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Abstract  

Display technology is expected to have a market industry value greater than 70 billion US 

dollars by 2026. Although organic light emitting devices have found their way into the display 

industry, there is still a need for higher device efficiencies, lower cost materials, and easier, scalable 

production methods. This drives the need to gain a deeper understanding of organic 

semiconductors, which can pave the way to these goals. As such, there is undeniable demand for 

new classes of semiconductor materials, ideally with a high photoluminescence quantum yield, 

balanced charge transport, and high light out-coupling through dipole engineering.    

This thesis describes a body of work which specifically addresses the task of independent 

control over luminescent, transport and processing properties of organic semiconducting materials 

with dendritic structures. A family of Ir(III) complexes is introduced and studied including 

dendrimers; poly(dendrimers); and co-polymers. In the first instance, photo-physical and electrical 

properties of materials are described, before building on this knowledge to develop efficient organic 

light emitting diodes. The dipole orientation was furthermore studied in these materials as an 

intrinsic property of with a view to achieving higher out coupling. Finally, moving away from a 

material-centric approaches and dendritic design, the charge transport and emissive properties of 

organic semiconductors were simultaneously studied in a heterostructure light-emitting field effect 

transistor by cryogenic techniques. 

The main findings from this research were as follows: I) the photophysical properties 

improved by increasing the number of dendron branches in the dendritic structure. This delivers 

extra insulating space between the chromophore cores which leads to less concentration quenching; 

II) combining dendrimers with a polymer backbone was beneficial not only toward improving the 

film quality but also providing heteroleptic structures which are more likely to contain horizontally 

oriented emissive dipoles; III) the results of temperature-dependent measurements demonstrated 

that, as the device was cooled down, the intrinsic hole mobility followed an Arrhenius response 

with the overall EQE increases.   

The implications of these findings are toward simplifying the device structures using more 

efficient devices. This can be achieved by means of highly luminescent materials as well as 

enhancement in device out coupling, meaning that light can be emitted preferably perpendicular to 

the device output plane. The fundamental studies also established some ground rules for 

engineering high radiative efficiencies in light-emitting field effect transistors, which should aid in 
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both material and architecture design for future device iterations. Future work may concentrate on 

chemically engineering the material structures for better properties as well as control over dipole 

orientation.  
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Chapter 1  

Introduction 

1.1 Motivation  

Over the last seventy years, an inorganic family of semiconductors, mainly consisting of 

silicon (Si) and germanium (Ge) has revolutionized all aspects of our lives through electronics. 

Products of a multi-billion US dollar industry have filled our everyday life: from personal mobile 

phones and computers, to satellites, solar energy panels, and the worldwide internet. A key part of 

this industry is transmitting the electronic information to human visual understanding through 

“display technology”. This sector of technology is likely to be the most rapidly expanding market in 

coming years as it has so many use in different electronic devices [1].  

Cathode ray tube (CRT) displays dominated the market for a long time and employ the 

thermionic emission principle, which required use of high voltages and vacuum. CRT displays were 

therefore heavy and bulky because of weight and size of the required components. In spite of a 

number of effective and innovative changes in CRTs, they have been replaced by flat-panel displays 

(FPDs) such as liquid crystal displays (LCDs) and plasma displays. Plasma displays on the other 

hand provide high quality pictures over wide viewing angles. However in comparison with CRT 

and LCD displays they have shorter display lifetimes [2].  

Light emitting diodes (LEDs) are another member of the flat-panel display family, which 

operate by direct conversion of electrical energy to visible light in semiconductors. LEDs normally 

have long operational lifetimes due to utilising solid state semiconductors, which are 

electrochemically more stable.  

Lately, more research has focused on LEDs manufactured from organic semiconductors 

called OLEDs. Organic semiconductors exhibit many novel physical, electrical and optical 

properties. These properties include the potential for large-area solution processing, compact size of 

the functional layers, flexibility, and almost unlimited possibilities with respect to molecular design, 

that are not typically available to conventional inorganic semiconductors (e.g Ge, Si). These novel 

properties of organic semiconductors have generated new opportunities not only for display 

technology but solar cells, sensors, detectors, and field effect transistors (FETs).   
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Figure 1.1 A next generation iWatch, which will have a 1.3-1.5 inch flexible OLED-display [3] 

OLEDs provide colour vibrancy, high colour contrast ratio, excellent power efficiency and a 

range of fabrication conditions making them suitable for flexible substrates, ultrathin displays, and 

smartphones (see Figure 1.1) [4-6]. Beyond these applications, white light emitting OLEDs are 

attracting attention in the lighting market due to their higher efficiency and performance in 

comparison with their inorganic counterparts and fluorescent tubes [7, 8], and new product design 

and lighting opportunities due to the unique processability of organic semiconductors [9].  

OLED displays still require transistor-based backplane circuits to switch their elements. The 

cost of this FET panel circuitry is more expensive than the OLED itself. However, The 

electroluminescence properties of OLEDs can be combined with the switching properties of 

transistors in a single architecture to produce a class of devices called light emitting field effect 

transistors (LEFETs) [10]. The dual functionality of LEFETs provides the potential for new 

applications such as simplified pixels for flat panel displays [11], LEFETs can tolerate higher 

current densities than OLEDs and also in some cases can transfer the emission zone from 

underneath the metal electrodes [12, 13]. Furthermore, LEFETs are convenient tools for studying 

fundamental charge transport and photo-physical processes in organic semiconducting materials and 

this will be explored in the work presented in this thesis.  

Although remarkable steps have so far been taken towards understanding the behaviour of 

organic semiconductors, a number of fundamental issues remain unknown. Also, some additional 

device and manufacturing related challenges are: avoiding complex device structure with more than 
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three layers; solution processibility; host free materials with high photoluminescence suitable for 

single layer devices; low operation voltage; and increasing out-coupling using novel concepts such 

as molecular alignment. Therefore, progress in the OLED industry demands new material 

developments and device architectures with promising photo-physical and electrical properties. 

However, controlling the charge transport and emissive properties of OLED materials remains a key 

research area due to the complicated nature of their disordered structure, which also can be affected 

by processing condition [14-22]. All of these considerations motivated the work that is described in 

this thesis, which focuses on the understanding of phosphorescent OLED materials.  

1.2 Properties of organic semiconductors 

Organic semiconductors are based on carbon chains. Isolated carbon atoms have a ground 

state electronic configuration of 1s
2
2s

2
2p

2
 and they can act as conductive materials through orbital 

hybridisation in the bonding configuration. Organic semiconductors have a conjugated 𝜋-electron 

system formed by overlapping P orbitals of sp
2
-hybridised carbon atoms within the molecules [23]. 

In this configuration each carbon atom has three sp
2
 orbitals, two bonded to the neighbouring 

carbon atoms in the carbon chain and the third to a hydrogen atom or another carbon atom. The 

fourth valence electron resides in a p-orbital and may become delocalised along the carbon chain by 

overlap of p-orbitals to form a chain of π-orbitals. The p-orbitals can overlap either in phase or out 

of phase to form bonding (π) or antibonding (π*) molecular orbitals respectively [24]. The 𝜋-

bonding is weaker than the σ-bonding framework forming the backbone of the molecule due to 

poorer orbital overlap. Therefore, the π-π
*
 transitions in conjugated molecules are typically the 

lowest energy electronic excitation with energy gaps of between 1.5 and 3 eV. This allows 

absorption and emission of light in the visible spectral range (see Figure 1.2) and the energy gap can 

be controlled by the degree of conjugation in the organic semiconductor. Therefore the 

optoelectronic properties can be tuned by molecular engineering [25].  
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 Figure 1.2 a) The bonding system of ethene showing the σ- and π-bonds, b) the corresponding 

energy level diagram of ethene. The lowest energy electronic excitation shown is between the 

bonding π-orbital and the antibonding π*-orbital, adapted from [25]. 

1.2.1 Energy levels and nomenclature  

When an electron is removed from a molecule, it creates an ionised molecule with a new set 

of energy levels. The energy difference between the original molecule and its ionised state is known 

as the ionisation potential (IP). Conversely, when an electron is added, a new molecule with an 

additional electron results. The energy difference between the original molecule and the one with an 

extra electron is called the electron affinity (EA). In the organic semiconductor research field the IP 

and EA are often used interchangeably with highest occupied molecular orbitals (HOMO) and 

lowest unoccupied molecular orbitals (LUMO), respectively. This is not a completely accurate 

nomenclature but justified with certain assumptions. The electrons reside in the molecular orbitals 

in order of increasing energy. HOMO refers to the orbital containing the highest energy electrons 

and LUMO is the lowest energy unoccupied orbital. The HOMO and the LUMO are analogous to the 

valance band and the conduction bands in inorganic semiconductors, respectively. The charge transport 

properties of a neutral molecule depend on the electron density distribution in these orbitals. For 

efficient p-type charge transport, holes are injected into the HOMO and it is desirable for the HOMO to 

be delocalised. The case is similar for n-type charge transport where electrons are injected into the 

LUMO. Nevertheless, lack of orbital overlap with neighbouring molecules generates a potential barrier 
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between molecules, which leads to charge carriers being trapped on a molecule and poorer charge 

transport overall.    

1.3 Dendrimers  

Traditionally, organic semiconductors have been divided to the two main classes of small 

molecules and polymers. Small molecules are attractive due to their simple, well-defined molecular 

structure and their mono-dispersity. However, not all of them are soluble and are typically deposited 

through high vacuum and thermal evaporation techniques [26-30]. On the other hand, polymers are 

generally processed from solution via spin-coating and inkjet printing. This is a promising feature 

for fast, large area, and low temperature mass production in display technology. Although solution 

processing of polymers is less wasteful than evaporation with patterning, the reproducibility of 

polymer synthesis in terms of the polydispersity (a measure of the distribution of molecular mass in 

a given polymer sample), molecular weight, and backbone defects is difficult to control [31-34]. 

The work presented in this thesis is mainly focused on an emerging class of organic 

semiconductor materials known as dendrimers. These are branched macromolecules consisting of 

three components as shown in Figure 1.3: a core, branching units known as dendrons, and surface 

groups [31-36]. The core is usually the chromophore unit responsible for optical properties such as 

the colour of the emitted light, and it also contributes to the three dimensional structure of 

dendrimer.  The dendrons control the intermolecular interactions between the cores, they can be 

either electroactive [37, 38] or electrically insulating, and play a role in determining the molecular 

structure [39].  Branching dendrons play a similar role as the host material in a blended system 

which will be discussed later in this chapter. The surface groups control the interaction with the 

environment surrounding the dendrimer and thereby the solubility of the dendrimer.  

 

Figure 1.3 A schematic diagram of the first generation of a dendritic structure consisting of a core, 

branching units and surface groups. 
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A particular advantage of dendrimer molecules is that the dendron and the core can be made 

electrically independent, meaning that the type of dendron attached to the core will have no effect 

on the electronic properties of the core. Consequently, the electronic properties of dendrimers can 

be defined in three different ways by dendrons [40]; the type and the number of the dendrons 

attached; and the number of branching levels from the core known as the dendrimer generation. 

Therefore, careful dendrimer design of the dendrons can yield efficient charge transport with no 

influence on the other properties such as emission colour and solubility [21, 41]. Dendrimers can 

therefore be designed to be ink-jet or screen printed by choosing appropriate surface groups [42].  

Dendrimers are seen as promising candidates for OLED technology as they incorporate the 

advantages of small molecules and conjugated polymers. A new promising approach for OLED 

materials are poly(dendrimer)s. Polymers with pendant side-chain chromophore cores encapsulated 

by dendrons, which combine the advantages of dendrimers in reducing the quenching of the emitter 

with the viscosities of polymers. 

1.4 Luminescence and electroluminescence  

When a photon is absorbed by any organic materials, an electron is promoted from the 

ground state (S0) to a higher energy level represented by S1 and S2 in Figure 1.4. The excited state 

will then decay back to ground state either directly by emitting a photon or through vibrational 

relaxation after internal conversion. Internal conversion is the non-radiative transfer of energy 

between excited states occurring on the order of femtoseconds (fs) [43-45]. 

An exciton is formed from the excitation of an electron to a higher energy level as organic 

semiconductors typically have low dielectric constants at room temperature. The exciton is a 

Coulombically bound state of the electron and the hole with binding energies of 0.5-1.0 eV in the 

ground state [58-61]. The bound electron and hole can have four possible permutations of their spin 

states; one is anti-symmetric with a total spin of 0 called the singlet state, and the other three 

orientations have a total spin of 1 and are called triplet states (see Figure 1.4). Singlet-singlet and 

triplet-triplet transitions occur by spin conservation. Since the ground state typically has filled 

energy levels, the molecules typically have singlet ground states, and therefore excitation to the 

triplet state is not allowed according to spin selection rules. Fluorescence occurs when singlet 

excitons relax back to a singlet ground state and these transitions occur very quickly with typical 

lifetimes of less than 1 ns [46]. 
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Figure 1.4 A Jablonski diagram illustrating the possible relaxation pathways in the singlet and 

triplet manifolds.  

Triplet states may be occupied as a result of non-radiative intersystem crossing from excited 

singlet states. Since the radiative decay from the triplet state to the singlet ground state is spin 

forbidden, the triplet states are long lived. However, the probability of intersystem crossing can be 

boosted by mixing of the triplet state with the singlet state prior to the emission by the addition of 

the heavy atom effect [47-49]. Heavy metals such as iridium and platinum induce strong-spin orbit 

coupling, which allows the triplet state to decay radiatively to the singlet ground state. Such 

emission from the triplet states is known as phosphorescence which has a lifetime on the order of 

µs-ms [50-53].  

In electroluminescence, electrons and holes are directly injected into a luminescent organic 

semiconductor, which create excitons as per the description above. In this case, for every three 

triplet excitons, only one singlet exciton is generated, meaning that the internal quantum efficiency 

of fluorescent materials will be limited to 25% [54-57]. However, phosphorescent materials benefit 
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from being able to harvest both singlet and triplet excitons, which allows internal quantum 

efficiencies of 100% [58, 59]. 

For any luminescent material, the total decay rate 𝑘is equal to:  

 𝑘 = 𝑘𝑅 + 𝑘𝑁𝑅   (1.1) 

Where 𝑘𝑅 is the radiative decay rate and 𝑘𝑁𝑅 is the non-radiative decay rate. The total decay rate 𝑘 

can be measured from time-resolved measurements of the photoluminescence by fitting the 

exponential decay with  

 𝐼(𝑡) = 𝐼0𝑒−𝑘𝑡   (1.2) 

Where 𝐼(𝑡) is the time resolved photoluminescence intensity,  𝐼0 is the initial photoluminescence 

intensity. The radiative rates are much faster in fluorescent materials due to their faster 

photoluminescence (PL) decay. To be able to distinguish the distribution of radiative and non-

radiative decay rates, it is necessary to measure the photoluminescence quantum yield (PLQY) of a 

material [46, 60]. This is obtained by measuring the ratio of the number of photons emitted to the 

number of photons absorbed, which is related to the non-radiative 𝑘𝑁𝑅 and radiative 𝑘𝑅  rates by 

[61] 

 
𝑃𝐿𝑄𝑌 =

𝑝ℎ𝑜𝑡𝑜𝑛𝑠 𝑒𝑚𝑖𝑡𝑡𝑒𝑑

𝑝ℎ𝑜𝑡𝑜𝑛𝑠 𝑎𝑏𝑠𝑜𝑟𝑏𝑒𝑑
=

𝑘𝑅

𝑘𝑅 + 𝑘𝑁𝑅
 

  (1.3) 

 

1.5 Organic light emitting diodes 

An OLED is an electronic device that emits light in response to an applied potential [62]. 

OLED devices consist of a substrate and either an emissive layer (EML), or more complex (EML, 

electron-transporting, and hole-transporting) layered stacks of organic materials sandwiched 

between two electrodes (see Figure 1.5. a).  

1.5.1 Operating mechanism, parameters, and performance metrics 

Electrons and holes are injected into the organic layer from cathode and anode, respectively, 

when a potential is applied [62]. Under the influence of the applied electric field [26, 63], opposite 

charges can move toward each other leading to possible recombination (see Figure 1. 5. b) which is 

describe by: 

 𝐴+ + 𝐴− = 𝐴0 + 𝐴∗   (1.4) 



Chapter1.Introduction 

 

9 

 

Where 𝐴+ and 𝐴− indicate holes (cations) and electrons (anions), respectively, 𝐴0 represents the 

ground state, and 𝐴∗ is a molecule in an excited state. While 𝐴+ and 𝐴− can be from different 

materials 𝐴∗ is the product of a Coulombically bound electron and a hole, which can radiatively 

decay back to the ground state by emitting light or through non-radiative intersystem crossing to 

another excited state [62]. Therefore, the process of light emission in OLEDs can be summarised in 

four key steps: charge injection, charge transport, recombination, and radiative decay.  

 

Figure 1.5 OLED device structure, a) an OLED comprising a single active layer, b) a schematic 

mechanism of OLED operation illustrating the basic processes of electroluminescence. Holes are 

injected from the anode into the HOMO of the hole injection layer and pass to the hole transport 

layer. Electrons are injected from the cathode into the LUMO of the electron injection layer EIL 

and pass to the electron transport layer. Excitons are formed in the emissive layer and emission will 

occur, c) a multilayer OLED. 

Hole-transporting materials (HTMs) have relatively low ionization potentials (IPs) [64], which is 

the energy required to remove an electron from the HOMO. IPs can be obtained from 

electrochemical oxidation potentials in solution or measured by photoelectron spectroscopy. 

Moreover, it is beneficial for HTMs to have sufficiently high hole drift mobility [62]. Likewise 

electron-transporting materials (ETMs) should have high electron drift mobility and a suitable EA. 
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The EA is the negative of the energy released when an atom or a molecule (X) acquires an electron 

to form the negative ion (X
-
) [62]. EAs can be obtained from the correlation of laser photo-electron 

spectroscopy results with the LUMO energy levels.  

The performance of OLED devices is typically described by four metrics: drive voltage, efficiency, 

lifetime, and colour [62], which are defined as follows: 

Drive voltage – also referred to as the turn on voltage, is the voltage that must be applied in order to 

have an emission intensity of 1 cd/m
2
. This voltage is affected by a variety of factors: the built in 

potential between electrodes; energetic barriers to charge injection; and the electric field which is 

required for migration of charge carriers through the device [62]. Therefore, in a well-optimised 

device, the turn on voltage will approach the energy of the emitted photons [65]. Moreover, the turn 

on voltage can be reduced by careful selection of the EML, electron transport layer (ETL), and hole 

transport layer (HTL) materials so that the energy barriers for charge injection from the transport 

layer into the EML are minimised [62].  

Efficiency – is defined as the ratio of output light energy to the energy input or electrical energy 

expended [66]. This can be represented by a variety of metrics: external quantum efficiency (EQE), 

current efficiency (cd/A), and power efficiency (lm/W), which will be described in the next chapter.  

Lifetime – sometimes referred to as potential stability, is defined as the number of hours required 

for the photo-intensity of the device to drop to half of its initial value at a given current density. 

Device failure occurs for several reasons: the degradation of the interface between the metallic 

electrodes and the organic layers; chemical reactions from current flow; internal heating of device at 

high current densities; and changes in the film morphology of the organic layers [62]. Testing 

current densities are typically around 80 mA/cm
2
 or the current required to generate 1000 cd/m

2
 

photo-intensity. Lifetime and current density are related with an inverse exponential, therefore 

doubling current density leads to a drop factor of 3-4 in lifetime [62].   

Colour – is defined according to the 1931 International Commission for Illumination (Commission 

Internationale de I’Eclairage) CIEx,y values [67]. The entire emission spectrum of a device is 

reduced to two numbers which describe the colour as perceived by the human eye. According to the 

National Television Standard Committee (NTSC), the CIE co-ordinates are (0.14, 0.08) for blue, 

(0.21, 0.71) for green, (0.67, 0.33) for red, and approximately (0.33, 0.33) for white [62].   

There are other additional performance metrics that can affect one or more of the parameters 

above such as increasing drive voltage, power consumption, and change in emission colour with age 

of the device. Different techniques to optimize the performance metrics of devices include [62]: 



Chapter1.Introduction 

 

11 

 

 Introducing additional functional layers to the device (see Figure 1.5. c) such as: hole 

injection layers (HILs); electron injection layers (EILs); hole blocking layers (HBLs); and 

electron blocking layers (EBLs). HIL and EIL improve the injection of holes and electrons, 

respectively, into the transporting layers. The blocking layers can also provide more 

efficient recombination by confining the electrons and holes in the EML.  

 Introducing an ETL comprising multiple layers with different LUMO levels to decrease the 

drive voltage, and increase the lifetime and efficiency [68].    

 Increasing the work function of indium tin oxide (ITO), the most commonly used 

transparent anode, in order to reduce the injection barrier and consequently the drive 

voltage. Various surface treatments produce this effect such as oxygen (O2) plasma 

treatment [69], UV/ozone treatment [70], CF4/O2 plasma treatment [71], and treatment with 

polymerization of CHF3 [72]. 

 Device stability and efficiency can be improved by the introduction of various hole 

injection materials (HIMs) between anode and HTL [73-75]. This would ease the injection 

of holes into the HTL. The most common HIM is poly(3,4-ethylenedioxythiphene) 

(PEDOT) [76], which is used in the work presented in this thesis.   

 Charge injection from reactive cathodes such as aluminium to the ETL can be improved by 

utilising reactive low work function electron injection materials (EIMs) such as lithium 

fluoride and lithium oxide [72, 77].  

 Introducing host materials into the EML to provide higher recombination rates and reduce 

the quenching rate by the dopant (guest) molecules. Host materials need to meet several 

requirements such as lower barriers for charge injection, good transport for both electrons 

and holes, a wider gap between their HOMO and LUMO than the dopant, and slower non-

radiative decay rates than the time required for energy transfer to the dopant. In order to 

meet all of these requirements multiple materials may be used as a mixed host.     

The performance metrics of OLED devices such as drive voltage, lifetime, efficiency, and 

colour are controlled by complex interactions between different layers in a device. Whilst the 

development of new materials for each of these layers is therefore crucial, the interplay between the 

properties of these new materials that leads to efficient devices should be borne in mind.  

1.5.2 Loss mechanism and dipole orientation in OLEDs  

The external quantum efficiency of an OLED is given by  

 ϕEQE = ϕescape × ϕcapture × ϕspin × ϕPLQY ∗ 100%   (1.5) 
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where ϕspin is related to the spin statistics for the formation of singlet or triplet excitons, ϕPLQY is the 

photoluminescence quantum yield as defined in equation 1.3, ϕcapture is the fraction of electrons and 

holes that recombine to form excitons, and ϕescape is the amount of the generated photons that escape 

from the device. The EQE can be improved by influencing any of these parameters. Utilising 

phosphorescent heavy metal complexes like iridium, which provide harvesting from both singlet 

and triplet states leads to ϕPLQY and ϕspin values near unity [48, 49, 78]. Moreover introducing 

charge injection and blocking layers can confine the recombination zone to a narrow layer and this 

increases ϕcapture by promoting the recombination of all charge carriers [79]. 

 

Figure 1.6. a) Schematic illustration of loss mechanisms in an OLED. With no out-coupling 

enhancement only a small amount of emission escapes to be observed, b) the distribution of 

different optical losses for a comparable fluorescent or phosphorescent emitters with similar stack 

layer thickness, refractive indices and emission spectra. 

However, only a relatively small proportion of the light generated escapes from the OLED 

stack. The light generated inside such a thin film structure can couple to different optical channels 

(see Figure 1.6. a). The light escape cone has a 30º opening with respect to the surface normal, as 

viewed from the emitter position, and this typically contains only 20% of the total number of 
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photons [80, 81]. At higher emission angles, the light cannot even reach the glass substrate as it will 

be reflected back by the other organic layers and the transparent ITO electrode before finally being 

lost by re-absorption or emission at the edge of the device [81]. The light generated can also couple 

to surface plasmon polaritons (SPPs), infrared- or visible-frequency electromagnetic waves 

traveling along a metal-dielectric or metal-air interface. The term "surface plasmon polariton" 

explains that the wave involves both charge motion in the metal ("surface plasmon") and 

electromagnetic waves in the air or dielectric ("polariton" ) [82, 83]. In typical planar OLED stacks 

around 60% of the light is trapped in plasmon and waveguided modes within the device [84-86]. 

Figure 1.6 b) shows the contribution of different optical losses for the fluorescent emitter Alq3 and 

these losses would be similar for any fluorescent or phosphorescent emitter with comparable stack 

layer thicknesses, refractive indices and emission spectra [81].  

Different approaches to improve out-coupling have been reported including high refractive 

index substrates [8, 88], grating-assisted out-coupling [89-91] and many others [81, 92]. An 

alternative strategy is to intrinsically increase the out-coupling by controlling the direction of light 

emission. This utilises the fact that light is emitted perpendicular to the dipole transition moment 

vector of the organometallic molecules at the centre of these devices [93, 94]. Orientation of the 

transition dipoles parallel to the substrate eliminates the need for gratings, micro-lens arrays, or any 

other physical methods used to enhance out-coupling [4, 8, 88, 93, 95, 96]. Moreover, this strategy 

avoids the excitation of surface plasmons even when the emitter is close to the metallic electrode 

[81]. 

To have horizontally oriented dipoles, the emitter molecules must have anisotropic 

orientations. Some materials have intrinsically rod-like chromophores with large shape anisotropy 

[97]. This effect has been well known for polymeric OLEDs [98, 99], fluorescent emitters [97, 100], 

and even phosphorescent emitters doped in isotropic materials [101]. The orientation depends on 

the anisotropic property of the host or dopant in an emissive layer and also the packing within such 

host-guest systems [102-104]. 

Amorphous organic semiconductor films cannot be analysed by X-ray diffraction 

measurements as they do not have a long-range periodic structure. However, there are some 

methods which quantitatively estimate the degree of molecular orientation in amorphous organic 

films including: variable angle spectroscopic ellipsometry [93]; absorption spectra from 

randomization of molecular orientation induced by heating [105]; and angular dependent PL 

spectrum measurements [81, 106, 107]. The last method was used in the work presented in this 

thesis.  
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Figure 1. 7 a) The conventional definition for dipole orientation, b) A cross-sectional schematic 

view of the angular dependent PL spectrum set up , c) A schematic diagram of the  experimental 

setup with angle notations and emission polarizer orientations for recording s- and p- polarized 

emission, adapted from [87]. 

Figures 1.7 a) and b) illustrate the co-ordinate system and an outline of the angle dependent 

PL measurement apparatus. Isotropic materials with random transition dipole orientations are 

treated as a superposition of px-, py-, and pz- dipoles with each contributing a third of the emitted 

intensity. For a perfectly isotropic material the ratio of perpendicular (pz) and parallel (px- and py-) 

polarised waves is therefore 33:67, while the horizontally oriented dipoles consist of equal 

proportions of px- and py-dipoles [107]. Given that the dipoles radiate strongest perpendicular to 

their oscillation direction, the pz-dipoles emit mainly at large angles between 0
◦
 to 180

◦
 (see Figure 

1.7 c). Emission from pz-dipoles leads to loss in plasmons and waveguided modes, therefore out 

coupling efficiency can be increased by converting vertical dipoles to horizontal dipoles. To obtain 

information about the ratio of horizontal and vertical dipoles the p-polarized emission in the x-z 

plane is measured. The p-polarized plane is parallel to the detector (or incident) plane, which is 

perpendicular to the substrate. The py-dipoles have no component in the p-polarized emission due to 
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the fact that they are vertical in the detector plane. Taking into account that px-dipoles emit between 

90
◦
 to 270

◦
 in the detector plane, measuring the p-polarized emission consequently yields 

information about the existence of vertical emission. The experimental technique of angular 

dependent PL spectrum measurements will be detailed in the next chapter.  

1.6 Organic light emitting field effect transistors 

An organic field-effect transistor is a three terminal device with switching properties 

comprising gate, source and drain electrodes, with dielectric and semiconductor layers sandwiched 

in between. When the switching properties of an OFET were combined with the electroluminescent 

properties of an OLED in a single device architecture, a new family of devices was established 

called light emitting field effect transistors [10]. The structure of a LEFET is the same as an OFET 

except that the semiconductor layer is electroluminescent. This can be achieved by using either a 

single layer, or multi-layer LEFET architectures with more than one semiconductor layer (see 

Figure 1.8).  

1.6.1 Operating mechanism, parameters, and performance metrices 

The two important architectural parameters in a LEFET are the channel length (L, the 

distance between source and drain electrodes) and the channel width (W, the length of the source or 

drain electrodes). LEFETs can be operated in three different modes depending on the type of charge 

transport occurring in the device: i) unipolar p-type in which transport is dominated by holes; ii) 

unipolar n-type in which transport is dominated by electrons; and iii) ambipolar mode in which both 

electrons and holes can accumulate and be transported within the semiconducting channel of the 

device [108]. 

The basic operating mechanism of LEFETs is based on that of OFETs, where charges are 

accumulated at the semiconductor/dielectric interface in order to switch the device ON. This is 

referred to as accumulation mode because most organic semiconductors are intrinsically undoped in 

contrast to inorganic semiconductors that can be extrinsically doped [23].  

In the case of the unipolar p-type mode (see Figure 1.7. a), the application of negative gate 

voltage (VG) polarises the dielectric, which builds a capacitance and leads to the accumulation of 

positive charge carriers (holes) at the semiconductor/dielectric interface. The application of a 

negative voltage between the source and drain electrodes (VDS) injects electrons and more holes into 

the LUMO and HOMO of the semiconductor layer, respectively. The injected holes accumulate at 

the interface between the semiconductor and dielectric and the increase in positive charge carriers 
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increases the charge carrier density at the interface to produce a conducting channel inside the 

semiconductor. 

 

 

Figure 1.8 Schematic diagrams including the p-type operating mechanisms of a) a single layer 

LEFET and b) a multi-layer LEFET.  

The current between the source and drain electrodes (IDS) increases when the transistor is 

switched ON. Holes and electrons that are injected by the source and drain electrodes can 

recombine during device operation and light is consequently emitted from the channel. Although in 

a unipolar LEFET just one type of charge carrier accumulates within the channel, both charge 

carriers need to be injected in order for light emission to occur. These criteria can be achieved using 

either a single layer, where charge transport and recombination occur in the same layer, or multi-

layer LEFET architectures, in which charge transport and recombination occur in separate layers 

(see Figure 1.8 b). Operation in an n-type LEFET is the same as in a p-type LEFET except that the 

applied voltages are positive and electrons are the dominant charge carriers. 

In case of an ambipolar LEFET, both charge carriers can be transported in the channel 

depending on the polarity of the applied voltage [109]. The source and drain electrodes can be 

symmetric or asymmetric (comprised of high and low work function electrodes) depending on the 



Chapter1.Introduction 

 

17 

 

semiconductor layer. There are also different operating regimes of a single layer ambipolar LEFET, 

which are detailed as follows: 

 Electron-dominated regime – electrons are the dominant charge transport carrier within the 

transistor channel with a large positive applied gate voltage. Holes are injected into the 

semiconductor layer and remain in the vicinity of the hole-injecting contact. As more 

electrons accumulate at the interface, they recombine with holes near the hole-injecting 

contact to emit light [110]. The source-drain current and consequently the brightness of the 

device are consequently high. 

 Ambipolar regime – as the gate voltage approaches zero and toward negative direction, the 

accumulation of electrons decreases and begins to be replaced partly by the holes. Holes and 

electrons are therefore both accumulated throughout the channel and their currents are more 

balanced. Light emission will occur in the middle of the transistor channel and with lower 

intensity than in the single-charge dominated regimes [23, 111].  

 Hole-dominated regime – when the gate voltage becomes large and negative, holes 

accumulate the channel. At the same time electrons are injected into device and remain in 

the vicinity of the electron-injecting contact. Holes recombine with electrons close to the 

electron-injecting contact and produce a high brightness as was the case in the electron-

dominated regime [110]. 

 

Figure 1.9 a) Transfer characteristics of a n-type LEFET showing the source-drain current (IDS) as a 

function of the applied gate voltage (VG) with a fixed source-drain voltage (VDS). b) The output 

characteristics of the LEFET showing the IDS as a function of VDS for different values of VG. 
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The transfer characteristics of a LEFET device are represented by the source-drain current 

(IDS) as a function of the applied gate voltage (VG) while the source-drain voltage (VDS) is fixed (see 

Figure 1.9. a). The output characteristics of the transistor are given by the IDS as a function of the 

VDS at a constant VG. The output characteristics comprise linear and saturation regimes (see Figure 

1.9. b). The source-drain current of transfer characteristics in the saturation regime is   

 
𝐼𝐷𝑆 =

𝑊

𝐿

𝜇𝐶

2
(𝑉𝐺 − 𝑉𝑡)2 

  (1.6) 

Where µ is the field-effect mobility, W and L are the width and length of the channel 

respectively, C is the capacitance of the dielectric layer, VG is the gate voltage, Vt is the threshold 

voltage, and VDS is the source-drain voltage. In the saturation regime the current remains constant 

across the semiconducting channel and this is usually defined by 𝑉𝐷𝑆 ≥ 𝑉𝐺 − 𝑉𝑡 for an n-type 

device, while the linear regime is typically defined within the range of  𝑉𝐷𝑆 < 𝑉𝐺 − 𝑉𝑡.    

 
𝐼𝐷𝑆 =

𝑊

𝐿
𝜇𝑐[(𝑉𝐺 − 𝑉𝑡)𝑉𝐷𝑆 −

𝑉𝐷𝑆
2

2
] 

  (1.7) 

These equations have the same form for p-type devices with sign differences taking into 

account the opposite polarity of the applied voltages [108]. The field-effect mobility (µ), and 

threshold voltage (Vt, the minimum gate voltage that must be applied to switch the device ON), can 

be calculated by measuring the output and transfer characteristics of a LEFET [108]. Furthermore, 

LEFETs have some common performance metrics with OLEDs such as brightness and EQE, the 

determination of which will be detailed in next chapter.  

1.6.2 Temperature-dependent measurements  

While charge transport in inorganic semiconductors is well understood, the same physics in 

organic semiconductors is a matter of some controversy. One of the main methods used to study 

charge transport in any semiconductor is measuring the electrical characteristics of the devices as a 

function of temperature. The results of these measurements for inorganic semiconductors where 

charge transport occurs via electronic band structures shows that the mobility increases at lower 

temperatures due to a decrease in lattice vibrations and electron-phonon interactions [112]. 

However, in case of their organic counterparts, one observes a decrease in mobility in most of the 

cases. There is a general agreement that charge transport in organic semiconductors occurs via 

hopping between localized states and there are several flavours of hopping transport that are subtly 

different and depend upon phenomena such as local disorder and trap density. There is no universal 

description of charge transport in OFETs, which appears to be carrier density and material specific 

[112].  
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Figure 1.10 A schematic of the Multiple Trapping and Release Model adopted from [113]. 

To date, many models and studies have been reported for charge transport in organic 

semiconductors via temperature dependent measurements. The one which has been applied widely 

is the Multiple Trapping and Release Model [113]. According to this model there is a narrow 

delocalized band associated with a high concentration of localized levels that act as traps (see 

Figure 1.10) and traps are associated with lattice defects and impurities. Charge carriers therefore 

have a high probability of being trapped in localized states and subsequently released through 

thermally-activated processes. This form of transport depends on the energy of the trap states 

relative to the delocalised band, the temperature and the applied gate voltage [114]. The mobility of 

the semiconductor can be calculated by 

 
𝜇𝐷 ∝ 𝜇0𝑒𝑥𝑝 [

−𝐸𝑡

𝐾𝐵𝑇
] 

  (1.8) 

where µD is the drift mobility, µ0 is the trap free mobility representing the mobility in the 

delocalized band, Et is the activation energy which is representing the energy difference between the 

transport band edge and the trap level, KB is Boltzmann’s constant and T is temperature. 

Several other models such as the Polaron Model [115], the Gaussian Density of States 

Model [116], the Disorder-induced Localized State Model [117], and the Meyer-Neldel Rule [118] 

have been reported. All of these models rely on hopping transport but with slight differences in the 

details used to describe the behaviour of specific organic semiconductors, carrier densities and 

disorder-related phenomena. In some cases it has been shown that even for the same material 
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different morphologies lead to different charge transport behaviour. As an example, the charge 

transport mechanism in pentacene has been explored using the transistor structure. Vapour 

deposited pentacene films displayed mobilities that were nearly independent of temperature [119] 

whereas solution-processed pentacene films show a strong dependence of the mobility on 

temperature [120]. These results highlight the challenges in studying the transport physics of 

organic semiconductors. All of the reports of temperature dependent measurements on organic 

semiconductors were performed using OFET structures. However, there are as yet no reports of 

combined studies into charge transport and recombination simultaneously in LEFET structures and 

this motivated the work presented in Chapter 6 of this thesis. 

1.7 Aims of this project 

Although organic light emitting devices have found their way into the display industry there 

is still a need for higher efficiency and easier mass production methods and great steps have been 

taken towards fully understanding organic semiconductors, which can pave the way to these goals. 

However, there are still significant opportunities for better understanding the structure-property 

relationships in organic semiconductors as they relate to OLEDs and LEFETs. This knowledge can 

lead to new chemical structure design of materials that provide better photo-physical and electrical 

properties. The invention of new classes of organic emissive semiconductors termed dendrimers 

provides better independent control over luminescent and transport properties. The three 

dimensional tree-like shapes of these materials can provide engineering of their branches 

responsible for molecular interaction, solubility, and viscosity which are useful tuning parameters 

for mass production techniques. Furthermore, desirable packing of molecules within the emissive 

layer may provide intentional orientation of dipoles which directly enhances the out-coupling in 

devices. The aims of this project are therefore three fold: 

1. To study the photo-physics and dipole orientation in light emitting dendrimers and poly-

dendrimers.  

2. To develop an understanding of radiative recombination processes with molecular structure 

in dendrimers and poly(dendrimers) OLEDs.   

3. To investigate the charge transport, charge injection and recombination physics in LEFET 

devices.  

Chapter 2 will outline the systematic characterisation techniques of the materials to be tested, 

followed by fabrication and characterisation techniques for the OLED and LEFET devices used 

throughout the work presented in this thesis. Chapter 3 details an introduction and overview of 
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devices incorporating solution-processable dendrimers. This was the first time that an OLED device 

with neat emissive layer was demonstrated with a similar EQE to blended counterparts. The photo-

physical and device characterisations are further investigated in chemically modified versions of the 

parent material these results are described in Chapters 4 and 5. In Chapter 4 the fundamental 

benefits of the dendrimer system are described and the effects of dendrimer generation and type of 

dendron are presented. Furthermore, the effect of polymerisation of the dendrimers to form 

poly(dendrimer)s, promising materials for inkjet printing, will be outlined. The introduction of both 

electron- and hole-transporting moieties to form ambipolar co-polymers will also be discussed 

along with their photo-physical and electrical properties in Chapter 5. The work presented in this 

thesis culminates in Chapter 6, which describes temperature dependent measurement on LEFETs. 

Finally, Chapter 7 summarises the findings of the work presented in this thesis, and the potential 

future for light emitting devices.   
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Chapter 2  

Experimental Methods and Equipment 

2.1 Introduction 

This chapter focuses on describing the characterisation and fabrication techniques for 

organic light emitting materials and devices utilised in the research. The first Section of this chapter 

details the systematic photo-physical characterisation of organic materials utilizing techniques 

including UV-Vis absorption, photo luminescence quantum yield, photo luminescence decay life 

time, ellipsometry and dipole orientation measurements. The results of such studies provide better 

understanding to optimize device fabrication activities which are described in the next Section of 

this chapter. After a brief overview of the primary procedures, device fabrication details will be 

given for two different configurations of organic light emitting diodes  and light emitting field 

effect transistors. Finally, the standard optical and electrical methodologies for characterising light 

emitting devices will be described, noting that experiment-specific details will also be provided in 

subsequent chapters where relevant. 

2.2  Materials  

Different classes of material were used in the work described in this thesis including 

dendrimers, polymers and small molecules. All dendrimers were synthesised at the centre for 

organic photonics and electronics (COPE). These dendrimers were used in OLED devices. The 

diketopyrrolopyrrole–dithienothiophene (DPP–DTT) co-polymer was synthesised as described in 

reference [1] and used in the LEFET architecture. The commercial small molecules  used in the 

work described in this thesis were restricted to a choice of 4,4’-N,N’-dicarbazolyl-biphenyl (CBP), 

2,2',2"-(1,3,5-Benzinetriyl)-tris(1-phenyl-1-H-benzimidazole) (TPBi) purchased from Lumtec  and 

co-polymer  phenyl-substituted poly(p-phenylenevinylene) knows as Super Yellow (SY) from 

Merck. Chemical structures of these materials will be given in relevant chapters.  
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2.3 Material characteristics 

2.3.1 Energy level estimation  

Ionisation potentials were measured by photoelectron spectroscopy in air (PESA) in order to 

estimate the energy levels (HOMOs) for synthesised materials. Measurements were performed 

using Riken Keiki AC-2 spectrometer using 5nW power intensity.  

In order to estimate the LUMO energy, optical gaps were appraised from the intersection of 

the normalised absorption and solid-state photoluminescent spectra plotted in units of energy (eV). 

The optical gaps were then added to the HOMO energies to determine the LUMOs [2]. HOMO and 

LUMO then considered in order choosing the best match for host materials and contacts.  

2.3.2 Absorption  

The results of absorption measurements presented in this thesis were all obtained using a 

Cary 5000 UV-Vis spectrophotometer either as in optically dilute solutions in spectroscopic grade 

solvent or a thin film on quartz. This equipment was capable of measuring intensity of absorption in 

the wavelength range of 800 nm to 200 nm. The instrument contains two channels for reference and 

sample. The reference was designed in order to account for any absorption by the solvent or quartz 

(in the case of spin-coated films) or cuvette (for solution). Absorbance was calculated through 

comparison of transmission (T) of the sample and reference while both illuminated with the same 

intensity [2]. Absorbance (A) is then given by the relation 

 𝐴 = − log(𝑇)   (2.1) 

 

2.3.3 Photoluminescence  

The photoluminescence spectra of the compounds were measured by a Jobin-Yvon 

Fluoromax 4 fluorimeter where a range of excitation wavelengths was provided by a xenon lamp 

coupled through a monochromator. Samples were excited at the peak of the absorbance at an angle 

of 45 degree and emission was collected for a specific range of wavelengths by a photomultiplier 

tube (PMT). PL spectra were then determined after correction for the quantum efficiency of the 

PMT by the instrumental software.  

Solution samples were made using spectroscopic grade solvent Toluene and were degassed 

by three freeze-pump-thaw cycles before measurements [3]. Solid-state neat films were made by 
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spin coating from spectroscopic grade chlorobenzene solution onto glass substrates at a 

concentration of 20 mg/ml giving thickness about 50-80 nm. Blend films were spin coated from a 

20 mg/ml solution of 20 wt% dopant with 4,4'- bis(N-carbazole)biphenyl (CBP). 

2.3.4 Photoluminescence quantum yield  

An excited state is formed in any semiconductor material when light of the appropriate 

energy is absorbed. In an organic semiconductor photoexcitation is excitonic in nature as described 

in [2]. This excited state decays to the ground state either radiatively or non-radiatively. The 

photoluminescence quantum yield is the ratio of the number of photons emitted to the number of 

photons absorbed. This vital parameter quantifies how luminescent a material is. PLQY 

measurements described in this thesis were performed either for optically dilute solutions or solid-

state film. 

 

Figure 2. 1 Schematic diagram of the experimental set up of PLQY measurement of organic 

thin films. 

The solution PLQY measurements were performed by comparing emission spectra of the 

degassed solutions to a standard solution with a known quantum yield. Quinine sulphate in 0.5 M 

H2SO4 was used as the standard solution with a PLQY equal to 55% [2] when excited at 360 nm. 

Both reference and sample solutions were prepared with an optical density of 0.1 and as explained 

in previous Section, the PLQY was calculated as: 
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𝑄𝑆 = 𝑄𝑅 ∗ (

𝐴𝑅

𝐴𝑆
) ∗ (

𝑛𝑆
2

𝑛𝑅
2 ) ∗ (

𝐷𝑆

𝐷𝑅
) 

(2.2) 

When 𝑄𝑆  and 𝑄𝑅 are PLQY values for sample and reference respectively, 𝐴𝑅  and 𝐴𝑆 are 

absorbance values at 360 nm, 𝑛𝑆 and 𝑛𝑅 are refractive indexes of sample and reference, and 𝐷𝑆 and 

𝐷𝑅 are sums of corrected PL values. Corrected PL values for sample and reference are calculated 

from 

 
𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑 𝑃𝐿 = 𝑃𝐿 ∗ 10

𝑎𝑏𝑠𝑜𝑟𝑏𝑎𝑛𝑐𝑒 
2  

(2.3) 

Film PLQY measurements are problematic due to the complicated angular distribution of 

emission [4]. Total internal reflection and wave guiding are two parameters which make emission 

of a film non-isotropic; therefore the detector would measure different intensities, depending on its 

orientation relative to the sample. This complication is resolved with the use of an integrating 

sphere to collect total emission from the sample. The integrated sphere is a hollow sphere in which 

the interior surface is coated with a diffusely scattering layer in order to distribute the emission 

uniformly.   

A schematic diagram of the experimental set up is shown in Figure 2.1. The sphere is 

designed to have a small entrance at one side to illuminate the sample placed at the centre of the 

sphere. Another aperture is opened on the opposite side of the sphere to measure the transmitted 

laser beam by a power meter located outside sphere. A further hole is located on the other side as 

shown in Figure 2.1 where a photodiode is attached to measure the resulting luminescence. The 

baffle in front of photodiode prevents the sample’s emission from directly irradiating the photo 

diode and also a long pass filter to block any residual laser excitation. In order to decrease the rate 

of photo degradation, the sample is measured under flowing nitrogen. The experimental parameters 

are measured as follows: 

1. 𝑋𝑙𝑎𝑠𝑒𝑟: The intensity of the excitation laser which measured with the photodiode 

without the long pass filter and the sample. 

2. 𝑋𝑠𝑎𝑚𝑝𝑙𝑒: The intensity of total emission with the sample became incident with the 

laser and the filter back to block the laser beam.  

3. T: The transmitted excitation power was measured with a power meter with the cap 

removed from the aperture.  

4. 𝑋𝑠𝑝ℎ𝑒𝑟𝑒 : The photodiode intensity was measured again while the sample was 

removed from the beam path which corresponds to the sample emission due to 

secondary excitation from the scattered excitation.  
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5. 𝑅 : The reflected excitation power from the sample was measured outside sphere 

with the power meter.  

The PLQY, 𝜂 was calculated from: 

 𝜂 =
𝑥

𝑦
 (2.4) 

Where 𝑥 and 𝑦 are given by:  

 
𝑥 =

𝑋𝑠𝑎𝑚𝑝𝑙𝑒 − (𝑅 + 𝑇)𝑋𝑠𝑝ℎ𝑒𝑟𝑒

(1 − 𝑅 − 𝑇)𝑋𝑙𝑎𝑠𝑒𝑟
 

(2.5) 

 
𝑦 = ∫ 𝑆𝑠𝑝ℎ𝑒𝑟𝑒(𝜆)𝐿(𝜆)𝐺(𝜆)𝐹(𝜆)𝑑𝜆 × (𝑆𝑠𝑝ℎ𝑒𝑟𝑒(𝜆𝑒𝑥)𝐺(𝜆𝑒𝑥) ∫ 𝐿(𝜆)𝑑𝜆)

−1

 
(2.6) 

Where 𝑆𝑠𝑝ℎ𝑒𝑟𝑒 is the integrating sphere spectral response, L is the emission spectrum from the 

sample, G is the spectral response of photodiode, F is the long pass filter transmission spectrum and 

𝜆𝑒𝑥  is the excitation wavelength. In order to avoid introducing large error into measurement, it is 

important to have a strongly absorbent film at the excitation wavelength with an absorbance above 

0.3 [5]. 

2.3.5 Photoluminescence decay lifetime 

Time correlated single photon counting (TCSPC) can provide information about radiative 

and non-radiative rates when combined with PLQY results. It is the probability distribution for the 

emission of a single exciton after an excitation event which corresponds to emission intensity versus 

time. This distribution can be determined by sampling the emission of single photons following a 

large number of low intensity excitation events.  

All time-resolved photoluminescence spectroscopy described in this thesis were performed 

using a Fluorolog 4 with TCSPC capability. A pulsed LED emitting at 372 nm was used to 

photoexcite the samples. Solution samples were prepared and degassed as explained previously in 

this chapter. Film samples were kept in a vacuum of < 10−3 mbar during measurements. All 

measurements were conducted at room temperature with the excitation repetition rate of 100 kHz 

with 5 ns delay. The subsequent emitted photon was then detected perpendicular to the excitation 

beam. The PL decay data points were fitted by a sum of exponential functions as given by;  

 
𝐼(𝑡) = 𝐼0 ∑ 𝐴𝑖𝑒

−
𝑡
𝜏𝑖

𝑖

 
(2.7) 

Where ∑ 𝐴𝑖 = 1𝑖 , A and 𝜏 represent the pre-exponential factors and time constants respectively [2].  
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2.3.6 Ellipsometry  

To understand and simulate emission out coupling of OLED devices, optical constants (n 

and k) of emissive layer were needed. To achieve this, variable angle spectroscopic ellipsometry 

(VASE) was performed on a J. A. Woollam VUV-VASE ellipsometer to extract the thickness and 

optical constants. In this technique, a sample is targeted with linearly polarised white light and the 

subsequent reflections are detected at the angle 𝜙.The reflected light becomes elliptically polarised 

due to phase change from interaction of light with the sample. Optical constants are then determined 

by measuring the relative phase change and intensity of the reflected beam as a function of angle 

and wavelength. These parameters are then used in an isotropic optical model or a uniaxial model 

for amorphous or crystalline materials respectively to obtain optical constants [6]. 

2.3.7 Dipole orientation measurement 

Orientation of the transition dipole moments of an emitter is a crucial factor affecting the 

quantum efficiency and out coupling efficiency in OLEDs. Increasing horizontal dipole orientation 

in the emissive layer leads to higher out coupling efficiency than isotropic or vertically oriented 

dipoles. In the work described in this thesis two methods were performed to estimate dipole 

orientation in emissive materials.  

In the first method, optical constants obtained from ellipsometry measurements were used to 

calculate the orientation order parameter S, which is defined as 

 
𝑆 =

3〈cos2 𝜃〉 − 1

2
=

𝐾𝑒
𝑚𝑎𝑥 − 𝐾𝑜

𝑚𝑎𝑥

𝐾𝑒
𝑚𝑎𝑥 + 2𝐾𝑜

𝑚𝑎𝑥 
(2.8) 

Where θ is the angle between the axis of the transition dipole moment and the direction vertical to 

the substrate surface as shown in Figure 2.2,  〈cos2 𝜃〉 indicates the ensemble average, and 𝐾𝑜
𝑚𝑎𝑥 

and 𝐾𝑒
𝑚𝑎𝑥 are the ordinary and extraordinary extinction coefficients at the peak of the band 

attributed to the transition dipole moment, respectively. 

As a result, 𝑆 = −0.5 (𝜃 = 90°) if the transition dipole moments are perfectly oriented 

horizontally to the substrate surface, 𝑆 = 0 if they are randomly oriented, and 𝑆 = 1(𝜃 = 0°)  if the 

molecules are totally orientated vertically to the substrate surface [7].  
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Figure 2. 2 Relationship between the optical anisotropy in films and molecular orientation. 

The second method utilised was to measure the light emission intensity in a transverse 

magnetic (TM) mode on the emission angle (angle dependent PL measurements) [8-11]. A 15nm 

thick film was prepared on a cleaned fused silica substrate or glass followed by encapsulation. The 

sample was then attached to a half cylinder fused silica prism via matching oil, with the film surface 

precisely at the centre of a manual rotational stage from Thorlab (see Figure 2.3). Photoexcitation of 

the sample was performed using a circularly polarized He-Ca laser beam at 325 nm wavelength 

with less than 0.2 mW power. Measurements were performed at a fixed incident angle of 45° while 

nitrogen was flowing on the sample to avoid the photo degradation. The emission from the sample 

at different angles from 0° to 90° were collected by a fibre coupled Ocean Optics USB2000 

spectrometer through a polariser (TM mode) and a long pass filter with a cut-off wavelength of 400 

nm. A second laser beam was coincident with the centre of the rotational stage to adjust the optical 

axis of the setup in order to have precise measurements.  

To estimate dipole orientation, far-field emission intensity as a function of angle was 

simulated using commercial software Setfos 4, Fluxim Co with the known optical constants and 

thickness of the film provided by VASE measurements.  
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Figure 2. 3 Close up of the angle dependent PL spectrum setup from two directions. 

2.4 Device fabrication  

In the work detailed in this thesis, two device architectures were utilised, namely vertical 

structure OLED and planer LEFET. Both devices were fabricated and tested in class 1000 

cleanrooms. The two device configurations which will be discussed in this thesis are as follows (see 

Figure 2.4): 

 OLEDs consisting of glass substrate with pre-patterned ITO as the anode, poly(3,4-

ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS) a hole transport layer 

(HTL), an organic emissive layer, an electron transport layer (ETL), and a cathode 

electrode.  

 LEFETs consisting of Si substrates as the gate electrode, SiNx as the inorganic 

dielectric layer, an organic dielectric layer as the passivation layer, an organic 

charge transport layer, an organic emissive layer, and the source and drain contacts.  

Some common techniques are present in all device fabrications which will be discussed in 

this Section. Details specific to each experiment will be then given in relevant chapters.  
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Figure 2. 4 Schematic device structure for OLED and LEFET. 

2.4.1 Substrate preparation  

Substrates were first rinsed with acetone and wiped with an acetone-wet swab before ultra-

sonication in acetone for 15 mins. The substrates were rinsed with 2-propanol followed by ultra-

sonication in 2-propanol for 15 min. Substrates were dried under nitrogen flow.  

The substrates were then transferred to a glove box for deposition of subsequent layers (for 

LEFETs) or to be treated by UV ozone for 15min (for OLEDs). The glove box was maintained with 

a positive pressure nitrogen atmosphere, and oxygen and water levels are maintained at less than 0.1 

ppm. 

2.4.2 Thin film deposition 

Films were deposited by spin-coating if the materials were able to be solution processed. 

The spin-coating speed and time depended on the concentration and thickness calibration. In cases 

where a material was not suitable for solution process deposition, organic layers were deposited via 

thermal evaporation under vacuum of 1 − 5 × 10−6 mbar and oxygen and water levels less than 

1 − 5 × 10−9 ppm. 

2.4.3 Film thickness determination 

Film thickness is an important matter in organic electronics as it has a crucial effect on 

device performance and optimization of external efficiency. Thickness calibration was performed 

via a Dektak 150 profilometer. To do so, film thicknesses were measured at relevant spots on the 
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substrate for five spots. Numbers were then averaged and used for calibration. In the case of thermal 

deposition, a quartz crystal monitor was used during evaporation and then thickness was verified 

using the Dektak profilometer.  

2.4.4 Contact deposition  

Cathode electrodes (in OLEDs) and source, drain electrodes (in LEFETs) were deposited via 

shadow masks. Shadow masks were made from steel using laser cutting. Contacts were then 

deposited through the shadow masks by thermal evaporation under a vacuum of 1 − 5 × 10−6 

mbar. 

2.5 Device characterisation 

2.5.1 Standard measurements for light emission  

For light emitting devices (OLEDs and LEFETs), the brightness and external quantum 

efficiency must be determined in order to evaluate device performance. Since light emitting devices 

are used mainly in display technology viewed by humans a measure of the human eye response 

should be taken into account when describing their performances. Therefore, photometric units are 

used to characterise light accounting for the sensitivity of the human eye [12]. However, physical 

quantities of light such as number of photons, photon energy, or optical power are needed to be able 

to determine EQE values. These quantities are radiometric units. Formal definitions of some of the 

important photometric parameters for characterising light emitting devices are as follows: 

Luminous intensity –light intensity of an optical source as observed by the human eye [12] 

with unit measurements of candelas (cd). Candela is the light intensity of 1 standardised candle.  

Candela –the candela is the luminous intensity, in a given direction, of a source that emits 

monochromatic radiation of frequency 540 × 1012 Hz and that has a radiant intensity in that 

direction of  1/683 watt per steradian [13]. 

Luminance or brightness –the ratio of luminous intensity emitted in specific direction 

divided by the observed surface area in that direction, giving that light emitted in a solid angle from 

the source, brightness is measured in cd/m
2
. 

Luminous flux –the light power perceived by human eye from a source measured by unit 

lumen (lm) [12]. 
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Lumen – a monochromatic light source emitting an optical power of 1/683 watt at 555 nm 

has a luminous flux of 1 lumen (lm) [12]. 

 

Figure 2. 5 Normalized CIE 1931 eye response curve as a function of wavelength. 

The optical power, Pout, (a radiometric unit) and the luminous flux, 𝜙𝑙𝑢𝑚, (a photometric 

unit) needs to be related by a conversion factor in order to calculate the number of photons emitted 

by a light emitting device. The luminous flux 𝜙𝑙𝑢𝑚 , is related to the optical power by [12] 

 𝜙𝑙𝑢𝑚 = 683
𝑙𝑚

𝑤𝑎𝑡𝑡
∫ 𝐸𝑅(𝜆) ∗ 𝐸𝐿(𝜆)𝑑𝜆  (2.9) 

Where 𝐸𝐿(𝜆)  is the electroluminescence spectral power (or radiant intensity), 683 
𝑙𝑚

𝑤𝑎𝑡𝑡
  is 

a normalization factor and 𝐸𝑅(𝜆) is the eye response curve. The photopic eye sensitivity 

function, 𝐸𝑅(𝜆), was introduced by the International Commission for Illumination (Commission 

Internationale de I’Eclairage, CIE), for point like sources with the viewing angle of 2° in 1931 (see 

Figure 2.5). The human eye cannot detect all the wavelengths equally: for example UV and infrared 

are invisible to the eye. This function demonstrates how well the human eye can capture emitted 

radiation. Therefore, for a corrected luminous flux, the overlap of the spectrum emitted by the 

source with the eye response curve should be taken to describe how the source appears to the eye. 
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The total luminous flux 𝜙𝑙𝑢𝑚 leaving the device without being waveguided is given by 

Greenham et.al [14] 

 

 
𝜙𝑙𝑢𝑚 = ∫ 2𝜋𝐿

𝜋
2

0

𝑐𝑜𝑠𝜃𝑠𝑖𝑛𝜃𝑑𝜃 
(2.10) 

   

Where 𝐿 is the flux per unit solid angle and 𝜃 is the angle from the normal which the light is 

detected. Applying the trigonometric identity 𝑐𝑜𝑠𝜃𝑠𝑖𝑛𝜃 =
1

2
sin 2𝜃, Equation 2.10 becomes 

 
𝜙𝑙𝑢𝑚 = ∫ 2𝜋𝐿

𝜋
2

0

1

2
𝑠𝑖𝑛2𝜃𝑑𝜃 

𝜙𝑙𝑢𝑚 = 𝜋𝐿 [−
1

2
cos 2𝜃]

0

𝜋
2
 

𝜙𝑙𝑢𝑚 = 𝜋𝐿 

 

 

 

 

 

 

(2.11) 

If 𝐿 is in cdm
-2

 unit, then  

 𝜙𝑙𝑢𝑚 = 𝜋𝐿 × 𝐴𝑒𝑚𝑖𝑠𝑠𝑖𝑜𝑛 (2.12) 

Where 𝐴𝑒𝑚𝑖𝑠𝑠𝑖𝑜𝑛, is the area of light emission source, therefore 𝜙𝑙𝑢𝑚 will be in lumens (lm). For a 

light emitting device, the luminous flux is given by Equation 2.9 while the optical power, Pout , 

emitted by a light source is given by an integration over all wavelengths by 

 
𝑃𝑜𝑢𝑡 = ∫ 𝐸𝐿(𝜆)𝑑𝜆 

(2.13) 

The issue here is not having an absolute measurement of the radiant intensity. Available data is a 

relative measurement of normalized 𝐸𝐿. However, the ratio of Equations 2.9 and 2.13 are valid and 

is yield:  

 𝜙𝑙𝑢𝑚

𝑃𝑜𝑢𝑡
= 683

𝑙𝑚

𝑤𝑎𝑡𝑡

∫ 𝐸𝑅(𝜆) ∗ 𝐸𝐿(𝜆)𝑑𝜆

∫ 𝐸𝐿(𝜆)𝑑𝜆
 

(2.14) 

Using the Equation 2.12 , the optical power , 𝑃𝑜𝑢𝑡, is given by;  

 
𝑃𝑜𝑢𝑡 =

𝐿 ∗ 𝜋 ∗ 𝐴𝑒𝑚𝑖𝑠𝑠𝑖𝑜𝑛

683
𝑙𝑚

𝑤𝑎𝑡𝑡

∗
∫ 𝐸𝐿(𝜆)𝑑𝜆

∫ 𝐸𝑅(𝜆) ∗ 𝐸𝐿(𝜆)𝑑𝜆
 

(2.15) 
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The number of photons emitted by device is related to optical power by;  

 
𝑃𝑜𝑢𝑡 = 𝑛𝑝ℎℎ𝜐 =

𝑛𝑝ℎℎ𝑐

𝜆
 

(2.16) 

Where ℎ is Plank’s constant,  𝜐 is the frequency,  𝑛𝑝ℎ is the number of photons per unit time, 𝑐 is 

the speed of light and 𝜆 is the wavelength. Instead of having a single wavelength, there are a range 

of wavelengths for recorded radiant intensity. Therefore an average wavelength is needed as 

follows:  

 
𝜆𝑎𝑣 =

∫ 𝐸𝐿(𝜆)𝜆𝑑𝜆

∫ 𝐸𝐿(𝜆)𝑑𝜆
 

(2.17) 

Substituting Equations 2.15 and 2.17 in 2.16 and rearranging: 

 
𝑛𝑝ℎ =

𝐿 ∗ 𝜋 ∗ 𝐴𝑒𝑚𝑖𝑠𝑠𝑖𝑜𝑛

683
𝑙𝑚

𝑤𝑎𝑡𝑡

∗
∫ 𝐸𝐿(𝜆)𝜆𝑑𝜆

∫ 𝐸𝑅(𝜆) ∗ 𝐸𝐿(𝜆)𝑑𝜆
 

(2.18) 

 The number of electrons per second injected into the device, 𝑛𝑒 is given by:  

 
𝑛𝑒 =

𝐼

𝑒
 

(2.19) 

Where 𝑒 is charge for an electron 1.6 × 10−19 𝑐 and I is current (A). The EQE can then be found as 

the ratio of photons per second emitted by device in the viewing direction to the number of injected 

electrons per second to the device: 

 𝐸𝑄𝐸 =
𝑛𝑝ℎ

𝑛𝑒
 

(2.20) 

 

2.5.2 Colourimetry  

The emitted “colour” of our devices is described by colour-matching functions and a 

chromaticity diagram by the CIE. Figure 2.6.a shows the three colour-matching functions, �̅�(𝜆), 

�̅�(𝜆), and 𝑧̅(𝜆) which represent red, green and blue light respectively. These functions are 

dimensionless and result from the colour of light being described using these three variables. For a 

given colour spectral density, 𝑃𝑠𝑝𝑒𝑐𝑡𝑟𝑢𝑚(𝜆), the overlap of the spectral density with each of the 

colour-matching functions gives the degree of each function required to match the colour of the 

spectrum as follows: 

 
𝑋 = ∫ �̅�(𝜆) 𝑃𝑠𝑝𝑒𝑐𝑡𝑟𝑢𝑚(𝜆)𝑑𝜆 

(2.21) 
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𝑌 = ∫ �̅�(𝜆) 𝑃𝑠𝑝𝑒𝑐𝑡𝑟𝑢𝑚(𝜆)𝑑𝜆 

(2.22) 

 
𝑍 = ∫ 𝑧̅(𝜆) 𝑃𝑠𝑝𝑒𝑐𝑡𝑟𝑢𝑚(𝜆)𝑑𝜆 

(2.23) 

Where X, Y, and Z are known as the tristimulus values which give the stimulation of power of each 

of the three primary colours red, green and blue needed to match the colour of  𝑃𝑠𝑝𝑒𝑐𝑡𝑟𝑢𝑚(𝜆).  

 

Figure 2. 6 a) CIE 1931 colour-matching functions �̅�(𝜆), �̅�(𝜆), and 𝑧̅(𝜆) which represent 

red, green , blue light respectively as a function of wavelength, note that the green colour-matching 

function �̅�(𝜆), is identical to the eye response curve [15]. b) chromaticity diagram representing the 

possible colours the human eye can perceive with  𝑥 and 𝑦 co-ordinates [15]. 

The light source colour can also be represented as co-ordinates on a chromaticity diagram which 

shows the spectrum of colours visible by the human eye. The chromaticity co-ordinates are given 

from three tristimulus values as follows  

 
𝑥 =

𝑋

𝑋 + 𝑌 + 𝑍
 

(2.24) 

 
𝑦 =

𝑌

𝑋 + 𝑌 + 𝑍
 

(2.25) 

 
𝑧 =

𝑍

𝑋 + 𝑌 + 𝑍
 

𝑧 = 1 − 𝑥 − 𝑦 

 

(2.26) 

The 𝑥 and 𝑦 co-ordinates can then be displayed on a chromaticity diagram (see Figure 2.6.b) and 

they are normally referred to as the “CIE co-ordinates”. In the work described in this thesis, CIE co-

ordinates are given by the standard Luminance Colorimeter camera [12]. 
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2.5.3 Standard OLED characterisation  

Completed devices were encapsulated in a glovebox with water and oxygen concentration 

levels < 0.1 ppm, with a glass cover using UV cured epoxy resin and an adhesive desiccant. For 

electrical connection, the entire substrate was held securely with the six cathodes connected via a 

clamp with ribbon cables (see Figure 2.7). Voltage-current-luminance (V-I-L) was performed using 

a Keithley 2400 source meter by applying a voltage (V) on the pixel under test and measure the 

corresponding current (I) through that device. Simultaneously, the light emitted by the pixel was 

collected by a Topcon Luminance Colorimeter BM-7A, with standard industry calibration. The 

applied voltage and measurements were controlled by a fully automated process using a computer 

and Labview software programing. Alternatively the Luminance Colorimeter camera was replaced 

by an ASEQ LR1 mini-spectrometer to measure the EL spectra of each pixel.  

EQE and colourimetry are two important parameters for OLEDs which were explained in 

Section 2.5.2. However there are some other parameters which calculated from current (I) and 

brightness (L) as follows 

 Current density (J) – current (I) per unit area of emission (A) which normally calculated in 

unit mAcm
-2

. 

 Current efficiency (LJ
-1

) –amount of brightness (L) per unit current density (J). It is given by 

dividing brightness (cdm
-2

) by current density (Am
-2

). Therefore the current will be cdA
-1

. 

 Power efficiency (𝜂∗) –the ratio of luminous flux (𝜙𝑙𝑢𝑚) divided by optical power 𝑃𝑜𝑢𝑡 . 

Presented in lmwatt
-1

. 

 

Figure 2.7 Two photographs showing the experimental set-up for OLED testing utilised at 

the CSIRO test facility. 
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2.5.4 Standard LEFET characterisation 

Completed LEFET devices were encapsulated with a thick layer of Cytop, CTL-809 M 

(solvent: CTSolv.180) from Asahi Glass Japan. They were then transferred to the testing glove box 

where electrical and optical characterisation was performed using an Agilent B1500A 

Semiconductor Analyser on a SA-6 Semi-Automatic Probe Station. The light output from devices 

was simultaneously measured during operation by a calibrated photomultiplier tube (PMT), a 

Hamamatsu H10721-20, positioned directly over the device with a fixed distance (see Figure 2.8). 

The PMT and the three probes were individually connected electrically to the Agilent which was 

positioned outside the glove box. The source-drain current of the LEFET and photocurrent from 

PMT were recorded for electrical and optical characterisation.  

2.5.4.1 Optical characterisation   

In order to convert the PMT photocurrent to brightness the PMT was calibrated using an 

OLED fabricated by commercially available emissive layer super yellow. The reason for choosing 

an OLED is the easier encapsulation process and possibility for brightness measurements with 

luminance meter outside the glove box. The performance of the encapsulate OLED was then 

measured at different applied voltages once with luminance meter (Konica Minolta LS100) and 

again with PMT fixed for certain distance and gain. The PMT photocurrent as a function of 

brightness were then plotted in order to calibrate the PMT. The slope of the calibration curve was 

then used to find the brightness of a device with known PMT current. At fixed gain of 0.4 and for 

OLED area of 0.92 mm
2
 the slope of the calibration is 69.0 𝑛𝐴 𝑐𝑑 𝑚−2 and so;  

 1𝑐𝑑 𝑚−2 ≈ 69.0 𝑛𝐴 (2.27) 

The calibration can be adjusted for the difference in emission area of the LEFET and OLED as;  

 
1𝑐𝑑 𝑚−2 ≈ 69.0 𝑛𝐴 ×

𝐴𝑟𝑒𝑎𝑒𝑚𝑖𝑠𝑠𝑖𝑜𝑛(𝐿𝐸𝐹𝐸𝑇)

𝐴𝑟𝑒𝑎𝑒𝑚𝑖𝑠𝑠𝑖𝑜𝑛(𝑂𝐿𝐸𝐷)
 

(2.28) 

The conversion between PMT current in 𝑛𝐴 and brightness (L) in 𝑐𝑑 𝑚−2 is then;  

 
𝐿 (𝑐𝑑 𝑚−2) = 𝑃𝑀𝑇 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 (𝑛𝐴) ×

𝐴𝑟𝑒𝑎𝑒𝑚𝑖𝑠𝑠𝑖𝑜𝑛(𝐿𝐸𝐹𝐸𝑇)

𝐴𝑟𝑒𝑎𝑒𝑚𝑖𝑠𝑠𝑖𝑜𝑛(𝑂𝐿𝐸𝐷)
×

1

69.0 𝑛𝐴 𝑐𝑑 𝑚−2
 

(2.29) 

The EQE can then be determined as explained in Section 2.5.1. 



Chapter2. Experimental Methods and Equipment 

 

44 

 

 

Figure 2.8 Photographs showing the experimental setup for LEFET testing utilised at the 

COPE test facility. 

2.5.4.2 Electrical characterisation    

LEFETs were modelled using standard MOSFET (metal-oxide-semiconductor field effect 

transistor) equations which were originally developed for their inorganic counterparts [16]. The 

equations originated by taking into account the applied fields within the device. The model is 

applicable for organic devices as well as inorganic devices since it does not take into account any 

microstructural details. There are important device parameters of interest such as majority carrier 

mobility, 𝜇, the ON/OFF ratio and threshold voltage, 𝑉𝑡, which will be explained below.  

There are two different operation regimes for LEFETs. For an n-type device operating in the 

linear regime, 𝑉𝐷𝑆 < 𝑉𝐺 − 𝑉𝑡  [16],  

 
𝐼𝐷𝑆 =

𝑊

𝐿
𝜇𝐶[(𝑉𝐺 − 𝑉𝑡)𝑉𝐷𝑆 −

𝑉𝐷𝑆
2

2
] 

(2.30) 
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where 𝐼𝐷𝑆 is the source-drain current, 𝑊  and 𝐿 are the length and width of the transistor channel 

respectively and 𝐶 is the capacitance of the dielectric layer which can be determined by a series of 

organic and inorganic dielectric layers. In the saturation regime, where 𝑉𝐷𝑆 ≥ 𝑉𝐺 − 𝑉𝑡 [16],  

 
𝐼𝐷𝑆 =

𝑊

𝐿

𝜇𝐶

2
(𝑉𝐺 − 𝑉𝑡)2 

(2.31) 

These equations can be used for p-type devices with a sign difference respective of the opposite 

polarity of the applied voltages. In the work details in this thesis, the LEFET mobility was 

determined from the transfer characteristics in the saturation regime.  In a small threshold voltage, 

the mobility in the saturation regime is given by  

 

𝜇 =
2𝐿

𝑊𝐶
(

√𝜕𝐼𝐷𝑆

𝜕𝑉𝐺
)

2

 

(2.32) 

The threshold voltage, which is the minimum gate voltage that must be applied to switch the device 

ON, can be determined by finding the 𝑥 intercept of the √𝐼𝐷𝑆 vs 𝑉𝐺 plot.  

The ON/OFF ratio is a parameter which shows the switching capability of a LEFET. It is the ratio 

between the maximum current measured when the device is switched ON and the minimum current 

of the transfer characteristics. 

 In this chapter, the methodologies and basic principles for characterising OLED and LEFET 

materials and devices were described. In particular, dendritic phosphorescent materials suitable for 

OLEDs, where appropriate additional experimental and theoretical details will be provided in 

subsequent Sections. In the next chapter, the first of the results will be described concerning a 

systematic study of a basic dendritic dendrimer structure consisting of Iridium complex with 

biphenyl dendron. 
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Chapter 3  

Highly Efficient Solution-Processable  

Dendrimer OLEDs  

3.1 Introduction  

The development of organic semiconductors in last three decades is widely viewed as the 

next technology wave in optoelectronics, and it is one of the most exciting fields of research not 

only in science but also industry. The ability of organic semiconductors to combine tunable 

optoelectronic properties with the desire for much simpler processing compared to their inorganic 

counterparts has made them formidable competitors in the market.  Over the past decade, organic 

light emitting diodes became a promising candidate for flat panel display technology due to their 

high efficiency, low driving voltage, light weight, and low cost of both materials and processing. 

Among all materials investigated in OLEDs, phosphorescent materials have gained specific 

attention due to their potential for 100% internal quantum efficiency by harvesting both singlet and 

triplet excitons [1-3]. So far, iridium (III) complexes have been the most promising candidates, 

offering high efficiency, relatively short excited state lifetimes, and colour tunability [4-9]. Iridium 

(III) complexes have been demonstrated in the three different categories of small molecules [10, 

11], polymers [12-14] and dendritic architectures [15-18]. Devices based on small molecules have 

shown less potential due to the need for high temperature high vacuum deposition techniques. 

Although polymers are promising with highly cost effective processing techniques such as spin 

coating and inkjet printing [19], any attempts to tune processing often leads to undesirable changes 

in the electronic and emissive properties of the resultant devices. Using dendritic structures allows 

independent control over intermolecular interactions as well as emissive properties. There have 

been several reports on phosphorescent dendrimer OLEDs in the last decade [15-18, 20-23]. It is 

important to simplify fabrication, in line with the desire for mass production large area displays. 

Previous attempts to make efficient OLEDs out of neat film Ir(III) core complexes have shown  

poor efficiencies due to the strong interaction between chromophores which led to quenching the 

luminescence [24].  
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This Chapter describes the full characterisation of a simple dendritic Ir (III) complex and the 

work towards improving the performance of single layer host free OLEDs formed by spin-coating. 

The results are shown to be comparable with those of devices making use of the same material in a 

guest-host system. The definition of the guest-host system has previously been provided in Chapter 

1. 

3.2 Material design and experimental methods 

 Materials used in the work presented in this Chapter are shown in Figure 3.1. The first 

generation dendrimer (G1 Ir(ppy)3) contains a fac tris(2-phenylpyridine) iridium core, phyenyl 

based dendrons and 2-ethylhexyloxy surface groups (see Figure 3.1.a) and was used as a dopant. In 

addition, two small molecules commercially available from Lumtec, 4,4’-N,N’-dicarbazolyl-

biphenyl (CBP) and  2,2',2"-(1,3,5-Benzinetriyl)-tris(1-phenyl-1-H-benzimidazole) (TPBi) were 

used as host and electron transport materials, respectively (see Figure 3.1.b and c).  

 

Figure 3.1 The chemical structures of a) G1 Ir(ppy)3, b) CBP, and c) TPBi. 



Chapter3. Highly Efficient Solution-Processable Dendrimer OLEDs 

 

49 

 

The dopant shown in Fig 3.1 was subject to a comprehensive set of photo-physical 

measurements which were performed as detailed in Chapter 2 where films were spin cast from 20 

mg/ml concentration with a 20 wt% dopant ratio in blends. The 20 wt%  fraction was chosen 

because it is equivalent to 6 wt% Ir(ppy)3 which has been shown to be optimal in evaporated 

OLEDs using a CBP host [2]. The photo-physical measurements included: absorption and PL 

spectra; PLQY values; and Lifetime values. 

The device structure used to test the dendritic dopant is shown in Figure 3.2.a and had pre-

patterned indium- tin oxide (ITO(10 Ω/sq)) (170 nm). Substrates were pre-cleaned with isopropanol 

and water and then treated with UV-ozone for 15 minutes at 25° C immediately prior to use. 

PEDOT: PSS then was spin coated onto the substrates to a thickness of 30 nm and annealed for 15 

min at 150° C. The PEDOT: PSS was used to enhance hole injection into the device, better 

matching the energy levels of emissive layer (see Figure 3.2.b).   Devices were then transferred into 

a glovebox where the emissive layers (neat or blend) were deposited on the substrates by spin-

coating. For the neat films, the solvent used was chlorobenzene, and chloroform was used for the 

blends at a concentration of 20 mg/ml with a dopant concentration of 20 wt%. Chlorobenzene is 

more suitable as a solvent for these materials since chloroform causes quenching of the luminance 

due to chemical degradation. For the blends, however, there was no option since CBP has a better 

solubility in chloroform. The thicknesses of the emissive layers were kept consistent in all devices.     

 

Figure 3.2. a) Device structure, b) energy diagram for different layers. The HOMO and LUMO of 

TPBi and CBP were taken from  literature respectively [25, 26]. The work function for metals were 

taken from original material sheets provided by CSIRO, the energy level of G1 Ir(ppy)3 were 

obtained from PESA measurements as explained in Chapter 2.   
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The devices were completed with the thermal evaporation of the cathode using shadow 

masks to deposit successive layers of TPBi, LiF, and Al in a vacuum chamber with a base pressure 

of approximately 5 × 10−6 mbar.  The deposition rate for the TPBi layer was maintained at 

approximately 1 Å/s. After the organic layer was deposited, the cathode layers, LiF (1 nm) and Al 

(100 nm), were deposited using a second shadow mask without breaking the vacuum. Cathode 

layers were also selected according to the appropriate energy level off-sets of the materials in the 

device. The thicknesses of layers were measured using a Dektak confirming 50nm for the emissive 

layer. Completed devices were transferred under an inert atmosphere from the vacuum chamber to a 

glovebox (water and oxygen concentration levels < 0.1 ppm) for encapsulation with a glass cover 

using UV cured epoxy resin and an adhesive desiccant.  Encapsulated devices were then transferred 

outside the glovebox for characterisation as detailed in Chapter 2.  

3.3 Photo-physical properties 

The UV-visible absorption spectra of G1 Ir(ppy)3 were measured in solution (solid line), in 

neat films (dash line), and in CBP blend films (dotted line) as it shown in Figure 3.3. In all cases 

intense absorption was observed in the range of 250-320 nm, which is due to the singlet-singlet 

𝜋 − 𝜋∗ transition of the ligand. The weaker absorption extends from 330 nm to 500 nm which is 

due to metal to ligand charge transfer (MLCT) transitions. It has been reported that the relative 

intensity of the absorption between 250-320 nm in first generation of Ir(ppy)3 is approximately 

twice as a large as Ir(ppy)3 because of the additional contribution to the absorption from the 

biphenyl dendrons [27]. 

The photoluminescence (PL) spectrum of G1 Ir(ppy)3 was then measured for degassed 

solutions, neat film, and films with the CBP blend (see Figure 3.3). Although the shape of PL 

spectra are almost identical, the red shifted maximum  peak, broader emission,  and the less 

pronounced shoulder were noted moving from solutions to the blends and then neat films 

respectively. This can be attributed to a decrease in the conformational freedom in the solid-state. 

To probe the role of inter-chromophore interactions (both intra-and-interchain), and photophysical 

properties more closely, the PLQY and PL decay (see Figure 3.4) were measured for these samples 

as detailed in Chapter 2. The PLQY value in degassed solution was 81% and the PL decay lifetime 

was mono exponential (see Figure 3.4). This evidence supports the idea that there are no strong 

interchain interchromophore interactions that lead to substantial photoluminescence quenching in 

solution.   
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Figure 3.3 Absorption and PL spectrum for G1 Ir(ppy)3 in solution (solid line), in neat film (dash 

line), and in CBP blend film (dot line), the samples were excited at a wavelength of325 nm for PL 

measurements. 

 

Figure 3.4 Photoluminescence lifetime measurement (TCSPC) for G1 Ir(ppy)3 in a degassed 

solution (square), in neat film (circle), and in CBP blend (star). The samples were excited by a 372 

nm LED and the emission was detected at 515 nm (peak).  
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In moving from solution to the solid-state there was a decrease in PLQY from 81% to 50%. 

Moreover the biexponential decay (see Figure 3.4) indicated that there was more than one emissive 

species present in the complex. The biexponential decay amplitudes for the neat film were 

significantly lower than in solution, implying that intermolecular interactions were responsible for 

the quenching and also the slight red shift of PL spectrum. The PL decay in the neat film was much 

faster than in solution, which indicated that additional non-radiative decay of the emissive triplet 

state prevailed in the neat film.  

 

Table 3.1 Summary of PLQY and PL decay values for G1 Ir(ppy)3 in solution, neat film, and CBP 

blend. 

The film PLQY of the CBP blend increased and was similar to the solution PLQY. 

Moreover, lifetime decay measurements showed a higher ratio of slower components with relatively 

similar lifetimes to the mono-exponential component in solution. Both these values were consistent  

with reduced quenching due to the expected introduction of space between chromophores in 

comparison with the neat film. However the fast decay component of 0.1 μs (with a relative 

amplitude of 13%) was still observed along with a dominant lifetime of 1 μs (with a relative 

amplitude of 87%), which suggested that there were still interchromophore interactions that had not 

been completely controlled. All the PLQY and PL decay parameters are summarized in Table 3.1. 

The radiative lifetime for optically dilute solutions was calculated according to Equation 1.3 and 

was of the order of microseconds, confirming the emission from a triplet state. These values are in 

agreement with the previous study [27].  

3.4 Device performance 

Figure 3.5 shows typical electrical characteristics of devices using neat and blend emissive 

layers (henceforth referred to as “neat devices” and “blend devices” respectively). Neat devices 
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showed  improved injection, which is noticeable from the abrupt increase in current density in 

comparison with the blended devices. Another difference between these two devices was the turn 

on voltages which were 3 V and 4.8 V for neat and blend respectively. This confirmed improved 

charge injection in the neat devices which could be attributed to better energy level matching 

between PEDOT:PSS and Ir (ppy)3. However the blended device was superior as the blends 

provided extra space between chromophore cores which could lead to less interaction and 

quenching.  Nevertheless, using a host material like CBP would be predicted to have a negative 

impact on the charge transport properties of the emissive layer which is evident in these results with 

an order of magnitude lower current density in blend devices.  

 

Figure 3.5 Current density and luminance characteristics for neat and CBP blend devices. The 

square represents the neat films while the circle represents the blends. Open grey colour show 

current density and solid black colour represents the luminance.  

The electroluminescence (EL) spectra of both devices are shown in Figure 3.6.a. The higher 

wavelength shoulder in the neat devices is less pronounced which suggests less freedom in 

comparison with blended devices or potentially different morphology in neat and blend films. An 

image of a working device and CIE co-ordinates are shown in Figure 3.6.b and c respectively. The 

CIE co-ordinates for neat and blended devices overlapped as clearly shown in Figure 3.6.c (0.340, 

0.630) confirming the green emission which was evident in the EL spectrum. 
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Figure 3.6. a) EL spectrum for neat and CBP blend devices, b) a close up of the working device, c) 

the overlapped CIE co-ordinates of both devices.  

 

Figure 3.7 EQE values for neat and CBP blend devices. 



Chapter3. Highly Efficient Solution-Processable Dendrimer OLEDs 

 

55 

 

The slightly improved performance of neat devices is likely due to their morphology and 

packing since CBP generally lacks good film forming qualities. The external quantum efficiencies 

for both devices were calculated as explained in Chapter 2, and are shown in Figure 3.7. Both 

devices reached similar EQEs with the blend devices showing a slightly higher EQE for luminance 

values below 100 cd/m2. Similar work has been reported by Markham et al [24] without an electron 

transport layer for neat films of the material and demonstrated much lower EQEs of about 0.1%.  

One of the reasons for the improved performance of neat devices in this study could be the role of 

TPBi not only as an ETL, but also as a hole blocking layer which would lead to better balance 

between charge carriers leading to higher recombination rate. The EQEs for both devices were 

~12% at 100 cd/m2 brightness. However, the EQE of neat devices decreased abruptly due to triplet-

triplet annihilation in comparison with the blend devices where the interaction between cores was 

suppressed. 

 

Figure 3.8 Power efficiency for both neat and CBP blend devices. 

A similar maximum power efficiency (see Figure 3.8) of about 31 lm/W was observed at 28 

cd/m
2
 and 15 cd/m

2
 for neat and blend devices which corresponded to current densities of 0.068 

mA/cm
2
 and 0.030 mA/cm

2
 respectively. However blend devices had a higher power efficiency in 

comparison with the neat devices, suggesting reduced triplet-triplet annihilation. A summary of the 

device results is presented in Table 3.2. 
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Table 3.2 A summary of device performance parameters for neat and CBP blend emissive layers. 

3.5 Dipole orientation  

Conventionally, the EQE in an OLED is governed by the product of four different 

parameters:  

 ϕEQE = ϕescape × ϕcapture × ϕspin × ϕPLQY ∗ 100%   (3.1) 

 

where ϕspin is related to the spin statistics for the formation of singlet or triplet excitons. Since 

Iridium complexes harvest both singlet and triplet emitters ϕspin is constant and equal to 1. 

Additionally, ϕPLQY is the photoluminensce quantum yield in the solid state which has different 

values between zero to 100% summarized in Table 3.1, ϕcapture is the fraction of electrons and holes 

that recombine to form excitons, and ϕescape is the photon outcoupling factor which has been 

theoretically calculated to be 0.2 (20%) [28]. That said, the outcoupling (ϕescape) can be optimised 

using dipole orientation in the emissive layer as explained in Chapter 1. At the maximum EQE 

(with reasonable brightness) electrons and holes are completely balanced leading to an optimal 

recombination (ϕcapture) of 1, and as such the outcoupling (ϕescape) could be calculated for each 

device (see Table 3.2). 
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Figure 3.9 Refractive index and extinction coefficient for neat (dot line) and CBP blend (solid line) 

of G1 Ir(ppy)3.
  

According to these calculations, neat devices reached above the theoretical limit with 23% 

outcoupling efficiency. This suggested the existence of horizontally oriented dipoles in the emissive 

layer. To check this hypothesis, ellipsometry and angular dependent PL measurements were 

performed in neat and blend devices. Figure 3.9 shows the refractive index, n, and extinction 

coefficient, k, for neat and CBP blend films of G1 Ir(ppy)3 obtained from spectroscopic 

ellipsometry. The result obtained from ellipsometry measurement for neat film didn’t provide 

imaginary component of the refractive index. This indicates random orientation as the orientation 

order parameter S (from Equation 2.8) was zero. 

 The blend with CBP appeared to be slightly more birefringent. The orientation order 

parameter, S was calculated using Equation 2.8 for a CBP blend with G1 Ir(ppy)3 giving a value of 

0.02 which is close to the isotropic value (S=0). This also suggested random orientation of the 

dipoles. However, the dipole orientation in spin coated samples was dominated by the morphology 

and spin coating conditions which suggested more investigation by angle dependent PL 

measurements were necessary. Angle dependent PL measurements were performed according to the 

methodology outlined in Chapter 2 for encapsulated samples. The optical constants from 

ellipsometry measurements were then used in the software program Setfos 4 to fit the experimental 

data (see Figure 3.10). The fit suggested that the G1 Ir(ppy)3 in neat and blend films were isotropic 

which could be due to homoleptical orientation of G1 Ir(ppy)3. However, the horizontal orientation 



Chapter3. Highly Efficient Solution-Processable Dendrimer OLEDs 

 

58 

 

of the emissive layer which is presumably the reason for the slightly high outcoupling (> 20 %) in 

neat devices could have also been dominated by the anisotropic orientation of the layer underneath. 

To further investigate this, the ellipsometry measurements were performed on a neat PEDOT: PSS 

layer. The results are shown in Figure 3.11 which details the real and imaginary parts of optical 

constants. This indicates that the anisotropic orientation of PEDOT: PSS which could affect the 

horizontal orientation of the spin casted emissive layer on top of it. 

 

Figure 3.10 Experimental data (circles) and fitting (dash line) for angle dependent PL spectrum 

measurement. 

 

Figure 3.11 Refractive index and extinction coefficient for PEDOT:PSS. 
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3.6 Conclusion 

This chapter details a full and systematic characterisation of a simple dendritic structure, 

G1Ir (ppy)3, in solution, neat film and CBP blend. The results showed strong inter-chromophore 

interaction in the solid state which could be controlled with spacing the chromophore cores using a 

host material. Moreover device characteristics of neat and CBP blend were discussed. Although 

neat and blend devices showed similar EQEs, introducing space by host material (CBP) in blended 

devices may prevented triplet-triplet annihilation which enhanced device performance. Using an 

electron transport layer (TPBi) increased the efficiency in comparison with previous studies on the 

same material. This was due to the hole blocking role of TPBi as it provided more balance between 

electrons and holes and subsequently achieved a higher recombination rate. Although, the results 

indicated the intrinsic isotropic behaviour of G1 due to its homoleptical structure, horizontal 

orientation of spin casted emissive layers could be achieved by the presence of an anisotropic layer 

underneath which in the work described in this chapter was PEDOT: PSS. 

In the next Chapter, the effect of changes in the number and type of dendrons will be 

discussed using a dendritic structure with the same chromophore core. A similar methodology will 

be used to provide a fair comparison. Furthermore, the effect of polymerisation will be studied as a 

route to potential candidates for solution processed materials suitable for scaling up to industrial 

usage.   
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Chapter 4  

Effects of Polymerisation and 

Dendronisation on iridium (III) OLEDs  

4.1 Introduction 

In organic light emitting diodes, a key property requirement of the material is a high 

photoluminescence quantum yield.  It is now widely recognized that OLED materials also need to 

have sufficient charge mobility to avoid high driving voltages. In Chapter 3, a first generation 

Iridium dendrimer (with electrically insulating biphenyl dendrons) was described as a candidate for 

solution processed OLEDs. One option to improve the charge transport and potentially therefore the 

efficiency of OLED devices would be to incorporate a charge-transporting moiety within the device 

or dendrimer structure. Carbazole-based compounds are well-known as high mobility hole-

transporting materials and accordingly, they have been used widely in phosphorescent metal 

complexes OLEDs as host materials [1, 2] and within host free dendrimers in which the carbazole 

unit makes up the dendron [3, 4].  The inclusion of the carbazole dendrons within Iridium III (Ir) 

complexes by covalent bonding, results in the formation of a single multifunctional dendrimer in 

which the carbazole serves indirectly as the host material while the Ir (III) core acts as an emissive 

dopant. The main benefit of this approach over doped devices is that phase separation is avoided, 

leading to higher device performance [5].  

 It has been found that first generation dendrons are insufficient to prevent interactions 

between the emissive core[6]. Although higher generation dendrons will sufficiently reduce the 

internal interactions to maintain a high PLQY, they usually cause a significant reduction in charge 

transport[7, 8]. A compromise therefore exists that the intermolecular interactions that affect the 

quenching in luminescent materials can be controlled by the number of dendrons [4, 9-11]. 

Dendrons can be used as branched shells surrounding the Ir complex to prevent self-aggregation 

and concentration quenching of the emissive core in the solid state. Singly-dendronised dendrimers 

have an opened face of the core chromophore which lends them susceptible to intermolecular 

interaction. This issue can be resolved by creating so-called “doubly-dendronised dendrimers” 

which have two dendrons attached to each ligand of the core[12, 13].    
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Phosphorescent dendrimer materials with suitable dendrons can be used to make highly 

efficient solution processed OLEDs[4]. Nevertheless, the viscosity of these dendrimer solutions 

under standard processing concentrations is only slightly greater than the solvent they are dissolved 

in, and this viscosity is too low for solution processed mass production methods such as inkjet 

printing [14-16]. This is the motivation for exploring a new approach to the phosphorescent 

materials in the form of iridium (III) poly(dendrimers). It is anticipated that these materials would 

simultaneously improve the solution processibility whilst giving the material the better film forming 

needed for roll to roll or inkjet printing [13, 17, 18].   

This Chapter first describes the pre-fabrication characterisation of a hostless dendrimer with 

a single carbazole Dendron, followed by its performance in a device. Next, the study focused on 

how polymerisation of this compound in order to achieve the desire film quality for printing 

techniques enhances the device performance and photophysical properties. Finally, the effect of 

introducing an additional carbazole dendron to the system will be described via a similar 

methodology on both doubly-dendronised dendrimer and the poly(dendrimer) analogues.      

4.2 Singly-dendronised dendrimer and poly(dendrimer) 

4.2.1 Material design and experimental methods 

The chemical structure of singly-dendronised dendrimer (D1) and poly(dendrimer) (P1) are 

shown in Figure 4.1.a and b; both molecules consist of an Ir (III) core encapsulated within a set of 

carbazole dendrons. The poly(dendrimers) P1 was synthesized using Ring Opening Metathesis 

Polymerisation (ROMP) as it has been found to be an effective route for joining together bulky 

dendrimeric monomers with high Mws[19, 20]. It has been shown that the use of conjugated 

polymers such as poly(fluorene) for phosphorescent emitters is problematic since they have low 

triplet energy. This leads to a reduction in the PLQY due to back transfer of triplet excitation from 

the phosphorescent emitter to the polymer [21, 22]. Therefore a norbornenyl-based non-conjugated 

polymer backbone was used with dendrimer side-chains to make the poly(dendrimers).  

In addition, two small molecules commercially available from Lumtec, 4,4’-N,N’-

dicarbazolyl-biphenyl (CBP) and  2,2',2"-(1,3,5-Benzinetriyl)-tris(1-phenyl-1-H-benzimidazole) 

(TPBi) were used as host and electron transport materials, respectively, shown in a previous 

Chapter (Figure 3.1.b and c). 
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Figure 4.1 Chemical structures of, a) singly-dendronised  dendrimers D1 and, b) singly-dendronised  

poly (denrimers) P1, with M̅w of 160 kDa and a polydispersity (PDI) of 1.3. 

The relevant device structure is shown in Figure 4.2.a and consists of pre-patterned indium- 

tin oxide (ITO) (170 nm)/ PEDOT: PSS (40 nm)/ emissive layer (≈50 nm-80 nm)/ TPBi (35 nm)/ 

LiF(1 nm)/ Al(100 nm). Substrates were pre-cleaned with isopropanol and water and then treated 

with UV-ozone for 15 minutes at 25°C immediately prior to use. PEDOT: PSS was spin coated on 

the pre-patterned ITO coated glass substrates (10 Ω/sq) and annealed for 15 min at 150° C. The 

PEDOT: PSS layer was used to improve hole-injection into the device by bending the energy levels 

of emissive layer to ITO. Devices were then transferred into a glovebox where the emissive layer 

(neat or blend) was deposited on the substrates by spin-coating inside the box. Spin-coatings were 

performed using solutions in chlorobenzene or chloroform at a concentration of 20 mg/ml where the 

blend solution consisted of 20 wt% dopant. The spin speed and concentration were chosen to be the 

same for D1 and P1 devices in order to monitor viscosity and subsequently thickness differences. 

The thickness of the emissive layers was measured with a Dektak where the thickness for the 

dendrimer layer was (≈50 nm) and for the poly(dendrimer) (≈80 nm). The results were consistent 



Chapter 4. Effects of Polymerisation and Dendronisation on iridium (III) OLEDs 

 

65 

 

with reported studies where the viscosity of dendrimers is equal to the solvent and the viscosity of 

pol(dendrimer) slightly changes with concentration [18]. The final layers for the devices were 

deposited via thermal evaporation using a shadow mask to deposit successive layers of TPBi, LiF, 

and Al in a vacuum chamber with a base pressure of around 5 × 10−6 mbar.  The TPBi deposition 

rate was maintained at approximately 1 Å/s. After the organic layer was deposited, the cathode 

layers, LiF (1 nm) and Al (100 nm), were deposited using a second shadow mask without breaking 

the vacuum. Cathode layers were chosen according to their energy levels (see Figure 4.2 b). 

Completed devices were transferred under inert atmosphere from the vacuum chamber to a 

glovebox (water and oxygen concentration levels < 0.1 ppm) for encapsulation with a glass cover 

using UV cured epoxy resin and an adhesive desiccant.  Encapsulated devices were then transferred 

outside glovebox for characterisation as explained in Chapter 2.  

 

Figure 4.2 a) Device structure, b) energy level diagram for different layers. 

4.2.2 Photo-physical properties 

 In order to use these compounds in OLED structures, photo-physical characterisation was 

performed and the results are presented in this Section. From the previous Chapter, the HOMO 

energy level of G1 Ir(ppy)3 with biphenyl ligands was found to be 5.2 eV. However, from PESA 

measurements, the HOMO energy level of the singly-dendronised materials (D1 and P1) was found 

to be 5.4 eV. This suggests that the HOMO density for these compounds was not just on the Iridium 

core, but was also located on the dendrimeric carbazole units. 
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The absorption spectra of this family of compounds in solution, neat films and, CBP blend 

films are shown in Figure 4.3. The Absorption spectra for the dendrimer D1 and the 

poly(dendrimer) P1 both consist of two different regions: a short wavelength region from 280-350 

nm due to singlet-singlet 𝜋 − 𝜋∗ absorption by the carbazole dendron and phenylpyridyl ligand, and 

a weak absorption shoulder at longer wavelengths assigned to metal to ligand charge transfer. The 

strong absorption feature at 320 nm is a characteristic of carbazole unit which is consistent with 

𝜋 − 𝜋∗ absorption, as previously reported in other carbazole containing materials[4]. This  to a 

slightly lower HOMO-LUMO energy gap of the carbazole unit compared with phenyl rings[4].  

 

Figure 4.3 Normalized absorption (black) and PL (blue) spectra of singly-dendronised dendrimers 

D1 and poly (dendrimers) P1 for solution (solid line), neat film (dash line), and CBP blend film 

(dotted line). 

The photoluminescence spectra of the compounds were studied in order to investigate the 

effect of polymerisation on the emission properties of these compounds. Figure 4.3 shows the 

normalized PL spectra for D1 and P1 in solution, neat film and, in CBP. Looking at each material 

separately, the shape of the PL spectra in solution, neat and, CBP blend are almost identical; 

however, the emission peak is slightly red-shifted (≈2-10 nm) and the shoulder is less pronounced 

moving from solution to the solid state. This was anticipated and can be attributed to a decrease of 

freedom in the solid-state. 

The PL spectra in solution for the singly-dendronised compounds have a maximum 

emission peak at 520 nm and a shoulder at 548 nm. A very weak emission peak in the blends was 

noted at 385 nm, which is due to the host material (CBP). Comparing the results of absorption and 

PL emission spectra for D1 and P1, there are no significant differences to be noted. This suggests 
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that the polymerisation of the compound doesn’t have any effect on the intrinsic emission of the 

chromophore core.  

 

Figure 4.4 Lifetime measurements (TCSPC) for: a) singly-dendronised dendrimer (D1) and b) 

poly(dendrimers) (P1) in degassed solution, neat film, and CBP blend film. Comparing the solid 

state neat film of both compounds, it can be noted that the bi-exponential PL decay moving toward 

the mono-exponential decay. The samples were excited by a 372 nm LED and the emission was 

detected at the peak of PL spectra (520nm- 525nm)  

The PLQY and the PL decay measurements were performed in order to investigate the effect 

of polymerisation on the luminescence concentration. Measurements were initially performed on 

degassed solutions of all compounds, as explained in Chapter 2. The solution PLQY values of these 
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compounds are shown in table 4.1. The values for these compounds is higher than the PLQY values 

of their biphenyl counterparts, which have been reported to be ~ 65% [17]. Given that the 

uncertainty of the measurements is about 10%, the solution PLQY values are in good agreement for 

D1 and P1 which is expected as they share the same emissive core, and the individual cores are well 

separated in optically dilute solutions. The PL decay measurements (see Figure 4.4) for D1 and P1 

in solution shows a mono-exponential decay with lifetimes of the emissive species (see Table 4.1) 

for the singly-dendronised dendrimer (D1≈1.7µs) and the poly(dendrimer) (P1≈1.5µs). However, 

the radiative lifetimes for all these compounds, calculated from the PLQY and the PL decay values, 

are similar (all ≈ 2.1µs) indicating that the polymerisation doesn’t affect the emission from the 

excited species. 

 

Table 4.1 A summary of PLQY and PL decay values for singly-dendronised compounds in 

degassed solution, solid state neat and, blend.  

The PLQY values for neat films show an abrupt decrease compared to the solution values, 

for example from 82% to 20% for D1, which indicates that strong inter-chromophore interactions 

lead to concentration quenching in the solid state. A summary of PLQY values and PL decay 

measurements are presented in Table 4.1. 

The PL decay lifetime measurements for neat films are bi-exponential decays. This indicates 

that there are multiple emissive species present in the neat films. However, the effect of 

polymerisation can be clearly seen by changes in the amplitudes and lifetimes of these species (seen 

in Table 4.1). Polymerisation of the dendritic structures seems to increase not only the slower 

component lifetime and amplitude factor, but also the PLQY values. 
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In order to further decrease the concentration quenching between cores, these compounds 

were blended with CBP. The photo-physical properties for these compounds were investigated in 

20% wt CBP blends and are shown in Table 4.1. The solid state PLQY of these blends increases, 

showing a similar trend to that observed with the solution PLQY measurements. Moreover, the 

lifetime decays show a bigger ratio of the slower components with a more similar lifetime to the 

solution. Both of these values are consistent with each other, showing that there are still inter-

chromophore interactions that are not completely controlled in CBP blends. The lifetime of the CBP 

emissive peak at 385 nm which was observed in the blends (see Figure 4.3) - was reported to be on 

the order of ns [23], which was faster than the time resolution of our instrument. 

4.2.3 Device performance 

To assess whether the high photoluminescence efficiency found in the solid state for these 

compounds could lead to efficient OLEDs, a number of devices were fabricated. This Section 

presents the results of these devices.  

The typical electrical characteristics of D1 and P1 is shown in Figure 4.5 for neat and CBP 

blend devices. TPBi was used in all the devices as it was shown in Chapter 3 that TPBI not only 

facilitates the electron injection, but increases the recombination rate by blocking holes, which both 

of these processes lead to higher EQE values. Neat devices were tested to lower voltages to avoid 

triplet-triplet annihilation and demonstrated quick roll off, as shown in neat devices of D1 (see 

Figure 4. 5. a). Although similar values of luminance and current density were obtained for both 

compounds, there are distinct differences in the performances of neat and blend-based devices. In 

neat devices, slightly higher turn on voltages were observed for poly(dendrimer) devices (4.6V) in 

comparison with the dendrimer (3.5 V), which is consistent with the slightly thicker active layer.  

The neat devices showed sharper current and luminance increases with lower turn on 

voltage in comparison with their CBP blend counterparts for each material. It is clear that they pass 

higher current density through devices at the same voltage in comparison with the blended devices. 

There are multiple possible reasons for this including, for example, better interfaces in the neat 

devices or better charge injection into the neat devices. Polymerisation seems to slightly improve 

the performance and this could be due to providing higher viscosity, better film forming or better 

packing and morphology. 
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Figure 4. 5 Current density and luminance characteristics in neat (square) and CBP blend (circle) 

devices for singly-dendronised: a) dendrimer (D1),  and b) poly (dendrimers) (P1). 
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Figure 4.6  Electroluminescent spectrum for singly-dendronised compounds in neat (solid line) and 

CBP blend (dot line) devices: a) D1, b) P1; c) CIE co-ordinates, and d) close up of an actual 

performing device. 

Figure 4.6. a and b show the electroluminescent spectrum for both compounds as neat and 

CBP blend devices. EL and PL spectra for each compound are in agreement with each other, 

sharing similar shape. This indicates that the electrical excitation process is similar to the photo 

excitation. Polymerisation seems to decrease the red shifts as observed in neat films compared with 

blended devices. This is in agreement with the PL spectrum results in Figure 4.3. For the singly-

dendronised compounds, the maximum emission peak in blends is at 525 nm and the emission color 

was green with CIE co-ordinates of (0.37, 0.54) at 1mA/cm
2
 (see Figure 4.6.c). A clear green color 

is observable (see Figure 4.6. d). 
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Figure 4.7 Efficiency of devices are presented for both compounds in different units: a) EQE and b) 

power efficiency (left axis) and luminous efficiency (right axis).  

External quantum efficiencies were calculated for the devices in order to provide a better 

understanding of the V-I-L (voltage-current-luminance) characteristics, as this is proportional to the 

ratio of luminance to current. The EQE versus the luminance for the devices are shown in Figure 

4.7.a. The data shows that devices with a neat emissive layer are less efficient. However, the EQE 

values (at 100 cd/m
2
) increase for D1 (4.5%) compared with P1 (7%), confirming that 

polymerisation benefits device performance in this case. This can be due to better film forming as 

the poly(dendrimer) has better film packing. In contrast to neat devices, the one with a blended 

emissive layer demonstrates a sharp initial increase in EQE, and confirms the higher injection 

barrier in them. This could be due to the bigger energy gap between the energy levels of CBP and 

PEDOT: PSS. Moreover, the efficiency can be represented in other units for example power 

efficiency and luminous efficiency (see Figure 4.7.b) for both compounds in neat and blend devices. 

The effect of polymerisation can be seen in the increased power efficiency value (33.5 lm/W) for P1 

compared with D1 (29.7 lm/W). A summary of device performance is presented in Table 4.2.  
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4.2.4 Dipole orientation  

According to theoretical studies of out-coupling of an OLED explained in Chapter 1, the 

amount of light which can escape the OLED devices without any manual enhancement is 

approximately 20% of the total PLQY of the emissive layer[24]. This is because of several loss 

channels in the OLED structure, which include: glass absorption; edge emission; wave guided or 

plasmon modes; etc. Therefore, the EQE value of an OLED is expected to reach a maximum of  

20% of the obtained PLQY values. However, some of the devices made from singly-dendronised 

materials demonstrated EQE values higher than the theoretical limitation, which indicates an out-

coupling of more than 20%. Indeed, the poly(dendrimer) material in blend devices performed with 

an excellent maximum EQE of 30% at a the eye-detectable brightness (17 cd/m
2
) which has not 

been observed in solution processed OLEDs before. This result suggests the possibility of 

horizontally oriented dipoles in the emissive layer, which is further described in this Section. 

 

Table 4.2  A summary of electrical characterization and out-coupling calculations for carbazole 

dendrimers and poly (dendrimers) in neat and blended devices. 

The out-coupling parameter (ϕescape) was calculated for all devices (see Table 4.2) at the 

maximum EQE where electrons and holes are equally balanced and providing near 100% 

recombination rate. The singly dendronised dendrimer (D1) exceeded the theoretical limit of out-

coupling (20%), displaying outcoupling of 22.5% and 25% in neat and blend devices respectively 

and moreover outstanding outcoupling for the poly(dendrimer) P1 of 40%. Variable angle 

spectroscopic ellipsometry and angle dependent PL measurements were performed for these 
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materials as explained in Chapter 2 to investigate the possible preferred orientation of the emissive 

dipoles. 

 

Figure 4.8  Variable angle spectroscopic ellipsometry (a and c) and angle dependent PLresults (b 

and d) for singly-dendronised compounds D1 and P1 respectively.   

The measurements were performed on blended materials as they provided higher 

phosphorescent efficiencies, which lead to more reliable investigation[25]. The refractive index and 

extinction coefficient results for CBP blended films from ellipsometry measurements are shown in 

Figure 4.8 a and c respectively for D1 and P1. Following the UV-VASE experiments, the 

orientation order parameter, S, was calculated according to equation 2.8 with 0.03 and 0.0082, 

respectively, for D1 and P1. Although the S values are close to zero and indicate randomly 

orientation of the materials, further investigation on dipole orientation was performed via angle 

dependent PL spectrum measurements. It has been reported before that horizontally oriented dipoles 

can be achieved from spin casted films of isotropic materials[26]. The angle dependent PL spectrum 

measurements were performed on encapsulated films spin coated from the same solvent and 

conditions as applied during fabrication.     
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The experimental results from angle dependent PL measurements were then matched with 

simulation results from Setfos using the optical constants from VASE measurements and thickness 

of the emissive layer. The results indicate the existence of 73% and 72% horizontally oriented 

dipole respectively for D1 and P1, which are slightly higher than the isotropic model, which has 

67% horizontally oriented dipoles. Similar behaviour has been reported in other solution processed 

organic light emitting materials[26]. Recent dipole orientation studies have shown that Iridium 

dendrimers with one different ligand attached to the core (i.e., heteroleptic complexes), similar to 

P1,   are more likely to contain horizontally oriented emissive dipoles  [27, 28]. This is a promising 

result for the OLED industry toward increasing the outcoupling of OLED devices via the intrinsic 

emission properties of the material.  

4.3 Doubly-dendronised dendrimer and poly(dendrimer) 

4.3.1 Material design and experimental methods 

The interactions between the chromophore cores cannot be fully controlled with the first 

generation of the singly-dendronised compounds Ir (III) dendrimers. The photo-physical studies on 

their blended counterparts also indicated this fact by the existence of two emissive species. 

Moreover, previous studies have shown that higher generation dendrimers would bring the 

drawback of poorer transport characteristics [7, 8]. Nevertheless, a compromise between the 

improved PLQY and reduced charge transport (and vice versa) can be reached through increasing 

the number of dendrons attached to the Ir (III) core [4, 9-11]. The self-aggregation and 

concentration quenching of emissive core in the solid state can be prevented using dendrons as 

branched shells surrounding the chromophore cores. This approach can also resolved the opened 

face of the core chromophore in singly-dendronised compounds which are sentient to 

intermolecular interaction. A doubly-dendronised dendrimer (D2) was synthesised by introducing 

the second carbazole dendron to the other ligand of the core (see Figure 4.9.a). The poly(dendrimer) 

(P2) analogous to D2 was synthesised by ROMP in order to provide higher material viscosities 

which is advantageous to industrial mass production methods (e.g., inkjet printing). The chemical 

structures of both these compounds are shown in Figure 4.9 a and b.  
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Figure 4.9 Chemical structures of, a) doubly-dendronised dendrimer, D2, b) doubly-dendronised 

poly(dendrimer), P2 with a M̅w of 68 kDa and a PDI of 2.4. 

 

Figure 4.10 Energy level diagram for doubly-dendronised compounds. 

The identical device structure and fabrication process was used for these compounds in 

order to have a consistent comparison (see Figure 4.10).  
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4.3.2 Photo-physical properties 

The photo-physical characteristics were measured in order to investigate the dendronisation 

effects intrinsically and in OLEDs structure. The HOMO energy level of the doubly-dendronised 

compounds (D2 and P2) was calculated from the IP obtained by PESA measurements. The result 

shows that adding the second carbazole dendron increase the HOMO density to 5.6 eV, which is 

slightly higher than for singly-dendronised compounds (see Figure 4.10). 

 

Figure 4.11  Normalized absorption (black) and PL (blue) spectra for doubly-dendronised 

dendrimer, D2, and poly(dendrimer), P2, for solution (solid line), neat film (dash line), CBP blend 

film (dotted line), PL absorption of singly-dendronised compounds are also plotted in orange dash 

line for comparison.  

Figure 4.11 shows the absorption spectrum of the doubly-dendronised compounds. The 

absorption consists of two main regions for short and long wavelengths: the shorter wavelength 

absorption is due to singlet-singlet 𝜋 − 𝜋∗ absorption by the carbazole dendrons and phenylpyridyl 

ligands and the longer wavelength absorption assigned to MLCTs. Although not shown, in non-

normalized spectra the strong absorption peak of carbazole at 320 nm was found to increase with 

dendronisation, due to the increased in the number of carbazole units[4].  

There is a red shift in the onset of D2 and P2 absorption compared with D1 and P1 which 

suggests a slightly narrower optical gap for doubly-dendronised compounds in comparison with 

singly-dendronised. This was then confirmed by HOMO-LUMO results inferred from PESA 

measurements of IP where the optical gaps for the singly- and doubly- dendronised compounds 

were found to be ≈ 2.6 eV and ≈ 2.2 eV, respectively. As previously reported, this is attributed to 
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the attachment of the second dendron to the pyridine moiety of the phenylpyridine ligand, which 

extends the conjugation of the ligand[4, 17]. 

The PL spectra in solution for singly- dendronised compounds have a maximum emission 

peak at 520 nm and a shoulder at 548 nm. However, in the spectra of both of the doubly- 

dendronised compounds, the presence of the additional dendron resulted in a 20 nm red-shift in the 

emission spectra (compared with their singly-dendronised counterparts), with a peak maximum at 

540 nm. The motivation for adding the additional dendron was to improve the core encapsulation in 

order to decrease intermolecular interactions. Nonetheless the drawback of this technique is an 

increase of conjugation length of the ligand involved in the MLCT, resulting in a red-shift in the 

emission colour [6, 29, 30]. The CBP emission peak in the blends can be seen for doubly-

dendronised blends as reported for previous compounds. Moreover, polymerisation in doubly-

dendronised compounds doesn’t have any effect on the intrinsic emission as the chromophore cores 

are the same. The PL spectrum in solution was identical for D2 and P2. This was also seen in the 

singly-dendronised compounds in the previous Section.  

 

Table 4.3 A summary of PLQY and PL decay values for doubly-dendronised compounds in 

degassed solution and solid states.  

In order to better investigate the effect of dendronisation on concentration quenching on this 

pair of compounds, the PLQY and PL decay measurements were performed. The optically dilute 

degassed solutions were prepared as explained in Chapter 2. A summary of PLQY and PL decay 

values for doubly-dendronised compounds are presented in Table 4.3. The solution PLQY for the 

doubly-dendronised dendrimer D2 is higher than the PLQY value for its biphenyl counterpart, 

which is 71% [17]. The PLQY values for the singly- and doubly- dendronised compounds are 
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similar and within the experimental error. Giving that they share the same emissive core, and that 

the cores are well separated in optically dilute solutions, the results are consistent with what we 

expect. The PLQY values decreased in solid states for both neat and blends. However, the effect of 

dendronisation is more observable in solid state where higher PLQY values are obtained for D2 

compared with D1. The PL decay measurements were then used to confirm this result.  

 

Figure 4.12 TCSPC measurements for a) doubly-dendronised dendrimer (D2) and b) doubly-

dendronised poly(dendrimer) (P2) in degassed solution and solid states. The PL decay 

measurements of singly-dendronised compounds (D1 and P1) in neat film solid state are plotted as a 

reference in orange color. The samples were excited by a 372 nm LED and the emission was 

detected at the peak of PL spectra (540 nm- 545 nm)    
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The PL decay measurements are shown in Figure 4.12 for doubly-dendronised dendrimer 

(D2) and poly(dendrimer) (P2). The PL decay measurement for D2 and P2 in degassed solution 

shows also a mono-exponential decay but with a longer lifetime in comparison with their singly-

dendronised counterparts: i.e., D2 ≈1.9µs whilst D1 ≈1.7µs and P2 ≈1.6µs whilst P1 ≈1.5µs). These 

results indicate that although the inter-chromophore interactions that lead to substantial 

photoluminescence quenching are not strong in solution, adding the second dendron is effective in 

reducing the inter-chromophore interactions in the solid state as the chromophore core will be 

slightly different from the singly dendronised. However the dendronisation and polymerisation 

don’t affect the emission from excited species as the dendronisation didn’t affect the radiative 

lifetime in the doubly-dendronised family of compounds.   

The PL decay lifetime measurements in the solid state demonstrate the existence of two 

emissive species similar to what is observed for their singly-dendronised counterparts. 

Nevertheless, the presence of the additional dendron changes the lifetimes of the singly-dendronised 

dendrimer with a more significant contribution for the faster lifetimes (faster :0.2 µs, slower 0.7µs) 

in D1 to more than 50% contribution of slower emissive species with longer life time (faster : 0.2 

µs, slower: 0.9 µs) in the doubly-dendronised dendrimer  D2.  Figures 4.12 a and b show the PL 

decay for the neat films transition from the bi-exponential toward the mono-exponential lifetime in 

moving from singly-dendronised dendrimer D1 to D2 and from P1 to P2. This indicates that inter-

polymer interactions play a significant role in PL quenching in the neat films; therefore, 

encapsulation of the emissive core via double dendronisation leads to a slight increase in PLQY in 

the neat film by reducing the concentration quenching on the emissive cores.  

4.3.3 Device performance 

To assess the impact of the high PLQY values of the doubly-dendronised compounds in real 

devices, a number of devices were fabricated and the results presented in this Section. All devices 

were fabricated in an identical structure to those for the singly-dendronised compounds to enable an 

objective and fair comparison. TPBi was also used in these devices as the electron transport and 

hole blocking layer.  

The electrical characteristics of the devices are shown in Figure 4.13. The neat devices 

(square points) were turned on at lower voltages (4V) and demonstrated a sharp increase in current 

density and luminance. They attained a higher current density and luminance, which indicates better 

interface and charge injection into the neat films. This behaviour is similar to what was observed for 

the singly-dendronised neat films presented in the previous Chapter. The photo-physical properties 

of the blended solutions showed an enhancement in luminance quenching by introducing extra 
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space between the chromophore cores. Therefore a number of devices were fabricated from CBP 

blend solutions to evaluate their efficiency in OLEDs. The poly(dendrimer) blend also  

demonstrated a lower turn on voltage (4.9V) in comparison with the dendrimer (6V), which 

indicates better injection - this can be attributed to better film formation at the interface of the 

emissive layer.  

 

Figure 4.13 Electrical characteristics in neat (square) and CBP blend (circle) devices for doubly-

dendronised :a) dendrimer D2, and b)poly(dendrimer) P2. 

The EL spectra for performing devices are shown in Figure 4.14 a and b. The shape of EL 

spectra are in agreement with PL spectra of the same compounds, and also with those of the singly-

dendronised compounds (D1 and P1). This indicates that dendronisation doesn’t make any change 
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in emissive properties as shown by the PL spectra. However, for the doubly- dendronised 

compounds, the peak is red-shifted by 20 nm and the yellowish green colour with CIE co-ordinates 

of (0.46, 0.54) at 1 mA/cm
2 

(see Figure 4.14 c and d). These observations are consistent with the 

photo-physical properties.  

 

Figure 4.14 Electroluminescent spectrum for doubly-dendronised compounds in neat (solid line), 

and CBP blend (dotted line) devices: a) D2, b) P2, The EL spectra of their singly-dendronised 

counterparts are plotted in orange colour as reference, c) CIE co-ordinates, and d) close up of actual 

performing device. 

In order to have a better understanding of the device properties, their efficiencies were 

plotted in different units (see Figure 4.15). The effect of dendronisation is more noticeable in the 

neat devices as the EQE increases from 4.5% for D1 to 6% for D2, and the power efficiency 

increases from 10.2 lm/ W for D1 to 12.8 lm/W for D2.    
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Figure 4.15 Efficiency of devices are presented for D2 and P2 in different units: a) EQE and b) 

power efficiency (left axis) and luminous efficiency (right axis). 

The efficiencies of the singly-dendronised devices are consistent with the measured PLQY 

values while for doubly-dendronised compounds these values are less than theoretical expectation. 

Previous studies show that introducing additional dendrons or increasing the dendrimer generation 

can have different impacts on the charge transport depending on the type of dendron. For example, 

the first generation singly- and doubly-dendronised  Ir(ppy)3 dendrimers with the biphenyl dendron 

have the same hole mobility, which is double that of second generation singly-dendronised 

dendrimers[8, 12]. In contrast, attaching a second carbazole based dendron enhances the charge 

transport in the system by about an order of magnitude due to reduced disorder in the films[31]. 

Therefore, increasing the hole mobility by one order of magnitude for the doubly-dendronised 

compounds (D2 and P2) can lead to lower EQEs due to imbalances between the electron- and hole-

charges. Moreover, it can affect the film morphology and packing which is also known to play a 

critical role in organic device performance [32, 33]. A summary of the device performance for the 

doubly-dendronised compounds D2 and P2 are presented in Table 4.4. The outcoupling values for 
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these devices are not higher than the theoretically expected values. This is why the dipole 

orientation was not studied for D2 or P2. 

 

Table 4.4 A summary of electrical characterization and outcoupling calculations from doubly-

dendronised dendrimer and poly(dendrimer) in devices.  

4.4 Conclusion 

In this Chapter, a novel approach was described for solution-processable phosphorescent 

materials for OLED applications by integration of hole-transporting carbazole based IrIII dendrimers 

into polymer architectures. By increasing the number of dendrons attached to the ligands of IrIII 

dendrimers, both the intra- and inter-chain inter-chromophore interactions could be controlled by 

core encapsulation, leading to higher PLQY values in the solid state and longer life times of the 

emissive species. A drawback of this approach was a red-shift in the emission colour due to an 

increase in conjugation length of the ligand. This double dendron approach to control optoelectronic 

properties was also used for poly(dendrimers), providing the extra advantage of better film forming 

and possibly higher solution viscosity. Although, this family of materials has potential for hostless 

single layer OLED devices, blended emissive layers showed further reduction in inter-chromophore 

interaction and concentration quenching. The addition of a second dendron improved the device 

performance of D2 relative to D1, which is consistent with the expected increase of an order of 

magnitude in mobility. An excellent EQE result was achieved for singly dendronised 

poly(dendrimer) (P1) with the maximum EQE of 30% which has not previously been achieved in 
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solution processed OLEDs. This was evidence for horizontally oriented emissive dipoles in the 

singly dendronised dendrimer D1 and poly(dendrimer) P1, observed initially by an out coupling 

(25% and 40% respectively) which was higher than the theoretically expected out coupling value 

(20%). This is a promising achievement as it allows more efficient OLEDs to be realized via 

modifications made to the intrinsic properties of the material. 

In the next Chapter, a systematic study on singly dendronised co-polymers containing both 

hole- and electron- transporting moieties will be presented in order to investigate the possibility of 

achieving more efficient devices by balancing the device charge transport via an ambipolar 

material.  
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Chapter 5  

Ambipolar Poly(dendrimer) OLEDs  

5.1 Introduction  

Phosphorescent poly(dendrimers) have the potential to be applied in large area OLED 

display applications because of their efficient photo-physical properties and solution processability. 

Their solution processability provides engineering advantages so that film deposition can be 

achieved via wet processes such as large area screen or ink-jet printing. In the previous chapter, 

poly(dendrimers) containing a carbazole moiety as the hole transport dendron showed promising 

device performance. However, to achieve the necessary high device efficiencies, it would be ideal 

to develop ambipolar polymeric materials that contain both an electron- and hole- transporting 

moiety to improve recombination efficiency.   

Several reports have shown the beneficial effects of doping polymeric hole transport 

materials with oxadiazole electron transport molecules [1, 2]. Combinations of carbazole and 

oxadiazole derivatives have also been shown to be widely used as a suitable choice for ambipolar 

host materials. There are different approaches to incorporate both moieties: blends of small 

molecule or polymeric derivatives of oxadiazole with polymeric carbazole derivatives[3-8], host 

polymers with a carbazole backbone and oxadiazole pendants[9], block and random copolymers of 

carbazole and oxadiazole based monomers as a host material[10], and conjugated or non-conjugated 

host molecules of carbazole and oxadiazole moieties[11-15] for example.  

On the other hand, blending two host materials or an ambipolar host material with a 

phosphorescent iridium complex can lead to phase separation. To address this issue, single co-

polymers containing carbazole and oxadiazole moieties and a phosphorescent iridium complex were 

designed to retain both charge transport (electron and hole) and triplet harvesting properties. This 

chapter contains photo-physical and OLED device characterization of the block co-polymer and 

random copolymer containing carbazole and oxadiazole moieties.  
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5.2 Material design and experimental methods  

Figure 5.1.a and b show the block co-polymer (B) and random co-polymer (R) that were 

used in the work described in this chapter. These two materials have the same chemical units 

consisting of a phosphorescent iridium complex with a carbazole dendron and an oxadiazole unit (in 

pink), both directly attached to a non-conjugated polymer back bone. In block co-polymer (B) 

alternating sections of the polymer chain consist of either all oxadiazole units or the iridium core 

with carbazole dendrons. However, in the random co-polymer (R) the oxadiazole and iridium 

core/carbazole units are attached to the polymer back bone completely randomly. In addition, two 

small molecules commercially available from Lumtec, 4,4’-N,N’-dicarbazolyl-biphenyl (CBP) and  

2,2',2"-(1,3,5-Benzinetriyl)-tris(1-phenyl-1-H-benzimidazole) (TPBi) were used as a host and 

electron transport materials, respectively. The structure of these can be seen in Chapter 3, Figure 

3.1.b and c.  

The photo-physical characterisation was performed on degassed optically dilute solutions 

and solid state films (neat and blend) as detailed in Chapter 2. Neat films were spin cast from a 15 

mg/ml  and 18 mg/ml concentrations respectively for B and R compounds, while for blends the 

dopant ratio was 20 wt%. The thicknesses of the solid state samples for photophysical testing were 

identical to those used in devices. Due to their high molecular weight, both co-polymers were 

stirred into the solvent overnight prior to the deposition to ensure they had fully dissolved.  

Devices (see Figure 5.2.a) were fabricated on pre-patterned ITO substrates with 170 nm of 

ITO thickness and 10 Ω/sq sheet resistance. Substrates were pre-cleaned with isopropanol and DI 

water and then treated with UV-ozone for 15 minutes at 25°C immediately prior to the deposition of 

next layer. A 30nm PEDOT:PSS film was then deposited and annealed for 15min at 150° C. The 

PEDOT:PSS was used to ease the injection according to the energy level diagram (see Figure 

5.2.b). Devices were then transferred into a nitrogen-filled glovebox where the emissive layers (neat 

or blend) were deposited on the substrates by spin-coating (2100 rpm) from the overnight stirred 

solutions. The film thickness (~ 70-80 nm) used in photo-physical characterisation was used in 

device fabrication. Chlorobenzene and chloroform were used as the solvents for these devices for 

neat and blend films, respectively. 

Finally, successive layers of TPBi (35 nm), LiF, and Al were deposited using thermal 

evaporation through shadow masks in a vacuum chamber under a base pressure of around 5 ×

10−6mbar. The deposition rate for the TPBi layer was maintained at approximately 1 Å/s. The 

cathode layers, LiF (1 nm) and Al (100 nm), were then sequentially deposited without breaking the 
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vacuum, using a second shadow mask. These cathode layers were selected according to the 

appropriate energy levels in the device. Completed devices were transferred under an inert 

atmosphere from the vacuum chamber to a glovebox (water and oxygen concentration levels < 0.1 

ppm) for encapsulation with a glass cover using UV cured epoxy resin and an adhesive desiccant.  

Encapsulated devices were then transferred outside of glovebox for characterisation as explained in 

Chapter 2.  

 

Figure 5.1 Chemical structures of a) block co-polymer with M̅w of 640 kDa and a polydispersity 

(PDI) of 6.3 (B), b) random co-polymer (R) with M̅w of 360 kDa and a polydispersity (PDI) of 3.7. 

The hole transport dendron (carbazole) are attached to iridium core and electron transport moieties 

(oxadiazole) are presented in pink.  
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Figure 5.2 a) device structure, b) energy diagram for different layers. The cathode and transport 

materials were selected to match the HOMO/LUMO levels of the copolymers. The HOMO and 

LUMO of TPBi and CBP were taken from  literature respectively [16, 17]. The work function for 

metals were taken from original material sheet provided by CSIRO, the energy level of co-polymers 

were obtained from PESA measurements as explained in Chapter 2.   

5.3 Photo-physical properties 

As a first step of the characterization, PESA measurements were conducted for co-polymers. 

The measured HOMO energy levels for the block and random co-polymers were 5.3 and 5.2 eV 

respectively. These values are slightly lower than poly(dendrimer) P1 without the oxadiazole as the 

electron transport moiety which was 5.4 eV.  

The absorption and PL spectra for the co-polymer family are shown in Figure 5.3. The 

absorption spectra were identical to poly(dendrimer) P1 presented  in Chapter 4 with similar main 

regions of  singlet-singlet 𝜋 − 𝜋∗ absorption and metal to ligand charge transfer. 

The PL spectra for the co-polymer family in solution and CBP blend were similar to the 

singly dendronised counterparts in Chapter 4 with the main emission peak at 520 nm coming from 

the phosphorescent emission of Ir
 
III complex. The result suggests that adding the electron transport 

moiety didn’t change the main emission in the compounds. The red shift of solid state spectra in 

each compound was anticipated due to a decrease of freedom in comparison with solution. 

However, the neat film of the block co-polymer showed an extra emission at 375 nm which is from 

accumulation of oxadiazole moieties. This peak became more intense in the CBP blend film as the 

CBP emission was added (see Figure 5.3.c). Moreover, this indicates that the block co-polymer had 

a wider optical band gap of 3.2 eV in comparison with random co-polymer (2.6 eV).    
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Figure 5.3 normalized absorption and PL spectra for a) block co-polymer (B), b) random co-

polymer (R), c) a zoom in for part of PL spectra of block co-polymer (B),  for solution (solid line), 

neat (dash line), and CBP blend films (dot line), d) a schematic diagram for block and random co-

polymers. The pink and black circles are representative for electron (oxadiazole) - and hole-

transporting (Ir- carbazole dendrimer) moieties respectively. 

PL intensity and PLQY measurements were also performed on all compounds (see Figure 

5.4). Unlike the singly dendronised poly(dendrimer) in the previous chapter, the co-polymers’ 

lifetimes in solution decayed biexponentially. This suggests that adding the electron transport 

moiety increased the interchange interaction leading to quenching of the photoluminescence even in 

diluted solutions. This effect was more destructive in the block co-polymer decreasing the slower 

component lifetime from 1.5 µs for the random co-polymer to 1.2 µs. There were two possible 

explanation this; accumulation of chromophore cores at one side of the polymer back bone, and the 

barrier for energy transfer from the oxadiazole moieties to the Ir- carbazole dendrimer when the 

moieties are completely separated (see Figure 5.3.d).  These results are in agreement with PLQY 

data which are summarized in Table 5.1 and an extra emission peak in PL spectrum at 375 nm for 

block co-polymer (see Fig 5.3.c) 
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Figure 5.4 Lifetime measurements (TSPC) for a) block co-polymer (B), and b) random co-polymer 

(R) in degassed solution, neat, and CBP blend. The samples were excited by a 372 nm LED and the 

emission was detected at the peak of PL spectra (520-525 nm).  
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Table 5.1 A summary of the photo-physical characteristics for the co-polymer family in solution, 

neat films, and CBP blends.  

Interchain, interchromophore interactions were more noticeable in the block co-polymer as 

the PLQY values were slightly smaller with more quenching between emissive species due to 

accumulation of chromophore cores. Although introducing more space between chromophores by 

doping with more of the carbazole moiety of CBP in the blends seemed to increase PLQY values, 

the solid state blends still had three emissive species involved in non-radiative recombination. This 

indicated that the interaction was not completely under control. 

5.4 Device performance 

In order to investigate the electroluminescence properties of the materials’ performance, 

devices were fabricated using neat and blend films as described previously. In neat devices, the 

block co-polymer presented better performance with turn on voltage 4V and EQE of 4.8 % in 

comparison with 6.3 V and 4 % for the random co-polymer. In blend devices, the turn on voltage 

remained lower for the block co-polymer while the EQE improved for the random co-polymer with 

10 % in comparison with the block co-polymer 8 %. From electrical characterisation (see Figure 

5.5) of these devices, it can be seen that the block co-polymer was superior in neat devices than the 

random co-polymer. This could be due to improved ambipolar charge transport in the block co-

polymer as similar moieties are next to each other; while in random co-polymer the randomly 

distributed electron and hole moieties act like trapping centres for charge  transport (see Figure 

5.3.d). However, in the blend system, (see Figure 5.5.b), the trapping effect in the random co-

polymer was not dominant due to the large ratio (80%) of CBP. The slightly better performance of 

the random co-polymer in the CBP blend was likely due to high PLQY. Devices using the block co-
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polymer (see Figure 5.5.a) had a lower turn on voltage for both neat and blended films. The abrupt 

increase in current density also suggests an ease of injection, and better interface formation with this 

compound. This was anticipated from better energy match of the LUMO in compound B.   

 

 

Figure 5.5 Current density and luminance characteristics for a) the block co-polymer (B) with 

separate distribution of electron- and hole-transporting moieties, b) the random co-polymer (R) with 

random distribution of oxadiazole group to the polymer back bone.  
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Figure 5.6 a) Electroluminescent for three compounds in blends, b) CIE co-ordinates for both co-

polymers. 

Figure 5.6.a shows similar EL spectra for both compounds due to the similar chromophore 

that they share. The maximum peak of the emission at 520 nm indicated no change in photo 

physical properties in transitioning from films into actual devices. The CIE co-ordinates of both 

materials are shown in Figure 5.6.b with similar green emission and about (0.32, 0.63).  

The EQE values for all devices are presented in Figure 5.7.a. Blends had higher EQE values 

which was due to higher PLQYs. This was from introducing more space between chromophores 

leading to less concentration quenching. However, the abrupt increase at the beginning of the EQE 

trends for blends suggested the presence of an injection barrier in blended devices, which could be 

due to a bigger energy difference between PEDOT: PSS and the blended emissive layer. The same 

effect has been observed in the work presented in previous chapters.  The out-coupling parameters 

were calculated at the maximum EQE of the devices, with the recombination rate assumed to be 

100% due to balance between charge carrier types. None of the out-coupling values exceeded the 

theoretical limit; therefore no further investigation for dipole alignment was processed. A summary 

of the optical and electrical characterisation of the devices is provided in Table 5.2. Power and 

luminous efficiency were also calculated for all of the devices, with the results shown in Figure 

5.7.b. As can be seen, the random co-polymer had slightly more efficient devices in the blend films, 

with 15.5 lm/W at 100 cd/m
2
.  
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Figure 5.7 a) EQE values for block co-polymer (square) and random co-polymer (circle) in neat 

(black colour) and blend (grey colour), b) power efficiency and luminous efficiency for both 

compounds.   
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Table 5.2 A summary of device performance (left side) and out-coupling values (right side) for 

devices of both compounds. 

5.5 Conclusion 

In this Chapter, a new approach was described for solution-processable ambipolar 

poly(dendrimer) phosphorescent materials for OLED applications. This was achieved by the 

integration of electron-transporting moieties (oxadiazole) into a carbazole based poly(dendrimer). 

The electron transport moieties were distributed in two different ways: a block co-polymer with 

separated phase of electron and hole moieties, and a random co-polymer with random distribution 

of both moieties. The PLQY values suggested better photo-physical properties for the co-polymer 

with random distribution. However in neat devices, the block co-polymer presented better 

performances with lower turn on voltages and better EQE, this was due to ambipolar transport with 

less trapping effects. The device performance in blended devices was more promising for random 

co-polymer due to better PLQY.  

In next Chapter, the first temperature-dependent measurement on LEFET structure will be 

detailed. LEFETs have been chosen as suitable device structure for this study, providing 

simultaneous study of charge injection, photo-physics, and recombination in semiconductors.  
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Chapter 6 

Charge Transport and Recombination in 

Heterostructure Organic Light Emitting 

Transistors  

6.1 Introduction  

Organic light-emitting field effect transistors are dual function devices in that they have the 

electroluminescence capabilities of organic light-emitting diodes plus the switching capabilities of a 

field effect transistor in a single architecture [1-5]. This dual functionality can potentially lead to 

new applications such as simplified pixels for flat panel displays and potentially an electrical driven 

organic semiconductor laser. Although the emission brightness of LEFETs has improved over the 

last decade [6-17], their electrical switching ON/OFF ratio and EQE at high brightness are still very 

much sub-optimal. This is in part due to a lack of knowledge with respect to materials design and 

the absence of a comprehensive understanding of the charge transport and radiative recombination 

processes that occur in a LEFET.  

A common method to probe the charge transport in organic semiconductor films is to 

measure the optoelectronic characteristics of the material as a function of temperature in a FET or 

diode configuration [18-24]. Specifically, in the diode configuration both transient (e.g., Time-of-

Flight [25], photo-Charge Extraction in Linearly Increasing Voltage [photo-CELIV] [26]) and 

steady-state measurements (e.g., Space Charge Limited Current [SCLC]) have been used to 

measure mobility and recombination. Recently, Armin et al. reported an adapted injection-CELIV 

technique called MIS-CELIV which is capable of measuring the mobility of both carrier types in 

diode architectures relevant to operational devices such as solar cells and photodiodes [27]. 

However, in a functional OLED, it needs to be simultaneously probe not only the transport 

properties, but also the recombination dynamics (radiative and non-radiative). Thus, the traditional 

transport measurement methodologies only uncover at best half the pertinent physics. Furthermore, 

these existing techniques require that the injecting contact must be ohmic. Such a requirement is 

hard to achieve in an organic diode configuration. In an OFET architecture, the contact resistance at 
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the metal organic interface can be completely eliminated by employing four-probes or the 

transmission line technique [28-31]. An OFET structure can potentially map multiple elements of 

transport such as charge injection at the organic-metal interface, contact resistance and mobility. 

However, OFETs are generally not designed to emit light and are thus, like the simple diode, not 

suitable for studying radiative and non-radiative recombination processes. 

In this Chapter, we simultaneously probe the mobility and injection of carrier types, contact 

resistance and radiative recombination all as a function of temperature in a model bilayer LEFET. 

As it is typically difficult to find an organic semiconductor material that is highly luminescent and 

with high charge carrier mobility a bilayer LEFET architecture, consisting of a highly luminescent 

emissive layer (SY) and a separate charge transport layer (DPP-DTT), was employed. The bilayer 

LEFETs show decreases in the source-drain current, mobility (both electrons and holes), and 

brightness with decreasing the temperature. However, the external quantum efficiency increases by 

an order of magnitude at low temperatures. The changes in mobility and current are thermally 

activated consistent with the hopping transport characteristics normally associated with disordered 

semiconductors. It was thus demonstrated that the increase in EQE at low temperature is 

predominately due to an increase in the radiative recombination efficiency. 

6.2 Experimental procedure  

6.2.1 Device fabrication  

Figure 6.1.a shows the device architecture for top-contact, bottom-gate LEFETs. The 

devices were fabricated on 400 nm thick SiNx gate dielectric layer, grown by low pressure physical 

vapor deposition (LPCVD), on top of a heavily n-doped silicon wafer purchased from Silicon 

Quest, International, Inc. After dicing the wafer into 15 x 15 mm substrates, they were cleaned as 

explained in Chapter 2. All remaining fabrication steps and device testing were performed inside a 

nitrogen filled MBraun glove box (O2 and H2O levels < 0.1 ppm). The gate dielectric layer was 

further passivated with poly (methylmethacrylate) (PMMA) (120,000 gmol) as an organic dielectric 

layer. A 35 mg/ml solution of PMMA in n-propylacetate (P99.5%) was spin-coated onto the 

substrates at 2500 rpm for 30 s and then 3000 rpm for 10 s. The substrates were then baked on a hot 

plate at 150 °C for 30 min. The PMMA film thickness was 120 nm. The materials used for the 

semiconducting channel were: an ambipolar diketopyrrolopyrrole-dithienothiophene (DPP-DTT) 

co-polymer [32]; and Super Yellow (SY), a phenyl-substituted poly(p-phenylenevinylene) co-

polymer, as the emissive layer. SY (PDY–132) was purchased from Merck and was used without 



Chapter6. Charge Transport and Recombination in Heterostructure Organic Light Emitting Transistors 

 

102 

 

further purification and DPP-DTT copolymer was provided by our collaborator with Mn =20 kDa, 

Mw = 50 kDa, and PDI = 2.5. The reported chemical structures for both these polymers are 

illustrated in Figure 6.1.b and c. The DPP-DTT layer was deposited on top of the PMMA layer 

from a 4 mg/ml solution in chloroform with 7% of 1,2 dichlorobenzene (≥99 %, anhydrous).  In 

order to fully dissolve the DPP-DTT polymer, the solution was heated at 80 °C followed by a slow 

cooling protocol [33] and spin-coated at 1000 rpm for 60 s. This step was followed by baking the 

sample on a hot plate at 150 °C for 30 min. A 7 mg/ml solution of SY in toluene (>99.9% 

anhydrous) was spin-coated on top of  the DPP-DTT layer at 2500 rpm for 30 s then at 3000 rpm 

for 10 s. The substrates were then annealed on a hot plate at 150 °C for 30 min. The LEFETs were 

completed by deposition of asymmetric electrodes under vacuum (2 x 10
-6

 mbar) through shadow 

masks (see Figure 6.1.d) prepared by deep reactive ion etching with channel widths of 16 mm and 

four different channel lengths 50, 80, 100 and 120 µm. Asymmetric source and drain contacts were 

deposited in two separated evaporations, first Au (hole injection) and then Ba (electron injection). 

The two metals were chosen due to their work functions being good matches for the relevant 

semiconductor energy levels to ensure optimized charge injection [17].  Devices were encapsulated 

with drop casting of Cytop CTL-809M (solvent: CTSolv.180) from Asahi Glass Japan. 

 

Figure 6.1 a) Schematic LEFET device architecture using asymmetric source and drain contacts; b) 

Chemical structure for DPP-DTT; c) chemical structure of Super Yellow; d) asymmetric shadow 

masks inside holder  which used for contact deposition.  
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6.2.2 Temperature dependent measurement  

A Janis closed-cycle Helium Opti-Cryostat (See Figure 6.2.a) was used for the temperature 

dependent measurements from 300 K to 135 K. The LEFET was connected to an electrical chip as 

shown in Figure 6.2.b and was mounted onto the cryostat finger, the sample chamber was evacuated 

(5 × 10−5 mbar) and refilled with He. The devices were cooled down from ambient and at each 

temperature, transfer and output characteristics, and emission intensity were recorded 

simultaneously for both electron and hole accumulation modes. Electrical characteristics of the 

devices were acquired using an Agilent B1500A Semiconductor Device Analyser at each 

temperature. The emission was recorded as photocurrent with a calibrated photomultiplier tube 

(PMT) positioned at one of the optical windows of the cryostat. The brightness was calculated from 

the PMT photocurrent by comparison with a device with known brightness as explained in Section 

2.5.4.1 [15]. The EQE was calculated from the ratio of emitted photons to the number of injected 

charge carriers, which were extracted from the brightness and source-drain current, respectively, 

assuming Lambertian emission as described by Greenham et al [34]. 

 

Figure 6.2 a) cryostat set up; b) encapsulated sample on chip with all electrical connections; c) 

optical images of LEFETs with different channel widths on one substrate. 
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The charge carrier mobility (𝝁) was calculated in the saturation regime as explained in 

Section 2.5.4.2 while the gate capacitance is comprised of the SiNx and PMMA layers, which were 

estimated as the sum of the capacitors in series. 

The LEFETs shadow masks were designed to have four devices on each substrate with the 

same channel width but different channel length as shown in Figure  6.2.c In order to extract the 

intrinsic mobility, the total resistance was deduced from the output characteristics at different 

temperatures and for at least three devices with different channel lengths on one substrate. The 

contact resistance was extracted by extrapolating the intercept for a channel length equal to zero as 

shown in schematic diagram of Figure 6.3. Intrinsic mobilities were calculated as per standard 

procedures will be explained later in this Chapter [35-39]. 

 

Figure 6.3 Schematic diagram of extraction the contact resistance from devices with different 

channel lengths. 

6.2.3 Photoluminescence quantum yield measurement  

The thin film PLQY measurements at room temperature were performed using the method 

described by Greenham et al [40]. Films of Super Yellow were spin-cast from toluene solutions 

with concentrations of ~7 mg/ml onto fused silica substrates, which were subsequently annealed at 

150 °C for 30 min. The films were photo-excited with the 442 nm output of a HeCd laser that was 
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attenuated with neutral density filters to ~0.2 mW. The interior of the integrating sphere was 

flushed with nitrogen for the duration of the measurement to minimize photodegradation, and the 

PL intensity was measured with a calibrated photodiode. The PLQY was measured at 4 points on 

the film and the results averaged.  

For the temperature-dependent PLQY measurements, the film was placed inside an Oxford 

Instruments Optistat DN2 cryostat in a helium atmosphere. The same excitation source was used as 

for the room temperature-dependent measurements, although the power incident on the film was 

reduced to ~5 μW to minimize damage to the sample from sustained excitation. The films had 

absorbance at the excitation wavelength of ~1 so the majority of the incident light was absorbed. 

Two detectors were used to monitor the PL signal: a fibre coupled Ocean Optics USB2000 

spectrometer, and a Si photodiode. Both were placed close to the sample with a long pass filter 

covering the photodiode to block any scattered excitation. The change in PLQY with temperature 

was estimated by comparing the relative change in the PL signal intensity between room 

temperature and a range of low temperatures. The emission from SY films is not isotropic so the 

emission was measured from multiple angles with the results averaged. Furthermore, the 

measurements were performed by modulating between high and low temperatures rather than using 

a gradient in order to rule out any degradation effects. 

6.3 Results and discussions 

6.3.1 Room temperature  

Figure 6.4.a and b show typical electrical transfer characteristics of the model LEFETs at 

room temperature where channel length and width were 50 µm and 16 mm, respectively. The gate 

voltage was scanned from -100 V to + 100 V while keeping the source–drain voltage at a fixed 

value of -100 V or +100 V. The electrical output characteristics at room temperature are shown in 

Figure 6.4.c and d, the devices demonstrated both diode-like and saturation regimes for hole and 

electron accumulation [39]. The diode-like characteristics (super-linear increase of drain current 

with source-drain voltages) are more prominent in n-channel mode (VG = 0 to 60 V).  Further 

increase in the gate voltage from 80 V to 100 V leads to accumulation of electrons, and the 

transistor operates fully in the n-channel mode. These characteristics are typical of ambipolar 

LEFETs [41]. 
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Figure 6.4 Electrical and optical characteristics of a typical LEFET at room temperature: a) source-

drain current and brightness for p-mode, VDS was kept constant at -100 V; b) source-drain current in 

n-mode, VDS was kept constant at +100 V; c) and d) output characteristics for p and n modes, 

respectively. In all cases the channel length and channel width were 50 um and 16 mm, 

respectively. 

Conduction of charge in the device occurs primarily at the DPP-DTT/PMMA dielectric 

interface. The field effect mobility at room temperature for both holes and electrons were calculated 

from the transfer characteristics in the saturation regims and found to be 0.06 cm
2
/Vs and 0.002 

cm
2
/Vs, respectively. The electron mobility is lower than that previously reported for DPP-DTT/SY 

heterostructure LEFETs [41]. This is mainly due to different processing and testing condition of the 
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samples (UV exposure during the encapsulation process; and environmental exposure during 

transfer to cryostat) and contact resistance (see Figure 6.4.c and d) associated with the electron 

injecting Ba electrode. Light emission (yellow-green colour) was clearly visible to the eye during 

device operation in both hole and electron accumulation modes. Figure 6.4.a and b show the 

brightness (cd/m
2
) versus gate voltage for the LEFETs for hole and electron accumulation mode 

respectively (channel length and width of this device were 50 µm and 16 mm, respectively). The 

brightness increases with gate voltage, reaching 196 cd/m
2
 with an EQE of 0.0013% in hole 

accumulation, and 21 cd/m
2
 with an EQE of 0.038% for the electron accumulation. 

 

Figure 6.5 Operation mechanisms and energy level diagrams for the LEFETs: a) p-mode operation; 

b) n-mode operation; c) injection for  p-mode; d) injection for n-mode. 

Figure 6.5 shows the details of the operating mechanism along with the relevant energy 

levels of the semiconductors and contacts. For negative gate voltage (VG < 0), positive charge 

carriers (holes) are accumulated at the semiconductor-dielectric interface and are the majority 

carrier in the LEFET, i.e., holes move towards the Ba electrode upon application of the source-drain 

voltage. These holes recombine with electrons injected from the Ba electrode (work function = 2.6 

eV) into SY (EA = 2.9 eV) [17] resulting in exciton formation and subsequent light emission under 
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the Ba electrode (see Figure 6.5.a and c). During operation in n-mode the applied gate voltage is 

positive and electrons are the dominant carrier in the channel. In this mode, electrons are 

transported toward the hole injecting contact leading to exciton formation and light emission under 

the Au electrode (see Figure 6.5.b and d). The emission mechanism is thus relatively 

straightforward to understand, enabling straightforward analyse of the device outputs under varying 

experimental conditions.  

 

Figure 6.6 Output characteristics at 135 K for (a) Hole; (b) Electron accumulation modes. Channel 

length and width were 50 µm and 16 mm, respectively 

6.3.2 Variable temperature mobility measurements 

 Figure 6.6 shows typical output characteristics with clear linear and saturation regimes of 

the LEFETs for both modes (channel length and width of this device were 50 µm and 16 mm, 

respectively) at an example temperature of 135 K. Figure 6.7.a and b show typical electrical 

characteristics from 295 K to 135 K for p-mode and n-mode operation, respectively. As the 

temperature decreases, the drain current decreases in both p- and n-channel modes. At low 

temperatures, the LEFETs demonstrate linear, diode-like and saturation regimes for both hole and 

electron accumulation. Below 175 K, the off-current drops significantly – this is associated with the 

freezing of free carriers as expected in a disordered semiconductor dominated by hopping transport 

physics [20]. From room temperature to 135 K, the mobility was found to depend strongly on 

temperature and the gate voltage. Figure 6.8 shows the plot of mobility (from the p-mode 

characteristics) versus inverse temperature for VG = -15, -20 , -30, -40 and -50 V, for the 50 µm 

channel length and 16 mm channel width device at a constant source-drain voltage of -100 V. This 
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data is consistent with a thermally activated hopping model [20], but one needs also to account for 

any possible temperature dependence of the contact resistance, which now is addressed to finally 

determine the intrinsic mobilities. 

 

Figure 6.7 a) Source–drain current at different temperatures for p-mode at VDS=-100 V; b) Source-

drain current at different temperatures while VDS was constant at +100 V. 

Figure 6.9.a shows contact resistance (Rc) and channel resistance (Rch) for hole 

accumulation mode as a function of gate voltages at room temperature and 175 K. The total 

resistance (Rt = Rch + Rc) was extracted from the output characteristics as a function of gate 

voltage and temperature. Having the total resistance for at least three devices with different channel 

lengths on one substrate allows us to extrapolate the contact resistance from the zero channel (see 

Figure 6.3). The rationale behind using data from devices on the same substrate is to avoid any 

effect of changing film morphology and other fabrication inconsistencies. Overall, it has been found 

that the channel resistance in the hole accumulation mode decreases as the gate voltage increases. 

This is expected, since as the gate voltage increase, the channel becomes more conducting due to 

the accumulation of holes. As the temperature is lowered (175 K), both contact resistance and 

channel resistance increase significantly. As such, the Schottky barrier height for hole injection 

from the semiconductor to the metal increases leading to higher contact resistance [42].   



Chapter6. Charge Transport and Recombination in Heterostructure Organic Light Emitting Transistors 

 

110 

 

 

Figure 6.8 hole mobility as a function of temperature and gate voltage, and activation energy as a 

function of gate voltage (channel length and width were 50 um and 16 mm, respectively). 

To accurately determine the activation energy of the intrinsic mobility was plotted (i.e., the 

mobility corrected with contact resistance) versus inverse temperature in a log-linear scale (see 

Figure 6.9.b). The intrinsic mobilities have been calculated from Equation 6.1 from the slope of the 

inverse channel resistance versus gate voltage [35-39]. Where 𝜇𝑖 is intrinsic mobility, 𝐿 channel 

length, 𝑊  channel width, 𝐶 dielectric capacitance, 𝑅𝑐ℎ channel resistance, and 𝑉𝐺   gate voltage. 

Therefore the final intrinsic mobilities in this study are independent of gate voltage and contact 

resistance. 

 
𝜇𝑖 =

𝐿

𝑊𝐶

𝜕(𝑅𝑐ℎ
−1)

𝜕(𝑉𝐺)
 

  (6.1) 

 

The intrinsic mobilites are higher than the contact limited mobilities and follow the 

Arrhenius Equation with thermally activated charge transport. The calculated activation energy Et = 

114 meV for holes, which is only slightly higher than reported activation energy for DPP-DTT-

based FETs [32].  
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Figure 6.9 a) Contact resistance and channel resistance as a function of gate voltage at two different 

temperatures; b) intrinsic hole mobility as a function of temperature; c) contact and channel 

resistances as function of gate voltage for two different temperatures; d) ratio of contact and 

channel resistances for different gate voltages and temperatures. All plots are for electron 

accumulation mode. In all cases channel length and width were 50 µm and 16 mm, respectively. 

For the electron accumulation mode, Figure 6.9.c shows similar trends in the contact 

resistance (Rc) and channel resistance (Rch) (VG > 80 V) as a function of gate voltages at room and 

135 K. it was noted, for VG < 80 V, extraction of Rc and Rch is not valid due to the super-linear 

increase of the source-drain voltage, i.e., the device is in diode like mode. For VG > 80 V, it has 

been found that: i) Rc is comparable to Rch; and ii) for the whole temperature range, the ratio of 

Rc/Rch ~1(see Figure 6.9.d). Under these conditions, it was concluded that the operating 

mechanism in n-channel is dominated not only by the contact resistance but also trapping. 

Therefore, it is not possible to reliable determine the intrinsic mobility in electron accumulation 

mode. 

6.3.3 Variable temperature radiative recombination efficiency  

Figure 6.10.a shows the temperature dependence of the emission brightness versus gate 

voltage for the hole accumulation mode for a device with channel length and width of this device 

were 50 µm and 16 mm, respectively. Reiterating  at this point that the emission arises from Super 

Yellow. At temperatures above 135 K, the LEFETs exhibit high signal to noise optical output 

characteristics. Below 135 K, the data is not reliable due to a high gate leakage current and hence 
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the measured brightness was comparable to the noise floor of the measurement instrumentation. In 

general, as the temperature was decreased, the brightness decreased. For example, in hole 

accumulation mode, the brightness dropped from 196 cd/m
2
 at 295 K to 57 cd/m

2
 at 135 K.  For 

electron accumulation mode (see Figure 6.10.b), the brightness dropped from 24 cd/m
2
 at 295 K to 

3 cd/m
2
 at 135 K. It is interesting to note that, the brightness decreased only by factor of ~10 from 

room temperature to 135K; whilst the drain current decreased by a factor of ~500 from room 

temperature to 135 K. These results suggest that the recombination dynamics are temperature 

dependent.  

To gain additional insight into the light emission and recombination processes, EQE was 

also measured as a function of gate voltage and temperature. For both hole (see Figure 6.10.c) and 

electron (see Figure 6.10.d) accumulation modes, the EQE increases as the temperature decreases. 

The maximum EQE was 0.3% at 135 K in the electron accumulation mode. This is an improvement 

by a factor 10 in terms of light emission compared to room temperature. For the hole accumulation 

mode, the EQE was 0.03% at 135 K. It was noted, in the ambipolar region of operation (VG 25 V to 

–25 V) the PMT photocurrent was equal to the noise floor and hence the EQE could not be 

calculated in this region. Conventionally, the EQE is governed by the product of four different 

parameters according to:  

 𝝓𝑬𝑸𝑬 = 𝝓𝒆𝒔𝒄𝒂𝒑𝒆 × 𝝓𝒄𝒂𝒑𝒕𝒖𝒓𝒆 × 𝝓𝒔𝒑𝒊𝒏 × 𝝓𝑷𝑳𝑸𝒀   (6.2) 

 

where ϕescape is the photon out-coupling factor (~ 0.20) [43]; ϕcapture is the fraction of electrons and 

holes that recombine to form excitons (the recombination efficiency); ϕspin is related to the spin 

statistics for the formation of singlet or triplet excitons - in this case SY is singlet emitter so ϕspin= 

0.25; and ϕPLQY is the photoluminensce quantum yield in the solid state (measured to be 65% at 

room temperature). The ϕescape and ϕspin components are expected to be independent of temperature, 

as these are related to the device geometry, and the type of emitter (singlet as used in this study), 

respectively. The PLQY is expected to be temperature dependent, as the non-radiative rate 

generally decreases with temperature in organic semiconducting fluorophores such as SY. Figure 

6.11 shows the temperature dependence of the PLQY and it notes the change is smaller than 

expected given change in measured EQE, and taking into account Equation 6.2. By elimination, one 

must therefore conclude that the recombination efficiency (ϕcapture) plays a significant role in the 

temperature dependence of the EQE in these LEFETs. The reason for this strong dependency of the 

recombination efficiency on temperature is not completely clear but could be associated with an 
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increased charge trapping at low energy sites and/or the two carrier concentrations becoming 

balanced at low temperatures.  

 

 

Figure 6.10 Brightness at different temperatures for a) p-mode operation; b) n-mode operation;  

EQE at different temperatures for c) p-mode operation; d) n-mode operation. Note that devices had 

channel lengths and widths of 50 µm and 16 mm, respectively. 

 

Figure 6.11 Photoluminescence Quantum Yield of a thin film of Super Yellow (emissive layer) on 

fused silica substrates as function of temperature. 
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6.4 Conclusion  

In summary, charge transport (mobility and charge injection) and emissive (radiative 

recombination, brightness, EQE) properties of organic semiconducting polymers were measured in 

a heterostructure light-emitting field effect transistor. Our results demonstrate that, as the LEFET 

was cooled down, the intrinsic hole mobilities follow an Arrhenius response with activation energy 

of Et = 114 meV and the overall EQE increases. While the PLQY of the emissive polymer increases 

with decreasing temperature it is insufficient to explain the improved EQE. Therefore, the improved 

EQE at low temperature is primarily due to an increased radiative recombination. Our results 

establish some basic rules for engineering high radiative efficiencies in light-emitting field effect 

transistors, which should aid in both materials and architecture design. 
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Chapter 7  

Summary, Conclusions, and Outlook  

The focus of the work presented in this thesis is divided into two parts. The first focus was 

on a new, solution processable dendritic class of OLED materials emitting yellow-green colours 

suitable for mass production techniques such as spin coating and inkjet printing. The dendritic 

structure was employed to provide independent control over photophysical properties without 

negatively impacting on charge transport. Different approaches including altering the type and 

number of dendrons and polymerisation of dendrimers were investigated. Throughout the course of 

this study, both the photophysical properties and electro-optical performance of these materials in 

devices were characterised. The second part of this work was on the basic behaviour of organic 

semiconductors including the photophysics and recombination in the LEFET architecture. The 

outcome of these studies were towards the dual purpose of having more efficient solution processed 

OLEDs for industrial display technology with simpler electrical circuits provided by LEFETs.   

In Chapter 1, a summary of the current work and working knowledge of the light emitting 

devices which motivated the studies in this thesis was described. This was followed by a summary 

of the basic theoretical background applicable to the studies on organic semiconductors, dendritic 

structures, photophysical concepts, and temperature dependent measurement methods. The 

operational mechanism for standard light emitting devices such as OLEDs and LEFETs were then 

discussed. Finally, a summary of the objectives of the study was provided.  

The experimental methods, calculations, and materials used throughout the work presented 

in this thesis were outlined and explained in Chapter 2. This included diverse discussions from 

theoretical and experimental concepts of optical techniques to device fabrication and electrical 

characterisation. One of the challenges in this project was the characterisation of dipole orientation 

applicable to OLED devices. The dipole orientation had never before been tested at the Centre for 

Organic Photonics and Electronics. The angle dependent PL spectrum setup was established and 

tested on a reference sample according to prior work in literature.    

In Chapter 3, the optical and electrical characterisation of a dendritic material using a 

reported iridium complex with biphenyl dendron was described. This work was undertaken as a 

reference in order to learn more about the photophysical and device performance of this class of 
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materials. By introducing the electron transport layer TPBi in neat devices, the electron injection 

was enhanced. Further, this induced hole blocking at the recombination zone, providing higher 

recombination rates and consequently higher internal quantum efficiencies. The EQE was improved 

to 11.5% for neat devices. This result was ten times better than previously reported results (0.1%). 

The 23% outcoupling value from this device indicated the possibility of horizontal orientation for 

emissive dipoles. This could be justified with the anisotropic orientation of the layer underneath, 

which could dominate the orientation of emissive layer.  

In Chapter 4, a novel approach was demonstrated for solution-processable phosphorescent 

materials by the integration of hole-transporting carbazole-based IrIII dendrimers (D1) into the 

polymer backbone to create poly-dendrimer (P1). The maximum EQE values for single layer 

dendrimer (D1) and poly(dendrimer) OLEDs were 4.5% and 7% respectively. These results 

indicated the advantages of polymerisation on device performance, possibly due to better film 

forming and charge balance. The performance of dendrimer D1 in both neat and blended devices 

confirmed the outcoupling of 22.5% and 25%, respectively. The most outstanding result was 

achieved for poly(dendrimer) with maximum EQE of 30% indicating 40% outcoupling, which 

haven’t been reported for solution processed devices before. This is double the theoretical limit of 

(20%) requiring additional investigation of dipole orientation. The angular dependent PL 

measurements were performed in this regard and revealed the ratio of 73% horizontal dipoles which 

is higher than isotropic material with 67%. Moreover, a similar result was found for 

poly(dendrimer) P1 which could be due to the heteroleptic structure of these compounds. This is a 

new and promising achievement as it allows more efficient OLEDs to be realised via modifications 

made to the intrinsic properties of the material.  

Further in this chapter, the study was extended using the doubly-dendronised dendrimer 

(D2) via adding additional carbazole dendrons to the dendrimer D1. The photophysical properties of 

D1 and D2 were characterised as well as their performance in devices. By introducing the second 

dendron attached to the ligands of IrIII dendrimers, both the intra- and inter-chain inter-

chromophore interactions could be controlled by core encapsulation, leading to higher PLQY values 

in the solid state and longer life times of the emissive species. A drawback of this approach was a 

red-shift in the emission colour due to an increase in conjugation length of the ligand. The EQE of 

6% was obtained for D2 which is slightly higher than its singly-dendronised counterparts with 4.5% 

EQE. This double dendron approach to control optoelectronic properties was also used for 

poly(dendrimers), providing the extra advantage of higher solution viscosity.  
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Although, this family of materials has potential for host-free single layer OLED devices, 

blended emissive layers showed further reduction in inter-chromophore interaction and 

concentration quenching. Adding a second dendron (i.e., in going from D1 to D2 and P1 to P2) 

seems to have an impact on film packing and morphology of the emissive layer, both of which play 

a crucial role in influencing device performance.  

In Chapter 5, an ambipolar solution processable poly(dendrimer) was described whereby 

electron-transporting moieties (oxadiazole) were integrated into a carbazole based poly(dendrimer). 

Different distributions of electron and hole moieties were applied in these designs. In spite of the 

balance between charge carrier types provided with this approach, the recombination rate could not 

be increased sufficiently. The conclusion drawn was that this is likely due to the disorder introduced 

into the system with the addition of the electron moieties as well as a decrease in PLQY caused by 

quenching. 

By using the dual functionality of LEFETs, there is the potential to achieve simultaneous 

measurements of the charge transport (mobility and charge injection) and emissive properties 

(radiative recombination, brightness, EQE) of organic semiconducting polymers. This was taken 

advantage of with the temperature dependent experiments described in Chapter 6. The results 

demonstrated that, as the LEFET was cooled down, the intrinsic hole mobilities followed an 

Arrhenius response with activation energy of Et = 114 meV, and the overall EQE increased. While 

the PLQY of the emissive polymer increased with decreasing temperature it was insufficient to 

explain the improved EQE. It was concluded that the improved EQE at low temperatures was 

primarily due to an increased radiative recombination. Our results established some basic principles 

for engineering high radiative efficiencies in LEFETs, which should aid in both material and 

architecture design. 

As well as concluding this work and summarising the findings throughout this thesis, it is 

necessary to acknowledge the potential next steps generated by these findings as follows:  

i) A prospective approach to further increase OLED device performance would be to 

make use of an exciplex forming co-host for the emissive materials. In this case, 

phosphorescent dendrimers or poly(dendrimers) would be the guest material, and a 

combination of electron- and hole transporting materials  would be the requirements 

for the co-host. This approach can provide the necessary isolation between cores to 

prevent concentration quenching, as well as an ambipolar host, which could ease 

both charge injection and transport.  
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ii) A second outlook would be towards more studies on the horizontal orientation of 

emissive dipoles. This could significantly enhance the intrinsic properties of the 

emissive materials, achieving higher light out-put coupling and hence EQEs without 

the need for device modifications. One approach to achieve this is via the creation of 

an anisotropic emissive layer provided by the heteroleptic design of emissive 

materials, or alternatively an anisotropic host system. 

iii) One of the advantages using dendritic structures is the ability to independently 

control optical properties of materials while maintaining the electrical properties. 

Therefore third outlook suggests altering the emitting color by means of other cores 

for red or blue. Giving poly(dendrimers) provided excellent outcoupling and device 

performance for green and yellow in the work presented in this thesis, this outlook 

can lead to having highly efficient GRB (green-red-blue) pixels in display 

technology. A key next step could be studying device stability and degradation 

which is crucial for display technology as well as lighting. 

iv) Another approach toward highly efficient LEFET devices would be employing the 

planar anisotropic materials which simultaneously enhance the charge transport and 

direction of light emission. A combination of these ideas could be used in LEFET 

structures to provide improved OLED efficiency with switching advantages.  
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Appendix 

Transfer characteristics of single layer super yellow (SY) LEFET 

  

 


