
I 

 

 

 

 

 

 

 

Development of an Advanced Data Analytics Model to Improve       

the Energy Efficiency of Haul Trucks in Surface Mines 

Ali Soofastaei 

 

 

 

 

 

 

 

A thesis submitted for the degree of Doctor of Philosophy at 

The University of Queensland in 2016 

School of Mechanical and Mining Engineering 



II 

 

Abstract 

Truck haulage is responsible for a majority of cost in a surface mining operation. Diesel fuel, which 

is costly and has a significant environmental footprint, is used as a source of energy for haul trucks 

in surface mines. Reducing diesel fuel consumption would lead to a reduction in haulage cost and 

greenhouse gas emissions. The determination of fuel consumption is complex and requires multiple 

parameters including the mine, fleet, truck, fuel, climate and road conditions as input. Data analytics 

is used to simulate the complex relationships between the input parameters affecting the truck fuel 

consumption. This technique is also used to optimise the input parameters to minimise the fuel 

consumption without losing productivity or further capital expenditure for a specific surface mining 

operation.  

The aim of this research thesis is to develop an advanced data analytics model to improve the energy 

efficiency of haul trucks in surface mines. The most important controllable parameters affecting fuel 

consumption are first identified, namely payload, truck speed and total resistance. These parameters 

are selected based on the results of an online survey. A comprehensive analytical framework is 

developed to determine the opportunities for minimising the truck fuel consumption. The first stage 

of the analytical framework includes the development of an artificial neural network model to 

determine the relationship between truck fuel consumption and payload, truck speed and total 

resistance. This model is trained and tested using real data collected from some large surface mines 

in USA and Australia. A fitness function for the haul truck fuel consumption is successfully 

generated. This fitness function is then used in the second stage of the analytical framework to 

develop a computerised learning algorithm based on a novel multi-objective genetic algorithm. The 

aim of this algorithm is to estimate the optimum values of the three effective parameters to reduce 

the diesel fuel consumption.  

The following studies are also conducted to enhance the analysis of haul truck fuel consumption. 

First, a comprehensive investigation of loading variance influence on fuel consumption and gas 

emissions in mine haulage operation is carried out. Then, a discrete-event model to simulate the effect 

of payload variance on truck bunching, cycle time and hauled mine materials is developed. The 

influence of rolling resistance on haul truck fuel consumption in surface mines is investigated.  

Five papers have been generated and published or accepted for publication in peer-reviewed journals. 

Presented thesis is completed according to The University of Queensland format for paper based PhD 

thesis. 
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CHAPTER 1 

1. Introduction 

1. Based on the latest statistics, annually about 607 Pita Joule (PJ) energy is consumed in Australian 

mining industry of which 11% are saveable[1]. This amount of saving has motivated both miners and 

the government to conduct a number of research studies on how to reduce the energy consumption in 

this industry. 

2. Reducing energy consumption has been important since the early stages of utilisation of machines in 

the mining operations. The importance of energy consumption reduction has gradually increased 

since the rise in the cost of fuel in the 1970s. Up until now, different countries such as USA, Canada 

and China have carried out a number of research and industrial projects to reduce energy consumption 

in various mining operations [2-4]. 

3. Approximately 34% of the total energy used in Australian mines is related to diesel consumption [1]. 

Trucks use a great amount of energy in the Australian surface mines in haulage operation system. 

This has caused truck manufacture companies and major mining corporations to carry out a number 

of researches with the aim of reducing the amount of energy used by these large machines. However, 

a significant progress has not yet been achieved in this field of research due to the complexity of the 

parameters involved. Haul truck fuel consumption is a function of various parameters, the most 

significant of which have been identified and categorised into some main groups such as fleet 

management, mine planning, modern technologies, haul road, design and manufacture, weather 

condition and fuel quality. Each group has a couple of parameters. In the present study, the effects of 

payload, truck speed and haul road total resistance on the energy consumption of the haul trucks are 

examined. 

4. One of the innovative parts of this research is the use of artificial neural network and genetic algorithm 

in the analysis of energy consumption. Currently, these methods are used as an evolutionary algorithm 

in different applications such as civil, mechanic, aerospace and electrical industries. The results of 

applications of these methods are being published annually in literature. However, a review of 

literature indicates that artificial neural network and genetic algorithm have not previously been used 

to minimise fuel consumption by haul trucks in surface mines. Hence, this project utilises these 

1.1 Background 
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methods, which have been successfully used in other applications, with the aim of determining the 

optimum values of pertinent parameters on energy consumption with trucks in surface mines. 

Truck haulage is responsible for a majority of cost in a surface mining operation.  Diesel fuel, which 

is costly and has a significant environmental footprint, is used as a source of energy for haul trucks 

in surface mines. Reducing diesel fuel consumption would lead to a reduction in haulage cost and 

greenhouse gas emissions. The determination of fuel consumption is complex and requires multiple 

parameters including the mine, fleet, truck, fuel, climate and road conditions as input. 

How data analytics can be applied to reduce the fuel consumption of the current fleet without 

capital expenditure?  

The aim of this research is to develop an advanced data analytics model for analysing the complex 

interactions that influence the energy efficiency of haul trucks in surface mining. To accomplish this 

aim, the following objectives have been established: 

 Identify key parameters driving energy efficiency;  

 Select the most important controllable parameters;  

 Develop regression models to quantify the impact of the selected parameters; 

 Create predictive model to simulate the combined interaction of the parameters;  

 Develop an optimisation model to maximise resultant energy efficiency gains; and 

 Validate the resultant models. 

 

 

 

 

1.2 Statement of the problem 

1.3 Research question 

1.4 Aims and objectives 
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This thesis identifies a real issue of concern in surface mine operations. The presented thesis develops 

a data analytics model for haul truck fuel consumption that can be applied in other applications. 

This project is limited to investigate about fuel consumption by Rigid-Body off-road haul trucks in 

surface coal and copper mines. Three important and controllable effective parameters on fuel 

consumption by haul trucks are studied.  The focus of this project is on Artificial Neural Network for 

predictive simulation and Genetic Algorithm for optimisation. 

Energy consumption in underground mines, uncontrollable effective parameters on haul truck fuel 

consumption, truck design improvement, truck maintenance, fuel quality, alternative fuels, tyre 

management and driver skills are not investigated in this study. 

The focus of this study is on just three controllable parameters (payload, truck speed and total 

resistance) on fuel consumption by haul trucks in surface mines. The presented model can be 

developed for other parameters in the future. This thesis shows how data analytics models can be 

used to increase energy efficiency in mining industry by completing an example for just three 

parameters.  

All completed phases in this project are illustrated in Table 1-1. 

Table 1-1: All phases of project and methods 

Phase Method 

Identify key parameters driving energy efficiency           Literature Review 

Select the most important controllable parameters           Survey 

Quantify the impact of the selected parameters                Data Analysing (Non- linear Regressions) 

Simulate the combined interaction of the parameters       Artificial Neural Network (ANN) 

Maximise resultant energy efficiency gains                      Genetic Algorithm (GA) 

Validate the resultant models                                            Analysing Mine Site Real Data Sets 

1.5 Significance to the mining industry 

1.6 Scope 

1.7 Methodology 
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CHAPTER 2                                                                             

2. Review of Haul Truck Energy Efficiency Opportunities and Data 

Analytics Models 

2.1.1 Introduction 

Mining plays a vital role in our national security, national economy and in the life of every individual. 

Each year, million tonnes of materials should be mined for each person to maintain his or her standard 

of living [5-7]. The mining industry is a very important part of the global economy and provides 

essential raw materials such as coal, metals, minerals, sand and gravel to the factories and building 

industries, utilities and other businesses [8, 9]. In other words, mining is and will remain a vital part 

of the global economy for many years. 

Mining activity in Australia is relatively diverse and involves extracting minerals, oil, gas and coal 

from the ground, either through open cut mining on the earth’s surface or using underground mining 

methods. Generally, Australia is one of the major producers of mineral material.  

Australia has one of the largest energy-intensive industrial sectors relative to population and energy 

demand is growing year by year. Because of some factors like low energy prices and lower rates of 

capital investment in the manufacturing sector, Australia’s industrial sector had not improved its 

energy intensity as much as that of other countries [9, 10]. The international energy agency estimates 

that by 2030, Australia energy need will be 60% higher than today. There are around 1-2 million 

companies in Australia and estimated that 70% of business energy use is consumed by 250 large 

corporations [11-14].  

 

 

2.1 Energy efficiency opportunities  
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2.1.2 Energy consumption 

2.1.2.1 Australian industry sectors 

Based on the researches done by the Australian government, Transport, Metal Manufacturing, Oil 

and Gas, and Mining were the industry sectors with the highest energy use in 2013–14 [15]. A quarter 

of annual energy in Australia is consumed for transportation. This amount of energy consumption is 

about 1516 PJ/Year. Almost 16% of energy use, or 971 PJ/Year, was attributed to the manufacturer 

of metal products such as aluminium, steel, nickel, lead, and iron, zinc, copper, silver, and gold. The 

second largest energy-using industry sector was Oil and Gas, which is consuming 789 PJ/Year, or 

13% of participants’ energy use. Activities in this sector include the conversion of gas into liquefied 

petroleum gas (LPG). The other sectors with the largest energy use in 2013–14 are illustrated in 

Figure 2-1. 

 

Figure 2-1: Top energy users by industry sector 2013–14 (Total 6069 PJ) [15-18] 

Energy use by the remaining industry sectors has been aggregated under the category ‘Others’ in 

Figure 2-1 includes corporations in the construction and other manufacturing sectors. 

Since the scope of this project is limited to mining industry, it is necessary to investigate the energy 

consumption in this industry more precisely. 
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2.1.2.2 Australian mines 

The energy consumption intensity in mines depends on the type of mineral being extracted, as well 

as the type of production processes and the extraction technologies used by the mining businesses. 

The three largest energy-using mining industries and the proportionate share of energy use are 

tabulated in Table 2-1. 

Table 2-1: Energy use by mining sub-division [19, 20] 

Mining Sub-division Energy Use (PJ/Year) Energy Use (%) 

Coal Mining 48 20 

Oil and Gas Extraction 72 31 

Metal Ore Mining 83 36 

Others 30 13 

Sum 607 100 

The type of fuel used at a mine site will depend on the mine type (surface or underground) and on the 

processes, which are employed. The energy sources in mining operations are diesel fuel, electricity, 

natural gas, coal, and gasoline, with participation in total energy consumption of 34%, 32%, 22%, 

10%, and 2%, respectively (see Figure 2-2). 

 

Figure 2-2: Fuel consumed in the mining industry [19, 21, 22] 

The current energy use by equipment category in the mining industry is illustrated in Figure 2-3. The 

largest energy consuming equipment types are grinding (40%) and materials handling by diesel 

equipment (17%). 
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Figure 2-3: Contribution of energy use by equipment across the mining industry [19, 21, 22] 

2.1.3 Energy saving opportunities  

2.1.3.1 Australian industry sectors  

Potential energy savings in Australia reported in 2013–14 were divided into the industry sectors 

shown in Figure 2-4. Corporations in the oil and gas and metals manufacturing sectors identified the 

largest energy savings, with 44 PJ (26% of energy assessed) of savings for oil and gas and 35 PJ (21% 

of energy assessed) of savings for metals manufacturing. As observed in other years, the industries 

with the highest energy use were typically the industries that identified the highest energy savings. 

Drilling
5%  (12 PJ/Year) Blasting

2%  (5 PJ/Year)

Digging
6%  (14 PJ/Year)

Ventilation
10%  (23 PJ/Year)

Crushing
4%  (9 PJ/Year)

Ancillary 
Operations

8%  (19 PJ/Year)

Separations
4%  (9 PJ/Year)

Material Handling 
Electric Equipment

4%  (9 PJ/Year)

Material Handling 
Diesel Equipment
17%  (40 PJ/Year)

Grinding
40% (93 PJ/Year)
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Figure 2-4: The energy saving by industry sectors (2013-14) [19, 23, 24] 

2.1.3.2 Australian mines 

The mining businesses identified 19 PJ/Year of energy savings as a result of their assessment process. 

Businesses involved in oil and gas extraction dominated the identification of energy savings, with 

their opportunities accounting for 12 PJ or just over two-thirds of total energy savings for the entire 

mining division. The level of energy savings identified by the miners is shown in Figure 2-5. 

The metal ore miners identified the second largest share of energy savings at 4 PJ or 21% of savings. 

About 2 PJ of energy savings were found in projects reported by the coal mining industry, or 8% of 

total savings in mining. The remaining ‘others’ category accounted for almost 4% of the industry’s 

identified savings. 
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Figure 2-5: Energy savings per year identified by mining sub-division [15, 21, 22] 

In order to do more precise researches on the field of energy consumption in Australian surface mines, 

it is necessary to provide detailed data on different productions of these mines and analyse them as 

well. So that the importance of doing research on coal mine in Australia will be identified. 

2.1.4 Energy efficiency in mining  

Historically, energy optimisation projects have been one of the highest priorities especially in the 

mining industry. Great progress has been made in the rational use of energy during the last three 

decades [3, 25]. Since 1973, industry in general has been reducing its consumption of energy in order 

to offset considerable increases in energy cost. Early studies carried out during the 1980s showed a 

trend of widespread usage of electricity for trolley-assisted trucks, in-pit crushers, and belt conveyor 

systems to reduce the diesel consumption [26, 27]. 

During the 1990s, there has been remarkable growth in computing and communication technology, 

which has transformed the mining industry from what, was once an intensive labour and very 

dangerous occupation to a highly technological industry [27]. These advances in technology 

development were the keys to the mining industry’s sustainability and profitability but this increases 

the dependency of mining industries on energy. 

Today, in order to reach the goals of cleaner and more energy-efficient processes at the same time, 

the industry continuously reduces the costs of production [28]. Initiative for energy reduction in 

mining processes is accepted throughout the world. The South African Department of Minerals has 
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set a goal to reduce current energy consumption by 15% by 2018 [29]. Recently, a similar approach 

was established for Canadian open-cut mines. The Mining Association of Canada provides complete 

benchmarking for energy consumption in mining operations based on measurements collected from 

seven Canadian mines [30]. 

In an effort to make more efficient use of America’s domestic energy and mineral resources, the 

US Department of Energy (DOE) defined research and development projects which are related to 

energy efficiency in mining [3]. As a result, several studies have been published. The studies revealed 

the benchmarks, ideas for energy saving and methods for calculating the energy consumption. This 

research is improving production, environmental effects, health and safety [3]. In June 2007, the DOE 

published a second document that has provided energy bandwidth in the mining industry. The 

document showed statistics for energy consumed in the mining industry and total energy saving 

opportunities that exist in the industry if the current processes are improved by implementing more 

energy-efficient practice and by using advanced technologies. As opposed to the previous DOE study, 

this report emphasises on the average energy consumption of similar equipment types to estimate the 

potential for energy savings. The equipment is divided into categories based on their processes (e.g., 

digging, blasting, material handling, crushing, etc.) within different mining industries (coal, metal, 

and non-metal) [3]. In this document, the information for energy requirements is calculated by the 

SHERPA software. However, the document shows a methodology to indicate energy saving 

opportunities and based on the results the greatest reduction for the mining processes can be 

represented in the coal and metal mining industries. 

Recently, the mining industry has started implementing advanced Information Technology (IT) 

technologies (e.g., truck dispatching system, GPS system, etc.) which are usually multi-software and 

multi-vendor [31]. The general goal of these systems is to improve processes and reduce the operating 

costs. However, these systems are not designed to manage energy consumption of all production units 

at a mine site, yet they recognise information systems as a key for productivity improvements in 

mines [32]. 

With increasing energy consumption in Australia especially in mining industry, in July 2006, the 

Australian government started a program to do researches and encourage the industries to use energy 

optimally [21]. This program was named “Energy Efficiency Opportunities” (EEO). The aim of EEO 

program is to encourage Australia’s large energy-using businesses to identify and implement projects 

that will save energy, reduce greenhouse gas emissions and lower their business costs [15]. Introduced 

in July 2006, participation in the program is mandatory for companies, which are using more than 0.5 
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PJ of energy per year. Currently 226 companies have registered for the program, with 199 of these 

having registered within the first trigger year of 2005–06. The program’s first five-year cycle was run 

from 2006 to 2011[15]. 

The EEO program was set up with the aim to improve the energy efficiency of the country’s largest 

energy users who account for a major share of national energy use together. Their performance is 

critical to achieve Australia’s energy and climate change goals [33]. 

After this literature review, mining processes should be identified and three topics of energy, cost and 

greenhouse gas emission linked directly to each other will be investigated  

2.1.5 Energy cost analysis for surface mining 

Cost analysis is one of the most important parts of energy management in the mines. The results of 

all gathered data and analysed energy costs for different processes in Australian surface mines are 

illustrated in Table 2-2. 

Table 2-2: The energy costs for surface mining processes [34, 35] 

Mining process             Low Energy Cost* High Energy Cost* Mean Energy Cost* Percentage 

Drilling 0.13 29 14.56 3.38 % 

Blasting 56 275 165.50 39.85 % 

Material Loading 15 98 56.50 13.53 % 

Hauling 65 158 111.50 26.81 % 

Mine Dewatering 0 86 43.00 10.39 % 

Mine Support Equipment  6 44 25.00 6.04 % 

* ($ / Kilotons of material removed) 

As is shown in Table 2-2, blasting and hauling have the maximum amount of energy cost respectively 

and this can emphasise the importance of reducing energy consumption in haulage operation systems 

in surface mines. 

2.1.6 Financial benefits of identified energy saving opportunities  

The mining industry reported that they could potentially achieve net financial benefits of $257.3 

million per year as a result of energy savings projects that they identified through their energy 

efficiency assessments, as shown in Table 2-3. This was the highest level of financial savings of any 

industry sector, representing 35% of the $735.8 million in financial benefits estimated by 199 

corporations in Australia for a one-year period (2013-14). 
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Table 2-3: Net financial benefits from energy savings opportunities [36] 

Mining sub-division 
Energy savings 

(PJ) 

Financial savings 

($ million/year) 

Financial savings 

($/GJ) 

Coal mining  1.37 56.2 41.08 

Oil and gas extraction  11.17 NP NP 

Metal ore mining  3.60 77.2 21.46 

Other mining and services  0.66 NP NP 

Total mining  16.80 257.3 15.32 

                     NP = Data not published to maintain confidentiality of commercially sensitive information 

The net financial benefits of the energy efficiency opportunities identified by the miners were also 

expressed on a per unit (Gigajoule) basis in Table 2-3. 

The dollar-per-gigajoule figures can vary across an industry because of factors such as differences in 

energy pricing. Other factors are fuel types production technologies, other business costs and benefits 

attributed to energy saving projects. 

On average, the mining businesses together identified financial savings of $15.32 per GJ if they were 

to implement their energy efficiency projects. 

The coal miners reported the highest financial benefits of $41.08 per GJ saved, while the metal ore 

miners identified savings of almost half that amount of $21.46 per GJ saved. 

2.1.7 Truck energy consumption 

The understanding of the energy efficiency of a haul truck should not be limited to the analysis of 

vehicle-‑specific parameters. Mining companies can often find greater benefits by expanding the 

analysis to include many other factors that affect the amount of energy used across an entire fleet [37, 

38]. This project is focused on identifying and optimising these parameters.  

Trucks in surface mines are used to haul ore and overburden from the pit to a stockpile, dumpsite or 

to the next stage of a mining process. Their use is planned in combination with other machinery, such 

as loaders, diggers and excavators, according to the site layout and production capacity [39-42]. 

Trucks are expensive to purchase, maintain and use a major amount of diesel in Australian surface 

mines [39].  

Many parameters such as site production rate, age and maintenance of the vehicles, payload, speed, 

cycle time, mine layout, mine plan, idle time, tire wear, rolling resistance, dumpsite design, engine 

operating parameters and transmission shift patterns can affect the energy efficiency of the fleet in 
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surface mining. This knowledge can be merged into mine plan costing and design procedures to 

improve energy efficiency [43-49]. 

Trucks as the haulage operation system in surface mines can be classified as shown in Figure 2-6. 

 

Figure 2-6: Truck types 

2.1.7.1 Truck Specifications 

This section discusses truck specifications that can be important in analysing energy consumption by 

truck systems. Some important specifications are: Payload; Dimensions; Performance; Rimpull 

Curve; Braking Curve; Drive system type; Power; and Tyres. 

Payload, net vehicle weight and gross vehicle weight: The amount of useful material carried by 

trucks is measured either as Bank Cubic Meters (BCM) or as tonnes. It is the weight of the load that 

is important in terms of the vehicles performance. Manufacturers either define the capacity of their 

trucks in terms of nominal payload (tonnes) or as a maximum Gross Vehicle Weight (GVW). The 

GVW system is very sensible as it accounts for the changes in Net Vehicle Weight (NVW).  

Payload= GVW – NVW                               (2-1) 

Equation 2-1 shows that, payload is the difference between GVW and NVW. The NVW for the same 

trucks at different mines can be quite large. This is because different options selected by each 

operation include tyres, wear packages, air conditioning, size of fuel tank and body size. 

Dimensions: Dimensions of the truck play a main role on the amount of energy consumption. 

Dimensions of the truck include body size, height, length and width. Truck manufacturers are a good 

source of data to find the relationship between the energy consumption by truck and the dimensions 

of it [50].  
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Power: Power is a major parameter to calculate fuel consumption by trucks, therefore, it is necessary 

to be analysed precisely. Power is usually quoted as either gross power or flywheel power. Gross 

power is the maximum power that can be produced by the engine. Flywheel power is less than the 

gross power used by ancillary equipment on the truck. This equipment includes fan, air cleaner, 

alternator, water pump, fuel pump, oil pump and muffler. Flywheel power is typically 90 to 95 percent 

of maximum power.  

Performance: Another effective parameter on truck fuel consumption is their performance, which 

can be achieved by technical chart. Manufacturers’ performance chart provides the maximum speed 

of a truck under given total resistance and truck weight. It also gives information on rim pull available. 

Rimpull: Rimpull is the force available at the tyre that is required to move the vehicle forward. This 

force is limited by traction. The difference between the rim pull required overcoming total resistance 

and the available rim pull determines vehicle acceleration. This item is very important to calculate 

the diesel consumption by truck in surface mines. 

Braking / Retarding: The braking / retarding systems are different between the types and models of 

trucks and different braking system have different characteristics. Due to the model and type of a 

truck selected in this, project braking/retarding curves are available and using them to find the 

relationship between energy consumption and braking system is easy. 

Tyres: Tyres are one of the most important elements of truck cost and energy consumption by truck. 

There are two basic tyre types: Bias and Radial. In general, radial tyres are becoming more popular 

in open cut mines. Potential advantages include good flotation, good trip, long tyre life, low fuel 

consumption and smooth ride. 

2.1.8 Effective parameters on truck energy consumption 

2.1.8.1 Mine operation parameters 

There are a number of parameters that can influence on the amount of energy used by trucks in the 

mines some of which are tabulated in Table 2-4. 

2.1.8.2 Truck travel time 

The four ways of calculation travel time that most important parameter of truck productivity include: 

time study; Rimpull curves; empirical; and computer simulation. 
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Table 2-4: Effective parameters on haul truck energy consumption 

Parameter Detail 

Truck model and type Each type and model of truck has especial characteristics and these can be 

effective on energy consumption by truck. 

Material Material which is hauled. 

Bucket density Density of the material being loaded. 

Swell factor Swell factor is the volume increase after material has been disturbed. 

Bucket load Estimated bucket load that the loading unit can carry in BCM. 

Calculated passes to fill Estimate of how many bucket loads (passes) are required to fill the truck to its 

nominal capacity. 

Calculated truck payload Estimated average payload that the truck will carry after considering all the 

above factors. 

Load factor Percentage of truck fill compared to its nominal or rated payload. 

Time per pass Time taken for a loading unit to complete one pass. 

Load time Time taken to load the truck. 

Spot time Time during which the loading unit has the bucket in place to dump, but is 

waiting for the truck to move in to position. Spot time will depend on the truck 

drivers’ ability and the system of loading. Double-side loading should almost 

eliminate spot time. 

Dump time Time taken for the truck to manoeuvre and dump its load either at a crusher or 

dump. 

Fixed time Sum of load, spot and dump time. It is called ‘fixed’ because it is essentially 

invariable for a truck and loading unit combination. 

Travel time Time taken to haul and return the load. 

Wait time  

Cycle time Round trip time for the truck, it is the sum of fixed, travel and waits times. 

Efficiency Measure of how much productive time is achieved in one hour of operating 

time. The sort of activities that the efficiency factor includes is: Clean-up by 

the loading unit or dozer, Crusher and dump slow-downs, Fuelling, Inspections, 

Loading unit movement, Operator experience, Under trucking, Unusual delays 

due to weather. 

Queue factor Accounts for time lost due to queuing. It is another measure of wait time. 

  Productivity Tonnes of production hauled in an operating hour (t/h) 

Productivity = Efficiency / (Cycle time × Truck payload × Queuing factor)                         

Mechanical availability Depending on machine type, age and maintenance philosophy 

Utilisation Operating time divided by available time 

Production Hourly Productivity × Operating Hours 

2.1.8.3 Haul Profile 

The basic information for estimating travel time is called haul profile. Haul profile has four sections 

include: 
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Distance: Distance is the one-way distance per section in metres 

Rolling Resistance (RR): The RR of the road is measured as a percentage of the vehicle weight. RR 

is a measure of the force required to overcome the retarding effect between the tyres and road. It 

includes the resistance caused by tyre penetration of the ground and tyre flexing. 

Grade: Grade is the slope of the section, measured as a percentage. Slop is the ratio between the rise 

of the road and the horizontal length. 

Speed Limitations: Speed limitations can have different values because of following reasons: 

operational constraints; operator capability; and safety. 

2.1.9 Identify the main parameters to make a comprehensive simulation and 

optimisation model 

Different parameters have influence on truck energy consumption. Because of the limitations of the 

project, it is not possible to model all the parameters. Therefore, the most important parameters enter 

the model. Based on the latest governmental reports the mining energy saving opportunities can be 

grouped in staff operation; maintenance procedures; management systems; energy measurement; 

energy management parameters; and new technologies [51, 52]. 

Figure 2-7 shows the level of energy savings, and the proportion of total identified savings, according 

to the types of energy efficiency opportunities being identified and implemented by the mining 

companies in the period of 2013-14. Projects that focused on energy management parameters 

provided the largest amount of energy savings, or 4.61 PJ, accounting for 55% of all savings 

opportunities identified by the mining entities. 

 

Figure 2-7: Energy saving opportunities in mining industry [51, 52] 
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The miners’ energy savings were evenly distributed among the next three largest categories of savings 

opportunities: maintenance, which had savings of 1.31 PJ, energy measurement (1.17 PJ) and new 

technologies (0.7 PJ). Projects that involved management systems and staff operation, recorded the 

lowest energy savings, accounting for 0.41 PJ and 0.21 PJ of energy savings respectively.  

In this project an online survey has been completed to identify three main effective parameters for 

investigate about reducing haul truck fuel consumption. In this survey, 60 industry personnel have 

been contacted with an 81% response rate. The results of the survey have shown that payload. Truck 

speed and haul road total resistance are the most important effective parameters on haul truck fuel 

consumption.  

After identifying the main parameters, it is necessary to select practical methods to create the model. 

These methods are Artificial Neural Network (ANN) and Genetic Algorithm (GA).  

2.1.10 Greenhouse gas emissions 

Energy efficiency has the potential to markedly reduce demand for energy and help to lower 

greenhouse gas emissions, at a relatively low cost to industry and the broader economy. An awareness 

of opportunities to maximise energy efficiency makes commercial as well as environmental sense. 

The Australian Bureau of Agricultural and Resource Economics (ABARE) has estimated that energy 

efficiency measures can play a leading role in reducing greenhouse emissions. By increasing the 

energy efficiency in Australian mining industry, we not only can save billions of dollars annually but 

also it is possible to avoid significant emissions of greenhouse gases and other air pollutants. 

Corporations participating in the EEO program have already identified opportunities to save more 

than six million tonnes of greenhouse gas emissions per year. This is equivalent to 1.1% of Australia’s 

total greenhouse gas emissions [15]. 

The greenhouse gas emissions produced by the mining entities were calculated based on their use of 

different types of fuels, such as electricity, natural gas and diesel. The energy savings reported by the 

mining entities equated to a potential reduction in greenhouse gas emissions of 1,407-kilo tonnes of 

Carbon Dioxide-equivalent (kt CO2-e), as seen in Table 2-5. 

Around 823 kt CO2-e were attributable to direct emissions and 584 kt CO2-e to indirect emissions. 

The energy savings of oil and gas entities produced the largest emissions reductions of any mining 

sub-division, accounting for 42.8% of reductions, or 601.9 kt CO2-e.  
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The metal ore miners identified energy savings that would produce the second largest reductions in 

emissions, of 37.2% or 524 kt CO2-e.  

Table 2-5: Reductions in greenhouse gas emissions by mining sub-division [53-58] 

Mining sub-Division 

Reductions in energy-related emissions                        

(Kilo tonnes CO2-e) 
Share of emissions 

reductions (%) Direct Indirect Total 

Coal mining 52.7 178.0 230.6             16.4 

Oil and gas extraction 601.9 --- 601.9             42.8 

Metal ore mining 125.7 398.2 524.0             37.2 

Other mining and support services 43.1 7.5 50.6               3.6 

Total mining 823.4 583.7 1,470.0              100 

Up to now, different parameters, which influence on energy management in Australian surface mines, 

have been discussed. Since the scope of this research project is to make a model to reduce fuel 

consumption for trucks, it is necessary to focus specifically on the characteristics of trucks and 

effective parameters on their energy consumption. 

2.2.1 Artificial neural network 

Artificial Neural Networks (ANNs) are a popular artificial intelligence method to simulate the effect 

of multiple variables on one major parameter by a fitness function. ANNs are desirable solutions for 

complex problems as they can interpret the compound relationships between the multiple parameters 

involved in a problem. One of the main advantages of ANNs is that they can simulate both linear and 

nonlinear relationships between parameters, using the information provided to train the network. 

ANNs, also known as parallel distributed processing, are the representation of methods that the brain 

uses for learning. ANNs are computing systems made up of a number of simple, highly interconnected 

processing elements, which process information by their dynamic state response to external inputs. 

ANNs are utilised in various computer applications to solve complex problems. They are fault-

tolerant and straightforward models that do not require information to identify the related parameters 

and do not require the mathematical description of the phenomena involved in the process. 

ANNs have been used in many engineering disciplines such as materials [50, 59-64], biochemical 

engineering[65], medicine [66] and mechanical engineering [67-71]. 

2.2 Data analytics models 
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ANNs, also known as neural networks (NNs), simulated neural networks (SNNs) or ‘parallel 

distributed processing’, are the representation of methods that the brain uses for learning. ANNs are 

series of mathematical models that imitate a few of the known characteristics of natural nerve systems 

and sketch on the analogies of adaptive natural learning. The key component of a particular ANN 

paradigm could be the unusual structure of the data processing system. 

There are a group of models that imitate a few of the known characteristics of natural nerve systems 

and draw on the analogies of adaptive natural learning. The key component of a particular ANN 

paradigm could be the unusual structure of the data processing system. A typical neuronal model is 

thus comprised of weighted connectors, an adder and an activation function. ANNs are utilised in 

various computer applications to solve complex problems. 

The main part of a neural network structure is a ‘node’. Biological nodes generally sum the signals 

received from numerous sources in different ways and then carry out a nonlinear action on the results 

to create the outputs. ANNs typically have an input layer, one or more hidden layers and an output 

layer. Each input is multiplied by its connected weight and in the simplest state, these quantities and 

biases are combined; they then pass through the activation functions to create the output. Figure 2-8 

shows a simple structure of ANNs. 

 

Figure 2-8: A simple structure of ANNs [50] 

There are some grounds for ANNs application such as:  ANNs are fault tolerant and straightforward 

models that do not require information for identifying the related parameters; ANNs do not need the 

mathematical description of the phenomena involved in the process; and ANNs are utilised in various 

computer application to solve complex problem. 
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2.2.2 Genetic algorithm 

Genetic Algorithm (GA) provides a method for solving optimisation problems by imitating the 

evolutionary process based on the mechanics of Darwin’s natural selection [72]. GAs are the search 

methods based on principles of natural selection and genetics [72]. GAs can be categorised as Meta 

heuristics with global perspective. GA has been applied to a diverse range of scientific, engineering 

and economic problems [73-78].  

Recently, GAs have received considerable attention regarding their potential as an optimisation 

technique for complex problems and have been successfully applied in the area of industrial 

engineering [79-86]. GAs are implemented as a computer simulation to find better solutions. They 

encode the decision variables of a search problem into finite-length strings of alphabets of certain 

cardinality. The strings, which are candidate solutions to the search problem, are referred to as 

chromosomes. The alphabets are referred to as genes and the values of genes are called alleles. In 

contrast to traditional optimisation techniques, GAs work with coding of parameters, rather than the 

parameters themselves. To evolve good solutions and implement natural selection, it is essential to 

measure for distinguishing good solutions from bad solutions. The measure could be an objective 

function that is a mathematical model or a computer simulation, or it can be a subjective function 

where humans choose better solutions over worse ones. In essence, the fitness measure must 

determine a candidate solution’s relative fitness, which will subsequently be used by the GA to guide 

the evolution of good solutions. Another important concept of GAs is the notion of population [87-

90]. Unlike traditional search methods, genetic algorithms rely on a population of candidate solutions. 

The population size, which is usually a user-specified parameter, is one of the important parameters 

affecting the scalability and performance of genetic algorithms. Once the problem is encoded in a 

chromosomal manner and a fitness measure for discriminating good solutions from bad ones has been 

chosen, the evolution usually starts from a population of randomly generated individuals and happens 

in generations. In each generation, the fitness of every individual in the population is evaluated, 

multiple individuals are stochastically selected from the current population (based on their fitness), 

and modified to form a new population. The new population is then used in the next iteration of the 

algorithm. Commonly, the algorithm terminates when either a maximum number of generations has 

been produced, or a satisfactory fitness level has been reached for the population. 



21 

 

2.2.2.1 Genetic Algorithm vocabulary 

Since genetic algorithms are rooted in both natural genetics and computer science, the terminologies 

used in genetic algorithm literature are mixture of the natural and the artificial science[91-93]. The 

correspondence of genetic algorithm terms and optimisation terms are summarised in Table 2-6. 

Table 2-6: Explanation of genetic algorithm terms 

Genetic Algorithms Explanation 

Chromosome (String, Individual) Solution  (Coding) 

Genes (Bits) Part of solution 

Locus Position of gene 

Alleles Values of gene 

Phenotype Decoded solution 

Genotype Encoded solution 

2.2.2.2 Genetic Algorithm terminology 

Some basic terminologies for genetic algorithm are illustrated in following: 

Fitness Function: The fitness function is function you want to optimise. For standard optimisation 

algorithms, this is known as the objective function. 

Individuals: An individual is any point to which you can apply the fitness function. The value of the 

fitness function for an individual is its score. An individual is sometimes referred to as a genome and 

the vector entries of an individual as genes. 

Populations and Generations: A population is an array of individuals. At each iteration, the genetic 

algorithm performs a series of computations on the current population to produce a new population. 

Each successive population is called a new generation. 

Diversity: Diversity refers to the average distance between individuals in a population. A population 

has high diversity if the average distance is large; otherwise, it has low diversity. 

Fitness Value: The fitness value of an individual is the value of fitness function for that individual. 

Parents and Children: To create the next generation, the genetic algorithm selects certain 

individuals in the current population, called parents, and uses them to create individuals in the next 

generation, called children. Typically, the algorithm is more likely to select parents that have better 

fitness values. 
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2.2.2.3 Genetic Algorithms’ steps 

The following steps can be applied to use GA in the industrial projects. 

Initialization: The initial population of candidate solutions is usually generated randomly across the 

search space. However, domain-specific knowledge or other information can be easily incorporated. 

Evaluation: Once the population is initialized or an offspring population is created, the fitness values 

of the candidate solutions are evaluated. 

Selection: Selection allocates more copies of those solutions with higher fitness values and thus 

imposes the survival-of-the-fittest mechanism on the candidate solutions. The main idea of selection 

is to choose better solutions out of worse ones, and many selection procedures have been proposed 

to accomplish this idea, including roulette-wheel selection, stochastic universal selection, ranking 

selection and tournament selection, some of which are described in the next section. 

Recombination: Recombination combines parts of two or more parental solutions to create new, 

possibly better solutions (i.e. offspring). There are many ways of accomplishing this (some of which 

are discussed in the next section), and competent performance depends on a properly designed 

recombination mechanism. The offspring under recombination will not be identical to any particular 

parent and will instead combine parental traits in a novel manner. 

Mutation: While recombination operates on two or more parental chromosomes, mutation locally 

but randomly modifies a solution. Again, there are many variations of mutations, but it usually 

involves one or more changes being made to an individual’s trait or traits. In other words, mutation 

performs a random walk in the vicinity of a candidate solution. 

Replacement: The offspring population created by selection, recombination, and mutation replaces 

the original parental population. The algorithm usually selects individuals that have better fitness 

values as parents. The GA creates three types of children for the next generation: 

 Elite children are the individuals in the current generation with the best fitness values. These 

individuals automatically survive to the next generation. 

 Crossover children are created by combining the vectors of a pair of parents. 

 Mutation children are created by introducing random changes, or mutations, to a single parent. 

The three types of children are illustrated in Figure 2-9. 
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Figure 2-9: Three types of children for the next generation 

2.2.2.4 Stopping conditions for the Algorithm 

All conditions to stop a GA algorithm are illustrated in Table 2-7 [72]. 

Table 2-7: Stopping conditions for the algorithm 

Stopping Condition Explanation 

Generations The algorithm stops when the number of 

generations reaches the value of Generations. 

Time limit The algorithm stops after running for an amount 

of time in seconds equal to Time limit. 

Fitness limit The algorithm stops when the value of the fitness 

function for the best point in the current 

population is less than or equal to Fitness limit. 

Stall generations The algorithm stops if there is no improvement in 

the objective function for a sequence of 

consecutive generations of length Stall 

generations. 

Stall time limit The algorithm stops if there is no improvement in 

the objective function during an interval of time in 

seconds equal to stall time limit. 

The algorithm stops as soon as any one of five conditions mentioned in Table 2-7 is met. The 

searching procedure of GA is shown in Figure 2-10. 
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Figure 2-10: The flow diagram of a GA optimisation model 

2.2.2.5 Differences of Genetic Algorithm 

The GAs differ from conventional optimisation and searching procedure in several fundamental ways 

as follows: 

 GAs work with a coding of solution set, not the solutions themselves; 

 GAs search a population of solutions, not a single solution; 

 GAs use payoff information (Fitness Function), not derivative or other auxiliary knowledge;  

 GAs use probabilistic transition rules, not deterministic rules. 
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2.2.2.6 Major advantages of Genetic Algorithm 

The GAs have received considerable attention regarding their potential as a novel optimisation 

technique. There are four major advantages when applying genetic algorithms to optimisation 

problems. 

 GAs do not have much mathematical requirements about the optimisation problems. Due to 

their evolutionary nature, GAs will search for solutions without regarding the specific inner 

workings of the problem.  

 GAs can handle any kind of objective functions and any kind of constraints (i.e., linear or 

nonlinear) defined on discrete, continuous or mixed search spaces. 

 The periodicity of evolution operators makes GAs very effective at performing global search 

(in probability).  

 The GAs provide us a great flexibility to hybridize with domain dependent heuristics to make 

an efficient implementation for a specific problem. [94] 

In summary, it found that a main part of energy use in Australia is consumed in mining industry and 

there are a lot of energy efficiency opportunities in mine material haulage systems. A main part of 

these opportunities were identified in surface mines by reducing haul trucks fuel consumption.  

There are a lot of effective parameters on energy use by trucks and some of them are not controllable. 

Payload, truck speed and total resistance as three main effective and consolable parameters on fuel 

consumption by haul trucks were selected. Literature review shows that there is not any 

comprehensive advanced data analytics model to find the relationship between more than one 

parameter and fuel consumption and there is not also any multi-function optimisation model to 

improve effective parameters on haul truck fuel consumption.  

This research thesis aims to develop an advanced data analytics model to improve energy efficiency 

for haul trucks in surface mines. This model consists of Artificial Intelligence methods for developing 

a fitness function for haul truck fuel consumption, and optimising the important controllable 

parameters that result in minimum fuel consumption. In order to enhance the analysis, the effects of 

payload variance and rolling resistance on fuel consumption and gas emissions are investigated as 

well.  

2.3 Summary  
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Abstract 

The data collected from haul truck payload management systems at various surface mines show that 

the payload variance is significant and must be considered in analysing the mine productivity, diesel 

energy consumption, greenhouse gas emissions and associated costs. The aim of this study is to 

determine the energy and cost saving opportunities for truck haulage operations associated with the 

payload variance in surface mines. The results indicate that there is a non-linear relationship between 

the payload variance and the fuel consumption, greenhouse gas emissions and associated costs. A 

correlation model, which is independent of haul road conditions, has been developed between the 

payload variance and the cost saving using the data from an Australian surface coal mine. The results 

of analysis for this particular mine show that a significant saving of fuel and greenhouse gas emissions 

costs is possible if the Standard Deviation of payload is reduced from the maximum to minimum 

value. [94] 
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CHAPTER 3 

3. A Comprehensive Investigation of Loading Variance Influence on Fuel 

Consumption and Gas Emissions in Mine Haulage Operation 

Mining industry consumes a large amount of energy in various operations such as exploration, 

extraction, transportation and processing [2, 95]. A considerable amount of this energy can be saved 

by better managing the operations [3, 25, 49, 96]. The mining method and equipment used mainly 

determine the type of energy source in any mining operation [97]. In surface mining operations, haul 

trucks use diesel as the source of energy [39, 98, 99]. Haul trucks are generally used in combination 

with other equipment such as excavators, diggers and loaders, according to the production capacity 

and site layout [95]. Haul trucks use a great amount of fuel in surface mining operation; hence, mining 

industry is encouraged to conduct a number of research projects on the energy efficiency of haul 

trucks [100, 101]. 

There are many kinds of parameters that affect the rate of fuel consumption for haul trucks such as 

payload, truck velocity, haul road condition, road design, traffic layout, fuel quality, weather 

condition and, driver skill [102-105]. A review of the literature indicates that the understanding of 

energy efficiency of a haul truck is not limited to the analysis of vehicle-specific parameters; and 

mining companies can often find greater energy saving opportunities by expanding the analysis to 

include other effective parameters such as payload distribution and payload variance [105-108]. 

Loading process in truck and shovel operations is a stochastic process [107, 109]. An analysis of the 

haul truck payload data obtained from a number of mine sites around the world shows that the payload 

distribution can be estimated by a normal distribution function with a satisfactory error; and the 

variance associated with haul truck payloads is typically large[106-108, 110]. The payload variance 

depends on a number of parameters such as the particle size distribution, the swell factors, the material 

density, truck-shovel matching, number of shovel passes and the bucket fill factor [106, 108, 109, 

111]. Many attempts have been made to reduce the payload variance by using the latest developed 

technologies such as truck on-board payload measurement system, direct connection between this 

system and the shovel control system and on-line fleet monitoring system [106, 107, 112].  

3.1 Introduction 



28 

 

The payload variance not only affects the production rate and fuel consumption, but it is also an 

important parameter in the analysis of gas emissions and cost. Many research studies have already 

been conducted on the measurement of the haul truck gas emissions in the mining industry[48, 113-

116]. In addition, several numbers of economic models have been presented to predict the cost of 

diesel and gas emissions [117]. 

In this paper, the effects of payload variance on fuel consumption for a mostly used haul truck in 

Australia surface coal mines (CAT 793D) are investigated. A model is presented to estimate the effect 

of payload variance on the gas emissions and the total cost associated with fuel consumption and gas 

emissions. The corresponding energy saving opportunities to the reduction of payload variance are 

also investigated. 

3.2.1 Haul truck payload variance  

Loading performance depends on different parameters such as bench geology, blast design, muckpile 

fragmentation, operators’ efficiency, weather conditions, utilisation for trucks and shovels, mine 

planning and mine equipment selection [106, 107]. In addition, for loading a truck in an effective 

manner, the shovel operator must also strive to load the truck with an optimal payload. The optimal 

payload can be defined in different ways, but it is always designed so that the haul truck will carry 

the greatest amount of material with lowest payload variance [103]. The payload variance can be 

illustrated by carrying different amount of ore or overburden by same trucks in each cycle. The range 

of payload variance can be defined based on the capacity and power of truck. The payload variance 

in a surface mine fleet can influence productivity greatly due to truck bunching phenomena in large 

surface mines [106]. The increasing of payload variance decreases the accuracy of maintenance 

program. This is because the rate of equipment wear and tear is not predictable when the mine fleet 

faces with a large payload variance [118]. Minimising the variation of particle size distribution, swell 

factors, material density and fill factor can decrease the payload variance but it must be noted that 

some of the mentioned parameters are not controllable. Hence, the pertinent methods to minimise the 

payload variance are real-time truck and shovel payload measurement, better fragmentation through 

optimised blasting and improvement of truck-shovel matching. 

3.2 Theoretical analysis 
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3.2.3 Haul truck fuel consumption 

The fuel consumption for haul trucks is determined based on the following parameters 

(see Figure 3-1):  

 The Gross Vehicle Weight (GVW), which is the sum of the weight of an empty truck and 

the payload; 

 The Haul Truck Velocity (V); 

 The Total Resistance (TR), which is equal to the sum of Rolling Resistance (RR) and The 

Grade Resistance (GR) when the truck is moving against the grade of the haul road; and  

 The Rimpull Force (RF), which is the force available between the tyre and the ground to 

propel the truck [119].  

 
Figure 3-1: Haul road and truck key parameters 

Caterpillar trucks are the most popular vehicles amongst all different brands of trucks used in 

Australian mining industry [119]. Based on the power and capacity of haul truck and mine 

productivity, CAT 793D was selected for the analysis presented in this study. The specification of 

selected truck is presented in Table 3-1.  
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Table 3-1: Cat 793D haul truck specifications [120] 

Specification Value 

Engine  

Engine model CAT 3516B HD 

Gross power 1801 kW 

Net power 1743 kW 

Weights - Approximate  

Gross weight 384 tonnes 

Nominal payload 240 tonnes 

Body Capacity  

Struck 96 m3 

Heaped 129 m3 

Tyre  

Torque converter 102.0 L 

Standard tires  40.00R57 

Figure 3-2 presents the Rimpull-Speed-Grade ability curve extracted from the manufacturer’s 

catalogue for CAT 793D [120]. 1 

 

Figure 3-2: Rimpull-Speed-Grade Ability Curve for Truck CAT 793D [120] 

                                                 

1 All developed models in the thesis have been completed based on the latest CAT handbook (2015). Payload is one of the main 

identified effective parameters on fuel consumption by haul trucks. Therefore, just Rimpull Curve has been used and studding about 

returning trucks from up to down in surface mines is not in the scope of project. It means that we don’t need Retarding Performance 

investigation in this thesis. 
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Figure 3-3 illustrates the relationship between the haulage operation parameters and truck 

fuel consumption.   

 

Figure 3-3: Variable relationships required for truck fuel consumption estimation 

The rate of haul truck fuel consumption can be calculated by the following equation [114, 118]. 

)P.LF(3.0FC                                  (3-1) 

where LF is the ratio of average payload to the maximum load in an operating cycle. the percentage 

of LF in different condition is presented in Table 3-2 [114] and P is the truck power (kW).  

Table 3-2: Load Factors (LF) for different conditions [114] 

Operating Conditions LF (%) Condition 

Low 20 - 30 
Continuous operation at an average GVW 

less than recommended, No overloading 

Medium 30 - 40 
Continuous operation at an average GVW 

recommended, Minimal overloading 

High 40 - 50 
Continuous operation at or above the 

maximum recommended GVW 

For the best performance of the truck operation, P is determined by [37]: 

)V.RF(
6.3

1
P max                   (3-2) 

where the RF is the force available between the tyre and the ground to propel the truck and the unit 

of this parameter is (N). It is related to the Torque (T, (N.m)) that the truck is capable of exerting at 

the point of contact between its tyres and the road and the truck wheel radius (r, (m)). 

r

T
RF                     (3-3) 
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In this paper, the fuel consumption by haul trucks has been simulated based on the above mentioned 

formulas. 

3.2.3 Greenhouse gas emissions  

Diesel engines emit both Greenhouse Gases (GHGS) and Non-Greenhouse Gases (NGHGS) into the 

environment [117]. Total greenhouse gas emissions are calculated according to the Global Warming 

Potential (GWP) and expressed in CO2 equivalent or CO2-e [113, 114]. The following equation can 

be used to determine the haul truck diesel engine GHGS emissions [113, 121]. 

EFFC)eCO(GHG 2Emissions                  (3-4) 

Where FC is the quantity of Fuel Consumed (kL) and EF is the Emission Factor. EF for haul truck 

diesel engines is 2.7 t kL/eCO2   [122-124]. 

3.2.4 Cost of greenhouse gas estimation and fuel consumption 

3.2.4.1 Cost of greenhouse gas emissions  

There are many empirical models  for the cost estimation of greenhouse gas emissions, based on the 

US potential CO2 legislation [116]. For this research project, the US Energy Information 

Administration (EIA) model, which is known as a conservative model, is selected. This model 

assumes different allowance prices per year or in other words a CO2 penalty under various scenarios: 

Core Case scenario (CCS), High Cost scenario (HCS), No International Offsets scenario (NIOS), 

Limited Alternatives scenario (LAS) and NIOs / LAs [113].  

Table 3-3 presents a prediction of cost GHGS emissions for difference years (from 2015 to 2050) 

based on the mentioned scenarios [116]. 

Table 3-3: Different kinds of scenarios to estimate the cost of greenhouse gas ($/tonne CO2-e) 

Scenarios 2015 2020 2030 2040 2050 

Core  Case scenario (CCs)  20.91 29.88 61.01 124.57 254.37 

High Cost scenario (HCs) 26.60 38.01 77.61 158.48 323.60 

No International Offsets scenario (NIOs) 31.03 41.53 84.81 173.17 353.60 

Limited Alternatives scenario (LAs) 48.83 44.34 90.54 184.87 377.50 

No Intl. Offsets / Lim. Alt scenario (LAs / NIOs) 53.53 76.50 156.20 318.95 395.28 

In this study, the latest scenario which is a combination of (NIOS) and (LAS) scenarios has been used 

to calculate the GHGs cost. This scenario states that the key low emissions technologies, nuclear, 



33 

 

Carbon dioxide Capture and Storage (CCS) and renewables will be developed in a timeframe 

consistent with emissions reduction requirements without encountering major obstacles where the 

use of international offsets is severely limited by cost or regulation. 

3.2.4.2 Cost of fuel consumption  

The cost of fuel depends on many economic and international policy parameters. There are several 

numbers of models which can be used to estimate the future diesel price [125]. The EIA model can 

be used in this area as well. A graph showing the forecast of diesel price estimated from this mode is 

shown in Figure 3-4.  

 

Figure 3-4: Forecast of diesel price [125] 

3.3.1 Haul truck payload variance 

The payload variance is indicated by its standard deviation (σ). Standard deviation measures the 

amount of variation from the average. A low standard deviation indicates that the data points tend to 

be very close to the mean; a high standard deviation indicates that the data points are spread out over 

a large range of values. Figure 3-5 illustrates the different kinds of normal payload distribution (the 

best estimation function for payload distribution [107]) based on the difference σ for CAT 793D.  

3.3 Results and discussions  
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Figure 3-5: Normal payload distribution for difference standard deviations (σ) (CAT 793D) 

This illustration shows that by reduction of σ, the range of GVW variation is reduced as well. Based 

on the CAT 793D technical specifications the range of GVW variation is between 165 tonnes      

(empty truck) and 385 tonnes (maximum payload). Hence, the maximum σ for this truck can be 

defined as 30; that is because, for higher σ, the minimum GVW is less than the weight of empty truck 

and the maximum GVW is more than the maximum capacity of truck. 

3.3.2 Haul truck fuel consumption 

3.3.2.1 Rimpull analysis 

The Rimpull-Speed-Grade ability curve for CAT 793D truck (see Figure 3-2) is used to determine 

the Rimpull (R) and the Maximum Truck Velocity (Vmax) of the truck based on the values of GVW 

(in the range of 165 to 385 tonnes) and TR (in the range of 1 to 30%). In this study DataThief® 5.6 

and Curve Expert Professional V.2.1 were used to find an equation for R as a function of TR and 

GVW.  

 TR053.0006.0GVW183.0R                                                   

(3-5) 
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3.3.2.2 Maximum truck velocity 

The data for maximum truck velocity curve are collected by DataThief® software and the best 

correlation between R and Vmax has been defined by applying a non-linear regression method (Curve 

Expert Professional Software V.2.1). The following equation presents this correlation. 

)Rcexp(baV d

max                                                              (3-6) 

where a= 53.867, b= 54.906, c= 37.979 and d= -1.309     

3.3.2.3 Fuel consumption 

Figure 3-6, illustrates the variation of Vmax and FC with GVW for six values of TR. The results 

generally show that for all values of total resistance, the Vmax decreases and the FC increases as the 

GVW increases. It must be noted that the rate of fuel consumption is calculated based on the best 

performance of the truck recommended by the manufacturer, which are for the maximum truck 

velocity and the corresponding Rimpull.  

 

Figure 3-6: Variation of Vmax and FC with GVW for different TR 
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The effect of payload variance on haul truck fuel consumption in different haul road conditions is 

illustrated in Figure 3-7.  

 

Figure 3-7: The variation of FC Index with standard deviation (σ) (CAT 793D) 

In this figure, TR has been changed from 5% to 30% and σ is varied between 0 and 30. It is noted 

that, to have a better understanding, a Fuel Consumption Index (FCIndex) has been defined. This index 

presents the quantity of fuel used by a haul truck to move one tonne of mine material (Ore or 

Overburden) in an hour. Figure 3-7 demonstrates that, there is a non-linear relationship between σ 

and FCIndex for all haul road total resistance. Moreover, the FCIndex rises with increasing TR. 

The variation of CO2-e with standard deviation for CAT 793D is presented by CO2-eIndex in             

Table 3-4. The CO2-eIndex presents the amount of greenhouse gas emissions generated by truck to haul 

one tonne ore or overburden in an hour.  

 

 

3.4 Effects of payload variance on fuel consumption 

3.5 Effects of payload variance on greenhouse gas emissions 
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Table 3-4: The variance of CO2-e Index (kg/hr. tonne) with payload Standard Deviation (σ)  

σ TR=5% TR=10% TR=15% TR=20% TR=25% TR=30% 

0 0.64 0.80 1.02 1.21 1.37 1.58 

5 0.84 1.00 1.22 1.40 1.57 1.78 

10 1.06 1.22 1.44 1.63 1.79 2.01 

15 1.31 1.47 1.69 1.88 2.04 2.26 

20 1.59 1.76 1.97 2.16 2.32 2.54 

25 1.91 2.07 2.29 2.48 2.64 2.86 

30 2.27 2.43 2.65 2.84 3.00 3.22 

Based on the tabulated results, it is obvious that there is a non-linear relationship between CO2-eIndex 

and the standard deviation for each haul road total resistance. The minimum greenhouse gas is emitted 

for the minimum total resistance (TR=5%) when the standard deviation has been zero (σ=0) and the 

maximum pollution is generated for the maximum total resistance and standard deviation (TR=30% 

and σ=30).  

3.6.1 Cost of greenhouse gas emissions 

All scenarios that can be used to predict the cost of greenhouse gas emissions estimate that this cost 

is in the range of $20.91 to $53.53 in 2015 (Table 3-3). In this project, the maximum cost of CO2-e 

emissions ($53.53 per tonne) was considered. 

3.6.2 Cost of fuel consumption 

Figure 3-3 illustrates that there is a vast difference in the price of diesel between 2010 and 2015 but 

it is estimated that the price of this type of fuel will be approximately $1 per litter in 2015 for industrial 

use. Hence, in this project the price of fuel for haul trucks in surface mines is assumed $0.99 per litter 

in 2015. 

3.6.3 Total cost  

The calculated FCIndex, the cost of fuel consumed by haul truck for each σ (Fuel CostIndex), the 

greenhouse gas emitted by haul truck to move one tonne of mine material in an hour (CO2-eIndex), the 

cost of greenhouse gas emissions (CO2-e CostIndex) and Total CostIndex for CAT 793D with TR=15% 

in 2015 are tabulated in Table 3-5.  

3.6 Effects of payload variance on cost  



38 

 

Table 3-5: Calculated indexes for CAT 793D with TR=15% in 2015 (Sample) 

 

σ 

FC Index 

L/(hr. tonne) 

Fuel Cost Index 

$/(hr. tonne) 

CO2-e Index 

kg/(hr. tonne) 

CO2-e Cost Index 

$/(hr. tonne) 

Total Cost Index 

$/(hr. tonne) 

0 0.38 0.37 1.02 0.05 0.42 

5 0.45 0.44 1.22 0.07 0.51 

10 0.53 0.52 1.44 0.08 0.60 

15 0.63 0.61 1.69 0.09 0.70 

20 0.73 0.72 1.97 0.11 0.83 

25 0.85 0.83 2.29 0.12 0.95 

30 0.98 0.96 2.65 0.14 1.10 

In this haul road condition, there is a direct relationship between increasing the payload variance and 

Total CostIndex. The Total Cost Index presents the total cost of fuel consumed and CO2-e emitted to haul 

one tonne mine material by truck in an hour. In this case, the Total CostIndex can be vary between 

$0.42 and $1.10 per (hr. tonne) for different values of standard deviation ( = 0 to 30).  

3.6.4 Saving opportunities 

The variation of total cost of fuel consumption and greenhouse gas emissions can be used for saving 

opportunities. Using a truck on-board payload measurement system, developing a direct connection 

between the truck payload measurement system and the shovel, improvement of truck-shovel 

matching or developing an on-line fleet monitoring can be used to reduce the payload variance. Figure 

3-8 illustrates the correlation between the standard deviation reduction (Δσ) and the Saving Index. The 

Saving Index presents the amount of saving cost with reducing diesel consumption and greenhouse gas 

emissions for hauling one tonne mine material (Ore or Overburden) in one hour. This graph is 

independent of haul road condition (RR and GR) and presents the quantity of saving for different 

kinds of standard deviation reduction.  



39 

 

 

Figure 3-8: Correlation between standard deviation reduction (⧍σ) and Saving Index 

Finding the best correlation between the standard deviation reductions (∆σ), and the Saving Index can 

be very important in calculation of the effect of payload variance on production cost. Hence, the 

following equation has been developed to estimate the Saving Index for different road conditions and 

values of the standard deviation reductions. 

25.1

Index )(01.0Saving                     (3-7) 

Equation 3-7 presents the correlation between Saving Index and standard deviation reductions.  

The effect of payload variance on haul truck fuel consumption and GHGS emissions is an important 

matter in real mine sites. In this project, a large surface mine in Australia has been investigated to 

determine the effect of payload variance on energy used, GHGS emitted by haul trucks and the cost 

of them to find saving opportunities. 

Figure 3-9 shows a schematic diagram of the surface parameters used to model haul truck fleet 

requirements. The mine parameters used for this case study are presented in Table 3-6. 

3.7 Case study 
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Figure 3-9: Schematic of open pit used to model fleet requirements 

Table 3-6: The mine parameters of case study 

Parameter Value Unit Description 

Operating Hours per Year 4799 Op Hr/Year  

Pit depth 300 m  

Total ore and wast 2500 M t Haulage Requirement 

Haulage routs 4  150, 200, 250 and 300m 

Ramps 2   

Length of the longest 

ramp 

3 Km  

Horizontal haulage 

distance 

60 m In-Pit 

120 m Ex-Pit 

Width of haul road 35 m  

Truck down ramp speed 30 km Limited due to safety 

considerations Grade Resistance (GR) 10 %  

Rolling Resistance (RR) 5 %  

Shovels 

3  On level 1 (150 m) 

4  On level 2 (200 m) 

2  On level 3 (250 m) 

2  On level 4 (300 m) 

Fleet requirements are calculated using Talpac™ software. The average of TR in this case is 15% 

therefore, FCIndex and CO2-eIndex can be measured by using Figure 3-6 and Table 3-4, respectively. 

The total cost is calculated based on the cost of fuel consumption and CO2-e emissions in 2015 that 

is illustrated in Figure 3-3 and Table 3-5, respectively. The price of fuel and CO2-e is assumed 

constant during the years of operation. The results of calculation are presented in Table 3-7.  
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Table 3-7: Case study results 

Parameter Value Unit 

Max 

(σ=30) 

Min 

(σ=0) 

FC Index 0.98 0.38 L / (hr.tonne) 

CO2-e Index 2.65 1.02 Kg / (hr.tonne) 

Cost Index 1.10 0.42 $ / (hr.tonne) 

Truck Fuel Consumption  (Empty) 175 L / hr 

Truck Greenhouse Gas emission (Empty) 682 Kg / hr 

Truck Cost of Fuel and Greenhouse Gas (Empty) 209 $ / hr 

Average Truck Payload  142 tonne 

Fleet Size 15 Truck 

Total Production per Year 19 M tonne / Year 

Truck Availability 80 % 

Loader Availability 85 % 

Queue Time at Loader 3.05 Min / Cycle 

Spot Time at loader 0.95 Min / Cycle 

Average Loading Time 2.06 Min / Cycle 

Travel Time (Hauling) 16.13 Min / Cycle 

Travel Time (Returning) 6.03 Min / Cycle 

Spot Time at Dump 0.76 Min / Cycle 

Average Dump Time 1.02 Min / Cycle 

Average Cycle Time 30.00 Min 

Average No. of Bucket Passes 3  

Rate of  Fuel Consumption (Fleet) 3774.9 2429.7 L / hr 

Rate of  Greenhouse Gas Emission (Fleet) 11795.4 8124.6 Kg / hr 

Rate of Cost (Fleet) 4349.1 2821.5 $ / hr 

Total Fuel Consumption Annually 18.12 11.66 M L / Year 

Total greenhouse gas emission Annually 56.61 38.99 M kg / Year 

Total cost of fuel consumption  and  Greenhouse 

Gas emission Annually 

20.87 13.54 M $ / Year 

Saving cost percentage 35 % 

Total Saveable Cost 7.33  M $ / Year 

The results show that in this case by reducing one unit of payload variance, $0.02 per (hr. tonne) is 

saveable. The case study mine is under 8 hours of operation in each shift and there is one shift in each 
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day. This mine has 360 working days at year. The calculation shows that, maximum 35% of total fuel 

and CO2-e cost is saveable by reducing standard deviation from 30 to zero. This amount of saving is 

equal to $7.33 M annually. 

This paper aimed to develop a model to find saving opportunities based on the reduction of payload 

variance in surface mines. There is a significant payload variance in loading process in surface mines. 

This variance needs to be considered in analysing the mine productivity, diesel energy consumption, 

greenhouse gas emissions and associated costs. This paper investigated the effects of payload 

variance on diesel energy consumption, greenhouse gas emissions and their associated cost in surface 

mining operations. This study examined CAT 793D model truck, which is one of the mostly used 

haul trucks in surface mining operations. Based on the technical specifications of this truck, the 

variation range of payload was assumed to be between 0 and 30%. All data in Rimpull-Speed-Grade 

ability curve for examined truck were digitalised by DataThief® software. The correlations and 

equations to calculate the maximum truck velocity and fuel consumption were defined. To investigate 

the effects of payload variance on fuel consumption, greenhouse gas emissions and associated costs, 

main indexes were presented. The associated cost of greenhouse gas emissions and cost of diesel 

consumption were determined based on models presented by US Energy Information Administration. 

The results showed that the fuel consumption, rate of greenhouse gas emissions and their costs non-

linearly increase as the payload variance rises for all haul road conditions. The correlation between 

the payload variance and cost saving was developed. This correlation is independent of haul road 

condition and presents the cost saving for different kinds of payload variance reduction. Presented 

model was utilised in a real mine site in Australia as a case study. The results of this project indicated 

that there is a great cost saving opportunity by decreasing the payload variance in surface mines that 

used truck and shovel method for mining operation. This can be achieved by using a truck on-board 

payload measurement system and on-line fleet monitoring.  

  

3.8 Conclusions 
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Abstract 

Payload variance is one of the most important parameter in payload management. This parameter 

must be considered to investigate about mine productivity and energy consumption. Payload variance, 

causes significant differences in gross vehicle weights. Heavily loaded trucks travel slower up ramps 

than lightly loaded trucks. Faster trucks are slowed by the presence of slower trucks, resulting in 

‘bunching’, production losses and increasing fuel consumptions. This paper simulates the truck 

bunching phenomena in large surface mines to improve truck and shovel systems’ efficiency and 

minimise fuel consumption. The study concentrated on completing a practical simulation model based 

on a discrete event method which is most commonly used in this field of research in other industries. 

The simulation model has been validated by a dataset collected from a large surface mine in Arizona 

state, USA. The results have shown that there is a good agreement between the actual and estimated 

values of investigated parameters. [126] 
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CHAPTER 4 

4. A Discrete-Event Model to Simulate the Effect of Payload Variance on 

Truck Bunching, Cycle Time and Hauled Mine Materials. 

Improving the efficiency of haulage systems is one of the great challenges in mining engineering and 

is the subject of many research projects undertaken in both study and industry [127-129]. For mining, 

it is important that haulage systems are designed to be as efficient as possible, in order to minimise 

haulage cost, improve profitability and increase the total mine value. Haulage system inefficiency is 

typically derived from inadequate engineering, which results in poor haul road design, machinery 

standby and downtime, and circuit traffic [130-132]. According to the literature, haulage costs can be 

some of the largest in a mining system [133, 134]. In various case studies it was found that material 

transportation represents 50 per cent of the operating costs of a surface mine [135]. 

The main effective parameters on material transport when a truck and shovel system is used in surface 

mines are mine planning, road condition, truck and shovel matching, swell factors, shovel and truck 

driver’s ability, weather condition, payload distribution and payload variance [58, 103, 119, 136]. 

Based on the literature among all above mentioned parameters, truck payload variance is one of the 

most important parameters in this field [106, 107]. The payload variance not only affects the 

production rate, but also it is an important parameter in the analysis of fuel consumption. The main 

source of the payload variance in truck and shovel mine operation is the loading process. Loading is 

a stochastic process and excavator performance is dependent on parameters such as swell factor, 

material density and particle size distribution [109]. Variation of these parameters causes variation of 

bucket and consequently truck payloads, affecting productivity. Reducing truck payload variance in 

surface mining operations improves productivity by reducing bunching effects and machine wear 

from overloaded trucks [108]. In large surface mines having long ramps, bi-directional traffic and 

restrictions on haul road widths negate the possibility of overtaking. Overloaded trucks are slower up 

ramp in comparison to under-loaded trucks. Thus faster trucks can be delayed behind slower trucks 

in a phenomenon known as truck bunching [106]. This is a source of considerable productivity loss 

for truck haulage systems in large surface mines. 

4.1 Introduction 
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There are some investigations about the payload variance simulation and the effect of this event on 

other mining operational parameters. A study conducted by Hewavisenthi, Lever and Tadic [107] is 

concerned with using a Monty-Carlo simulation to study the effect of bulk density, fill factor, bucket 

size and number of loading passes on the long term payload distribution of earthmoving systems. The 

focus of their study is on simulation of payload distribution and variance in large surface mines. A 

study conducted by Knights and Paton [106]is concerned with truck bunching due to load variance. 

This study was conducted to provide an analysis of the effect of load variance on truck bunching. In 

this project a GPSS/H model was constructed which simulates a haulage circuit designed using data 

inputs from a real mine site. The model was used to run haul circuit simulations with different levels 

of payload variance. From empirical data, haul route travel times were estimated to be dependent on 

payload based on a linear relationship with an additional stochastic component modelled by a normal 

distribution. The data was insufficient to determine the dependence of changes in haul route travel 

time on changes in payload variance. In this project a simulation was also conducted to investigate 

the haul circuit throughput difference if single truck overtaking was permitted. Webb [110] 

investigated the effect that different bucket load sizes had on truck cycle times and the inherent costs. 

The research project being undertaken will focus primarily on the effect of load variance on truck 

bunching. 

Based on the condition of truck and shovel mining operations in surface mines, the best simulation 

for this event can be simulated by discrete event methods. Discrete event simulation can be used to 

model systems which exhibit changes in state variables at a discrete set of points in time [137]. The 

models can be static or dynamic. Static models represent a system at a specific time, while dynamic 

models represent a system as it evolves over a period of time [138]. A mining operation is a dynamic 

system which is very difficult to model using analytical methods. When simulation is used, the model 

input can be based on probabilistic data which better characterise the input variables and a given 

number of variables can be described by selecting appropriate distributions [139].  

The trucks utilised in the haulage operations of surface mines consume a great amount of fuel [3] and 

this has encouraged truck manufacturers and major mining corporations to carry out a number of 

research projects on the fuel consumption of haul trucks [49]. There are many parameters that affect 

the rate of fuel consumption for haul trucks such as payload, velocity of truck, haul road condition, 

road design, traffic layout, fuel quality, weather conditions and driver skill [127]. A review of the 

literature indicates that understanding of energy efficiency of a haul truck is not limited to the analysis 

of vehicle-specific parameters; and mining companies can often find greater energy saving 



46 

 

opportunities by expanding the analysis to include other effective parameters such as payload 

distribution and payload variance [140]. 

This paper aims to present a new simulation model based on the discrete event methods to investigate 

the effect of truck bunching due to payload variance on average cycle times, the rate of loading 

materials and fuel consumption.  

Loading performance depends on different parameters such as bench geometry, blast design, 

muckpile fragmentation, operators’ efficiency, weather conditions, utilisation of trucks and shovels, 

mine planning and mine equipment selection [107, 111]. In addition, for loading a truck in an effective 

manner, the shovel operator must also strive to load the truck with an optimal payload. The optimal 

payload can be defined in different ways, but it is always designed so that the haul truck will carry 

the greatest amount of material with lowest payload variance [106]. The payload variance can be 

illustrated by carrying a different amount of overburden or ore by the same trucks in each cycle [141]. 

The range of payload variance can be defined based on the capacity and power of the truck. The 

increase of payload variance decreases the accuracy of the maintenance program. This is because the 

rate of equipment wear and tear is not predictable when the mine fleet faces a large payload variance 

[108]. Minimising the variation of particle size distribution, swell factors, material density and fill 

factor can decrease the payload variance but it must be noted that some of the mentioned parameters 

are not controllable. Hence, the pertinent methods to minimise the payload variance are real-time 

truck and shovel payload measurement, better fragmentation through optimised blasting and 

improvement of truck-shovel matching. The payload variance is indicated by its standard deviation 

(σ). Standard deviation measures the amount of variation from the average. A low standard deviation 

indicates that the data points tend to be very close to the mean; a high standard deviation indicates 

that the data points are spread out over a large range of values.  

Figure 4-1 shows the Theoretical normal payload distribution for different standard deviations 

(CAT 793D).  

4.2 Payload variance 



47 

 

 

Figure 4-1: Theoretical normal payload distribution for different standard deviation (CAT 793D) 

In this figure Gross Vehicle Weight (GVW) is the total weight of empty truck and payload. Based on 

the CAT 793D technical specifications, the range of GVW variation is between 165 tonnes (empty 

truck) and 385 tonnes (maximum payload). Hence, the maximum σ for this truck can be defined as 

30; that is because for higher standard deviations, the minimum GVW is less than the weight of empty 

truck and the maximum GVW is more than the maximum capacity of truck. 

Based on the condition of truck and shovel mining operation in surface mines, the best simulation for 

this event can be by discrete event methods. Discrete event simulation can be used to model systems 

which exhibit changes in state variables at a discrete set of points in time [137, 142]. The models can 

be static or dynamic. Static models represent a system at a specific time, while dynamic models 

represent a system as it evolves over a period of time [143]. A mining operation is a dynamic system 

which is very difficult to model using analytical methods. There are different kinds of discrete 

simulation models used for modelling the systems in industrial projects. In this study, some of the 

most popular models have been investigated and a new model to simulate the truck bunching event 

in surface mining operation has been developed. 

The first investigated model is AutoMod. This model is a simulation system which is designed for use 

in material movement systems developed by Applied Materials, USA [144]. It can be used for 

simulation of truck haulage circuits and transport circuits, conveyors, load dumping and retrieval, 

4.3 Discrete simulation modelling 
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cranes and robots. Simulations with AutoMod have the ability for simulation of complex movement 

with stochastic inputs. AutoMod models can contain multiple systems (e.g. interacting truck and 

shovel circuits). To produce a simulation, the user constructs a series of action statements which 

allows the incorporation of elements such as machinery, queues, loading, delays and input 

values/variables. Simulations also allow the use of conditional tests. Load inputs can be deterministic 

or stochastic. AutoMod offers control variables for queuing, wait times and traffic which are crucial 

for haul circuit simulation bunching analysis. Visualisation of simulation is powerful and extensive 

in AutoMod. Graphical model outputs can be represented in three dimensions and is industry leading 

in terms of animation and realism. 

The second studied model is SIMUL8. This model is a graphically oriented simulation package 

developed by the SIMUL8 Corporation [145]. This software is a discrete event simulation package, 

meaning it simply executes tasks in queue based on time, which then triggers the activity of new 

tasks. SIMUL8 can be used in simulation of multiple haulage systems, but is more effective at single 

circuit simulations. 

The third analysed model is GPSS/H. The general purpose simulation system (GPSS) language was 

originally released in 1961 and became a popular means of simulation since it could be operated 

without the requirement for the user to be knowledgeable in programming. GPSS/H was derived from 

the evolution and expansion of GPSS and became the more widespread and superior package. 

GPSS/H was released in 1977 by Wolverine Software Corporation who still develop and sell GPSS/H 

today [106]. GPSS/H can be used with a wide range on models due to its simplicity and flexibility. It 

is based on a flowchart type system using “transactions” which move between “blocks”. It involves 

the creation of blocks and control statements to generate a system. Transactions move throughout the 

system based on the tick of an internal clock. Each tick of the clock corresponds to one-time unit 

worth of action. GPSS/H is stochastic in nature, such that it can execute Monte Carlo style 

randomisation to apply statistical distributions. GPSS/H is particularly adept at simulating queuing 

and bunching. GPPS/H can be applied to several systems including haulage circuits, data flow or a 

production line. The language is based on text entry, and does not provide visualisation without the 

use of Proof animation.  

The fourth studied model in this project is WITNESS. This model is a discrete event simulation suite 

developed by Lanner. WITNESS is capable of producing haulage system simulations in a dynamic 

animated computer model [146]. The suite consists of four separate modules, the main WITNESS 
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simulation module, an experimentation optimiser, a scenario manager for analysis and a three 

dimensional visual output. 

The last but not least inspected model is ARENA. This model is a simulation software package 

developed by Rockwell Automation based on the SIMAN programming language [147]. SIMAN is 

a Discrete Event Simulation package which can be used in process or event scheduling mode. SIMAN 

is most commonly used in conjunction with ARENA in industry today. SIMAN can alternatively be 

used in conjunction with CINEMA, a visualisation package. The ARENA system can produce scale 

models of circuits and other simulations. 

4.4.1 Developed algorithm 

Hauling operations in surface mines consists of different kinds of components. These components are 

loading, hauling, manoeuvring, dumping, returning and spotting (see Figure 4-2). 

 

Figure 4-2: Schematic of hauling operation in surface mines 

In the standard hauling operation loading time is the time taken to load the truck, hauling and returning 

time are traveling time for each truck between loading zone and dumping area. Spotting time is the 

time during which the loading unit has the bucket in place to dump, but is waiting for the truck to 

move into position. Spotting time will depend on the truck driver’s ability and the loading system. 

Double-side loading should almost eliminate spot time. Dumping time is the time taken for the truck 

to manoeuvre and dump its payload either at a crusher or dump. 

Based on the above mentioned hauling operation components, four main times can be defined; fixed 

time, travel time, wait time and cycle time. 

4.4 Truck bunching model 
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Fixed time is sum of the loading, manoeuvring, dumping and spotting time. It is called ‘fixed’ because 

it is essentially invariable for a truck and loading unit combination. Travel time is the time taken to 

haul and return the payload. Wait time is the time the truck must wait before being served by the 

loading unit, waiting in a queue for dumping and the waiting time in line behind the overloaded trucks 

in large surface mines (truck bunching). Cycle time is the round trip time for the truck. It is the sum 

of the fixed, travel and wait times. Figure 4-3 illustrates the proposed algorithm to complete a discrete 

event model in this project.  

 

Figure 4-3: Truck bunching algorithm 

This algorithm consists of four main subroutines to cover all processes in the hauling operation. These 

main components are loading, hauling, dumping and returning. Based on the developed model, each 

component has a waiting time. The main reason for waiting time in hauling is payload variance. 

4.4.2 Payload distribution and variance simulation 

A main part of the truck bunching model is simulating the payload distribution and variance. In this 

study, a simulation model was designed to estimate the distribution of truck and bucket payloads 

based on several of input parameters. These parameters are bucket size, number of loader passes       

(to fill the truck tray), distribution of bucket bulk density and distribution of bucket fill factor. 
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This simulation was implemented as a MATLAB workbook and a commercially available Monte-

Carlo simulation engine was used to run the simulation. In this model, the truck payload is calculated 

by 





P

1q

qbkk fvm                    (4-1) 

where mk is truck payload (for the kth truck), Vb is bucket rated capacity, fq is fill factor, ρk is bucket 

density (one value for all of the passes in one truck), q is bucket pass and P is the maximum bucket 

pass to fill the truck tray. In this simulation bucket bulk density (ρk) and fill factor (fq) are randomly 

selected by the Monte-Carlo simulation engine. 

4.4.3 Model considerations 

In the model, the total length of haul and return (L) road is divided in segments based on the variation 

of Total Resistance (TR). TR is equal to the sum of the Rolling Resistance (RR) and Grade Resistance 

(GR). The haul and return road are analysed using the same approach. However, on haul roads, the 

grade resistance is positive and on the return road it is negative (see Figure 4-4). The main reason for 

truck bunching on haul road is payload variance and the reason for truck bunching on return roads is 

the driver’s supposed ability and mine traffic management. 

 

Figure 4-4: Grade Resistance (GR) 
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4.4.4 Decision variables  

In completed discrete event model three decision variables have been defined. The variables are kU , 

kS and k,in . 






Otherwise0
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To create a practical model, it is necessary to define some functions based on the above mentioned 

decision variables. V is truck speed in Equation 4-4. 

4.4.5 Objective functions 

In this section, the objective functions for cycle time, travel time and hauled mine materials have been 

presented in following equations. 

kLkjDMkokjLS

i

DM)T(LSk SW)tt(UW)tt(ttttt)TimeCycle(
i

            (4-5) 

where: 

ts  Spotting time; 

tL Loading time; 

tT Travel time; 

tM  Manoeuvring time; 

tD  Dumping time; 

W0kj  Number of trucks at queue in front of truck k at time j in the first segment; 

WLkj  Number of trucks at queue in front of truck k at time j in the last segment; 

Uk First decision variable; and 

Sk Second decision variable. 
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                     (4-6)  

where: 

t(T)i,k  Travel time for truck k in segment i; 

li  The length of segment i; 

Vi,k  The velocity of truck k in segment i; 

V(i-1), k  The velocity of truck k in segment i-1; and 

ni,k  Decision variable. 

 

Hauled mine materials =
r k

r,k timeshift/payload                          (4-7) 

where: 

Payload k,r is the payload of truck k in cycle r. 

4.4.6 Constraints 

There are three main constraints in the presented model. 

 
i

i RoadturnReofLenghtRoadHaulofLenghL2l                          (4-8) 

ni,k = nk,i                     (4-9) 

Wi,j,k = Wi,k,j
                     (4-10) 

4.4.7 Data processing  

The developed truck bunching model uses two matrices at the same time (parallel processing) to 

create and process data. The first matrix is used to generate the truck payload based on Equation 4-3. 

In this process the truck payload in all steps of the model will be generated randomly by a Monte-

Carlo simulation engine. A simplified version of payload matrix is presented in Table 4-1. In this 

table, k represents the number of trucks and r represents the number of cycles in each shift. Pk,r in this 

table is the payload of truck k in cycle r. 
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Table 4-1: A simplified version of the payload matrix 

 Truck (k) k=1 k=2 … k=N 

Cycle(r)   

r = 1  P1,1 P2,1 

 

 

PN,1 

r =2  P1,2 P2,2 PN,2 

. 

. 

. 

 

. 

. 

. 

. 

. 

. 

. 

. 

. 

r=M  P1,Z P2,Z PN,Z 

The presented model calculates the best performance velocity of each truck in each segment based 

on the payload generated by the payload matrix and truck Rimpull curve. This model can apply the 

truck bunching effects on the velocity and hauled mine material by trucks in each cycle and each 

segment. A very simplified version of velocity matrix is presented in Table 4-2.  

Table 4-2: A simplified version of velocity matrix 

 Truck (k) k=1 k=2 … k=N 

Segment (i)   

i=1  

P1,1 

V1,1 

t(T) 1,1 

P2,1 

V2,1 

t(T) 2,1 

 
PN,1 

VN,1 

t(T) N,1 

i=2  

P1,2 

V1,2 

t(T) 1,2 

P2,1 

V2,1 

t(T) 2,1 

PN,2 

VN,2 

t(T) N,2 

. 

. 

. 

. 

. 

. 

  

. 

. 

. 

i=2L  

P1,2L 

V1,2L 

t(T) 1,2L 

P2,1 

V2,1 

t(T) 2,1 

PN,2L 

VN,2L 

t(T) N,2L 

In this table k is the number of trucks in the fleet, i is the number of segments in haul and return roads, 

Pk,i is the payload of truck k in segment i, Vk,i is the velocity of truck k in segment i and t(T) k,i represents 

the travel time for truck k in segment i.  

The developed parallel data processing in this model can simulate complicated fleets in large surface 

mines. There is not any limitation for the number of trucks and haul road segments. However, in 

completed case study for model validation the number of trucks was ten and model run for three haul 

road segments.  

r,kP  

i,kP

i,kV  

i,k)T(t
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4.4.8 Fuel consumption simulation 

Haul truck fuel consumption is a function of various parameters. The key parameters that affect the 

fuel consumption of haul trucks include the payload management, the model of the truck, the grade 

resistance and the rolling resistance, according to a study conducted by the Department of Resources, 

Energy and Tourism [49]. In the present study, the effects of GVW, the Velocity of Truck (V) and 

the TR on the fuel consumption of the haul trucks were examined. The truck fuel consumption can 

be calculated from Equation 4-11 [118]. 

)PW.LF(3.0FC                  (4-11) 

where LF is the engine load factor and is defined as the ratio of average payload to the maximum 

load in an operating cycle [58]and PW is the truck power (kW). The developed model, in this project, 

can simulate the fuel consumption by haul trucks based on the Equation 4-11. 

4.4.9 Model validation 

To validate the developed model, a dataset collected from a large open pit mine in central Arizona, 

USA has been applied. This dataset included measuring average loader payloads, truck payloads, 

average bucket bulk density, loader bucket fill factor and average swell factor (Table 4-3).  

Table 4-3: Data collected for model validation (Sample) 

In this mine, the volume of material loaded into the bucket was determined by comparing loaded and 

empty laser scan profiles of the buckets. Fill factors were calculated by dividing the material volume 

NO 
Average Loader Payload 

(tonne/pass) 

Truck Payload 

(tonne) 

Average Bucket Bulk 

Density (tonne/m3) 

Loader Bucket 

Fill Factor 

Average 

Swell Factor 

1 47.23 218.21 2.01 0.937 1.25 

2 45.12 217.46 1.98 0.978 1.22 

3 38.14 209.42 1.96 0.919 1.18 

4 42.15 210.36 2.03 0.954 1.27 

5 46.58 216.78 2.14 0.984 1.19 

6 47.56 217.96 1.86 0.927 1.26 

7 39.87 218.04 2.07 0.946 1.24 

8 38.47 218.43 2.18 0.992 1.25 

9 42.58 217.69 2.05 0.957 1.20 

10 40.59 216.97 1.99 0.939 1.25 
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by the rated volume of the bucket and bulk densities were calculated by dividing the payload by the 

loaded volume. On-board payload monitoring systems were used to measure payloads. The validation 

of the model was completed for average cycle times and the average mine material hauled by one 

type of truck (CAT 793D) after truck bunching. Table 4-4 and Figure 4-5 present sample values for 

the estimated (using the developed model) and the independent (tested) cycle time and hauled mine 

material in order to highlight the insignificance of the values of absolute error in the analysis.  

Table 4-4-a: Values for estimated (Model) and independent (Tests) cycle time (Sample) 

No 
Estimated value of Cycle time (Model) 

(Sec) 

Independent Value of Cycle time (Tests) 

(Sec) 

Absolute error 

(%) 

1 1520 1560 2.56 

2 1650 1680 1.78 

3 1410 1380 2.17 

4 1620 1680 3.57 

5 1990 2040 2.45 

6 1910 1860 2.69 

7 1465 1500 2.34 

8 1350 1380 2.17 

9 1910 1860 2.69 

10 1390 1440 3.48 

Table 4-4-b: Values for estimated (Model) and independent (Tests) hauled materials (Sample) 

No 

Estimated average value of Hauled 

mine materials (Model) 

(tonne/cycle) 

Independent average value of Hauled 

mine materials (Tests) 

(tonne/cycle) 

Absolute 

error 

(%) 

1 203 198 2.46 

2 205 200 2.44 

3 207 202 2.42 

4 209 206 1.44 

5 212 208 1.89 

6 214 218 1.87 

7 214 209 2.34 

8 223 228 2.24 

9 229 224 2.18 

10 233 238 2.15 

The results indicate good agreement between the actual and estimated values of average cycle time 

and average hauled mine materials. 
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Figure 4-5-a: Comparison of actual values of cycle time with model outputs for test data 

 

Figure 4-5-b: Comparison of actual values of hauled mine materials with model outputs for 

test data  
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In this project, a real mine site dataset that was collected from a large surface mine in central 

Queensland, Australia has been analysed. A sample of real mine site parameters are tabulated in 

Table 4-5. 

Table 4-5: A sample of real mine site parameters (Case study) 

4.5 Case study  

 Parameter Value Unit 

Material 

Insitu Bank Density 2.5 tonne/m3 

Swell factors 

Bank to Loader 

Bucket 
1.25 

tonnes/m3 

Bank to Truck 

Tray 
1.25 

Lose density 

Bank to Loader 

Bucket 
2 

Bank to Truck 

Tray 
2 

Product Ration  1 
tonne of product per 

tonne hauled 

Loader Bucket 

Fill Factor 

Heaped 0.978 
 

Struck 0.978 

Roster 

5 day Week - 8 Hour Shifts 

Mon - Fri 3 Shift  Daily 

Total Shift 783 shifts/year 

Scheduled Lost Shifts 27 shifts/year 

Scheduled Shifts 756 shifts/year 

Loading Unit Maintenance 113 shifts/year 

Unscheduled Lost Shift 42 shifts/year 

Fleet Operating Shifts 601 shifts/year 

Shift Duration 08:00:00 hh:mm:ss 

Non-Operating  Shift Delays 01:00:00 hh:mm:ss 

In Shift Operating Time 07:00:00 hh:mm:ss 

Operating  Shift Delays 00:30:00 hh:mm:ss 

In Shift Working Time 06:30:00 hh:mm:ss 

Loading 

Bucket Capacity 25.2 m3 

Bucket Cycle Time 0.5 minute 

Mechanical Availability 85%  

Truck Positioning Single Sided  

Bucket Fill Factor 0.98  

First Bucket Pass Delay 50% minute 

Payload Distribution Normal Right skewed 

 

 

Truck 

 

 

 

Spot time at loader 0.5 minute 

Spot time at dump 0.5 minute 

Dumping Time 0.5 minute  

Mechanical Availability 80%  

Motor Power 1743 kW 

Transmission Speed Factor 1:00  
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The effect of truck bunching due to payload variance on average cycle time and average hauled 

materials for one mostly used model of haul truck in studied surface mine is illustrated in Figure 4-6.  

 

Figure 4-6: The variation of average cycle time with payload variance, standard deviation 

This figure demonstrates that, there is a non-linear relationship between payload variance/standard 

deviation and average cycle time in the fleet. Based on the presented results of analysed data in            

Figure 4-6, it is clear that by increasing the payload variance the average cycle time increases 

 

 

 

 

 

 

 

 

 

Truck 

Standard Body Capacity  129 m3 

Empty Truck Weight 165.75 tonne 

Actual Truck Payload 218 tonne 

Full Truck weight 383.75 tonne 

Operating Hours per Year 4799.2 op.hr/year 

Average Payload 221.53 tonne 

Production per Operating Hour 560.21 tonne 

Production per Loader Operating 

Shift 
3137.17 tonne 

Production per Year 2688552.13 tonne 

Queue Time at Loader 2.71 min/cycle 

Spot Time at loader 0.5 min/cycle 

Average Loading Time 1.95 min/cycle 

Travel Time 15.94 min/cycle 

Spot Time at Dump 0.5 min/cycle 

Average Dump Time 0.5 min/cycle 

Average Cycle Time 22.11 min/cycle 

Fleet Size 8  

Average No. of Bucket Passes 5  

Haulage System Production per year 21,508,417 tonne/year 



60 

 

dramatically. By maximum reducing of standard deviation from 30 tonnes to 5 tonnes, reducing 

average cycle time up to 15 min is possible. Another main effective parameter on mine productivity 

is average hauled materials. Figure 4-7 illustrates the relationship between the payload 

variance/standard deviation and average hauled materials. The correlation between mentioned 

parameters in this figure is non-linear. The minimum average hauled mine is obtain with maximum 

payload variance. The presented relationship between payload standard deviation and average hauled 

materials in studied mine shows that there is a great opportunity to improve productivity by reducing 

payload variance.  

 

Figure 4-7: The variation of average hauled materials with payload variance/standard deviation 

In this case study the effect of payload variance on haul truck fuel consumption in different haul road 

conditions for three models of haul truck has been investigated. It is noted that, to have a better 

understanding in this study, a fuel consumption index (FCIndex) has been defined. This index presents 

the quantity of fuel used by a haul truck to move one tonne of mine material (Ore or Overburden) in 

an hour. Truck specifications for studied haul trucks are presented in Table 4-6.  
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Table 4-6: Truck specification (case study) 

Truck Specification CAT 777F CAT 785C CAT 793D 

Engine Model C32 ACERTTM 3512B EUI 3516B HD EUI 

Weights 

Gross Power 758 kW 1082 kW 1801 

Net Power 700 kW 1005 kW 1743 kW 

Total Empty Operating Weight 64  tonnes 105 tonne 165 tonnes 

Nominal Payload Class 96  tonnes 144 tonnes 218 

Gross Machine Operating 

Weight 

160 tonnes 249 tonnes 383 tonnes 

 

Haul trucks were selected based on their capacity and engine power. The maximum GVW for trucks 

are 160, 249 and 383 tonnes respectively. The results of completed investigation by developed truck 

bunching model are tabulated in Table 4-7.  

Table 4-7: Fuel consumption index for three models of studied haul truck (case study) 

Fuel Consumption Index (L/(hr.tonne)) 

Standard Deviation (σ)   

(tonnes) 

 

 

Total Resistance (%) 

CAT 777F                 CAT 785C                CAT 793D 

 TR=5% TR=10% TR=15% TR=5% TR=10% TR=15% TR=5% TR=10% TR=15% 

σ = 5   tonnes 0.361 0.459 0.540 0.321 0.399 0.479 0.300 0.375 0.455 

σ = 10 tonnes 0.456 0.543 0.619 0.416 0.482 0.563 0.399 0.466 0.546 

σ = 15 tonnes 0.523 0.598 0.671 0.483 0.538 0.618 0.471 0.528 0.608 

In this table FCIndex was calculated for three payload standard deviations (σ=5, 10 and 15 tonnes) in 

three different road conditions (TR=5, 10 and 15%). The results show that FCIndex increases not only 

by increasing the TR but also by increasing the payload variance for each truck. Figure 4-8 presents 

the FCIndex versus payload standard deviation for three studied model of trucks in same road condition 

(TR=10%).  
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Figure 4-8: Fuel consumption index for three models of haul trucks, TR=10% 

This figure shows that by increasing the capacity of truck, FCIndex can be reduced. In this case the 

maximum reduction of FCIndex can be achieved by changing the model of truck form CAT 777F to 

CAT 793D.  
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This paper aimed to develop a discrete event model to simulate the effect of payload variance on truck 

bunching to improve productivity and energy efficiency in surface mines. There is a significant 

payload variance in the loading process in surface mines. The main reason for truck bunching in this 

type of mine is the variance of payload. In this paper, an innovative simulation model was developed 

to investigate the effects of payload variance on truck bunching, mine operation efficiency and 

decreasing the fuel consumption by haul trucks. To validate the developed model a dataset collected 

from a large surface mine in Arizona, USA was used. Validation of the model was completed for the 

cycle time and the hauled mine materials by one type of truck (CAT 793D) after truck bunching. The 

results indicated a good agreement between the actual and estimated values of cycle time and hauled 

mine materials. The model was utilised in a real mine site in central Queensland, Australia as a case 

study. The results of this project showed that there is a non-linear relationship between payload 

variance and cycle time in the fleet. In this case study, a correlation between the payload variance and 

hauled mine materials was developed and the effect of truck bunching due to payload variance on 

energy consumption for three models of haul truck was studied. 

 

 

 

 

 

 

 

 

 

  

4.6 Conclusions 
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Abstract 

Rolling resistance as a part of total resistance plays a critical role in the productivity, fuel 

consumption, gas emissions, maintenance and safety of haul truck operations in surface mines. This 

paper aims to identify the most influential parameters on rolling resistance and complete an 

investigation about the effect of these parameters on the fuel consumption of haul trucks. In this paper, 

a comprehensive literature review has been completed to identify the parameters that are influential 

on rolling resistance. Through that process, 15 parameters have been identified and an online survey 

conducted to determine the most influential of these parameters on rolling resistance, based on the 

knowledge and experience of a number of professionals within the mining and haul road industries. 

In this survey, 50 industry personnel have been contacted with a 76% response rate. The results of 

the survey have shown that road maintenance, tyre pressure and truck speed are the most important 

effective parameters on rolling resistance. In this study based on the data collected from the literature 

review, the relationships between selected parameters and rolling resistance have been established. A 

correlation between the selected parameters and best performance fuel consumption for one type of 

common truck in Australian surface mines has been developed. As a case study, a computer model 

based on the nonlinear regression method has been created to find the correlation between fuel 

consumption and rolling resistance in a large coal surface mine in central Queensland, Australia. The 

relationships between the most influential parameters on rolling resistance and fuel consumption in 

this case study have also been developed. The results of the case study indicated that by decreasing 

the maintenance interval, increasing tyre pressure and decreasing truck speed, the fuel consumption 

of haul trucks can be decreased. [148] 

 

 

 

Keywords: Rolling Resistance; Haul Truck; Surface Mine; Fuel Consumption 
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CHAPTER 5 

5. The Influence of Rolling Resistance on Haul Truck Fuel Consumption in 

Surface Mines 

Globally, the world marketed energy consumption was approximately 600,000 PJ in 2013 [149]. 

Australia consumed roughly 6,000 PJ in the above mentioned period with a forecasted growth of 

1.1% over the next 10 years [150]. The mining industry annually consumes vast amounts of energy 

in operations such as exploration, extraction, transportation and processing [3]. The Australian mining 

industry has observed a steady increase in energy consumption from 1976, consuming around 600 PJ 

of energy in 2013, or about 10% of the total energy consumption in Australia [150]. A large number 

of research studies and industrial projects have been carried out in an attempt to reduce energy 

consumption in Australian mining operations [49, 51]. Haulage operations are one of the main energy 

consumers within the mining industry [3]. Of the total energy expenditure, Loading, Hauling and 

Dumping (LHD) operations represent approximately 60% of the total energy consumption in the 

Australian mining industry [52]. Service trucks, front-end loaders, bulldozers, hydraulic excavators, 

rear-dump trucks and ancillary equipment, such as pick-up trucks and mobile maintenance 

equipment, are examples of the diesel equipment used in mining operations [151]. Trucks in surface 

mines are used to haul ore and overburden from the pit to the stockpile, dumpsite or to the next stage 

of the mining process. They are used in combination with other equipment such as excavators, diggers 

and loaders, according to the production capacity and the site layout [129]. The trucks used in the 

haulage operations of surface mines consume a large amount of energy, encouraging truck 

manufacturers and major mining corporations to carry out a number of research projects on the energy 

efficiency of haul trucks [49]. The understanding of the energy efficiency of a haul truck is not limited 

to the analysis of vehicle-specific parameters and mining companies can often benefit by expanding 

the analysis to include other parameters that affect the energy use of trucks, such as effective 

parameters on haul road condition [152, 153]. There are a number of effective parameters on haul 

road condition that influence the energy used by trucks in a mine fleet, all of which need to be taken 

into account simultaneously for the optimisation of fuel consumption. The consumption of fuel is 

dependent on many mine parameters including the grade of the haul road, the rolling resistance, 

payload, speed and truck engine characteristics [154]. By reducing the resistance a truck encounters 

5.1 Introduction 
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during a hauling cycle, the overall fuel efficiency has the potential to be improved, without affecting 

cycle or productivity parameters [155, 156]. 

The aim of this paper is to investigate the effect of rolling resistance on haul truck fuel consumption 

as well as the key effective parameters affecting rolling resistance. 

Haul truck fuel consumption is a function of various parameters, the most significant of which have 

been identified and categorised into five main groups (see Figure 5-1). The key parameters that affect 

the energy consumption of haul trucks include the truck characteristics, fleet management, haul road 

condition, mine plan and environmental conditions, according to a study conducted by the 

Department of Resources, Energy and Tourism [49].  

5.2 Haul truck fuel consumption 
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Figure 5-1: Parameters affecting haul truck fuel consumption  

In the present study, the effects of the Rolling Resistance (RR) on the fuel consumption of the haul 

trucks were examined. The RR is one of the main components of Total Resistance (TR) and it is one 

of the main controllable effective parameter on haul truck fuel consumption. The TR is equal to the 

sum of the RR and the Grade Resistance (GR) when the truck is moving against the grade of the haul 

road [36]. 

GRRRTR                    (5-1) 

The RR depends on the tyre and hauling road surface characteristics and is used to calculate the 

rolling friction force, which is the force that resists motion when the truck tyre rolls on the haul road. 

The GR is the slope of the haul road, it is measured as a percentage and is calculated as the ratio 

between the rise of the road and the horizontal length (see Figure 5-2).  
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Figure 5-2: Grade Resistance (GR) 

For example, a section of the haul road that rises 10 m over 100 m has a GR of 10%. The GR is 

positive when the truck is travelling up the ramp and is negative when it travels down the ramp. The 

GR is positive for all the test conditions considered in this study, as the truck carrying the payload is 

travelling against the grade of the haul road. 

Figure 5-2 presents a schematic diagram of a typical haul truck and the key parameters that affect the 

performance of the truck, such as the Gross Vehicle Weight (GVW) (representing the sum of the 

empty truck weight and the payload), RR, Gradient (G), Rolling Friction Force (RFF) and Rimpull 

Force (RF). RF is the force available between the tyre and the ground to propel the machine. It is 

related to the torque (T) that the machine is capable of exerting at the point of contact between its 

tyres and the ground and the truck wheel radius (r) [157]. 

r

T
RF                      (5-2) 

Estimation of the fuel consumption rate requires a number of assumptions as well as calculations.  

Figure 5-3 illustrates the relationship between the haulage operation parameters and truck fuel 

consumption.   
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Figure 5-3: Variable relationships required for truck fuel consumption estimation 

It illustrates the variables to be initially defined and the values to be calculated to estimate energy 

consumption.  Several input variables are initially required and include the vehicle weight, defined 

as the weight of the unloaded truck and payload, or the weight of the material hauled by the truck.  

RR and GR are also required, and are both measured as a percentage.  RR can be estimated for the 

road, or measured where possible.  

In this study, a new parameter representing the fuel consumption by haul trucks has been defined. 

This parameter is the Fuel Consumption Index (FCIndex). This index represents the quantity of fuel 

burnt by a haul truck to move one tonne of mined material (Ore or Overburden) in an hour 

(L/ (hr. tonnes)). The FCIndex can be estimated using following equations. 

P3600

F
FC i

Index


                   (5-3) 

where Fi is Fuel Input Rate (L/s) and P is payload hauled by the truck (tonne) [51]; 

38600

PO
F f
i                     (5-4) 

where POf is Fuel Input Power (kW) [51]; 

EEF

PO
PO r

f                     (5-5) 

where POr is Rimpull Power and EEF is Energy Efficiency Factor [51]; 

gRS28.0POr                   (5-6) 

where S is Truck Speed (km/hr), R is Rimpull and g is the acceleration due to gravity (m/s2). 
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RR is defined as a measure of the force required to overcome the retarding effect between the tyres 

and road [158, 159]. This resistance is predominantly measured as a percentage of the GVW, but can 

also be expressed as energy divided by a distance, or a force [160, 161]. Tyre RR can also be 

characterised by a Rolling Resistance Coefficient (RRC), a unit-less number [162, 163]. RR manifests 

itself predominantly in the form of hysteresis losses described as the energy lost, usually in the form 

of heat, when a section of vulcanised rubber is deformed regularly, such as during the operation of a 

haul truck [164]. 

RR is able to be measured by a number of different methods, some of which are detailed in the British 

Standard for Measuring Rolling Resistance [165].  Measurements can be made under laboratory 

conditions, generally on ‘test drum surfaces’.  This is a testing rig consisting of the tyre to be tested 

and a drum with a varying outer surface which is able to rotate, simulating the movement of the tyre 

over a road surface.  A number of mathematical methods can then be applied to the values of Drum 

Torque, Power and Tyre Force measured during testing to determine the RR experienced by the tyre 

[166].      

Measurements of RR can also be obtained for a specific mine haul roads using on site testing.  This 

method generally uses a specially designed trailer towed behind a truck to measure RR.  A series of 

sensors attached to the trailer measure the force between the truck and trailer, used to pull it across 

the road surface.  They also measure the grade of the haul road and acceleration.  This data is then 

used with the relevant mathematical expression to determine the RR of the haul road [44].    

There are a number of effective parameters affecting RR, which are able to be categorised into four 

groups.  These groups are Road, Tyre, System and Weather properties. Figure 5-4 illustrates the most 

influential parameters on RR. Haul road and tyre properties are predictably, properties of the haul 

road and truck tyres. System properties encompass operational parameters of the haul truck and 

weather properties envelopes all parameters associated with weather conditions.  

5.3 Rolling resistance 
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Figure 5-4: Rolling resistance and the most influential parameters 

These parameters are also categorised as a Design (D), Construction (C), Operational (O) or 

Maintenance (M) parameter.  Table 5-1 illustrates the parameters affecting RR, and the category to 

which it belongs to.    

Table 5-1: Influential parameters on rolling resistance 

Rolling 

Resistance 

Group 
Category* Parameter 

D C O M  

Road 

    Roughness 

    Defects 

    Material Density 

    Moisture Content  

    Road Maintenance 

Tyre 

    Tyre Penetration 

    Tyre Diameter 

    Tyre Pressure 

    Tyre Condition 

    Tyre Loading 

    Tyre Temperature 

System 
    Truck Speed 

    Driver Behaviour 

Weather 

    Humidity 

    Precipitation 

    Ambient Temperature 
*  D:Design          C:Construction          O:Operational          M:Maintenance 
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Road properties are associated with the haul road itself, primarily the material forming the top layer 

or ‘wearing course’ of the road [164, 167]. A number of road properties have been identified in 

numerous studies as affecting the RR experienced by trucks using the road. 

The surface material of the haul road is identified as a major contributor to RR. Numerous studies 

have found that softer road surfaces with looser under-footing resulted in increased RR [44, 45, 168-

171]. Table 5-2 shows the results of one of these studies, displaying RR associated with surface type. 

Table 5-2: Surface type and associated rolling resistance 

Type of Surface Rolling Resistance (%) 

In-situ clay till 4 - 6.7 

Compacted gravel 2-2.7 

Compacted clay-gravel 3.9 

Subsoil stockpile 4.4 - 8.3 

Compacted clay till 4.1 

Subsoil on mine spoil 7.3 

A study conducted by Sandberg [172] is concerned with effective parameters on RR. The focus of 

this study is on the road roughness. Another study in this area completed by Mukherjee [173] shows 

that increasing the road roughness resulted in increasing RR.  

A study conducted by Thompson and Visser [152] is concerned with the impact of defects on RR. 

This study shows that by increasing the Mean Profile Depth (MPD), the RR is also increased. Ajoy  

[174] presented an investigation about the estimation of RR. The presented results show that a higher 

degree of road compaction can decrease the RR. Thompson and Visser in another study [160] 

investigated the effect of haul road maintenance on RR. The results of this study show that road 

maintenance plays a critical role in RR. The main objective of maintenance is to repair defects, 

identified as significant contributors to RR, as well as prevent them from occurring. The results 

obtained from Thompson’s study showed that decreases in maintenance intervals, or period of time 

between maintenance resulted in a decrease in RR.   

 

 

5.4 Road properties 
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Tyre properties are those associated with the tyres of a haul truck and can be associated with the 

internal condition, tread properties or the operational characteristics. A number of these properties 

have been identified in a number of studies as being influential on RR [37, 172, 173, 175-179]. 

A study about the effect of tyre penetration as an influential parameter on RR has been completed by 

the Caterpillar research and development team [37]. In this study a correlation between tyre 

penetration and RR has been developed. The results show that by increasing the tyre penetration, the 

RR increases. Tyre penetration is also affected by a number of parameters, and varies depending on 

their influence. These parameters included tyre pressure, where a lower pressure generally 

corresponds to increased tyre penetration.  

Tyre diameter has been identified in several studies as a contributor to RR [165, 180]. The contact 

patch, or area of the tyre in contact with the road changes with tyre diameter and so this change in 

geometry results in a change in RR. A study by Sandberg [172] found that as tyre diameter increased, 

RR decreased. The relationship was found to be constant among a number of different types of tyres.  

Tyre pressure is a significant parameter when assessing RR, with under or overinflated tyres 

displaying large changes in RR. A study found that increasing tyre pressure resulted in decreasing 

RR [180]. Tyre pressure is also affected by temperature, with a study by Paine, Griffiths and 

Magedara [176] finding increasing tyre temperature responsible for increased tyre pressures.  

Tyre condition is also an important parameter when considering RR, mainly manifesting itself in 

tread wear [181]. A study by Sandberg [172] found tyres in the worn condition with low tread height 

exhibited decreased RR. This relationship was observed among a number of different types of tyre.   

Tyre loading is also considered in assessments and is the subject of several studies.  Loading of a tyre 

is affected by a number of other parameters including the vehicle and payload weights as well as 

operational parameters of trucks.  Studies by Hall and Moreland [177]found that increasing tyre load 

resulted in increased RR. The results of study completed by Ma, Xu and Cui [178] showed significant 

increases in RR with increasing tyre load. Tyre temperature has been the subject of several studies 

with its relationship with RR being the focus of experimental analysis [176, 180, 182, 183].  A study 

conducted by Janssen and Hall [183] found that increasing tyre temperature resulted in decreased RR. 

The study used a unit-less parameter, RRC, as the measurable representation of RR, and was found 

to decrease significantly with increasing tyre temperature.    

5.5 Tyre properties 
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System properties are those related to operational parameters of the truck as well as environmental 

parameters affecting truck operation. These are generally uncontrollable, or dependent on the 

operation of the truck, and have been linked to RR by a number of different studies.     

Truck Speed (S) is a studied truck parameter, with experimental studies finding that increasing S 

resulted in increased RRC. Driver behaviour has not been the subject of extensive study in relation 

to its direct effect on RR. It can however be linked to other parameters such as tyre loading, through 

basic physics. As a truck corners, it generates centripetal force, which is dependent on the mass of 

the truck, velocity and radius of the turn [180]. Both turn radius and velocity are dependent on the 

driver behaviour. As a result, this behaviour affects centripetal force which affects tyre loading [184]. 

Weather properties are parameters associated with local conditions at a mine site.  In surface mining 

these are generally uncontrollable parameters and include temperature and the presence of rain or 

other environmental influences.    

Ambient temperature or environmental temperature is an uncontrollable parameter in open surface 

mines and is considered due to its effect on tyre pressure.  Tyre pressure has been identified as having 

an effect on RR.  As a result, ambient temperature affects RR through its effects on tyre pressure 

[183].  The results of a study conducted by Michelin in France [179] found that an increase in ambient 

temperature resulted in decreased RR. 

An online survey was conducted to determine the most influential parameters on RR, based on the 

knowledge and experience of a number of professionals within the mining and haul road industries. 

Fifty industry personnel were contacted with a 76% response rate. Of the personnel surveyed, 12% 

worked in the area of haul road planning, 48% in maintenance, 24% in design and 16% in operations.   

This survey allowed participants to estimate the influence of parameters identified as affecting RR.  

A score was assigned to each parameter between 0 and 100 representing the influence of a particular 

parameter on RR, where 0 is not influential and 100 is highly influential.  The results of the survey 

show that tyre diameter has the lowest influence on RR with a result of 40%.  Defects, Tyre Condition, 

Tyre Temperature, Driver Behaviour and Ambient Temperature were all given rankings of 

5.6 System properties 

5.7 Weather properties 

5.8 Rolling resistance parameters selection 
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approximately 50%.  Maintenance, Tyre Pressure and Truck Speed were all identified as having the 

greatest influence on RR, with scores between 80 and 90%. The remaining parameters all scored 

between 50 and 70% (see Figure 5-5).   

 

Figure 5-5: Survey results 

Based on the collected data from literature, the relationships between RR or RRC and Maintenance 

Interval (M) [160], Tyre Pressure (TP) [172] and Truck Speed (S) [180] can be found in Figure 5-6, 

Figure 5-7 and Figure 5-8, respectively. 
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Figure 5-6: Rolling resistance vs. road maintenance interval 

 

Figure 5-7: Rolling resistance coefficient vs. tyre pressure 
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Figure 5-8: Rolling resistance coefficient vs. truck speed 

In this project, a real mine site dataset collected from a large surface mine in central Queensland, 

Australia has been analysed. A sample of the collected mine site data are tabulated in Table 5-3.  

Table 5-3: A sample of dataset collected from a surface coal mine in Queensland, Australia 

(CAT 793D) 

5.9 Fuel Consumption completed correlations 

Date 
Payload 

(tonne) 

Truck 

Speed 

(km/hr) 

Cycle 

Time 

(hh:mm:ss) 

Cycle 

Distance 

(km) 

Rolling 

Resistance 

(%) 

Grade 

Resistance 

(%) 

Total 

Resistance 

(%) 

Fuel 

Consumption 

(L/hr) 

23/01/2013 218.6 8.49 00:25:35 4.989 3.0 11.6 14.6 84.44 

15/02/2013 219.4 11.39 00:16:17 5.150 3.0 8.7 11.7 90.26 

13/03/2013 168.2 11.17 00:11:12 2.414 3.0 10.7 13.7 89.90 

29/03/2013 158.9 14.04 00:17:42 5.150 3.0 9.1 12.1 93.78 

22/04/2013 216.5 10.36 00:19:17 5.311 3.0 9.6 12.6 88.48 

08/05/2013 202.1 12.06 00:18:45 5.311 3.0 9.4 12.4 91.28 

25/06/2013 185.5 11.53 00:16:24 4.023 3.0 10.1 13.1 90.49 

16/08/2013 175.9 11.94 00:18:48 4.667 3.0 10 13 91.10 

07/10/2013 147.6 13.27 00:22:23 5.311 3.0 10.3 13.3 92.90 

19/12/2013 214.3 11.58 00:17:55 5.150 3.0 8.9 11.9 90.56 



78 

 

Caterpillar trucks are the most popular vehicles of the different brands used in the studied mine. Based 

on the power of vehicle, mine productivity, haul truck capacity and other key parameters, the CAT 

793D (Table 5-4) was selected for the analysis presented in this study. Figure 5-9 presents the 

Rimpull-Speed-Grade curve extracted from the manufacturer’s catalogue [120].  

Table 5-4: CAT 793D specifications 

Feature Value 

Gross Machine Operating Weight (GMW) 383,749  kg 

Maximum Payload Capacity 218   tonnes 

Top Speed - Loaded 54.3  km/h 

Body Capacity 129   m3 

Tyres 40.00 R57 

 

 

Figure 5-9: Caterpillar 793D Rimpull Curve [120] 

This curve was used to determine the Rimpull (R) and the Maximum Truck Speed (Smax) based on 

different values of TR for the different values of GVW.  
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Figure 5-10 demonstrates the relationship between Maintenance Interval and FCIndex. This 

relationship shows that a main solution for increasing the energy efficiency in haulage operation is 

decreasing the maintenance interval.  

 

Figure 5-10: Relationship between maintenance interval and FCIndex 

This Figure also shows that by reducing the maintenance interval from 10 to 5 days, FCIndex will be 

decreased from 0.65 to 0.4 L/ (hr. tonne). This amount of fuel savings can be a great opportunity for 

mine managers to reduce their operational costs. 

Based on the completed on-line survey in this study, the second main effective parameter on RR is 

Tyre pressure. Figure 5-11 illustrates the correlation between FCIndex and Tyre Pressure for the 

CAT 793D in different conditions.  
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Figure 5-11: Correlation between FCIndex and Tyre Pressure 

In this Figure the relationship between haul truck fuel consumption and tyre pressure has been 

completed for a normal range of tyre pressures found for trucks in the studied surface mine. This 

relationship shows that by increasing the tyre pressure, FCIndex will be decreased sharply. Therefore, 

it is obvious that by a regular pressure check, increasing the fuel efficiency in haulage operations will 

be possible. The effect of truck speed on FCIndex is illustrated in Figure 5-12.  
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Figure 5-12: The effect of truck speed on FCIndex 

The non-linear correlation between FCIndex and truck speed shows that by increasing the S, fuel 

consumption by the truck increases. This Figure also shows that a valid approach for decreasing the 

fuel consumption is to decrease the total resistance, in this case could be achieved by reducing RR. 

In this study an investigation to identify the most influential parameters on rolling resistance was 

completed. After a comprehensive literature review, 15 parameters were identified and an on-line 

survey conducted to determine the most influential of the parameters on rolling resistance. In this 

survey, 50 industry personnel were contacted with a 76% response rate. Of the respondents, 12% 

worked in the field of road planning, 48% in maintenance, 24% in design and 16% in operations. The 

results of the survey revealed that road maintenance, tyre pressure and truck speed are the most 

important effective parameters on rolling resistance. The effect of these three main selected 

parameters were investigated on haul truck fuel consumption in a real mine site located in central 

Queensland, Australia. The non-linear relationships between the selected parameters in the survey 

and fuel consumption in the real studied mine were developed. The results indicated that by 

decreasing the maintenance interval, increasing tyre pressure and decreasing truck speed, the fuel 

consumption of haul trucks can be decreased. 

5.10 Conclusions 



82 

 

 

Abstract 

The mining industry annually consumes trillions Btu of energy. A large part of this energy is saveable. 

The considerable amount of potential saving has motivated both the mining industry and governments 

to conduct research on how to reduce the energy consumption in the mining industry. Diesel fuel is a 

significant source of energy in surface mining operations. Haul trucks are the major users of this 

energy resource. Based on the analysis on the data collected from mine sites, Gross Vehicle Weight 

(GVW), Maximum Truck Speed (Vmax) and Total Resistance (TR) were identified to be the most 

influential parameters affecting the fuel consumption. The relationship between the three 

abovementioned parameters and the haul truck fuel consumption is complex. Thus, the development 

of a new approach using an artificial intelligence method is essential to create a reliable model for 

analysing the problem. In this paper, an Artificial Neural Network (ANN) model was developed to 

predict the fuel consumption of haul trucks in surface mines. The network was trained and tested 

using a dataset of samples where the values of GVW were collected from a mine site and the values 

of    and   were calculated. It was found that the configuration of 3 input variables, 15 hidden cells 

and 1 output for the synthesised ANN model provided excellent results. The sensitivity analysis 

showed that all the three input variables (GVW, Vmax and TR) have noticeable effect on the haul truck 

fuel consumption. It was also found that Vmax has the most influential parameter with the relative 

importance of 60%. The results of this study indicate that the artificial neural network modelling 

accurately predicts the haul truck fuel consumption based on the values of haulage parameters 

considered in this study. [185] 
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CHAPTER 6  

6. Development of a Multi-Layer Perceptron Artificial Neural Network 

Model to Determine Haul Truck Energy Consumption 

The reduction of energy consumption has gradually become more important worldwide since the rise 

of the cost of fuel in the 1970s. The mining industry annually consumes trillions of British Thermal 

Units (BTUs) of energy in operations such as exploration, extraction, transportation and processing. 

A large number of research studies and industrial projects have been carried out in an attempt to 

reduce energy consumption in mining operations [48, 102, 113, 186]. Current investments in the 

improvement of mining equipment have resulted in a significant reduction of energy consumption 

[14, 100]. A large amount of energy can also be saved by improving mining technologies and energy 

management systems [25, 101]. Energy saving is also associated with the reduction of millions of 

tonnes of gas emissions because the major energy sources used in the mining industry are petroleum 

products: electricity, coal and natural gas [99, 187]. The type of fuel used on a mine site is greatly 

dependent on the type of mining method and the equipment used. Most of the equipment used for the 

handling of materials in mining is powered by diesel engines [96], which are highly energy-intensive, 

accounting for 87% of the total energy consumed in material handling [2, 3]. 

Service trucks, front-end loaders, bulldozers, hydraulic excavators, rear-dump trucks and ancillary 

equipment, such as pick-up trucks and mobile maintenance equipment, are examples of the diesel 

equipment used in mining operations. Trucks in surface mines are used to haul ore and overburden 

from the pit to the stockpile, the dumpsite or to the next stage of the mining process [103]. They are 

used in combination with other equipment, such as excavators, diggers and loaders, according to the 

production capacity and the site layout [95]. The trucks used in the haulage operations of surface 

mines use a great amount of energy [3, 188] and this has encouraged truck manufacturers and major 

mining corporations to carry out a number of research projects on the energy efficiency of haul trucks 

[39, 98, 104, 115, 188]. 

The study conducted by Antoung and Hachibli [98] is concerned with the implementation of power-

saving technology to improve the motor efficiency of mining equipment. The focus of their study is 

on the technical performance of motor components and how they contribute to the reduction of 

6.1 Introduction 
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friction and the improvement of the motor efficiency. Beatty and Arthur [39] investigate the effect of 

some general parameters, such as cycle time and mine planning, on the energy used by haul trucks. 

They determine the optimum values of these parameters to minimise fuel consumption in hauling 

operations, but they do not consider the three technical key parameters of Gross Vehicle Weight 

(GVW), Total Resistance (TR) and Truck Velocity (V). The research presented by Carmichael, 

Bartlett and Kaboli [115] is concerned with the effects of haul truck fuel consumption on costs and 

gas emissions in surface mining operations; however, the simulation used in their research does not 

include the pertinent parameters affecting the fuel consumption. Chingooshi, Daws and Madden [104] 

study the smart energy mining strategy and identify the effective key parameters involved in energy 

efficiency opportunities in the mining industry as a whole; however, their research excludes the 

technical aspects of the parameters that affect fuel consumption for haul trucks. The scope of the 

present paper differs from the above-mentioned studies because it aims to determine how the fuel 

consumption of a haul truck varies with the truck payload, truck tyre Rolling Resistance (RR) and the 

haul Grade Resistance (GR) when the truck is travelling with the best engine performance. 

The understanding of the energy efficiency of a haul truck is not limited to the analysis of vehicle-

specific parameters and mining companies can often benefit by expanding the analysis to include 

other parameters that affect the energy use of trucks, such as payload distribution [49]; however, 

reasonable progress has not yet been made in this field of research due to the complexity of the 

parameters involved. There are a number of key parameters that influence the energy used by trucks 

in a mine fleet, all of which need to be taken into account simultaneously for the optimisation of fuel 

consumption. 

Artificial Neural Networks (ANNs) can be used to determine fuel consumption by taking into 

consideration a number of parameters that influence the fuel consumption of trucks. ANNs have been 

used in many engineering disciplines, such as materials [50, 59-64], biochemical engineering [65], 

medicine [66] and mechanical engineering [67-70]. ANNs are desirable solutions for complex 

problems as they can interpret the compound relationships between the multiple parameters involved 

in a problem. One of the main advantages of the ANNs is that they can simulate both linear and 

nonlinear relationships between the parameters using the information provided to train the network. 

This paper presents the development of a multi-layer perceptron artificial neural network model to 

determine the fuel consumption of haul trucks in surface mines. 
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Haul truck fuel consumption is a function of various parameters, the most significant of which have 

been identified and categorised into seven main groups (see Figure 6-1).  

 

Figure 6-1: Haul truck energy consumption key parameters 

6.2 Haul truck fuel consumption  
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The key parameters that affect the energy consumption of haul trucks include the payload 

management, the model of the truck, GR and RR, according to a study conducted by the Department 

of Resources, Energy and Tourism [49]. That study examines the Best Truck Ratio (BTR) and the 

diesel consumption for a fixed production of 20 million tonnes of moved material and finds an optimal 

payload associated with the minimum BTR and diesel consumption. The BTR is defined as the ratio 

of actual consumed energy to the theoretical best use of energy by haul trucks. It is also shown that 

the model of the truck and the haul road condition affects the BTR and the diesel consumption. 

In the present study, the effects of the GVW (representing the sum of the empty truck weight and the 

payload), the maximum truck velocity (Vmax, representing the truck model at a fixed payload) and the 

TR (representing the haul road condition) on the energy consumption of the haul trucks were 

examined. The TR is equal to the sum of RR and GR when the truck is moving against the grade of 

the haul road. 

GRRRTR                     

(6-1) 

The RR depends on the tyre and hauling road surface characteristics and is used to calculate the 

rolling friction force, which is the force that resists the motion when the truck tyre rolls on the haul 

road (see Figure 6-2).  

 

Figure 6-2: A schematic diagram of a truck tyre showing the forces 

For typical haul roads, the RR is 2% if the road is hard and well-maintained; on the bench and close 

to the dump end, the road quality deteriorates and the RR is expected to increase to 3%; during wet 

periods when the road conditions are worsened, the RR might increase to 4%; finally, under very poor 

conditions, the RR may rise to 10%–16%, however, this would only be over very small sections of 

the haul road and for short periods of truck operations. In this study, the haul road is considered to 

http://en.wikipedia.org/wiki/Motion_(physics)
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have the same conditions as the dirt-dry, but not firmly packed, road and, therefore, a RR of 3% is 

used in the analysis. The typical values for RR are presented in Table 6-1 [189]. 

Table 6-1: Typical values for Rolling Resistance (RR) [190] 

Road Condition Rolling Resistance (%) 

Bitumen, concrete 1.5 

Dirt-smooth, hard, dry and well maintained 2.0 

Gravel-well compacted, dry and free of loos 

material 

2.0 

Dirt-dry but not firmly packed 3.0 

Gravel-dry not firmly compacted 3.0 

Mud-with firm base 4.0 

Gravel or sand-loose 10.0 

Mud-with soft spongy base 16.0 

The GR is the slope of the haul road, it is measured as a percentage and is calculated as the ratio 

between the rise of the road and the horizontal length (see Figure 6-3). For example, a section of the 

haul road that rises at 10 m over 100 m has a GR of 10%. The GR is positive when the truck is 

travelling up the ramp and is negative when it travels down the ramp. The GR is positive for all the 

test conditions considered in this study, as the truck carrying the payload is travelling against the 

grade of the haul road. 

 

Figure 6-3: Grade Resistance (GR) 

Figure 6-4 presents a schematic diagram of a typical haul truck and the key parameters that affect the 

performance of the truck, such as the GVW, RR, gradient, friction force and Rimpull Force (RF).  
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Figure 6-4: A schematic diagram of a typical haul truck and effective key parameters on 

truck performance 

RF is the force available between the tyre and the ground to propel the machine (see Figure 6-5). It 

is related to the torque (T) that the machine is capable of exerting at the point of contact between its 

tyres and the ground and the truck wheel radius (r). 

r

T
RF                                (6-2) 

 

Figure 6-5: Schematic of the wheel showing the Rimpull Force (RF) 

Caterpillar trucks are the most popular vehicles of the different brands used in the mining industry. 

Based on the power of vehicle, mine productivity, haul truck capacity and other key parameters, CAT 

793D (Table 6-2) was selected for the analysis presented in this study.  
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Table 6-2: CAT 793D Mining truck specifications [120] 

Specification Value 

Engine  

Engine Model CAT 3516B HD 

Gross Power 1801 kW 

Net Power 1743 kW 

Weights - Approximate  

Gross Weight 384 tonnes 

Nominal Payload 240 tonnes 

Body Capacity  

Struck 96 m3 

Heaped 129 m3 

The Rimpull-Speed-Grade ability curve presented in Figure 6-6 was used to determine the Rimpull 

(R) and the Vmax based on different values of TR for the real values of GVW in the mine site dataset. 

This dataset was collected from a surface coal mine in central Queensland, Australia for a CAT 793D 

truck and includes the following information: date, payload (tonne), V(km/hr), cycle time (hh:mm:ss), 

cycle distance(km), RR(%), GR(%), TR(%) and truck fuel consumption (L/hr), A sample of the 

dataset is presented in Table 6-3.  

 

Figure 6-6: Rimpull-Speed-Grade Ability Curve for Truck CAT 793D [120] 
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Table 6-3: A sample of dataset collected from a surface coal mine in central Queensland, Australia  

The cycle time, presented in Table 6-3, is the round trip time for the hauling truck and is calculated 

based on the fixed, travel and wait time: the fixed time is the sum of loading, manoeuvring, dumping 

and spotting; the travel time is the sum of the hauling and returning time; and the wait time is the 

queueing time for dumping and loading (see Figure 6-7) [190]. The rate of fuel consumption for the 

CAT 793D truck was determined based on the values of GVW in the collected dataset and the 

calculated power. 

 

Figure 6-7: Hauling truck operations in a round trip 

The truck fuel consumption can be calculated from Equation 6.3 (Filas [191]): 

)P.LF(
FD

SFC
FC                    (6-3) 

where SFC is the engine specific fuel consumption at full power (0.213–0.268 kg/kw.hr) and FD is 

the fuel density (0.85 kg/L for diesel). The simplified version of Equation 6-3 is presented by Runge 

[118]: 

)P.LF(3.0FC                   (6-4) 

Date 
Payload 

(tonne) 

Truck 

Velocity 

(km/hr) 

Cycle 

Time 

(hh:mm:ss) 

Cycle 

Distance 

(km) 

Rolling 

Resistance 

(%) 

Grade 

Resistance 

(%) 

Total 

Resistance 

(%) 

Fuel 

Consumption 

(L/hr) 

23/01/2013 218.6 8.49 00:25:35 4.989 3.0 11.6 14.6 84.44 

15/02/2013 219.4 11.39 00:16:17 5.150 3.0 8.7 11.7 90.26 

13/03/2013 168.2 11.17 00:11:12 2.414 3.0 10.7 13.7 89.90 

29/03/2013 158.9 14.04 00:17:42 5.150 3.0 9.1 12.1 93.78 

22/04/2013 216.5 10.36 00:19:17 5.311 3.0 9.6 12.6 88.48 

08/05/2013 202.1 12.06 00:18:45 5.311 3.0 9.4 12.4 91.28 

25/06/2013 185.5 11.53 00:16:24 4.023 3.0 10.1 13.1 90.49 

16/08/2013 175.9 11.94 00:18:48 4.667 3.0 10 13 91.10 

07/10/2013 147.6 13.27 00:22:23 5.311 3.0 10.3 13.3 92.90 

19/12/2013 214.3 11.58 00:17:55 5.150 3.0 8.9 11.9 90.56 



91 

 

where LF is the engine load factor and is defined as the ratio of average payload to the maximum 

load in an operating cycle [113]. The typical values of LF are presented in Table 6-4 [37]. P is the 

truck power (kW). For the best performance of the truck operation, P is determined by: 

)V.RF(
6.3

1
P max                   (6-5) 

where the RF is calculated by the product of Rimpull (R) and the gravitational acceleration (g). Vmax 

is calculated by Equation 6-6, which is based on the relationship between R and Vmax as presented in 

Figure 6-6 (Soofastaei  [192]). 

)Rcexp(baV d
max                              (6-6) 

where a= 53.867, b= 54.906, c= 37.979 and d= -1.309.      

DataThief 5.6 and Curve Expert 2.1 were used to find an equation for R as a function of TR and GVW 

based on the Rimpull-Speed-Grade ability curve (see Figure 6-6). 

 TR053.0006.0GVW183.0R                                                   (6-7) 

The relationship between Vmax and GVW for six values of TR is illustrated in Figure 6-8. The results 

show that, for any value of TR, Vmax decreases as GVW increases (this is due to the increased payload 

that causes R to increase and, consequently, Vmax to decrease). The results also show that, for a fixed 

GVW, Vmax decreases as TR increases. 

Table 6-4: Typical values of Load Factors (LF) 

Operating Conditions LF (%) Condition 

Low 20 - 30 
Continuous operation at an average GVW 

less than recommended, No overloading 

Medium 30 - 40 
Continuous operation at an average GVW 

recommended, Minimal overloading 

High 40 - 50 
Continuous operation at or above the 

maximum recommended GVW 
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Figure 6-8: Variation of Vmax with GVW for different TR 

Table 6-5 presents FC for different values of GVW obtained from the real mine dataset in the range 

of 165 tonnes (empty truck) to 385 tonnes (fully loaded truck). TR=10% ± 0.1. FC was calculated 

based on Equation 6-3 and by using the values of R and Vmax. For other values of TR in the range of 

5%–30%, FC was calculated versus GVW, as presented in Figure 6-9. The results generally show 

that, for all values of TR, FC increases as GVW increases. It can also be seen that, for a fixed GVW, 

FC increases as TR increases. 

Table 6-5: Fuel Consumption (FC) by CAT 793D for TR=10% ± 0.1 (Sample) 

GVW* 

(tonne) 

Rimpull 

(tonne) 

Truck Velocity 

(km/hr) 

Power 

(kW) 
LF 

Fuel Consumption 

(L/hr) 

166.3 16.46 33.03 1482.77 0.21 94.93 

172.8 17.10 32.02 1493.49 0.21 98.64 

185.1 18.32 30.21 1509.64 0.22 102.96 

192.4 19.04 29.21 1516.99 0.23 106.59 

202.3 20.02 27.92 1524.71 0.23 110.29 

214.9 21.27 26.40 1531.34 0.24 113.93 

235.4 23.30 24.17 1536.00 0.25 117.45 

254.7 25.21 22.33 1535.09 0.25 120.56 

286.4 28.35 19.74 1525.83 0.26 122.98 

297.1 29.41 18.97 1521.11 0.27 125.75 

306.5 30.34 18.33 1516.46 0.27 128.49 

308.7 30.55 18.19 1515.31 0.28 131.53 

312.4 30.92 17.95 1513.32 0.29 134.48 

321.9 31.86 17.35 1507.97 0.29 137.12 

* GVW=Payload + Empty Truck Weight 
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Figure 6-9: Variation of FC with GVW for different TR 

It must be noted that, up to this point, the truck fuel consumption has been calculated based on the 

best truck performance recommended by the manufacturer using the values of Vmax presented in the 

Rimpull-Speed-Grade ability curve (see Figure 6-6); however, in real mining operations, the haul 

trucks travel at speeds that are normally lower than the Vmax. The relationship between the truck fuel 

consumption, payload, TR and actual V is generally complex and requires an artificial intelligence 

method to determine the relationship. In the next section of this paper, the details of an ANN model, 

that was developed to determine how the truck fuel consumption varies with the variation of payload, 

TR and V, are presented. 

6.3.1 Background 

ANNs, also known as neural networks (NNs), simulated neural networks (SNNs) or ‘parallel 

distributed processing’, are the representation of methods that the brain uses for learning [193]. ANNs 

are series of mathematical models that imitate a few of the known characteristics of natural nerve 

systems and sketch on the analogies of adaptive natural learning. The key component of a particular 

ANN paradigm could be the unusual structure of the data processing system. A typical neuronal 

model is thus comprised of weighted connectors, an adder and an activation function                       

(see Figure 6-10).  

6.3 Artificial neural network 
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Figure 6-10: A typical procedure of an artificial neural network 

ANNs are utilised in various computer applications to solve complex problems. They are fault-

tolerant and straightforward models that do not require information to identify the related parameters 

[194]and do not require the mathematical description of the phenomena involved in the process. 

6.3.2 Neural network structure, training and development 

The main part of a neural network structure is a ‘node’. Biological nodes generally sum the signals 

received from numerous sources in different ways and then carry out a nonlinear action on the results 

to create the outputs. Neural networks typically have an input layer, one or more hidden layers and 

an output layer. Each input is multiplied by its connected weight and in the simplest state, these 

quantities and biases are combined; they then pass through the activation functions to create the output 

(see Equations 6-8, 6-9, 6-10). Figure 6-11 shows the data treatment in a node (it should be noted that 

the hidden layer nodes may use any differentiable activation function to generate their output). 

m,...,2,1k)bxw(E k,i

q

1j

jk,j,ik 


               

(6-8) 

where x is the normalised input variable, w is the weight of that variable, i is the input, b is the bias, 

q is the number of input variables, and k and m are the counter and number of neural network nodes, 

respectively, in the hidden layer. 

In general, the activation functions consist of both linear and nonlinear equations. The coefficients 

associated with the hidden layer are grouped into matrices Wi,j,k and bi,k. Equation 6-9 can be used as 

the activation function between the hidden and the output layers (in this equation, f is the transfer 

function). 

)E(fF kk                     (6-9) 
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The output layer computes the weighted sum of the signals provided by the hidden layer and the 

associated coefficients are grouped into matrices Wo,k and bo. Using the matrix notation, the network 

output can be given by Equation 6-10. 

o

m

1k

kk,o b)Fw(Out  


               (6-10) 

 

Figure 6-11: Data processing (treatment) in a neural network cell (node) 

Network training is the most important part of neural network modelling and is carried out using two 

methods: controllable and uncontrollable training. The most common training algorithm is that of 

back-propagation. A training algorithm is defined as a procedure that consists of adjusting the 

coefficients (weights and biases) of a network to minimise the error function between the estimated 

network outputs and the real outputs. 

This paper presents a study in which different types of algorithms were examined in order to 

determine the best back-propagation training algorithm. In comparison to other back-propagation 

algorithms, the Levenberg–Marquardt (LM) back-propagation training algorithm has the minimum 

mean square error (MSE), root mean square error (RMSE) and correlation coefficient (R2).  

In addition, network training with the LM algorithm can run smoothly with the minimum expanded 

memory specification (EMS) and a fast training process. MSE, RMSE and R2 are the statistical criteria 

utilised to evaluate the accuracy of the results according to following equations [195, 196]: 
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where y is the target (real), z is the output (estimated) of the model , 


y  is the average value of the 

targets and p is the number of the network outputs [197, 198]. 

In this project, the MSE and R2 methods were applied to examine the error and performance of the 

neural network output and the LM optimisation algorithm was utilised to obtain the optimum weights 

of the network. 

6.4.1 Network structure 

The structure of the proposed ANN model for function approximation is a feed-forward multi-layer 

perceptron neural network with three input variables and one output. The feed-forward network 

frequently has one or more hidden layers of sigmoid nodes tracked by an output layer of linear nodes. 

Multiple layers of nodes with nonlinear activation functions allow the network to learn the linear and 

nonlinear connections between the input and output vectors. The linear output layer allows the 

network to create values outside the [-1,+1] range [199] . 

The activation functions in the hidden layer (f) are the continuous differentiable nonlinear tangents 

sigmoid presented by Equation 6-14. 

1
)E2(exp1

2
)E(sigtanf 


               (6-14) 

where E can be determined by Equation 6-8. 

6.4 Proposed model 
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In order to find the optimal number of nodes in the hidden layer, MSE and R2 were calculated for 

different numbers of nodes in the hidden layer. The minimum MSE and the maximum R2 (best 

performance) were found for 15 nodes in the hidden layer (as shown in Table 6-6 and Figure 6-12).  

Table 6-6: Values of MSE and R2 for different numbers of nodes in the hidden layer 

R2 MSE 
Number of nodes 

in hidden layer (S) 

0.988211 248.0580 1 

0.998248 37.22722 2 

0.999953 0.998305 3 

0.999989 0.228053 4 

0.999999 0.031135 5 

0.999993 0.145217 6 

0.999999 0.026266 7 

0.999999 0.019214 8 

0.999999 0.011070 9 

0.999999 0.019934 10 

0.999999 0.021152 11 

1.000000 0.001974 12 

0.999999 0.022326 13 

0.999999 0.010901 14 

1.000000 0.001716 15 

1.000000 0.005223 16 

1.000000 0.002423 17 

1.000000 0.003433 18 

1.000000 0.010185 19 

1.000000 0.003890 20 

 

 

Figure 6-12: The performance of the network at different hidden nodes using LM algorithm 
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The schematic structure of the designed neural network based on three input variables, fifteen nodes 

in the hidden layer and one output is shown in Figure 6-13.  

 

Figure 6-13: Schematic illustration of the designed neural network structure 

The statistical features of the input and output variables used for the network synthesis, showing the 

variation range and the standard deviation of each variable, are given in Table 6-7. 
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Table 6-7: Input and output variables statistical features 

Statistical 

Features 

Gross Weight 

(tonne) 

Total Resistance 

(%) 

Maximum Velocity 

(km/hr) 

Fuel Consumption 

(L/hr) 

Maximum 385 30 53.87 237.92 

Minimum 165 1 3.13 13.61 

Mean 275 15.5 19.57 32.53 

Median 275 15.5 13.46 140.82 

STDEV 63.79 8.65 15.15 41.42 

Size 6630 6630 6630 6630 

6.4.2 Network training 

In order to train the ANN model, 4600 pairing data were randomly selected from the 6630 values of 

the collected site data (A large surface mine located in central Queensland, Australia). From the 

selected site data, the values of payload, Vmax and TR were used to calculate the fuel consumption 

and used to train the ANN model. Based on the network structure presented earlier, the normalised 

fuel consumption can be determined by Equation 6-15: 
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where m is the number of nodes in the hidden layer (m=15), q is the number of inputs (q=3) and w 

and b are weight and bias, respectively. In this equation, i is the input, o is the output and FCn is the 

normalised fuel consumption. The results of the network training, in terms of the values of the 

adjustable weight (w) and bias (b) used in Equation 15, are presented in Table 6-8. 

 

 

 

 

 

 

 

 



100 

 

Table 6-8: Adjustable parameters obtained (weights and bias) in the proposed model 

m=15 (k=1… 15), q=3 (j=1, 2, 3) 

Weight Bias 

kjiw ,,
 

kow ,
 

kib ,
 

ob  

1,1,iw  

0.1665 

1,2,iw  

0.7960 

1,3,iw  

-0.6736 

1,ow  

1.2290 

1,ib  

0.0446 

ob
 

-2.2715 

2,1,iw  

0.1203 

2,2,iw  

1.2317 

2,3,iw  

-0.4215 

2,ow  

1.0472 

2,ib  

1.3500 

 

3,1,iw  

0.2995 

3,2,iw  

-0.0739 

3,3,iw  

-0.6099 

3,ow  

1.2477 

3,ib  

0.2680 

4,1,iw  

-0.4642 

4,2,iw  

2.2158 

4,3,iw  

-1.2879 

4,ow  

3.5790 

4,ib  

4.3941 

5,1,iw  

0.4443 

5,2,iw  

0.8145 

5,3,iw  

-0.1406 

5,ow  

1.0073 

5,ib  

-0.2283 

6,1,iw  

0.6018 

6,2,iw  

0.7676 

6,3,iw  

0.6249 

6,ow  

0.6943 

6,ib  

-0.6287 

7,1,iw  

-0.2136 

7,2,iw  

-0.3001 

7,3,iw  

0.1248 

7,ow  

0.8841 

7,ib  

0.4164 

8,1,iw  

-0.6371 

8,2,iw  

-0.5198 

8,3,iw  

-0.6359 

8,ow  

0.7212 

8,ib  

0.6409 

9,1,iw  

0.0703 

9,2,iw  

0.7174 

9,3,iw  

-1.4252 

9,ow  

1.2914 

9,ib  

2.3359 

10,1,iw  

-0.1585 

10,2,iw  

-0.3657 

10,3,iw  

0.1386 

10,ow  

0.8588 

10,ib  

0.4348 

11,1,iw  

-0.2491 

11,2,iw  

0.4677 

11,3,iw  

0.3727 

11,ow  

0.5701 

11,ib  

0.0008 

12,1,iw  

0.1959 

12,2,iw  

-0.9730 

12,3,iw  

0.7279 

12,ow  

1.7479 

12,ib  

-1.2233 

13,1,iw  

-0.4013 

13,2,iw  

-0.9377 

13,3,iw  

-0.7644 

13,ow  

1.3130 

13,ib  

-0.9649 

14,1,iw  

0.2715 

14,2,iw  

-0.1492 

14,3,iw  

1.0988 

14,ow  

2.0026 

14,ib  

0.6752 

15,1,iw  

0.4799 

15,2,iw  

0.9377 

15,3,iw  

2.1059 

15,ow  

2.6285 

15,ib  

-1.8993 

 

 

 

 

 

Figure 6-14 shows the variation of MSE during the network training: it can be seen that the error 

approaches zero after 25 epochs, indicating that the desired network convergence was obtained during 

the training. 
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Figure 6-14: Neural network error diagram (MSE) during network training 

6.4.3 Network application 

The developed ANN model, after being trained, was used to calculate the haul truck fuel consumption 

as a function of GVW (x1), TR (x2) and Vmax (x3), based on the following steps: 

Step 1: Normalising the input parameters between -1 and +1 

12
xx

xx
x

minmax

min
n 















                (6-16) 

Step 2: Calculating the E parameter for each hidden node 

15...,,2,1k)bxw(E k,i

q

1j

jk,j,ik 


                    (6-17) 

Step 3: Calculating the F parameters 

15...,,2,1k1
)E2exp(1

2
F

k

k 


              (6-18) 

 

 

Step 4: Calculating the normalised fuel consumption FCn 
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                (6-19) 

Step 5: Denormalising the fuel consumption 

2

)FC92.237)(1FC(
61.13FC nn 
              (6-20) 

6.4.4 Network test 

In order to test the network accuracy and validate the model, 2030 independent samples were used. 

The test results of the synthesised network are shown in Figure 6-15 where the vertical and horizontal 

axes show the estimated fuel consumption values by the model and the actual fuel consumption 

values, respectively.  

 

Figure 6-15: Comparison of actual values with network outputs for test data (First quarter bisector) 

The results show good agreement between the actual and estimated values of fuel consumption. 

Table 6-9 also presents sample values for the estimated (using the ANN) and the independent (tested) 

fuel consumption in order to highlight the insignificance of the values of the absolute errors in the 

analysis. 
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Table 6-9: Sample values for estimated (ANN) and independent (Tests) fuel consumption 

Estimated value of FC (ANN) 

(L/hr) 

Independent Value of FC (Tests) 

(L/hr) 

Absolute error 

(%) 

13.79 13.71 0.58 

15.79 15.74 0.32 

17.13 17.09 0.20 

19.34 19.33 0.06 

58.78 58.71 0.12 

60.87 60.79 0.13 

63.52 63.47 0.08 

74.63 74.59 0.06 

97.78 97.75 0.03 

99.38 99.31 0.07 

6.4.5 Sensitivity analysis 

To identify the critical parameters and their degree of significance in relation to the outputs of the 

model, a sensitivity analysis was carried out. There are many methods to assess the relative 

importance of the input variables in the ANN, such as ‘PaD’  [200-204] , ‘Profile’ [205], ‘Stepwise’ 

[202] and ‘Weight’ [206-208]. In this paper, the ‘Weight’ method, based on the neural net weight 

matrix and the Garson equation [205] was utilised. Garson proposed an equation based on the 

partitioning of connection weights, as illustrated in Equation (6-21): 
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(6-21) 

where 


q

1j

k,j,iw denotes the sum of the connection weights between the input nodes (q) and the hidden 

node (k) (see Figure 6-16). r,jQ  represents the relative importance of the input variable ( ix ) on the 

output ( ry ), in relation to the rest of the input variables, in such a way that the sum of this index must 

give a value of 100% for all of the input variables [207]. 
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Figure 6-16: Weight method structure for sensitivity analysis 

Table 6-10 presents the relative importance of the input variables calculated by Equation 6.21 and it 

is clearly shown that all three variables have a noticeable effect on the haul truck fuel consumption. 

The Vmax, with a relative importance of 60%, appeared to be the most influential parameter in this 

study. 

Table 6-10: Relative important of input variables 

Input Variable Importance (%) 

Maximum Truck Velocity (Vmax) 60 

Total Resistance (TR) 26 

Gross Machine Weight (GVW) 14 

Total 100 
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The aim of this study was to develop an ANN model to determine haul truck fuel consumption based 

on the relationship between GVW, V and TR. For an actual dataset obtained from surface mining 

operations, this relationship was complex and required an artificial intelligence method to create a 

reliable model to analyse the problem. In the first part of the study, to determine the best performance 

of the haul truck, the fuel consumption was calculated based on the collected data for GVW from a 

real mine site and the corresponding Rimpull and Vmax for various values of TR. The results showed 

that fuel consumption increased as the TR and the GVW were increased. In the second part of the 

study, an ANN model was developed, which was found to perform best with the configuration of 

three input variables, 15 hidden nodes and one output. This model was then trained based on the 

truck’s best performance characteristics, using real values for GVW collected from a surface mining 

operation and the associated fuel consumption values. The network was tested using the remaining 

values of the collected dataset and the results showed that there was good agreement between the 

actual and estimated values of fuel consumption. The sensitivity analysis showed that all three input 

variables have a noticeable effect on the haul truck fuel consumption and that the Vmax proved to be 

the most influential parameter, with the relative importance of 60%. The developed model can be 

used to estimate the fuel consumption for any dataset obtained from real surface mine truck 

operations. 

 

  

6.5 Conclusions 
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Abstract 

This paper aims to develop a comprehensive model based on artificial intelligence methods for 

reducing fuel consumption by surface mine haul trucks. Truck payload, speed and the haul road total 

resistance are key parameters that affect fuel consumption. The relationship between the key 

parameters and the haul truck fuel consumption is determined using an Artificial Neural Network 

(ANN) model. The ANN model is trained and tested using real data collected from a large surface 

mine in central Queensland, Australia. A fitness function for the haul truck fuel consumption is 

successfully generated by the ANN model. This function is utilised to generate a computerised 

learning algorithm based on a novel multi- objective genetic algorithm and estimate the optimum 

values of effective haulage parameters to reduce the diesel fuel consumption by haul trucks in surface 

mines. [209] 
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CHAPTER 7 

7. Reducing Fuel Consumption of Haul Trucks in Surface Mines Using 

Genetic Algorithm 

The Mining industry consumed 450 PJ of energy in 2011-12 or 11% of the national energy end use 

in Australia [150].  Energy consumption and intensity in mining is rising at around 6% annually in 

Australia due to lower grade ores, located deeper underground [150]. Similar statistics are observed 

in other developed countries [210]. Mining operations use energy in a variety of ways, including 

excavation, material transfer, ventilation and dewatering [3]. Based on completed industrial projects, 

significant opportunities exist within the mining industry to reduce energy consumption [3]. The 

potential for energy savings has motivated both the mining industry and governments to conduct 

research into the reduction of energy consumption [2]. 

In surface mines, the most commonly used means of mining and hauling of materials is via a truck 

and shovel operation [39, 119]. The trucking of overburden constitutes a major portion of energy 

consumption [2]. The rate of energy consumption is a function of a number of parameters. The 

research presented by Carmichael et al.  [115] is concerned with the effects of the geology of the site, 

the density of the load, road surfaces and gradients on the energy consumption of haul trucks. Cetin 

[127] examined the relationship between haul truck energy efficiency and loading rates, vehicle 

efficiency, and driving practices [127]. Beatty and Arthur  [39] investigated the effect of some general 

parameters, such as cycle time and mine planning, on the energy consumed by haul trucks. They 

determine the optimum values of these parameters to minimise fuel consumption in hauling 

operations. The study conducted by Coyle [105] is concerned with the effects of payload on truck 

fuel consumption. In this study he shows the effect of load density variation based on the blasting 

procedures on fuel consumption by haul trucks.  

To the authors’ best knowledge, the studies reported in the literature are based mainly on the 

theoretical models used to calculate the fuel consumption of haul trucks. These models work based 

on the Rimpull-Speed-Grad curve prepared by the truck manufacturer for the performance of trucks 

[119, 120, 211-214]. 

7.1 Introduction 
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In the present study, the effects of the three main effective parameters on fuel consumption of haul 

trucks have been examined. These parameters are Payload (P), Truck Speed (S) and Total Resistance 

(TR). On a real mine site, the correlation between fuel consumption and the above mentioned 

parameters is complex. Therefore, in this study two artificial intelligence methods have been used to 

create a model to estimate and reduce fuel consumption. This model has been completed based on a 

comprehensive dataset collected from a large coal surface mine in Central Queensland, Australia. The 

model can estimate the energy consumption of one type of haul truck in surface mines using an 

Artificial Neural Network (ANN) and can also find the optimum value of P, S and TR using a Genetic 

Algorithm (GA). 

Haul truck fuel consumption is a function of a number of parameters. Figure 7-1 presents a schematic 

diagram of a typical haul truck and the key parameters that affect the performance of the truck.  

 

Figure 7-1: A schematic diagram of a haul truck and effective key parameters  

In the present study, the effects of the P, S and TR on the fuel consumption of haul trucks were 

examined. The TR is equal to the sum of the rolling resistance (RR) and the grade resistance (GR) 

when the truck is moving against the grade of the haul road [37].  

GRRRTR                    (7-1) 

The RR depends on tyre and haul road surface characteristics and is used to calculate the Rimpull 

Force (RF), which is the force that resists motion as the truck tyre rolls on the haul road. The GR is 

the slope of the haul road, and is measured as a percentage and calculated as the ratio between the 

rise of the road and the horizontal length (see Figure 7-2) [49]. 

7.2 Calculation of haul truck fuel consumption  

http://en.wikipedia.org/wiki/Motion_(physics)
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Figure 7-2: A schematic of haul truck tyre showing the Rolling and Grade Resistance (RR & GR) 

The truck Fuel Consumption (FC) can be calculated from Equation 7-2 (Filas [191]): 

)P.LF(
FD

SFC
FC o                   (7-2) 

where SFC is the engine Specific Fuel Consumption at full power (0.213–0.268 kg/kw.hr) and FD is 

the fuel density (0.85 kg/L for diesel). The simplified version of Equation 7-3 is presented by Runge 

[118]: 

)P.LF(3.0FC                                                                                      (7-3) 

where LF is the engine Load Factor and is defined as the ratio of average payload to the maximum 

load in an operating cycle [113]. The typical values of LF are presented in Table 7-1 [37]. Po is the 

truck power (kW) and it is determined by:  

)S.RF(
6.3

1
Po                    (7-4) 

Table 7-1: Typical values of Load Factors (LF) 

Operating Conditions LF (%) Condition 

Low 20 - 30 
Continuous operation at an average GVW 

less than recommended, No overloading 

Medium 30 - 40 
Continuous operation at an average GVW 

recommended, Minimal overloading 

High 40 - 50 
Continuous operation at or above the 

maximum recommended GVW 

where the RF is calculated by the product of Rimpull (R) and the gravitational acceleration (g) and S 

is Truck Speed. 



110 

 

In this study, a completed dataset by mine engineers in a large coal surface mine in Australia collected 

from 01/07/2013 to 20/10/2014 was analysed to create all models presented in this paper. The real 

dataset includes date, payload (tonne), truck speed (S) (km/hr), cycle time (hh:mm:ss), cycle distance 

(km), RR (%), GR (%), TR (%) and FC (L/hr) for a fleet of CAT 793D rigid body trucks. A sample 

of dataset is presented in Table 7-2. The collected data has been measured by a Vehicle Information 

Management System. 

Table 7-2: A sample of real dataset collected from a surface coal mine in Queensland, Australia 

(01/07/2013 – 20/10/2014)  

VIMS is an electronic package consisting of a main processor and a network of sensors installed on 

all new Caterpillar equipment to generate a wide range of data to manage the performance of a given 

machine. In fact, today’s CAT equipment generates huge volumes of data that help miners to monitor 

machine health and condition, track equipment hours and usage, optimise work flows and production 

cycles, maximise equipment uptime and finally, reduce costs per tonne [112].  

The surface mine under study is located in central Queensland, Australia. Operational hours for this 

mine are around 5000 per year. This mine has 4 haulage routes and 2 ramps. The length of the longest 

ramp is 3 km. The width of the haul road is 35 m and the horizontal haulage distance is 60 m In-Pit 

and 120 m Ex-Pit. The truck down ramp speed is limited to 30 km/h due to safety considerations. 

The relationship between truck fuel consumption and selected parameters in this study (P, S and TR) 

is complex and requires an artificial intelligence method to determine. The next section of this paper 

7.3 Data collection 

Date 
Payload 

(tonne) 

Average 

Truck Speed 

(km/hr) 

Cycle 

Time 

(hh:mm:ss) 

Cycle 

Distance 

(km) 

Rolling 

Resistance 

(%) 

Grade 

Resistance 

(%) 

Total 

Resistance 

(%) 

Fuel 

Consumption 

(L/hr) 

23/01/2013 218.6 8.5 00:25:35 4.9 3.0 12.0 15.0 84.0 

15/02/2013 219.4 11.5 00:16:17 5.1 3.0 9.0 12.0 90.0 

13/03/2013 168.2 11.0 00:11:12 2.4 3.0 10.0 13.0 90.0 

29/03/2013 158.9 14.0 00:17:42 5.1 3.0 9.0 12.0 94.0 

22/04/2013 216.5 10.0 00:19:17 5.3 3.0 10.0 13.0 88.0 

08/05/2013 202.1 12.0 00:18:45 5.3 3.0 9.0 12.0 91.0 

25/06/2013 185.5 11.5 00:16:24 4.0 3.0 10.0 13.0 90.0 

16/08/2013 175.9 12.0 00:18:48 4.6 3.0 10.0 13.0 91.0 

07/10/2013 147.6 13.0 00:22:23 5.3 3.0 10.0 13.0 93.0 

19/12/2013 214.3 11.5 00:17:55 5.1 3.0 9.0 12.0 90.0 
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contains the details of an ANN model that was developed to determine how the truck fuel 

consumption varies with the variation of these parameters. 

7.4.1 Artificial neural network model 

Artificial Neural Networks (ANNs) are a popular artificial intelligence method to simulate the effect 

of multiple variables on one major parameter by a fitness function. This method can be used to 

determine fuel consumption by taking into consideration a number of variables that influence the fuel 

consumption of haul trucks. ANNs have been used in many engineering disciplines such as materials 

[50, 59-61, 63], biochemical engineering [65], medicine  [66] and mechanical engineering [67, 68, 

215]. ANNs are desirable solutions for complex problems as they can interpret the compound 

relationships between the multiple parameters involved in a problem. One of the main advantages of 

ANNs is that they can simulate both linear and nonlinear relationships between parameters, using the 

information provided to train the network. ANNs, also known as parallel distributed processing, are 

the representation of methods that the brain uses for learning [68]. They are a series of mathematical 

models that imitate a few of the known characteristics of natural nerve systems and draw on the 

analogies of adaptive natural learning. The key component of a particular ANN paradigm could be 

the unusual structure of the data processing system. A typical neuronal model is thus comprised of 

weighted connectors, an adder and an activation function. ANNs are utilised in various computer 

applications to solve complex problems. 

In this study an ANN was developed to create a Fuel Consumption Index (FCIndex) as a function of P, 

S and TR. This index shows how many litres of diesel fuel are consumed to haul one tonne of mined 

material in one hour.   

7.4.2 Developed model 

The structure of the proposed ANN model for function approximation is a feed-forward, multi-layer 

perceptron neural network with three input variables and one output. The activation functions in the 

hidden layer (f) are the continuous differentiable nonlinear tangents sigmoid presented in   

Equation 7-5. 

1
)E2(exp1

2
)E(sigtanf 


                            (7-5) 

7.4 Estimation of haul truck fuel consumption  
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Where E can be determined by Equation 7-6. 

m,...,2,1k)bxw(E ik

q

1j

jijkk 


                (7-6) 

Where x is the normalised input variable, w is the weight of that variable, i is the input, b is the bias, 

q is the number of input variables, and k and m are the counter and number of neural network nodes, 

respectively, in the hidden layer. 

Equation 7-7 can be used as the activation function between the hidden and output layers (in this 

equation, F is the transfer function). 

)E(fF kk                     (7-7) 

The output layer computes the weighted sum of the signals provided by the hidden layer and the 

associated coefficients. The network output can be given by Equation 7-8. 

o

m

1k

kok b)Fw(Out  


                                                                                                                  (7-8) 

In order to find the optimal number of nodes in the hidden layer, Mean Square Error (MSE) and 

Coefficient of Determination (R2) were calculated for different numbers of nodes in the hidden layer. 

The minimum MSE and the maximum R2 (best performance) were found for 10 nodes in the hidden 

layer (Table 7-3).  

Table 7-3: Values of MSE and R2 for different numbers of nodes in the hidden layer 

R2 MSE 
Number of nodes 

in hidden layer (S) 

0.9999 0.3377 1 

1.0000 0.0631 2 

1.0000 0.0301 3 

1.0000 0.0212 4 

1.0000 0.0181 5 

1.0000 0.0156 6 

1.0000 0.0145 7 

1.0000 0.0170 8 

1.0000 0.0164 9 

1.0000 0.0101 10 

1.0000 0.0150 11 

1.0000 0.0129 12 

1.0000 0.0323 13 

1.0000 0.0147 14 

The schematic structure of the designed neural network based on three input variables, ten nodes in 

the hidden layer and one output is shown in Figure 7-3.  
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Figure 7-3: Schematic illustration of the designed ANN structure 

7.4.3 ANN training and validation 

In order to train the proposed ANN model, 8300 pairing data were randomly selected from the 16500 

values of the collected site data. In order to test the network accuracy and validate the model, 8200 

independent samples were used. All collected datasets had more than 100 columns of data for about 

85 parameters. Selection data process was completed based on the scope of project. The results show 

good agreement between the actual and estimated values of fuel consumption. The test results of the 

synthesised network are shown in Figure 7-4 where the vertical and horizontal axes show the actual 

fuel consumption values and the estimated fuel consumption values by the model, respectively. 
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Figure 7-4: Comparison of actual values with estimated value of haul truck fuel  

Table 7-4 presents sample values for the estimated (using the ANN) and the actual (tested) haul truck 

fuel consumption in order to highlight the insignificance of the values of absolute error in the analysis. 

Table 7-4: Sample values for estimated (ANN) and actual (Tests) haul truck fuel consumption 

Estimated value of FC 

(ANN) 

(L/hr) 

Actual value of FC (Tests) 

(L/hr) 

Absolute error 

(%) 

15.75 16.00 1.58 

18.75 19.00 1.33 

17.20 17.00 1.16 

52.45 53.00 1.05 

61.70 61.00 1.13 

64.00 65.00 1.56 

74.85 74.00 1.13 

83.10 84.00 1.08 

92.00 93.00 1.09 

98.31 97.00 1.33 

7.4.4 Network application 

The developed ANN model, after being trained, was used to calculate the haul truck fuel consumption 

as a function of P (x1), TR (x2) and S (x3), based on the following steps: 
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Step 1: Normalising the input parameters between -1 and +1 
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Step 2: Calculating the E parameter for each hidden node 
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Step 3: Calculating the F parameters 
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Step 4: Calculating Normalised Fuel Consumption Index (FCIndex(n)) 
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Step 5: Denormalising FCIndex(n) 
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7.4.5 Network results 

Figure 7-5 illustrates the correlation between P, S, TR and FCIndex created by the developed ANN 

model for a normal range of payloads.  
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Figure 7-5: Correlation between P, S, TR and FCIndex based on the developed ANN model  

The presented graph shows that there is a nonlinear relationship between FCIndex and P. the rate of 

fuel consumption increases dramatically with increasing TR. However, this rate does not change 

sharply with changing S. The developed model also shows that the value of FCIndex changes by 

variation of S and P but there is no clear relationship between all effective parameters and fuel 

consumption. Therefore, completing another artificial intelligence method is essential to finding the 

optimum value of the selected effective parameters in order to minimise the haul truck fuel 

consumption. 
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7.5.1 Optimisation 

Optimisation is a part of computational science that is very effective way to find the best measurable 

solution for problems. To solve the problems, it is important to consider two components. The first 

one is search area and the second one is objective function. In the search area, all the possibilities of 

solution are considered and the objective function is a mathematical function that associates each 

point in the solutions area to a real value, applicable to evaluate all the members of the search area. 

Solving the complex computational problems has been a constant challenge in Engineering. 

Traditional optimisation methods are characterised by the stiffness of its mathematical models that 

they are very difficult to represent of real dynamic and complex situations (Stiffness mathematical 

model means non-dynamic and flexible model). Introducing the optimisation techniques based in 

Artificial Intelligence, as the heuristic search based ones, has reduced the problem of stiffness. 

Heuristic rules can be defined as practical rules, derived from the experience and observation of 

behaviour tendencies of the system in analysis. They are appropriate to solve all types of problems in 

engineering. Using analogies with nature, some heuristic algorithms were proposed during the 50s by 

trying to simulate biological phenomena in engineering. These algorithms, called Natural 

Optimisation Methods. One of the best advantages of using the mentioned algorithms is their random 

characteristic. By developing the computers during the 80s, the use of these algorithms for 

optimisation of functions and processes became practicable, when traditional methods were not 

successful in this area.  During the 90s some new heuristic methods created by the previous completed 

algorithms, as Swarm Algorithms, Simulated Annealing, Ant Colony Optimisation and Genetic 

Algorithms. 

7.5.2 Genetic algorithms 

Genetic Algorithms (GAs) were proposed by Holland  in 1975 as an abstraction of biological 

evolution, drawing on ideas from natural evolution and genetics for the design and implementation 

of robust adaptive systems [216]. The new generation of genetic algorithms are comparatively recent 

optimisation methods. They do not use any information of derivate, therefore, they have good chances 

of escape from local minimum. Their application in practical engineering problems generally brings 

to global optimal, or, at least, to solutions more satisfactory than those ones obtained by other 

traditional mathematical methods. They use a direct analogy of the evolution phenomena in nature. 

The individuals are randomly selected from the search area. The fitness of the solutions, which is the 

7.5 Optimisation of effective parameters on haul truck fuel consumption  
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result of the variable that is to be optimised, is determined subsequently from the fitness function. 

The individual that generates the best fitness within the population has the highest chance to return 

in the next generation, with the opportunity to reproduce by crossover, with another individual, 

producing decedents with both characteristics. If a genetic algorithm is developed correctly, the 

population (group of possible solutions) will converge to an optimal solution for the proposed 

problem. The processes that have more contribution to the evolution are the crossover, based in the 

selection and reproduction and the mutation. GAs have been applied to a diverse range of scientific, 

engineering and economic problems [63, 67, 216-218] due to their potential as optimisation 

techniques for complex functions. There are four major advantages when applying genetic algorithms 

to optimisation problems. Firstly, GAs do not have many mathematical requirements in regard to 

optimisation problems. Secondly, GAs can handle many types of objective functions and constraints 

(i.e., linear or nonlinear) defined in discrete, continuous or mixed search spaces. Thirdly, the 

periodicity of evolution operators makes GAs very effective at performing global searches (in 

probability). Lastly, The GAs provide us with great flexibility to hybridize with domain dependent 

heuristics to allow an efficient implementation for a specific problem. Besides of genetic operators, 

it is also important to analyse the influence of some parameters in the behaviour and in the 

performance of the genetic algorithm, to establish them according to the problem necessities and the 

available resources. The influence of each parameter in the algorithm performance depends on the 

class of problems that is being treated. Thus, the determination of an optimised group of values to 

these parameters will depend on a great number of experiments and tests. There are a few main 

parameters in the GA method. Details of these five key parameters are tabulated in Table 7-5.  

Table 7-5: Genetic algorithm Parameters 

GA Parameter Details 

Fitness Function The main function for optimisation 

Individuals An individual is any parameter to apply into the fitness 

function. The value of the fitness function for an individual 

is its score. 

Populations and Generations A population is an array of individuals. At each iteration, the 

GA performs a series of computations on the current 

population to produce a new population. Each successive 

population is called a new generation. 

Fitness Value The fitness value of an individual is the value of the fitness 

function for that individual. 
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Parents and Children To create the next generation, the GA selects certain 

individuals in the current population, called parents, and 

uses them to create individuals in the next generation, called 

children. 

The principal genetic parameters are the size of the population that affects the global performance 

and the efficiency of the genetic algorithm, the mutation rate that avoids that a given position remains 

stationary in a value, or that the search becomes essentially random. 

7.5.3 Developed model 

In this project, a GA model was developed to improve three key effective parameters on the energy 

consumption of haul trucks. In this model P, S and TR are the individuals and the main function for 

optimisation of the fitness function is fuel consumption (Equation 7-12). In this model the fitness 

function was created by the ANN Model. All GA processes in the developed model are illustrated in 

Figure 7-6. In this model seven main processes were defined.  

 

Figure 7-6: Genetic algorithm processes (Developed Model) 

These processes are initialisation, encoding, crossover, mutation, decoding, selection, and 

replacement. The details of the above mentioned processes are presented in Table 7-6.  
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Table 7-6: Genetic algorithm processes 

Process Details 

Initialisation Generate initial population of candidate solutions  

Encoding Digitalise initial population value 

Crossover Combine parts of two or more parental solutions to 

create new 

Mutation Divergence operation. It is intended to occasionally break 

one or more members of a population out of a local 

minimum space and potentially discover a better answer. 

Decoding Change the digitalized format of new generation to the 

original one 

Selection Select better solutions (individuals) out of worse ones 

Replacement Replace the individuals with better fitness values as parents 

 

Technical details of the developed model are presented in Table 7-7.  

Table 7-7: Technical details of genetic algorithm developed model 

Parameters Details 

Population type Double vector 

Population size 20 

Creation function Uniform 

Scaling function Rank 

Selection function Stochastic uniform 

Elite count for reproduction 2 

Crossover fraction 0.8 

Mutation function Uniform 

Rate of mutation 0.01 

Crossover function Scattered 

Migration direction Forward 

Migration Fraction 0.2 

Migration Interval 20 

Constraint Parameters (Initial Penalty) 10 

Constraint Parameters (Penalty Factor) 100 

Stopping criteria MSE and R2 
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These parameters were defined based on the presented results in similar completed projects reviewed 

in this study. In this project, the completed ANN and GA model were developed by writing computer 

code in MATLAB software. P, S and TR are inputs of the code in first step. The completed code 

creates the fitness function based on the developed ANN model. This function is a correlation 

between the fuel consumption of the haul truck, P, S and TR. After the first step, the completed 

function goes to the GA phase of the computer code as an input. The developed code starts all GA 

processes under stopping criteria defined by the model (MSE and R2). Finally, the improved P, S and 

TR will be presented by the code. These optimised parameters can be used to minimise the fuel 

consumption of haul trucks. All processes in the developed model work based on the present dataset 

collected from a large surface mine in Australia, but the completed methods can be developed for 

other surface mines by replacing the data.  

7.5.4 Results and discussions 

The first step of running the developed GA model is defining the minimum and maximum values of 

all variables (individuals). The range of possible values for variables in the developed model is based 

on the collected dataset and presented in Table 7-8.  

Table 7-8: The range of possible values for variables in developed model 

Variables Minimum Maximum 

Payload (P) 140 tonne 310 tonne 

Total Resistance (TR) 8 % 15 % 

Speed (S) 7 km/hr 30 km/hr 

 

In this developed model, the main parameters used to control the algorithm were R2 and MSE. The 

population size for the first generation was 20 and a uniform creation function was defined to generate 

a new population (see Figure 7.7). 
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Figure 7-7: The coefficient of determination and mean square error for all generations 

Figure 7-8 demonstrates the variation of these parameters in generations.  

 

Figure 7-8: Fuel Consumption (Fitness Value) in all generations 
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The value of MSE was 0 and the value of R2 was about 0.98 after the 47th generation.  These values 

were not changed until the GA model was stopped in the 53rd generation. Also, the values of control 

parameters were constant after the 47th generation, but the model continued all processes until the 

53rd. That is because a confidence interval was defined for the model to find reliable results. The 

value of the fitness function or FCIndex in all generations has been demonstrated in Figure 7-8. The 

simulated value of the fuel consumption of haul trucks varies between 0.03 and 0.13 L/(hr. tonne). 

The mean of the calculated results is 0.076 L/(hr. tonne) and more than 45% of results are located 

above the average line. The presented model could find some local minimised fuel consumption but 

the acceptable results can be found after the 47th generation. Figure 7-8 also shows that the FCIndex is 

about 0.04 L/hr. tonne, which lies in the acceptable area. It means that by improving the P, S and TR 

in the studied mine site, the minimum FCIndex for the CAT 793D is about 0.04 L/hr. tonne. The 

optimum range of variables to minimise fuel consumption by the selected haul truck in this case study 

is tabulated in Table 7-9.  

Table 7-9: Optimum range of variables to minimise fuel consumption by haul trucks (GA Model) 

Variables Minimum Maximum 

Payload (P) 250 tonne 270 tonne 

Total Resistance (TR) 8.5 % 9 % 

Speed (S) 13 km/hr 15 km/hr 

The results showed that the best value of payload for the CAT 793D in this mine is between 250 and 

270 tonnes. This value of payload is close to the recommended value supplied by the manufacturer 

(Caterpillar) for this type of truck. The speed of the truck depends on different kinds of parameters 

such as safety, weather conditions, driver skill etc. The developed model recommends a truck speed 

between 13 and 15 km/hr for the CAT 793D in the analysed mine site. Driving in the recommended 

range of truck speeds can reduce the fuel consumption of haul trucks in this surface mine. Based on 

the data analysed by the GA model, the optimum range of TR to minimise the FCIndex is between 

8.5% and 9%. This range of TR is achievable by changing the grade or rolling resistance in the studied 

mine site. 
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The aim of this study was to develop a GA model to improve haul truck fuel consumption based on 

the relationship between P, S and TR. For an actual dataset obtained from surface mining operations, 

this relationship was complex and required an artificial intelligence method to create a reliable model 

to analyse the problem. In the first part of the study, an ANN model was developed to find a 

correlation between P, S and TR with fuel consumption. The results showed that fuel consumption 

has a nonlinear relationship with the investigated parameters. The ANN was trained and tested using 

the collected real mine site dataset and the results showed that there was good agreement between the 

actual and estimated values of fuel consumption. In the last part of the study, to minimise the energy 

efficiency in haulage operations, a GA model was developed. The results showed that by using this 

model, optimisation of the effective parameters on energy consumption was possible. The developed 

model could estimate the local minimums for the fitness function. The presented genetic algorithm 

model highlighted the acceptable results to minimise the rate of fuel consumption. The range of all 

studied effective parameters on fuel consumption of haul trucks was optimised, and the best values 

of P, S and TR to minimise FCIndex were highlighted. The results showed that the best value of payload 

for the CAT 793D in this mine is between 250 and 270 tonnes. The developed model recommends a 

truck speed between 13 and 15 km/hr for the CAT 793D in the analysed mine site. Driving in the 

recommended range of truck speeds can reduce the fuel consumption of haul trucks in this surface 

mine. Based on the data analysed by the GA model, the optimum range of TR to minimise the FCIndex 

is between 8.5% and 9%. 

7.6 Conclusions 



125 

 

Chapter 8 

8. Conclusions and Recommendations 

This research thesis aimed to develop an advanced data analytics model to improve energy efficiency 

for haul trucks in surface mines. This model consisted of Artificial Intelligence methods for 

developing a fitness function for haul truck fuel consumption, and optimising the important 

controllable parameters that result in minimum fuel consumption. In order to enhance the analysis, 

the effects of payload variance and rolling resistance on fuel consumption and gas emissions were 

investigated. In addition, the effect of truck bunching on cycle time, hauled mine materials and fuel 

consumption were examined. All completed models in this thesis were validated by collected data 

from four open-cut (coal0mines and four open-pit (Copper) mines in Australia and United States. All 

presented case studies were completed by collected data from surface mines and validations were 

completed for similar type of mines as well. 

A comprehensive literature review was conducted on energy efficiency opportunities in mining 

industry, haul truck fuel consumption, Artificial Neural Network (ANN) and Genetic Algorithm 

(GA). The research on haul truck fuel consumption resulted in identifying the key parameters 

affecting the haul truck fuel consumption. An online survey was also conducted to identify the most 

important controllable parameters, namely payload, truck speed and total resistance. In this survey, 

50 personnel from five surface mines in Australia and The United State were contacted with 63% 

response rate. The research on ANN and GA proved that ANN could be used to develop the fitness 

function for truck fuel consumption, and GA could be used to optimise the selected key parameters 

for minimising the fuel consumption.  

(Chapter 2, Literature review). 

The effects of payload variance on fuel consumption, greenhouse gas emissions and their associated 

cost in surface mining operations were examined. CAT 793D truck, one of the mostly used haul 

trucks in surface mines, was considered for the analysis. Based on the technical specifications of this 

truck, the variation range of payload was 0-30%. The correlations for the maximum truck speed and 

fuel consumption were determined by digitising Rimpull-Speed-Grade ability curve using DataThief® 

8.1 Conclusions 
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software. The costs of consumed fuel and greenhouse gas emissions were determined based on 

models developed by US Energy Information Administration. The results showed that the fuel 

consumption, rate of greenhouse gas emissions and their costs non-linearly increase as the payload 

variance rises for all haul road conditions. The correlation between the payload variance and cost 

saving was also developed. This correlation presented the cost saving for different payload variance 

reductions regardless of haul road conditions. Real site data from a mine in Australia were used to 

test the correlation model. The results of this simulation indicated that there was a considerable cost 

saving opportunity by reducing the payload variance in surface mines. 

(Chapter 3, Payload variance). 

The payload variance is one of the main reasons for haul trucks to travel with different speeds causing 

truck bunching in large surface mines. An innovative model was developed to examine the 

relationship between truck bunching and payload variance. The effect of truck bunching on cycle 

time, hauled mine materials and fuel consumption was then examined. To validate the developed 

model, a dataset collected from a large surface mine in Arizona, USA was used. Validation of the 

model was completed for the cycle time and the hauled mine materials by one type of truck 

(CAT 793D). The results indicated a good agreement between the actual and estimated values of 

cycle time and hauled mine materials. The model was utilised in a real mine site for three models of 

haul truck in Australia as a case study. The results indicated that there was a non-linear relationship 

between payload variance and cycle time in the fleet for all considered truck models.  

(Chapter 4, Truck bunching). 

The most influential parameters on haul road total resistance were determined based on a 

comprehensive literature review. An on-line survey was conducted in order to determine the most 

influential parameters on the rolling resistance. In this survey, 45 industry personnel from four mines 

were contacted with a 76% response rate. The results of the survey revealed that the road maintenance, 

the tyre pressure and the truck speed were the most important effective parameters on the rolling 

resistance. The effects of these three parameters on haul truck fuel consumption in a real mine site 

located in central Queensland, Australia were investigated. The non-linear relationships between the 

selected parameters in the survey and the fuel consumption in the considered mine site were 

developed. The results indicated that the truck fuel consumption decreased as the maintenance 

interval and truck speed decreased and tyre pressure increased.  

(Chapter 5, Haul road total resistance). 
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The relationship between truck fuel consumption and pertinent parameters (payload, truck speed and 

total resistance) is complex. This was concluded based on the real dataset obtained from surface 

mining operations. Therefore, an Artificial Neural Network (ANN) model was developed to simulate 

truck fuel consumption as a function of payload, truck speed and total resistance. This model was 

trained based on the truck’s best performance characteristics using real values from a surface mine in 

Australia. The model was tested using the remaining values of the collected dataset. The results 

showed that there was good agreement between the actual and estimated values of fuel consumption. 

The sensitivity analysis showed that all the three input parameters significantly affected the truck fuel 

consumption. It was also found that the truck speed was the most influential parameter with the 

relative importance of 60%. The developed model can be used to estimate the fuel consumption for 

any dataset obtained from real surface mine truck operations.  

(Chapter 6, Artificial neural network). 

The fitness function for the truck fuel consumption generated by ANN was used in the development 

of a Genetic Algorithm (GA) model for minimising the haul truck fuel consumption based on the 

optimised values of payload, truck speed and total resistance. It was evident that the developed model 

could estimate the local minimums for the fitness function. The GA model identified the acceptable 

ranges of payload, truck speed and total resistance that result in minimum truck fuel consumption.  

(Chapter 7, Genetic algorithm). 

The developed methodology in this thesis (use of ANNs followed by optimisation using GAs) is 

widely applicable to other data analytics problems.  

 Investigation of the incorporation of additional constraints in the problem formulation (e.g. 

consideration of a desired production level). 

 Investigation of how to incorporate the ANN and GA steps into a single process. 

 Application of the fuel efficiency algorithm to other mining scenarios such as underground 

mining and/or maintenance prediction.  

 

8.2 Recommendations for future works 
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