0
= χa

A(StΓ)Ω Γ( ) f0 Γ( )dΓ∫ = Ω Γ( ) f0 Γ( )dΓ
Ea
A
∫ = 0  (22) 

Furthermore, any constant of the motion will also trivially satisfy Eq. (19).   
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V. WEAK T-MIXING 

 To tackle the problem of tipicality for relaxation to nonequilibrium steady 

states, we adopt the perspective developed in the study of the steady state fluctuation 

relations [23], which pointed out a dynamical property, later called wT-mixing. Let 

 be an initial probability density in the phase space  M . The dynamics St  is called 

wT-mixing with respect to  dµ0 = f0dΓ  if 

 

 

A !St( )B
0
− A !St

0
B 0

⎡
⎣

⎤
⎦ = A !St( )B

0
− A t B 0

⎡
⎣

⎤
⎦

≡ C0 (t) t→∞⎯ →⎯⎯ 0
  (23) 

where we used the identity 
 
A !St

0
= A t .

7 The second equality of Eq. (23) 

introduces the correlation function C0 t( )  of A and B, with respect to the initial 

distribution f0 ; unlike mixing, its decay in time is due to the loss of correlations 

between the initial and the evolving probability distributions,  dµ0 = f0dΓ  and 

 dµt = ftdΓ .  

V.1 Strong ensemble relaxation 

 Suppose that wT-mixing holds for two observables A and B = h0 f0 , where 

h0  is a smooth positive function that vanishes outside a given hypersphere  E ⊂ M  

(which is not necessarily an invariant set) of positive radius. Without loss of 

generality, we may take 
 
h0 Γ( )dΓ = 1∫ , which makes h0  a probability density 

supported on . The validity of Eq. (23) yields: 

                                                
7 The dynamics is called T-mixing if

 
lim
t→∞

A !Ss( )B
0
− A t B 0

⎡
⎣

⎤
⎦ds ≡ limt→∞

C0 (s)0

t

∫ ds = LA ∈R0

t

∫ , which will be the case if the 

correlation function decays more quickly than 1/t.  wT-mixing is therefore a weaker condition than T-
mixing that does not specify the rate of convergence. 

f0

E
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f0 (Γ)B(Γ)∫ A StΓ( )dΓ− f0 (Γ)A StΓ( )dΓ∫ f0 (Γ)B(Γ)dΓ∫⎡
⎣

⎤
⎦

= h0 (Γ)∫ A StΓ( )dΓ− f0 (Γ)A StΓ( )dΓ∫⎡
⎣

⎤
⎦ = A t

(h) − A t
( f )⎡⎣ ⎤⎦ t→∞⎯ →⎯⎯ 0

 (24) 

where A t
(h)  and A t

( f )  are the phase space averages of A at time t, starting from the 

ensembles h0  and f0 , respectively. Equation (24) states that provided the asymptotic 

observable value A µ  
exists (something guaranteed under ΩT-mixing), its value 

does not depend on the initial ensemble.8 As a matter of fact, because f0  is an 

equilibrium distribution, we can assume that it is approximately constant within phase 

space hyperspheres of sufficiently small radius. If the probability densities supported 

over any hypersphere verify wT-mixing with A, the ensemble averages of A over 

trajectories starting within all hyperspheres yield the same value. This does not mean 

that almost all single system time averages converge to that value, as every 

hypersphere could contain a positive fraction of initial conditions of trajectories 

producing different time averages. However, it requires the fractions of initial 

conditions leading to different time averages to be the same everywhere in  M , 

something peculiar in relation to the phase space description of a physical object and 

to the measurements that identify its macroscopic state. While, mixing refers to 

invariant measures, wT-mixing refers to the known initial distributions. This has 

many advantages, including that for our result to hold, it does not matter whether a 

single steady state attractor is approached in time or not. 

V.2 Single system relaxation 

 If A and B are the characteristic function  χE  of a set E, Eq. (23) implies:

µ0 (S
− tE∩E)− µ0 (S

− tE)µ0 (E)⎡⎣ ⎤⎦ = µt (E∩ StE)− µt (E)µ0 (E)⎡⎣ ⎤⎦ t→∞⎯ →⎯⎯ 0   (25) 

                                                
8 Note: We assume f0 > 0  on all  M  , while h0  does not need to be so. 
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If  is also invariant, its probability does not change in time so 

µt (E∩ StE) = µt (E) = µ0 (E) , and Eq. (25) shows that µ0 (E) = µ0 (E)
2 , i.e. µ0 (E) = 0  

or 1. Clearly this would be inconsistent with the existence of more than one disjoint 

invariant set of non-zero µ0 -measure. Therefore wT-mixing can be taken to imply 

that there is only one such set. This uniqueness argument cannot be extended to the 

attractors of dissipative systems, because they have vanishing volume. 

 If the initial distribution was taken as the invariant steady state distribution, 

(25) would be satisfied by ergodic measures, but even in this case wT-mixing affords 

a fresh perspective on ergodic notions in physics, because it has been developed to 

reconcile aspects of physical systems, such as the validity of fluctuation relations, 

with dynamical systems theory, cf. [22, 23, 26].  

 More precisely, the only formal difference between Eq. (4) and Eq. (23) is 

that Eq. (4) refers to an invariant measure, while the initial distribution of Eq. (23) is 

not invariant under nonequilibrium dynamics.  This leads to a major conceptual 

difference between the notions of mixing and wT-mixing. While mixing strictly 

speaks only of the decay of correlations between events within a given steady state, 

wT-mixing speaks of the loss of correlations between the initial and the evolving 

probability distributions. In cases in which these distributions characterize the 

macroscopic states of a given object, this affords a description of the relaxation 

process.   

 Then, let us consider a system where Eb
A  is the set of all points in phase 

space with  A(Γ) = b .  As discussed below Eq. (20), this is an invariant set. Suppose 

that condition (24) holds for sets such as  Ea,δ
A = ∪b∈[a,a+δ )Eb

A  , for δ > 0 , that are 

invariant because they are a union of invariant sets. Therefore, given two different 

E
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values a and b, Eq. (24) implies that µ0 (Ea,δ
A )  and µ0 (Eb,δ

A )equal 0 or 1, and one of 

them at most can be 1, if  b − a > δ  . In addition, for any δ > 0 , the real numbers R   

can be expressed as a countable union of disjoint sets like [a,a +δ )  :  

 
 
R = ∪

n∈Z
nδ ,(n +1)δ )[   and  

 
µ0 ∪

n∈Z
E nδ ,(n+1)δ )[( ) = 1 . (26) 

Whatever accuracy δ > 0  we choose, one of the invariant sets must have µ0 -measure 

one and all the rest must be of µ0 -measure zero.  Then, if the system is wT-mixing, 

for any there is a single  such that µ0 (Ea,δ
A ) = 1 , and µ0 (Eb,δ

A ) = 0  for all b, 

with b − a > δ . In other words, wT-mixing for the invariant sets Ea,δ
A  implies that all 

single systems, apart from a set of vanishing phase space volume, converge to a state 

in which the measurements of A yield, with arbitrary accuracy, the value a. 

 This does not imply that there is a single NESS attractor: a system with 

various NESS attractors each with a ≤ A < a +δ , can be wT-mixing if there are no 

other sets with non-zero µ0 -measure for which A < a  or A ≥ a +δ . The intricacies of 

the phase space structure are irrelevant in our approach, as they should be, because 

what matters physically are the values of the observables. Because the physically 

relevant observables required to characterise a physical system are but a few, 

condition (25) does not appear particularly strong, if the analysis is restricted to them.  

 The result is not merely an “average” relaxation concerning an ensemble of 

systems (as usual in response theory), but it describes relaxation as expected for single 

thermodynamic systems, and points out a new kind of typicality for dissipative 

systems: all (but those in a negligible volume of phase space) relax to the same steady 

state, as far as measurements of observables can tell. We use the term physical 

ergodicity to refer to the condition in which time averages, or physical measurements, 

δ > 0 !a∈R
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of a given observable yield a unique value, except for a set of vanishing Lebesgue 

measure, even in the case of dissipative dynamics. 

 Note that this situation is not the one of standard ergodic theory, because it 

concerns the initial distribution of phases and not the steady state. This is important, 

since “almost all” points on the NESS attractor of dissipative systems might satisfy 

the equality of time-averages and ensemble averages over the points on the NESS 

attractor, however these points have zero µ0 -measure and therefore refer to “almost 

none” in terms of phase space volumes. Moreover, our uniqueness of the time 

averages, does not need the uniqueness of the attractor, hence it is weaker than metric 

transitivity. wT-mixing for the invariant sets  represents a condition that the 

dynamics must obey to ensure relaxation from almost all initial phases. For 

Hamiltonian systems, it is not stronger than ergodicity, hence it is weaker than 

mixing. It can be graded without causing mathematical inconsistencies, by selecting 

the observables of interest, hence it can be made as weak as needed.  Equation (25) 

for the invariant sets of the observables of interest is also trivially necessary: if 

0 < µ0 Ea,δ
A( ) <1 , the condition is violated. 

  

Ea,δ
A
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VI. PHYSICAL CONSIDERATIONS  

 Here we summarise the different transient mixing conditions and their 

physical implications. ΩT-mixing requires the correlation function with respect to the 

initial distribution not only to go to zero, but (whether stationary or transient) to 

vanish sufficiently rapidly for its integral to converge, so that  exists and is 

finite. For example if the equilibrium time correlation function goes as 1/t at long 

times, we will have a logarithmic divergence and the system will not relax to a NESS. 

This is quite different to the ergodic theory result for autonomous Hamiltonian 

systems, where mixing implies relaxation on average towards the time independent 

microcanonical equilibrium distribution, irrespectively of the decay rate of the 

correlations. However, this is due to the fact that mixing concerns states with 

measures that do not evolve.  The mixing condition (4-6) cannot be used to prove 

relaxation from a smooth initial distribution to the invariant NESS distribution 

because the invariant nonequilibrium distribution is singular [15]. 

 If we turn briefly to the transient time correlation function for the nonlinear 

response, the mixing condition is simply not relevant. The distributions of states used 

to compute transient time correlation functions are not stationary.  

 Equation (18) can be used to derive the Green-Kubo [20, 29, 30] relations in 

the limit of zero field.  However the conditions required are subtle, and different to 

that used to obtain (18). Kubo’s results [29] were for the linearized adiabatic response 

(i.e. no thermostats) of a canonical ensemble of systems. We derived Eq. (18) for 

isokinetic dynamics where the kinetic energy of the thermostatting particles is fixed 

and the distribution for the system of interest is isokinetic canonical – Eq. (12). Thus 

the equilibrium time correlation function appearing in (18) is for field free isokinetic 

dynamics.  Therefore to obtain the Green-Kubo relationships, we need to derive the 

lim
t→∞

A t
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equivalent of (18) using an initial canonical distribution function to generate the initial 

points, followed by unthermostatted equations of motion to evaluate the correlation 

function.  The resulting equation will look like (18), but as in Kubo’s system the time 

correlation functions will involve canonical distributions but field free, constant 

energy, Newtonian trajectories. We also note that Eq. (18) using the isokinetic 

dynamics and starting from an isokinetic distribution for ΩT-mixing systems are 

consistent with the result of Evans and Morriss [31] where it was proved that to 

leading order in the number of degrees of freedom in the system with a correction of 

order O(1/N), the two equilibrium correlation functions are identical.  Of course if the 

dissipative field only couples to particles in the system of interest and the thermostat 

region is large and remote, the fluctuations in the dissipation function (which is local 

to the system of interest) will hardly be affected by the presence or absence of 

thermostatting terms in the large remote thermostatting region. Because the 

thermostat is unphysical, we can make the system more realistic by only 

thermostatting a remote set of particles. If the external fields are set to zero and the 

system is allowed to relax to equilibrium we know the thermodynamic temperature of 

that underlying equilibrium system. That is the temperature that appears in the 

equations given above. 

 There is yet another interesting observation we can make regarding Kubo’s 

system [29, 30]. If you consider viscous flow in a dilute gas then as is known from 

kinetic theory, the viscosity of a gas increases with temperature. This means that for 

any finite field, no matter how small, the shear stress of an adiabatic shearing gas 

must increase with time. This means that a shearing unthermostatted gas can never be 

ΩT-mixing! In a physical sense for such a system, time correlations either do not 

decay or do not decay rapidly enough for ΩT-mixing. One can see how this memory 
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effect occurs. If among the initial ensemble members, one encounters a fluctuation 

that increases the gas viscosity, that fluctuation will, at fixed strain rate, heat the gas 

slightly. In this slightly heated gas the viscosity will be slightly higher than on 

average increasing the likelihood of further fluctuations that in turn increase the 

viscosity. This is a run-away process that prevents the decay of correlations required 

for the ΩT-mixing condition. 

 If we assume ΩT-mixing we see that although the long time states predicted 

by (10, 18, 19) may not be ergodic in the metrically transitive sense, those asymptotic 

states have nevertheless stationary ensemble averages. If wT-mixing holds for the 

characteristic functions of the invariant sets of the different values of the observables 

of interest, the ensemble averages equal the corresponding single system time 

averages, for almost all initial phases: exceptions constitute a set of zero volume.  
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VI. CONCLUSION 

 We have shown that ΩT-mixing is necessary and sufficient for an initial 

ensemble to relax to a steady state.  wT-mixing, instead, leads to convergence in the 

sense of time averages of observables, from almost all initial conditions, i.e. for 

practically all single experimental measurements of a system. We refer to this 

situation as Physical Ergodicity, because it preserves the notion of typicality that we 

consider more appropriate for physics, even in case of dissipative dynamics: typicality 

in the sense of the Lebesgue measure.  

 These conditions differ substantially from the standard ergodic theory notions, 

because they refer to the initial probability distributions, and not to invariant 

measures. Among the numerous consequences of this fact, we have that the relaxation 

argument expressed by Eq. (4), makes no reference to the rate at which correlations 

decay in contrast to that based on ΩT-mixing. This reflects the fact that the argument 

of Eq. (4) speaks of the decay of correlations within the NESS attractor, and not of the 

decay of correlations between an initial and final state.  

 The condition based on wT-mixing better suits the needs of physical studies of 

nonequilibrium many-body interacting particles than arguments based on mixing 

within the NESS attractor because the NESS attractor of this dissipative dynamics 

occupies zero volume in the ostensible phase space.  Therefore even if “almost all” 

points on the NESS attractor satisfy a given desired property, these points have zero 

measure in the equilibrium distribution and therefore this means very little for systems 

starting in a given equilibrium state. Moreover, the wT-mixing condition can be 

graded to the needs of observations, by restricting it to the variables of physical 

interest. This frees the dynamics of demanding conditions such as metric transitivity. 

 If the system is wT-mixing, there may be a set of initial conditions of vanishing 
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-volume measure that do not yield the same time average, but this is only a set of 

vanishing phase space volume.  

 In other words, even in the case of dissipative dynamics the irreversibility of the 

relaxation process has been connected to “counting” of states, as done in the past for 

the equilibrium case. In that case, “counting” meant comparing the fractions of phase 

space pertaining to different states, e.g. Ref. [32], and finding that by far the largest 

fraction is occupied by the equilibrium state [8, 33-35]. In the case of convergence to 

a NESS of a wT-mixing system, we have shown that by far the largest fraction of the 

phase space is occupied by phases that yield the same observable value for a given 

phase variable.  

 wT-mixing for smooth functions implies a weaker result related to relaxation 

than full wT-mixing does. This is, however, a rather strong result that states that 

relaxation on average does not depend on the initial distribution, if this limited wT-

mixing holds. In particular, although this is just an ensemble result, the initial 

ensemble can be as small a set around any  Γ ∈M  as one wishes. 

 A system that relaxes to a steady state is OmegaT-mixing. If the system 

relaxes from all initial conditions, apart from a set of vanishing volume, to give the 

same time-independent properties , then it might also be wT-mixing. Mathematically 

assessing whether a given model verifies our transient mixing conditions may not be 

easy in general, and so far only some simple maps have been treated explicitly in 

these terms [25]. However, numerical evidence suggests that NEMD models of 

simple fluids can be ΩT-mixing, and could be wT-mixing as well [26].   

µ0
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