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Abstract 
 

The extent of intratumour heterogeneity and its clinical implications are poorly understood. 

This thesis addresses this theme of tumour heterogeneity with a broad focus on invasive 

lobular carcinomas of the breast. More specifically the focus will be on studying the various 

mechanisms of deregulation of E-cadherin, the morphological and phenotypic variation 

mixed ductal lobular carcinomas, and finally heterogeneity of metastatic progression. 

 

Invasive lobular carcinoma (ILC) is the second most common breast cancer subtype, 

accounting for 10-15% of the all breast cancers, and is the most common ‘special type’. 

Biologically, the most distinguishing feature of ILC is the loss of the cellular adhesion 

molecule E-cadherin (absent in up to 90% of ILC), and this is considered fundamental to 

development of the characteristic infiltrative growth pattern. The deregulation of E-

cadherin is not fully understood, and so this thesis aims to investigate the mechanisms of 

E-cadherin deregulation in tumourigenesis.  Co-localised with E-cadherin at the cell 

membrane are a series of proteins (including ECT2, RacGAP1 and N-WASP) which 

regulate the actin cytoskeleton; the expression of these proteins was investigated using 

immunohistochemistry (IHC) of breast cancer tissue microarrays (Chapter 3). Differences 

in cytoplasmic expression and localisation of these molecules were found between 

different histological types and clinicopathological parameters that warrant further 

investigation. It remains unclear whether these molecules contribute to deregulating cell 

adhesion in vivo. 

 

Mixed ductal-lobular carcinomas (MDL) display both ductal and lobular morphology, and 

are a clear example of intratumour morphological heterogeneity. It is hypothesised that 

these different components evolve from a common ancestor and diverge following 

deregulation of the E-cadherin complex. To address this hypothesis, a cohort of 82 MDLs 

was studied for clinical, morphological and molecular features (Chapter 4). Key findings 

include: i) MDLs more frequently co-exist with ductal carcinoma in situ (DCIS) than lobular 

carcinoma in situ (LCIS); ii) the E-cadherin-catenin complex was often normal in the ductal 

component but deregulated in the lobular component; iii) E-cadherin deregulation was 

different to that seen in classic ILC, which are typically completely negative for this marker, 

not aberrant; iv) Epithelial to mesenchymal transition marker expression was not 

associated with E-cadherin deregulation. Exome sequencing was performed to investigate 

clonal relationships between the different intratumour morphologies, and identify 
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mechanisms underlying the change from a ‘ductal’ to a more infiltrative ‘lobular’ growth 

pattern. Preliminary analysis revealed that i) all morphological components within a case 

are clonally related; ii) divergence of the morphological components may occur early 

during tumour evolution (where there are both DCIS and LCIS present) or later during 

tumour progression (cases with only DCIS detectible); and iii) mutations were identified in 

genes such as CDH1 and ESR1. The mechanisms driving the change in phenotype are 

yet to be fully elucidated, but there is significant intertumour heterogeneity and each case 

may utilise a unique molecular mechanism. 

 

Breast cancers show variability in metastatic patterns depending on the tumour histology, 

and molecular breast cancer subtype. Of particular interest, is the unique metastatic 

pattern of ILC, which has the propensity to colonise less common sites such as the 

gynaecological organs and gastrointestinal tract. To gain a greater understanding of this 

complex process, we collated a unique cohort of 53 breast cancer cases with metastasis 

to gynaecological organs (Chapter 5). Analysis of clinical and pathology data found that i) 

patients with gynaecological metastasis (GM) presented at a young age (median of 47 

years vs. 60 years in the general population); ii) there was a long latency to metastasis 

(median 6 years); iii) ILCs more frequently spread to these organs (42.6% vs. 15% in the 

general population). Interestingly, 74% of patients with GM had additional sites of 

metastatic deposit, most commonly gastrointestinal organs and the peritoneum. The 

primary tumours displayed features associated with a good prognosis: positive for ER, PR, 

FOXA1 and GATA3; and negative for HER2, basal markers and Ki67 (low). The 

expression of ER remained unchanged during metastatic progression in most cases; 

whereas other markers, such as FOXA1 and GATA3 were reduced, and Ki67 and p53 

increased during progression. Array comparative genomic hybridisation and targeted DNA 

sequencing were undertaken to define the genomic changes that occur during progression 

to gynaecological organs. Within each case, there was evidence of both clonal similarities 

and divergence between the primary tumour and metastases.  

 
The investigation of intratumour heterogeneity in primary breast cancer and its metastatic 

progression will lead to a better understanding of the mechanisms driving tumour 

progression. This thesis employs a variety of techniques to address this issue on a 

number of levels, including heterogeneity at molecular levels, within a primary tumour type 

and in the progression to metastasis. Ultimately, understanding intratumour heterogeneity 

will provide patients with more appropriate treatment strategies. 
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1. General introduction 
 

Breast cancer is the most common cancer in women in Australia, with a total of 14,000 

women diagnosed with breast cancer in 2010 and more than 1.3 million women diagnosed 

annually worldwide (Grayson, 2012). Breast cancer presents a significant burden to both 

the patient and the health care system. The risk of developing breast cancer increases 

with age and one in eight women will be diagnosed with breast cancer before the age of 

85 in Australia (AIHW, 2012). 

 

Breast cancer survival rates have improved dramatically over the past 50 years due to a 

combination of factors, including better detection and improved screening programs (such 

as Breast Screen Australia which provides free mammographic screening for all women 

over the age of 50), improved treatment and an increased understanding of the biology of 

the disease. In the 1950’s, the 5-year overall survival was just 40%, and by 2004 overall 

survival had increased to 85% (Maxmen, 2012). However, breast cancer remains the 

second most common cause of cancer death in women and nearly half a million women 

still die from breast cancer each year (Grayson, 2012); 40,000 in the United States (Siegel 

et al., 2013) and 2700 in Australia (Cancer Australia, 2012). In spite of substantial funding 

for breast cancer research, which has contributed significantly to our understanding of 

clinical and biological aspects of the disease, there are still large numbers of women dying 

each year and so improvements continue to be required in clinical areas of prevention, 

treatment and metastasis. 

 
1.1. Clinical management of breast cancer 

 
Breast cancer is a difficult disease to treat because it is extremely heterogeneous with 

respect to morphological appearance, clinical behaviour (presentation, response to 

treatment, metastatic potential, outcomes) and biology (molecular profiles and activated 

biological pathways). To help manage this heterogeneity, various classification methods 

have been introduced to identify clinically and biologically relevant subtypes of disease. 

The diagnosis of breast cancer occurs via a number of mechanisms including palpation of 

the breast, radiological examination by mammography, ultrasound or magnetic resonance 

imaging (MRI). An abnormality identified is sampled by core needle biopsy or fine needle 

aspiration and assessed for malignancy. If required a lesion is removed by surgical 

excision, either by wide local excision or mastectomy. The tissue is assessed by a 
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pathologist to determine tumour stage, histological type, grade and expression of 

molecular biomarkers. A multidisciplinary team of surgeons, radiologists, pathologists and 

oncologists determine the most appropriate management strategy for the patient based on 

these clinical and pathological variables. 

 

In order to predict the clinical behaviour of the tumour, the breast cancer is staged using 

the Tumour Node Metastasis staging system (TNM) developed by The American Joint 

Committee on Cancer (AJCC, 2007). The TNM classification is based on: 

• The size of the primary tumour: T1, <20 mm; T2, 20-50 mm; T3, >50 mm 

• The number of metastatic lymph nodes: N1, 1-3; N2, 4-9; N3, >10 nodes 

• The presence (M1) or absence (M0) of distant metastasis  

Based on the combined scores, clinical stage I to IV is designated, with stage IV signifying 

patients having the worst overall outcome.  

 

1.2.   Breast cancer classification  
 

Breast cancers are further categorised based on cellular morphology (Section 1.2.1), the 

expression of a suite of biomarkers (Section 1.2.2) and also patterns of gene expression 

(Section 1.2.3).  

 

1.2.1. Morphological classification of breast cancer 
 

The tumour is assigned a grade using the Nottingham Combined Histological Grading 

system (Elston and Ellis, 1991). Morphological features of the tumour are given a score of 

1 to 3 based on three different cellular features: 

• The percentage of the tumour exhibiting tubule formation: 1, >75%; 2, 10-75%; 3, 

<10%.  

• The degree of nuclear pleomorphism: 1, small regular uniform cells; 2, moderate 

increase in size and variability; 3 marked variation.  

• Mitotic count: 1-3, with a score of 3 having the most mitoses counted in a given 

microscopic field area. 

Taken together, breast cancers are classified as grade 1 (score of 3-5; well differentiated), 

grade 2 (score of 6-7; moderately differentiated) or grade 3 (score of 8-9; poorly 

differentiated), with grade 3 tumours having the poorest prognosis. Several independent 
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studies have demonstrated the prognostic value of grading in predicting tumour behaviour 

and patient outcome (Lakhani S. R., 2012, Rakha et al., 2010a). 

 

Breast cancer is classified into histological types based on the internationally recognised 

World Health Organisation (WHO) classification of the different types of breast cancer 

(Lakhani S. R., 2012). Current guidelines recognise 21 histological types of breast cancer 

characterised by differences in cellular morphology and growth patterns. The most 

common type of breast cancer is Invasive Carcinoma of No Special Type (IC-NST; 

previously called Invasive Ductal Carcinoma IDC-NST, Figure 1.1a) representing up to 

80% of all breast cancers. IC-NST are a morphologically heterogeneous group but they do 

not exhibit the specific features to be classified as a so-called ‘special’ subtype. In fact the 

remaining 20% of breast tumours are regarded as special types; Invasive Lobular 

Carcinoma (ILC) being the most common accounting for up to 15% of all breast cancers 

(Section 1.5; (Lakhani S. R., 2012)). ILCs are characterised by a unique pattern of growth, 

whereby the cells are discohesive and grow in a single file of cells or dispersed throughout 

the stroma (Figure 1.1b). There are a number of histological variants of ILC including 

solid, alveolar, tubulolobular and pleomorphic lobular carcinomas (Figure 1.1f).  A less 

common type of invasive breast cancer that exhibits both ductal and lobular morphological 

features is classified as mixed ductal-lobular (MDL) carcinoma, accounting for 3-5% of 

breast cancers (Section 1.6; (Lakhani S. R., 2012, Rakha et al., 2009)). Other special 

types of breast cancer include metaplastic, medullary, tubular, cribriform, mucinous, and 

adenoid cystic carcinomas that all have unique histological features, growth patterns, 

biology and outcomes (Figure 1.1). 
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Figure 1.1: Representative images of some of the histological subtypes of breast cancer. a) 

invasive carcinoma – no special type, b) classic invasive lobular carcinoma, c) tubular 

carcinoma, d) mucinous carcinoma, e) invasive micropapillary carcinoma, f) pleomorphic 

lobular carcinoma, g) medullary carcinoma, h) metaplastic carcinoma, i) adenoid cystic 

carcinoma. (Vuong et al., 2014) with permission from Springer Science. 

 
1.2.2. Biomarkers used in clinical practice 

 
The tumour stage, grade and histological type are combined with an assessment of the 

expression of molecular biomarkers that further help predict the response to specific 

targeted therapies. Routinely, the expression of oestrogen receptor (ER), progesterone 

receptor (PR) and human epidermal growth factor receptor 2 (HER2) is assessed by 

immunohistochemistry (IHC). In situ hybridisation (ISH; Chromogenic- (CISH), silver 

(SISH) or fluorescence (FISH)) is also used to confirm the HER2/c-ErbB2 gene copy 

number status (Rakha et al., 2010b). The uses of ER, PR and HER2 as biomarkers are 

good negative predictors for response to the targeted therapies that are currently available 

for breast cancer patients. For example, it is not appropriate to give endocrine-based 

therapy such as an ER antagonist (e.g. Tamoxifen) to patients with ER and PR negative 

tumours. Likewise, the anti-HER2 antibody trastuzumab (Herceptin®) is not appropriate for 

patients with HER2 negative tumours. The markers are also good positive predictors of 
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response to these treatments and have made a major contribution to improved outcomes 

for breast cancer patients (Early Breast Cancer Trialists' Collaborative, 2005). The 

combinations of all three markers provide more predictive value, for instance, tumours that 

express ER and PR are associated with a better prognosis compared to those that 

express HER2 or are negative for all three of these markers (triple negative) (Blows et al., 

2010, Walt et al., 1976, Lakhani S. R., 2012). When these targeted therapies are used in 

combination with standard chemotherapy agents a greater overall patient outcome can be 

achieved (Rakha et al., 2010b).  

 
ER and PR 
 

The oestrogen and progesterone receptors are part of the nuclear receptor super family of 

transcription factors that regulate the expression of many genes and signalling pathways in 

response to steroid hormone binding (Clarke, 2003). There are two ER isoforms, ER alpha 

and ER beta, with ER alpha expression being the best understood in both normal and 

malignant breast; in the normal breast, ER and PR are expressed in the ducts and lobules. 

ER alpha is referred to as ER throughout the rest of this thesis. 

 

ER and PR are activated by their ligands oestrogen and progesterone, respectively, to 

stimulate cell growth (Clarke, 2003). Approximately 80% of breast cancers are ER positive 

and up to 70% are PR positive (Figure 1.2, (Harvey et al., 1999)). Patients with low level 

ER and PR positivity have been found to respond to anti-endocrine therapy (Harvey et al., 

1999) and therefore a patient is eligible to receive therapy if greater than 1% of tumour 

cells express ER and PR by immunohistochemistry (Hammond et al., 2010).  

 

ER positive breast cancers benefit from anti-endocrine therapies. There are four main 

categories of endocrine therapies; (i) ovarian suppression by either surgical removal of the 

ovaries (oophorectomy) or chemically using GnRH analogues or radiation, (ii) Selective 

Estrogen Receptor Disruptors (SERDs) prevent the dimerization and nuclear localisation 

of ER e.g. (Fulvestrant), (iii) Selective Estrogen Receptor Modulators (SERMs) compete 

with oestrogen for binding to the oestrogen receptor e.g. Tamoxifen), and (iv) aromatase 

inhibitors (AIs e.g. Letrozole). Menopausal status is important when determining which 

treatment to use. For example, in post-menopausal women, oestrogen is produced 

peripherally by aromatisation of androgens to oestrogen, and therefore aromatase 

inhibitors are more appropriate for this group of patients. Tamoxifen is the gold standard of 



 7 

treatment for pre- and post-menopausal women and treatment for 5 years has been shown 

to reduce the risk of recurrence by almost half in the first 10 years, compared to no 

endocrine treatment (Early Breast Cancer Trialists' Collaborative et al., 2011). Recent 

studies have found greater improvement with 10 years of tamoxifen administration 

compared to 5 years (Davies et al.). Despite the high success rates of these therapies 

some patients develop resistance to endocrine therapy (Section 1.3.1).  

 

The progesterone receptor is an ER-regulated gene product, and expression of PR is 

traditionally thought to be associated with a functioning ER pathway (Clarke, 2003). 

However, this paradigm has been questioned by evidence that ER positive/PR negative 

tumours can respond to a second type of endocrine therapy after not responding to first 

line treatment, suggesting that the ER complex is still functional despite the lack of PR 

expression (Cui et al., 2005). PR has recently been shown to not only be a target gene of 

ER, but in the presence of progesterone, also form part of the protein complex that directs 

ER binding to DNA (Mohammed et al., 2015). The PR-ER complex altered the 

transcriptional program of breast cancer cells, a program of gene expression that is 

associated with good outcome. In vivo studies of xenografted human breast tumours in 

mice treated with a combination of tamoxifen with progesterone displayed significantly 

reduced tumour growth which suggests the possible utility of adding progesterone as a 

therapy in ER and PR positive breast cancer (Mohammed et al., 2015).  

 
HER2 
 
Human epidermal growth factor receptor 2 (HER2) is a cell membrane bound receptor 

tyrosine kinase and a member of the epidermal growth factor receptor family (Epstein et 

al., 2010). The HER2 gene, ERBB2, is located on human chromosome 17q12 and is 

amplified in 15% of breast cancers (Allred, 2010) (Chang and Hilsenbeck, 2010, Epstein et 

al., 2010). This amplification results in over-expression of HER2 protein and is considered 

an oncogenic driving event in HER2 positive breast cancer.  

 

Both IHC and ISH are utilised to assess HER2 expression and amplification. HER2 over-

expression is considered to be established when the tumour cells display strong and 

complete membrane staining in at least 30% of cells (Figure 1.2). ISH is used to quantify 

gene amplification, and is defined by the presence of 6 or more gene copies per nucleus 

(Wolff et al., 2007). HER2 positive breast cancer patients can benefit from three HER2 
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targeted therapies, Trastuzumab and Pertuzumab (monoclonal antibodies that inhibit 

HER2-mediated signalling) or Lapatinib (small tyrosine kinase inhibitor that blocks both 

EGFR and HER2) (Bedard et al., 2009, Epstein et al., 2010). Breast cancers that lack all 

three biomarkers (Triple negative: ER, PR and HER2) derive no benefit from currently 

available targeted therapy 

 

 
Figure 1.2: Representative images of ER, PR and HER2 positive IC-NST. 

 

1.2.3. Intrinsic subtypes of breast cancer 
 

Gene expression profiling studies have been utilised to further stratify breast cancer into 

prognostic subgroups based on distinct patterns of gene expression, revealing vast 

heterogeneity across all patients. Following the seminal study of Perou and Sorlie in 2000 

(Perou et al., 2000), breast cancer has now been stratified into what is now known as the 

‘intrinsic’ or molecular subtypes, of which there are broadly considered to be five; luminal 

A, luminal B, basal-like, HER2 and normal-like (Figure 1.6). The main differences driving 

the separation of these groups are the expression of ER and proliferation related genes. 

The transcriptomes of ER positive and ER negative breast cancers cluster separately, 

highlighting the difference in biology between these two subtypes. The distribution of these 

subtypes varies across array platforms, selected populations and clustering method (e.g. 

PAM50 (Parker et al., 2009), or Intrinsic/UNC sample predictor (Hu et al., 2006)), however 

the luminal A subtype is the most frequent (24%-39%), followed by basal-like (17%-37%), 

luminal B (10%-18%), HER2 (4%-10%) and normal-like (0-5%) (Perou et al., 2000, Sorlie 

et al., 2003, West et al., 2001, van de Vijver et al., 2002). The molecular classification of 

breast cancer has been shown to be predictive of clinical behaviour and patient survival 

(Sorlie et al., 2003, Paik et al., 2004). It has been shown that patients with a HER2 or 

basal-like breast cancer have a poorer outcome compared to the luminal breast cancers. 
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The luminal B subgroup has a poorer outcome compared to the luminal A subgroup (Sorlie 

et al., 2001). However, the analysis method used to define the molecular subtypes can 

produce different prognostic subgroups (Curtis et al., 2012). 

 

 
Figure 1.3: Gene expression profiling revealed 5 intrinsic breast cancer subtypes (A). (B) 

The intrinsic subtype classification has been associated with clinical outcome (Sorlie et al., 

2003) Copyright (2003) National Academy of Sciences, USA. 

 

The reproducibility of this classification system has been questioned and rigorously tested 

to find that overall approximately 75% of samples cluster within the same molecular 

subtype (Perou et al., 2000, Sorlie et al., 2001, Parker et al., 2009). However, Weigelt et 

al., performed a retrospective analysis using three microarray analysis methods (single 

sample predictors) to assess the agreement of molecular classification within individual 

samples (Weigelt et al., 2010). The group found that the basal-like subgroup consistently 

classified into same group irrespective of analysis tool used, and that there was great 

variability with the other subgroups dependent on which classifier was used (Weigelt et al., 

2010), which has crucial implications if these were to be used to guide clinical decision 

making. There has been a lack of reproducibility of robustly categorising tumours in the 

normal-like subgroup, however this is because the original training set used true normal 

breast samples and the tumours that fall into this group likely represents samples with low 
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tumour cellularity and high stromal contamination (Prat and Perou, 2011). Also 6-36% of 

tumours are unable to be classified and differ between platforms (Sorlie et al., 2003, West 

et al., 2001, van de Vijver et al., 2002) and therefore all of these caveats need further 

validation. 

 

Diagnostic platforms such as Oncotype Dx (Genomic Health, USA) and Mamma-Print 

(Agendia, The Netherlands) (others reviewed here (Reis-Filho and Pusztai, 2011)) have 

been developed utilising gene expression signatures to help guide patient management. 

However, these tests have not been widely adopted since added benefit of these tests 

compared to standard histopathology analysis is limited, as these tests mostly recapitulate 

the information already provided by histological grade, tumour size, ER, HER2, Ki67 and 

the use of EGFR, CK14 and CK5/6 as representative markers of the basal-like molecular 

profile (Weigelt and Reis-Filho, 2010, Cuzick et al., 2011, Nielsen et al., 2004, Bhargava et 

al., 2009). These tests are also expensive compared to standard IHC tests. Traditional 

microarray technology relies heavily on good quality frozen tissue with good quality RNA. 

However tests such at the Oncotype DX (real time PCR based) and Nanostring 

Technologies Prosigna™ Breast Cancer Prognostic Gene Signature Assay (PAM50 gene 

signature, using direct RNA hybridisation) can exploit the wealth of FFPE material 

available to generate risk of recurrence scores and validate in large cohorts with follow up 

information. There are also many clinical trials underway utilising the Mamma-Print 

platform such as PROMIS, I-SPY, MINDACT and MINT. These prospective trials have the 

overall goal to improve patient care based on molecular testing to predict therapy benefit, 

risk of recurrence and ultimately omit patients from unnecessary chemotherapy.  

 

1.3. Biomarkers of tumour behaviour and hormonal signalling 
 

Ki67, p53 and basal markers 
 

Ki67 is a proliferation marker that is expressed in cells undergoing division (Gerdes et al., 

1983). It is assessed to determine tumour growth rate and can be used to predict better 

response to chemotherapy agents (Ingolf et al., 2014). Ki67 is sometimes used in the 

clinical setting, however reliability is an issue, since there is no standardised IHC 

procedures or an agreed cut off for designating a tumour as Ki67 “high”, “low”, “positive” or 

“negative” (Harris et al., 2007). One study has found that a Ki67 score of 13.25% stratified 

luminal A and luminal B tumours (Cheang et al., 2009). The degree of value added by Ki67 
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is also questionable since tumour grade encompasses tumour proliferation by counting the 

number of mitoses. A suite of markers normally expressed in the basal/myoepithelial cells 

of the normal breast is used to define a group of tumours with an aggressive phenotype 

known as the basal-like tumours (Fulford et al., 2006, Fulford et al., 2007, Cheang et al., 

2008). These markers include cytokeratin 5/6 and 14, and epidermal growth factor 

receptor (EGFR), and these markers highlight a poor outcome subgroup of triple negative 

breast cancers (Rakha et al., 2007). The tumour suppressor p53 is also typically 

associated with triple negative tumours (Rakha et al., 2010b). Many of these markers are 

of interest for research studies but are not used routinely in clinical practice. 

 

Androgen receptor  
 

The androgen receptor (AR) is another member of the nuclear receptor superfamily of 

transcription factors and is activated by the binding of testosterone. AR and testosterone 

have analogous roles in the prostate and prostate cancer as for ER and oestrogen in the 

breast. AR is expressed in the normal breast (McGhan et al., 2014) and in up to 90% of 

breast tumours (Allegra et al., 1979, Kuenen-Boumeester et al., 1992, Isola, 1993) (Hall et 

al., 1996). AR can be tumour suppressing in ER positive cells and is associated with a 

good prognosis (Peters et al., 2009, Castellano et al., 2010). It has been suggested that 

AR may be oncogenic in ER negative breast cancer cells (Ni et al., 2011). However, other 

studies have found that AR expression is associated with better disease free and overall 

survival in lymph node positive triple negative tumours (Rakha et al., 2007) and also 

associated with longer time to relapse in ER negative disease (Agoff et al., 2003). Cells 

that are ER negative and AR positive have been associated with a molecular apocrine 

molecular subtype (Farmer et al., 2005), apocrine differentiation (Niemeier et al., 2010) 

and are enriched for ERBB2 amplification (Ni et al., 2011). Historically, breast cancers 

were successfully treated with testosterone (Goldenberg, 1964), yet the mechanism of 

action remains unknown. Testosterone treatment was stopped due to the discoveries that 

testosterone can be converted to oestrogen, causes adverse side effects and, ultimately, 

because of the successful introduction of selective oestrogen receptor modulators (Cole et 

al., 1971). Interest around AR being a therapeutic target in breast cancer has arisen again 

recently due to the high frequency of AR expression and greater understanding of the 

function of AR (Garay and Park, 2012). AR may be a potential target in triple negative 

breast cancer, where it is expressed in approximately 40% of tumours (Ogawa et al., 

2008). 
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ER beta 
 

ER beta (ERβ) is encoded by ESR2, is a transcription factor and is also part of the nuclear 

receptor superfamily. Although there is some structural homology with ERα, ERβ has 

opposing roles to ERα; ERβ is growth inhibitory and displays tumour suppressive functions 

(Fox et al., 2008). In fact, the two oestrogen receptors share approximately 54% homology 

and have similar affinity for natural oestrogens, yet differ in their transcriptional programs, 

response to SERMs (Katzenellenbogen and Katzenellenbogen, 2000) and the preferential 

binding of phytoestrogens to ERβ (Kuiper et al., 1998). There are 5 known ERβ isoforms, 

and due to the lack of specific antibodies available, there is a lot of contradictory data in 

the literature regarding the prognostic and predictive value of ERβ (Thomas and 

Gustafsson, 2011, Haldosen et al., 2014). For example, the expression of ERβ-1 was 

associated with better survival, particularly in triple negative breast cancer (Honma et al., 

2008). ERβ-1 has also been shown to inhibit epithelial to mesenchymal transition in basal-

like breast cancer (Thomas et al., 2012) and may explain the better outcome observed by 

Honma et al. This is in contrast to another study that found nuclear expression of ERβ-2 

and ERβ-5, but not ERβ-1, was associated with better survival. Nuclear ERβ-2 was also 

found to be a predictor of response to endocrine therapy, however, the cytoplasmic 

expression of ERβ-2 was associated with poor outcomes (Shaaban et al., 2008). This 

study did not differentiate into intrinsic breast cancer subtypes. In a cohort of 936 breast 

cancer patients, 55% of the cohort expressed ERβ, only 30% of cases co-expressed both 

ERα and ERβ and the expression of ERβ was evenly distributed across the intrinsic 

subtypes (Novelli et al., 2008). This study found that ERβ predicted response to hormone 

therapy in luminal A lymph node negative tumours. Yet in lymph node positive luminal B 

tumours, ERβ positivity with PR negativity was associated with high risk of relapse (Novelli 

et al., 2008). In a small cohort of ER positive, HER2 negative patients (n = 81) treated with 

endocrine therapy, low expression of ERβ1 was associated with risk of early relapse and 

high expression of ERβ2 was associated with late relapse (Dhimolea et al., 2015). Overall 

the functional role of ERβ and its many isoforms may in fact be important, particularly with 

differential functions in different breast cancers subtypes. The functional role of ERβ in 

endocrine resistance is also an area of great interest. However much more work with 

validated antibodies is essential.  
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ER pioneer factors: FOXA1 and GATA3 
 

A special group of transcription factors known as pioneer factors are essential for binding 

independently to, and unwinding, compacted chromatin to allow other transcription factors 

to bind. Pioneer factors facilitate rapid transcriptional responses (Hah et al., 2011) as they 

do not rely on other proteins for their DNA interactions. For ER, those factors are GATA3 

and FOXA1, without whom ER is unable to bind to the DNA and transcribe target genes 

(Figure 1.4 A). FOXA1 and GATA3 are part of large families of highly conserved 

transcription factors (the forkhead box A (FOXA) and GATA families, respectively (Cirillo 

and Zaret, 1999, Cirillo et al., 2002)). In ER positive breast cancer cells FOXA1 was 

essential for all ER-DNA and PR-ER-DNA binding events (Carroll et al., 2005, Laganiere 

et al., 2005, Mohammed et al., 2015). Silencing of FOXA1 resulted in inhibition of ER 

binding and ER transcriptional activity (Hurtado et al., 2011, Carroll et al., 2005) and 

functional FOXA1 was required for growth of tamoxifen-resistant MCF7 cells (Hurtado et 

al., 2011). In prostate cancer cells, FOXA1 plays an equivalent role for AR, however, 

silencing of FOXA1 resulted in the reprogramming of AR binding events, and therefore 

changing gene expression (Figure 1.4 B, (Wang et al., 2011a, Sahu et al., 2011)). FOXA1 

is essential for both ER and AR activity in breast and prostate cancer, respectively. FOXA1 

is highly expressed in molecular apocrine breast tumours and was found to be essential 

for the expression of AR regulated genes (Robinson et al., 2011).  
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Figure 1.4: A) FOXA1 binds to compacted chromatin, allowing ER and AR to bind to the 

DNA. B) Altered FOXA1 binding plays different roles in breast and prostate cancer 

(Robinson et al., 2013b).  

 

Interestingly, FOXA1 expression was found to mediate differential transcription programs 

in metastatic tumours compared to their matched primary tumour, suggesting that FOXA1 

is required for ER function in a drug resistance setting (Figure 1.4 B, (Ross-Innes et al., 

2012)). FOXA1 expression is associated with good outcome (Badve et al., 2007), as 

FOXA1 expression indicates that the ER is functional therefore increasing sensitivity to 

SERMs, and may predict also response to tamoxifen (Mehta et al., 2012). Hisamatsu et al, 

studied a series of ER positive, HER2 negative tumours that have high FOXA1 expression 

responded equally well to endocrine therapy with or without chemotherapy (Hisamatsu et 

al., 2012).  

These studies highlight the potential utility of FOXA1 as a useful biomarker and potentially 

a therapeutic target, particularly in the metastatic setting, since FOXA1 was expressed 

alongside ER in treatment resistant cells (Ross-Innes et al., 2012, Nakshatri and Badve, 

2007), but this needs to be assessed in larger metastatic cohorts. 
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FOXA1 is mutated in approximately 2% of all breast cancers (The Cancer Genome Atlas 

Network, 2012). The mutations were exclusively found in ER positive tumours, were 

mutually exclusive relative to GATA3 mutations and found to cluster in the DNA binding 

domain and C-terminal transactivation domain (Robinson et al., 2013b). The functional 

consequences of these mutations have not been fully investigated, however one study has 

found the single nucleotide polymorphisms (SNPs) in FOXA1 binding sites modulate 

FOXA1-DNA interactions and change the gene expression program (Cowper-Sal lari et al., 

2012). We can also extrapolate the potential functional effect of FOXA1 mutations from in 

vitro studies. For example, silencing of FOXA1 rendered tumour cells less sensitive to 

endocrine therapies, and therefore a mutation that diminishes DNA binding may allow the 

tumour to become independent of oestrogen and less likely to respond to therapy (Hurtado 

et al., 2011). On the other hand, mutation in the C-terminal domain may allow FOXA1 to 

bind to alternative sites in the genome and alter the transcriptional program (Robinson et 

al., 2013b). Mutations in the ER gene, ESR1, have been implicated in ER positive 

metastatic disease (see Section 1.3.1), and therefore the functional consequence of 

FOXA1 mutations in metastasis is an avenue worthy of further investigation. 

 

GATA3 is a transcription factor expressed in the luminal epithelial cells (but not the 

myoepithelial cells) of the breast and is essential for maintaining cellular differentiation 

(Asselin-Labat et al., 2007, Kouros-Mehr et al., 2006, Naylor and Ormandy, 2007). GATA3 

is overexpressed in luminal breast cancers, is strongly associated with ER positive breast 

cancer (Sorlie et al., 2003, Hoch et al., 1999) and has been identified as one of the only 

frequently mutated breast cancer genes (mutated in approximately 10-15% of breast 

cancers (The Cancer Genome Atlas Network, 2012, Stephens et al., 2012). It has been 

reported that GATA3 is expressed in approximately 77-95% of ER-positive tumours and 0-

24% of ER-negative tumours (Hoch et al., 1999, Voduc et al., 2008, Liu et al., 2012). 

GATA3 is also expressed highly in urothelial carcinomas and is a useful marker to 

determine whether a metastasis is of breast or urothelial origin, particularly since more 

than 80% of metastatic breast cancers express GATA3 (Liu et al., 2012). One study has 

suggested that GATA3 expression is predictive of response to hormone therapy (Parikh et 

al., 2005), where the absence of GATA3 expression was observed in tumours that were 

unresponsive to hormone therapy. It must be noted however that the sample size was 

small in this study. Low expression of GATA3 has been associated with poor outcome, 

particularly high tumour grade, positive lymph node and HER2 overexpression (Mehra et 

al., 2005, Liu et al., 2012, Ciocca et al., 2009, Jacquemier et al., 2009). The prognostic 
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role of GATA3 in breast cancer has been contradictory. The study by (Mehra et al., 2005) 

suggests that GATA3 is an independent marker of patient outcome in their cohort, 

however (Voduc et al., 2008) found that GATA3 was neither prognostic for patient 

outcome nor predictive of response to hormone therapy. These conflicting results are likely 

due to the lack of consensus for scoring cut offs, which ranged from 5-30%. The study by 

(Voduc et al., 2008) had the lowest frequency of GATA3 positive tumours, with only 32% 

of their 3119 cases showing GATA3 positivity. This is striking when GATA3 is strongly 

associated with ER positivity, and it is widely established that over 70% of breast cancers 

are ER positive.  

 

GATA3 directly regulates the expression of ESR1, and reciprocally, ERα directly 

stimulates expression of GATA3. It is therefore unsurprising that GATA3 plays a crucial 

role in the response of ER to estrodiol in breast cancer cells (Eeckhoute et al., 2007). It 

has been shown that there is no physical interaction between GATA3 and ER (Eeckhoute 

et al., 2007), therefore other factors must be recruited to regulate expression of ER. 

GATA3 has been identified to act upstream of FOXA1 by directly binding to the regulatory 

region of FOXA1 (Kouros-Mehr et al., 2006, Usary et al., 2004) and overexpression of 

GATA3 shown to up-regulate FOXA1 expression (Usary et al., 2004). Taken together, it is 

likely that FOXA1 mediates crosstalk between GATA3 and ER. Further work is necessary 

to understand the interplay between all of these factors involved in ER signalling in the 

mammary gland. Also the role of these transcription factors on the function of ERβ is 

unknown. 

 

1.3.1. Mechanisms underlying endocrine resistance 
 

Despite the great success of endocrine therapies in reducing patient mortality, there are a 

subset of patients whose tumours do not respond to endocrine therapy, specifically, one 

third of women treated with tamoxifen for 5 years will relapse within 15 years (Early Breast 

Cancer Trialists' Collaborative, 2005). 

 

There have been many molecular mechanisms described that confer endocrine resistance 

(Osborne and Schiff, 2011). The most obvious example is the loss of ER expression that 

occurs in approximately 15-20% of metastatic breast cancers (Hoefnagel et al., 2012, 

Cummings et al., 2014). However, up to 85% of metastases still express ER and therefore 

other mechanisms of resistance must be involved (Dodwell et al., 2006). Several growth 
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factor signalling pathways have been implicated in driving resistance to endocrine therapy. 

For example the MAPK/ERK, EGF, HER2 and AKT/PI3K pathways have all been shown to 

inappropriately phosphorylate ER under certain conditions and many of the genes in these 

pathways are frequently genetically modified, such as frequent amplification of ERBB2, 

activating mutations in PIK3CA and loss of PTEN (The Cancer Genome Atlas Network, 

2012). This hyper-phosphorylation causes over activation of ER function, resulting in 

activity in the absence of ligand and altered transcriptional activity (Martin et al., 2003, 

Britton et al., 2006, Jeng et al., 2000, Bhat-Nakshatri et al., 2008, Lupien et al., 2010, 

Miller et al., 2010, Hurtado et al., 2008). Alterations of cell cycle regulators have also been 

implicated in endocrine resistance due to constitutive activation of growth factor pathways, 

such as up-regulation of MYC (Mukherjee and Conrad, 2005) and Cyclin D1 and 

inactivation of RB1 (Bosco et al., 2007, Butt et al., 2005) (reviewed extensively here: 

(Musgrove and Sutherland, 2009)). These results are based largely around in vitro studies, 

and how these mechanisms translate into the clinical setting and the frequency of these 

mechanisms occurring in the patient population needs to be further explored.  

 

The gene encoding ER alpha, ESR1, is rarely mutated or amplified in primary breast 

cancers (Karnik et al., 1994, Roodi et al., 1995, The Cancer Genome Atlas Network, 

2012). Very recent reports however have found a high frequency of ESR1 mutations in ER 

positive metastatic breast cancer (Figure 1.5 A, (Li et al., 2013, Toy et al., 2013, Robinson 

et al., 2013a, Merenbakh-Lamin et al., 2013, Jeselsohn et al., 2014)). Mutations have been 

found to cluster in the ligand binding domain of the gene and confer ligand independent, 

constitutive activation of the receptor (Jeselsohn et al., 2014). Genomic rearrangements 

are also rare but have been reported. For example, ESR1-CCDC170 and ESR1-YAP1 

fusion genes have been identified and contribute to an endocrine resistant phenotype (Li 

et al., 2013, Veeraraghavan et al., 2014).  
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Figure 1.5: A) A summary of the 5 studies that have reported ESR1 mutations in breast 

cancer metastasis. (Jeselsohn et al., 2015). * Indicates the number of ESR1 mutations 

reported in each study. Matched primary tumours that were also assessed for ESR1 

mutations are indicated by the dashed line. With permission from Nature Publishing Group. 

 

The prevalence of ESR1 mutations in these studies ranged from 14-54%, and taken 

together, 29/187 (21%) of metastatic samples harboured an ESR1 mutation in the ligand 

binding domain (Jeselsohn et al., 2015). Interestingly, the majority of patients were treated 

with an aromatase inhibitor. Of note, no ESR1 mutations were detected in ER negative 

breast cancers, and ESR1 mutations was also more prevalent in patients who had 

received multiple lines of endocrine therapy (Jeselsohn et al., 2014). This highlights that 

endocrine treatment is selecting for the outgrowth of treatment resistant subclones, or the 

mutation is acquired later under treatment pressure after the primary tumour has been 

removed. These studies found that fulvestrant and tamoxifen were still able to bind and 

inhibit the mutated ER, however it required much higher doses than needed for wild type 

ER (Robinson et al., 2013a, Toy et al., 2013, Jeselsohn et al., 2014), and cells expressing 

mutant ER were still able to grow in the presence of fulvestrant and tamoxifen. Mutant 

ESR1 was also resistant to fulvestrant-induced degradation, revealing a molecular 

mechanism underlying resistance to the drug (Jeselsohn et al., 2014). Higher doses of 

fulvestrant have been shown to increase progression free and overall survival in a clinical 
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trial (Di Leo et al., 2010), thus raising the question as to the utility of higher doses of 

tamoxifen or the development of mutant specific SERMs and SERDs to help target ER 

positive metastatic disease. One such drug, GDC-0810 (ARN-810), is a much more potent 

SERD than fulvestrant and is currently in clinical trials (Lai et al., 2015). This data is 

promising as current treatment options for metastatic disease is limited. 
 

As described earlier, FOXA1 and GATA3 also have roles in altering ER and AR function 

and contributing to altering gene expression and cell survival (Eeckhoute et al., 2007, 

Ross-Innes et al., 2012). Overexpression of AR also confers endocrine resistance in cell 

models (De Amicis et al., 2010). Due to the large number of putative mechanisms 

described in the literature, a patient with a treatment resistant recurrence will need to be 

managed according to the mechanism underlying the resistance. 

 
1.4. Molecular profiling of breast cancer 
 
Recently, international consortia such as The Cancer Genome Atlas network (TCGA) and 

ICGC (The Cancer Genome Atlas Network, 2012, Stephens et al., 2012, Curtis et al., 

2012, Ellis et al., 2012) have generated a large molecular profiling resource of breast and 

other tumour types comprising of gene expression, DNA copy number, DNA methylation 

and gene mutation data from exome or whole genome sequencing. This has helped define 

the comprehensive molecular portrait of breast tumours. There are very few recurrently 

mutated genes considered to drive breast carcinogenesis (“driver mutations”) and some 

tumours harbour very many mutations (mostly genomic substitutions termed “passenger 

mutations” that do not promote tumourigenesis) while others have very few alterations 

(Stephens et al., 2012, The Cancer Genome Atlas Network, 2012, Shah et al., 2012). Of 

40 genes defined as a driver, seven genes contributed as much as 58% of the driver 

alterations; TP53, PIK3CA, GATA3, ERBB2, MYC, FGFR1 and CCND1, and were altered 

in more than 10% of cases (Figure 1.7, (Stephens et al., 2012, The Cancer Genome Atlas 

Network, 2012)). The other 33 mutated cancer genes (responsible for 42% of the driving 

genetic events) were mutated relatively infrequently and include AKT1, BRCA1, CDH1, 

PTEN, RB1, KRAS and SMAD4. Surprisingly, very few new cancer genes were discovered 

(e.g. MAP3K1, NCOR1 and CDKN1B)(Stephens et al., 2012). ER positive and ER 

negative breast tumours were demonstrated to have very different mutation profiles, with 

mutations in PIK3CA, GATA3 and MAP3K1 enriched in the luminal subtypes (Ellis et al., 

2012, The Cancer Genome Atlas Network, 2012), while TP53 was most frequently 
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mutated gene in ER negative and triple negative tumours (The Cancer Genome Atlas 

Network, 2012, Shah et al., 2012). These massively parallel sequencing studies have 

overwhelmingly exemplified breast tumour diversity within known subgroups and the 

complexity underlying tumourigenesis.  
 

The signalling pathways implicated by the frequently mutated genes involve cell-cycle 

regulation (e.g. TP53, RB1 and CCND1), PI3K-AKT kinase signalling (e.g. PIK3CA) and 

cell adhesion (e.g. CDH1). TP53 is a DNA binding protein involved in maintaining genomic 

stability. TP53 has many mechanisms of action, including activation of DNA repair 

proteins, inducing cell cycle arrest and apoptosis (Brosh and Rotter, 2009). In fact, TP53 is 

the most mutated gene in human cancer, emphasising its important role as a tumour 

suppressor (Brosh and Rotter, 2009, Surget et al., 2013). CCND1, encoding cyclin D1, 

also regulates the progression of cell cycle by activating the cyclin-dependent kinases 4 

and 6 (CDK4/6). Activated CDK4/6 promotes cell cycle entry by phosphorylating the 

retinoblastoma (RB) gene (Chau and Wang, 2003). Cyclin D1 acts as an ER cofactor, 

where it binds and activates ER-mediated transcription in both the presence and absence 

of ligand (Zwijsen et al., 1998). Due to the high prevalence of CCND1 amplifications and 

its role in cell cycle regulation in breast cancer, CDK4 and 6 inhibition has been targeted 

for therapeutic intervention, in fact, early progress reports from ongoing clinical trials are 

promising (Finn et al., 2015).  

 

PIK3CA encodes the p110α isoform of class-IA PI3-kinase. Mutations in PIK3CA have 

been found to cluster into two mutation hotspots and these mutations induce oncogenic 

PI3K-AKT signaling and result in increased cell proliferation and survival (Yuan and 

Cantley, 2008). In breast cancer, PIK3CA mutations are an early event in ER positive 

tumours; mutations in PIK3CA have been found in matched cases of DCIS and IC-NST 

(Kalinsky et al., 2011, Miron et al., 2010, Li et al., 2010b) and also in columnar cell lesions 

(Troxell et al., 2012) and therefore are likely to play a vital role in breast tumourigenesis.  

 

As described above, GATA3 is a transcription factor expressed in the luminal epithelial 

cells of the breast and is essential for maintaining cellular differentiation (Asselin-Labat et 

al., 2007, Kouros-Mehr et al., 2006). Mutations in GATA3 appear solely in ER positive 

breast tumours and lead to the loss of the protein’s DNA binding capacity and tumour 

suppression activity (The Cancer Genome Atlas Network, 2012, Jiang et al., 2014, Usary 

et al., 2004, Si et al., 2015) (Cohen et al., 2014). GATA3 mutations were found to be 
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mutually exclusive relative to PIK3CA and TP53 mutations, and low protein expression is 

strongly correlated with markers of poor prognosis (high-grade, ER negative and HER2 

overexpressing tumours (Yoon et al., 2010, Kouros-Mehr et al., 2006)). GATA3 mutations 

also correlated with better patient overall survival among patients with ER positive tumours 

(Jiang et al., 2014), emphasising the functional role of GATA3 in the development of 

luminal breast cancers and may explain to some degree the heterogeneity observed in 

variable patient outcomes. The loss of GATA3 function may be playing a protective role as 

it may not be transcribing genes associated with poor outcomes (i.e. CCND1 and aurora 

kinase A have been shown to be GATA3 target genes (Molenaar et al., 2010, Theodorou 

et al., 2013, Jiang et al., 2010)) and could potentially act as a biomarker of good prognosis 

in ER positive breast cancer patients (Cohen et al., 2014).  

 

Integrated genomic and transcriptomic features of breast cancer  
 

To gain greater understanding of the processes driving tumourigenesis, Curtis et al., 

integrated copy number profiling with gene expression in tumours with defined clinical 

outcome (Curtis et al., 2012). This integrated analysis revealed 10 novel subgroups (as 

opposed to the five identified by gene expression profiling alone (Sorlie et al., 2001)) that 

stratified patients based on overall survival. For example, patients with tumours classified 

as integrated cluster 5 have the worst outcome compared to the other nine clusters. Also 

of note was an ER positive subgroup (IntClust2) that has quite poor outcomes, highlighting 

a unique high-risk subgroup, and further accounting for the heterogeneity in clinical 

outcomes seen even in patient’s with the hallmarks of a tumour with a ‘good’ prognosis. As 

observed in the sequencing studies, there were two groups, IntClust3 (predominately 

luminal A and invasive lobular carcinomas) and IntClust4 (including both ER positive and 

negative tumours) that had very little copy number alterations and have more favourable 

outcomes. This study has been seminal in gaining understanding in how copy number 

alterations influence gene expression in breast cancer. An integrated approach of 

analysing all molecular information is essential to understanding complex pathways 

involved in breast tumourigenesis. These analyses are still in their infancy and whilst there 

are large gains in our biological understanding of breast cancer, the clinical utility is largely 

unknown, and further investigation is warranted. In spite of there being 10 subgroups 

defined by (Curtis et al., 2012) no single group encompasses a pure histological special 

type of breast cancer.  
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1.5. Invasive lobular carcinoma 
 
As mentioned above, Invasive Lobular Carcinoma (ILC) is the most important special type 

of breast cancer. ILC accounts for 5-15% of all invasive breast cancers (Lakhani S. R., 

2012, Arpino et al., 2004, Pestalozzi et al., 2008, Rakha et al., 2008, Orvieto et al., 2008) 

and the incidence of ILC is increasing, whereas the frequency of IC-NST has remained 

stable (Li et al., 2000). There is some evidence to suggest this correlates with the 

increasing use of hormone replacement therapy (Daling et al., 2002, Reeves et al., 2006, 

Li et al., 2006) and one study suggests increase in alcohol consumption could also be 

responsible (Li et al., 2010a). Patients with ILC tend to present at an older age compared 

to IDC (average 64 and 60, respectively) (Arpino et al., 2004, Li et al., 2005, Rakha et al., 

2008, McCart Reed and Kutasovic et al., 2015). ILC can be detected as a palpable mass 

and is evident on mammography as a spiculated mass or architectural distortion in many 

cases. However, mammographic screening fails to detect the tumour in as many as 57-

76% of women compared to as few as 5- 15% for IDC (Evans et al., 2002, Moy et al., 

2002, Soo et al., 2001). ILC also frequently presents as a multifocal or multicentric lesion 

(85%) and/or bilaterally (30-67%), which is also more common than for IDC (Beute et al., 

1991, Newman, 1966, Foote and Stewart, 1941, Chen et al., 1999, Intra et al., 2004). 

 

ILCs are morphologically characterised by a proliferation of non-cohesive, small neoplastic 

cells that are dispersed in the stroma as single cells or arranged in single files of cells. This 

diffuse and infiltrating growth pattern contributes to the difficulty in the detection of ILC by 

mammography and difficulty for surgeons sometimes to palpate the mass during surgery. 

As a consequence, tumours are detected and diagnosed late, are often of larger size, 

tumour margins are difficult to assess and patients are therefore more likely to have a 

mastectomy compared to patients with IDC. 

 

Mitoses are infrequent, therefore the histological grading of ILC is typically low to 

moderate, with approximately 76% of ILC being grade 2 (Rakha et al., 2008, McCart Reed 

and Kutasovic et al., 2015). A number of histological variants of ILC have also been 

recognised including pleomorphic, solid, alveolar and tubulolobular types. These variants 

share the discohesive growth patterns with classic ILC but may tend be of higher grade 

and can have worse outcomes (Eusebi et al., 1992, Middleton et al., 2000, Buchanan et 

al., 2008, Orvieto et al., 2008). Precursor lesions for ILC are called atypical lobular 

hyperplasia (ALH) and lobular carcinoma in situ (LCIS) and are present alongside ILC in 
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58-98% of cases (Abdel-Fatah et al., 2007, Dixon et al., 1982, Newman, 1966, Orvieto et 

al., 2008, Buchanan et al., 2008). 

 

Classic ILC are almost always ER, PR positive, and rarely exhibit HER2 amplification or 

express abnormal p53 or basal markers (McCart Reed and Kutasovic et al., 2015). Due to 

a high frequency of hormone receptor expression, patients with ILC generally have a good 

response to hormonal therapy (Rakha et al., 2008, Pestalozzi et al., 2008), but they have a 

poor response to chemotherapy and this is probably due to the low mitotic index of the 

tumour. Despite the presence of favourable prognostic factors, the locoregional control, 

disease free interval and overall survival is not necessarily better than that for patients with 

IDC. Some studies have shown no difference in survival (Winchester et al., 1998), 

whereas others have found that at five years, ILC have better survival rates than IDC, 

however this declines after 10 years where ILC have a significantly worse overall survival 

(Nagao et al., 2012, Pestalozzi et al., 2008, Rakha et al., 2008). It is not clear why this is 

the case but could be related to a combination of factors including the difficulty of early 

detection, difficulty in surgical removal, larger tumour size, poor response to chemotherapy 

and the nature of distant metastases. 

 

1.6. Mixed ductal lobular carcinomas 
 

Invasive breast cancers exhibiting both ductal and lobular morphological features are 

classified as mixed ductal and lobular carcinomas (MDL). MDLs account for 3-5% of all 

invasive breast cancers (Lakhani S. R., 2012), and are a clear example of morphological 

intratumour heterogeneity.  

 

There is limited data assessing the clinical and biological significance of MDL carcinomas. 

MDLs are generally under reported and a small lobular component is sometimes not 

annotated. Small studies have found that MDLs are associated with better prognosis when 

compared to pure IC-NST, but poorer prognosis when compared to pure ILC, although 

most of these differences were lost when adjusting for tumour grade (Sastre-Garau et al., 

1996, Suryadevara et al., 2010, Rakha et al., 2009). Furthermore, the metastatic pattern of 

mixed tumours tends to follow that of the histological type that is most prevalent in the 

primary tumour (Rakha et al., 2009). These tumours are therefore considered to be a 

distinct entity to pure IC-NST and ILC (Rakha et al., 2009, Bharat et al., 2009). There is 

also evidence that the incidence of MDLs is increasing (Li et al., 2003, Rakha et al., 2009). 
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MDL tumours may pose a problem with regard to patient management, as the different 

histological components may have different clinical behaviours (i.e. response to therapies) 

and metastatic patterns (i.e. IC-NST have a propensity to spread to the brain, liver and 

lung, while ILC have a propensity to spread to the gastrointestinal tract, peritoneum and 

gynaecological sites (Harris et al., 1984)). 

 

To date, there is very limited understanding of the molecular evolution of MDL carcinomas. 

There have been a few suggested theories in relation to their origin. Firstly, are these 

distinct morphological entities representing two independent collision tumours or do they 

arise from a common clone? Secondly, if the two components are clonally related, then 

what is the mechanism of transition from one phenotype to the other? Small pieces of 

evidence indicate that the lobular and ductal components are clonally related lesions as 

opposed to separate collision tumours, yet this is not well characterized. LOH and CGH 

analyses reported the shared loss of a common allele in both DCIS and LCIS components 

(Wagner et al., 2009), and identified multiple sub-clones within pre-invasive lesions 

(Buerger et al., 2000) suggesting that these morphologically distinct entities might be 

related clones. However, the mechanisms underlying the change in phenotype have not 

been investigated. Given that the E-cadherin molecule plays such a definitive role in the 

phenotype of ILCs, it is likely to also be important in the biology of the MDL as well. 

 
1.7.    Molecular aspects of ILC 

 
The frequent expression of ER and PR means ILC are typically classified as a luminal 

tumour phenotype (McCart Reed and Kutasovic et al., 2015), however there is 

heterogeneity and some lobular tumours are classified by gene expression profiling as 

HER2, basal-like or molecular apocrine subtypes (Weigelt et al., 2008). ILC and ER 

positive IDC exhibit different gene expression profiles, emphasising the different biology 

between the two types. Genes differentially expressed between IDC and ILC are involved 

in processes of cell adhesion, cell-cell signalling and actin cytoskeleton signalling (Korkola 

et al., 2003, Weigelt et al., 2008). 

 

From a genomics point of view, ILC and ER positive IC-NST exhibit a different pattern of 

DNA copy number aberrations (CNA) than high-grade tumours, and often fewer CNAs 

overall. Common CNAs include gain of 1q and 16p, while loss of 16q is very common, 

occurring in approximately 90% of all ILCs (Figure 1.6 A, (Buerger et al., 1999, Etzell et 
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al., 2001, Mastracci et al., 2006, Hwang et al., 2004, McCart Reed and Kutasovic et al., 

2015)). Amplifications of 8p12 (FGFR) and 11q13 (CCND1) are common and are 

considered to be potential drivers of low-grade disease and therefore potential drug targets 

(Reis-Filho et al., 2006). Some of these molecular features are identified in associated pre-

invasive lesions, ALH and LCIS, supporting the role of these lesions as precursors for ILC 

(Vos et al., 1997, McCart Reed and Kutasovic et al., 2015). 

 

 
Figure 1.6: Genomic features of ILC. A) Circos plot of SNP CGH data. All chromosomes are 

represented on the outside. The zoomed in regions show the frequent copy number 

alterations identified in ILC (loss = green, gain = red). B) Across the TCGA cohort, CDH1 

and PIK3CA were the most frequently mutated genes. TP53 was mutated infrequently, and 

there was an enrichment for ERBB2 mutations in ILC compared to IC-NST. (McCart Reed 

and Kutasovic et al., 2015). 

 

The TCGA has profiled the largest series of ILC to date. High resolution copy number 

profiling has confirmed gain of 1q and 16q loss in luminal tumours. The luminal A subtype 

for which ILC is part of, was found to have a low mutation rate compared to the other 

tumour groups, and harboured the most significant variation in mutated genes. The most 

frequently mutated genes in ILC were CDH1 (54%, including both copy number loss and 
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mutation), followed by PIK3CA (42%) RUNX1 (8.4%), MLL3 (7.7%) and FOXA1 (6.5%). 

TP53 (6%) mutations were rare (Figure 1.6 B, (The Cancer Genome Atlas Network, 2012, 

McCart Reed and Kutasovic et al., 2015)). Interestingly, enrichment for ERBB2/HER2 

mutations was identified within lobular cancers. Of the eight somatic variants identified, all 

were within the kinase domain, 4/36 (11%) were ILC and 4/789 (0.5%) were IC-NST. 

Another recent study also identified ERBB2 mutations in 6/22 (27%) of ILC that harboured 

CDH1 mutations (Ross et al., 2013). A CDH1 mutation was also found in the 4 ILC cases 

with ERBB2 mutations from the TCGA. These mutations indicate a possible alternative 

mechanism for HER2 driven proliferation, as opposed to gene amplification, and that there 

may be potential benefit from anti-HER2 therapies in these patients. 

 

The most significantly mutated gene in ILC however is CDH1, encoding the cell adhesion 

protein E-cadherin (see Section 1.8). CDH1 mutations have been reported to occur in 

approximately 30% – 80% of ILC (Rakha and Ellis, 2010, Berx et al., 1996, Cleton-Jansen, 

2002) yet rarely in occur in IC-NST (0/26 (Roylance et al., 2003), 0/42 (Berx et al., 1995), 

0/25 (Kashiwaba et al., 1995)). The TCGA originally reported CDH1 mutations in 30/36 

ILC and the mutations also corresponded with both low mRNA and protein expression 

(The Cancer Genome Atlas Network, 2012). Since the TCGA data has been updated with 

more patient samples and is available to the public, the frequency of somatic CDH1 

mutations in ILC was identified in much fewer cases 78/155 (50%). This frequency has 

been confirmed by another genome sequencing study were 20/40 (50%) ILC had CDH1 

mutations (Ellis et al., 2012). The differences in reported frequencies may be attributed to 

differences in sequencing methods, however these recent studies highlight that the real 

frequency of CDH1 mutations in ILC is likely to be lower than previously considered.  

 
1.8. E-cadherin 

 
Epithelial cadherin (E-cadherin), the loss of which is a defining feature of ILC is a calcium 

dependant transmembrane protein that mediates cell-cell adhesion and cellular polarity 

(Nagafuchi et al., 1987). The extracellular domain of E-cadherin binds to itself on 

neighbouring cells. The intracellular domain of E-cadherin associates with the actin 

cytoskeleton via α-, β-, and γ-catenin to form adherens junctions between non-neural 

epithelial cells (Figure 1.7 A, B, (Ozawa et al., 1989, Reynolds et al., 1994)). E-cadherin is 

largely regulated by its catenin-binding partners, which anchor E-cadherin to both the cell 

membrane and the actin cytoskeleton. E-cadherin mediated cell adhesion maintains cell 
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viability and when this adhesion is lost, the detached cells undergo a cell death program 

called anoikis (Fouquet et al., 2004).  

 

The loss of E-cadherin occurs in up to 90% of ILC (Figure 1.7 C) and is considered 

fundamental to the development of the characteristic invasive growth pattern of lobular 

cancers (Berx et al., 1996). The impairment of functional cell-cell adhesion following E-

cadherin loss likely contributes to the characteristic discohesive nature of tumour cells in 

all lobular neoplasms (Berx et al., 1996, Derksen et al., 2011, Vos et al., 1997). Knowledge 

is increasing as to the very dynamic regulation of this molecule, as well as the importance 

of E-cadherin in maintaining normal multicellular integrity and how this is disrupted in many 

disease states.  

 

 
Figure 1.7: A) Schematic of the E-cadherin adhesion complex (Alberts et al., 2008); with 

permission from Garland Science. B) E-cadherin positive IC-NST. C) E-cadherin negative 

ILC. 

 

1.8.1. Deregulation of E-cadherin in breast cancer 
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E-cadherin is considered a ‘master regulator’ of tumourigenesis; it is a tumour suppressor 

gene and a metastasis suppressor. Its role in functional adherens junctions prevents 

tumour invasion and migration, a fundamental step in the metastatic dissemination of 

tumour cells (Frixen et al., 1991, Vleminckx et al., 1991, Berx and Van Roy, 2001, Berx et 

al., 1995). 

 

There is a strong genotype:phenotype correlation with the loss of CDH1 (located on 

human chromosome 16q22.1) and E-cadherin protein loss in ILC (Berx et al., 1996)). 

There is a small of proportion of ILC tumours with detectable E-cadherin, however in these 

cases the IHC staining tends not to be completely ‘linear’, membranous staining. In fact, it 

has been shown that the E-cadherin-catenin protein complex in these cases is also 

probably dysfunctional (Da Silva et al., 2008), and is regarded as aberrant staining. 

Furthermore, the lobular component of mixed ductal-lobular carcinomas and some high-

grade ductal cancers also display E-cadherin deregulation, however the mechanisms in 

which deregulation occurs is likely to be different. E-cadherin is used diagnostically to 

confirm an ILC, therefore the assessment of E-cadherin by IHC as a differential diagnosis 

between ILC and IDC is not always ideal, and should be based on morphology rather than 

E-cadherin staining (Dabbs et al., 2013). 

 

The loss of membranous E-cadherin consequently affects the function and localisation of 

its membrane- binding partners. Indeed, when E-cadherin is lost, α-, β-, and γ-catenin 

protein expression is also frequently lost, while p120-catenin relocates to the cytoplasm. In 

fact this switch in cellular localisation of p120-catenin is considered a surrogate biomarker 

for lobular classification (Dabbs et al., 2007). 

 

In lobular cancers, loss of E-cadherin is an early event in tumourigensis. The resulting 

impairment of functional cell-cell adhesion likely contributes to the characteristic 

discohesive nature of tumour cells in all lobular neoplasms (Mastracci et al., 2005, Da 

Silva et al., 2010), including the early precursor lesions atypical lobular hyperplasia (ALH) 

and lobular carcinoma in situ (LCIS) (Zou et al., 2009, Moll et al., 1993, Vos et al., 1997, 

De Leeuw et al., 1997, Etzell et al., 2001, Sarrio et al., 2003). This is supported by the 

identification of 16q loss in ALH and LCIS (Lu et al., 1998, Simpson et al., 2005b) and 

CDH1 mutations in LCIS (Mastracci et al., 2005). 

The various mechanisms of CDH1 inactivation have been well documented. CDH1 does 

not appear to be haploinsufficient, and inactivation tends to follow Knudson’s two hit 
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hypothesis, which states that a gene can only be inactivated if there is a “hit” in both alleles 

(Knudson, 1971). In ILC, CDH1 is inactivated by any combination of gene mutation, 

promoter methylation, loss of the gene on 16q or by transcriptional repression (Berx and 

Van Roy, 2001). Most mutations in CDH1 are frame-shift mutations that are predicted to 

yield truncated protein fragments. The mutations are scattered over the whole coding 

sequence and no hot spots have been identified (Figure 1.8, (Berx et al., 1996, The 

Cancer Genome Atlas Network, 2012, McCart Reed and Kutasovic et al., 2015)). CDH1 

promoter methylation is also evident in a large proportion of cases, and interestingly this 

has been found in non-neoplastic epithelial cells adjacent to lobular neoplasms, 

suggesting that these normal cells may have increased disease susceptibility and that in 

some cases, methylation may be the first ‘hit’ to affect the CDH1 gene (Droufakou et al., 

2001, Zou et al., 2009). 

 

 
Figure 1.8: The mutation spectrum of CDH1 (Cerami et al., 2012, Gao et al., 2013). Mutations 

have been found across the whole coding sequence of the gene. 

 

Mutations in CDH1 have also been identified in other types of epithelial cancers, most 

notably in diffuse gastric carcinoma (Berx et al., 1998, Hansford et al., 2015), which have a 

very similar diffuse growth pattern to ILC. In hereditary diffuse gastric carcinoma, 25-30% 

of patients inherit a germline mutation in CDH1 and somatic methylation of the second 

CDH1 allele is evident in the resulting tumours (Guilford et al., 1998, Fitzgerald et al., 

2010). In families with CDH1 germline mutation, females have a 42% chance of 

developing lobular breast cancer in their lifetime (Hansford et al., 2015). Genetic analysis 

of families with a history of ILC without gastric carcinoma, have shown that germline CDH1 

mutations in ILC are extremely infrequent, but have been reported (Petridis et al., 2014, 

McVeigh et al., 2014, Schrader et al., 2011), suggesting that familial ILC is driven by the 

germline mutation of other genes. 

 

1.8.2. The role of the actin cytoskeleton in E-cadherin regulation  
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Recent evidence has emphasised the role for the actin cytoskeleton in the regulation of 

normal E-cadherin function, and the potential for its involvement in the deregulation of E-

cadherin during tumourigenesis. The re-localisation of p120-catenin from the membrane to 

the cytoplasm has been shown to infer tumour cell survival by interacting with regulators of 

the actin cytoskeleton (Schackmann et al., 2011). In a mouse model of ILC, cytosolic p120 

catenin was capable of activating Rho/Rock signalling, which activates downstream actin 

cytoskeleton remodelling pathways. This enabled the induction of anoikis resistance, 

which allows tumour cells to grow and survive independent of attachment to other cells – 

under normal conditions this detachment induces cell death (Schackmann et al., 2011). 

This pathway then facilitated invasion through the stroma and dissemination to distant 

organs. 

 

Many other components of the actin cytoskeletal machinery are involved in adhesion 

junction maintenance including Myosin II isoforms (Smutny et al., 2010) and N-WASP 

(Kovacs et al., 2011). Additionally, F-actin was found to interact with α-catenin via a 

complex molecular pathway that both enables junctional tension between cells, and also 

provides a scaffold for actin polymerisation. This pathway involves the centralspindlin 

complex (Ratheesh et al., 2012). In vitro knockdown of the aforementioned molecules 

yielded E-cadherin deregulation and cells detached from one another, reflecting possible 

ways in which the actin cytoskeleton molecules regulate E-cadherin function in human 

cancers. 

 

Cortactin is another actin-binding protein of interest. Located on chromosome 11q13, this 

Src substrate is frequently a hotspot for amplification and overexpression in cancer, 

particularly in breast and head neck carcinomas (Schuuring, 1995, Schuuring et al., 1998). 

Cortactin amplification has been found in up to 15% of breast cancers and is associated 

with ER/PR positive and HER2 negative tumours. Studies suggest that it may be a marker 

to determine risk of relapse in breast cancer (Hui et al., 1997, Hui et al., 1998). Cortactin 

has been found to increase cell motility by accumulating at lamellipodia (Huang et al., 

1998, Bowden et al., 1999) and interact with the Arp2/3 complex to activate actin 

polymerisation (Uruno et al., 2001). This suggests a role for cortactin in the invasive 

capabilities of tumour cells and may be another potential mechanism involved in E-

cadherin deregulation (Helwani et al., 2004). Disruption in any one of these molecules may 

therefore occur in tumours as a mechanism of destabilising the adherens junction resulting 

in loss of E-cadherin function. These mechanisms may contribute to the characteristic 
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discohesive and infiltrating nature of breast cancer cells and potentially to the metastatic 

progression to particular sites. The junctional cytoskeleton has been found to be greatly 

dynamic in its function and understanding this will give new insights into how the actin 

cytoskeleton regulates E-cadherin junctions in this disease state. 

 
1.8.3. Epithelial to mesenchymal transition 

 
E-cadherin deregulation is critical in Epithelial to Mesenchymal Transition (EMT). EMT is 

an essential process in embryogenesis, fibrosis and wound healing, enabling a cell to 

detach from its neighbours and migrate. This is essential for the arrangement of different 

cell types in the formation of organs and normal tissue structures (Thiery et al., 2009). In 

this process cells lose epithelial traits by repressing E-cadherin expression, in particular by 

the transcription factors TWIST, Snail and Slug. Cells take on a more mesenchymal 

phenotype, switching on the expression of markers such as N-cadherin and vimentin, and 

this enables more motile capabilities. This concept has sparked great interest as a key 

requirement for metastatic progression to occur, in particular enabling tumour cells to 

detach from the tumour mass, invade through both the local stromal tissue and the 

endothelial cell wall of blood or lymphatic systems. This capacity is also considered 

important for extravasation and invasion into the new host tissue. Since EMT is a dynamic 

and reversible process cells can then undergo mesenchymal to epithelial transition (MET) 

to enable colonisation in a new organ. These processes have been demonstrated 

frequently in experimental models of metastasis however it is difficult to observe in clinical 

samples due to the transient nature of the process. Nevertheless, markers of EMT, such 

as E-cadherin down-regulation, and N-cadherin and vimentin up-regulation are associated 

with a subgroup of high-grade ductal cancers that are triple negative (Sarrio et al., 2008, 

Karihtala et al., 2013, Aleskandarany et al., 2014). Unlike lobular cancers, where E-

cadherin deregulation is an early and probably irreversible event driven by genomic 

alterations, this EMT phenomenon evident in some ductal cancers is more often a late 

stage and dynamic process. Infrequent expression of classic EMT markers (Fibronectin, 

Vimentin, N-cadherin, Smooth Muscle Actin, Osteonectin, Snail, Twist) in a large cohort 

also supports the suggestion that EMT does not underpin the invasive phenotype 

observed in ILC (McCart Reed and Kutasovic et al., 2015; under revision at J Pathol). 

 
1.9. Molecular evolution of breast cancer 
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Like all cancers, breast cancer arises due to the accumulation of genetic alterations that 

manifest in the acquisition of numerous cellular features that enable the cell to sustain 

proliferative signalling, evade growth suppressors, resist cell death, enable replicative 

immortality, induce angiogenesis, activate invasion and metastasis, reprogram energy 

metabolism, and evade immune destruction (Hanahan and Weinberg, 2000, Hanahan and 

Coussens, 2012). These ‘hallmark’ processes provide selective advantages to the growth 

and development of a neoplastic clone (Stratton et al., 2009). The normal breast 

epithelium consists of two layers of cells - an internal layer of luminal cells surrounded by a 

layer of myoepithelial cells. These cells form the tree like structure of ducts and lobules 

that begin at the Terminal Duct Lobular Units (TDLU) and end at the nipple. The 

myoepithelial cells regulate normal mammary gland development and have been 

considered a natural tumour suppressor as they negatively regulate tumour cell growth, 

invasion and angiogenesis (Barsky and Karlin, 2005). Molecular abnormalities have been 

identified in histologically normal breast cells in women with breast cancer (Lakhani et al., 

1999, Tripathi et al., 2008). Two hypotheses have been generated to explain the presence 

of molecular changes in the normal breast; the sick lobe hypothesis and the field 

cancerisation effect. The sick lobe hypothesis speculates that the genetic changes occur 

during early development of the breast, making the cells more susceptible to oncogenic 

stimuli (Tot, 2005). The latter hypothesis suggests these alterations occur as a result of 

acquired carcinogen events during adulthood (Dakubo et al., 2007).  

  

Morphological evidence suggests that breast cancer arises from the normal TDLU of the 

breast, via a series of increasingly abnormal stages that progress into cancer over a long 

period of time. Intermediate stages in this multistep pathway involve the putative precursor 

lesions Columnar Cell lesions (CCL) (Simpson et al., 2005a) and atypical hyperplasias 

which can progress into an in situ carcinoma – a neoplastic clonal proliferation that is still 

confined to the ductal system (DCIS and LCIS). With the accumulation of further genetic 

alterations and through a dynamic interaction with the local microenvironment, malignant 

cells break through the basement membrane and invade into the surrounding stromal 

tissue to become an invasive carcinoma (Figure 1.9, (Simpson et al., 2005b, Lopez-

Garcia et al., 2010)). These invasive cells may then acquire further attributes enabling 

them to invade through the stroma, intravasate into the lymph-vasculature system and 

metastasise to distant sites. This is a complex and variable process encompassing 

multiple precursor lesion types giving rise to a diverse series of invasive cancers with 

different biological and clinical features, and differing metastatic capabilities. The presence 
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of early neoplastic lesions has been associated with risk of developing invasive breast 

cancer. Predicting which lesions will or will not progress is difficult, and only small 

percentage of patients with IC-NST (20%) display ADH (Degnim et al., 2007) and 

approximately 50% of patients with DCIS progress to IC-NST (Collins et al., 2005) (similar 

findings are observed in ILC, described in more detail in Section 1.5). The management of 

patients with these early lesions can therefore be difficult and understanding of breast 

cancer progression is essential to improve patient management.  

 

 
Figure 1.9: The historical model of the progression to invasive breast cancer. This model is 

out-dated as evidence has accumulated that shows an invasive cancer can arise from either 

ducts or lobules irrespective of the histological type, and hyperplasia of usual type (HUT) 

are no longer considered a precursor lesion. However, progression generally follows a 

pathway of morphologically recognisable stages over time from normal breast epithelium, 

to pre-invasive hyperplasia (ALH, ADH) and in situ carcinoma (LCIS, DCIS), through to the 

progression to invasive carcinoma (ILC, IC-NST (formally known as IDC))!(Lopez-Garcia et 

al., 2010) Permission from John Wiley and Sons. 

 
Loss of Heterozygosity (LOH), Comparative Genomic Hybridisation (CGH), gene mutation 

analysis and gene expression studies have been utilised to understand clonal evolution 

during breast cancer progression. These methods have demonstrated that ER positive and 
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ER negative breast cancers have very distinct molecular profiles (Perou et al., 2000), and 

within ER positive disease, the extent of genetic alterations is associated largely with 

histological grade and proliferation (Roylance et al., 1999). Gene expression profiling has 

corroborated this by showing that lesions cluster according to histological grade and not 

the stage of tumour progression (Ma et al., 2003). These data have shown both that breast 

cancer progression is much more complex than originally suggested and that breast 

cancers of low- or high-grade follow distinct molecular pathways (Figure 1.10, (Simpson et 

al., 2005b, Lopez-Garcia et al., 2010)). For example, tumours of the low-grade pathway 

frequently express hormone receptors and display loss of 16q and gains of 1q and 16p 

(Abdel-Fatah et al., 2008). The high-grade group are much more heterogeneous, 

frequently lack the expression of hormone receptors and tumours of this group express 

HER2 (due to a high frequency of 17q amplification) and basal markers. The genomes of 

high-grade tumours are more frequently aneuploid and have very complex karyotypes 

(Natrajan et al., 2010). Loss of 1p, 8p and 17p and gain of 1q and 8q are the most 

frequently copy number changes observed in high-grade breast carcinomas (Lopez-Garcia 

et al., 2010).   

 

Recently, RNA and DNA sequencing have been successfully applied to low input FFPE 

material investigating the molecular changes that occur in early breast neoplasias. Whole 

genome sequencing found shared somatic mutations and aneuploidies between early 

neoplasia and the matched invasive carcinoma (Newburger et al., 2013). These results 

suggest that the accumulation of mutational events that affect a large number of genes 

occurs in the early neoplasia as a result of increased ancestral cell division, and that in 

some cases these early events predispose the breast tissue to develop into a carcinoma. 

RNA sequencing was performed on a matched progression series of 25 patients to find 

that gene expression patterns in early neoplasia (such as ADH) were distinct from normal 

breast and breast cancer, with elevated transcription of ERBB2, FOXA1 and GATA3 even 

at the early stage of tumourigenesis (Brunner et al., 2014). This study reiterates the 

importance of ER signalling in tumourigenesis. These technologies are increasing our 

understanding of the events that occur early in the development of breast cancer and may 

pave the way in the ability to identify patients that may be at risk of progression. 
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Figure 1.10: The high- and low-grade multistep model of breast cancer progression. (Lopez-

Garcia et al., 2010) Permission from John Wiley and Sons. 

 
1.10. Metastatic progression 

 
Death from breast cancer is not commonly caused by the growth of the primary tumour, 

but the spread of the tumour to distant organs – the process known as metastasis. Up to 

90% of all cancer deaths are the result of tumour dissemination to distant organs (Gupta 

and Massague, 2006). When the tumour remains localised in the breast and has not yet 

spread, the patient has a 98% chance of surviving more than 5 years. This decreases to 

83% when the tumour has spread regionally to the lymph nodes, and decreases further to 

23% once the tumour has spread to distant organs (Parise et al., 2009). Metastatic cancer 

is a significant burden and there is a critical need for a greater understanding of this 

process to improve patient survival. 

 
1.10.1. The metastatic cascade 

 
Metastasis is a stepwise biological process in which tumour cells hijack normal processes 

to facilitate the spread and colonisation of distant organs. Each step of the metastatic 
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cascade is complex, involving the acquisition of genetic alterations and interactions with 

the local microenvironment, making comprehensive understanding of this process 

challenging (Chiang and Massague, 2008). 

 

For a tumour to successfully metastasise, cells must first detach from the primary tumour 

mass, resist anoikis, and activate pathways of local invasion. The cells degrade 

components of the extracellular matrix by the secretion of proteases that enable invasion 

through the stroma and into the vasculature. Together, this process is known as 

intravasation. Once cells have entered the vasculature, they must endure the harsh 

environment of velocity induced shear forces, lack of supporting substratum, and the 

presence of immune cells. The cells are now known as circulating tumour cells (CTCs), 

and the few that survive these conditions are largely inefficient at forming a secondary 

tumour, with as little as 0.01% successfully colonising a distant organ (Fidler, 1970). For 

colonisation to occur, circulating tumour cells escape the vasculature by arresting in 

endothelial layers of distant vasculature. Coagulation factors are produced by the cells to 

facilitate arrest in capillary beds and migration through vessel walls into the new 

microenvironment, a process known as extravasation. Here, the tumour cells must form its 

own vasculature to provide oxygen, nutrients and growth factors to survive and seed a 

clinical metastasis (Figure 1.11, (Poste G., 1979, Fidler, 2003). 

 

 
Figure 1.11: The metastatic cascade. Metastasis is a step-wise process that involves the 

detachment of cells from the primary tumour, the capability to invade the local 

microenvironment, invade to circulatory system, survive in the bloodstream and colonise 

and survive at a distant site. Each step in the process requires the cells to exploit many 
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different signalling pathways to survive (Chaffer and Weinberg, 2011). Copyright © 2011, 

American Association for the Advancement of Science. 

 

1.10.2. The pre-metastatic niche 
 

For a metastasis to develop, the circulating neoplastic cells must find an appropriate niche 

or adapt to a new microenvironment. Recent evidence has shown that both the primary 

tumour and CTCs are capable of sending out signals (through chemokines and exosomes 

– membrane bound vesicles that contain protein and nucleic acids (Kaplan et al., 2005, 

Peinado et al., 2012, Ghajar et al., 2013)) that can prime target sites and modify their 

microenvironments to support the successful colonisation of CTCs. This has been 

demonstrated in a mouse model, where human tumour exosomes were extracted from the 

blood of metastatic melanoma patients and injected into mice, increasing the metastatic 

behaviour of both mouse and human primary tumours cells. The exosomes were able to 

reprogram bone marrow progenitor cells toward a pro-vasculogenic phenotype and 

provide a favourable environment for tumour cells to colonise and increased tumour 

burden in these mice (Peinado et al., 2012). These primed microenvironments have been 

called the ‘pre-metastatic niche’ and greater understanding of how cells reprogram distant 

sites, or why some cells choose particular sites over others, may provide insights into 

mechanism that can block the colonisation of distant organs and ultimately preventing 

death from metastasis.  

 

1.10.3. Seed and Soil Hypothesis 
 

There are two long-standing theories defining the mechanism of cancer spread; (i) Paget’s 

‘seed and soil hypothesis’, which states that the pattern of metastasis is governed by the 

intrinsic properties of the primary tumour (Paget, 1889), and (ii) Ewing’s proposal that 

metastatic dissemination is simply determined based on the mechanical flow of the blood 

and lymph around the body (Ewing, 1928). Metastasis was first considered to be a non-

random process by Stephen Paget who in 1889 hypothesised through the analysis of a 

large autopsy series that metastases will only develop when the cells encounter a suitable 

environment (Paget, 1889). This pattern of organ preference is given the term 

organotropism, and successful colonisation depends on the molecular interactions 

between the tumour cells (“seed”) and the microenvironment (“soil”). James Ewing 

countered this in 1928 by suggesting that tumours spread in the direction of blood flow and 
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hence form metastases in the organs directly in line from the site of the primary tumour 

(Ewing, 1928). There is evidence to support both of these theories in breast cancer 

metastasis. 

 

The most common sites of breast cancer metastasis are the regional lymph nodes, lung, 

liver and bone (Lee, 1983). Overall, all histological types and molecular subtypes can 

spread to these organs, suggesting that to some degree, these organs are targeted 

directly by blood and lymphatic flow. However, the distribution of the spread of histological 

and molecular types to these organs is skewed to some extent, suggesting there may be 

some element of organotropism too. Through analyses of autopsy and surgical series 

comparing the organ specific metastatic spread of the main histological types, IC-NST and 

ILC it has become clear that ILC spread more frequently to the peritoneum, gynaecological 

organs, gastrointestinal tract, adrenal glands, central nervous system and skin, while IC-

NST spread more frequently to the lung/pleura, liver and brain (Sastre-Garau et al., 1996, 

Jain et al., 1993, Borst and Ingold, 1993, Harris et al., 1984, Lamovec and Bracko, 1991, 

Arpino et al., 2004, Cummings et al., 2014). Further, a study by Porter et al., demonstrated 

that low-grade tumours more frequently spread to the bone whereas high-grade tumours 

spread to the lung and liver (Porter et al., 2004). The molecular subtype of the primary 

tumour also impacts the distribution of metastatic disease. For example, ER+/PR+ luminal 

tumours preferentially spread to the bone but not the brain, while ER-/PR- tumours tend to 

spread to the brain and less frequently to the bone and over widely different time periods; 

a much shorter latency for ER negative tumours (Maki and Grossman, 2000). HER2 

positive tumours frequently colonise the brain, liver and lung, and the triple negative/basal 

breast cancer subtype have a propensity to spread to the brain, lung and liver (Sihto et al., 

2011, Harrell et al., 2012). High-grade ductal cancers expressing the basal marker CK14 

have an increased propensity to spread to the brain compared to CK14 negative tumours. 

Interestingly, CK14 positive tumours spread to the lung more quickly than CK14 negative 

tumours but the overall frequency of lung metastases was not different (Fulford et al., 

2007). The data indicate that the tumour type, grade and molecular features could help 

inform patient management with respect to distant sites most at risk of being colonised, 

which might aid surveillance of those organs during clinical follow up. 

 
1.10.4. Linear versus parallel progression models 
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Two fundamental conceptual models of breast cancer progression prevail. Generally, the 

phenotypic and genomic features of the primary tumour are reflected in the resulting 

metastases, supporting a stepwise, linear progression model where genomic alterations 

accumulate after multiple rounds of clonal selection and expansion within the primary 

tumour, until a cell has gained the capacity to disseminate. This has been widely accepted 

since patients with larger primary tumours at diagnosis have a higher risk of death from 

metastatic disease (Greene and Sobin, 2008). However, metastases can still arise from 

small primary tumours, and the linear model does not account for metastases of an 

unknown primary site. The model of parallel progression suggests, however, that in a 

polyclonal tumour mass, cells can leave and disseminate at any point in time of the 

development of the primary tumour. The primary tumour and metastases have increased 

biological variance as they continue to evolve in parallel (Yachida et al., 2010) (Weigelt et 

al., 2003, Liu et al., 2009) (Torres et al., 2007, Kuukasjarvi et al., 1997a, Navin et al., 2011, 

Cummings et al., 2014, Klein, 2009, Kutasovic et al., 2014). There is greater support for 

the parallel progression model due multiple lines of evidence, including the calculation of 

near identical tumour growth rates between primary and metastatic tumours (Friberg and 

Mattson, 1997, Engel et al., 2003), metastases derived from unknown primary tumours 

and the colonisation of multiple sites (Husemann et al., 2008). Disseminated tumour cells 

have been found in the bone marrow showing fewer genomic alterations than the primary 

tumour (Schmidt-Kittler et al., 2003) and in approximately 5% of breast cancer cases, 

distant metastases are identified at primary tumour diagnosis (Engel et al., 2003). 

However, it is likely that both linear and parallel progression can potentially occur Tumour 

cells have the ability to adapt to selective pressures, such as a new microenvironment and 

treatment, and therefore discordant features will be observed, whether the disseminated 

tumour cells left early or late. One study has calculated that a metastasis can be initiated 

5-7 years before diagnosis of the primary tumour (Engel et al., 2003), consequently, an 

important area of research is now asking how tumour cells lie quiescent for many years 

and what breaks their dormancy (Hadfield, 1954, Sosa et al., 2014)? The distinction 

between these two pathways of progression has clinical implications as to how a 

metastasis should be treated. If the metastasis has the same biological properties as the 

primary tumour (linear model) it is justified to treat it based on the features of the primary 

tumour. If it evolved through the parallel model, the metastasis will likely have divergent 

features, and should be biopsied to guide more appropriate treatment. 
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1.10.5. Intratumour heterogeneity in breast cancer progression 
 
The morphological and phenotypic intertumour heterogeneity among breast cancer 

patients has long been recognised, however the clinical implications of intratumour 

heterogeneity has recently come into the spotlight, especially in regards to the complex 

process of clonal evolution in metastatic progression. Phenotypic and genomic analyses of 

primary breast carcinomas and their matched metastases highlight the extent of 

heterogeneity within progression. The expression of tumour biomarkers has been found to 

change during tumour evolution and progression to metastasis, with the most frequent 

discordance being expression of ER and PR, which are frequently down-regulated with the 

spread from breast to lung, bone and liver (Figure 1.12, (Cummings et al., 2014, 

Singhakowinta et al., 1976, Wu et al., 2008, Idirisinghe et al., 2010). HER2 overexpression 

is generally more stable during progression, yet discordance has been reported in 

approximately 10% of cases (Fabi et al., 2011). There are a number of possible 

explanations for this phenomenon, including; evolution in response to microenvironmental 

changes or treatment, or the outgrowth of a minor subclone of a heterogeneous primary 

tumour that harboured a different genotype or phenotype. 

  

Traditionally it has been thought that there is little difference in the molecular profiles 

between the primary and secondary tumours during progression, however there is 

evidence that this is not the case (Cummings et al., 2014, Kuukasjarvi et al., 1997a, 

Almendro et al., 2014, Singhi et al., 2012, Nik-Zainal et al., 2012). Elegant deep 

sequencing and copy number profiling studies of breast (Navin et al., 2011, Nik-Zainal et 

al., 2012, Shah et al., 2009, Ding et al., 2010, Yates et al., 2015), renal cell (Gerlinger et 

al., 2012), prostate (Liu et al., 2009), colorectal (Baldus et al., 2010), and pancreatic 

(Campbell et al., 2010, Yachida et al., 2010) carcinomas, as well as leukaemias (Landau 

et al., 2013) exemplify these findings at nucleotide resolution and demonstrate that clonal 

evolution during metastatic progression can be very complex in some cases. The data 

implies that a primary tumour can be polyclonal and that different subclones can develop 

metastatic capability and spread to different distant sites, thus yielding genomic diversity 

between different metastases in the same patient. It has been found that in some cases 

the primary tumour and its metastasis shared very little genomic similarity, with as few as 

30% of mutations being shared among all lesions (Navin et al., 2011, Gerlinger et al., 

2012, Yachida et al., 2010) (reviewed here (Kutasovic et al., 2014)). Further clonal 
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evolution can occur at the metastatic sites involving the alteration of key driver genes such 

as KRAS, MYC, CCNE1 (Campbell et al., 2010, Singhi et al., 2012). 

 

Recent multiregional whole-genome sequencing of breast tumours revealed that the 

subclonal diversity varied between cases, that driver mutations where identified in small 

subclones of the primary tumour and the clone that seeded the metastasis was already 

present in the primary tumour. The timing of clonal evolution also varied, were the 

divergence occurred early in some cases, while in other cases divergence occurred later 

during tumour progression (Yates et al., 2015). As we gain understanding of the clonal 

heterogeneity and phenotypic diversity in breast tumours we are beginning to understand 

how this is may be impacting upon patient treatment and how patient management might 

have to be changed in the future to address these issues. Since treatment options for 

metastatic breast cancer are typically based on characteristics of the primary tumour, then 

management is likely to be suboptimal in a number of patients.   

 

 
Figure 1.12: An example of heterogeneity during metastatic progression. The patient 

presented with an ER, PR positive IC-NST, and relapsed with a lobular-like ER, PR negative 

metastasis in the endometrium. CK8/18 staining demonstrates the carcinoma cells. 
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There are now several important examples of the selective pressure of chemotherapy or 

targeted therapy specifically driving the evolution of treatment resistant subclones. To 

receive anti-endocrine therapy, a patient’s breast tumour must express ER in greater than 

1% of the tumour sample tested. Therefore, it may be likely that the ER negative cells 

present within a tumour were never responsive to targeted therapy. As the ER positive 

cells die as a result of the targeted therapy, the outgrowth of the ER negative subclones 

can occur without restriction. Activating mutations in ESR1 (ER alpha gene) represents a 

mechanism of resistance to prolonged endocrine therapy in hormone receptor positive 

breast cancer and accounts for the resulting development of metastatic disease (Section 
1.3.1 (Fuqua et al., 2014, Li et al., 2013)). This has also been demonstrated in tumours 

with heterogeneous HER2 amplification (Ng et al., 2015). Patients are eligible for anti-

HER2 therapy when the tumour has a significant HER2 amplification in at least 30% of 

tumour cells. However, in the HER2 wild type cells within the same tumour, other genomic 

amplifications and HER2 somatic mutations may be compensating for lack of amplified 

HER2 driven tumour growth. This may account for the short time to relapse in HER2 

positive patient tumours, where the HER2 negative cells did not respond to therapy.    
 
1.10.6. Metastasis to gynaecological sites 
 

Secondary malignancy of gynaecological organs accounts for 7-10% of all gynaecological 

malignancies (Young and Scully, 1991) and are hard to diagnose, as they frequently mimic 

a primary carcinoma (Bruls et al., 2015). Primary breast cancer is the second most 

common tumour to spread to gynaecological sites (Moore et al., 2004, Kondi-Pafiti et al., 

2011, Yada-Hashimoto et al., 2003, Bruls et al., 2015), behind colorectal cancer(Kondi-

Pafiti et al., 2011, Yada-Hashimoto et al., 2003, Moore et al., 2004)(Kondi-Pafiti et al., 

2011, Yada-Hashimoto et al., 2003, Moore et al., 2004)(Kondi-Pafiti et al., 2011, Yada-

Hashimoto et al., 2003, Moore et al., 2004). Mechanistically, this is interesting and 

indicates something peculiar about the biology of the primary tumour or the target organ 

that facilitate this pattern of spread. There is little data in the literature exploring this 

phenomenon, however it is a consistent finding. Primary colorectal carcinomas are the 

most frequent to spread to gynaecological sites, ranging from 39 to 57% of cases (Bruls et 

al., 2015, de Waal et al., 2009, Kondi-Pafiti et al., 2011, Skirnisdottir et al., 2007). This is 

suggestive of transcoelomic spread or lymphatic spread (Bruls et al., 2015), whereby the 

cells travel down through the peritoneal cavity towards the gynaecological sites. 

Conversely, the tendency for breast cancers to spread to bilateral ovaries (63.9% of cases 
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(Bruls et al., 2015)) suggests that haematogenous spread might be involved. 

In up to 38% of gynaecological metastasis (GM) patients, the secondary tumour is 

detected before the primary (Skirnisdottir et al., 2007) and as it is inherently clinically 

silent, the metastatic disease is at an advanced stage when diagnosed. Patients can be 

asymptomatic for many years (Bigorie et al., 2010), and 75% of patients with ovarian 

metastases experience symptoms that are not necessarily associated with malignancy 

such as bloating, abdominal pain, postmenopausal bleeding and weight loss (Moore et al., 

2004). Thus by the time the metastases are diagnosed, they can be widespread and 

hence overall survival is poor: 52% of patients survive 2 years, 24-36% survive 5 years, 

and 7% survive 10 years (Ayhan et al., 2005, Skirnisdottir et al., 2007, Demopoulos et al., 

1987, de Waal et al., 2009, Salamalekis et al., 2004). In comparison to other primary sites, 

primary breast cancers have a better 5 year survival rate of 26-40% compared with 32% 

for colon and 12% for stomach primaries (Ayhan et al., 2005, Skirnisdottir et al., 2007, de 

Waal et al., 2009, Demopoulos et al., 1987). 

 

Small studies of breast cancer patients with GM have found that patients were younger in 

age at diagnosis of their primary tumour (median age ranging from 46-54 years) (Bruls et 

al., 2015, Demopoulos et al., 1987, de Waal et al., 2009, Kondi-Pafiti et al., 2011, 

Salamalekis et al., 2004). This is interesting considering that in Australia the average age 

of sporadic breast cancer diagnosis is 60 years (Cancer Australia, 2012) and the average 

age of ILC diagnosis is around 64 years (Arpino et al., 2004, Borst and Ingold, 1993). 

There is an enrichment for lobular carcinomas to spread to these sites with 43% of the 

breast cancers spreading to gynaecological organs being ILC, whereas ILC accounts for 

up to 15% of all breast cancers in the general population (Arpino et al., 2004, Bruls et al., 

2015, Bigorie et al., 2010). Metastases from ILC have a characteristic discohesive growth 

pattern that enables them to grow without damaging the epithelium (Lamovec and Bracko, 

1991). E- cadherin dysfunction is presumably involved in the mechanisms of ILC 

metastasis, or at least in the diffuse growth pattern that results in these particular 

metastatic sites. Furthermore evidence from autopsy studies show that gynaecological 

metastases from mixed ductal lobular carcinomas are frequently of the lobular type 

(Lamovec and Bracko, 1991). ILC that spread to the peritoneum, gastrointestinal tract and 

gynaecological organs were also E-cadherin negative (88%; (Ferlicot et al., 2004)) and 

predominately ER positive and HER2 negative (Bigorie et al., 2010, St Romain et al., 

2012). This suggests a possible role for hormone regulation and E-cadherin dysfunction in 

this unique process (Lamovec and Bracko, 1991).  
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In summary, it is important to understand the natural history of metastatic disease, as it will 

impact the management of the patient. For example, breast tumours that spread to the 

brain tend to be associated with the basal-like phenotype and metastasis occur relatively 

quickly, with patients surviving only up to 9 months after diagnosis (Lagerwaard et al., 

1999). Conversely, metastasis to gynaecological organs seems to affect young women 

and there is enrichment for ILC and ER positive tumours. However, due to the 

asymptomatic nature of metastases to gynaecological sites, the interval between primary 

breast diagnosis and metastasis can be between 5 to 20 years (Demopoulos et al., 1987, 

Bigorie et al., 2010) meaning there is an opportunity for early detection and prevention. 

 
1.11. Aims and objectives of this thesis  
 

The work investigated in this thesis originates from our inter-related interests in ILC, E-

cadherin and understanding mechanisms of invasion and metastasis in breast cancer. The 

general hypothesis is that tumour clones must evolve during development and progression 

in order to develop the necessary biological capabilities to grow and then metastasise. 

This clonal evolution is driven by the selective acquisition of somatic mutations and 

through dynamic interactions with the local microenvironment to facilitate resistance to 

treatment and survival.  

 

One aspect of this is the ability of cells to alter their cell adhesion properties and acquire 

an invasive phenotype. Tumour cells of ILC are inherently invasive due to the dysfunction 

of E-cadherin regulated cell-cell adhesion. In many cases of ILC this is driven by CDH1 

mutations however other mechanisms are also likely to be involved in deregulating E-

cadherin. Regulators of the actin cytoskeleton play an important role in regulating 

functional E-cadherin (Section 1.8.2, Chapter 3) and so we hypothesise that tumour 

related disruption of such molecules may contribute to destabilising the adherens junction, 

resulting in loss of E-cadherin function and enhanced tumour cell invasion. The following 

aims were undertaken in order to test this: 

- Perform a meta-analysis of public molecular data to determine whether genes 

involved in actin cytoskeleton regulation are altered at the gene expression level in 

breast cancer 

- Perform IHC on selected molecules of interest on tissue sections of normal breast 

tissue and breast cancers by tissue microarray (TMA) to assess their cellular 

localisation and to correlate their expression pattern with E-cadherin status.  
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One of the most apparent examples of intratumour heterogeneity within primary breast 

tumour is the mixed ductal-lobular carcinoma (MDL), which are composed of both ductal 

and lobular histological components (Section 1.6, Chapter 4). Mixed tumours evolve 

either as independent tumours that have collided or, as is more likely, from a common 

clonal population that diverges from ductal to lobular growth pattern due to ongoing 

genetic instability or cellular plasticity. We hypothesise that deregulation of the functional 

complex regulating cell-cell adhesion and involving E-cadherin is driving this phenotypic 

switch, resulting in an enhanced invasive capability of cancer cells. The following aims 

were undertaken to investigate this: 

- Collate and characterise the clinical and morphological features of a large cohort of 

MDL cases. 

- Perform IHC for E-cadherin, β-catenin and p120-catenin on whole sections of MDL 

cases to determine whether the E-cadherin complex is specifically disrupted in the 

lobular component of these tumours. 

- Determine whether an epithelial to mesenchymal transition accounts for this 

apparent change to an invasive growth pattern 

- Use a discovery-based exome sequencing approach to determine whether the 

change in morphology is driven by genomic alterations 

 

Intriguingly, ILC tumours have a propensity to colonise less common sites such as the 

gynaecological organs, gastrointestinal organs and the peritoneum (Section 1.10.6, 

Chapter 5).  We hypothesise, therefore, that there is an underlying peculiarity in the 

biology of the primary tumour and/or the target organ to facilitate this pattern of spread. 

There is little existing data exploring this phenomenon and so the following aims were 

undertaken to investigate this: 

- Collate a series of breast cancer cases that have spread to gynaecological sites, 

- Characterise the clinical and morphological features of this cohort. 

- Investigate the immunohistochemical phenotype of the primary and matched 

metastatic tumours. 

- Perform molecular analysis to investigate genomic heterogeneity during 

progression to this unique metastatic site.  
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CHAPTER 2  
 

 

 

 

 

MATERIALS AND METHODS 
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2. Materials and methods  
 

2.1. Breast cancer patient cohorts  
 

Fresh Frozen (FF) tissue samples and matched blood samples were obtained from the 

Brisbane Breast Bank based in the Lakhani Lab. FF samples were used for 

immunofluorescence experiments in Chapter 3. Blood samples were used to extract 

normal DNA utilised in Chapter 4. Pathology reports and Formalin Fixed Paraffin 

Embedded (FFPE) tissue samples were requested from Pathology Queensland and 

Sullivan Nicolaides (S&N) Pathology laboratories, through the lab head Prof Sunil Lakhani 

and A/Prof Margaret Cummings, and were used for all IHC experiments and the molecular 

analyses performed in Chapters 3, 4 and 5.  

 

Several patient cohorts were used during the course of this thesis. Firstly, tissue 

microarrays (TMAs) representing three main subtypes of breast cancer and breast cancer 

progression ((i) Luminal (ML1 TMA), (ii) HER2 (HER2 TMA), (iii) Triple Negative (TN TMA) 

and (iv) Progression (PS1 and PS2 TMAs)) were used in Chapter 3. The tissue cores on 

these TMAs were derived from cases from the Royal Brisbane and Women’s Hospital 

(RBWH). 

 

Secondly, TMAs consisting of a cohort of 148 invasive lobular carcinomas (ILC) obtained 

from S&N were used in Chapter 4 (TMAs named WL1-4). This cohort displays typical 

characteristics for this tumour type; 83.3% were grade 2, 96.5% were Oestrogen Receptor 

(ER) and/or Progesterone Receptor (PR) positive, 1.4% were HER2 positive, 1.4% were 

negative for ER, PR and HER2. E-cadherin was negative in 75.8% and aberrantly 

distributed in 22.8% of cases, and p120-catenin was aberrantly located to the cytoplasm in 

90% of samples (McCart Reed and Kutasovic et al., manuscript under review, J Pathol). In 

both Chapters 4 and 5, an unselected cohort of 449 sporadic breast cancer patients 

diagnosed between 1987 and 1994 at the RBWH was used for comparison statistics. This 

cohort is named the Queensland follow up cohort (QFU TMAs) and displays features of 

the general breast cancer population that is recognised worldwide. For example, 57% 

were invasive carcinoma of no special type (IC-NST), 14% were ILC and 77% of the 

cohort was ER positive (Al-Ejeh et al., 2014, Junankar et al., 2015). In Chapter 4, 

pathology reports and FFPE tissue blocks from a cohort of Mixed Ductal-Lobular 

Carcinomas (MDL) were collected from RBWH and S&N. In order to establish the specific 
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gynaecological metastasis (GM) cohort of breast cancer patients for Chapter 5, the 

Queensland Centre for Gynaecological Cancer (QCGC) clinical database was accessed to 

identify patients that had a metastasis to gynaecological sites (in collaboration with Prof 

Andreas Obermair). Pathology reports for this cohort were also accessed from Pathology 

Queensland. Death and survival data were obtained from the Queensland Cancer Registry 

(QCR), where I am a visiting staff member, and treatment data were obtained via the 

Clinical Administrative Services (CAS, Queensland Health) database. The patient data for 

both the MDL and GM cohorts was then assembled into a password protected Microsoft 

Excel database that contained all clinical and pathology data for all patients with for 

analysis, including parameters such as the age of diagnosis, size and grade of the tumour, 

lymph node and biomarker status.  

 

2.2. Ethics 
 
We have approval from the RBWH and University of Queensland Human Research Ethics 

Committee (HREC; 2005000785) for use of patient samples and clinical data (see 

Appendix 2.1 for the approval letter). All patients have completed informed consent prior 

to banking their samples in the Brisbane Breast Bank (BBB). Retrospective samples from 

archival specimens do not require consent as some patients will have died, others are lost 

to follow up or are no longer followed up and so it is inappropriate to now seek consent. 

 

2.3. Statistical analysis and graphical representations 
 

Statistical analysis was performed using GraphPad Prism version 6. Chi-square, Fisher’s 

exact test and student’s t-test was performed to evaluate differences between clinical, 

pathology and biomarker data between the cohorts under investigation. A p-value of <0.05 

was considered significant. All Venn diagrams were created using Venny 2.0 (Oliveros, 

2007-2015). 

 

2.4. Tissue microarray construction 
 
A TMA contains many tissue samples (up to several hundred samples) arranged in a 

paraffin block, allowing the assessment of any biomarker across many tissue samples. 

The combination of these techniques provides a high-throughput way of assessing many 

different molecules. The ML-1, HER2, TN, PS1-2, WL1-4 and QYFU TMAs were existing 
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resources generated by previous and current members of the Lakhani lab. The 

gynaecological metastasis cohort TMA was made specifically for this research. Each 

tissue block was sectioned at 4 µM thickness and stained with haematoxylin and eosin 

(H&E; see 2.5.2) for morphological analysis and tumour identification. Areas of tumour 

were identified and annotated on the slide in preparation for the construction of tissue 

microarrays (TMA). The first three TMAs (GM1, GM2, GM3) were constructed using a 

Beecher Instrument microarray Technology (www.beecherinstruments.com). TMAs GM4, 

GM5 and GM6 were built using TMArrayer (Pathology Devices, 

http://www.pathologydevices.com/TMArrayer.htm). Both devices used 1 mm hollow 

needles to extract multiple tissue cores from the donor block. One millimetre cores were 

chosen, as opposed to 0.6 mm cores, for this project to sample a greater area of tissue 

and therefore to try and capture as much tissue heterogeneity as possible. The tissue 

cores were placed precisely into a recipient ‘empty’ paraffin block in duplicate. The cores 

were arranged with predefined coordinates that results in a series of patient samples 

organised onto a grid. The coordinates for this cohort were designed with an individual 

case represented in a row to allow assessment of phenotypic changes across multiple 

tumours in a patient (see Appendix 2.2 to 2.7 for the TMA maps). Eight or nine cases 

were placed on one TMA (8-9 rows), with the number of metastatic sites per case 

determining how many cores were in each row (12 cores being the maximum number in 

each TMA). A space of 1.7 mm was used in between each core. Unmatched normal breast 

was also included on each TMA as a quality control and normal liver tissue was included 

to assist with orientation of the TMA. The completed TMA block was placed in a 55°C oven 

for 10 minutes to set the cores into the new paraffin block, it was then allowed to reach 

room temperature before being placed at 4°C for storage. A 4 µM section was cut after 

construction of the TMA and an H&E stain was performed to verify the presence of tumour 

tissue in each core. Immunohistochemical staining was then performed on the individual 

slides.  

  
2.5. Histological and immunohistochemical Methods 
 
2.5.1. Sectioning and deparaffinisation 
 

Tissue sections were cut at 4 µM from the relevant patient block or TMA using a 

microtome (Leica RM2135). Tissue sections were floated on water before being mounted 

on cation coated slides and placed in a 37°C oven overnight. The slides were 
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deparaffinised in 100% xylene 3 times for 5 minutes each and rehydrated for 2 minutes 

each in a series of graded alcohols (100%, 90%, 70%) to water.  

 

2.5.2. Haematoxylin and Eosin staining 
 
Haematoxylin and Eosin (H&E) staining was performed using the Leica ST5010 

Autostainer XL with an automatic cover-slipping machine at the Histology Laboratory in the 

QIMR Berghofer Medical Research Institute (QIMRB).  

 
2.5.3. Nuclear fast red staining 
 

Tissue sections destined for DNA extractions were stained with nuclear fast red. After 

deparaffinisation, the tissue sections were incubated in nuclear fast red for 2 minutes. The 

sections were washed twice in water, and then dehydrated in graded ethanol (70%, 90%, 

100%). The sections were allowed to air dry before placing at 4°C until ready for micro- or 

macro-dissection (see Section 2.7.2).  

 

2.5.4. Immunohistochemistry (IHC) 
 
The general protocol for IHC is given below. The specific Immunohistochemistry (IHC) 

conditions for each antibody are summarised in Table 2.1. 

Antigen retrieval improves an antibodies ability to bind to the antigen. Antigen retrieval was 

performed using the decloaker method with either sodium citrate (0.01M, pH 6.0, 125°C for 

5 minutes), EDTA (0.001M, pH 8.8, 105°C for 15 minutes) or chymotrypsin (37°C for 10 

minutes) depending on the antibody used. All wash steps were performed using 1 X Tris 

Buffered Saline (TBS, pH 7.4). The slides were washed 3 times for 2 minutes each. The 

Mach1 Universal HRP Detection Kit (Biocare Medical, LLC. Concord CA 94520 USA) was 

used for detection as per the manufacturers instructions. Briefly, after deparaffinisation, 

antigen retrieval and washes, the slides were placed in 30% hydrogen peroxide (Sigma 

Aldrich, lot # 33420) for 10 minutes to block endogenous peroxidases. After washing, 

Sniper (Biocare Medical, LLC. Concord CA 94520 USA) was added to each section to 

block non-specific proteins. All antibodies were diluted in TBS, and their specific conditions 

optimized, including dilutions and incubation conditions (1 or 2 hours at room temperature, 

or 4°C overnight) are presented in Table 2.1. The Mach1 mouse probe was added for 15 

minutes if a mouse antibody was used and the universal Horse-Radish Peroxidase (HRP) 
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polymer was used as the secondary antibody for 30 minutes. The Biocare Medical Rat 

Detection Kit was used for rat-derived antibodies. A solution of 3,3'-Diaminobenzidine 

(DAB substrate buffer and DAB chromagen - Biocare Medical, LLC.) was utilised for 

antibody visualisation by light microscopy. The slides were washed in water followed by 

counterstaining with haematoxylin and cover slipping at QIMRB Histology laboratory. 
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Table 2.1 Immunohistochemistry antibodies and conditions 

Antibody 
(Clone) 

Cat # Species Source Detection 
method 

Antigen 
retrieval 

Antibody 
dilution 

Inc. 
time 

Positive 
control 

Cellular 
localisation 

Scoring method 

ER (6F11) NCL-L-
ER-6F11 
 

M Novocastra MACH1 Citrate 1/100 1 h NB Nucleus Positive in the 
nucleus in >1% of 
cells 

PR (16) NCL-PGR M Novocastra MACH1 Citrate 1/100 1 h NB Nucleus Positive in the 
nucleus in >1% of 
cells 

HER2 
(A0485)* 

A0485 R Dako MACH1 Citrate 1/100 1 h NB Membrane Positive if 3+ 
membrane staining 

HER2 (4B5)* 790-2991 R Ventana Ventana 
Ultraview 
DAB 

Ventana 
CC1 20 
mins 

n/a 
 

8 
min 
 

HER2+ 
tumour 
 

Membrane Positive if 3+ 
membrane staining 

EGFR 
(31G7) 

280005 
 

M Invitrogen MACH1 Chy. 1/100 1 h Skin Membrane Any positivity and 
percentage of 
positive cells 

CK8/18 
(5D3) 

NCL-5D3 M Novocastra MACH1 Citrate 1/100 1 h NB Cytoplasm Any positivity and 
percentage of 
positive cells 

CK5/6 
(D5/16B4) 

MAB1620 
 

M Millipore MACH1 Citrate 1/300 1 h NB Cytoplasm Any positivity and 
percentage of 
positive cells 

CK14 
(LL002) 

NCL- 
LL002 

M Novocastra MACH1 Citrate 1/40 1 h NB Cytoplasm Any positivity and 
percentage of 
positive cells 

Ki67 (MIB-1) M7240 
 

M Dako MACH1 Citrate 1/200 1 h NB Nucleus Positive in the 
nucleus in >1% of 
cells 

p53 (D07) M7001 
 

M Dako MACH1 Citrate 1/200 1 h NB Nucleus Positive in the 
nucleus in >10% of 
cells 

Androgen 
receptor 
(MR441) 

M3562 
 

M Dako MACH1 Citrate 1/50 1 h Prostate Nucleus Positive in the 
nucleus in >1% of 
cells 

Continued next page. 
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Table 2.1 Immunohistochemistry antibodies and conditions 

Antibody 
(Clone) 

Cat # Species Source Detection 
method 

Antigen 
retrieval 

Antibody 
dilution 

Inc. 
time 

Positive 
control 

Cellular 
localisation 

Scoring method 

E-cadherin 
(HECD-1)* 

HECD-1 M Invitrogen MACH1 Citrate 1/100 16 h NB Membrane Localisation 
(membranous, 
cytoplasmic, 
negative) 

E-cadherin 
(HECD-1)* 

HECD-1 M Invitrogen Bond 
Polymer 
Refine 

Bond ER2 
(pH 9) 20 
mins 

1/100 
 

15 
min 
 

NB Membrane Localisation 
(membranous, 
cytoplasmic, 
negative) 

beta-catenin 
(17C2) 

17C2 M Novocastra MACH1 Citrate 1/100 16 h NB Membrane Localisation 
(membranous, 
cytoplasmic, 
negative) 

p120-catenin 
(98/pp120) 

98/pp120 
 

M BD 
transduction 
labs 

MACH1 Citrate 1/200 1 h NB Membrane Localisation 
(membranous, 
cytoplasmic, 
negative) 

GATA3 
(L50-823) 

558686 
 

M BD 
transduction 
labs 

Ventana 
Ultraview 
DAB 

Ventana 
CC1 32 
mins 

1/500 32 
min 

NB Nuclear Positive in the 
nucleus in >1% of 
cells 

FOXA1 
(2F83) 

ab40868 
 

M Abcam MACH1 Citrate 1/100 1 h NB Nuclear Positive in the 
nucleus in >1% of 
cells 

N-WASP 
30D10) 

48485 
 

R Cell 
Signalling 

MACH1 Citrate 1/50 16 h  Opt 
TMA 

Cytoplasm Any positivity and 
percentage of 
positive cells 

ECT2 (n/a) 07-1364 
 

R Millipore MACH1 Citrate 1/50 1 h Opt 
TMA 

Cytoplasm Any positivity and 
percentage of 
positive cells 
 

 
Continued next page. 
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* IHC for this antibody was initially performed in house but was later performed at Pathology Queensland using the more reliable Ventana 

Autostainer. M: Mouse, R: Rabbit; Inc. time: Incubation time; 1 h: 1 hour at room temperature, 16 h:16 hours at 4°C; NB: Normal breast; Opt TMA: An 

optimisation TMA containing various tissues including breast, prostate, testis, ovary, pancreas, tonsil, thyroid, liver, skin and various breast tumour 

types; Citrate antigen retrieval conditions: pH 6.0, 125°C for 5 minutes. Chy: Chymotrypsin antigen retrieval, 0.5%, pH 7.8, 37°C for 10 minutes.  

 

Table 2.1 Immunohistochemistry antibodies and conditions 

Antibody 
(Clone) 

Cat # Species Source Detection 
method 

Antigen 
retrieval 

Antibody 
dilution 

Inc. 
time 

Positive 
control 

Cellular 
localisation 

Scoring method 

RacGAP1 
(H-300) 

sc-98617 
 

R Santa Cruz MACH1 Citrate 1/100 1 h Opt 
TMA 

Cytoplasm Any positivity and 
percentage of 
positive cells 

N-cadherin 
(3B9) 

X 18-0224 
 

M Invitrogen MACH1 Citrate 1/150 1 h Opt 
TMA 

Membrane Localisation 
(membranous, 
cytoplasmic, 
negative) 

SNAIL 
(SN9H2) 

4719 
 

Rat Cell 
Signalling 

MACH1 – 
rat kit 

Citrate 1/40 16 h  Kidney Nucleus Any positivity and 
percentage of 
positive cells 

Vimentin 
(V9) 

M0725 
 

M Dako MACH1 Citrate 1/400 1 h Opt 
TMA 

Cytoplasm Localisation 
(cytoplasmic, 
negative) 
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Table 2.2 Immunofluorescence antibodies and conditions 

Primary 
antibody 
(Clone) 

Cat # Species Source Isotype Fixation Dilution Inc. 
time 

Secondary 
antibody 

Dilution Channel Source Cat # 

ECT2 (n/a) 07-
1364 

R Millipore IgG PFA 1/50 16 
hrs  

Goat anti-
rabbit 

1/400 594 Life 
Technologies 

A11072 

E-cadherin 
(4A2C7) 

X18-
0223 

M Zymed IgG1 PFA 1/100 1 hr Goat anti-
mouse 

1/400 594 Life 
Technologies 

A21121 

Collagen 4 
(Coll4) 

M0785 M Dako IgG1 PFA 1/50 1 hr Goat anti-
mouse 

1/400 594 Life 
Technologies 

A21121 

CK14 
(L0022) 

NCL-
L0022 

M Novocastra IgG3 PFA 1/50 1 hr Goat anti-
mouse 

1/400 594 Life 
Technologies 

A21151 

CK8/18 
(5D3) 

NCL-
5D3 

M Novocastra IgG1 PFA 1/100 1 hr Goat anti-
mouse 

1/400 594 Life 
Technologies 

A21121 

E-cadherin 
(HECD-1) 

HECD-
1 

M Invitrogen IgG1 Methanol 1/100 16 
hrs  

Goat anti-
mouse 

1/400 594 Life 
Technologies 

A11072 

N-WASP 
(30D10) 

48485 R Cell 
signalling 

IgG Methanol 1/50 16 
hrs  

Goat anti-
rabbit 

1/400 594 Life 
Technologies 

A21121 

M: Mouse, R: Rabbit. PFA: 4% paraformaldehyde. Inc. time: Incubation time; 1 hour at room temperature, 16 hours at 4°C. 
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Microscopy and Image analysis 
 

Following IHC, all slides were assessed under a light microscope and if the staining was 

successful, the slides were scanned digitally using the Leica Aperio Scanscope XT or AT 

Turbo located at QIMRB. Scanned images are available to view online using the software 

program Spectrum. This program allows the tissue section to be reviewed and using the 

relevant TMA map, an image of each individual tissue core on a TMA section can be 

segmented and extracted as individual JPEG images. These images were analysed using 

a photo-viewing program. The extracted JPEG images of each individual TMA tissue core 

have been analysed and scored using Apple iPhoto software. In iPhoto, keywords can be 

assigned to individual images that are used to assign scores to each image. The images 

are then meta-tagged into folders of the same tag (score), and each folder can be 

exported and assigned a score. The scores and core coordinates (which are matched to 

patient data) are assembled into a Microsoft Excel. This was repeated for all antibodies to 

gain a comprehensive immunophenotype profile of each case. 

 

2.6. Immunofluorescence staining of fresh frozen tissue 
 

Fresh frozen tissue sections were cut (7 µM) with a cryostat at -28°C (Leica MICROM HM 

550). The tissue was fixed on the slide after air-drying, with the optimised fixative (either 

100% ice cold methanol; 3:2 100% acetone:methanol at -20°C; or, 4% paraformaldehyde 

in PBS – depending on the antibody used; Table 2.2) for 10 minutes. After air-drying, the 

slides were washed in TBST (0.05% Tween-20 in 1 X Tris buffered saline) and exogenous 

peroxidases inactivated in 3% hydrogen peroxide for 10 minutes. A blocking buffer of FBT 

(5% FBS, 1% BSA, 0.05% Tween-20, 10mM Tris (pH 7.5), 100mM MgCl2) was used for 30 

minutes to block non-specific proteins. The primary antibody was diluted in FBT at the 

concentration optimised for frozen tissue (see Table 2.2) and incubated for 1 hour at room 

temperature. After washing in TBST, the secondary antibody (also diluted in FBT (see 

Table 2.2)) and DAPI nuclear counter-stain (1/10000 dilution) were added to the tissue 

section and incubated for 30 minutes. Prolong Gold (Life Technologies, Cat # P36930) 

was used to mount the sections after washing and the coverslip sealed with nail polish. 

The sections were stored at 4°C in the dark until imaging with a fluorescent microscope 

(Zeiss Axio Imager M1). Negative controls (no primary antibody), were run in parallel with 

every sample.  
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2.7. DNA isolation and quantification 
 
2.7.1. Laser Capture Micro-dissection (LCM) 
 
Tissue samples were micro-dissected using the Leica LMD 7000 laser dissection 

microscope. Tissue sections were cut at 10 µM onto polyethylene naphthalate (PEN) 

membrane-coated slides (Leica, Cat # 11505158). Areas of interest were cut and collected 

into tubes containing 30 µL of tissue lysis buffer ATL (Qiagen). The tissue was digested 

overnight with 10 µL of proteinase K (Invitrogen, Cat # 25530049) at 55°C with shaking. 

DNA was extracted using Qiagen QIAamp DNA Micro kit (Qiagen, Cat # 56404) following 

the manufacturers instructions with the following modification - the DNA was eluted off the 

MinElute columns with 25 µL of 37°C molecular grade DNase and RNase free water that 

was incubated on the column for 30 minutes. This elution step was repeated to ensure as 

much DNA was eluted off the column as possible.  

 

2.7.2. Macro-dissection using needle scraping  
 

Tissue samples that had clear tumour margins and didn’t require micro-dissection were 

separated from surrounding tissue under a stereomicroscope using a fine needle.  A small 

drop of ATL buffer (Qiagen) was placed on the slide. The needle was used to scrape a 

small amount of buffer onto the tissue section, and the buffer allowed the tissue area of 

interest to be removed from the slide. The macro-dissected tissue was placed into a tube 

containing 180 µL of ATL buffer, with 20 µL proteinase K. The tissue was digested in a 

shaking incubator at 55°C for three days, with two 20 µL proteinase K additions each day 

to ensure complete tissue digestion. The DNA was extracted using the Qiagen QIAmp 

DNA Micro Kit as per the manufacturers instructions.  

 
2.7.3. FFPE tissue cores 
 
DNA was also extracted from cores of tissue taken using a 1 mm TMA biopsy needle. On 

average 4-6 cores were taken per block and these were finely minced in a sterile petrie 

dish and transferred to a 1.7 mL Eppendorf tube. The cores were deparaffinised in a series 

of xylene (3 x 5 minute treatments) and rehydrated in ethanol (100%, 90%, 70% for 2 

minutes each). The samples were then treated with 1M sodium thiocyanate overnight in a 

37°C oven with shaking. The sodium thiocyanate was removed, followed by two 1x 
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Phosphate Buffered Saline (PBS) washes for 10 minutes each. The tissue was then 

digested in 180 µL of ATL buffer (Qiagen) with 40 µL of Proteinase K and incubated at 

55°C with shaking for 3 days, with spiking of fresh Proteinase K (20 µL) each day. DNA 

was extracted using the Qiagen DNeasy Blood and Tissue kit (Qiagen, Cat # 69506) 

according to the manufacturers instructions with the following modification: instead of 

using the AW2 buffer, we performed two 70% ethanol washes, as recommended by 

Agilent to remove impurities that interfere with the labelling protocol for array comparative 

genomic hybridisation (see 2.11.3). The DNA was eluted off the Minispin columns twice 

with 50 µL of 37°C water following incubation on the column for 30 minutes.  

 
2.8. Ethanol precipitation of low concentration samples  
 
Ethanol precipitation was utilised to increase the concentration of samples that were too 

dilute for array CGH. Both DNA elutions were combined, measured, and the volume made 

up to 250 µL with nuclease free water. To precipitate the DNA, our laboratory’s optimised 

protocol was as followed: 1/10 volume of 3M sodium acetate pH 5.2, 2.5 volumes of ice-

cold 100% ethanol and 1 µL of glycogen (Invitrogen, Cat # 10814-010) was added to each 

tube, mixed, and incubated in an esky of ice at 4°C overnight. The next day, the tubes 

were centrifuged at 12,000 g for 30 minutes at 4°C. The pellet was washed twice with 70% 

ethanol, spinning each time at 12,000 g for 10 minutes. The pellet was air dried at room 

temperature and was dissolved in 12-25 µL of 37°C nuclease free water and incubated at 

37°C for half an hour to help dissolve the pellet.  

 
2.9. DNA quantification and quality control  
 

The NanoDrop spectrophotometer (Thermo Scientific) quantifies DNA using visual light 

spectrophotometry. The NanoDrop provides the sample concentration, as well as both 

260/280 and 260/230 reading ratios. These ratios provide an indication of sample purity, 

where a 260/280 ratio of 1.8 denotes pure DNA and a 260/230 ratio of between 2.0-2.2 is 

desired for good DNA purity. Since all nucleic acids absorb light at 260 nm, the Nanodrop 

tends to over-estimate sample concentration as it will detect all nucleic acids, including 

small fragments, single stranded DNA and contaminating RNA present. The Qubit 

fluorometer 2.0 (Life Technologies) more accurately quantitates DNA because the assay 

utilises fluorescent dyes that only emit a signal when bound to double-stranded DNA. The 

fluorometer generates a standard curve using standards that are provided to calculate the 
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sample and stock concentrations. Both the Qubit dsDNA BR (Broad Range, Cat # 

Q32850) and HS (High Sensitivity, Cat # Q32851) kits were used depending on the size of 

the sample input. The assays were carried out following the manufacturers instructions.  

 
2.10. Illumina Infinium HD FFPE QC assay 
 
DNA quality of samples selected for array comparative genomic hybridisation was 

assessed using the Illumina Infinium HD FFPE QC assay following the manufacturers 

protocols (Part # 15020981 Rev. C.). This qPCR based assay used SYBR Green 2x qPCR 

Master Mix (Life Technologies, Cat # 4309155) and the Illumina FFPE QC kit (Cat # WG-

321-1001). All DNA samples were diluted in nuclease free water to 1 ng/µL and each 

sample was amplified in triplicate in a final reaction volume of 10 µL.  The samples were 

analysed using the ABI StepOne Real-Time PCR machine using the Applied Biosystems 

StepOne software v2.1 (Applied Biosystems). The data was analysed as per 

manufacture’s instructions. Briefly, any replicates whose Cq value diverged by more than 

half a cycle were removed from analysis. An average Cq for each sample was recalculated 

and for the standard template control provided in the FFPE QC kit. The average Cq value 

for the template control was subtracted from the average Cq of each sample to compute a 

delta Cq and all samples with a delta Cq value of less than 5 were deemed suitable for 

downstream applications.  

 
2.11. Genomic analyses 
 
2.11.1. Target enrichment DNA sequencing 
 

Capture-based targeted sequencing was performed using the Agilent SureSelect Target 

Enrichment system for Illumina paired-end sequencing following the manufacturer’s 

instructions (Manual part number G7530-90000, Version 1.7, July 2014. Agilent 

Technologies, Inc). The panel was designed by Dr Peter Simpson, and Table 2.3 contains 

a list of the genes targeted and the regions covered. The genes were selected based on 

the most frequently mutated genes in breast cancer, including some important oncogenes 

and tumour suppressor genes that undergo amplification and deletion. Other genes were 

selected based on their role in hormone signalling or cell-cell adhesion. The library 

preparation and sequencing were performed at Queensland Centre for Medical Genomics 
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(QCMG; Institute of Molecular Biosciences). The samples were analysed using Agilent’s 

SureCall software. 

 

Table 2.3 Custom gene list for the Agilent SureSelect sequencing panel 
Gene 
Symbol 

Gene Name Description References 

AKT1 AKT Altered in 2% of breast cancer. 
Sometimes amplified. 

1, 3 

AR Androgen receptor Role in hormone signalling.  
Altered in 2% of breast cancers.  

3 

ARID1A AT rich interactive domain 1A Putative epigenetic tumour 
suppressor, altered in 3% of 
breast cancers.  

2, 3, 9 

BRCA1 Breast cancer 1, early onset Germline predisposition. 1 
BRCA2 Breast cancer 2, early onset Germline predisposition. 1 
CBFB Core-binding factor, beta 

subunit 
Altered in 4% of breast cancer, 
mutated and deleted 

1, 3, 4 

CCND1 Cyclin D1 Frequently amplified in breast 
cancer (16%). 

3 

CDH1 E-cadherin Frequently mutated in breast 
cancer, especially in lobular 
breast cancer.  

1, 3 

CDK4 Cyclin-dependent kinase 4 Frequently amplified in breast 
cancer. 

1, 3 

CDK6 Cyclin-dependent kinase 6 Frequently amplified in breast 
cancer. 

1, 3 

CDKN1B Cyclin-dependent kinase 
inhibitor 1B (p27) 

Frequently altered in breast 
cancer. 

1, 3, 9 

CDKN2A Cyclin-dependent kinase 
inhibitor 2A 

Deleted in breast cancer. Some 
amplification. 

1, 3 

CDKN2B Cyclin-dependent kinase 
inhibitor 2B (p15) 

Deleted and sometimes 
amplified in breast cancer.  

1, 3 

CTNNA1 Alpha-catenin Role in cell-cell adhesion.  
CTNNB1 Beta-catenin Role in cell-cell adhesion.  
CTNND1 p120-catenin Role in cell-cell adhesion.  
CTTN Cortactin Frequently amplified in breast 

cancer (14%). 
3 

ERBB2 Human epidermal growth 
factor receptor 2 (HER2) 

Frequently amplified in breast 
cancer. Mutated in some ILC. 

1, 3, 5 

ERBB3 Human epidermal growth 
factor receptor 3 (HER3) 

  

ESR1 Oestrogen receptor alpha Role in hormone signalling.  
Mutated in some ER+ 
metastases. Amplified in 4% of 
primary breast tumours.  

3, 6 

ESR2 Oestrogen receptor beta Role in hormone signalling.    
ESRRA Oestrogen related receptor 

alpha 
Role in hormone signalling.    

ESRRB Oestrogen related receptor 
beta 

Role in hormone signalling.    

Continued next page 
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Table 2.3 Custom gene list for the Agilent SureSelect sequencing panel 
Gene 
Symbol 

Gene Name Description References 

ESRRG Oestrogen related receptor 
gamma 

Role in hormone signalling.  
Frequently amplified (14%) 

3 

FANCA Fanconi anaemia, 
complementation group A 

Germline predisposition, deleted 
in approx. 4% of breast cancer. 

3, 7 

FGFR1 Fibroblast growth factor 
receptor 1 

Frequently amplified in breast 
cancer (14%). 

1, 3 

FGFR2 Fibroblast growth factor 
receptor 2 

Altered in 3% breast cancers. 
Amplified or mutated. 

1, 3 

FOXA1 Forkhead box A1 Frequently mutated in breast 
cancer, focal amplifications 
occur. 

1, 3 

GATA3 GATA binding protein 3 Mutated in >10% of all breast 
cancers, enriched in Luminal A 
subtype.  

1, 3 

JUP Gamma-catenin Role in cell-cell adhesion.  
KRAS KRAS Germline predisposition, 

amplified in some triple negative 
breast cancers. 

1, 3, 8, 9 

MAP2K4 Mitogen-activated protein 
kinase 4 

Focal deletions and mutations. 1, 3, 9 

MAP3K1 Mitogen-activated protein 
Kinase kinase kinase 1 

Mutations enriched in Luminal A 
subtype. 

1, 3, 9 

MDM2 MDM2 oncogene, E3 
Ubiquitin protein ligase 

Frequently amplified in breast 
cancer. 

1, 3 

MLL3 Lysine specific 
methyltransferase 2C 

Frequently mutated in breast 
cancer. Focal deletions occur. 

1, 3, 9 

NCOR1 Nuclear receptor corepressor 
1 

 Altered in 5% breast cancer.  3, 9 

NF1 Neurofibromin 1 Germline predisposition. Altered 
in 6% of breast cancer. 

3, 9, 10 

NR3C1 Glucocorticoid receptor Role in hormone signalling.    
PGR Progesterone receptor Role in hormone signalling.  

Amplified or deleted in 3% of 
breast cancer. 

3 

PIK3CA Phosphatidylinositol-4,5-
bisphosphate 3-kinase, 
catalytic subunit alpha 

Mutated in >10% of all breast 
cancers. Enriched in Luminal A 
subtype. Focal amplifications 
occur. 

1, 3 

PTEN Phosphatase and tensin 
homolog 

Frequently altered in breast 
cancer. Germline predisposition. 
Focal deletions. 

1, 3, 11 

RB1 Retinoblastoma 1 Frequently deleted in breast 
cancer. 

1, 3 

RUNX1 Runt-related transcription 
factor 1 

Frequently mutated in breast 
cancer. 

1, 4 

TBX3 T-box 3 Frequently mutated in breast 
cancer. 

1, 9 

TP53 p53 Mutated in >10% of all breast 
cancers Germline 
predisposition. 

1, 3 

1(The Cancer Genome Atlas Network, 2012) 2(Wu and Roberts, 2013) 3(Cerami et al., 2012) and 

(Gao et al., 2013) 4(Banerji et al., 2012) 5(Ross et al., 2013) 6(Robinson et al., 2013a) 7(Seal et al., 
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2003) 8(Paranjape et al., 2011) 9(Stephens et al., 2012) 10(Sharif et al., 2007) 11(Lynch et al., 

1997). Mutation, amplification and deletion percentages were derived from the cBioportal 

(http://www.cbioportal.org).  

 

2.11.2. Whole exome sequencing and data analysis 
 

Whole exome sequencing was performed on a select number of cases of Mixed Ductal-

Lobular Carcinomas and cases with gynaecological metastases that had DNA from the 

primary tumour and multiple metastatic sites. The exome sequencing was performed by 

Macrogen using the Agilent SureSelect Exome Capture kit v4 and QCMG using the 

Illumina Nextera Rapid Capture Exome Kit (9-plex) using 200 ng of DNA and following the 

manufacturers instructions. Exome sequencing was performed using the Illumina 2500 

HiSEQ platform at QCMG. QCMG has automated pipelines that channel the data from the 

sequencer through to computational infrastructure that checks data integrity, prepares raw 

sequencing data for mapping and alignment, and archives and stores data. Dr Katia 

Nones analysed the exome data and somatic variants were called as per (Bessette et al., 

2015), where the sequencing data was aligned to the reference human genome hg19 

using BWA (Burrows-Wheeler alignment tool (Li et al., 2009)). Somatic variants were 

identified using both qSNP (Kassahn et al., 2013) and the Genome Analysis Tool Kit 

(GATK (McKenna et al., 2010)). The functional effects of any identified variants were 

determined using several online tools. To determine the pathogenicity of the mutations on 

the protein product, Provean (Protein Variation Effect Analyzer (Choi et al., 2012)) and 

PolyPhen-2 (Polymorphism Phenotyping v2 (Adzhubei et al., 2010)) were used. The online 

software program IntOGen (Integrative Onco Genomics (Gundem et al., 2010)) was used 

to determine if mutations were found in cancer driver genes and assess the functional 

contribution of mutations in biological pathways. Based on data generated from thousands 

of cancer genomes, the IntOGen pipeline uses multiple tools, including OncodriveFM 

(Lawrence et al., 2013), and OncodriveCLUST (Tamborero et al., 2013) to identify genes 

whose mutations are selected for during tumour development that are likely drivers. 

OncodriveFM identifies genes which accumulate mutations with a high functional impact 

(FM bias) and OncodriveCLUST identifies genes whose mutations cluster in particular 

regions of the protein sequence (CLUST bias). A functional impact score is assigned to 

each gene (None, Low, Medium or High) and the software determines the frequency of the 

mutation in each gene and/or pathway within the project. 
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2.11.3. Array based Comparative Genomic Hybridisation (CGH) 
 
DNA was sent to the Ramaciotti Centre for Genomics for array Comparative Genomic 

Hybridisation (CGH) to measure DNA copy number changes on the Agilent SurePrint G3 

Human CGH Microarray in either the 60K and 180K formats. Two array densities were 

used to accommodate variations in DNA concentrations obtained from the FFPE tissue 

samples, allowing us to include the low concentration samples on the 60K chip. A total of 

68 samples were suitable for the 180K array (at a minimum of 500 ng total in a 

concentration of 62.5 ng/µL) and 16 samples for the 60K array (250 ng at 32 ng/µL) from 

27 cases. The samples were labelled with Cy5 (and the female reference DNA labelled 

with Cy3) following the ULS protocol (Manual part number G4410-90020, Version 3.4, July 

2012. Agilent Technologies, Inc). The ULS labelling system is a non-enzymatic assay that 

directly labels DNA with the fluorescent dye, and is recommended for use with DNA 

derived from FFPE samples. The samples were hybridised on the array for 40 hours 

before microarray washing and scanning.  

 

Preliminary analysis of the data was performed by assessing the quality control documents 

generated for each sample. The raw data was imported into Agilent’s Cytogenomics 

software package version 3.0 to generate copy number profiles for each sample.  

 

Frequency plots were also generated with the help of a bioinformatics PhD student in our 

lab (Mr Samir Lal). The frequency plots were generated using the R programming software 

as follows. Background and median normalisation of the arrays was performed using the 

snapCGH package (Smith et al., 2006). Tumour sample copy number log2 ratios were 

segmented using circular binary segmentation (CBS) and then smoothed using the 

DNAcopy package (Olshen et al., 2004). The median of the log2 ratios + 1σ or + 4σ was 

computed using 50% of the central probes for gains and amplifications, respectively. For 

losses, the median of the log2 ratios -1.7σ and -6.8 σ was used to call heterozygous 

deletions and homozygous deletions, respectively. Frequency of gains, amplifications and 

deletions were achieved using the copy number package (Nilsen et al., 2012). GISTIC2.0 

(Genomic Identification of Significant Targets in Cancer) was performed to identify regions 

from CBS smoothed segments that are significantly amplified and deleted (Mermel et al., 

2011). Each region is assigned a G-score that considers the amplitude and frequency of 

the alteration across samples. The false discovery rate q-value is then calculated for these 

aberrant regions and a cut off of less than 0.05 was used. For each of the significant 
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regions a “peak region” is identified. These significant peak regions are comprised of the 

aberrant regions with the greatest amplitude and frequency of alteration. “Wide peak” 

regions are determined to allow for errors in the boundaries of significant peaks in a single 

sample. Genes in the “wide peak” boundaries are reported. 

Using the human reference genome build (hg18) from the UCSC genome browser, genes 

were selected if they fell completely within CBS-identified copy number segment from 

samples using GenomicRanges package (Lawrence et al., 2013). Genes that were not 

found completely within a copy number segment were filtered out. A gene by sample 

matrix of copy number calls was generated using the plyr package (Wickham, 2011). 

Annotation information for each gene was obtained using the biomaRt package (Durinck et 

al., 2009). 

 

2.12. Meta-analysis of publically available genomic data 
 
The Cancer Genome Atlas (TGCA) is a coordinated project aiming to catalogue all 

genomic alterations among specific cancer types. The data is freely accessible to the 

public online providing all of the molecular data (somatic mutation, copy number alteration, 

gene expression, methylation, reverse phase protein arrays) that has been done on every 

specimen to date (as of July 2015, 21441 tumour samples from 91 cancer studies).  

The genomic data is available for download through the TCGA Data Portal (National 

Cancer Institute; https://tcga-data.nci.nih.gov/tcga/tcgaDownload.jsp) or the cBioportal 

(Cerami et al., 2012, Gao et al., 2013). An analysis of gene expression patterns across 

different breast cancer subtypes from TCGA was performed for genes involved in actin 

cytoskeleton regulation (Chapter 3). Box and whisker plots (where the whiskers represent 

the 10th – 90th percentile) were produced using the RNASeq z-scores of expression levels 

for each transcript using Graph Pad Prism version 6 to compare gene expression levels 

between the different subtypes of breast cancer: morphological type combined with 

biomarker expression (i.e. IC-NST that are ER- HER2+, or ER+ HER2-, or ER+ HER2+, or 

triple negative, and lobular) and molecular subtypes (i.e. Luminal A, Luminal B, HER2, 

basal and normal-like). Ordinary one-way ANOVA tests were performed to assess if there 

were any significant differences in expression between the different subtypes.  

 

All mutation data was downloaded from the TCGA for 29 Mixed Ductal Lobular carcinomas 

that underwent sequencing as part of the TCGA breast cancer sequencing project 

(Chapter 4). Digital copies of the tumour diagnostic slides for the TCGA samples were 
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accessed from the Cancer Digital Slide Archive (http://cancer.digitalslidearchive.net) to 

verify the diagnosis of specific tumour types. 

 
2.13. Cells and cell culture 
 

The human invasive lobular carcinoma cell line IPH-926 was obtained via collaboration 

with Matthias Christgen from the Hannover Medical School, Germany (Christgen et al., 

2009). MDA-MB-134VI and MCF7 human breast cancer cell lines were obtained from the 

American Type Culture Collection (ATCC). IPH-926 was grown as a monolayer in RPM1-

1690 media (Life Technologies, Cat # 22400089) supplemented with 20% foetal bovine 

serum (FBS, Gibco/Invitrogen, Cat # 10099141) and antibiotic/antimycotic (Ab/Am; 1x, 

Gibco/Invitrogen, Cat # 15240062), insulin (1 mg/mL, Sigma, Cat # I5500), HEPES (Gibco, 

Cat # 15630), glutamine (200mM, Gibco, Cat # BS003583) and sodium pyruvate (100 mM, 

Invitrogen, Cat # 11360). MDA-MB-134VI was grown in DMEM media supplemented with 

20% FBS, glutamine (200 mM) and Ab/Am (1x). MCF7 was grown in DMEM media with 

10% FBS, glutamine (200 mM), Ab/Am (1x) and insulin (1 mg/mL). All cell lines were 

grown in a humidified atmosphere containing 5% CO2 at 37°C. Once the cells reached 

confluency, the cells were removed from the T75 flask using trypsin (TrypLE, Life 

Technologies, Cat # 12605010) and the cells were counted using the Countess (Life 

Technologies).  

 

Fixing cells onto coverslips 
 
IPH-926 and MDA-MB-134VI were grown on coverslips for IF analysis. Autoclaved glass 

coverslips were placed inside each well of a 24 well plate, upon which 20,000 to 40,000 

cells were plated. Once the cells reached approximately 70-80% confluency, they were 

fixed using 100% ice-cold methanol for 5 minutes and stored in PBS buffer until use.  

 

Immunofluorescent staining  
 

Immunofluorescent staining on cells on coverslips was performed as described in Section 
2.6 with some modifications. After the cells were fixed, the coverslips were removed from 

the plate and IF performed on a sheet of Parafilm, whereby each reagent was spotted to 

form a bubble that the coverslip is then moved between. The cells were washed with 

PBST (0.05% TWEEN-20 in 1x Phosphate Buffered Saline) and permeabilsed using 0.1% 
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Triton-X in 1X PBS. The primary and secondary antibodies were diluted in FBT, the 

blocking agent, and incubated for the time specified in Table 2.2. DAPI was used to 

counter-stain the nuclei and was diluted 1/10000 in FBT and incubated for 5 minutes. The 

coverslips were mounted onto glass slides using 3 µL of Prolong Gold mounting medium. 

The IF was visualised using a fluorescent microscope (Zeiss Axio Imager M1).  
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Chapter 3 
 

 

 

 

 

INVESTIGATING THE ROLE OF THE ACTIN 
CYTOSKELETON REGULATORY 

MOLECULES IN THE DISRUPTION OF E-
CADHERIN IN BREAST CANCER 
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3. Investigating the role of actin cytoskeleton regulatory molecules in the 
disruption of E-cadherin in breast cancer 

 

3.1. The actin cytoskeleton 
 
Within the cytoplasm of every cell, a skeleton made up of numerous proteins forms a 

complex network that allows the cell to hold and change its shape, enables cellular 

migration and determines cellular polarity in response to extracellular stimuli. The 

cytoskeleton is made up of three major protein families that form three main types of 

filaments; (i) intermediate filaments provide mechanical strength for the cell; (ii) 

microtubules are responsible for directing intracellular transport and the positions of 

membrane-enclosed organelles; and, (iii) actin filaments are essential for determining cell 

shape and locomotion (Figure 3.1).   

 

 
Figure 3.1: The cytoskeleton is made up of many molecules including the microtubules 

(stained green) and actin filaments (stained red) (Alberts et al., 2008); with permission from 

Garland Science. 

 

The cytoskeleton is dynamically regulated by many accessory proteins and is continually 

reorganised to adapt to the cell’s changing circumstances. The actin cytoskeleton in 

particular is a dynamic structure that undergoes continual assembly of monomeric G-actin 

molecules that form a polymer called filamentous (F)-actin, followed by disassembly and 

remodelling. Many molecules are involved in maintaining the actin filament network, 

including aspects of assembly, turnover and motility- for example, the Arp2/3 complex that 

stimulates actin assembly, and the myosin molecular motor proteins that attach to actin 

filaments and “walk” along them, generating contractile forces. The Rho families of small 

GTP-binding proteins control the regulation of actin structures (i.e. Rho itself for contractile 

acto-myosin filaments ("stress fibres"), Rac for lamellipodia and Cdc42 for filopodia (Nobes 
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and Hall, 1995, Hall, 1998)). In non-muscle cells, actin filaments are formed proximal to 

membrane surfaces (Alberts et al., 2008). 

 

3.1.1. E-cadherin and the actin cytoskeleton  
 
Cadherin junctions and the actin cytoskeleton are interdependent and their relationship is 

highly dynamic. Rac and Rho signalling are vital for this interaction (Braga et al., 1997). It 

has been observed in vitro that disruption of the actin cytoskeleton either by drugs, 

mutation of key actin regulators, or depletion by RNAi, that cadherin interactions are 

adversely effected (Angres et al., 1996, Baum and Perrimon, 2001, Mangold et al., 2011). 

The homophilic interactions of cadherin molecules between cells has been shown to 

reorganise the actin cytoskeleton and can activate various signal transduction pathways 

that recruit key regulators of the actin cytoskeleton to the adhesion junction (Gloushankova 

et al. 1997, Kovacs et al. 2002b, Vasioukhin et al. 2000). 

 

The physical interaction of E-cadherin with the actin cytoskeleton is also dynamic and α-

catenin plays a significant role in this interaction (Figure 3.2). This is via direct physical 

binding of the C-terminus of α-catenin with F-actin, or indirectly through other signalling 

macromolecules such as the centralspindlin complex (see below). E-cadherin 

concentrates in a continuous ring at the apico-lateral interface between neighbouring cells. 

This structure is an adherens junction known as the zonula adherens.  The zonula 

adherens are also a site for rings of actin filaments, and coupled with E-cadherin binding, 

this complex of actin filaments is essential for zonula adherens integrity (Harris and 

Tepass, 2010).   

 

 
Figure 3.2: The adhesion junction. The catenin 

molecules (α , β , p120) are essential for E-

cadherin stability at the cell membrane while 

simultaneously providing a scaffold for actin 

assembly ((Ratheesh and Yap, 2012), with 

permission from Nature Publishing Group). 
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3.1.2. E-cadherin, the actin cytoskeleton and breast cancer 
 
A hallmark feature of a cancer cell is its ability to invade locally and systemically. In order 

for a cell to become invasive, it must first detach from its neighbouring cells and rearrange 

its cytoskeleton to produce contractile forces in order to move. Invasive lobular carcinomas 

are an archetypal example of a tumour cell that invades in a single file of discohesive cells 

throughout the breast parenchyma. The classical immunophenotype of invasive lobular 

carcinoma (ILC) is the loss of E-cadherin expression, alongside loss of α, β and γ-catenin 

and the relocalisation of p120 catenin to the cytoplasm. It was demonstrated that this 

relocalisation of p120 catenin was capable of activating Rho/Rock signalling which 

activates downstream actin cytoskeleton remodelling pathways (Schackmann et al., 2011). 

Of particular importance was the induction of anoikis resistance pathways, allowing the 

cells to survive independent of cell-adhesion by interacting with regulators of the actin 

cytoskeleton (Schackmann et al., 2011). This model is in the context of an E-cadherin 

(CDH1) mutation. However, many breast cancers show loss of E-cadherin in the absence 

of a CDH1 mutation, such as high-grade IC-NST, which may show a transition from an 

epithelial to a mesenchymal phenotype (Aleskandarany et al., 2014). Aberrant E-cadherin 

localisation, rather than loss, has also been reported for some tumour types, including ILC 

(Da Silva et al., 2008) and the lobular component of mixed ductal lobular carcinomas 

(MDL), however the mechanisms underlying this phenomenon have not been investigated 

to date (See Chapter 4). It is plausible that there may be alterations in molecules involved 

in actin cytoskeleton regulation that in turn destabilise the adhesion junction in breast 

cancer cells and contribute to the invasive phenotype frequently observed in ILC, the 

lobular component of MDLs and high-grade IC-NST. 

 

Regulators of the actin cytoskeleton involved in adherens junction integrity 
 

Our collaborators have a strong interest in the role of the actin cytoskeleton interaction 

with adhesion junctions. Recent publications have highlighted two important pathways that 

are closely linked to E-cadherin function, including the molecules N-WASP and the 

Centralspindlin complex.  

 

Model 1: N-WASP 
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N-WASP (Neural Wiskott-Aldrich syndrome protein – encoded by WASL) is a major 

regulatory protein of the actin cytoskeleton, and functions by stimulating the Arp2/3 

complex that is responsible for actin polymerisation (Rohatgi et al., 1999). 

 

N-WASP has been identified to localise at the zonula adhesions (and not at the lateral 

adhesion junctions), an active site for actin polymerisation (Figure 3.3). A non-canonical 

role for N-WASP has been found where it stabilises the cytoskeleton (after Arp2/3 complex 

actin nucleation) in order to maintain the integrity of the adherens junction via a pathway 

involving the protein WIRE. When N-WASP is removed, junctional F-actin is decreased 

and becomes disorganised, however, this loss did not affect actin nucleation at the 

adherens junction. The actin stabilising function of N-WASP was dependent upon E-

cadherin adhesion (Kovacs et al., 2011).  

 

 
Figure 3.3: Co-immunofluorescent staining of N-WASP and E-cadherin identified co-

localisation of N-WASP at the zonula adherens in Caco-2 colorectal carcinoma cells, 

suggesting that N-WASP plays an important role in stabilising the adherens junction 

((Kovacs et al., 2011), with permission from Nature Publishing Group). 

 
Oncogenic cell extrusion  
 

In order to regulate the size and space limitations of the epithelia, cells under go apoptosis 

to control cell number and prevent overcrowding, and apoptosis is followed by cell 

extrusion where the cell is ejected from the epithelial layer (Andrade and Rosenblatt, 

2011). Live cell extrusion has also been observed, and this is also followed by apoptosis 

and proposed to be a tumour-suppressive process (Eisenhoffer et al., 2012). However, if 

the cell is transformed by an oncogene (such as K-Ras, H-Ras, Src and ERBB2) and 
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surrounded by non-transformed cells, the transformed cell is extruded and is capable of 

surviving (termed anoikis resistance, (McFall et al., 2001, Thullberg et al., 2007)), and 

proliferating and initiating the outgrowth of a tumour (Hogan et al., 2009, Leung and 

Brugge, 2012). 

 

Extrusion is a mechanically active process that involves both the transformed cell and its 

neighbours. E-cadherin and actomyosin contractility are important players in extrusion.  A 

recent study showed that cleavage of the extracellular domain of E-cadherin is a 

mechanism driving cell extrusion (Grieve and Rabouille, 2014). N-WASP has also been 

implicated in extrusion. Extruding cells have been shown to harbour increased cortical F-

actin intensity compared to neighbouring cells (Grieve and Rabouille, 2014, Wu et al., 

2014). In H-RasV12 transformed cells cultured among wild type cells, N-WASP was found 

to redistribute to areas of contact (lateral adherens) and was depleted from the zonula 

adherens (Wu et al., 2014). This redistribution resulted in altered junctional tension at the 

zonula adherens, yet increased tension at the lateral adherens. The extruding cell has 

more F-actin and myosin II, demonstrating N-WASP’s functional role in actin stabilisation. 

This was reversed and extrusion inhibited when N-WASP was knocked down (Wu et al., 

2014) (Figure 3.4). Therefore, N-WASP is necessary for extrusion to occur and may play 

an important role in cancer initiation or invasion.   

 

 
Figure 3.4: Model of epithelial cell maintenance and extrusion. The redistribution of N-

WASP from the apical adherens junction to the lateral adherens junction facilitates 

oncogenic cell extrusion ((Behrndt and Heisenberg, 2014), with permission from Nature 

Publishing Group). 
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Model 2: The centralspindlin complex and ECT2 
 

The centralspindlin complex and ECT2 are well-characterised molecules involved in 

mitosis. The centralspindlin complex is a heterodimer of RacGAP1 and MKLP1, its role in 

the mitotic phase of cytokinesis has been well established, where Rho accumulates at the 

contractile furrow and regulates the actomyosin-based processes necessary for cell 

division (Yoshizaki et al., 2003, Bement et al., 2006, Yuce et al., 2005). ECT2 (Epithelial 

cell transforming 2) is a guanine nucleotide exchange factor (which catalyses the 

exchange of GDP to GTP) for the Rho-family of GTPases. ECT2 is also involved in the 

regulation of cytokinesis. Phosphorylated ECT2 catalyses the guanine nucleotide 

exchange of the small GTPases, RhoA, Rac1, and Cdc42 during the G2 and M phase of 

mitosis. ECT2 is located in the nucleus during interphase, relocalises to the cytoplasm 

during prometaphase, and is condensed in the midbody during cytokinesis (Tatsumoto et 

al., 1999, Matthews et al., 2012). 

 

A recent study identified both the centralspindlin complex and ECT2 at cell-cell contacts 

(zonula adherens) in interphase MCF7 breast cancer cells. Knockdown of ECT2 reduced 

junctional localisation of Rho and Rho-GTP that is necessary to support the integrity of the 

zonula adherens via recruitment of myosin IIA, and this was rescued when ECT2 was 

reintroduced. RacGAP1 was found to co-immunoprecipitate with E-cadherin and α-

catenin, and knockdown of this molecule significantly reduced the amount of ECT2 that co-

immunoprecipitated with α-catenin revealing that the centralspindlin complex serves as an 

intermediate that activates ECT2 at the zonula adherens and promotes Rho signalling to 

support the adherens junction. The centralspindlin complex was also found to 

simultaneously prevent Rho inhibition by blocking the recruitment of p190B RhoGAP 

(Figure 3.5) (Ratheesh et al., 2012).  
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Figure 3.5: The Centralspindlin complex (a heterodimer of RacGAP1 and MKLP1) and ECT2 

have been identified at the adherens junction. Both the Centralspindlin complex and ECT2 

are required to maintain junctional tension (Image from (Ratheesh et al., 2012), with 

permission from Nature Publishing Group). 

 

3.2. Hypotheses and aims 
 
The actin cytoskeleton plays an integral role in maintaining adhesion junctions and we 

hypothesise that disruption of the pathways regulating the actin cytoskeleton may 

contribute to loss of cell adhesion and an increase in the invasive phenotype that is 

observed in some breast cancer subtypes. In particular, invasive lobular carcinomas have 

E-cadherin deregulation in approximately 90% of cases. Mutations in E-cadherin’s gene, 

CDH1, account for some of, but not all, of the mechanisms behind E-cadherin deregulation 

(CDH1 is mutated in 57% of ILC (McCart Reed and Kutasovic et al., 2015)). Aberrations of 

molecules that regulate the actin cytoskeleton could therefore be candidates for those 

cases with aberrant or lost E-cadherin expression without CDH1 mutation. 

 

This chapter investigates the role of the actin cytoskeleton across many different breast 

cancer types using a meta-analysis of publically available gene expression data, somatic 

mutation data, and protein analysis by IHC using breast cancer tissue microarrays. 

Through collaboration with Prof Alpha Yap we investigated genes that are involved in the 

cell adhesion-actin cytoskeleton axis to determine whether deregulation of these could 

contribute to the invasive phenotype frequently observed in breast cancer.  
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3.3. Results  
 

3.3.1. Analysis of gene expression changes in regulators of the actin 
cytoskeleton 

  
As there are many different actin cytoskeleton regulatory pathways, and since its role in 

cancer has only recently come to light, it is very difficult to know which molecules in 

particular to focus on; equally, there may be other important pathways that have not yet 

been discovered. Therefore we have undertaken a meta-analysis of publically available 

whole transcriptome gene expression profiling data, from more than 900 human breast 

cancer samples (Section 2.12). This allows us to investigate a large sample size to 

potentially see subtle effects of the role of the actin cytoskeleton regulators.  

 

We have selected specific genes involved in actin cytoskeleton regulation (e.g. Arp2/3, N-

WASP), myosin motor proteins (e.g. Myosin II, Myosin IV) and actin signalling molecules 

(e.g. Rho, Rac, ECT2) (see Appendix Table 3.1) that are of interest in the Yap laboratory 

(and for which they could provide antibodies) and additional genes involved in these 

pathways. An analysis of gene expression patterns was performed across different breast 

cancer subtypes from The Cancer Genome Atlas (TCGA) using the cBioportal interface 

(Section 2.12; (Cerami et al., 2012) (Gao et al., 2013)).  

 

Box plots (Figure 3.6) for each gene were produced using GraphPad Prism 6 to compare 

gene expression levels between the different subtypes of breast cancer: histological type 

combined with biomarker expression (i.e. IC-NST that are ER- HER2+; ER+ HER2-; ER+ 

HER2+; triple negative (TN); and lobular) and molecular intrinsic subtypes (i.e. luminal A; 

luminal B; HER2; basal and normal-like).  

 

Many genes were differentially expressed between breast cancer subtypes. Through our 

collaboration with Prof Alpha Yap, we focused on the differential expression of N-WASP, 

ECT2, and RacGAP1 identified between the histological and intrinsic breast cancer 

subtypes (Figure 3.6).  

 

N-WASP was found to be slightly up-regulated in the luminal A intrinsic subtype and both 

the lobular and ER+ (irrespective of HER2 status) histological subtypes. N-WASP was 

slightly down-regulated in the ER- HER2- and triple negative histological subtypes and the 
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basal, HER2 and normal-like intrinsic subtypes. ECT2 and RacGAP1 have similar changes 

in gene expression within each subtype and were found to be slightly down-regulated in 

both the lobular and ER+ HER2- negative histological subtype, and luminal A and normal-

like intrinsic subtypes. ECT2 was slightly up-regulated in the HER2+ and triple negative 

histological subtypes and basal, HER2 and luminal B intrinsic subtypes, whereas 

RacGAP1 was found to be up-regulated in the triple negative and ER+ HER2+ histological 

subtypes and luminal B intrinsic subtype (Figure 3.6). There are some cases however with 

much higher (or lower) expression compared to the average of the cohort, suggesting that 

a change in the expression of these genes may be important in some individual tumours. 

These findings suggest that cellular localisation of the protein may be more important than 

gene expression.  
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Figure 3.6: Gene expression analysis of (a) N-WASP (a.k.a WASL), (b) ECT2 and (c) 

RacGAP1 from the TCGA across breast cancer histological and intrinsic subtypes. An 

RNASeq z-score is defined as a value indicating the number of standard deviations away 

from the mean of expression in the reference population (reference population being either 

all tumours that are diploid for the gene in question, or, when available, normal adjacent 

tissue). The RNASeq z-scores for each gene were plotted in GraphPad Prism 6; the 

whiskers represent the 10th – 90th percentiles. 

 

3.3.2. Are the genes encoding N-WASP, ECT2 and RacGAP1 ever altered in breast 
cancer?  
 

The cBioportal was employed to assess whether the genes of these actin cytoskeleton 

regulators were mutated or had copy number alterations in breast cancer (Section 2.12). 

In 962 breast cancers with both sequencing and copy number alteration data, the genes 

coding for N-WASP (WASL - located on human chromosome 7q31), RacGAP1 (located on 

human chromosome 12q13) and ECT2 (located on human chromosome 3q26) were rarely 

mutated or amplified (Figure 3.7, Table 3.1). ECT2 was most frequently altered compared 

to the other genes (amplified in 4.15% of breast cancer cases). There was no correlation 

between genomic alteration in any of these genes and histological type. Alterations in N-

WASP, ECT2 and RacGAP1 were mostly mutually exclusive and were present in cases 

without CDH1 mutation or alteration (Figure 3.7). Across all cancer types N-WASP was 

mutated in 22% of pancreatic cancers, ECT2 was amplified in over 50% of lung 

carcinomas and over 30% of ovarian carcinomas, and RacGAP1 was lost in 15% of 

adenoid cystic carcinomas (Appendix Figures 3.2, 3.3, 3.4).  

 

 
Figure 3.7: Oncoprint of CDH1, WASL (N-WASP), ECT2 and RacGAP1 (n = 178). Visual 

summary of alterations in WASL (N-WASP), ECT2 and RacGAP1 in 57/962 (6%) of breast 

cancer samples, as presented by the cBioportal. Each box represents an individual sample 

and only cases with alterations are included in the image (top panel is the first 89 patients, 
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bottom panel is the remaining 89 patients). Alterations in these genes were largely mutually 

exclusive and mostly occur in patients with wild-type CDH1. 

 

Table 3.1: Summary of genomic alterations for N-WASP (WASL), ECT2 and RacGAP1 in 

breast cancer from the TCGA. 

Gene Amplified 
n (%) 

Mutated 
n (%) 

WASL 11 (1.14) 3 (0.3) 
ECT2 40 (4.15) 4 (0.4) 

RacGAP1 2 (0.2) 2 (0.2) 
 

Overall, N-WASP (WASL), ECT2 and RacGAP1 are rarely mutated or have a change in 

copy number in breast cancer, and therefore alternative methods are likely to contribute to 

their changes in gene expression.  

 

3.3.3. Protein analysis of regulators of the actin cytoskeleton 
 

As the meta-analysis showed few genomic alterations in the genes encoding N-WASP, 

ECT2 and RacGAP1, we proposed that a change in phenotype might manifest at the 

protein level. Therefore, the protein levels were assessed by the use of 

immunohistochemistry on specialised tissue microarrays (TMA) (Sections 2.1 and 2.5.4).  

 

E-cadherin, N-WASP, ECT2 and RacGAP1 were investigated on four existing collections 

of TMAs spanning a variety of breast tumour types (ILC, HER2 positive and triple negative 

IC-NST, and a progression series of pre-invasive lesions with matched invasive tumours 

(Section 2.1)). The following data describes the expression of N-WASP, ECT2 and 

RacGAP1 in normal breast tissue and in breast cancer, followed by the correlation of 

expression of these markers with E-cadherin protein expression. 

 

Each protein was scored for localisation (membranous, cytoplasmic or nuclear), the 

intensity of protein expression (1+, 2+, 3+) and the percentage of positive cells. Only 2+ 

and 3+ staining intensity was considered positive, since 1+ staining was weak. The 

expression was compared between histological type (ILC and IC-NST) and each 

histological type was further stratified by tumour grade, and surrogate intrinsic subtype 

based on expression of ER, PR and HER2 by immunohistochemistry (luminal-like: 
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ER+/PR+/HER2-; luminal/HER2: ER+/PR+/ HER2+ or ER+/PR-/HER2+; HER2: ER-/PR-

/HER2+; TN: ER-/PR-/HER2-).  

It should be noted that in these cohorts the majority of IC-NST are either HER2-amplified 

or triple negative, therefore the results are slightly biased towards a cohort of more 

aggressive types and cancer. All statistical analyses were derived using the Chi-square 

test unless otherwise specified. A cut off of p < 0.05 was considered significant. 

 
3.3.3.1. N-WASP expression in normal breast and breast cancer  
 
There were 10 normal breast samples available for IHC analysis of N-WASP expression. 

Five of the normal breast samples were negative for N-WASP, and 5 cases showed weak 

1+ staining in the cytoplasm in over 80% of the normal breast cells (Figure 3.8).  

 
Figure 3.8: N-WASP is weakly expressed in the cytoplasm of normal breast.  

 

There was a total of 81 IC-NST and 43 ILC available for analysis. Overall, N-WASP is 

more frequently expressed in ILC than IC-NST (ILC: 39/43, 90.6%; IC-NST: 43/81, 53.1%; 

Table 3.2; Figure 3.9) and this difference was found to be statistically significant (p = 

0.0001; Figure 3.10). When only considering 2+ and 3+ as positive, 55.8% of ILC were 

positive, compared with only 23.5% of IC-NST and this was still statistically significant (p = 

0.0003). 
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Figure 3.9: N-WASP expression in breast cancer. Representative images of staining 

intensity (1+, 2+, 3+) in ILC and IC-NST. Inset in the 3+ rows shows cytoplasmic localisation. 
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Table 3.2: IHC of N-WASP in IC-NST, ILC and their IHC-derived intrinsic subtypes.  

IC-NST (n=81); n (%) 

N-WASP Luminal-
like 

Luminal / 
HER2 HER2 TN Total 

Neg 5 (27.8) 11 (61.1) 13 (61.9) 9 (40.9) 38 (48.1) 
1+ 8 (44.4) 4 (22.2) 4 (19.0) 8 (36.4) 24 (30.4) 
2+ 4 (22.2) 4 (22.2) 4 (19.0) 3 (13.6) 15 (19.0) 
3+ 1 (5.6) 1 (5.6) 0 2 (9.10 4 (5.1) 

Total 18 20 21 22   

ILC (n=43); n (%) 

N-WASP Luminal-
like  

Luminal / 
HER2 

ER/PR 
neg Total 

  

Neg 3 (7.7) 0 1 (100) 4 (9.3) 
1+ 12 (30.8) 3 (100) 0 15 (34.9) 
2+ 20 (51.3) 0 0 20 (46.5) 
3+ 4 (10.3) 0 0 4 (9.3) 

Total 39 3 1   
 N refers to number of informative cores. TN = triple negative. 

 

 
Figure 3.10: N-WASP is more frequently expressed in ILC compared to IC-NST (Chi-square 

test, p = 0.0001). A cut off of p < 0.05 is considered significant. Staining intensity was 

recorded; negative (0), weak (1+), moderate (2+) and strong (3+). When considering only 2+ 

and 3+ as positive, the expression of N-WASP remained statistically significant between IC-

NST and ILC (p = 0.0003)) 

 
When stratified into IHC-surrogates for intrinsic molecular subtypes, the ILC primarily fell 

into the Luminal-like group (90%) as expected, and N-WASP was positive in 61.6% of 

these cases. Three ILC cases expressed HER2 and they all had 1+ weak cytoplasmic 

staining of N-WASP. IC-NST is a much more heterogeneous group, however, across all 

IC-NST ILC
0.0

0.5

1.0

N-WASP expression in ILC vs. IC-NST

Neg
1+
2+
3+

p = 0.0001
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intrinsic subtypes, N-WASP was frequently negative (Table 3.2).  There was no 

statistically significant difference in N-WASP expression observed between the intrinsic 

subtypes and this might be due to the small numbers within each intrinsic subtype.  

 
N-WASP expression was assessed across tumour grades and was frequently positive in 

grade 2 and 3 ILC, while IC-NST was primarily negative for N-WASP expression across all 

tumour grades (Table 3.3). Indeed, there was no statistically significant difference in N-

WASP expression across tumour grade for IC-NST. Within ILC, the sample numbers are 

too small to analyse. There is a lack of low-grade tumours with a “good” prognosis to use 

as a comparison in this cohort. However, there are two grade 1ILC cases, both showing 

low expression of N-WASP (1+ staining intensity); five grade 1 IC-NST cases that have 

low to no expression of N-WASP; and, a single case with 2+ staining intensity.  

 
Table 3.3: Analysis of N-WASP expression within tumour grades of ILC and IC-NST. 

  
ILC; n (%) IC-NST; n (%) 
Grade 1 Grade 2 Grade 3 Total Grade 1 Grade 2 Grade 3 Total 

Neg 0 3 (18.8) 1 (14.3) 4 (16) 2 (33.3) 12 (54.5) 23 (46) 37 (47.4) 
1+ 2 (100) 0 0 2 (8) 3 (50) 2 (9.1) 18 (36) 23 (29.5) 
2+ 0 10 (62.5) 5 (71.4) 15 (60) 1 (16.7) 8 (36.4) 6 (12) 15 (19.2) 
3+ 0 3 (18.3) 1 (14.3) 4 (16) 0 0 3 (6) 3 (3.8) 

Total 2 16 7 25 6 22 50 78 
 

Regarding alternative histologies, there were also four medullary breast carcinomas 

available for analysis; 4/4 tumours were grade 3 and 2/4 were positive for N-WASP (both 

were triple negative), therefore there is insufficient data to draw a conclusion from this rare 

tumour type (data not shown). 

 
To assess if N-WASP is playing a role in the progression of breast cancer a specialised 

TMA consisting of 25 cases (Section 2.1; (Vargas et al., 2012)), each with representative 

cores from various stages of breast cancer progression; normal breast, in situ carcinoma, 

invasive carcinoma, and lymph node metastases was utilised. Four cases displayed an 

increase in N-WASP expression over the progression series, where the in situ and 

invasive carcinoma were negative, or weakly positive and the corresponding lymph node 

metastasis was positive. There were 5 cases with matching normal breast on this TMA 

and 4 of those cases had matching in situ carcinoma. Two cases had increased 

expression of N-WASP from normal breast to in situ (1+ to 2+), while 2 cases had no 

change in N-WASP expression.  
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A series of 8 ILC with matched lymph node metastases was also analysed and no 

significant change in N-WASP expression between the primary and metastatic tumour was 

found (data not shown). The remaining cases had varying degrees of N-WASP 

expression, suggesting that N-WASP does not play a major role in breast cancer 

progression. 

 

3.3.3.1.1. E-cadherin and N-WASP co-expression 
 
Since N-WASP was found localised at the membrane in vitro (Kovacs et al., 2011), it was 

of interest to correlate the expression of N-WASP with E-cadherin expression.  

In the most frequent phenotype observed in ILC (46.4%), E-cadherin was negative and N-

WASP was positive. In comparison, IC-NST was most frequently E-cadherin aberrant with 

N-WASP expression absent (44.8%; Table 3.4; Figure 3.11).  
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Table 3.4: Co-expression analysis of E-cadherin and N-WASP. 

  ILC (n=28) 

  

IC-NST (n=58) 

Immunophenotype 
n (%) Luminal-

like 
Luminal/

HER2 HER2 TN n (%) Luminal-
like 

Luminal/
HER2 HER2 TN 

Double - 8 (28.6) 6 1 1 - 1 (1.7) - - - 1 

E-cad -, N-WASP + 13 (46.4) 13 - - - 0 - - - - 

Double + 0 - - - - 15 (25.9) - 5 9 1 

E-cad +, N-WASP - 1 (3.6) - - 1 - 4 (6.9) - 2 2 - 

E-cad ab, N-WASP - 2 (7.1) 2 - - - 26 (44.8) 2 8 5 11 

E-cad ab, N-WASP + 4 (14.3) 4 - - - 12 (20.7) 1 4 2 5 
-: negative, +: positive, ab: aberrant.
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Figure 3.11: Representative images of the most frequent phenotype observed when 

assessing co-expression of E-cadherin and N-WASP within ILC and IC-NST.  

 

3.3.3.1.2. E-cadherin and N-WASP expression in Mixed Ductal Lobular Carcinomas 
 
A mixed ductal lobular carcinoma with both the ductal and lobular components present on 

the TMA (MDL41) was available for analysis. Interestingly, it was observed that N-WASP 

expression was absent in the ductal component (which was E-cadherin positive), but N-

WASP was expressed in the lobular component (E-cadherin aberrant) (Figure 3.12, top 
panel). This was assessed further in the whole tissue section of this case as well as in two 

additional MDL cases to see if this is a common feature within MDLs and whether it may 

therefore represent a mechanism that drives the switch from ductal to lobular phenotype. 

This is explained and tested in more detail in Chapter 4 where the hypothesis is that the 

lobular component arises from the ductal component due to some alteration in the integrity 

or regulation of the adherens junction.  
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In the first MDL case (MDL41), heterogeneous expression was observed (Figure 3.12, 
bottom panel). There were regions of the both the ductal and lobular components that 

were N-WASP positive, and others which were negative.  

In the second case (MDL4), heterogeneous expression within both ductal and lobular 

components was also detected (data not shown). The third case (MDL6), however, was 

interesting in that the ductal component was for the most part negative (with some areas 

with weak expression) and the lobular component was positive for N-WASP. This case 

contains both pleomorphic lobular carcinoma in situ (PLCIS) and ductal carcinoma in situ 

(DCIS). N-WASP expression was heterogeneous in both the PLCIS and DCIS. Also 

interesting were the areas of columnar cell change (CCC), where N-WASP was highly 

expressed in the apical snouts (Figure 3.13). The staining pattern in the CCC was only 

observed in this one case, therefore this interesting observation will need to be explored in 

more cases. Overall there was no obvious correlation found between N-WASP and E-

cadherin expression.  



 88 

 
Figure 3.12: A mixed ductal lobular carcinoma (MDL41) exhibiting differences in E-cadherin 

expression between the ductal and lobular components. A) TMA cores: N-WASP is negative 

in the ductal component and positive in the lobular component. These tissue cores appear 

different since they were sampled from different areas of the tumour. B) The whole tissue 

section shows the opposite of the TMA cores. The holes in the tissue section are the areas 

that were sampled on the TMA. 
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Figure 3.13: MDL6. This case shows heterogeneous expression of both E-cadherin and N-

WASP in histologically different tumour regions. Two blocks from the specimen were 

stained. In block 1, PLC was positive for N-WASP and both the PLCIS (black arrow) and 

DCIS (red arrow) were positive. Interestingly, areas of columnar cell change (CCC) highly 

expressed N-WASP in the apical snouts of the cells and not the cytoplasm (asterisk and 20x 

inset). This is representative of all CCC within this tumour section. In block 2 however, the 

IDC, PLCIS and DCIS were all negative for N-WASP.  
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3.3.3.1.3. Co-immunofluorescent staining of N-WASP and E-cadherin of cells in 
culture 

 

While N-WASP localises at the cell membrane in an in vitro model of colorectal carcinoma 

(Kovacs et al., 2011), our staining in breast tissue did not replicate this observation. To 

determine if N-WASP co-localised with E-cadherin at the membrane in breast cancer cell 

lines, co-immunofluorescence was performed on MCF7 cells (E-cadherin wild type IC-

NST) and IPH-926 cells (E-cadherin mutated ILC – see Section 2.13). N-WASP was not 

localised to the membrane and was found in the cytoplasm in both cell lines (Figures 3.14 
and 3.15).  

 

 
Figure 3.14: MCF-7 cells stained with N-WASP (green), E-cadherin (red) and DAPI (blue). N-

WASP is localised in the cytoplasm (top right panel) with no membrane co-localisation 

observed between N-WASP and E-cadherin in CDH1 wild-type IC-NST cells (bottom right 

panel). 
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Figure 3.15: IPH-926 cells stained with N-WASP (green), E-cadherin (red) and DAPI (blue). N-

WASP is localised in the cytoplasm (top right panel) with no membrane co-localisation 

observed between N-WASP and E-cadherin in CDH1 mutant ILC cells (bottom right panel).  

 
3.3.3.2. Analysis of ECT2 expression in normal breast and breast cancer 
 

The localisation of ECT2 in the normal breast was investigated and 6 normal breast tissue 

cores were available for analysis. Three of 6 were negative for ECT2, however the 

remaining 3 cases displayed staining in the myoepithelial cell layer of the normal breast 

(Figure 3.16). To determine the localisation of ECT2 in normal breast, dual-

immunofluorescence with antibodies for E-cadherin (epithelial cells, adherens junctions), 

collagen IV (basement membrane), CK14 (myoepithelial cell marker) and CK8/18 (luminal 

epithelial cell marker) was performed on fresh frozen sections. This confirmed that ECT2 is 

unlikely to be located at the adherens junctions but in the cytoplasm of myoepithelial cells 

of the normal breast (Figure 3.17).  
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Figure 3.16: ECT2 expression in normal breast by IHC. ECT2 appears to be expressed in the 

myoepithelial cell layer of the normal breast.  
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Figure 3.17: Co-immunofluorescent staining to determine the localisation of ECT2 in the 

normal breast. A) Co-staining of ECT2 and E-cadherin (epithelial membrane marker). B) Co-

staining of ECT2 and collagen IV (a basement membrane marker). C) Co-staining of ECT2 

and CK14 (a myoepithelial cell marker). D) Co-staining of ECT2 and CK8/18 (a luminal cell 

marker).  

 

The expression of ECT2 in breast tumours was analysed by IHC across 96 IC-NST and 37 

ILC. ECT2 protein was found localised in both the cytoplasm and nucleus. The tumour 

cells were scored as described above (Section 3.3.3). There were only 4 ILC cases with 

3+ staining in the cytoplasm, no IC-NST showed 3+ staining. Cytoplasmic ECT2 was 
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positive in 10% of IC-NST compared with 40% of ILC (p = 0.0010, Figure 3.18 and 3.19; 
Table 3.5).  

 

 
Figure 3.18: ECT2 expression in breast cancer. Representative images of staining intensity 

with IC-NST and ILC. 3+ cytoplasmic staining was not observed. 
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Table 3.5: ECT2 IHC results stratified within the intrinsic subtypes of ILC and IC-NST. Cytoplasmic (Cyto) and nuclear localisation was 

observed.  

IC-NST (n=94); n(%) 

 
Luminal (n=21) Luminal/HER2 (n=23) HER2 (n=24) TN (n=23) ER-or ER-/PR- (n=3) 

Cyto Nuclear Cyto Nuclear Cyto Nuclear Cyto Nuclear Cyto Nuclear 
0 3 (14.3) 3 (14.3) 14 (60.9) 4 (17.4) 11 (45.8) 3 (13) 7 (30.4) 4 (17.4) 0 0 

1+ 15 (71.4) 0 9 (39.1) 1 (4.3) 13 (54.2) 0 9 (39.1) 0 3 (100) 0 
2+ 3 (14.3) 2 (9.5) 0 1 (4.3) 0 2 (8.7) 7 (30.4) 0 0 0 
3+ 0 16 (76.2) 0 17 (73.9) 0 19 (82.6) 0 19 (82.6) 0 3 (100) 

Negative 18 (85.7) 3 (14.3) 23 (100) 5 (21.7) 24 (100) 3 (13) 16 (69.6) 4 (17.4) 3 (100) 0 
Positive 3 (14.3) 18 (85.7) 0 18 (78.3) 0 21 (91.3) 7 (30.4) 19 (82.6) 0 3 (100) 

ILC (n=36); n(%) 

  
Luminal (n=32) Luminal/HER2 (n=1) HER2 (n=1) TN (n=1) ER-/PR- (n=1) 

Cyto Nuclear Cyto Nuclear Cyto Nuclear Cyto Nuclear Cyto Nuclear 
0 3 (9.4) 11 (34.4) 0 0 1 (100) 0 0 1 (100) 0 1 (100) 

1+ 16 (50) 0 1 (100) 0 0 0 1 (100) 0 1 (100) 0 
2+ 9 (28.1) 3 (9.4) 0 0 0 0 0 0 0 0 
3+ 4 (12.5) 18(56.3) 0 1 (50) 0 1 (50) 0 0 0 0 

Negative 19 (59.4) 11 (34.4) 1 (100) 0 1 (100) 0 1 (100) 1 (100) 1 (100) 1 (100) 
Positive 13 (40.6) 21 (65.6) 0 1 (50) 0 1 (50) 0 0 0 0 
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Figure 3.19: Cytoplasmic localisation of ECT2 is more frequently observed in ILC compared 

with IC-NST. There were no cases with 3+ staining intensity. Chi-square test, p = 0.0010. 

 

Nuclear expression of ECT2 was higher in IC-NST (85%) than ILC (62%) (p = 0.0173, 

Fisher’s exact test; Figure 3.20). As nuclear expression is an indicator of cell proliferation 

(as described in the introduction Section 3.1.2 “Model 2: The centralspindlin complex 
and ECT2”), the higher nuclear expression in IC-NST is expected as the TMAs used tend 

to be biased towards higher-grade, proliferative tumours, and ILC are a much slower 

growing tumour type. This is reflected at the mRNA level, where ECT2 mRNA is lower in 

the lobular and luminal A subtypes compared to the other breast cancer subtypes 

(Section 3.3.1). 

 

 
Figure 3.20: ECT2 nuclear expression is more frequent in IC-NST compared to ILC. Fisher's 

exact test p = 0.0173. 
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When stratified into IHC surrogate intrinsic subtypes, the luminal-like subtype was the 

most prevalent in ILC, and was frequently negative for cytoplasmic ECT2 (62.5%) and 

positive for nuclear ECT2 (65.6%). The same trend was observed across all IC-NST 

intrinsic subtypes (Table 3.5). 

 
When considering tumour grade within each histological type, 61.5% of IC-NST were 

grade 3 (61.5%), whereas 62.2% of ILC were grade 2 (62.2%). Within IC-NST, 

cytoplasmic staining of ECT2 was most frequently negative (grade 1, 100%; grade 2, 

92.6%; grade 3, 88.1%; p = 0.0027) and nuclear ECT2 was most frequently positive 

(grade 1, 60%; grade 2, 74.1%; grade 3, 89.8%; p = 0.0650). Within ILC, cytoplasmic 

staining of ECT2 was most frequently negative (grade 1: 67%, grade 2: 70%), although 5/9 

(55%) grade 3 ILC displayed positive cytoplasmic staining (p = 0.4959, not significant). 

Within all grades across both IC-NST and ILC the predominant phenotype was nuclear 

positivity with cytoplasmic negativity (p = 0.0002; Table 3.6).  

 

There were 13 cases of ILC with matched lymph node metastasis. ECT2 expression 

(cytoplasmic or nuclear) did not change significantly during progression to the lymph 

nodes in these cases (data not shown). There was no matched IC-NST lymph node 

metastases sampled across the TMAs used in this study.   
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Table 3.6: Correlation of ECT2 expression with tumour grade. Cytoplasmic expression of 

ECT2 was most frequently observed in high-grade ILC. 

IC-NST; n (%) Grade 1 (n=5) Grade 2 (n=27) Grade 3 (n=59) 
 Immunophenotype Cyto Nuclear Cyto Nuclear Cyto Nuclear 

Negative 5 (100) 2 (40) 25 (93) 7 (26) 52 (88) 6 (10) 
Positive 0 3 (60) 2 (7) 20 (74) 7 (12) 53 (90) 

Double pos - 0 - 0 - 5 (8) 
Double neg - 0 - 5 (19) - 3 (5) 

Nuclear pos/Cyto neg - 6 (60) - 20 (74) - 49 (83) 
Cyto pos/Nuclear neg - 2 (40) - 2 (7) - 2 (3) 

ILC; n (%) Grade 1 (n=3) Grade 2 (n=23) Grade 3 (n=9) 
  Cyto Nuclear Cyto Nuclear Cyto Nuclear 

Negative 2 (67) 1 (33) 16 (70) 9 (39) 4 (44) 2 (22) 
Positive 1 (33) 2 (67) 8 (30) 14 (61) 5 (56) 7 (78) 

Double pos - 0 - 3 (13) - 5 (56) 
Double neg - 0 - 4 (17) - 2 (22) 

Nuclear pos/Cyto neg - 2 (67) - 11 (48) - 1 (11) 
Cyto pos/Nuclear neg - 1 (33) - 5 (22) - 1 (11) 

 

3.3.3.2.1. E-cadherin and ECT2 co-expression analysis 
 
The correlation of ECT2 expression with E-cadherin localisation was assessed. Only 

cytoplasmic ECT2 positivity was considered in this analysis. The most frequent phenotype 

observed in ILC was the lack of expression of both E-cadherin and ECT2 (in 50% of 

cases). In comparison, IC-NST was most frequently E-cadherin aberrant while ECT2 

expression was absent (53.3%) (Table 3.7; Figure 3.21) 
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Table 3.7: E-cadherin and ECT2 co-expression analysis. ECT2 and E-cadherin were most frequently negative in ILC. In IC-NST, ECT2 was 

negative, with aberrant E-cadherin expression. 

  ILC (n=32) 

  

IC-NST (n=92) 

  n (%) Luminal-
like 

Luminal/
HER2 HER2 n (%) Luminal-

like 
Luminal/

HER2 HER2 TN ER-
/PR- n/a 

Double - 16 (50) 15 1 - 2 (2.2) - - 1 1 - - 
E-cad -, ECT2 + 12 (37.5) 12 - - 0 - - - - - - 
Double + 0 - - - 4 (4.3) 3 - - 1 - - 
E-cad +, ECT2 - 2 (6.3) 1 - 1 30 (32.6) 10 7 10 1 2 - 
E-cad ab, ECT2 - 2 (6.3) 2 - - 49 (53.3) 7 15 11 13 1 2 
E-cad ab, ECT2 + 0 - - - 0 - - - - - - 

-: negative, +: positive, ab: aberrant
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Figure 3.21: Representative images of the most frequent phenotype observed when 

assessing co-expression of E-cadherin and ECT2 within ILC and IC-NST. ab = aberrant. 

 
3.3.3.3. RacGAP1 expression in normal breast and breast cancer  
 
To investigate the localisation of RacGAP1 in the normal breast, there were 3 normal 

breast tissue cores available for analysis. Of the 3 cores, 1 was negative and 2 cores 

displayed strong cytoplasmic localisation in over 80% of the normal breast cells (Figure 
3.22). 

 

 

Figure 3.22: RacGAP1 expression in normal breast. Strong 

staining was observed in the cytoplasm of both luminal and 

myoepithelial cells. 
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IHC analysis was performed on 87 IC-NST and 39 ILC to assess the expression of 

RacGAP1 in breast cancer tissues. RacGAP1 was only expressed in the cytoplasm of the 

tumour cells. (Table 3.8) and each histological type was further stratified into grade and 

intrinsic subtype (Section 3.3.3).   

 
Overall, 90% of IC-NST and 80% of ILC were positive for RacGAP1. However, when only 

considering 2+ and 3+ as positive (since 1+ staining was quite weak), IC-NST was positive 

for RacGAP1 in 60% of cases and 49% of ILC cases (p = 0.1706; Table 3.8; Figure 3.23 
and 3.24). The differences observed however where not statistically significant. 
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Figure 3.23: RacGAP1 expression in breast cancer. Representative images of staining 

intensity within IC-NST and ILC. 
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Table 3.8: RacGAP1 expression in breast cancer by IHC. 

IC-NST 
(n=82) 

Luminal-like 
(n=20) 

Luminal/HER2 
(n=18) 

HER2 
(n=21) TN (n=23) Total 

0 4 (20) 1 (5.6) 0 3 (13) 8 (9.8) 
1+ 7 (35) 5 (28) 5 (5.6) 7 (30) 24 (29.3 
2+ 8 (40) 5 (28) 12 (57) 11 (47.8) 36 (43.9) 
3+ 1 (5) 7 (39) 4 (19) 2 (8.7) 14 (17.1) 

Negative 11 (55) 6 (33.3) 5 (23.8) 10 (43.5) 32 (39) 
Positive 9 (45) 12 (66.7) 16 (76.2) 13 (56.5) 50 (61) 

ILC (n=39) Luminal-like 
(n=36) 

Luminal/HER2 
(n=1) 

HER2 
(n=2) TN (n=0) Total 

0 8 (22) 0 0 - 8 (20.5) 
1+ 11 (31) 0 1 (50) - 12 (30.8) 
2+ 12 (33) 0 1 (50) - 13 (33.3) 
3+ 5 (14) 1 (100) 0 - 6 (15.4) 

Negative 19 (52.8) 0 1 (50) - 20 (51.3) 
Positive 17 (47.2) 1 (100) 1 (50) - 19 (48.7) 

 

 
Figure 3.24: There was no statistically significant difference of RacGAP1 expression 

between ILC and IC-NST. Chi-square analysis p = n.s. 

 

Within the luminal-like intrinsic subtype of ILC, RacGAP1 expression was negative in 

52.8% and positive in 47.2% (p = 0.3466; Table 3.8). Among the IC-NST tumours, the 

HER2 expressing tumours were more frequently RacGAP1 positive (76.2% HER2 and 

66.7% in Luminal/HER2; not statistically significant). Just over half of the triple negative 

tumours were RacGAP1 positive, and the luminal-like IC-NST were more frequently 

negative for RacGAP1. However none of the frequencies reached statistical significance.  
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RacGAP1 was more frequently positive in low-grade ILC tumours (grade 1, 2/3 cases; and 

grade 2, 14/23), however RacGAP1 was negative in 75% (9/12) of grade 3 ILC (p = 

0.0743; Table 3.9). Conversely, within IC-NST tumours, RacGAP1 was more frequently 

negative in grade 1 tumours, and positive in grade 2 and 3 tumours, however the numbers 

of low-grade tumours were too low to make a comparison (p = 0.0964; Table 3.9). In 

summary, an inverse correlation was found between IC-NST and ILC where RacGAP1 

was most frequently positive in high-grade IC-NST; in contrast, RacGAP1 was most 

frequently negative in high-grade ILC. 

 
Table 3.9: RacGAP1 analysis within tumour grade. 

  
ILC; n (%) IC-NST; n (%) 
Grade 1 Grade 2 Grade 3 Total Grade 1 Grade 2 Grade 3 Total 

Neg 0 4 (17) 4 (33) 8 (21) 2 (50) 2 (8) 4 (7) 8 (10) 
1+ 1 (33) 5 (22) 5 (42) 11 (29) 1(25) 10 (38) 14 (26) 25 (30) 
2+ 0 10 (43) 3 (25) 13 (34) 1 (25) 11 (42) 26 (48) 38 (45) 
3+ 2 (67) 4 (17) 0 6 (16) 0 3 (12) 12 (22) 15 (18) 

Total 3 23 12 38 4 26 54 84 
 
There were 15 informative cases of matched primary tumour (ILC) with metastatic lymph 

node tumours . When stained for RacGAP1, a single case showed staining discordance 

between primary and the LN metastasis: the primary tumour was negative for RacGAP1, 

while the lymph node metastasis had 3+ expression in 1-10% of cells. The remaining 

cases, however, did not display any significant changes in RacGAP1 during metastatic 

progression, and it is therefore unlikely that RacGAP1 plays a role in the biology of lymph 

node metastasis in ILC.  

 

3.3.3.3.1. E-cadherin and RacGAP1 co-expression analysis 
 
The co-expression of E-cadherin and RacGAP1 was analysed. The most frequent 

phenotype observed in ILC was dual E-cadherin and RacGAP1 negativity (41.9% of 

cases). In comparison, IC-NST was most frequently E-cadherin aberrant with RacGAP1 

expression was positive (31%); equally frequent was positive expression of both E-

cadherin and RacGAP1 (31%) (Table 3.10; Figure 3.25) 
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Table 3.10: E-cadherin and RacGAP1 co-expression analysis.. 

  ILC (n=31) 

  

IC-NST (n=87) 

Immunophenotype 
n (%) Luminal-

like 
Luminal/

HER2 HER2 n (%) Luminal-
like 

Luminal/H
ER2 HER2 TN ER-

/PR- n/a 

Double - 13 (41.9) 12 1 - 0 - - - - - - 
E-cad -, RacGAP1 + 12 (38.7) 11 1 - 1 (1.1) - - 1 - - - 
Double + 1 (3.2) - - 1 27 (31) 6 8 10 1 2 - 
E-cad +, RacGAP1 - 1 (3.2) 1 - - 8 (9.2) 6 - 1 1 - - 
E-cad ab, RacGAP1 - 0 - - - 24 (27.6) 5 5 3 9 - 2 
E-cad ab, RacGAP1 + 4 (12.9) 4 - - 27 (31) 3 6 6 11 1 - 

-: negative, +: positive, ab: aberrant.  
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Figure 3.25: Representative images of the most frequent phenotype observed when 

assessing expression of E-cadherin and RacGAP1 within ILC and IC-NST samples. 

 

3.3.3.4. E-cadherin co-expression with ECT2 and RacGAP1 (the centralspindlin 
complex)  

 

As describe earlier in Section 3.1.2 (Model 2: The centralspindlin complex and ECT2), 

both Racgap1 and ECT2 are necessary for E-cadherin integrity. Therefore the expression 

of both ECT2 and RacGAP1 was correlated with the expression of E-cadherin. The most 

frequent phenotype observed in ILC was E-cadherin negativity, while ECT2 was negative 

and RacGAP1 was positive (26.7%). This was followed by the lack of expression of all 

three proteins (23.3%) (Table 3.11; Appendix 3.5). In comparison, IC-NST displayed E-

cadherin positivity alongside ECT2 negativity and RacGAP1 positivity (26.5%), or E-

cadherin aberrant expression and negative for both ECT2 and RacGAP1 (26.5%) (Table 
3.11; Appendix 3.6) 
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Table 3.11: Co-expression analysis of E-cadherin with ECT2 and RacGAP1. ILC are frequently negative for all three molecules, or only 

positive for RacGAP1. IC-NST are frequently E-cadherin positive or aberrant with loss of both ECT2 and RacGAP1. 

Immunophenotype  

ILC (n=30) 

  

IC-NST (n=83) 

n (%) Luminal-
like 

Luminal/
HER2 HER2 TN n (%) Luminal-

like 
Luminal/

HER2 HER2 TN ER-
/PR- n/a 

Triple - 7 (23.3) 7 - - - 1 (1.2) - - - 1 - - 

Triple + 0 - - - - 3 (3.6) 2 - - 1 - - 

E-cad -, ECT2 +, RacGAP1 + 4 913.3) 4 - - - 0 - - - - - - 

E-cad -, ECT2 -, RacGAP1 + 8 (26.7) 6 1 - 1 0 - - - - - - 

E-cad -, ECT2 +, RacGAP1 - 5 (16.7) 5 - - - 0 - - - - - - 

E-cad +, ECT2 -, RacGAP1 + 1 (3.3) - - 1 - 22 (26.5) 5 7 8 - 2 - 

E-cad +, ECT2 +, RacGAP1 - 0 - - - - 1 (1.2) 1 - - - - - 

E-cad ab, ECT2 -, RacGAP1 - 1 (3.3) 1 - - - 22 (26.5) 5 5 6 4 - 2 

E-cad ab, ECT2 -, RacGAP1 + 3 (10) 3 - - - 20 (24.1) 2 5 5 7 1 - 

E-cad ab, ECT2 +, RacGAP1 - 0 - - - - 3 (3.6) - - - 3 - - 

E-cad ab, ECT2 +, RacGAP1 + 1 (3.3) 1 - - - 5 (6) 1 - 1 3 - - 

-: negative, +: positive, ab: aberrant.  
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3.4. Discussion 

 

3.4.1. E-cadherin and the actin cytoskeleton regulation in breast cancer  

 

Cell-cell adhesion mediated by E-cadherin is essential for epithelial cell survival. However, 

the loss of adhesion alongside anoikis resistance is a hallmark of a tumour cell, allowing it 

to survive. This is most evident in invasive lobular carcinoma cells that grow in single cell 

files and infiltrate the breast parenchyma and eventually distant organs. It is of vital 

importance to understand the molecular processes underlying tumour cell survival 

independent of cell adhesion in order to improve ways to target and kill tumour cells. 

Although the importance of the actin cytoskeleton and its regulation of E-cadherin 

adhesion has been researched extensively in cell culture systems, there is little research 

translating these findings into healthy or diseased human tissue and defining whether the 

molecular mechanisms found in vitro are corroborated in vivo. 

 

3.4.2.  Correlation of protein expression with gene expression data 

 

It was difficult to correlate gene expression with protein data in this study due to the small 

number of samples to perform assess protein expression and the use of gene expression 

data from another cohort. The distribution of N-WASP gene expression in breast cancer 

was variable, although the median levels of expression were highest for luminal A and B 

intrinsic subtypes and the lobular and ER positive IC-NST histological subtypes compared 

to the ER negative breast cancer subtypes (Figure 3.6). Although in a small number of 

cases, this was not completely reflected at the protein level, with higher N-WASP protein 

expression found in ILC and less expression in the luminal (ER positive, HER2 negative) 

IC-NST (Table 3.2). This did not reach statistical significance and therefore needs to be 

investigated in a larger cohort with matching gene expression and protein data from the 

same patient samples. 

 

Median ECT2 mRNA expression levels were found to highest in the ER- HER2+ and triple 

negative IC-NST histological subtypes (Figure 3.6). This correlates with the high nuclear 

protein expression of ECT2 observed in the HER2+ and triple negative IC-NST (Table 

3.5). ECT2 mRNA was found to be down-regulated in both the lobular and ER+ HER2- IC-

NST histological subtypes, and the luminal A and normal-like intrinsic subtypes. However, 

ECT2 was detected at the protein level in our ILC cohort, both the nucleus (65% of ILC 
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cases) and cytoplasm (40% of ILC cases). We were therefore unable to correlate gene 

expression with protein expression of ECT2 with the current ILC cohort.  

 

The protein expression data for RacGAP1 somewhat correlates with the gene expression 

data presented in Figure 3.6, although it did not reach statistical significance. RacGAP1 

mRNA was found to be down-regulated in both the lobular and ER+ HER2- (luminal A- 

like) subtypes and this is validated with the luminal subtypes in both ILC and IC-NST 

frequently lacking RacGAP1 expression compared with the other intrinsic types (Table 

3.8). RacGAP1 mRNA was found to be up-regulated in the triple negative, ER+ HER2+ IC-

NST histological subtypes and luminal B intrinsic subtype. We did find that the HER2 

expressing tumours were frequently positive for RacGAP1. There were only 23 cases of 

triple negative IC-NST available for assessment, and we found 56.5% to be positive for 

RacGAP1. 

 

3.4.3. Membrane localisation of actin cytoskeleton regulators was not observed by 

IHC in clinical samples – limitations of translating in vitro findings in vivo.  

 

The most striking observation in this study was the lack of concordance between the 

observed localisation of the actin cytoskeleton molecules in vitro (Kovacs et al., 2011, 

Ratheesh et al., 2012) and in clinical samples. There are a number of explanations that 

could account for this. Firstly, cells in a two-dimensional culture system behave very 

differently from cells in a three-dimensional human tissue structure. A cell culture system 

does not recapitulate the complicated nature of the human body such as the many 

different cell types present within an organ as well as the influence of the extracellular 

matrix, haematological and lymphovasculature systems, and the vast cocktail of molecules 

(such as hormones, chemokines etc.) that would be in supply at any given time. Cells 

grown in a two-dimensional culture adhere to each other in a monolayer, as well as 

adhering to a stiff plastic flask in a single layer of cells, forcing them into apical-basal 

polarity. This affects many signalling pathways such as proliferation, apoptosis and 

differentiation. The lack of integrin-mediated adhesion to the extracellular matrix also 

disrupts many signalling pathways (reviewed by (Baker and Chen, 2012)). Adhesions are 

quite dynamic and hard to control and manipulate in vitro and therefore the molecules that 

are recruited to the adhesion junctions in a culture system may not always be observed in 

a tissue section. There are also many variables within any cell culture system that can 
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affect data output, such as the density of cells within a flask and the composition of cell 

culture media, which has been shown to impact the genotype of the cell (Kim et al., 2015).  

 

Secondly, the lack of observed membrane localisation may be due to differences between 

the uses of immunohistochemistry (IHC) versus immunofluorescence (IF).  

IHC was applied (using the same antibodies used by the Yap Laboratory) as it allows 

access to many tissue samples, especially in a high throughput manner through the use of 

tissue microarrays. As it is has an indirect antibody detection method (the use of a 

secondary antibody) it amplifies the signal, making IHC very specific and sensitive. 

Another benefit of IHC is the ability to observe the staining in context of tissue morphology. 

This is more difficult using IF and a confocal microscope where a double stain with a 

protein of known localisation is required. A drawback of IHC is the difficulty of co-staining 

with more than one protein, whereas IF can use multiple fluorophores to detect multiple 

proteins. IF staining in breast tissue sections can also be difficult due to high 

autofluorescence (exacerbated by formalin fixation), although there are several methods 

reported to reduce autofluorescence, such as using Sudan Black, ammonia-ethanol and 

sodium borohydride (Baschong et al., 2001). The use of frozen tissue also improves the 

result; however high-throughput screening of fresh frozen tumours is not possible in the 

same was as an FFPE TMA analysis. Antibodies are sensitive to the type of fixation 

method used on FF sections (methanol vs. paraformaldehyde), and the fixative can also 

affect the levels of autofluorescence.  

 

ECT2 co-immunofluorescence was performed successfully (after optimising with all 

fixation methods and without the need for chemical pre-treatment) on frozen normal 

human breast sections with little autofluorescence, and cytoplasmic localisation, rather 

than membrane, was observed (Section 3.3.3.2). Co-immunofluorescence was performed 

on cells in a monolayer culture to see if the membrane localisation of N-WASP could be 

reproduced (Section 3.3.3.1.3), however, only cytoplasmic localisation of N-WASP in both 

E-cadherin wild type (MCF-7) and E-cadherin mutated (IPH-926) cells lines was detected. 

N-WASP was found at the membrane of Caco-2 colorectal carcinoma cell line (Kovacs et 

al., 2011), however is important to note that the Caco-2 cell line is notoriously 

heterogeneous. Under different culture conditions, these cells can differentiate into cells 

resembling enterocytes of the small intestine, and therefore the culture conditions have a 

great influence on the cells’ phenotypic traits (Sambuy et al., 2005). It is likely that 

differences in culturing conditions (the use of cytoskeleton stabilisation buffer) and 
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microscopy methodology are responsible for the differing results. Particularly, a spinning 

disk confocal microscope was used that is capable of scanning at much faster speeds to 

capture events that occur on the millisecond timescale in live cells (Kovacs et al., 2011). 

Due to restricted time and trouble optimising the antibodies, N-WASP was not assessed in 

tissue sections and the RacGAP1 antibody did not work for co-IF. 

 

Overall, the use of both IHC and IF suggest that in the normal breast and breast cancer 

tissue these molecules are not localised at the membrane. Since human tissue samples 

are a snapshot in time, it is practically impossible to recapitulate in vitro models of such 

dynamic processes.  

 
3.4.4. N-WASP may play a role in aggressive ILC 
 

N-WASP has been found to be an essential component of invadopodia and a promoter of 

tumour invasion (Tang et al., 2013). In a rat model of mammary adenocarcinoma, it was 

found that the N-WASP containing invadopodia are essential for invasion, intravasation 

and metastasis to the lung (Gligorijevic et al., 2012). It was elegantly demonstrated that N-

WASP promotes trafficking of membrane type 1-matrix metalloproteinase 1 (MT1-MMP) to 

the plasma membrane to promote extracellular matrix remodelling using human breast 

cancer cell lines in three-dimensional invasion assays (Yu et al., 2012). Therefore, N-

WASP could potentially be a driver for greater invasive capacity in vitro, yet was not 

observed in our series of cases with metastases to the lymph nodes (Section 3.3.3.1). 

 

The biology of N-WASP has been investigated in both breast and colorectal cancer, and 

was found to be down-regulated at both the mRNA and protein levels in tumour cells, 

compared to normal breast and colon epithelium (Martin TA et al., 2012, Martin et al., 

2008). Patients whose tumours expressed low N-WASP had a much poorer overall 

survival and disease free survival. In the breast cancer cell line MDA-MB-231 and 

colorectal cancer cell line HRT18, it was found that the over-expression of N-WASP 

reduced the motility and invasive ability of the cells (Martin TA et al., 2012, Martin et al., 

2008). It was hypothesised that N-WASP may be a putative tumour suppressor in breast 

cancer (Martin et al., 2008). This is inconsistent with the genomic data derived by the 

TCGA (Figure 3.7), where the most frequent alteration in N-WASP was gene amplification 

(11/962 samples) and mRNA down-regulation was not detected. It is therefore unlikely that 

N-WASP is a tumour suppressor. In order to confirm if N-WASP is indeed a tumour 
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suppressor, a larger cohort of breast cancer samples with matched normal breast needs to 

be assessed for both mRNA and protein expression. Functional characterisation of N-

WASP in breast cancer cell line models would also help confirm this. 

 

While our cohort does not have follow up data, we can generalise that high-grade tumours 

have a poorer overall survival than low-grade tumours. Our data shows that N-WASP is 

more likely to be highly expressed in high-grade ILC, and conversely, low-grade IC-NST. 

This analysis suggests that N-WASP expression may also play different roles in different 

histological types. The few informative cases of matched normal breast and invasive 

tumour were unable to confirm the results of (Martin et al., 2008). If anything, our results 

may be contradictory or merely demonstrate heterogeneity, whereby two cases had 

increased expression of N-WASP from normal breast to in situ, while 2 cases had no 

change in N-WASP expression. If N-WASP plays a role in oncogenic extrusion in a human 

tissue sample, we could hypothesise that N-WASP expression would increase during 

progression from normal to in situ carcinoma to invasive carcinoma. However, an increase 

in N-WASP expression in invasive lesions compared with its pre-invasive counterpart was 

only observed in 4 IC-NST cases, the remaining 21 cases were heterogeneous across the 

lesions. However, Yu et al, found N-WASP expression to increase in IC-NST compared to 

matching DCIS and normal breast (Yu et al., 2012), which also contradicts the findings of 

Martin et al. The differing results between these studies and ours may be due to different 

antibodies being used. N-WASP expression is most likely to be extremely dynamic and 

context dependent. It is therefore not surprising that given patient tumours are removed at 

various time points that cannot be controlled, we see heterogeneous protein expression 

within a group of tumours that are inherently heterogeneous. 

 

As observed in Section 3.3.3.1 N-WASP was more frequently expressed in ILC than IC-

NST suggesting that maybe it is important for the invasive phenotype observed in ILC. The 

mechanism of which is still unknown, yet is unlikely to be driven by gene mutation or 

amplification as seen by the lack of genomic alterations in this gene (Section 3.3.2). 
 

If N-WASP expression is a feature of ILC, then we could hypothesis that N-WASP may be 

exclusively expressed in the lobular component of a mixed ductal lobular carcinoma. 

Across three cases of mixed ductal lobular carcinomas, heterogeneous expression of N-

WASP was observed between invasive and pre-invasive lesions within the same specimen 
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and therefore is unlikely to drive the change in phenotype. It would be interesting however 

to investigate N-WASP expression in a larger cohort of MDL cases.  

 

N-WASP is frequently mutated in pancreatic cancer (20%), and amplifications are often 

observed in melanoma and ovarian cancer (Appendix Figure 3.2) suggesting a different 

role for N-WASP in different cancer types. A chemical inhibitor against N-WASP has been 

established (Peterson et al., 2001) and if N-WASP proves to be important in driving 

tumourigenesis, this may pave the way towards treatments that may prevent further 

tumour cell invasion.  

 

3.4.5. Could ECT2 be a potential biomarker for poor prognosis in ILC? 
 

The role for ECT2 in cancer is emerging, particularly its oncogenic role in lung carcinoma. 

In normal lung epithelium, ECT2 is localised in the nucleus; however, in lung carcinomas 

ECT2 is found in the cytoplasm and the nucleus, with around 84% of NSCLC 

overexpressing ECT2 in the cytoplasm (Justilien and Fields, 2009). ECT2 is highly 

expressed at both the mRNA and protein levels in a variety of human tumours including 

brain (Salhia et al., 2008, Sano et al., 2006), lung (Hirata et al., 2009, Justilien and Fields, 

2009), bladder (Saito et al., 2004), oesophageal (Hirata et al., 2009), pancreatic (Zhang et 

al., 2008) and ovarian tumours (Saito et al., 2004). Meta-analysis of TCGA data supports 

this, demonstrating multiple tumour types have genomic alterations of the ECT2 gene, 

particularly gene amplifications, which are most common in lung cancer (see Appendix 
Figure 3.3). 

 

Overexpression of ECT2 mRNA and protein is associated with a poor prognosis in NSCLC 

(Hirata et al., 2009), glioblastoma (Salhia et al., 2008) (Sano et al., 2006) and oesophageal 

squamous cell carcinoma (Hirata et al., 2009). High ECT2 expression also correlated 

positively with tumour size and lymph node metastasis in oesophageal squamous cell 

carcinoma. High mRNA expression of ECT2 has been found to correlate with high 

histological grade and poor overall survival in patients with primary gliomas. (Cheng Yung-

Sheng et al., 2014). To date, ECT2 localisation in the normal breast has not been 

assessed and this information is vital to determine whether a protein is truly mislocalised 

during tumour growth. ECT2 was found in the cytoplasm of the myoepithelial cell layer of 

the ducts (Section 3.3.3.2). During normal mammary gland function the myoepithelial cells 

are involved in branching morphogenesis, maintaining luminal cell polarity and tumour 
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suppression by acting as a barrier to the stroma (Gudjonsson 2009). Breast cancers are 

believed to arise from the luminal cells and perhaps changes in luminal cell signalling at 

the beginning of tumourigenesis switches off ECT2 in the myoepithelial cells that induces 

their loss of polarity. In turn, ECT2 is turned on in the luminal cells, and this may provide 

the cells the ability to invade past the myoepithelial layer. ECT2 will need to be assessed 

in more cases with matched normal breast to confirm this hypothesis. It is also 

hypothesised that basal-like tumours may arise from progenitor cells present early in 

breast cell differentiation (Shehata et al., 2012). Basal-like tumours express proteins that 

are normally solely expressed in normal myoepithelial cells and these tumours have a poor 

prognosis (Badve et al., 2011). It would also be interesting, therefore, to assess the co-

expression of ECT2 with IHC surrogate markers of the basal-like phenotype, such as 

EGFR, CK5/6 and CK14. 

ECT2 was found to localise in both the nucleus and cytoplasm of breast tumour cells (refer 

to section 3.3.3.2). The role of ECT2 during mitosis is well characterised (Tatsumoto et 

al., 1999, Matthews et al., 2012), therefore the nuclear expression may be considered a 

marker of proliferating cells, analogous to Ki67. Nuclear expression also was more 

frequently observed in high-grade tumours, substantiating a role in proliferation. 

Cytoplasmic ECT2 was observed more frequently in ILC than IC-NST (35% v.s. 10%) and 

therefore it is important to assess the expression of ECT2 in a large cohort with follow up 

data, to assess if ECT2 expression is an indicator of poor prognosis, similar to NSCLC 

patients. In the analysis of ECT2 with E-cadherin expression, ECT2 is frequently lost in 

cases with absent or aberrant E-cadherin (50% of E-cadherin negative ILC and 53.3% of 

E-cadherin aberrant IC-NST), suggesting that ECT2 signalling may be play a role in 

maintaining E-cadherin integrity in some ILC and IC-NST. The annotation of CDH1 

mutation and methylation status is vital in understanding whether the loss of cell adhesion 

is due to changes in CDH1 itself or if changes in actin cytoskeleton regulation play a role in 

tumours without an E-cadherin mutation.  

 

3.4.6. RacGAP1 may be important in HER2 expressing breast tumours 
 

RacGAP1 functions by negatively regulating Rho signalling. Its GTPase activity binds to 

activated RhoGTP and hydrolyses it to RhoGDP, and hence inhibiting or down regulating 

its function. RacGAP1 is also essential for cell division (Zhao and Fang, 2005) and 

embryogenesis (O'Brien et al., 2010). The role of RacGAP1 in breast cancer has been 

recently explored in a large series of patient samples with high-risk early breast cancer 
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(Pliarchopoulou et al., 2013). The expression of RacGAP1 mRNA from 314 samples found 

an association between high RacGAP1 expression and high-grade and strongly Ki67 

expressing tumours, and patients had poor overall survival and poor disease free survival 

compared with patients with low RacGAP1 expression. Similar results were also observed 

in a cohort of meningiomas (Ke et al., 2013), hepatocellular carcinoma (Wang et al., 

2011b) and epithelial ovarian cancer (Lu et al., 2004). RacGAP1 is expressed in the 

nucleus of gastric carcinoma cells in the intestinal histological type, more so than the 

diffuse gastric type, and was found to be associated with poor outcome (Saigusa et al., 

2015).  

 

RacGAP1 was more frequently expressed in IC-NST compared with ILC and RacGAP1 

expression was higher in tumours that expressed HER2 (see Section 3.3.3.3). The breast 

cancer study by (Pliarchopoulou et al., 2013) did not find an association with HER2 

expressing tumours, however they did not look at protein expression within these samples, 

and the study didn’t stratify histological or molecular subtypes. Equally, our results may be 

biased with the use of specialised TMAs as opposed to an unselected cohort.  

 

Our meta-analysis did not find an overwhelming difference in gene expression between 

the breast cancer subtypes, yet protein expression was different. Other studies have found 

that RacGAP1 expression is the same across all differentiated and undifferentiated 

embryonic stem cells, but that RacGAP1 protein is 2-fold higher in the undifferentiated 

cells (O'Brien et al., 2010), supporting the idea that the translation of the mRNA transcript 

to protein is dynamically regulated. This was also observed in a matched normal and 

tumour tissue from the same patient where the protein expression of RhoA, Rac1, Cdc42 

was higher in tumour compared to normal, yet no changes in mRNA expression and no 

gene mutations were found between the tumour and normal tissue (Fritz et al., 2002). 

Together, this supports that there may be changes in post-transcriptional regulation that 

affect protein expression in different breast cancer subtypes. miRNA expression analysis 

would be an interesting avenue to explore in addressing these questions. There are 29 

reported splice variants of RacGAP1, all of which have potentially different protein 

functions. Therefore, the antibody towards RacGAP1 may bind to many different isoforms 

and this may account for differing results in the literature.  

 

Across other cancer types, RacGAP1 alterations are most frequent in adenoid cystic 

carcinoma of the salivary gland and it is deleted in 15% of cases (Appendix 3.4). 
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RacGAP1 is located on 12q13, a region recurrently lost in this tumour type, and therefore 

RacGAP1 loss may be an incidental consequence of chromosome loss (Ho et al., 2013).  

There are few alterations in other cancer types, suggesting that there is little evidence to 

support that genomic alteration of RacGAP1 is broadly important in tumourigenesis. 

 

Overall, investigation of RacGAP1 in a cohort of breast cancer patients with long-term 

follow up cohort to validate findings of (Pliarchopoulou et al., 2013) is warranted. If 

RacGAP1 is involved in HER2 tumour biology, or more generally high-grade breast cancer 

and overall poor outcome, it would also be valid to assess RacGAP1 expression in a 

cohort of metastatic tumours to investigate if it is involved in metastasis to distant organs. 

 

3.5. Conclusions 
 

The loss of the catenin-binding complex that links the intracellular domain of E-cadherin to 

the actin cytoskeleton questions the role of actin cytoskeleton regulation in ILC. The role of 

Rho GTPases involved in actin cytoskeleton regulation in tumour development and 

progression has been demonstrated repeatedly in in vitro systems (Price and Collard, 

2001); (Schmitz et al., 2000), however these data have not recapitulated the scenario in 

human tissue.  As demonstrated in this chapter, it is challenging to validate in vitro findings 

in vivo; especially since human breast cancers are extremely heterogeneous in nature and 

are sampled at one particular point in time. 

 

Genes encoding for these proteins are rarely altered at the genomic level, although they 

may still be important in a few breast cancer cases. The slight changes in gene expression 

observed may be the result of alterations in other signalling pathways. It is vital, therefore, 

to validate protein expression since the transcriptome does not reliably predict the 

proteome (Hack, 2004) and it is also critical to validate in vitro findings in vivo to assess if 

the predicted mechanisms found hold true for real life disease processes.  

 

Considering the two models presented in the introduction (Section 3.1.2; N-WASP; The 

Centralspindlin complex and Ect2), it appears that they do not translate directly to human 

breast tissue samples. The molecules under investigation were not found in the membrane 

and thus their functions may be context dependent. In ILC, E-cadherin was frequently lost 

alongside cytoplasmic N-WASP expression. This may mean that if N-WASP is important in 

maintaining E-cadherin at the adherens junction in vivo then the loss of N-WASP from the 
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membrane and relocalisation to the cytoplasm may be important in some ILC, or may be a 

consequence of the alteration of other signalling pathways. As for the Centralspindlin 

complex model, ILC are frequently negative for all 3 molecules (E-cadherin, ECT2 and 

RacGap1), suggesting that the loss or relocalisation of these molecules may also be 

important in some ILC. In IC-NST however, the most frequent phenotype was E-cadherin 

positive with loss of both ECT2 and RacGAP1. These molecules may therefore not play a 

role in maintaining E-cadherin integrity in these tumours and another mechanism is likely 

to be involved. 

 
Since we will always face the challenges that working with human samples brings, it would 

be best to study these pathways in three-dimensional culture systems and mouse models 

of breast cancer that are more representative of the human scenario.  

 

Another point of future investigation is the analysis of these molecules across more normal 

breast epithelium samples. This is practically impossible to do in the cell culture system, as 

truly normal cells do not grow well in culture, and again, the challenges of interpretation of 

in vitro data are reintroduced. Co-immunofluorescence in normal breast tissue sections is 

a good start to identifying the localisation of these molecules in normal breast. Also, 

integration of mRNA and protein data is needed and the resulting data to be extended into 

matched samples of normal and tumour tissue. 
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4. Investigating the molecular evolution of mixed ductal lobular carcinomas 
 

4.1.  Mixed ductal lobular carcinomas are a distinct clinical entity 
 

As described in Section 1.6, invasive breast cancers exhibiting both ductal and lobular 

morphological features are classified as mixed ductal lobular carcinomas (MDL) and 

account for 3-5% of all invasive breast cancers (Lakhani S. R., 2012). MDLs are 

considered to be a distinct entity to pure IC-NST and ILC (Rakha et al., 2009, Bharat et al., 

2009). Throughout this chapter, the non-specialised invasive component in these mixed 

tumours is referred to as ‘ductal’, as opposed to IC-NST, since the terminology has only 

recently changed and to simplify terminology when comparing MDLs to pure IC-NST 

tumours. 

 

4.1.1.  Mixed ductal lobular carcinomas: collision tumours or clonally related? 
 

The evolution of MDL carcinomas is not well understood. Several important questions 

relate to their origin; firstly, does the coincidence of these distinct morphological entities 

represent two independent tumours that have collided (so called ‘collision tumours’), or do 

they arise from a common clone? Secondly, if the two components are clonally related, 

then what is the mechanism of transition from one growth pattern to the other? MDLs 

therefore represent a unique clinical model for interrogating intratumour heterogeneity, 

clonal evolution and the underlying mechanisms driving the acquisition of a diffuse and 

infiltrative growth pattern. 

 

Historically, Loss of Heterozygosity (LOH), Comparative Genomic Hybridisation (CGH) 

and gene sequencing have been utilised to assess clonal relationships by assessing DNA 

aberrations between two (or more) lesions from the same specimen. For example, these 

types of analyses have demonstrated that, for example, columnar cell lesions are a non-

obligate precursor lesion for low grade DCIS; DCIS is a non-obligate precursor for IC-NST; 

and LCIS is a non-obligate precursor for ILC (Vos et al., 1997, Simpson et al., 2005a, 

Kuukasjarvi et al., 1997b, Lu et al., 1998). Small pieces of evidence support the theory that 

when lesions with lobular and ductal morphological growth patterns are co-localised in the 

same specimen they are also likely to be clonally related lesions, as opposed to separate 

collision tumours (Wagner et al., 2009, Buerger et al., 2000), but this is not well explored. 

These studies reported the shared loss of a common allele (by LOH or CGH analysis) in 
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both the DCIS and LCIS and corresponding invasive components of either ductal or 

lobular morphology (Wagner et al., 2009, Buerger et al., 2000), suggesting that these 

morphologically distinct entities may have evolved from the same neoplastic clone. Using 

chromosomal CGH, Buerger et al. found identical copy number profiles in cases with co-

existing DCIS and ILC and hypothesised that LCIS and low-grade DCIS are closely related 

lesions (Buerger et al., 2000). They also hypothesised that the loss of E-cadherin may 

represent the molecular switch to a more discohesive phenotype, however the 

mechanisms underlying this hypothesis was not explored.  

 

During my Honours research in 2011, I studied the clonal relatedness of different 

morphological components of four MDL cases. Lesions with different growth patterns were 

laser capture microdissected and then analysed for DNA copy number alterations by 

chromosomal CGH (due to its capacity to utilise small amounts of DNA) (Kutasovic, 2011). 

DCIS, LCIS, and invasive ductal and lobular morphological components were assessed for 

copy number similarities and differences. All of the lesions within a case shared copy 

number alterations, supporting the notion that they were each derived from a common 

neoplastic clone (Figure 4.1, Table 4.1). There were also alterations that were unique to a 

given lesion (Figure 4.1). These alterations likely occurred during, after, or contributed to, 

the clonal divergence of the two components. E-cadherin’s gene CDH1 is located on 

16q22.1 and E-cadherin expression is lost in about 90% of ILC (Sections 1.5 and 1.7). E-

cadherin is therefore a candidate target gene for this loss in MDLs. To investigate whether 

E-cadherin deregulation plays a role in the phenotypic switch of the MDL, we examined E-

cadherin subcellular localisation using IHC. We identified differential E-cadherin 

expression between the two phenotypic components in the 4 cases analysed. The ductal 

component had strong membranous staining for E-cadherin and each of its binding 

partners, whereas the lobular component showed aberrant staining for E-cadherin, and 

also for β-catenin and p-120 catenin. This aberrant staining was detected as cytoplasmic 

localisation, which is in contrast to most pure ILC, where E-cadherin expression is 

completely negative (Figure 4.2). 

 

Recent advances in next generation sequencing now enable the detection of low 

frequency mutations and copy number alterations and are beginning to reveal greater 

insights into clonal progression and clonal diversity within a single tumour and between 

different regions of a primary tumour and subsequent metastases (Navin et al., 2011, 

Yachida et al., 2010, Gerlinger et al., 2012, Yates et al., 2015). The application of these 
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types of technology to morphological heterogeneity observed in MDL may contribute 

towards understanding of the molecular mechanisms that may be driving the evolution of 

morphological variation in these tumours (Section 1.4 and 1.9.5).  

 

 
Figure 4.1: Chromosomal CGH data of invasive ductal and lobular components of case 

MDL4. Copy number alterations on chromosomes 8 (8p deletion, 8p-q gain) and 15 (15q 

deletion and gain) were shared by both morphological components. Loss on chromosome 

16 was unique to the lobular component. 

 

Ductal' Lobular'
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Table 4.1: Summary of DNA copy number alterations in 4 MDL cases. 

Case # MDL1 MDL2 MDL3 MDL4 
Component D L DCIS LCIS Shared D L Shared D L Shared D L Shared 

CGH – Gains   1p 2q   1q 3q 6p 15q  4q  10q 1q 2q 7p/q 1q 11q 

    4p/q  8q   11q   11q 6p  9p   6p/q 9q   3q 14q 
    11p  10p   16p   Xq 17q     8q 12q   5q 15q 
    15q  14q         20q     10q     6q 17q 
    17q  17q               17q     8p/q 20q 
    18p/q                 20q     10p   

Component D L DCIS LCIS Shared D L Shared D L Shared D L Shared 
CGH - Losses   2q 1p 6q 11q 15q 14q 6q 16p   2q 3p 7p 1p 12p 

    6q  3p  8p 16q           3p 5q 16p/q 4p 13q 
    8p  4q   22p/q           4p 18p/q 17q 6p 14q 
    10q  11p               5p Xp 18q 8p 15q 
    13q                 5q   22p/q 9p 21p/q 
    14q                 8p   Xp/q 10q   
                      13q     11p   
                      15q         

D: invasive ductal component. L: invasive lobular component. Shared: chromosomal gains and losses were identified in both the ductal and lobular 

components of the MDL cases. p/q: the alteration was found on both chromosome arms. 

Jamie Kutasovic, BSc Hons UQ 2011. Investigating the molecular evolution of lobular breast carcinomas. 
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Figure 4.2: Representative images of a MDL and ILC and the differences in E-cadherin 

staining observed. The green arrow indicates aberrant localisation of E-cadherin in the 

lobular component of this MDL carcinoma.  

 

4.1.2. Hypotheses and aims 
 

We hypothesise that the lobular and ductal components of a MDL are growth patterns 

arising from a common neoplastic clone as opposed to the collision of two independent 

tumours. We propose that clonal progression occurs from a ductal to lobular morphological 

growth pattern and that deregulation of the functional E-cadherin complex that regulates 

epithelial cell-cell adhesion is driving this switch to a lobular-like phenotype, resulting in an 

enhanced invasive capability of cancer cells. We also hypothesise that the mechanisms 

underlying E-cadherin deregulation are different to the mechanisms known in pure ILC, 

since we did not find the complete loss of protein expression that is frequently observed in 

ILC. 

 

To address this hypothesis, the aims of this chapter were to build on previous work by i) 

collating a large cohort of MDLs and characterising the clinical and morphological features; 

ii) interrogating the expression of the E-cadherin complex by IHC; iii) investigating whether 

epithelial to mesenchymal transition may play a role in the progression to the lobular-like 
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phenotype and iv) performing molecular analysis by sequencing the exome of selected 

cases to investigate clonal evolution and identify potential mutations driving progression. 

 

4.2.  Results 
 

4.2.1. Clinical and pathology features of mixed ductal lobular carcinomas 
 

A cohort of 82 MDL cases was accessed through Pathology Queensland and Sullivan and 

Nicolaides archives. Table 4.2 describes the clinical features obtained from pathology 

reports of the cohort. The clinical and pathology features of this cohort were compared to 

those of the QFU series (specifically the IC-NST and ILC cases; Section 2.1), and 

statistical analyses performed as described in Section 2.3. The average age of diagnosis 

was 57, which was significantly younger when compared to ILC (p = 0.0083), but not IC-

NST (p = n.s). There was no significant difference in tumour size between MDLs and 

either IC-NST or ILC. For 6/82 cases, tumour grade was attributed to both the ductal and 

lobular components, and in these cases, the highest score was recorded for the tumour. 

MDLs were more frequently grade 2 (58.5%) and 3 (30.5%); the higher frequency of grade 

2 tumours was significantly different compared to IC-NST (p = 0.0254). A significant 

difference was also found between ILC and MDLs, ILC are more frequently grade 2 (p = 

0.0006). Compared to both IC-NST and ILC, MDL patients present more frequently with 

lymph node metastasis at diagnosis (p = 0.0033 and p = 0.0097, respectively). In situ 

carcinoma was diagnosed in 58/82 cases and it was interesting that 51 of 58 cases 

(87.9%) presented with ductal carcinoma in situ (DCIS). Of the 51 cases, 35 (60.3%) 

presented with DCIS alone, while 16 (27.6%) presented with co-existing lobular carcinoma 

in situ (LCIS) within the same tumour specimen. Only 7 of the 58 MDL cases (12.1%) had 

LCIS and no DCIS diagnosed. This distribution of DCIS and LCIS in the MDL cohort was 

significantly different to that observed in the IC-NST and ILC cases of the QFU cohort (p < 

0.0001; see Table 4.2). For instance, there were significantly fewer cases with LCIS only 

in the MDL cohort relative to the ILC cohort (p < 0.0001). 

 

MDLs more frequently expressed ER and PR compared to IC-NST (p = 0.0102 and p = 

0.0003, respectively), but there was no difference in expression when compared to ILC. 

HER2 amplification, however, was found to be more frequent in MDLs compared to ILC (p 

= 0.0196). 
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Table 4.2: Clinical and pathology features of MDL carcinomas. Statistical comparisons have 

been made with a sporadic cohort of IC-NST (n = 256) and ILC (n = 64) from the QFU cohort. 

  

MDL cohort 
(n=82) 

QFU IC-NST 
(n=256) p value QFU ILC 

(n=64) p value 

n (%) n (%)   n (%)   
Age of diagnosis 
Average 57 58 

0.3238^ 
62 

0.0083^ Range 28-86 27-88 40-85 
Median 55 58 63 
Tumour size (cm) 
<2 33 (42.9) 108 (42.2) 

0.2929 

21 (34.4) 

0.2017 
2 to 5 33 (42.9) 92 (35.9) 24 (39.3) 
>5 11 (14.3) 56 (21.9) 16 (26.2) 
Unknown 5 - 3 
Total 82 256 64 
Tumour grade* 
1 9 (11.0) 40 (15.6) 

0.0254 
2 (3.1) 

0.0006 2 48 (58.5) 106 (41.4) 56 (87.5) 
3 25 (30.5) 110 (43.0) 6 (9.4) 
Lymph node status 
Positive 41 (68.3) 65 (41.1) 

0.0033* 

14 (40.0) 

0.0097* Negative 19 (31.7) 79 (54.9) 21 (60.0) 
Unknown 22 112 29 
Total 82 256 64 
Preinvasive lesions 
DCIS 35 (60.3) 119 (100) 

< 0.0001 

0 (0) 

< 0.0001 LCIS 7 (12.1) 0 (0) 29 (93.5) 
DCIS & LCIS 16 (27.6) 0 2 (6.5) 
Not recorded 24 137 33 
Biomarker status 
Oestrogen receptor 
Positive 72 (90.0) 192 (76.8) 

0.0102* 

53 (91.4) 

0.7842* Negative 8 (10.0) 58 (23.3) 5 (8.6) 
Unknown 2 6 6 
Total 82 256 64 
Progesterone receptor 
Positive 67 (83.8) 154 (62.1) 

0.0003* 

38 (70.4) 

0.0651* Negative 13 (16.3) 94 (37.9) 16 (29.6) 
Unknown 2 8 10 
Total 82 256 64 
HER2 (IHC) 
Positive 14 (18.2) 45 (18.7) 

1.0* 

4 (8.0) 

0.1255* Negative 63 (81.8) 196 (81.3) 46 (92.0) 
Unknown 5 15 14 
Total 82 256 64 
Table continued over page 
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Table 4.2: Clinical and pathology features of MDL carcinomas. Statistical comparisons 
have been made with a sporadic cohort of IC-NST (n = 256) and ILC (n = 64) from the 
QFU cohort. 

 

MDL cohort 
(n=82) 

20YFU IC-NST 
(n=256) p value 20YFU ILC 

(n=64) p value 

n (%) n (%)   n (%)   
HER2 (ISH) 
Positive 8 (17.8) 27 (11.2) 

0.2181* 
2 (3.4) 

0.0196* Negative 37 (82.2) 215 (88.8) 56 (96.6) 
Total 45 242 58 

Chi-squared test for significance unless otherwise specified; ^ t-test; * Fisher’s exact test, with a p 

value considered significant if < 0.05. Significant values highlighted in red. 

 

4.2.2. Investigating the E-cadherin adhesion complex in MDLs  
 

As the most defining feature in lobular carcinomas is the loss of E-cadherin, the integrity of 

E-cadherin and its binding complex partners, β-catenin and p120-catenin, was assessed in 

a subset of 51 cases of MDLs by IHC on whole tissue sections (Section 2.5.4). The 

expression of each protein was evaluated in each morphological component (DCIS, LCIS 

and invasive tumour areas of both ductal and lobular growth patterns) in each case. Each 

marker was scored as positive (complete membrane staining), negative (no protein 

expression), aberrant (either fragmented membrane staining or cytoplasmic localisation), 

or a mix of positive/aberrant (some cases displayed both positive membrane staining and 

aberrant staining), as shown in Figure 4.3. The distribution of staining of each molecule in 

each morphological component is summarised in Table 4.3. For the most part, the DCIS 

(91.7%) and invasive ductal (77.6%) components showed normal membranous protein 

expression for E-cadherin, β-catenin and p120-catenin. The majority of LCIS were 

negative for E-cadherin (70%) and β-catenin (88.9%), and cytoplasmic for p120-cateinin 

(62.5%). The lobular component in the majority of MDLs, exhibited aberrant cytoplasmic 

staining (43.1% and 35.4%) or incomplete membrane staining (27.5% and 25%) for E-

cadherin and β-catenin, respectively. p120-catenin was frequently localised to the 

cytoplasm (60.9%). In only 9 (17.6%) cases did the lobular component exhibit archetypal 

E-cadherin negative staining.  
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Figure 4.3: E-cadherin staining patterns in IC-NST and ILC. 

 
Table 4.3: Expression of the E-cadherin adhesion complex in the different morphological 

components of mixed ductal lobular carcinomas 

  
DCIS  
(n=24) 

LCIS/PLCIS 
(n=10) 

Ductal  
(n=49) 

Lobular 
 (n=51) 

E-cadherin; n (%) 
Pos 22 (91.6) 1 (10) 38 (77.6) 6 (11.8) 
Neg 0 7 (70) 3 (6.1) 9 (17.6) 

Aberrant 0 2 (20) 2 (4.1) 22 (43.1) 
Mixed pos/ab 1 (4.2) 0 6 (12.2) 14 (27.5) 

Mixed pos/neg 1 (4.2) 0 0 0 
ND 0 0 0 0 

β-catenin; n (%) 
Pos 23 (95.8) 1 (11.1) 39 (79.6) 7 (14.6) 
Neg 0 8 (88.9) 3 (6.1) 10 (20.8) 

Aberrant 1 (4.2) 0 0 17 (35.4) 
Mixed pos/ab 0 0 3 (6.1) 12 (25.0) 

Mixed pos/neg 0 0 0 2 (4.2) 
ND 0 1 4 (8.2) 3 

p120-catenin; n (%) 
Pos 21 (95.5) 2 (25.0) 39 (84.8) 8 (17.4) 
Neg 0 1 (12.5) 0 0 

Aberrant 0 5 (62.5) 3 (6.5) 28 (60.9) 
Mixed pos/ab 1 (4.5) 0 4 (8.7) 10 (21.7) 

Mixed pos/neg 0 0 0 0 
ND 2 2 3 5 

 

Normal breast 

E-cad positive IC-NST E-cad aberrant IC-NST 

E-cad aberrant ILC E-cad negative ILC 
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Typically, classic ILC shows complete loss of E-cadherin and β-catenin expression in up to 

90% of cases, alongside cytoplasmic localisation of p120-catenin. We therefore compared 

the expression of the E-cadherin adhesion complex in a cohort of classic ILC (the WL TMA 

cohort of 148 ILC described in Section 2.1) to the lobular-like component of MDLs. As 

predicted from the small cohort assessed previously (Kutasovic, 2011), this larger cohort 

confirms that there was a significant difference in the localisation of all the adhesion 

complex markers (Figure 4.4; p < 0.0001). Most interestingly was the observation that E-

cadherin protein was not lost in the lobular-like component of MDLs, but displayed 

fragmented membrane staining or was aberrantly expressed in the cytoplasm in most 

cases; the same was true for β-catenin and p120-catenin. It is likely therefore, that if 

disruption of the E-cadherin adhesion complex is contributing to the change in phenotype 

from ductal to lobular-like morphology, the mechanism of E-cadherin disruption in MDLs 

may be different to that seen in classical ILC, such as the genetic and epigenetic targeting 

of CDH1 (reviewed in (McCart Reed and Kutasovic et al., 2015)). 
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Figure 4.4: Comparison of the expression of the E-cadherin adhesion complex molecules 

(E-cadherin, β-catenin and p120-catenin) in pure ILC versus the lobular-like component of 

MDLs. Chi-square statistical test was used. 
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4.2.3. Does epithelial to mesenchymal transition play a role in the phenotypic 
switch from ductal to lobular growth pattern? 

 

Epithelial to Mesenchymal Transition (EMT; Section 1.8.3) is essential for cell migration in 

embryogenesis, has been found to contribute to an increase in invasive capabilities in vitro 

and is speculated to therefore contribute to invasion and metastasis in vivo. In this 

process, E-cadherin expression is repressed by certain transcription factors such as 

TWIST, Snail and Slug. Cells undergo ‘cadherin switching’, down-regulating E-cadherin, 

expressing N-cadherin and also switching on the expression of a number of markers 

associated with mesenchymal cell differentiation, such as vimentin. High grade IC-NST of 

basal-like phenotype shows the strongest evidence of EMT in breast tissues 

(Aleskandarany et al., 2014). ILC and the lobular component of MDLs show a discohesive 

and infiltrative growth pattern and deregulated E-cadherin. We have shown that EMT 

rarely contributes to the invasive phenotype of ILC (McCart Reed and Kutasovic et al., 

manuscript under review, J Pathol). Here, we hypothesise that EMT may contribute to the 

transition of ductal to lobular-like growth pattern in MDLs. 

 

A subset of MDL cases were assessed for the expression of the following EMT markers by 

IHC, N-cadherin (n = 8), SNAIL (n = 13) and Vimentin (n = 15). N-cadherin was negative in 

all cases; Vimentin and SNAIL were focally positive (in less than 1% of cells) in 4/15 

(26.6%) and 2/13 (15.4%) of cases, respectively (Figure 4.5). Overall, protein analysis of 

these EMT markers suggests that EMT may not play a role in the progression from ductal 

to lobular morphology.  

 

 
Figure 4.5: Assessment of expression of EMT markers Vimentin, N-Cadherin and SNAIL.  
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4.2.4.  Meta-analysis of publically available gene expression and mutation data 
from mixed ductal lobular carcinomas 
 

The TCGA has performed detailed molecular profiling on a large cohort of breast tumours 

(The Cancer Genome Atlas Network, 2012). There were 29 MDLs available according to 

the cBioportal user interface, where one can search for many different clinical variables 

alongside the publically available genomic data (Cerami et al., 2012, Gao et al., 2013). To 

verify the diagnosis of a MDL, we accessed the Cancer Digital Slide Archive for these 29 

cases and reviewed the digital H&E slides for each samples. This also served to assess 

the tumour cellularity of the samples (Section 2.12). It is particularly important to account 

for tumour cellularity in this context, as the nucleic acid alterations will be representative of 

the most prominent cell type. There were 2 to 3 digital images provided for each case; 

generally 1 or 2 sections were frozen H&E sections and one was a FFPE H&E section. We 

have to make the assumption that the frozen H&E is representative of the tissue from 

which the nucleic acids were extracted. Based on this, it was found that 6 cases were 

enriched for the lobular component, 10 cases were enriched for the ductal component, and 

13 tumours had admixed lobular and ductal components. 

 

Meta-analysis of the gene expression of some key EMT genes (CDH1, CDH2, TWIST1, 

SNAI1, VIM, ZEB1 and ZEB2) showed that, for the most part, these genes are rarely 

altered in the TCGA MDL cohort (Figure 4.6). The case that has CDH2 (N-cadherin) up-

regulation doesn’t have a hit to CDH1; hence it is unlikely to have undergone cadherin 

switching. Also, the case with concomitant over-expression of Vimentin and Zeb1, have no 

alteration in either CDH1 or CDH2. Interestingly 19% (5/27 cases) had mRNA up-

regulation of ZEB1. Although the numbers are small this frequency is quite high compared 

to both ER positive and ER negative IC-NST (ZEB1 is up-regulated in 3% (18/532) and 

0.5% (1/201) of cases, respectively) and ILC (ZEB1 is up-regulated in 6% (9/155) of 

cases). Of the 5 cases with ZEB1 up-regulation, 2 cases were predominately lobular, 2 

cases were admixed, and 1 case was predominately ductal. It is also interesting to note 

that 3 of the 5 cases with ZEB1 up-regulation also have up-regulation of ZEB2 and these 3 

cases show no other ‘archetypal’ EMT changes. The mRNA up-regulation was mutually 

exclusive relative to CDH1 mutation; ZEB1 is known to directly suppress expression of 

CDH1  (Vannier et al., 2013, Wong et al., 2014). Unfortunately, these cases do not have 

reverse phase protein array (RPPA) data to assess whether the mRNA expression 

correlates with protein expression.  
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Figure 4.6: The gene expression of EMT related genes in 27 MDLs from the TCGA. The red 

box represents mRNA up-regulation. Each grey box represents an individual case. The 

black and green spots represent somatic mutation. 

 

4.2.4.1. Somatic mutation analysis of TCGA mixed ductal lobular carcinomas 
 

Large sequencing studies have found that there are few genes commonly mutated in 

breast cancer. Section 2.11.1, Table 2.3, summarises the most frequently altered genes 

in breast cancer. The cBioportal was utilised to assess the frequency of mutations of those 

genes in MDLs (data was available for 27 of the 29 cases), ILC, ER positive IC-NST and 

ER negative IC-NST. The MDL cases were separated out into the different components 

recorded from the digital slide archive (Table 4.4).  

 

Although the cohort is small, there were some interesting observations to consider. 

Broadly, the average number of mutations was 41 (range 11 to 101) and it appears that 

MDLs show a mutation pattern similar to both ILC and ER positive IC-NST. MDLs have a 

high frequency of PIK3CA mutations similar to ILC and ER positive IC-NST (45.8% and 

33.3% respectively v.s. 41.9% in the MDLs). The second most frequently mutated gene 

was GATA3, which is also the second most commonly mutated gene in ER positive IC-

NST (20.8% v.s. 13.2%). Interestingly, the frequency of TP53 mutations observed in MDLs 

(16.7%) was intermediate to that found in ILC (5.2%) and ER positive IC-NST (22.2%). 

This is in contrast to ER negative IC-NST were TP53 is mutated in 65% of cases. CDH1 

mutations were more frequent in MDLs (12.5%) compared to both ER positive (2.3%) and 

ER negative IC-NST (1%); yet lower than observed in ILC (53.5%). Chi-square analysis 

was performed for all the mutated genes assessed and the difference in mutation 

frequency observed was significant in comparison to ER negative IC-NST (< = 0.00001) 
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and ILC (p < 0.0003), but not with ER positive IC-NST (p = n.s.). Three MDL cases did not 

have a mutation in any of these frequently mutated genes. 

 

When comparing the mutation pattern between the morphology categories of MDL cases 

(Section 2.12), the main observation was that the admixed samples were most similar to 

samples that were predominately ductal component. There were only 6 samples that were 

lobular component enriched; yet the most striking difference was the higher frequency of 

PIK3CA mutations!in the lobular component compared to the admixed and ductal 

components (Table 4.4).  

 

Table 4.4: The most frequently mutated genes in MDL carcinomas compared to ER positive 

and ER negative IC-NST and ILC. 

  

  MDL (n=24) 
ER+ IC-NST 

(n=532) 
ER- IC-NST 

(n=200) 
ILC 

(n=155) 
All 

samples 
Admixed 
(n=10) 

Ductal 
(n=9) 

Lobular 
(n=5) 

n (%) n (%) n (%) n (%) n (%) n (%) n (%) 
CDH1 12 (2.3) 2 (1.0) 83 (53.5) 3 (12.5) 1 (10.0) 1 (11.1) 1 (20.0) 

FGFR2 6 (1.1) 2 (1.0) 1 (0.6) 1 (4.2) 1 (10.0) 0 (0) 0 (0) 
FOXA1 9 (1.7) 1 (0.5) 10 (6.5) 3 (12.5) 1 (10.0) 0 (0) 2 (40.0) 
GATA3 70 (13.2) 1 (0.5) 5 (3.2) 5 (20.8) 2 (20.0) 3 (33.3) 0 (0) 
MLL3 40 (7.5) 8 (4.0) 12 (7.7) 1 (4.2) 0 (0) 1 (11.1) 0 (0) 

MAP2K4 27 (5.1) 1 (0.5) 1 (0.6) 2 (8.3) 2 (20.0) 0 (0) 0 (0) 
MAP3K1 50 (9.4) 3 (1.5) 8 (5.2) 2 (8.3) 1 (10.0) 1 (11.1) 0 (0) 
NCOR1 22 (4.1) 6 (3.0) 7 (4.5) 1 (4.2) 0 (0) 1 (11.1) 0 (0) 

NF1 11 (2.1) 6 (3.0) 5 (3.2) 1 (4.2) 1 (10.0) 0 (0) 0 (0) 
PIK3CA 177 (33.3) 25 (12.5) 65 (41.9) 11 (45.8) 4 (40.0) 3 (33.3) 4 (80.0) 
PTEN 16 (3.0) 4 (2.0) 9 (5.8) 0 (0) 0 (0) 0 (0) 0 (0) 
RB1 9 (1.7) 6 (3.0) 2 (1.3) 1 (4.2) 0 (0) 1 (11.1) 0 (0) 

RUNX1 13 (2.4) 1 (0.5) 13 (8.4) 1 (4.2) 1 (10.0) 0 (0) 0 (0) 
TBX3 13 (2.4) 2 (1.0) 8 (5.2) 0 (0) 0 (0) 0 (0) 0 (0) 
TP53 118 (22.2) 130 (65.0) 8 (5.2) 4 (16.7) 1 (10.0) 3 (33.3) 0 (0) 

Highlighted in grey are the most frequently mutated genes within each subtype (mutated in over 

10% of cases). Mutations in the MDL cases were pooled and then separated out based on the 

predominant morphological component as determined by assessing the cancer digital slide 

archive. 

 

A discovery approach to variant analysis was also taken, whereby all of the mutation 

annotated format (MAF) files of the exome sequencing data was downloaded for each of 

the 27 MDL cases with data, to examine if there were other interesting mutations that may 

have an interesting role. All non-silent coding variations were recorded for each case and 
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each case was assessed individually. We were particularly interested to see if there were 

mutations present in genes encoding proteins involved in E-cadherin cell-cell adhesion, 

however, there were no reported mutations in any of the genes encoding the E-cadherin 

binding partners α, β, γ, or p120-catenin. However, mutations were found in other cadherin 

family members CDH7, CDH9 and CDH20 and in cadherin related proteins, CDHR1 and 

CDHR2, which together with CDH1 were all mutually exclusive (Figure 4.7). Mutations 

were also detected in protocadherins PCDH9, PCDHA2, PCDHA5, PCDHAC1, PCDHB6, 

PCDHB14, and PCDHGA9. When overlaying copy number and gene expression data in 

cBioportal, we found individual cases with increased expression of CDHR2, PCDH9, 

PCDHA2, PCDHA5, PCDHB14, PCDHGA9 or PCDHGB3; yet none of the cadherin family 

members showed gene deletion or down-regulation in the MDLs. The functional 

consequences of these mutations are unknown. 

 

The following genes were noted as being recurrently mutated (identified in more than 1 

case). Mutations were found in genes involved in cytoskeleton regulation: 3 cases had 

FMN2 (Formin 2; involved in actin cytoskeleton assembly) mutation, while 5 cases had 

gene amplification; 2 cases had MACF1 (microtubule-actin crosslinking factor 1; involved 

in crosslinking many proteins of the cytoskeleton) mutations and 2 cases had gene up-

regulation; and 2 cases had KIF21B (kinesin family member 21B; microtubule based motor 

protein involved in intracellular transport of membranous organelles) mutations and 5 

cases had gene amplification which may be contributing to invasive capacity of the cancer 

cells. Mutations in genes involved in WNT signalling (WNT16, WNT7A, WNT3A) were also 

observed. These genes are involved in pathways associated with carcinogenesis and 

embryonic development, specifically in cell division and cell migration. β-catenin is also 

important in canonical Wnt signalling; in addition to its role in cell-cell adhesion, β-catenin 

can translocate to the nucleus, acting as a transcriptional co-activator for various Wnt 

signalling target genes (such as MYC, CCND1, CDH1 (Klaus and Birchmeier, 2008).  

 

The FOX (forkhead box) protein, FOXA1 was identified as a frequently mutated gene in 

ILC (6.5%) and MDLs (12.5%). Mutations in other FOX proteins were also identified in 

individual cases: FOXM1 (cell cycle progression) and FOXP1 (transcription factor essential 

for organ development). Since these genes are essential for the regulation of many 

biological processes, their alterations may be important in tumour progression in these 

cases. 
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Figure 4.7: Other mutated genes of interest in MDLs. Top panel: Orange, Lobular enriched; 

Blue, Ductal enriched; Purple, Admixed. 

 

4.2.5. Investigating the molecular evolution of mixed ductal lobular carcinomas  
 

To give insight into the clonal nature of this tumour type, it is necessary to investigate the 

different morphological components independently using molecular techniques. To this 
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end, enrichment for specific cell types of interest to a high degree of purity was performed 

using laser capture micro-dissection (LCM) or fine needle micro-dissection. Table 4.5 

describes the morphological and phenotypic characteristics of each case, the 

morphological components, and the molecular analyses performed. Tumours were needle 

macro-dissected if the specific areas of interest were quite separate from each other, while 

other cases were micro-dissected using LCM for greater precision in separating tumour 

areas (Section 2.7.1 and 2.7.2).  

 
Table 4.5: MDL cases subjected to genomic analysis.  

Case ID Component Grade ER PR HER2 E-cad cCGH Exome 

MDL1# 

Ductal 2 + + - Pos/Ab ✓  
Lobular 2    Pos/Ab ✓  
DCIS 2    Pos ✓  
LCIS clas      Ab ✓  

MDL2# 

Ductal 2 + + + Pos ✓  
Lobular 2    Pos/Ab ✓  
DCIS 3    Pos ✓  
LCIS n/a     Neg ✓  

MDL3# 
Ductal 3 + + + Pos ✓  
Lobular n/a    Ab ✓  
DCIS 3    Pos ✓  

MDL4* 

Ductal 3 + + + Pos ✓ ✓ 
Lobular 3    Ab ✓ ✓ 
DCIS 3    Pos ✓ ✗ 

Normal - blood     -  ✓ 

MDL5* 

Ductal 2 + + - Pos  ✓ 
Lobular 2    Pos/Ab  ✓ 
DCIS 2    Pos  ✓ 
LCIS clas     -  ✗ 

Normal LN     -  ✓ 

MDL6# 

Ductal 2 + - + Pos  ✓ 
Lobular 3 + - + Neg  ✓ 
PLCIS 3    Neg  ✓ 
DCIS 3    Pos/Neg  ✓ 

LN metastasis     Neg  ✗ 
Normal LN     -  ✓ 

MDL7* 

T1 – IC-NST  3 + + - Pos  ✓ 
T1 – DCIS 2    Pos  ✗ 
T2 – ILC 2 + + - Pos/Ab  ✓ 

T3 - MDL - ductal 2    Pos  ✓ 
T3 - MDL - lobular     Pos/Ab  ✓ 

T3 – DCIS 2    Pos  ✓ 
T4 – MDL - ductal 2    Pos  ✓ 
T4 – MDL - lobular     Pos/Ab  ✓ 

T4 – DCIS 2    Pos  ✓ 
Normal LN     -  ✓ 
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*Macro-dissected, #Laser capture micro-dissected. cCGH: Chromosomal CGH - performed 

previously (Kutasovic, 2011). LN; Lymph node. MDL7: T = tumour (described in more detail below 

in Section 4.2.5.4). Clas = classic LCIS type. 

 

Four MDLs cases previously underwent chromosomal CGH (cCGH) analysis as described 

earlier (Section 4.1.1). Here we have attempted exome sequencing on four MDL cases, 

including one that underwent cCGH. These cases were chosen because of their 

interesting morphological features and the fact that each component was large enough to 

yield sufficient DNA for analysis. Figure 4.8 provides a representative image of a case that 

was micro-dissected for different morphological regions within the same specimen with the 

guidance of E-cadherin staining. Whole exome sequencing was performed (as described 

in Section 2.11.2) to uncover the clonal evolution in these MDL cases and potentially 

reveal mechanisms driving the change in morphology. Appendix Table 4.1 summaries the 

sequencing metrics for all cases. Below are detailed descriptions of each case and their 

preliminary analysis of the genomic data. 

 

 
Figure 4.8: E-cadherin staining was used alongside morphological assessment to guide 

micro-dissection of each component prior to DNA extractions. 
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4.2.5.1. MDL4 
 

A 79-year-old patient was diagnosed with a MDL carcinoma that was 20 mm in size, 

histological grade 3 and lymph node negative. The lobular component was of the 

pleomorphic variant and high-grade DCIS was present, but no LCIS was identified in the 

histological examination. The tumour was positive for ER and PR, and HER2 was 

amplified. The E-cadherin adhesion complex was positive in the DCIS and ductal 

component and was aberrantly localised in the lobular component (Figure 4.9). This case 

was analysed for the expression of EMT markers and was negative for vimentin, and 

displayed cytoplasmic localisation of Snail and N-cadherin. Positive CK8/18 staining 

emphasises the epithelial nature of the lobular cells. 

Interestingly, from a morphological point of view, there where areas within the tumour of 

what appears to be a ‘transition zone’- a region with a clear change from ductal to lobular-

like morphology (Figure 4.9) that coincides with aberrant localisation of the E-cadherin 

adhesion complex.  
 
Chromosomal CGH data showed that the two morphological components shared many 

copy number alterations (Table 4.1 (Kutasovic, 2011)). As part of my honours project, I 

Sanger sequenced the exons of CDH1 in both morphological components and no mutation 

was found. Both the invasive ductal and pleomorphic lobular components were macro-

dissected using a fine needle and the DNA extracted was sequenced for the whole exome 

(together with normal DNA, Sections 2.7 and 2.11.2). Unfortunately the DCIS was too 

small for this analysis. Preliminary analysis of the exome sequencing data found that there 

were 77 variants shared between both the ductal and lobular components, supporting that 

both components are derived from a common ancestor. There were 19 and 68 private 

variants in the ductal and lobular components, respectively (Figure 4.10 A, including both 

silent and non-silent mutations). There were no obvious mutations in genes associated 

with cell adhesion (such as E-cadherin adhesion complex) in the lobular component. Of 

interest however, was a mutation in ESR1 (encoding oestrogen receptor alpha) in the 

lobular component, and HRAS in the ductal component. As both components show more 

similar mutation profiles than different, and the lobular component shows many unique 

variants, we can hypothesise that the lobular component diverged late in the evolution of 

this tumour (Figure 4.10 B). Since the DCIS was not available for analysis, we 

hypothesise that the invasive counterparts of this tumour arose via a ductal-like pathway of 

progression, where the ductal and lobular components have arisen from a common DCIS. 
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Targeted mutation validation may be possible in the DCIS component to confirm this 

theory.  

 

 
Figure 4.9: Representative images of both ductal (top left of the image) and lobular 

components (areas of single cells) of MDL4. A possible ‘transition zone’ from ductal to 

lobular morphology is marked by the arrow that appears to coincide with cytoplasmic E-

cadherin localisation.  
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Figure 4.10: A) Summary of all the silent and non-silent variants across both morphological 

components. B) A hypothetical evolutionary tree. We hypothesise that the lobular 

component diverged late during the evolution of this tumour and arose via a “ductal-like” 

pathway. 

 

4.2.5.2. MDL5 
 

This 52-year-old patient presented with a 56 mm, grade 2 MDL carcinoma with co-existing 

DCIS and LCIS. This tumour was ER and PR positive, HER2 negative and had regional 

metastasis to the lymph nodes that was of ductal morphology. Figure 4.11 shows the 

differential E-cadherin binding complex expression between the morphological 

components; the ductal component and DCIS were positive for the E-cadherin complex 

and the lobular component had aberrant expression of the E-cadherin complex. 

Unfortunately there was no LCIS left in the tissue sample to assess the expression of E-

cadherin complex or from which to extract DNA. For exome sequencing, areas of E-

cadherin positive ductal morphology, E-cadherin negative lobular morphology and DCIS 

were separately micro-dissected using a needle. There were 11 shared variants observed 

between the DCIS, E-cadherin positive and E-cadherin negative morphological regions 

sequenced (Figure 4.12 A). Unique to each component were 13 variants in the DCIS, 11 
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variants in the E-cadherin positive and 7 in the E-cadherin negative regions. Of the 7 

genes mutated in the E-cadherin negative component (ATH9B, GIGYF2, MRPL27, 

PREPL, TDG, VPS41, WDR33), none were related to cell adhesion or provide an obvious 

explanation for a change in morphology or growth pattern. Overall there is evidence that 

all morphological variants were derived from the same neoplastic clone. However, 

divergence may have occurred earlier as there are both DCIS and LCIS present in this 

case (Figure 4.12 B). 
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Figure 4.11: MDL5. Representative areas of ductal and lobular morphology with staining for 

E-cadherin, β-catenin and p120-catenin. 20X insets show the localisation of E-cadherin, β-

catenin and p120 catenin in the lobular component. 
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Figure 4.12: A) All silent and non-silent variants shared between the E-cadherin positive 

ductal component, E-cadherin negative lobular component and DCIS of MDL5. B) 

Hypothetical evolutionary tree. Since the LCIS was unavailable for analysis we are unable to 

determine the exact clonal relationships of all components.  

 

4.2.5.3. MDL6 
 

This 76-year-old patient was diagnosed with a MDL carcinoma that was composed of a 

grade 3 pleomorphic lobular component that was 40 mm alongside a grade 2 ductal 

component that was 14 mm. The tumour also had high-grade DCIS and PLCIS, and the 

regional lymph nodes were infiltrated by the PLC. Both the lobular and ductal components 

were positive for ER and HER2, however there was more ER positive cells (30% v.s. 5%) 

and HER2 was more highly amplified (24 copies v.s. 12) in the lobular component 

compared to the ductal component. Ki67 staining was also performed with 37% of the 

lobular component, and 19% of ductal component positive, indicating that the lobular 

component is more proliferative than the ductal component. All of the aforementioned data 

was provided by a very detailed pathology report. As displayed in Figure 4.13, each 

invasive and pre-invasive component has very distinct morphology and displays 

differential E-cadherin adhesion complex expression. The lobular component and PLCIS 

regions were negative for E-cadherin and β-catenin, while p120-catenin was located in the 
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cytoplasm. The ductal and DCIS components display membrane positivity for all adhesion 

complex members. Interestingly, some foci of DCIS exhibited heterogeneous E-cadherin 

expression with positive and negative cells co-existing in the same lesion, and could 

represent pagetoid spread of LCIS cells growing upward in the duct (see Figure 4.13, 

bottom panel).  

 

This fascinating case was micro-dissected using the Leica laser capture micro-dissection 

system to separate out near pure populations of cells from the lobular, ductal, DCIS and 

PLCIS components. Exome sequencing highlighted that 56 variants were shared between 

all 4 components of this case, emphasising that all morphological variants within this case 

are clonally related (Figure 4.14 A). Mutated genes of interest that are shared include 

known tumour suppressors BRCA2 (frame shift deletion) and SMAD4 (missense mutation 

1082G>A, Arg361His). A frame shift deletion in TBX3 is present in all components except 

the DCIS. The invasive components both had the largest number of private mutations (64 

in the ductal component and 266 in the lobular component). Of important note, the PLCIS 

and lobular components both shared a mutation in CDH1, which is likely to account for the 

lack of E-cadherin expression. The mutation in CDH1 is predicted to cause a premature 

stop codon (1828C>T, Gln610*). We hypothesise that this case may be an example of 

early clonal divergence, due to the presence of both early pre-invasive DCIS and PLCIS 

lesions. (Figure 4.14 B)  
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Figure 4.13 MDL6. Representative areas of the ductal component, pleomorphic lobular 

component (white arrow), PLCIS (black asterisk) and DCIS (red asterisk). 20X insets show 

the localisation of E-cadherin, β-catenin and p120 catenin in the lobular component. Black 

box: PLCIS that is E-cadherin negative. Red box: DCIS that is E-cadherin positive with areas 

of E-cadherin negative within the DCIS (green arrow). CK8/18 is positive in 100% of the 

tumour cells and vimentin is negative.  

 

 
Figure 4.14: All silent and non-silent variants identified in the four morphological 

components. B) The construction of a hypothetical evolutionary tree assessing the pathway 

of tumour progression in this case. 

 

4.2.5.4. MDL7 
 

A 54-year-old patient underwent a mastectomy for multi-focal breast cancer. Macro- and 

microscopic analysis revealed 4 individual tumours of different histological types. The 

largest lesion was a 26 mm grade 3 IC-NST. The second lesion was a 21 mm grade 2 ILC. 

The other 2 lesions were grade 2 MDL carcinomas, 12 mm and 7 mm in size, respectively. 

Figure 4.15 is a map outlining where each lesion was found with respect to each other, 

and the distances between each one. All 4 lesions were associated with DCIS, were ER 

positive, PR positive and HER2 negative, and no regional lymph nodes were involved at 

diagnosis. Each lesion was assessed for the expression of the E-cadherin adhesion 

complex. Overall, the IC-NST, DCIS and ductal components of the two MDL tumours were 
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positive for the adhesion complex members. Interestingly, the ILC and lobular-like 

components of the MDL tumours displayed a mix of positive and aberrant staining (Figure 
4.16). All tumours were positive for the epithelial cell marker CK8/18 and negative for 

vimentin (data not shown), suggesting that EMT does not play a role in the transition from 

ductal to lobular phenotype. Each lesion was macro-dissected with a fine needle (see 

Table 4.4) and DNA extracted with a total of 8 tumour areas undergoing exome 

sequencing (Sections 2.7 and 2.11.2). The DCIS co-occurring with the IC-NST did not 

undergo exome sequencing due to low DNA concentration. This case is quite complex in 

that there are multiple pre invasive lesions and multiple growth patterns across multiple 

lesions throughout the breast (Figure 4.15); therefore understanding the natural history of 

these tumours is not so straightforward. Greater sequencing coverage is necessary to 

confidently call mutations and understand evolutionary relationships, therefore the 

samples are being re-sequenced and the data analysis is on going.  However, preliminary 

analysis has revealed that similar to MDL5, there were no obvious mutations in genes 

associated with cell adhesion, such as CDH1. 
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Figure 4.15 Map of all tumour foci in the left upper outer quadrant of case MDL7 (A). The 

dotted lines indicate the distance between each lesion (B).  
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Figure 4.16 Representative images of the 4 tumour foci in case MDL7. 20X insets show the 

localisation of E-cadherin, β-catenin and p120 catenin in the ILC of the second lesion, which 

is representative of the lobular components in the two MDL lesions. 

 

4.2.6. Identification of driver mutations and pathway analysis 
 

All sequencing data was analysed using IntOGen ((Gundem et al., 2010), Section 2.12) to 

discover which mutations may be drivers in these MDLs, and also assess whether there 

are recurrently altered functional pathways. All 17 samples from the 4 cases were 

analysed and Table 4.6 describes the most frequently mutated known driver genes, 
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candidate driver genes and the top 10 driver pathways in the cohort. The most frequently 

mutated genes were those identified in MDL6 (BRCA2 and SMAD4) and is therefore likely 

to be enriched for cases with the most samples. The pathway analysis revealed that the 

most frequent pathways altered in over 80% of the samples were gap junction signalling, 

Gonadotropin-releasing hormone (GnRH) signalling and MAPK signalling.  

 

Table 4.6: Summary of the IntOGen analysis to identify driving genes and pathways across 

the cohort of 4 MDL cases. 

Driver genes in the cohort Mutation frequency IntOGen 

RICTOR 0.529   
MAP3K2 0.471   

TBX3 0.471 Driver 
MOK 0.412   

MEGF6 0.412   
MAD1L1 0.412   
MYLIP 0.412   

DYNC1H1 0.235   
SMAD4 0.235 Driver 

Candidate driver genes Number of samples; case Impact 

BRCA2 All#samples;#MDL6 High 
GPS2 All#samples;#MDL6 High 

SMAD4 All#samples;#MDL6 Medium 
AHNAK All#samples;#MDL6 Medium 
TBX3 3/4#samples;#MDL6 High 
TBX3 All#samples;#MDL5 High 
TP53 All#samples;#MDL5 High 

SP3B1 All#samples;#MDL5 High 
CDH1 2/4#samples;#MDL6 High 

Driver pathways  Found/studied Mutation 
frequency 

Gap junction 15/17 0.882 
GnRH signalling pathway 15/17 0.882 
MAPK signalling pathway 14/17 0.824 

Cell cycle 12/17 0.706 
Wnt signalling pathway 9/17 0.529 

Osteoclast differentiation 8/17 0.471 
Pathways in cancer 8/17 0.471 

Hepatitis B 8/17 0.471 
Glutamatergic synapse 7/17 0.412 

Transcriptional misregulation in cancer 6/17 0.353 
Found/studied = number of samples in the whole study with the alteration. Impact = the adverse 

impact of the mutation on the protein function  
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4.3. Discussion 
 

This study investigated the clinical, pathology and molecular features of a large cohort of 

mixed ductal lobular carcinomas. The findings corroborate that MDLs are a distinct 

morphological entity (Rakha et al., 2009, Arps et al., 2013) with unique biological features 

that share some similarities to both IC-NST and ILC. Our findings are in agreement with 

previous studies stating that MDLs were mostly grade 2 (58%); were more frequently 

associated with DCIS than LCIS; were frequently lymph node positive (68.3%) and were 

more frequently ER positive compared to IC-NST ((Rakha et al., 2009, Arps et al., 2013) 

Section 4.2.1). 

 

The current multistep model of progression considers that an IC-NST arises from a DCIS, 

while an ILC arises from a LCIS, via a low-grade or high-grade pathway of tumourigenesis 

(Section 1.8). The evolution of MDLs is less clear cut and less well studied. DCIS was 

present in 87.9% of our MDL cases, similar to that reported by Rakha et al. (89%; (Rakha 

et al., 2009)), where as LCIS was present in only 39% of cases (27% of cases had both 

DCIS and LCIS). It is possible that LCIS was present in other cases and was just not found 

or was completely transformed in to the lobular component. However, this different 

distribution between DCIS and LCIS is suggestive that the invasive lobular component of a 

MDL may be the result of evolution from a tumour clone of “ductal” origin in some cases.  

 

IHC staining for E-cadherin and its catenin complex partners supports this to some extent. 

In almost all cases the invasive lobular component of the MDL showed deregulation of the 

E-cadherin adhesion complex (Section 4.2.2), suggesting this is important mechanistically 

in driving the phenotypic switch during the evolution of these tumours. In the vast majority 

of ductal lesions E-cadherin was expressed and located at the cell membrane. When LCIS 

was present, then it and the invasive lobular component were more frequently negative for 

E-cadherin. However, when LCIS was not present, the invasive lobular component was 

more frequently aberrant for E-cadherin, with cytoplasmic accumulation of the protein. This 

would imply that the evolution of the invasive lobular component might be different 

depending on whether LCIS was present or not. 

 

This was investigated further using molecular analysis of different morphological 

components of MDLs by cCGH (Kutasovic, 2011) and exome sequencing (Section 4.2.5). 

This first key point was that this analysis demonstrated that all discrete lesions within the 
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cases study were clonally related, as opposed to being the collision of individual tumours. 

There was multiple DNA copy number alterations and somatic mutations that were shared 

between all lesions (ductal and lobular) in a case. Additional genetic alterations were 

identified that were not shared (private mutations); indicating further clonal evolution 

occurred post divergence of ductal and lobular components. cCGH data from my honours 

thesis (Kutasovic, 2011) and the exome data presented here suggest that when LCIS was 

present, it was more genetically similar to the invasive lobular component than to the 

‘ductal’ lesions (e.g. cases MDL1 and MDL6). Although only small numbers of cases have 

been studied so far it is noteworthy that the only case to contain a CDH1 mutation is the 

lobular component of MDL6. Molecular data in cases without LCIS suggests the invasive 

lobular component is closely and clonally related to the invasive ductal component; and 

that the mechanism underlying the phenotypic switch remains unclear. 

 

These hypothetical concepts for the evolution of different morphological components of 

MDLs are summarised in Figure 4.17: in MDL cases with LCIS and ILC, E-cadherin is 

typically negative (but in some cases aberrantly localised in both the LCIS and ILC) and 

the divergence from ductal pathway of evolution most likely occurred early during 

progression. In cases with no LCIS present, the invasive lobular component is more likely 

to exhibit aberrantly localised E-cadherin and that divergence from ductal morphology is 

more likely to have occurred later during evolution. 
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Figure 4.17: The clonal evolution of mixed ductal lobular carcinomas. We propose that in 

some cases early divergence from a common neoplastic clone (top panel), particularly in 

cases with both LCIS and DCIS present. However, in cases that only present with DCIS it is 

hypothesised that clonal divergence may occur later during tumour evolution (bottom 

panel). Dashed lines denotes our lack of understanding of the mechanisms driving the 

change in morphology. 

 

It is unlikely that epithelial to mesenchymal transition is involved in the phenotypic switch 

to a more invasive (lobular) phenotype, as we did not see either the archetypal cadherin 

switch and/or activation of vimentin expression in this cohort (Section 4.2.3). However, the 

analysis of integrated protein and mRNA expression of multiple EMT markers should be 

performed to see if a coordinated expression of an EMT program occurs. This, in 

particularly should include ZEB1, which was up-regulated in some cases in the TCGA 

meta-analysis. This transcription factor is a known transcriptional repressor of CDH1 

(Wong et al., 2014) and therefore may be important in some MDL cases.  

 

The TCGA provides a wealth of genomic data for large numbers of breast cancer samples. 

There were 29 MDL cases available for meta-analysis of gene expression and gene 

mutation data. Some caveats must be acknowledged with this approach, particularly when 

studying a tumour with morphological heterogeneity. For this study, it was therefore of vital 

importance to recognise the morphological characteristics of the specific region of the 

tumour sample from which DNA and RNA was extracted (lobular, ductal or admixed 

combination of both). We tried to address this by assessing the Cancer Digital Slide 

Archive (Section 4.2.4). There are many difficulties when looking at frozen tissue sections, 

particularly where freeze artefact can make the cells in a tissue section look discohesive. 

In most cases, two frozen section images were given and it was impossible to determine 

which one was used. FFPE slides were also available for most cases, and although this 

provides better morphology, this is unlikely to be directly representative of the frozen tissue 

processed for extraction. Ultimately therefore it was quite difficult to know whether the data 

obtained from the TCGA related to a ductal component and lobular component or an 

admixed component. These limitations need to be taken into account when interpreting the 

results.  

 

The genes frequently mutated in the MDLs from the TCGA (Section 4.2.4) were those 

similar to ER positive IC-NST and ILC. There were no genes known to be involved in cell 

adhesion mutated in the TCGA data, other than three cases with CDH1 mutations. 
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However, this could simply be a reflection of the proportions of either the ductal or lobular 

components sequenced; false negatives are a real possibility, given our morphology 

assumptions. E-cadherin IHC would be very useful in these cases to see if the cases 

without CDH1 mutation have aberrant localisation in the lobular component.  

 

The genes altered in the TCGA cohort could possibly affect novel pathways involved in the 

regulation of cell adhesion. For example, there were mutations in genes encoding proteins 

of the actin cytoskeleton and Wnt signalling, the alterations of which may be impacting cell 

adhesion through interactions with E-cadherin and β-catenin. The lack of direct hits to the 

cell adhesion complex may suggest that other mechanisms are at play, such as 

deregulation at the epigenetic or post-translational level or protein trafficking. 

Transcriptome profiling of a series of well-characterised, micro-dissected samples could be 

employed to help understand the underlying mechanisms.  

 

Four cases were selected for micro-dissection of the various invasive and pre-invasive 

lesions. There were difficulties in finding cases for molecular analysis, the most common 

limitations being that i) one or more of the important morphological components was too 

small (often the invasive lobular component); ii) or too old to get enough good quality DNA; 

or iii) the morphological components were too admixed to have a pure population of cells 

from both morphological components to investigate the cause of the switch in phenotype. 

All of the four cases chosen were less than 5 years old, the morphological components 

were sufficiently discrete and large enough to yield good quality DNA and thus some 

success in the exome sequencing. Only a preliminary data analysis has been undertaken 

on 3 of the 4 cases to date, to provide data for this thesis. We are awaiting further 

sequencing on the same samples to increase the depth of coverage and hence the 

robustness of the somatic variants called. The analyses shown will then be repeated, 

including IntOGen analysis and together with collaborative support to formulate more 

formal phylogenetic modelling of tumour evolution. We will also validate somatic mutations 

of interest by Sanger sequencing. 

 

Interestingly, one of the cases that displayed negative E-cadherin staining in the lobular 

component harboured a CDH1 mutation. In contrast, the other E-cadherin negative case 

and the cases with aberrant E-cadherin localisation did not have a CDH1 mutation, or any 

mutation was the obviously involved in cell-cell adhesion from this preliminary analysis. 

This finding supports our hypothesis that the mechanisms underlying aberrant E-cadherin 
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localisation are different to those in pure ILC. The deregulation of E-cadherin cell adhesion 

could be a result of a variety of gene expression changes, epigenetic modifications or sub-

cellular localisation changes. Gene expression or methylation analysis has not been 

attempted on this cohort, but is an important future direction that is worth pursuing.  

 

IntOGen is a resource developed to integrate the multitude of genome-wide data 

generated from the large international consortia such as the TCGA and ICGC (Gundem et 

al., 2010). Due to the large number of samples analysed by IntOGen, statistical analyses 

can be performed to detect the most likely driver mutations within a sample, and also 

calculate which genes contribute to similar biological pathways. In this cohort, the common 

driver genes across all cancer types were present at low frequency (less than 50%). The 

candidate driver gene analysis, however, showed that each case harboured unique driver 

genes. Of interest were somatic mutations in BRCA2 and SMAD4 in MDL6, which will be 

validated by Sanger sequencing. The IntOGen pathway analysis was revealing (Section 
4.2.6), where genes in pathways involved in gap junctions, Gonadotropin-releasing 

hormone (GnRH) and MAPK signalling pathways were the most frequently affected. Gap 

junction signalling was the top hit on the pathway analysis; therefore this pathway would 

be the first to be investigated further. Gap junctions (made up of the protein, connexon) 

directly connect the cytoplasm of two cells to allow various signalling molecules to pass 

through neighbouring cells. There are 20 different connexon genes in the human genome 

and it has been reported that only connexon 26 (GJB2) and connexon 43 (GJA1) are 

expressed in human mammary epithelial cells (El-Saghir et al., 2011). Tumour suppressive 

and tumour promoting roles have been proposed for connexons, and alongside tight 

junctions and adhesion junctions, gap junctions are important in maintaining cellular 

polarity and cell-cell communication (El-Saghir et al., 2011). Taken together, this pathway 

is a strong candidate for future investigation.   

 

It must be acknowledged that only a small number of cases were analysed in this study 

and therefore it would be of interest to also analyse the TCGA MDL cases using IntOGen 

to see if these same pathways are detected, and how comparable the frequencies of 

alterations in these pathways are in comparison to ILC, ER positive and ER negative IC-

NST. Other pathway analyses such as Ingenuity Pathway Analysis (IPA) and String on the 

TCGA gene expression data would be very complementary to this analysis. This may 

reveal pathways that are unique to each histological type of breast cancer. IntOGen 

analysis on a case-by-case basis in our cohort would also be interesting to see whether 
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there are different signalling pathways altered between each morphological component. 

This may reveal specific pathways that contribute to a change to an invasive lobular 

phenotype. A comparison of altered pathways between the case with the CDH1 mutation 

(MDL6, Section 4.2.5.3) to the cases without CDH1 mutation would also be of great 

interest to begin to understand how E-cadherin is becoming mislocalised in the lobular 

components of MDLs.  

 

4.4. Conclusions  
 

This study has found that the different morphological components present within an MDL 

tumour are clonally related and not the result of a collision of multiple independent 

tumours. It appears that in some cases the divergence of the morphological components 

may occur early during tumour evolution (where there are both DCIS and LCIS present) or 

later during tumour progression (cases with only DCIS detectible; Figure 4.5). The cases 

with late occurring divergence may be arising via a ductal like pathway of progression, and 

this study emphasises the possibility that a lobular-like phenotype can arise via a ductal 

pathway. Since the gap junction signalling pathway was a top hit from pathway analysis 

suggests that pathways of cell-cell adhesion, other than E-cadherin based adhesion 

junctions, may be important in breast tumourigenesis.   
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CHAPTER 5 
 

 

 

 

 

INVESTIGATING BREAST CANCER 
METASTASIS TO GYNAECOLOGICAL SITES 
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5. Investigating breast cancer metastasis to gynaecological sites 
 
5.1.  Introduction  
  
Death from breast cancer is not commonly caused by the growth of the primary tumour, 

but the spread of the tumour to distant sites – the process of metastasis, which accounts 

for 90% of all cancer deaths. The most common sites of breast cancer metastasis include 

the bone, lung, liver and brain. Analyses of autopsy and surgical series have compared the 

organ specific metastatic spread of the two main histological types, IC-NST and ILC. IC-

NST spreads more frequently to the lung/pleura, liver and brain. Whilst ILC spread to 

these organs too, they also have a propensity to spread to unusual sites and, relative to 

IC-NST they more frequently colonise the peritoneum, gynaecological sites, 

gastrointestinal tract, adrenal glands, central nervous system and skin. Primary tumours 

that are ER positive also have a different pattern of metastasis to those that are ER 

negative (see Section 1.10, (Sastre-Garau et al., 1996, Jain et al., 1993, Borst and Ingold, 

1993, Lamovec and Bracko, 1991, Arpino et al., 2004, Harris et al., 1984)).  

 

Due to our interest in ILC we decided to investigate metastasis to gynaecological sites as 

this has not been well characterised. Data from our own autopsy study (Cummings et al., 

2014) and others have demonstrated that gynaecological metastasis occurs in quite young 

patients. The median age at diagnosis of the primary tumour in patients that later 

developed gynaecological metastases ranged from 46-54 years (Demopoulos et al., 1987, 

de Waal et al., 2009, Kondi-Pafiti et al., 2011, Salamalekis et al., 2004, Cummings et al., 

2014). Secondary malignancies account for 7-10% of all gynaecological malignancies 

(Young and Scully, 1991) and patients can be asymptomatic for many years (Bigorie et al., 

2010). Up to 75% of patients with ovarian metastases experience symptoms that are not 

necessarily associated with malignancy, such as bloating, abdominal pain, 

postmenopausal bleeding and weight loss (Moore et al., 2004). Thus by the time the 

metastases are diagnosed, they can be wide spread and therefore overall survival is poor: 

52% of patients survive 2 years, 24-36% survive 5 years, and 7% survive 10 years (Ayhan 

et al., 2005, Skirnisdottir et al., 2007, Demopoulos et al., 1987, de Waal et al., 2009). 

Primary colon cancer is the most common tumour type to spread to gynaecological sites 

and perhaps this is not surprising given the incidence of this disease and the anatomical 

proximity of the tissues, where seeding may occur through the abdominal cavity. 

Interestingly, primary breast cancer is the second most common tumour to spread to 
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gynaecological organs suggesting that in this case there may be more targeted 

mechanisms of spread rather than by proximity (Moore et al., 2004, Kondi-Pafiti et al., 

2011, Yada-Hashimoto et al., 2003). Small studies have found breast cancers that spread 

to gynaecological organs are predominantly ER positive and HER2 negative (Bigorie et al., 

2010, St Romain et al., 2012) and as mentioned above invasive lobular carcinomas are 

more likely to spread to these sites, suggesting that hormonal signalling and/or a diffuse 

growth pattern might be important. In support of this, evidence from autopsy studies also 

shows that gynaecological metastases arising from mixed ductal lobular carcinomas 

frequently have a diffuse lobular-like growth pattern (Lamovec and Bracko, 1991).    

 

As described in Section 1.10.5, morphological and phenotypic intertumour heterogeneity 

among breast cancer patients has long been recognised, however the clinical implications 

of intratumour heterogeneity has recently come into the spotlight, particularly in regards to 

the complex process of clonal evolution in metastatic progression. Phenotypic 

heterogeneity between primary tumours and metastases has been described, where the 

expression of tumour biomarkers has been found to change during progression. For 

instance, ER and PR are frequently down-regulated with progression, particularly to lung, 

bone and liver (Cummings et al., 2014, Singhakowinta et al., 1976, Wu et al., 2008, 

Idirisinghe et al., 2010). Discordance of HER2 amplification/overexpression has also been 

reported in approximately 10% of metastatic breast cancer cases (Fabi et al., 2011). 

Genomic studies have shown that different primary tumour subclones have different 

metastatic capabilities and can spread to different distant sites (Campbell et al., 2010, 

Ding et al., 2010, Gerlinger et al., 2012, Yachida et al., 2010) and the acquisition of 

mutations in genes such as ESR1 may contribute to progression by conferring resistance 

to treatment (Section 1.3.1 (Jeselsohn et al., 2015). 

 

Treating metastatic breast cancer based solely on the characteristics of the primary 

tumour clearly has limitations and clinical practice is now recommending that metastases 

be biopsied to help determine treatment (Van Poznak et al., 2015). It is therefore of great 

importance to study metastatic progression to gain a greater understanding of the 

mechanisms and selective pressures that underpin tumour evolution and treatment 

resistance. 

 

The extent and overall clinical significance of clonal evolution in metastatic progression 

remains unclear owing to the scarcity of metastatic samples available for analysis. The fact 
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that gynaecological sites are generally operable (c.f. the brain) enables the opportunity to 

study mechanisms of metastasis and intratumour heterogeneity in detail, within human 

samples.  

 
5.1.1. Hypotheses and aims 
 

Tumour progression to metastasis is a complex process in which tumour cells evolve and 

acquire advantageous characteristics based on selective pressures from therapy, immune 

surveillance and growing in a new microenvironment. Metastatic progression to 

gynaecological organs is of interest since it has been identified to be a particular haven for 

invasive lobular carcinomas and is associated with young women. We hypothesise that 

metastasis to gynaecological organs is organotropic, facilitated by something peculiar 

about the biology of the primary tumour and/or the target organ (e.g. deregulated E-

cadherin and oestrogen signalling). The following aims were designed to try and address 

this hypothesis: 

• Collate a cohort of samples of primary breast cancers and matched metastases. 

• Characterise the cohort for clinical and pathology features.  

• Characterise the immunohistochemical phenotype of breast and metastatic tumours. 

• Assess the phenotypic and genomic heterogeneity between matched primary and 

metastatic samples. 

  
5.2. Results  
 

We have constructed a cohort of breast cancer patients who developed metastases to 

gynaecological sites. We used a variety of sources to acquire and characterise this cohort, 

including the identification of cases from the Queensland Centre for Gynaecological 

Cancer (QCGC) and Pathology Queensland (as described in Section 2.1). 

 

5.2.1. Clinical characteristics of gynaecological metastatic breast cancer cohort 
 

The QCGC database contained 1067 cases of gynaecological metastases diagnosed 

between 1982 and 2011 at the RBWH. The most common primary site to spread to the 

gynaecological sites was colorectal cancer (n = 239, 22.3%), followed by breast cancer (n 

= 108, 10.1%). Pathology reports and Queensland Cancer Registry reports were used to 

verify that the 108 cases were in deed breast cancer derived metastases. Data for 86 of 
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these cases were available and 54 had gynaecological metastases. There was fall out of 

32 cases as the additional searches revealed that some of the cases of gynaecological 

tumours were primary disease, were derived from another primary site or the primary 

tumour was from an unknown origin. 

 

Clinicopathological data for the 54 cases relating to the primary breast tumour (age of 

diagnosis, histological type, size, grade, lymph node involvement, ER, PR, HER2 status), 

treatment history, and characteristics of the metastases (age of diagnosis, sites involved, 

biomarker results) was recorded (Table 5.1 and 5.2). We compared the characteristics of 

this gynaecological metastasis cohort with our in-house ‘QFU’ cohort of 449 unselected 

sporadic primary breast cancers (described in Section 2.1). 
 

Some of the key findings are described: 

The median age of primary tumour diagnosis of gynaecological metastatic breast cancer 

patients was 47 years old (range 30-79 years); and using a cut-off of 51 years (the 

average age of menopause in Australia, (Do et al., 1998)) we found that 57.4% of patients 

were likely to be pre-menopausal at the time of diagnosis. Both these findings were 

significantly different between the two cohorts (Table 5.1). The median age at diagnosis of 

metastasis was 55 years (range 35-82 years) and the median time to metastasis was 6 

years (range 0-20 years). There was enrichment for ILC to spread to gynaecological 

organs (42.6%, compared to 17.8% in the QFU cohort; Chi-square test: p < 0.0001); and 

83.3% of patients in the gynaecological metastasis cohort had lymph node metastasis at 

primary tumour diagnosis, compared with 46.2% in the QFU cohort (p < 0.0001; Table 5.1) 

 

There were 255 metastatic deposits recorded for this cohort of patients. Of these, 137 

were identified in gynaecological sites and 118 in non-gynaecological sites (Appendix 
Table 5.1). The most common gynaecological sites involved were the ovary (46%) 

followed by the fallopian tube (23.7%) and uterus (20.1%; Figure 5.1 A). The majority 

(87%) of the cases also had other organs involved, most commonly the 

peritoneum/omentum (34.7%) and sites of the digestive system (21.2% e.g. appendix, 

stomach, colon). Interestingly, common sites of breast cancer metastasis, such as the 

lung, bone, brain and liver, were less frequently involved (9.3%, 16.9%, 5.9% and 5.9%, 

respectively) (Figure 5.1 B; Appendix Table 5.1). We also found that in 70.4% of 

patients, the gynaecological metastasis was the first site of distant metastasis identified 

clinically (based on analysis of the pathology and clinical reports, Appendix Table 5.2). 
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Table 5.1: Clinico-pathological characteristics of primary breast cancers with metastasis to 

gynaecological organs. 

  GM QFU  p value 
Age of breast cancer diagnosis  Years   Years   
Median 47 

  
60 

< 0.0001⌃ 
Range 30-79 27-88 
Menopausal status n % %   
Premenopausal 31 57.4 32.9 

0.0004 
Postmenopausal 23 42.6 67.1 
Tumour size  n % %   
<2 cm 14 43.8 46.6 

0.1922 
2 to 5 cm 12 37.5 44.5 
>5 cm 6 18.8 8.9 
Unknown 22 

    
Total 54 
Histological type n % %   
Invasive carcinoma NST 26 48.1 71.1 

< 0.0001 

Invasive lobular carcinoma (incl. pleomorphic ILC) 23 42.6 17.8 
Mixed ductal-lobular carcinoma 1 1.9 11.1 
Bilateral IC-NST/ILC 2 3.7 

  
Medullary carcinoma 1 1.9 
Tubular carcinoma 1 1.9 
Total 54   
Tumour grade n % %   
Grade 1 2 6.6 14.2 

0.3622 
Grade 2 14 46.7 49.5 
Grade 3 14 46.7 36.3 
Unknown 24 

    
Total 54 
Lymph node status n % %   
Positive 30 83.3 46.2 

< 0.0001 
Negative 6 16.7 53.8 
Unknown 18 

    
Total 54 
Age of first metastasis diagnosis  Years       
Median 55 

      
Range 35-82 
Number of metastatic sites  n %     
1-3 22 40.7 

    
4-11 32 59.3 
Median 4.5 

  
Range 1-11 
Progression free survival (n = 54) Years       
Median 5 

      
Range 0-20 
Time until death (n=22) Years       
Median 10 

      
Range 2-24 
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^ t-test; all other p-values were derived using Chi-square analysis. All statistical analyses were 

performed using GraphPad Prism version 6. 

 

 
Figure 5.1: Patterns of breast cancer metastasis. A) Frequency of gynaecological sites 

involved. B) Sites involved alongside gynaecological metastasis. 

 
We consulted Queensland Health clinical databases and medical records to obtain 

treatment information for the patients in the cohort (Section 2.1; summarised in Table 
5.2). Unfortunately, limited data was available as many patients were i) diagnosed with 

breast cancer over 20 years ago; ii) they were treated at hospitals not in the Brisbane 

region or iii) they were treated at a private hospital. Of the data available, 10 patients 

received both endocrine therapy and chemotherapy for treatment of their primary tumour. 

Seven patients received only chemotherapy and seven received only endocrine therapy. 

Twenty-one cases received radiation therapy as well as systemic therapy, while 4 cases 

only had data available for radiation treatment. It is reasonable to assume that most of the 

patients in this cohort received systemic therapy and radiation therapy for their primary 

tumour, but we were unable to locate the information.  

 

Bone – 16.9% Peritoneum/omentum – 34.7% 

Digestive system – 21.2% 

Brain and nervous system – 5.9% 

Distant lymph nodes – 8.5% Lung/pleura – 9.3% 

Skin – 1.7 % 

Bladder – 1.7 % 

n = 137

Ovary
Fallopian tube
Uterus (incl; endo/myometrium)
Cervix
Vagina
Mons pubis

Distribution of gynaecological sites

A) 

B) 
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Table 5.2: Summary of treatment received by patients with gynaecological metastases. 

  

Primary tumour Metastatic disease 

En
do

cr
in

e 

C
he
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py
 

R
ad

ia
tio

n 

En
do

cr
in

e 

C
he

m
ot

he
ra

py
 

R
ad

ia
tio

n 

GM01 Y Y Y N Y N 
GM02 x x Y x Y x 
GM06 N Y Y N x x 
GM07 x x Y Y x Y 
GM09 Y x x Y Y x 
GM11 x x x Y x Y 
GM13 x Y N Y x x 
GM15 Y x x Y x x 
GM16 Y x Y Y Y x 
GM18 x x Y x x x 
GM24 x Y Y x x x 
GM29 Y x Y x x x 
GM33 Y Y Y Y x x 
GM36 x Y Y Y Y Y 
GM37 Y x Y x x x 
GM39 Y x Y Y Y x 
GM41 Y Y Y Y Y x 
GM45 x x x x Y x 
GM47 Y Y Y x x x 
GM48 x x x Y Y x 
GM49 Y Y Y Y Y x 
GM50 Y x Y Y Y x 
GM57 Y Y Y Y Y x 
GM59 Y Y Y Y Y x 
GM67 x Y Y Y x Y 
GM72 x Y x Y Y Y 
GM73 x x Y x x x 
GM74 x Y Y x x x 
GM76 Y Y Y Y Y x 
GM77 Y Y Y x x x 
GM78 x x x x Y Y 
GM87 x x Y x x Y 
GM89 Y Y Y Y Y Y 

x = data not available. Y = yes; N = no.  
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5.2.2. Immunophenotyping of primary breast cancers and gynaecological 
metastases 

 

Tissue blocks were retrieved from various pathology laboratories around Queensland 

(Section 2.1). Blocks were available from public and private hospitals for 39 cases. Fifteen 

cases had matched primary tumour and metastases, while 4 cases had only the primary 

tumour available and 20 cases had the metastases available.  

All 39 cases were sampled across 6 TMAs (Section 2.4, see Appendix Figures 2.2 to 2.7 
for TMA maps). Of the metastatic sites available, 107 sites were arrayed on the TMAs; 50 

from ovaries, 35 from other gynaecological sites, 12 from either the peritoneum or 

omentum, 4 gastrointestinal sites, 5 lymph node metastases and 1 brain metastasis. In 

some cases we observed morphological heterogeneity, and so multiple areas were 

sampled (labelled as growth pattern 1, 2 etc.). Immunohistochemistry was performed 

(Section 2.5.4) to assess the expression of clinically relevant biomarkers ER, PR and 

HER2 that are routinely used in clinical practice to guide treatment options (Section 1.2.2). 

Biomarkers that are of interest in breast cancer biology (see Sections 1.3) were also 

assessed in this cohort of patients with gynaecological metastasis to further characterise 

the cohort, including p53, Ki67, CK5/6, CK14, EGFR, E-cadherin, AR, GATA3 and FOXA1. 

Data was supplemented from pathology reports where tissue was not available yet IHC 

had been performed for diagnostic purposes. All raw data is presented in Appendix Table 
5.3. 
 

Breast cancers that spread to gynaecological sites frequently expressed ER (93.5%) and 

PR (65.7%), but never HER2 (100% of cases were negative). This data was compared to 

the QFU cohort described in Section 2.1 and the frequent expression of ER and the lack 

of HER2 expression was found to be significantly different in gynaecological-metastatic 

breast cancer compared to unselected sporadic breast tumours (p < 0.0001; Figure 5.2, 
Figure 5.3). The frequency of PR expression was not significantly different between the 

cohorts (p = ns).  
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Figure 5.2: The proportion of primary breast cancers that were positive or negative for ER, 

PR and HER2 in our two cohorts – our in-house cohort of unselected sporadic breast 

cancers (the QFU cohort) and our cohort of primary breast cancers that spread to 

gynaecological sites (GM BC). The number at the top of each column denotes the total 

number of tumours analysed. The GM BC data is a combination of data from the TMA 

analysis and supplemented by pathology report data when the tissue was unavailable.  

The expression of ER and HER2 were significantly different (p < 0.0001) between the two 

cohorts. 
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Figure 5.3: Immunophenotype of a representative gynaecological metastatic primary breast 

tumour. These primary tumours display features of a good prognosis (i.e. equivalent to a 

luminal A molecular phenotype) and the phenotype is largely maintained during metastatic 

progression. 
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We were interested to see if the expression of ER, PR and HER2 changed during 

progression to gynaecological sites. We found that 93.3% of the metastatic sites sampled 

expressed ER, 66% expressed PR and no metastatic sites expressed HER2. The 

metastatic sites were separated into discrete anatomical regions (Figure 5.4), and no 

significant differences in expression of ER and PR were observed between sites, though 

the omentum and peritoneum showed a slightly reduced frequency of positivity.  

 

 
Figure 5.4: The expression of ER and PR is maintained during progression to 

gynaecological sites. No differences in the frequency of expression of either biomarker 

were observed between anatomical sites. GM BC = primary breast tumours that spread to 

gynaecological sites. Oment/Periton = omentum and peritoneum. 

 

The expression of CK5/6, CK14 and EGFR are used as IHC surrogate biomarkers for 

tumours with a basal-like phenotype. Basal-like tumours are associated with poor overall 

survival and short time to metastasis (Fulford et al., 2007). None of the 10 primary tumours 

that had data available expressed basal markers. This was significantly different to that 

observed in the QFU cohort (Figure 5.3 and 5.5 A; CK14: p = 0.0564; CK5/6: p = 0.0016; 

EGFR: p = 0.096). All of the metastases were also negative for the basal markers. CK5/6 

and CK14 were focally positive (expressed in less than 10% of cells) in one metastatic 

deposit from two individual cases and when using a cut off of 10% these would not be 

considered basal-like.   
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p53 IHC staining is typically associated with aggressive high-grade breast cancers (Rakha 

et al., 2010b). Here we scored staining in the tumour nuclei as low (10-30% of tumour 

nuclei positive) or high (>30% of tumour nuclei positive). Primary breast cancers that 

spread to gynaecological sites were most frequently negative for p53 (68.4%; 10.5% 

showed low expression; 21.1% showed high expression). The metastases were more 

frequently positive than the primary tumours (37.9% vs. 21.1%, respectively) and this was 

found to be significant (p = 0.0227; Figure 5.5 B). Cytoplasmic localisation of p53 was not 

observed. 

 

 
Figure 5.5: A: CK14, CK5/6 and EGFR are not expressed in breast cancers that spread to 

gynaecological organs. All of the metastases were also negative for CK14, CK5/6 and EGFR 

(not shown). B) The expression of p53 in breast cancers and gynaecological metastasis.  

 

Ki67 is a commonly used biomarker to assess tumour cell proliferation. Tumours that 

express high levels of Ki67 tend to have a higher rate of proliferation and are associated 

with poorer patient outcome (Section 1.3). Ki67 has become an important surrogate 

biomarker for molecular subtyping. Particularly in the context of ER/PR positive tumours, 

where it can be used (as well as HER2 in some instances) to stratify luminal A and B 

subtypes (Cheang et al., 2009). In comparison to sporadic breast cancers, primary breast 

cancers in our gynaecological metastasis cohort had a low Ki67 proliferative index (p < 

0.0001; Figure 5.6 A, Figure 5.3). When comparing primary tumours and metastases, 

Ki67 expression was higher in the metastases (p < 0.0001).  
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The epithelial cell specific marker CK8/18 was also assessed across the TMAs and 

CK8/18 was expressed in 100% of the primary tumours and metastatic samples analysed 

(data not shown). 

 

In summary, this data indicates that primary tumours from patients who developed 

gynaecological metastasis fit with a luminal A phenotype (i.e. ER and PR positive, 

negative for HER2 and basal markers and are Ki67 low). Across the cohort expression of 

ER, PR, HER2 and the basal markers do not change during progression, however p53 and 

Ki67 shows an increase in frequency of expression in the metastases versus the primary 

tumours sampled.  

 

 
Figure 5.6: A) Ki67 expression in breast cancer and gynaecological metastases. GM BC 

have a lower Ki67 index cf. with sporadic breast cancer (p < 0.0001) and the metastases 

express more Ki67 than the primary tumours (p < 0.0001). B) Androgen Receptor 

expression in breast cancer and gynaecological metastases. No differences in AR 

expression were found other than lower expression of AR in the omentum/peritoneum (p = 

0.0127) to compared to the other metastatic sites. 

 

5.2.2.1. Expression of other hormone receptors and ER regulatory proteins in 
gynaecological-metastatic breast cancer 

 

Given the luminal phenotype described of this tumour cohort, we investigated the 

expression of other hormone receptors and regulatory molecules. The expression of ERβ 

(clone 14C8) was attempted, however the antibody optimisation was unsuccessful with no 

staining obtained. 
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The androgen receptor plays an important role in hormone signalling in prostate cancer 

and is also frequently expressed in breast cancers; it is believed that AR plays different 

roles in ER positive and ER negative disease (Section 1.3). We found that 89.5% of 

gynaecological-metastatic primary tumours expressed the androgen receptor (AR), 

compared to 88% of sporadic breast cancers (Figure 5.6 B). We did not observe a 

significant change in AR expression in the metastatic sites (77.5% expressed AR). We did 

find, however, that AR expression was significantly less frequent in non-ovarian 

gynaecological sites (23/33; 69%) and the peritoneum/omentum (3/10; 30%), compared to 

all other sites was statistically significant (p = 0.0127).  

 

As described in Section 1.3, FOXA1 and GATA3 are essential for ER transcriptional 

activity, and loss of these proteins has been found to redirect ER to bind to different areas 

of the genome and change the transcriptional program of the cell. This change of gene 

expression has been associated with endocrine resistance (Hurtado et al., 2011, Ross-

Innes et al., 2012). FOXA1 was expressed in 77.7% (317/408) of our unselected sporadic 

breast cancer cohort, and this was significantly different to the 100% (19/19) FOXA1 

positive primary breast tumours that metastasised to gynaecological sites (Fisher’s exact 

test, p = 0.0181; Figure 5.7 A). FOXA1 was expressed in 73.1% of metastatic sites, and 

the difference in FOXA1 expression between primary tumours and all metastases was 

significant (Fisher’s exact; p = 0.0123). No significant difference in FOXA1 expression 

between different metastatic regions was found. 

 

All (19/19; 100%) of the primary tumours expressed GATA3, compared to 84.6% 

(356/421) of sporadic breast tumours (p < 0.0001; Figure 5.7 B). The expression of 

GATA3 in the metastatic sites (54.3%) was significantly reduced (p < 0.0001); there was 

no significant difference between metastases at different anatomical sites.  

 

FOXA1 and GATA3 were co-expressed in the metastases in 25/39 cases (64.1%). Of the 

14 cases that displayed mutually exclusive expression, 64.3% of the metastatic sites were 

GATA3 negative and FOXA1 positive while 35.7% of cases were the opposite (5 cases 

were GATA3 positive and FOXA1 negative). The number of cases is too small to correlate 

the changes in FOXA1 and GATA3 expression with age, menopausal status and 

histological type.  
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Figure 5.7: FOXA1 and GATA3 expression in primary tumours and gynaecological 

metastases.  

A) FOXA1 was more highly expressed in gynaecological metastatic primary tumours 

compared to our sporadic primary tumour cohort (p = 0.0181, Fisher’s exact test). Loss of 

FOXA1 expression in the metastases was significant more frequent compared to the 

primary tumours from the same cohort (Fisher’s exact test, p = 0.0123).  

B) Similarly, GATA3 was more highly expressed in gynaecological metastatic primary 

tumours compared to our sporadic primary tumour cohort and expression was lost during 

progression to metastasis (p < 0.0001). 

 

To summarise, AR, FOXA1 and GATA3 were highly expressed in the primary tumours that 

spread to gynaecological sites. Expression of all three markers however was lost during 

metastatic progression in a significant number of cases.  

 

5.2.2.2. The expression of E-cadherin during progression to gynaecological sites 
 

The E-cadherin cell-cell adhesion complex plays an integral role in ILC biology were it is 

deregulated in the vast majority of cases, and can also be down regulated in high-grade 

IC-NST (Section 1.8.1). 

 

E-cadherin data was available for 11 ILC primary tumours and 54 ILC metastases. Nine of 

the 11 (81.8%) primary tumours were completely negative for E-cadherin, while the 

remaining two cases displayed aberrant E-cadherin localisation (fragmented membrane 

and cytoplasmic). The most predominate phenotype in the metastases derived from an 

ILC was E-cadherin negative (79.6%), the remaining tumours all displayed aberrant E-
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cadherin localisation. There were 9 cases with matched primary ILC and metastasises and 

100% of cases were concordant.  

 

E-cadherin IHC was performed on 12 IC-NST primary tumours and 55 IC-NST derived 

metastases. Positive membrane staining was observed in 8/12 (66.7%) of the primary 

tumours and in 19/55 (34.5%) of metastases. E-cadherin was negative in 3/12 (25%) 

primary tumours while 27/55 (49.1%) metastases had aberrant E-cadherin localisation 

(either fragmented membrane in over 50% of tumour cells or cytoplasmic). There were 6 

cases with matched primary IC-NST and metastatic tumours. Half of the cases (3/6) cases 

were concordant, 1 case had a metastasis that was lobular like with cytoplasmic E-

cadherin localisation (Figure 5.8, top panel GM36) and 2 cases were negative in the 

primary tumour but the metastases were positive (Figure 5.8, bottom panels GM57 and 

GM16). These discrepancies are interesting and can possibly be explained i) by 

heterogeneous staining in the tumour and therefore the tissue sampled on the TMA isn’t 

representative of the whole tumour; or ii) a small, lobular-like subclone seeded the 

metastasis. This pattern of expression is unlikely to be related to experimental artefact 

(e.g. antibody failing or missing this tissue core) since these cores have worked for other 

antibodies and surrounding cores worked for E-cadherin.  
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Figure 5.8: Heterogeneous E-cadherin expression in 3 cases of IC-NST with gynaecological 

metastases. 

 

5.2.3. Concordance of biomarker expression during metastasis to gynaecological 
sites 

 

As described in Section 1.10.5, phenotypic heterogeneity has been identified to occur 

during breast cancer progression. Particularly, ER and PR are frequently down regulated 

during progression to the lung, bone and liver (Cummings et al., 2014). To that end, we 

analysed the change of expression of biomarkers during progression to gynaecological 

sites on a case-by-case basis where the primary tumour and metastases were available 

(data summarised in Figure 5.9). Concordance of ER (n = 37) and PR (n = 28) expression 

between matched cases with data from the primary tumour and metastatic sites was 

analysed. Eighty-six per cent (32/37) of cases expressed ER in the primary tumour and all 

metastatic sites. In 4 cases, partial concordance was observed, where ER expression was 

the same as the primary tumour in some metastases but different in other sites (10.8%). 

One case was discordant and interestingly the primary tumour was ER negative and the 
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metastases gained ER expression. Of the 5 cases showing some degree of discordance, 

ER was lost in 3 and gained in 2 cases during progression (Figure 5.9). Concordance of 

PR expression between matched primary and metastatic tumours was seen in 12/28 

cases (42.9%). Eight cases had partial concordance and 8 cases were discordant. Down-

regulation/loss of expression of PR was also the most frequently observed change during 

progression (11/28, 39.2%), while in 5 cases, the metastases gained expression of PR.   

 

AR did not change during progression in 8/13 cases (61.5%). Of the cases that were 

partially concordant (n = 2), or discordant (n = 3), AR was most frequently down regulated 

in the metastases compared to the primary tumour (n = 3). FOXA1 and GATA3 showed 

similar patterns during metastatic spread, with frequent concordance (GATA3: 8/13, 

61.5%; FOXA1: 10/14, 71.4%). Of the cases with change of expression in at least one 

metastatic site, GATA3 or FOXA1 were down regulated in the metastases compared to the 

primary tumour (Figure 5.9).   

 

For p53, 38.5% (5/13) matched cases showed complete concordance between the primary 

and metastases. Four cases showed partial concordance and 4 cases were discordant 

between the primary tumour and metastases. In the cases with discordant p53 expression 

it was most frequently observed that the primary tumour was negative and metastases 

were positive for p53 (n = 7; Figure 5.9). Ki67 expression in 11 matched cases showed a 

similar pattern to p53, where 36.4% of cases were concordant. In the cases that were 

partially concordant (n = 3) or discordant (n = 4), Ki67 expression was most frequently 

negative in the primary tumour and positive in the metastases (n = 5; Figure 5.9).  
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Figure 5.9 Biomarker expression during progression to gynaecological sites in matched 

cases. This graph includes cases with partial concordance to show if expression does 

change in even one site, was it up or down regulated. Each line represents an individual 

case.  

 

The data (summarised in Figure 5.9) shows that for most cases ER, PR, AR, GATA3 and 

FOXA1 are all expressed in the primary tumour and expression is maintained during 

progression to gynaecological sites (31/99, 31.3%). As has been found for ER and PR in 
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other similar studies (Cummings et al., 2014), there is sometimes loss of expression of any 

of these markers during progression; most notably we observed loss of GATA3 (22/99, 

22.2%) and PR expression (20/99, 20.2%) in metastases. All of the raw data is 

summarised in Appendix Table 5.4. In summary, most primary tumours appear to be 

hormone dependent and many of the metastases (31/99) maintain the expression of ER, 

PR, GATA3 and FOXA1. There seems to be a pattern in which all of these markers are 

down regulated in the metastases to some degree. PR and GATA3 loss are the most 

frequent markers that are down regulated (20/99 and 22/99, respectively; Figure 5.10).  

 

 
Figure 5.10 Expression relationships between ER, PR, GATA3 and FOXA1 in gynaecological 

metastases (a total of 99 metastatic sites from 54 patients). Venn diagram of metastatic 

sites with positive expression of said markers. 

 

5.2.4. Genomic analysis of primary breast tumours and gynaecological metastases 
 

A genomic approach was also undertaken to determine whether there are specific 

molecular alterations associated with metastasis to gynaecological sites. For instance, 

whether there are alterations in the primary tumour that might predict metastasis risk or if 

there are alterations in the metastases that reflect clonal selection (e.g. driving treatment 

resistance) during progression. DNA was extracted from archival FFPE tumour tissue from 

27 patients and following quality control (see Sections 2.8 to 2.10), samples were sent to 

the Ramaciotti Centre for Genomics for array-based Comparative Genomic Hybridisation 

(aCGH) on the Agilent platform to measure genome wide copy number alterations (CNA) 
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(Section 2.11.3). A total of 84 samples underwent aCGH (Table 5.3); 68 samples had 

sufficient DNA yield and concentration to be analysed on the 180K array, and 16 lower 

yield samples on the 60K array (which has lower DNA requirements). We have previously 

used the 60k array using DNA extracted from primary breast and metastatic samples 

obtained from autopsies performed as far back as the 1960s (Cummings et al., 2014). 

 

Table 5.3 Summary of the tumour sites that underwent copy number profiling. 

Site n Site n 

Breast 10 Vagina 2 

Ovary 42* Vulva 2 

Fallopian tube 10 Colon 2 

Cervix 5 Omentum 2 

Endometrium 5 Appendix 1 

Lymph node 3   

*In 8 cases, the ovarian metastasis was sampled in two areas of the tumour 

 

Quality control (QC) data (based on several metrics such as hybridisation intensity and 

background noise) generated by the Agilent software following array hybridisation initially 

indicated that the experiments had in general performed poorly, particularly on the 60K 

array, where no samples passed QC. There was also some evidence of a batch effect, 

with the second batch of 180K arrays having a slightly higher success rate than the first 

batch of 180k arrays (9/22 v.s. 2/20). This may suggest some technical issues with the 

sample labeling/array processing 

We investigated whether there was any correlation between array success and QC we 

performed in house, such as Nanodrop and Qubit readings and the Infinium HD FFPE QC 

assay. All samples performed well in the Infinium QC assay and all of the Nanodrop 

260/230 ratios were within the desired range (2.0-2.2), indicating that the samples were 

free from contaminants. Data obtained following the labelling reaction suggested 

incorporation of Cy3 dye was suboptimal and this showed some correlation with the 

hybridisation signal intensities obtained. Discussions with the Ramaciotti Centre and 

Technical Specialists at Agilent to resolve these issues are ongoing and we are awaiting 

results from trial experiments that have been performed to try and improve the dye 

labelling efficiency using technical repeats of samples already processed that had either 

worked well or had worked poorly.  
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5.2.4.1. Copy number profiling of breast cancers and gynaecological 
metastases 

 

Although the QC data indicated the arrays had not performed well, some of the arrays 

were analysable and we have begun to analyse aCGH data using the Agilent’s 

Cytogenomics software package version 3.0 and other existing CNA analysis pipelines in 

R to try and get some DNA copy number data. For instance Figure 5.11 shows the whole 

genome copy number profiles obtained from the180k arrays of one case of primary tumour 

and multiple metastases. The figure shows some variability in data quality yet the ability to 

still identify copy number alterations. 

 

All of the samples (including those on the 60K array) were analysed by the bioinformatics 

student in our lab. Across 10 primary breast tumours, the most frequent alterations 

observed (in over 75% of cases) were gains on 1q, 8p, 8q, Xp. Other frequent gains were 

on 4p, 11q, 16p, 17q and 19. Frequent losses occurred on 1p, 4p/q, 6p/q, 8p, 11q and 

16q. Amplifications (high level gains) were detected at 1q, 8p and 22q in over 50% of 

cases (Figure 5.12. GISTIC (Genomic Identification of Significant Targets in Cancer 

(Mermel et al., 2011); Section 2.11.3) analysis was performed to identify the most 

significantly amplified regions and genes within the cohort. 22q11.23 amplification 

(ADORA2A, SPECC1L, UPB1) was the most significant result, followed by amplifications 

on 8p11.23 (ADAM32) and 4p14 (APBB2, UCHL1, LIMCH1, RBM47, NSUN7). There were 

no significant regions of homozygous deletion in these cases.   

 

In total, there were 42 ovarian metastases profiled from 34 cases and copy number gains 

were observed in over 75% of cases on 1q, 2p, 8p, 11q, 16p and Xp. The most frequent 

copy number losses observed were on chromosomes 6, 13 and X. Amplifications were 

identified on 1q, 2q and 8q in over 60% of samples (Figure 5.13). The most significant 

amplifications as determined by GISTIC analysis were located on 2q11.2 (PDCL3), 

11q12.3 (POLR2G, TAF6L, ZBTB3), 1q23.1 (22 genes, see Appendix Table 5.5) and 

8q23.3 (TRSP1). There were also 21 metastases from other gynaecological sites and 11 

metastases from non-gynaecological sites copy number profiled. The copy number profiles 

from both the gynaecological and non-gynaecological sites are similar to that seen in 

Figure 5.13 (see Appendix Figures 5.1 and 5.2). Significant regions of amplification were 

shared between the primary tumours and ovarian metastases on 2p24.1, 2q11.2, 4p14, 

4q31.3, 7q21.11, 8p11.23, 8q23.3, 12q24.22, 14q32.33, 22q11.23, and Xp22.33.  
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Figure 5.11: An example of the variability in data quality obtained from a case (GM63) of 

primary tumour and multiple metastases analysed using the 180K array. The primary 

tumour and lymph node metastasis was excised in 1993 and performed better then the 

distant metastases removed in 1999. Data was analysed using Cytogenomics software. The 

X axes of each plot shows chromosomes from 1 through to X; the Y axes of each plot 

represents the log 2 ratio of the tumour sample to the normal reference sample. The black 

line is a smoothed log 2 ratio of the copy number profile of each tumour. When the copy 

number increases above 3 copies then a copy number gain is called (+1), and greater than 4 

copies is called an amplification (+2) (see highlighted blue regions in chromosome 1q and 

16p of each tumour). When a copy number decrease below -1 log 2 ratio then a 

heterozygous deletion is called, and -2 is a homozygous deletion (see highlighted red 

regions in chromosomes 6q, 8p, 11p, 12q, 16q, 17p and 22 in each tumour). Despite the 

variable quality of array data, DNA CNAs were still identified with some confidence. 
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Figure 5.12 Frequency plots of DNA copy number alterations across all chromosomes in 10 primary breast tumours. Left panel displays 

copy number gains and loss; the Y-axis refers to the proportion of cases with a gain (shown in red) or a loss (shown in green) at a 

particular locus in the genome. The right panel displays the frequency of amplifications (maroon) and homozygous deletions (blue) across 

the genome. * Refers to the most frequent focal gene amplifications. Note chromosome ‘23’ refers to chromosome X. 
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Figure 5.13 Frequency plots of DNA copy number alterations across all chromosomes in 34 ovarian metastases.  Left panel displays copy 

number gains and losses; right panel displays amplifications and homozygous deletions. 
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5.2.5. Genomic evolution during metastasis to gynaecological sites 
 

Figures 5.14 and 5.15 summarise the copy number changes across the genome in cases 

with a primary tumour and matched metastases. High-amplitude genomic gains 

(amplifications, or copy number gains of higher than 6 copies) across the 9 matched cases 

are presented in Figure 5.15. Analysis of this data starts to give some insight into tumour 

evolution during progression. Overall, within each case there are regions of CNAs that are 

shared between the primary tumour and all metastases indicating that the metastases are 

clonally related to the primary tumour, as expected. There are also CNAs that are unique 

to the primary tumour or to the metastases indicating that some level of clonal diversity 

has occurred during metastatic progression.  

 

For example, there are numerous CNAs shared between the primary tumour, a left ovary 

metastasis and a right ovary metastasis in case GM06: gains of 8q and loss of 8p 16q and 

X. However, loss of 4p, focal gain and focal amplification of 1q and 11q were unique to the 

metastases and were not detected in the primary tumour (Figure 5.14 and 5.15). Similarly 

there are multiple common CNAs shared between tumours in case GM63, yet loss of 13q 

is unique to the distant metastases and is not detected in either the primary tumour or the 

co-incident, regional lymph node metastasis. This data may also provide evidence of both 

linear and parallel evolution (Section 1.10.4). In cases GM06 and GM59, all of the CNAs 

in the primary tumour were present in the metastases, but the metastases have more 

CNAs, suggesting that the tumour clone that seeded the metastases left the primary site 

late during progression of the primary tumour (linear progression). Amplification of 11q13 

(which involves the commonly amplified gene CCND1) in the metastases may be a driver 

alteration promoting progression in GM06. GM59 has gains in regions that contain the 

driver oncogenes CCND1 and MYC that may also be important. On the other hand, cases 

GM29 and GM57 have evidence of shared CNAs as well as CNAs that are unique to both 

the primary tumour and the metastases. For example, whole arm gain of 22q and 

amplification of the region containing CCND1 was present in the primary tumour but not 

present in the metastasis of GM29. This suggests that the clone the seeded the 

metastasis may have left the primary tumour early in the course of disease progression 

(parallel progression) and both the primary tumour and metastases continued to 

accumulate genomic alterations before they were detected.  
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Figure 5.14 Summary of copy number alterations within 9 matched primary and metastases samples. Red areas are regions of copy 

number gain, while blue areas indicate copy number loss. Chromosome 23 is Chromosome X. The tenth matched primary and metastasis 

failed the experiment. 
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Figure 5.15 Summary of genomic amplifications within 9 matched primary and metastases samples. Red areas are regions of high-level 

copy number gain, known as amplifications. Chromosome 23 is Chromosome X. 
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5.2.5.1. Mutation analysis of breast tumours and matched gynaecological 
metastases 

 

To complement the DNA copy number profiling we undertook DNA sequencing to identify 

gene mutations that may contribute to metastasis to gynaecological sites. Exome 

sequencing was attempted for six cases with primary and multiple metastatic tumours and 

matching normal DNA obtained from normal FFPE blocks (e.g. uninvolved lymph node). 

Our lab has had success in sequencing FFPE–derived tumour in a range of projects. For 

this project we sent the FFPE DNA to Macrogen (Section 2.11.2) based on competitive 

price and turn around time. Unfortunately all the samples failed QC metrics employed by 

Macrogen during library preparation; at our request a single case (GM16) was taken 

through to Agilent SureSelect exome library preparation, but this also failed. We then 

decided to trial one case (GM63) using the Illumina Nextera exome sequencing protocol at 

Queensland Centre for Medical Genomics (QCMG; Section 2.11.2). Sequencing libraries 

were successfully generated from the primary tumour, four metastatic sites and matched 

normal DNA. Preliminary data indicates that this case performed poorly, each sample had 

low sequencing coverage and therefore mutation calls could not be obtained accurately. 

 

In understanding the challenges of sequencing DNA derived from FFPE material, we also 

designed, in parallel, an Agilent SureSelect custom targeted sequencing assay to 

sequence 45 genes (Section 2.11.1, Table 2.3). Baited capture-based targeted 

sequencing is a technique that can be utilised to sequence degraded FFPE DNA (Section 
2.11.1). Both FFPE and fresh frozen DNA samples were used in a trial to compare the 

data quality between these types of sample and to test the assay design for gene 

coverage. A first pass analysis of the sequencing data revealed that the read depth of 

each gene was too low to confidently call any somatic mutation (Table 5.4); only four 

samples had and average of over 100 reads across all targets, therefore the samples will 

be sequenced again to obtain greater gene coverage.  
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Table 5.4 Summary of samples sequenced and the read depth in the SureSelect capture-

based custom sequencing panel. 

Sample # Sample DNA 
source 

Average 
read depth 

Median 
read depth 

Range 
read depth 

1 GM16 NLN FFPE 158 135 57-496 
2 GM16 Br FFPE 42.96 42.5 9-57 
3 GM16 LO2 FFPE 56 55 55-58 
4 GM16 LT1 FFPE 61.5 58 53-100 
5 GM16 RO2 FFPE 78 70.5 50-184 
6 Gut met 1 FFPE 795 602 340-2845 
7 Gut met 2 FFPE 69 58 39-265 
8 Q330 Frozen 80 69 5-327 
9 ILC-02-09-078 Frozen 359 296 45-755 

11 GM59 RO FFPE 53 48 39-81 
12 GM59 Br FFPE 47 49 11-82 
10 GM57 Ovary FFPE 673 58 19-118 
13 GM57 Br FFPE 0 0 0 
14 GM13_RO FFPE 61 63.5 5-124 
15 GM74_LO FFPE 53.9 39 6-204 
16 GM74_Br FFPE 56.9 53 6-204 

NLN: normal lymph node. Br: breast. LO: left ovary. LT: left fallopian tube. RO: right ovary. 

 

5.3. Discussion  
 

It is important to understand the natural history of metastatic disease, as it will impact the 

prognosis of the patient. The most common sites of metastasis from breast cancer are the 

lungs, liver, bones and brain, with some differences in distribution according to the 

characteristics of the primary tumour (as described in Section 1.10.3). For example, 

breast tumours that spread to the brain tend to be associated with high grade IC NST of 

HER2 or basal-like subtypes; metastases occur relatively quickly, with a latency of less 

than 5 years (Lagerwaard et al., 1999). Conversely, data accumulated here and from the 

literature (Bigorie et al., 2010, Demopoulos et al., 1987, Ferlicot et al., 2004, Borst and 

Ingold, 1993, St Romain et al., 2012, Cummings et al., 2014) suggest metastasis to 

gynaecological organs is associated with different primary tumour characteristics and a 

different clinical pattern of progression to that seen for brain metastasis. Some of the key 

findings from this study and supporting literature are: 

• Metastasis to gynaecological organs affects young women who are likely to be pre-

menopausal at the time of their primary diagnosis; in our cohort the median age of 

primary tumour diagnosis was 47 years, and the median age of first metastasis 

diagnosis was 55 years. 
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• The interval between primary breast diagnosis and metastasis can be between 5 to 20 

years (Bigorie et al., 2010, Demopoulos et al., 1987). In our cohort, the median 

progression free survival time was 5 years (ranging 0-20 years). Therefore, for some 

patients metastasis is frequently diagnosed outside the typical follow-up window of 5 

years (Section 5.2.1). 

• The primary tumour can be either IC NST (48.1%) or ILC (42.6%) histological type, 

which represents a significant enrichment in ILC spreading to these tissues relative to 

the incidence of ILC in the general breast cancer population. 

• The immunophenotype of the primary tumours was associated with features typical of 

good prognosis disease: ER and PR positive, negative for HER2 and basal markers 

and low Ki67 expression (i.e. a luminal A phenotype). 

• The majority of patients (83.3%) had dissemination to the regional lymph nodes at the 

time of primary tumour diagnosis. 

• Patients with gynaecological metastasis also presented with a unique pattern of 

dissemination. The frequent sites of breast cancer metastasis were rarely involved 

(lung, liver, brain) and the high frequency of GI, omentum and peritoneum metastases 

suggests a unique mechanism behind metastases to these sites compared to other 

organs (Figure 5.1, Appendix Table 5.1).  

• It is also interesting that the ER positivity observed in the primary tumours is 

maintained during progression (Figure 5.3); we and others have previously shown that 

ER and PR are frequently down-regulated during spread to other organs such as the 

liver/lungs (Cummings et al., 2014) and so raises the possibility that the ER positive 

breast tumour cells might be specifically homing to an oestrogen rich environment of 

the ovaries in these young patients and colonising other tissues along the way. 

 

Understanding the patterns of metastasis associated with different primary tumour 

characteristics in this way will therefore lead to the ability to recognise patients with a 

greater risk of relapse to particular sites and hence who may need closer surveillance. 

 
5.3.1. Endocrine signalling in metastatic progression 
 

Obtaining complete treatment information for the patient cohort was difficult. Where 

available, most patients received hormonal-based therapy and chemotherapy for treatment 

of their primary and secondary disease. Although we can not be sure, it is reasonable to 

assume that most other patients would have received anti-oestrogen therapy, since most 
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primary tumours were ER positive and diagnosed in the 1990s, when tamoxifen was 

becoming the standard of care for ER positive breast cancer patients. Progression of 

disease implies the development or pre-existence of a subclone of tumour cells that are 

resistant to endocrine and chemotherapy. This series of patients therefore represents an 

opportunity to study mechanisms underlying resistance to therapy. We hypothesise 

therefore that mutations or deregulation of genes involved in endocrine signalling may 

have occurred during tumour evolution and progression to gynaecological sites and this 

may be a result of treatment induced selection pressures. 

 

As mentioned above ER and PR down regulation in metastasis may contribute to 

treatment resistance in certain organs (Cummings et al., 2014). Recent studies have also 

identified mutations within the ESR1 (ER alpha) gene in metastases from ER positive 

disease, which was not identified within the primary tumour, contributed to therapy 

resistance and disease progression (Jeselsohn et al., 2015). Other studies have also 

suggested that deregulation of ER regulatory proteins (such as GATA3 and FOXA1) may 

contribute to endocrine resistance, as described in more detail in Section 1.3.1. Indeed 

both GATA3 and FOXA1 are frequently mutated in breast cancer, particularly those of a 

luminal/ER positive subtype (The Cancer Genome Atlas Network, 2012). It would be of 

interest therefore to determine if a mutation in ESR1, FOXA1 or GATA3 in the primary 

tumour provides a mechanism of de novo endocrine resistance or can give insight into the 

outcome of the patient. 

 

As described Sections 1.3 and 1.3.1, the pioneer factors GATA3 and FOXA1 play a pivot 

role in the transcriptional activity of ER, and in vitro studies have demonstrated their role in 

endocrine resistance. Of note, FOXA1 was found to redirect ER binding to different areas 

of the genome in drug resistant tumour cells compared to the primary tumour (Ross-Innes 

et al., 2012). It was of interest therefore to determine the expression of these factors in our 

cohort, as nearly all of the tumours were ER positive. GATA3 and FOXA1 are expressed in 

100% of the primary tumours in our cohort, and this was significantly higher compared to 

the unselected sporadic breast cancer cohort. Interestingly, only 73.1% of the metastases 

expressed FOXA1 and 54.3% expressed GATA3 (Section 5.2.2.3), suggesting the loss of 

these proteins occurs during metastatic progression in some cases. The interplay between 

these pioneer factors and ER and PR is complex, but interestingly of the 26 cases 

matched cases with the most complete IHC data to date (displayed in Appendix Table 
5.4), 22/26 (84.6%) of cases had down-regulation of one or more of these four molecules 
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during progression.  

 

The mechanism involved in the down-regulation of GATA3 or FOXA1 in the metastases 

may be the result of mutation or other regulatory mechanisms such as epigenetic or 

protein signalling pathway changes. It will be of interest therefore to determine the 

mutation status of ESR1, FOXA1 and GATA3 in this unique patient cohort and to see if the 

mutation status correlates with changes in protein levels between the primary tumour and 

metastases. This was attempted with the various sequencing approaches in this study, 

and will be addressed after the targeted gene-sequencing assay has been fully optimised.  

 

Since many of the patients in this cohort maintained expression of ER, FOXA1 and 

GATA3, gene expression profiling is needed to determine if the ER transcriptional program 

between the primary tumour and metastases has changed. We may have protein based 

evidence of FOXA1 redirecting ER in the genome in the cases that have lost expression of 

PR but are positive for ER, GATA3 and FOXA1 (For examples see Appendix Table 5.4). 

PR is a well established target gene of ER. We could hypothesise that in these metastatic 

lesions that ER may be directing a unique transcriptional program.  
 

A comparative study using chromatin immunoprecipitation followed by sequencing (ChIP 

Seq) of metastatic samples that are either positive for ER, FOXA1 and GATA3, or are 

negative for either FOXA1, GATA3, or both, would be very interesting to see whether there 

are different ER-DNA binding events in these metastatic samples (Hurtado et al., 2011, 

Ross-Innes et al., 2012, Mohammed et al., 2015). This would need to be complemented 

with gene expression profiling of the same groups to assess the transcription programs. 

This information would provide great insight into the mechanisms driving tumour cell 

survival during progression. However, many ChIP Seq and gene expression technologies 

are only useful for high quality DNA and RNA. Therefore the utility of these technologies 

on FFPE derived DNA and RNA may be limited until technologies are improved to handle 

poorer quality genetic material. One promising technology is NanoString®. However, it 

uses a targeted approach where a maximum of 800 genes can be analysed at one time, 

whereas a whole genome approach would be more appropriate for discovering changes in 

gene expression and remove selection biases.    

 

5.3.2. Genomic aspects of metastatic progression 
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In order to gain a greater understanding of tumour evolution during progression, aCGH 

and sequencing was performed (Section 5.2.4). We hypothesised that a genomics 

approach would i) provide evidence of clonal relatedness of the primary tumour and 

matched metastases; ii) identify DNA copy number alterations or gene mutations that 

could drive an aggressive behaviour or treatment resistance; and iii) identify potential 

targetable genomic alterations to improve treatment for metastatic breast cancer patients. 

 

There are several clinical trials ongoing, such as the AURORA study, where molecular 

screening programs of metastatic breast cancer is being performed to help direct targeted 

treatment options (Zardavas et al., 2014). A cancer panel is used utilising DNA from both 

archival and prospectively collected metastatic biopsy tissue. The results will guide 

treatment options and the patients will be followed for 10 years. The group will focus on 

exceptional responders and rapid progressors to try identify new markers of prognostic 

and predictive utility (Zardavas et al., 2014). The data generated from the AURORA study 

is anticipated to provide insight into many aspects of metastatic disease, particularly to 

improve patient outcome with more appropriate treatment. Another recent study analysed 

biopsy material of metastases using aCGH and Sanger sequencing for PIK3CA and AKT 

hotspot mutations and then implemented targeted therapy based on the findings (e.g. 

amplification of FGFR1 and the use of FGFR inhibitor for patients with an amplification on 

8p11.23) (Andre et al., 2014). Although less than 10% of patients received objective 

response to targeted therapy it provides proof of principle that this approach may work for 

some patients.  

 

We utilised aCGH as opposed to SNP-CGH as aCGH (using the ULS labelling protocol 

(Alers et al., 1999)) is better suited for FFPE DNA. However this study was not as 

successful as our recent ‘autopsy’ study (Cummings et al., 2014). It remains unclear as to 

why this cohort has performed poorly while the autopsy samples worked well (Section 
2.4.2.1). The DNA was extracted using the same protocol specified by Agilent. All of the 

autopsy samples were ethanol precipitated because the DNA concentrations were too low. 

In this study, only 7 samples were ethanol precipitated and those samples performed no 

better then those that were not concentrated. The samples analysed here ranged from 2 to 

26 years in age and came from pathology departments all across the state, and hence 

likely underwent variations in tissue sample processing during fixation and storage 

(Srinivasan et al., 2002) that may contribute to the variation in aCGH success. Case GM63 

may represent a good example of this, in which the primary tumour and regional lymph 
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node metastasis (surgery in 1993) both performed well in aCGH, yet the gynaecological 

metastases (surgery in 1999) performed poorly; implying tissue fixation of the metastatic 

samples may have been suboptimal for molecular work. There may also be technical 

issues with the reagents supplied by Agilent or batch effect when the arrays were 

hybridised, and troubleshooting is currently undergoing at the Ramaciotti Centre to 

investigate this. Recent studies have suggested a method to improve labelling efficiency 

(Salawu et al., 2012, Craig et al., 2012). We trialled one sample following these methods, 

performing a 95°C fragmentation step prior to labelling, and also increasing the amount of 

dye to 1 µL for every 0.8 µg of DNA, however there was no improvement in the degree of 

labelling. It will be interesting to see how the sample performs on the array as some 

studies suggest the different DNA fragment sizes produces noise and irreproducible 

results (van Beers et al., 2006, Mc Sherry et al., 2007). Although the degree of labelling 

was still suboptimal, the uniformity of DNA fragment sizes may still provide interpretable 

results.  

 

We first analysed the frequency of alterations across the genome in the primary tumours 

and the metastases at different sites (Section 5.2.4.2, Figures 5.15 and 5.16). Most 

metastatic deposits analysed were in the ovary (n=34, after the duplicate cases were 

removed) and unfortunately there were only small numbers of tumours in other groups 

(e.g. 10 primary breast tumours; 10 fallopian tube metastases). The numbers were 

therefore too small to identify a specific copy number profile of primary tumours that 

spread to gynaecological sites compared to that for unselected primary tumours studied 

from the literature. Nevertheless, frequently altered regions in ER positive tumours, 

including gains on 1q and 8q and losses on 1p and 16q were observed in the 10 breast 

tumours profiled. The CNA profile of ovarian metastases from breast cancer (Figure 5.16) 
reveals recurrent alterations in 1q, 2p, 8p, 11q, 16p and Xp and losses on chromosomes 

6, 13 and X. Some of these CNAs were more frequently identified in the ovarian 

metastases relative to the primary tumours (e.g. 6p gain; amplifications on 2q and 8q; 

losses on 6, 13 and X). However, since not all of the matched primary tumours were 

available for profiling, we do not know if these alterations were already present in the 

respective primary tumour or occurred as a result of clonal evolution during progression.  

 

We then analysed aCGH data in individual cases where the matched primary and 

metastases were available. Each case presented with a unique pattern of alterations and 

we found evidence of both clonal similarities and diversity within matched cases (Section 
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5.2.5). This highlights the clonal relatedness between the primary tumour and resulting 

metastases, as expected, but also inter-tumour heterogeneity during the metastatic 

processes. For example, the loss of chromosome 13 in all the metastases of GM63 that 

was not present in the primary tumour (Figure 5.17). Genes of interest on chromosome 13 

include the critical tumour suppressor genes RB1 (retinoblastoma 1) and BRCA2 (breast 

cancer 2, early onset). RB1 is a critical regulator of cell cycle and BRCA2 plays an 

important role in repairing DNA damage and hence the loss of both may contribute to the 

aggressive metastatic tumour behaviour in this case.  

 

It is important to validate some of these CNAs (e.g. this 13q deletion) using quantitative 

PCR on DNA already extracted or by in situ hybridisation on the TMAs or whole tissue 

sections. The latter approach (i.e. whole sections as opposed to TMAs) would be most 

appropriate to account for potential intratumour heterogeneity in a given tumour. It has 

been recognised that the primary tumour may contain multiple subclones, and that a small 

subclone of the primary tumour may seed a metastasis (Yachida et al., 2010, Gerlinger et 

al., 2012, Cummings et al., 2014, Yates et al., 2015). This was recently demonstrated, 

where amplification of chromosome 10 was identified by aCGH in multiple metastases in 

an autopsy case but was not found in the primary tumour. Florescence in situ hybridisation 

(FISH) confirmed the amplification was present in the metastases but also identified a 

small focus of cells in the primary tumour with this amplification, suggesting this small 

subclone spread (Cummings et al., 2014).  

 

As described in Section 5.2.5, exome sequencing was attempted on 6 cases with FFPE 

derived DNA from matched primary tumour and metastases to try to uncover mutations 

that may play an important role in progression in this unique patient cohort. The exome 

sequencing performed at Macrogen was unsuccessful. The samples failed their QC 

metrics at every stage of the process. To our knowledge, Macrogen have limited 

experience with FFPE DNA samples. Our samples may have had more success if there 

was a more individualised optimisation of the sequencing protocol, as opposed to a one-

size-fits-all approach of a service provider, rather than a collaborator. The SureSelect 

custom targeted sequencing assay utilises broadly the same approach as whole exome 

sequencing, however it only has baits for the genes of interest. It has been successfully 

applied to FFPE samples in a number of important studies (Frampton et al., 2013, 

Jeselsohn et al., 2014, Meric-Bernstam et al., 2014). A sequencing assay was designed to 

target 45 important breast cancer genes and a pilot study was performed at QCMG where 
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sequencing libraries were successfully generated for all 16 samples. As we have 

previously worked with QCMG we believe that the success was due to greater knowledge 

of the challenges of these FFPE DNA samples and each sample was sheared individually 

to get optimal fragment sizes. The first sequencing run did not provide sufficient gene 

coverage data and hopefully re-sequencing these cases will provide greater depth to 

identify mutations. Hopefully we may be able to elucidate the frequency of ESR1, FOXA1 

and GATA3 mutations (among others) in the metastases and this may contribute to our 

understanding of the mechanisms underlying metastatic progression and of endocrine 

resistance. 

 

5.3.3. Limitations of the study and future work 
 

Working with clinical material is crucial for this type of work, yet this is associated with 

numerous technical challenges related to obtaining a sufficient cohort size and the quality 

of tissue material for molecular based research. These limitations cannot be controlled for 

but they certainly affect the types of analyses and statistical comparisons that are possible. 

 

One limitation of this study was using TMA-biopsy cores for IHC profiling, as opposed to 

whole tissue sections. There is the possibility that tumour heterogeneity may have been 

under-represented. We know this can be an issue for focally expressed biomarkers (such 

as basal-markers) and for scoring Ki67 staining, where on whole sections the most 

positive area of the section is typically counted. The use of 1 mm TMA cores was chosen 

to capture a larger area of tissue. Conversely, performing IHC on whole sections would 

improve the representation of heterogeneity, however without using all the tissue blocks of 

the case, it is again a compromise. The use of TMAs, therefore, is a pragmatic decision 

and represents the most feasible option to screen many tissue samples for a large range 

of markers, without expending the finite patient material.  

 

In order to understand the different biologies that drive organotropic metastasis, a 

comparison with metastases to other organ sites is essential. It would be of great clinical 

utility to be able to identify different features of a primary tumour that may predict the risk 

of metastasis, and if so, to which organ. However, as our understanding of tumour 

evolution increases, that may not be feasible without the ability to identify every subclone 

within a primary tumour. Next generation sequencing technology is ideally suited to 

resolve these issues and its cost is reducing, however data analysis bottlenecks are 
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becoming increasing obvious. The application of these technologies in the neoadjuvant 

setting is highly desirable but also limited, as sequencing a tumour biopsy is unable to 

define all the tumour subclones necessary to appropriately guide targeted therapy. 

 

It would also be interesting to perform a comparison between ovarian metastases that 

originated from breast primary tumours with colorectal primary tumours, since breast and 

colorectal are the most common primary tumours to spread to the gynaecological sites. 

Due to the close proximity of the colon to gynaecological sites, seeding in the abdominal 

cavity could be a major contributing factor to this type of metastatic spread. However, the 

most common site of colorectal metastasis is to the liver and lung, where blood flow is 

likely to a driving force (Patanaphan and Salazar, 1993). Therefore we could potentially 

uncover common mechanisms that contribute to colonisation of the ovaries that are shared 

by all primary tumour types.  

 

Some of these patients’ tumours relapsed after a long time (over 10 years in some cases). 

This may be a result of a slow growing tumour, or suggests that mechanisms of tumour 

dormancy need to be investigated. Tumour cells have been found in the bone marrow of 

cancer patients and were associated with distant metastasis (Braun et al., 2000). This 

suggests that the bone marrow is a haven for tumour cells to lay dormant, and could 

potentially be used as a marker to predict metastasis. Studies in mouse models have 

found that the perivasculature in the bone marrow, lung and brain plays a role in dormancy 

during metastasis to these sites (Ghajar et al., 2013). The different stages of normal 

vasculature progression/homeostasis produced signals that either suppressed 

(microvasculature) or induced (sprouting neovasculature) breast cancer cell growth 

(Ghajar et al., 2013). These studies highlight the importance of the microenvironment in 

metastatic progression. For example, it has been recently shown HER2/HER3 expressing 

breast tumour cells may selectively grow in the brain microenvironment were the 

HER2/HER3 ligand neuregulin is expressed in abundance (Saunus et al., 2015, Momeny 

et al., 2015). Similarly, we hypothesise that the oestrogen rich environment of the ovaries 

in premenopausal women may be involved in homing of the ER positive breast tumour 

cells. Studies have shown that oestradiol treatment in hormone dependent breast cancer 

cell lines induces a migratory phenotype (Li et al., 2010c, Giretti et al., 2008). Therefore, 

an interesting future direction would be to perform in vitro experiments, such as transwell 

experiments, or co-culturing with ‘normal’ ovarian cells, and under a gradient of oestrogen 

treatment, assess if tumour cell migration is effected by different oestrogen concentrations. 
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These types of experiments could also be used to study the effect of mutations in genes 

such as ESR1, FOXA1 and GATA3, to further tease out the role of these important 

proteins in the metastatic process. 

 

This information could lead to providing knowledge to better determine which women may 

benefit from prophylactic oophorectomy, as it is not routine practice to add to adjuvant 

therapy (Griggs et al., 2011). Recent studies have shown however that ovarian 

suppression combined with an aromatase inhibitor does reduce risk of recurrence in ER 

positive patients (Pagani et al., 2014, Francis et al., 2015). However, it would be of great 

benefit to omit a patient from an oophorectomy if it is not required, and therefore saving a 

patient from unnecessary surgery and the risks associated with hormone replacement 

therapies.   

 

5.4. Conclusions 
 

In summary, this study adds to our understanding of the clinical and phenotypic 

characteristics of primary breast tumours and metastases to gynaecological sites. 

Although patients with gynaecological metastases largely maintain their immunophenotype 

compared to other organ sites, treating based on the characteristics of the primary tumour 

is still likely to not be appropriate because of changes in the complex relationships 

between ER and its regulatory molecules in the metastases. The tumour cells have still 

evaded therapy, and hopefully the genomic data collated here may provide an explanation 

for the different behaviour despite the similar phenotype.  
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CHAPTER 6 
 

 

 

 

 

DISCUSSION 
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6. Discussion 
 

Breast cancer encompasses a heterogeneous group of diseases and this thesis aimed to 

ask and address three major questions surrounding breast cancer biology. Firstly, are 

there other mechanisms involved in E-cadherin deregulation in invasive lobular 

carcinoma? Secondly, how does clonal evolution progress in tumours with mixed ductal 

and lobular morphologies? Finally, can we gain a greater understanding of clonal evolution 

and heterogeneity underlying breast cancer metastasis by studying a unique cohort of 

breast cancer patients with metastasis to gynaecological sites?  

 

6.1. Actin cytoskeleton regulating cell-adhesion in breast cancer – challenges 
validating in vitro findings in situ 

 

The loss of E-cadherin is a defining feature of invasive lobular carcinomas. Understanding 

the mechanisms underlying the loss of cell-cell adhesion and anoikis resistance is 

essential in order to begin to target this unique type of breast cancer. As described in 

Section 1.8.1, genomic alterations to CDH1 (such as mutation, chromosome loss and 

methylation) contribute to a large proportion of E-cadherin loss in ILC. However there are a 

significant number of cases without detectable alterations to CDH1 and therefore the 

mechanism of E-cadherin deregulation remains unknown. We therefore hypothesised, that 

deregulation of actin cytoskeletal regulatory molecules (which have been shown in vitro to 

be essential for E-cadherin function) may contribute to E-cadherin loss and the invasive 

phenotype observed in ILC. IHC analysis of these markers in a large cohort of breast 

cancer samples revealed, most importantly, the lack of membranous localisation of the 

molecules as identified in the in vitro work by (Kovacs et al., 2011) and (Ratheesh et al., 

2012). This study highlights the challenges of validating in vitro findings in situ. Patient 

derived tissue samples are essentially a snap shot in time and therefore validating 

dynamic molecular mechanisms that are likely to occur on minute time scales, within 

heterogeneous, multi-cellular tissues are difficult. Particularly when the model is developed 

in a two-dimensional cell culture system, which was established within a homogeneous 

cell population. There were some observations that may be important to breast cancer 

biology (e.g. cytoplasmic N-WASP protein expression was identified in E-cadherin 

negative ILC), however, without matched normal breast tissue for each patient, we are 

unable to identify if the protein localisation is aberrant and contributing to the invasive 

phenotype observed in ILC. Our data is not sufficient to disprove the hypothesis that the 
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actin cytoskeleton regulators play a role in regulating E-cadherin function in breast cancer. 

Therefore, the next step will involve investigating these molecules in normal breast 

samples using dual-immunofluorescence to identify their localisation and secondly, 

applying this knowledge to matched normal and tumour samples to truly understand if 

these molecules play a role in E-cadherin deregulation during tumourigenesis.  

 

6.2. The clonal evolution of mixed ductal-lobular carcinomas 
 

It has been generally accepted that MDLs represent a unique biological entity (Rakha et 

al., 2009, Arps et al., 2013). Large consortia such as the TCGA and ICGC have 

contributed to our increased understanding of the genomic landscape of breast cancer 

(The Cancer Genome Atlas Network, 2012, Stephens et al., 2012). These studies have 

included thousands of samples in their studies. The TCGA have profiled the somatic 

mutations, copy number profiles and gene expression of 27 MDLs. The mutation profiles of 

the MDLs show features similar to both ER positive IC-NST and ILC; and our data also 

supports these findings concluding that that MDLs have overlaps with both ER positive IC-

NST and ILC, but do not entirely fit into either one of the already established categories. 

 

Small studies have suggested that the presence of different morphological components 

are clonally related lesions (Wagner et al., 2009, Buerger et al., 2000) and the mechanism 

underlying a switch in morphology has not been explored. The purpose of this study was 

to discover unique biological properties that explain the morphological heterogeneity 

observed in MDLs. We hypothesised that disruption to the E-cadherin cell adhesion 

complex contributes to the change from a ductal to lobular growth pattern. By studying the 

expression of the E-cadherin adhesion complex in 51 MDL cases, we found that E-

cadherin was aberrantly localised in the lobular component. This is in contrast to the 

complete loss of E-cadherin expression recurrently observed in ILC. Therefore, we 

concluded that the mechanism underlying E-cadherin disruption is likely to be different to 

that seen in pure ILC. 

 

Due to the nature of our study, we have micro-dissected discrete morphological areas and 

therefore have power to tease out important subtleties that would be lost when studying 

large numbers of cases. The TCGA samples are unable to be used in this regard due to 

the lack of annotation of the cellular component from which the nucleic acids have been 

extracted. By carefully micro-dissecting 4 MDL cases, we were able to enrich for very pure 
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tumour cellularity, a critical feature essential for uncovering mechanisms that drive a 

change in cellular morphology. Together with the previous CGH study (Kutasovic, 2011), 

the preliminary analysis of exome sequencing data showed that all components within 

each case were clonally related. It is likely that in some cases, morphological divergence 

occurs early in tumour progression, while in other cases divergence occurs later. 

Interestingly, only one of the 4 cases had a CDH1 mutation in the lobular components of 

the tumour and this tumour was one of the 2 cases sequenced with complete loss of E-

cadherin protein expression. These findings support our hypothesis that other mechanisms 

are involved in the transition from ductal to lobular morphology. The lack of co-ordinated 

expression of EMT protein markers in our cohort, and the lack of gene expression 

alterations in the TCGA cohort, suggests that EMT does not play a role in the transition 

between growth patterns. Pathway analysis using the exome sequencing data revealed 

that alterations in gap junctions signalling pathways were frequent. This is fascinating, 

since gap junctions are one of the three types of cell-cell adhesion machinery (including 

adhesion and tight junctions) and play important roles in cell-cell communication by directly 

transferring signalling molecules between neighbouring cells. Future research will include 

the validation of the mutations discovered in each case using Sanger sequencing. The 

discovery of alterations in gap junction signalling will also be an interesting avenue to 

explore. The first step will be to pinpoint the exact gap junction related genes that were 

altered in each case and morphological type. Then the expression of the proteins encoded 

by those genes and also the connexon proteins will be assessed by IHC in the MDL 

cohort, and compare the expression with ILC and IC-NST.  

 

It is important to recognise different morphological components at diagnosis, particularly 

when it is clear that IC-NST and ILC have different propensities for colonising different 

organ sites. MDLs are currently treated on the basis of their worst feature. For example, if 

a large proportion of the tumour were a high-grade IC-NST, the patient would likely receive 

chemotherapy. However, the smaller lobular component present may be less likely to 

respond to chemotherapy, and there is the possibility that the lobular component can 

progress further. This has implications when it comes to patient management, and patients 

who present with an MDL may need to undergo a unique surveillance program. 

Understanding how a cell develops a discohesive and invasive phenotype may be 

translated into gaining a greater understanding of the same features in ILC. This may open 

new avenues for targeting unique properties of these single discohesive cells and 

ultimately increase therapeutic options for MDL and ILC patients.   
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6.3. Metastasis to gynaecological sites; impacting young women with tumours of 
a luminal phenotype 

 

Metastatic progression is the single most significant predictor of poor outcome for patients. 

Tumour cells must evolve in order to develop the necessary biological capabilities to 

metastasise, and that this clonal evolution is driven by the selective acquisition of somatic 

mutations, dynamic interactions with the local microenvironment, and resistance to 

treatment. The extent and overall clinical significance of this diversity in metastatic 

progression is still unclear, owing to the scarcity of samples of metastases that are 

available for molecular analysis. 

 

Previous studies, including from our lab, have found that women who develop metastasis 

to gynaecological sites are frequently young in age, and a high proportion of patients had 

an invasive lobular carcinoma (Cummings et al., 2014, Bigorie et al., 2010). The fact that 

gynaecological sites are frequently operable (in comparison to common metastatic sites 

such as the bone, lung and brain), we have the unique opportunity to characterise and 

investigate mechanisms underlying metastatic progression in patient samples. We 

amassed a cohort of 54 patients with gynaecological metastasis, and found that these 

patients were significantly younger than the average breast cancer patient (47 years vs. 60 

years). This suggests that the majority of patients were premenopausal at the time of 

breast cancer diagnosis. We hypothesised therefore that endocrine signalling might play 

an important role in progression to gynaecological sites. Approximately 43% of our patient 

cohort had an ILC, which is a significant enrichment compared to the 10-15% of ILC 

reported in the general breast cancer population. Other interesting clinical features of 

these patients were i) the high frequency of lymph node involvement at primary tumour 

diagnosis, ii) involvement of gastrointestinal sites and peritoneum/omentum more 

frequently than common sites of breast cancer metastasis, and iii) the expression of 

biomarkers of associated with a good prognosis (ER and PR positive, low Ki67 and 

negative for HER2 and basal markers). The last point is particularly interesting considering 

young patients diagnosed with breast cancer are generally associated with triple negative 

and basal like breast cancer (Liedtke et al., 2015). 

 

This study identified both phenotypic and genomic intratumour heterogeneity during breast 

cancer progression to metastasis. This is important as treatment strategies for metastatic 

patients are frequently based on the characteristics of the primary tumour. It is now 
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understood that the development of metastatic disease requires tumour cells to develop 

under selection pressures such as treatment and a new niche microenvironment. During 

progression to gynaecological sites, the expression of ER remained stable. However, the 

expression of other important hormone markers PR, AR, GATA3 and FOXA1 were down-

regulated. Consistent with the idea that the metastases represent an aggressive biology, 

p53 and Ki67 were frequently up-regulated in the metastases compared to the primary 

tumour. Although the expression of ER in these tumours did not change during 

progression as compared to other metastatic sites (such as the lung and liver (Cummings 

et al., 2014)) there are still important implications when it comes to guiding treatment 

options. Where the down-regulation of ER and PR is observed in the metastatic site, it is 

an obvious decision to cease endocrine therapy. However, these samples highlight that 

even though ER is still expressed, they still have likely developed resistance to the therapy 

due to the fact that the primary tumour was ER positive and the patient would have 

received endocrine therapy. It is possible therefore that the patient is unlikely to benefit 

from additional anti-endocrine agents. The discovery of the role of pioneer factors in ER 

signalling and the identification of ESR1 mutations conferring endocrine resistance 

explains why ER is still being expressed but the tumour is not responsive to therapies. It is 

unclear how useful the assessment of FOXA1 would be alongside ER in metastatic 

samples, since we found that both were generally expressed in the metastases. The work 

by (Hurtado et al., 2011) and (Ross-Innes et al., 2012) found that FOXA1 mediates an 

altered ER transcriptional program under endocrine resistant in vitro settings. Therefore 

the identification of the genes that are differentially expressed may turn out to be more 

appropriate biomarkers of endocrine resistance.   

 

To further understand the biology of these tumours, several genomic analyses were 

performed. Array-based copy number analysis was performed on this cohort and many 

shared copy number alterations were identified between the primary tumour and 

metastases sampled. Within 9 cases with matched primary tumour and metastases there 

was evidence of clonal similarities and clonal diversity during progression. It was also 

observed that each case presented with unique genomic alterations and these need to be 

validated using in situ hybridisation. Preliminary mutation analysis was unfortunately 

unsuccessful, however further testing is currently underway.   

 

This study has provided a greater understanding of the phenotypic and molecular 

characteristics of metastatic progression to gynaecological organs. This resource of 
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patient samples will be utilised in the future to give further insight into mechanisms of 

resistance in ER positive breast cancer. With the advent of improved molecular 

technologies that are capable of utilising fragmented nucleic acids from FFPE material, 

potential biomarkers for treatment resistance may be developed and tested using this 

cohort. The identification of the mechanisms underlying progression and treatment 

resistance in each individual case will ultimately benefit the patient with more appropriately 

targeted treatment options. This study supports the notion of sampling metastatic deposits 

to help guide treatment options (Van Poznak et al., 2015), however, new biomarkers of 

treatment resistance need to be identified, particularly since the expression of ER can still 

occur in tumours that are resistant to endocrine therapy. 

 

6.4. Final conclusions and future perspectives 
 

The findings of this study have shown that the regulation of E-cadherin based cell-cell 

adhesion is complex in ILC and MDLs. To date, no study has published a detailed 

investigation of the cell adhesion complex in MDLs or investigation of the clonal evolution 

of MDLs using whole exome sequencing. We found that in some cases morphological 

divergence from a common neoplastic clone occurs early in tumour progression, while in 

other cases divergence occurs later. I believe that this raises a few possibilities about the 

inherent biology of the MDL. Firstly, this raises the question of whether there are actually 

two ‘types’ of MDL tumours. Are the tumours with early divergence a genuine MDL, in 

which the lobular component arises through more classical means via early E-cadherin 

inactivation and progression from LCIS? In contrast, are the cases with late divergence 

more simply an IC-NST with lobular-like differentiation? This raises questions surrounding 

our definition of a lobular carcinoma, notwithstanding the well-recognised morphological 

features. Is it the timing, or the mechanism, of CDH1/E-cadherin loss that defines the 

lobular phenotype? For instance, does an early hit to CDH1 form a determined 

commitment to a lobular lineage, or do the cases with an apparent late insult to the 

integrity of the E-cadherin complex represent the evolution of tumour cells not fully 

committed to follow the lobular lineage? I believe that these are important questions that 

will have an impact on pathology classification systems. In my opinion, this study 

emphasises the necessity of identifying and further characterising the morphological and 

phenotypic heterogeneity in MDLs as it can have an impact on patient management. 
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It is generally considered that patients diagnosed with a luminal A tumour type will have a 

good clinical outcome in comparison to patients with triple negative or basal-like tumours. 

The latter subtype is more likely to be diagnosed in young breast cancer patients and have 

significantly worse 5-year survival rates. This study highlights a unique group of patients 

who present with primary disease at a young age and with a primary tumour of “good 

prognosis” – ER positive, low Ki67 and negative for HER2 and basal markers – yet they 

have developed widespread distant metastases. In spite of improving breast cancer 

patient mortality, I believe that further work is needed to improve our understanding of 

luminal breast cancer and the associated mechanisms of treatment resistance and 

disease spread. ER positive disease is the most common type of breast cancer, and 

thousands of patients still die each year. It is paramount to be able to predict with accuracy 

which patients are likely to relapse. This will significantly reduce over treatment of patients 

who are less likely to relapse, and enable earlier detection and more appropriate 

management for those who need it most.   



 

 205 

References 
 

ABDEL-FATAH, T. M., POWE, D. G., HODI, Z., LEE, A. H., REIS-FILHO, J. S. & ELLIS, I. 
O. 2007. High frequency of coexistence of columnar cell lesions, lobular neoplasia, 
and low grade ductal carcinoma in situ with invasive tubular carcinoma and invasive 
lobular carcinoma. Am J Surg Pathol, 31, 417-26. 

ABDEL-FATAH, T. M., POWE, D. G., HODI, Z., REIS-FILHO, J. S., LEE, A. H. & ELLIS, I. 
O. 2008. Morphologic and molecular evolutionary pathways of low nuclear grade 
invasive breast cancers and their putative precursor lesions: further evidence to 
support the concept of low nuclear grade breast neoplasia family. Am J Surg 
Pathol, 32, 513-23. 

ADZHUBEI, I. A., SCHMIDT, S., PESHKIN, L., RAMENSKY, V. E., GERASIMOVA, A. & 
BORK, P., KONDRASHOV, A. S., SUNYAEV, S. R. 2010. A method and server for 
predicting damaging missense mutations. Nat Methods, 7, 248-9. 

AGOFF, S. N., SWANSON, P. E., LINDEN, H., HAWES, S. E. & LAWTON, T. J. 2003. 
Androgen receptor expression in estrogen receptor-negative breast cancer. 
Immunohistochemical, clinical, and prognostic associations. Am J Clin Pathol, 120, 
725-31. 

AIHW 2012. Cancer in Australia: an overview, 2012. Cancer series no. 71. Cat. no. CAN 
67. Canberra. 

AJCC 2007. American Joint Committee on Cancer, Breast Cancer Staging. 
AL-EJEH, F., SIMPSON, P. T., SANUS, J. M., KLEIN, K., KALIMUTHO, M., SHI, W., 

MIRANDA, M., KUTASOVIC, J., RAGHAVENDRA, A., MADORE, J., REID, L., 
KRAUSE, L., CHENEVIX-TRENCH, G., LAKHANI, S. R. & KHANNA, K. K. 2014. 
Meta-analysis of the global gene expression profile of triple-negative breast cancer 
identifies genes for the prognostication and treatment of aggressive breast cancer. 
Oncogenesis, 3, e100. 

ALBERTS, B., JOHNSON, A., LEWIS, J., RAFF, M., ROBERTS, K. & WALTER, P. 2008. 
Molecular Biology of the Cell, New York, USA, Garland Science. 

ALERS, J. C., ROCHAT, J., KRIJTENBURG, P. J., VAN DEKKEN, H., RAAP, A. K. & 
ROSENBERG, C. 1999. Universal linkage system: an improved method for labeling 
archival DNA for comparative genomic hybridization. Genes Chromosomes Cancer, 
25, 301-5. 

ALESKANDARANY, M. A., NEGM, O. H., GREEN, A. R., AHMED, M. A., NOLAN, C. C., 
TIGHE, P. J., ELLIS, I. O. & RAKHA, E. A. 2014. Epithelial mesenchymal transition 
in early invasive breast cancer: an immunohistochemical and reverse phase protein 
array study. Breast Cancer Res Treat, 145, 339-48. 

ALLEGRA, J. C., LIPPMAN, M. E., THOMPSON, E. B., SIMON, R., BARLOCK, A., 
GREEN, L., HUFF, K. K., DO, H. M. & AITKEN, S. C. 1979. Distribution, frequency, 
and quantitative analysis of estrogen, progesterone, androgen, and glucocorticoid 
receptors in human breast cancer. Cancer Res, 39, 1447-54. 

ALLRED, D. C. 2010. Issues and updates: evaluating estrogen receptor-alpha, 
progesterone receptor, and HER2 in breast cancer. Mod Pathol, 23 Suppl 2, S52-9. 

ALMENDRO, V., KIM, H. J., CHENG, Y. K., GONEN, M., ITZKOVITZ, S., ARGANI, P., 
VAN OUDENAARDEN, A., SUKUMAR, S., MICHOR, F. & POLYAK, K. 2014. 
Genetic and Phenotypic Diversity in Breast Tumor Metastases. Cancer Res. 

ANDRADE, D. & ROSENBLATT, J. 2011. Apoptotic regulation of epithelial cellular 
extrusion. Apoptosis, 16, 491-501. 

ANDRE, F., BACHELOT, T., COMMO, F., CAMPONE, M., ARNEDOS, M., DIERAS, V., 
LACROIX-TRIKI, M., LACROIX, L., COHEN, P., GENTIEN, D., ADELAIDE, J., 
DALENC, F., GONCALVES, A., LEVY, C., FERRERO, J. M., BONNETERRE, J., 



 

 206 

LEFEUVRE, C., JIMENEZ, M., FILLERON, T. & BONNEFOI, H. 2014. Comparative 
genomic hybridisation array and DNA sequencing to direct treatment of metastatic 
breast cancer: a multicentre, prospective trial (SAFIR01/UNICANCER). Lancet 
Oncol. 

ANGRES, B., BARTH, A. & NELSON, W. J. 1996. Mechanism for transition from initial to 
stable cell-cell adhesion: kinetic analysis of E-cadherin-mediated adhesion using a 
quantitative adhesion assay. J Cell Biol, 134, 549-57. 

ARPINO, G., BARDOU, V. J., CLARK, G. M. & ELLEDGE, R. M. 2004. Infiltrating lobular 
carcinoma of the breast: tumor characteristics and clinical outcome. Breast cancer 
research : BCR, 6, R149-56. 

ARPS, D. P., HEALY, P., ZHAO, L., KLEER, C. G. & PANG, J. C. 2013. Invasive ductal 
carcinoma with lobular features: a comparison study to invasive ductal and invasive 
lobular carcinomas of the breast. Breast Cancer Res Treat, 138, 719-26. 

ASSELIN-LABAT, M. L., SUTHERLAND, K. D., BARKER, H., THOMAS, R., 
SHACKLETON, M., FORREST, N. C., HARTLEY, L., ROBB, L., GROSVELD, F. G., 
VAN DER WEES, J., LINDEMAN, G. J. & VISVADER, J. E. 2007. Gata-3 is an 
essential regulator of mammary-gland morphogenesis and luminal-cell 
differentiation. Nat Cell Biol, 9, 201-9. 

AYHAN, A., GUVENAL, T., SALMAN, M. C., OZYUNCU, O., SAKINCI, M. & BASARAN, 
M. 2005. The role of cytoreductive surgery in nongenital cancers metastatic to the 
ovaries. Gynecologic oncology, 98, 235-41. 

BADVE, S., DABBS, D. J., SCHNITT, S. J., BAEHNER, F. L., DECKER, T., EUSEBI, V., 
FOX, S. B., ICHIHARA, S., JACQUEMIER, J., LAKHANI, S. R., PALACIOS, J., 
RAKHA, E. A., RICHARDSON, A. L., SCHMITT, F. C., TAN, P. H., TSE, G. M., 
WEIGELT, B., ELLIS, I. O. & REIS-FILHO, J. S. 2011. Basal-like and triple-negative 
breast cancers: a critical review with an emphasis on the implications for 
pathologists and oncologists. Mod Pathol, 24, 157-67. 

BADVE, S., TURBIN, D., THORAT, M. A., MORIMIYA, A., NIELSEN, T. O., PEROU, C. 
M., DUNN, S., HUNTSMAN, D. G. & NAKSHATRI, H. 2007. FOXA1 expression in 
breast cancer--correlation with luminal subtype A and survival. Clin Cancer Res, 13, 
4415-21. 

BAKER, B. M. & CHEN, C. S. 2012. Deconstructing the third dimension: how 3D culture 
microenvironments alter cellular cues. J Cell Sci, 125, 3015-24. 

BALDUS, S. E., SCHAEFER, K. L., ENGERS, R., HARTLEB, D., STOECKLEIN, N. H. & 
GABBERT, H. E. 2010. Prevalence and heterogeneity of KRAS, BRAF, and 
PIK3CA mutations in primary colorectal adenocarcinomas and their corresponding 
metastases. Clin Cancer Res, 16, 790-9. 

BANERJI, S., CIBULSKIS, K., RANGEL-ESCARENO, C., BROWN, K. K., CARTER, S. L., 
FREDERICK, A. M., LAWRENCE, M. S., SIVACHENKO, A. Y., SOUGNEZ, C., 
ZOU, L., CORTES, M. L., FERNANDEZ-LOPEZ, J. C., PENG, S., ARDLIE, K. G., 
AUCLAIR, D., BAUTISTA-PINA, V., DUKE, F., FRANCIS, J., JUNG, J., MAFFUZ-
AZIZ, A., ONOFRIO, R. C., PARKIN, M., PHO, N. H., QUINTANAR-JURADO, V., 
RAMOS, A. H., REBOLLAR-VEGA, R., RODRIGUEZ-CUEVAS, S., ROMERO-
CORDOBA, S. L., SCHUMACHER, S. E., STRANSKY, N., THOMPSON, K. M., 
URIBE-FIGUEROA, L., BASELGA, J., BEROUKHIM, R., POLYAK, K., SGROI, D. 
C., RICHARDSON, A. L., JIMENEZ-SANCHEZ, G., LANDER, E. S., GABRIEL, S. 
B., GARRAWAY, L. A., GOLUB, T. R., MELENDEZ-ZAJGLA, J., TOKER, A., 
GETZ, G., HIDALGO-MIRANDA, A. & MEYERSON, M. 2012. Sequence analysis of 
mutations and translocations across breast cancer subtypes. Nature, 486, 405-9. 

BARSKY, S. H. & KARLIN, N. J. 2005. Myoepithelial cells: autocrine and paracrine 
suppressors of breast cancer progression. J Mammary Gland Biol Neoplasia, 10, 
249-60. 



 

 207 

BASCHONG, W., SUETTERLIN, R. & LAENG, R. H. 2001. Control of autofluorescence of 
archival formaldehyde-fixed, paraffin-embedded tissue in confocal laser scanning 
microscopy (CLSM). J Histochem Cytochem, 49, 1565-72. 

BAUM, B. & PERRIMON, N. 2001. Spatial control of the actin cytoskeleton in Drosophila 
epithelial cells. Nat Cell Biol, 3, 883-90. 

BEDARD, P. L., CARDOSO, F. & PICCART-GEBHART, M. J. 2009. Stemming resistance 
to HER-2 targeted therapy. J Mammary Gland Biol Neoplasia, 14, 55-66. 

BEHRNDT, M. & HEISENBERG, C. P. 2014. Lateral junction dynamics lead the way out. 
Nat Cell Biol, 16, 127-9. 

BERX, G., BECKER, K. F., HOFLER, H. & VAN ROY, F. 1998. Mutations of the human E-
cadherin (CDH1) gene. Human mutation, 12, 226-37. 

BERX, G., CLETON-JANSEN, A. M., NOLLET, F., DE LEEUW, W. J., VAN DE VIJVER, 
M., CORNELISSE, C. & VAN ROY, F. 1995. E-cadherin is a tumour/invasion 
suppressor gene mutated in human lobular breast cancers. The EMBO journal, 14, 
6107-15. 

BERX, G., CLETON-JANSEN, A. M., STRUMANE, K., DE LEEUW, W. J., NOLLET, F., 
VAN ROY, F. & CORNELISSE, C. 1996. E-cadherin is inactivated in a majority of 
invasive human lobular breast cancers by truncation mutations throughout its 
extracellular domain. Oncogene, 13, 1919-25. 

BERX, G. & VAN ROY, F. 2001. The E-cadherin/catenin complex: an important 
gatekeeper in breast cancer tumorigenesis and malignant progression. Breast 
cancer research : BCR, 3, 289-93. 

BESSETTE, D. C., TILCH, E., SEIDENS, T., QUINN, M. C., WIEGMANS, A. P., SHI, W., 
COCCIARDI, S., MCCART-REED, A., SAUNUS, J. M., SIMPSON, P. T., 
GRIMMOND, S. M., LAKHANI, S. R., KHANNA, K. K., WADDELL, N., AL-EJEH, F. 
& CHENEVIX-TRENCH, G. 2015. Using the MCF10A/MCF10CA1a Breast Cancer 
Progression Cell Line Model to Investigate the Effect of Active, Mutant Forms of 
EGFR in Breast Cancer Development and Treatment Using Gefitinib. PLoS One, 
10, e0125232. 

BEUTE, B. J., KALISHER, L. & HUTTER, R. V. 1991. Lobular carcinoma in situ of the 
breast: clinical, pathologic, and mammographic features. AJR. American journal of 
roentgenology, 157, 257-65. 

BHARAT, A., GAO, F. & MARGENTHALER, J. A. 2009. Tumor characteristics and patient 
outcomes are similar between invasive lobular and mixed invasive ductal/lobular 
breast cancers but differ from pure invasive ductal breast cancers. American journal 
of surgery, 198, 516-9. 

BHARGAVA, R., STRIEBEL, J., BERIWAL, S., FLICKINGER, J. C., ONISKO, A., 
AHRENDT, G. & DABBS, D. J. 2009. Prevalence, morphologic features and 
proliferation indices of breast carcinoma molecular classes using 
immunohistochemical surrogate markers. Int J Clin Exp Pathol, 2, 444-55. 

BHAT-NAKSHATRI, P., WANG, G., APPAIAH, H., LUKTUKE, N., CARROLL, J. S., 
GEISTLINGER, T. R., BROWN, M., BADVE, S., LIU, Y. & NAKSHATRI, H. 2008. 
AKT alters genome-wide estrogen receptor alpha binding and impacts estrogen 
signaling in breast cancer. Mol Cell Biol, 28, 7487-503. 

BIGORIE, V., MORICE, P., DUVILLARD, P., ANTOINE, M., CORTEZ, A., FLEJOU, J. F., 
UZAN, S., DARAI, E. & BARRANGER, E. 2010. Ovarian metastases from breast 
cancer: report of 29 cases. Cancer, 116, 799-804. 

BLOWS, F. M., DRIVER, K. E., SCHMIDT, M. K., BROEKS, A., VAN LEEUWEN, F. E., 
WESSELING, J., CHEANG, M. C., GELMON, K., NIELSEN, T. O., BLOMQVIST, 
C., HEIKKILA, P., HEIKKINEN, T., NEVANLINNA, H., AKSLEN, L. A., BEGIN, L. 
R., FOULKES, W. D., COUCH, F. J., WANG, X., CAFOUREK, V., OLSON, J. E., 
BAGLIETTO, L., GILES, G. G., SEVERI, G., MCLEAN, C. A., SOUTHEY, M. C., 



 

 208 

RAKHA, E., GREEN, A. R., ELLIS, I. O., SHERMAN, M. E., LISSOWSKA, J., 
ANDERSON, W. F., COX, A., CROSS, S. S., REED, M. W., PROVENZANO, E., 
DAWSON, S. J., DUNNING, A. M., HUMPHREYS, M., EASTON, D. F., GARCIA-
CLOSAS, M., CALDAS, C., PHAROAH, P. D. & HUNTSMAN, D. 2010. Subtyping 
of breast cancer by immunohistochemistry to investigate a relationship between 
subtype and short and long term survival: a collaborative analysis of data for 10,159 
cases from 12 studies. PLoS Med, 7, e1000279. 

BORST, M. J. & INGOLD, J. A. 1993. Metastatic patterns of invasive lobular versus 
invasive ductal carcinoma of the breast. Surgery, 114, 637-41; discussion 641-2. 

BOSCO, E. E., WANG, Y., XU, H., ZILFOU, J. T., KNUDSEN, K. E., ARONOW, B. J., 
LOWE, S. W. & KNUDSEN, E. S. 2007. The retinoblastoma tumor suppressor 
modifies the therapeutic response of breast cancer. J Clin Invest, 117, 218-28. 

BOWDEN, E. T., BARTH, M., THOMAS, D., GLAZER, R. I. & MUELLER, S. C. 1999. An 
invasion-related complex of cortactin, paxillin and PKCmu associates with 
invadopodia at sites of extracellular matrix degradation. Oncogene, 18, 4440-9. 

BRAGA, V. M., MACHESKY, L. M., HALL, A. & HOTCHIN, N. A. 1997. The small 
GTPases Rho and Rac are required for the establishment of cadherin-dependent 
cell-cell contacts. J Cell Biol, 137, 1421-31. 

BRAUN, S., PANTEL, K., MULLER, P., JANNI, W., HEPP, F., KENTENICH, C. R., 
GASTROPH, S., WISCHNIK, A., DIMPFL, T., KINDERMANN, G., RIETHMULLER, 
G. & SCHLIMOK, G. 2000. Cytokeratin-positive cells in the bone marrow and 
survival of patients with stage I, II, or III breast cancer. N Engl J Med, 342, 525-33. 

BRITTON, D. J., HUTCHESON, I. R., KNOWLDEN, J. M., BARROW, D., GILES, M., 
MCCLELLAND, R. A., GEE, J. M. & NICHOLSON, R. I. 2006. Bidirectional cross 
talk between ERalpha and EGFR signalling pathways regulates tamoxifen-resistant 
growth. Breast Cancer Res Treat, 96, 131-46. 

BROSH, R. & ROTTER, V. 2009. When mutants gain new powers: news from the mutant 
p53 field. Nat Rev Cancer, 9, 701-13. 

BRULS, J., SIMONS, M., OVERBEEK, L. I., BULTEN, J., MASSUGER, L. F. & 
NAGTEGAAL, I. D. 2015. A national population-based study provides insight in the 
origin of malignancies metastatic to the ovary. Virchows Arch, 467, 79-86. 

BRUNNER, A. L., LI, J., GUO, X., SWEENEY, R. T., VARMA, S., ZHU, S. X., LI, R., 
TIBSHIRANI, R. & WEST, R. B. 2014. A shared transcriptional program in early 
breast neoplasias despite genetic and clinical distinctions. Genome Biol, 15, R71. 

BUCHANAN, C. L., FLYNN, L. W., MURRAY, M. P., DARVISHIAN, F., CRANOR, M. L., 
FEY, J. V., KING, T. A., TAN, L. K. & SCLAFANI, L. M. 2008. Is pleomorphic lobular 
carcinoma really a distinct clinical entity? J Surg Oncol, 98, 314-7. 

BUERGER, H., OTTERBACH, F., SIMON, R., SCHAFER, K. L., POREMBA, C., DIALLO, 
R., BRINKSCHMIDT, C., DOCKHORN-DWORNICZAK, B. & BOECKER, W. 1999. 
Different genetic pathways in the evolution of invasive breast cancer are associated 
with distinct morphological subtypes. The Journal of pathology, 189, 521-6. 

BUERGER, H., SIMON, R., SCHAFER, K. L., DIALLO, R., LITTMANN, R., POREMBA, C., 
VAN DIEST, P. J., DOCKHORN-DWORNICZAK, B. & BOCKER, W. 2000. Genetic 
relation of lobular carcinoma in situ, ductal carcinoma in situ, and associated 
invasive carcinoma of the breast. Mol Pathol, 53, 118-21. 

BUTT, A. J., MCNEIL, C. M., MUSGROVE, E. A. & SUTHERLAND, R. L. 2005. 
Downstream targets of growth factor and oestrogen signalling and endocrine 
resistance: the potential roles of c-Myc, cyclin D1 and cyclin E. Endocr Relat 
Cancer, 12 Suppl 1, S47-59. 

CAMPBELL, P. J., YACHIDA, S., MUDIE, L. J., STEPHENS, P. J., PLEASANCE, E. D., 
STEBBINGS, L. A., MORSBERGER, L. A., LATIMER, C., MCLAREN, S., LIN, M. 
L., MCBRIDE, D. J., VARELA, I., NIK-ZAINAL, S. A., LEROY, C., JIA, M., 



 

 209 

MENZIES, A., BUTLER, A. P., TEAGUE, J. W., GRIFFIN, C. A., BURTON, J., 
SWERDLOW, H., QUAIL, M. A., STRATTON, M. R., IACOBUZIO-DONAHUE, C. & 
FUTREAL, P. A. 2010. The patterns and dynamics of genomic instability in 
metastatic pancreatic cancer. Nature, 467, 1109-13. 

CANCER AUSTRALIA 2012. Report to the nation - breast cancer 2012, Surry Hills, NSW,. 
CARROLL, J. S., LIU, X. S., BRODSKY, A. S., LI, W., MEYER, C. A., SZARY, A. J., 

EECKHOUTE, J., SHAO, W., HESTERMANN, E. V., GEISTLINGER, T. R., FOX, E. 
A., SILVER, P. A. & BROWN, M. 2005. Chromosome-wide mapping of estrogen 
receptor binding reveals long-range regulation requiring the forkhead protein 
FoxA1. Cell, 122, 33-43. 

CASTELLANO, I., ALLIA, E., ACCORTANZO, V., VANDONE, A. M., CHIUSA, L., ARISIO, 
R., DURANDO, A., DONADIO, M., BUSSOLATI, G., COATES, A. S., VIALE, G. & 
SAPINO, A. 2010. Androgen receptor expression is a significant prognostic factor in 
estrogen receptor positive breast cancers. Breast Cancer Res Treat, 124, 607-17. 

CERAMI, E., GAO, J., DOGRUSOZ, U., GROSS, B. E., SUMER, S. O., AKSOY, B. A., 
JACOBSEN, A., BYRNE, C. J., HEUER, M. L., LARSSON, E., ANTIPIN, Y., REVA, 
B., GOLDBERG, A. P., SANDER, C. & SCHULTZ, N. 2012. The cBio cancer 
genomics portal: an open platform for exploring multidimensional cancer genomics 
data. Cancer Discov, 2, 401-4. 

CHAFFER, C. L. & WEINBERG, R. A. 2011. A perspective on cancer cell metastasis. 
Science, 331, 1559-64. 

CHANG, J. & HILSENBECK, S. 2010. Prognostic and predictive markers., Philadelphia, 
Wolters Kluwer Lippincott Williams & Wilkins. 

CHAU, B. N. & WANG, J. Y. 2003. Coordinated regulation of life and death by RB. Nat 
Rev Cancer, 3, 130-8. 

CHEANG, M. C., CHIA, S. K., VODUC, D., GAO, D., LEUNG, S., SNIDER, J., WATSON, 
M., DAVIES, S., BERNARD, P. S., PARKER, J. S., PEROU, C. M., ELLIS, M. J. & 
NIELSEN, T. O. 2009. Ki67 index, HER2 status, and prognosis of patients with 
luminal B breast cancer. J Natl Cancer Inst, 101, 736-50. 

CHEANG, M. C., VODUC, D., BAJDIK, C., LEUNG, S., MCKINNEY, S., CHIA, S. K., 
PEROU, C. M. & NIELSEN, T. O. 2008. Basal-like breast cancer defined by five 
biomarkers has superior prognostic value than triple-negative phenotype. Clin 
Cancer Res, 14, 1368-76. 

CHEN, Y., THOMPSON, W., SEMENCIW, R. & MAO, Y. 1999. Epidemiology of 
contralateral breast cancer. Cancer Epidemiol Biomarkers Prev, 8, 855-61. 

CHENG YUNG-SHENG, LIN CHIN, CHENG YEN-PO, YU YI-LIN, TANG CHI-TUN & 
DUENG-YUAN, H. 2014. Epithelial cell transformation sequence 2 is a potential 
biomarker of unfavorable survival in human gliomas. Neurology India, 62, 406-409. 

CHIANG, A. C. & MASSAGUE, J. 2008. Molecular basis of metastasis. The New England 
journal of medicine, 359, 2814-23. 

CHOI, Y., SIMS, G. E., MURPHY, S., MILLER, J. R. & CHAN, A. P. 2012. Predicting the 
functional effect of amino acid substitutions and indels. PLoS One, 7, e46688. 

CHRISTGEN, M., BRUCHHARDT, H., HADAMITZKY, C., RUDOLPH, C., STEINEMANN, 
D., GADZICKI, D., HASEMEIER, B., ROMERMANN, D., FOCKEN, T., KRECH, T., 
BALLMAIER, M., SCHLEGELBERGER, B., KREIPE, H. & LEHMANN, U. 2009. 
Comprehensive genetic and functional characterization of IPH-926: a novel CDH1-
null tumour cell line from human lobular breast cancer. The Journal of pathology, 
217, 620-32. 

CIOCCA, V., DASKALAKIS, C., CIOCCA, R. M., RUIZ-ORRICO, A. & PALAZZO, J. P. 
2009. The significance of GATA3 expression in breast cancer: a 10-year follow-up 
study. Hum Pathol, 40, 489-95. 



 

 210 

CIRILLO, L. A., LIN, F. R., CUESTA, I., FRIEDMAN, D., JARNIK, M. & ZARET, K. S. 
2002. Opening of compacted chromatin by early developmental transcription factors 
HNF3 (FoxA) and GATA-4. Mol Cell, 9, 279-89. 

CIRILLO, L. A. & ZARET, K. S. 1999. An early developmental transcription factor complex 
that is more stable on nucleosome core particles than on free DNA. Mol Cell, 4, 
961-9. 

CLARKE, R. B. 2003. Steroid receptors and proliferation in the human breast. Steroids, 
68, 789-94. 

CLETON-JANSEN, A. M. 2002. E-cadherin and loss of heterozygosity at chromosome 16 
in breast carcinogenesis: different genetic pathways in ductal and lobular breast 
cancer? Breast Cancer Res, 4, 5-8. 

COHEN, H., BEN-HAMO, R., GIDONI, M., YITZHAKI, I., KOZOL, R., ZILBERBERG, A. & 
EFRONI, S. 2014. Shift in GATA3 functions, and GATA3 mutations, control 
progression and clinical presentation in breast cancer. Breast Cancer Res, 16, 464. 

COLE, M. P., JONES, C. T. & TODD, I. D. 1971. A new anti-oestrogenic agent in late 
breast cancer. An early clinical appraisal of ICI46474. Br J Cancer, 25, 270-5. 

COLLINS, L. C., TAMIMI, R. M., BAER, H. J., CONNOLLY, J. L., COLDITZ, G. A. & 
SCHNITT, S. J. 2005. Outcome of patients with ductal carcinoma in situ untreated 
after diagnostic biopsy: results from the Nurses' Health Study. Cancer, 103, 1778-
84. 

COWPER-SAL LARI, R., ZHANG, X., WRIGHT, J. B., BAILEY, S. D., COLE, M. D., 
EECKHOUTE, J., MOORE, J. H. & LUPIEN, M. 2012. Breast cancer risk-
associated SNPs modulate the affinity of chromatin for FOXA1 and alter gene 
expression. Nat Genet, 44, 1191-8. 

CRAIG, J. M., VENA, N., RAMKISSOON, S., IDBAIH, A., FOUSE, S. D., OZEK, M., SAV, 
A., HILL, D. A., MARGRAF, L. R., EBERHART, C. G., KIERAN, M. W., NORDEN, 
A. D., WEN, P. Y., LODA, M., SANTAGATA, S., LIGON, K. L. & LIGON, A. H. 2012. 
DNA fragmentation simulation method (FSM) and fragment size matching improve 
aCGH performance of FFPE tissues. PLoS One, 7, e38881. 

CUI, X., SCHIFF, R., ARPINO, G., OSBORNE, C. K. & LEE, A. V. 2005. Biology of 
progesterone receptor loss in breast cancer and its implications for endocrine 
therapy. J Clin Oncol, 23, 7721-35. 

CUMMINGS, M. C., SIMPSON, P. T., REID, L. E., JAYANTHAN, J., SKERMAN, J., 
SONG, S., MCCART REED, A. E., KUTASOVIC, J. R., MOREY, A. L., 
MARQUART, L., O'ROURKE, P. & LAKHANI, S. R. 2014. Metastatic progression of 
breast cancer: insights from 50 years of autopsies. J Pathol, 232, 23-31. 

CURTIS, C., SHAH, S. P., CHIN, S. F., TURASHVILI, G., RUEDA, O. M., DUNNING, M. 
J., SPEED, D., LYNCH, A. G., SAMARAJIWA, S., YUAN, Y., GRAF, S., HA, G., 
HAFFARI, G., BASHASHATI, A., RUSSELL, R., MCKINNEY, S., LANGEROD, A., 
GREEN, A., PROVENZANO, E., WISHART, G., PINDER, S., WATSON, P., 
MARKOWETZ, F., MURPHY, L., ELLIS, I., PURUSHOTHAM, A., BORRESEN-
DALE, A. L., BRENTON, J. D., TAVARE, S., CALDAS, C. & APARICIO, S. 2012. 
The genomic and transcriptomic architecture of 2,000 breast tumours reveals novel 
subgroups. Nature, 486, 346-52. 

CUZICK, J., DOWSETT, M., PINEDA, S., WALE, C., SALTER, J., QUINN, E., ZABAGLO, 
L., MALLON, E., GREEN, A. R., ELLIS, I. O., HOWELL, A., BUZDAR, A. U. & 
FORBES, J. F. 2011. Prognostic value of a combined estrogen receptor, 
progesterone receptor, Ki-67, and human epidermal growth factor receptor 2 
immunohistochemical score and comparison with the Genomic Health recurrence 
score in early breast cancer. J Clin Oncol, 29, 4273-8. 



 

 211 

DA SILVA, L., PARRY, S., REID, L., KEITH, P., WADDELL, N., KOSSAI, M., CLARKE, C., 
LAKHANI, S. R. & SIMPSON, P. T. 2008. Aberrant expression of E-cadherin in 
lobular carcinomas of the breast. Am J Surg Pathol, 32, 773-83. 

DA SILVA, L., SIMPSON, P. T. & R., L. S. 2010. Lobular carcinoma in situ, Springer-
Verlag Berlin Heidelberg. 

DABBS, D. J., BHARGAVA, R. & CHIVUKULA, M. 2007. Lobular versus ductal breast 
neoplasms: the diagnostic utility of p120 catenin. Am J Surg Pathol, 31, 427-37. 

DABBS, D. J., SCHNITT, S. J., GEYER, F. C., WEIGELT, B., BAEHNER, F. L., DECKER, 
T., EUSEBI, V., FOX, S. B., ICHIHARA, S., LAKHANI, S. R., PALACIOS, J., 
RAKHA, E., RICHARDSON, A. L., SCHMITT, F. C., TAN, P. H., TSE, G. M., 
VINCENT-SALOMON, A., ELLIS, I. O., BADVE, S. & REIS-FILHO, J. S. 2013. 
Lobular neoplasia of the breast revisited with emphasis on the role of E-cadherin 
immunohistochemistry. Am J Surg Pathol, 37, e1-11. 

DAKUBO, G. D., JAKUPCIAK, J. P., BIRCH-MACHIN, M. A. & PARR, R. L. 2007. Clinical 
implications and utility of field cancerization. Cancer Cell Int, 7, 2. 

DALING, J. R., MALONE, K. E., DOODY, D. R., VOIGT, L. F., BERNSTEIN, L., COATES, 
R. J., MARCHBANKS, P. A., NORMAN, S. A., WEISS, L. K., URSIN, G., BERLIN, 
J. A., BURKMAN, R. T., DEAPEN, D., FOLGER, S. G., MCDONALD, J. A., SIMON, 
M. S., STROM, B. L., WINGO, P. A. & SPIRTAS, R. 2002. Relation of regimens of 
combined hormone replacement therapy to lobular, ductal, and other histologic 
types of breast carcinoma. Cancer, 95, 2455-64. 

DAVIES, C., PAN, H., GODWIN, J., GRAY, R., ARRIAGADA, R., RAINA, V., ABRAHAM, 
M., ALENCAR, V. H. M., BADRAN, A., BONFILL, X., BRADBURY, J., CLARKE, M., 
COLLINS, R., DAVIS, S. R., DELMESTRI, A., FORBES, J. F., HADDAD, P., HOU, 
M.-F., INBAR, M., KHALED, H., KIELANOWSKA, J., KWAN, W.-H., MATHEW, B. 
S., MITTRA, I., MÜLLER, B., NICOLUCCI, A., PERALTA, O., PERNAS, F., 
PETRUZELKA, L., PIENKOWSKI, T., RADHIKA, R., RAJAN, B., RUBACH, M. T., 
TORT, S., URRÚTIA, G., VALENTINI, M., WANG, Y. & PETO, R. Long-term effects 
of continuing adjuvant tamoxifen to 10 years versus stopping at 5 years after 
diagnosis of oestrogen receptor-positive breast cancer: ATLAS, a randomised trial. 
The Lancet, 381, 805-816. 

DE AMICIS, F., THIRUGNANSAMPANTHAN, J., CUI, Y., SELEVER, J., BEYER, A., 
PARRA, I., WEIGEL, N. L., HERYNK, M. H., TSIMELZON, A., LEWIS, M. T., 
CHAMNESS, G. C., HILSENBECK, S. G., ANDO, S. & FUQUA, S. A. 2010. 
Androgen receptor overexpression induces tamoxifen resistance in human breast 
cancer cells. Breast Cancer Res Treat, 121, 1-11. 

DE LEEUW, W. J., BERX, G., VOS, C. B., PETERSE, J. L., VAN DE VIJVER, M. J., 
LITVINOV, S., VAN ROY, F., CORNELISSE, C. J. & CLETON-JANSEN, A. M. 
1997. Simultaneous loss of E-cadherin and catenins in invasive lobular breast 
cancer and lobular carcinoma in situ. J Pathol, 183, 404-11. 

DE WAAL, Y. R., THOMAS, C. M., OEI, A. L., SWEEP, F. C. & MASSUGER, L. F. 2009. 
Secondary ovarian malignancies: frequency, origin, and characteristics. 
International journal of gynecological cancer : official journal of the International 
Gynecological Cancer Society, 19, 1160-5. 

DEGNIM, A. C., VISSCHER, D. W., BERMAN, H. K., FROST, M. H., SELLERS, T. A., 
VIERKANT, R. A., MALONEY, S. D., PANKRATZ, V. S., DE GROEN, P. C., 
LINGLE, W. L., GHOSH, K., PENHEITER, L., TLSTY, T., MELTON, L. J., 3RD, 
REYNOLDS, C. A. & HARTMANN, L. C. 2007. Stratification of breast cancer risk in 
women with atypia: a Mayo cohort study. J Clin Oncol, 25, 2671-7. 

DEMOPOULOS, R. I., TOUGER, L. & DUBIN, N. 1987. Secondary ovarian carcinoma: a 
clinical and pathological evaluation. International journal of gynecological pathology 



 

 212 

: official journal of the International Society of Gynecological Pathologists, 6, 166-
75. 

DERKSEN, P. W., BRAUMULLER, T. M., VAN DER BURG, E., HORNSVELD, M., 
MESMAN, E., WESSELING, J., KRIMPENFORT, P. & JONKERS, J. 2011. 
Mammary-specific inactivation of E-cadherin and p53 impairs functional gland 
development and leads to pleomorphic invasive lobular carcinoma in mice. Disease 
models & mechanisms, 4, 347-58. 

DHIMOLEA, E., TINIAKOS, D. G., CHANTZI, N., GOUTAS, N., VASSILAROS, S. D., 
MITSIOU, D. J. & ALEXIS MU, N. 2015. Estrogen receptors beta1 and beta2 are 
associated with distinct responses of estrogen receptor alpha-positive breast 
carcinoma to adjuvant endocrine therapy. Cancer Lett, 358, 37-42. 

DI LEO, A., JERUSALEM, G., PETRUZELKA, L., TORRES, R., BONDARENKO, I. N., 
KHASANOV, R., VERHOEVEN, D., PEDRINI, J. L., SMIRNOVA, I., LICHINITSER, 
M. R., PENDERGRASS, K., GARNETT, S., LINDEMANN, J. P., SAPUNAR, F. & 
MARTIN, M. 2010. Results of the CONFIRM phase III trial comparing fulvestrant 
250 mg with fulvestrant 500 mg in postmenopausal women with estrogen receptor-
positive advanced breast cancer. J Clin Oncol, 28, 4594-600. 

DING, L., ELLIS, M. J., LI, S., LARSON, D. E., CHEN, K., WALLIS, J. W., HARRIS, C. C., 
MCLELLAN, M. D., FULTON, R. S., FULTON, L. L., ABBOTT, R. M., HOOG, J., 
DOOLING, D. J., KOBOLDT, D. C., SCHMIDT, H., KALICKI, J., ZHANG, Q., CHEN, 
L., LIN, L., WENDL, M. C., MCMICHAEL, J. F., MAGRINI, V. J., COOK, L., 
MCGRATH, S. D., VICKERY, T. L., APPELBAUM, E., DESCHRYVER, K., DAVIES, 
S., GUINTOLI, T., CROWDER, R., TAO, Y., SNIDER, J. E., SMITH, S. M., DUKES, 
A. F., SANDERSON, G. E., POHL, C. S., DELEHAUNTY, K. D., FRONICK, C. C., 
PAPE, K. A., REED, J. S., ROBINSON, J. S., HODGES, J. S., SCHIERDING, W., 
DEES, N. D., SHEN, D., LOCKE, D. P., WIECHERT, M. E., ELDRED, J. M., PECK, 
J. B., OBERKFELL, B. J., LOLOFIE, J. T., DU, F., HAWKINS, A. E., O'LAUGHLIN, 
M. D., BERNARD, K. E., CUNNINGHAM, M., ELLIOTT, G., MASON, M. D., 
THOMPSON, D. M., JR., IVANOVICH, J. L., GOODFELLOW, P. J., PEROU, C. M., 
WEINSTOCK, G. M., AFT, R., WATSON, M., LEY, T. J., WILSON, R. K. & 
MARDIS, E. R. 2010. Genome remodelling in a basal-like breast cancer metastasis 
and xenograft. Nature, 464, 999-1005. 

DIXON, J. M., ANDERSON, T. J., PAGE, D. L., LEE, D. & DUFFY, S. W. 1982. Infiltrating 
lobular carcinoma of the breast. Histopathology, 6, 149-61. 

DO, K. A., TRELOAR, S. A., PANDEYA, N., PURDIE, D., GREEN, A. C., HEATH, A. C. & 
MARTIN, N. G. 1998. Predictive factors of age at menopause in a large Australian 
twin study. Hum Biol, 70, 1073-91. 

DODWELL, D., WARDLEY, A. & JOHNSTON, S. 2006. Postmenopausal advanced breast 
cancer: options for therapy after tamoxifen and aromatase inhibitors. Breast, 15, 
584-94. 

DROUFAKOU, S., DESHMANE, V., ROYLANCE, R., HANBY, A., TOMLINSON, I. & 
HART, I. R. 2001. Multiple ways of silencing E-cadherin gene expression in lobular 
carcinoma of the breast. Int J Cancer, 92, 404-8. 

DURINCK, S., SPELLMAN, P. T., BIRNEY, E. & HUBER, W. 2009. Mapping identifiers for 
the integration of genomic datasets with the R/Bioconductor package biomaRt. Nat 
Protoc, 4, 1184-91. 

EARLY BREAST CANCER TRIALISTS' COLLABORATIVE, G. 2005. Effects of 
chemotherapy and hormonal therapy for early breast cancer on recurrence and 15-
year survival: an overview of the randomised trials. Lancet, 365, 1687-717. 

EARLY BREAST CANCER TRIALISTS' COLLABORATIVE, G., DAVIES, C., GODWIN, J., 
GRAY, R., CLARKE, M., CUTTER, D., DARBY, S., MCGALE, P., PAN, H. C., 
TAYLOR, C., WANG, Y. C., DOWSETT, M., INGLE, J. & PETO, R. 2011. 



 

 213 

Relevance of breast cancer hormone receptors and other factors to the efficacy of 
adjuvant tamoxifen: patient-level meta-analysis of randomised trials. Lancet, 378, 
771-84. 

EECKHOUTE, J., KEETON, E. K., LUPIEN, M., KRUM, S. A., CARROLL, J. S. & 
BROWN, M. 2007. Positive cross-regulatory loop ties GATA-3 to estrogen receptor 
alpha expression in breast cancer. Cancer Res, 67, 6477-83. 

EISENHOFFER, G. T., LOFTUS, P. D., YOSHIGI, M., OTSUNA, H., CHIEN, C. B., 
MORCOS, P. A. & ROSENBLATT, J. 2012. Crowding induces live cell extrusion to 
maintain homeostatic cell numbers in epithelia. Nature, 484, 546-9. 

EL-SAGHIR, J. A., EL-HABRE, E. T., EL-SABBAN, M. E. & TALHOUK, R. S. 2011. 
Connexins: a junctional crossroad to breast cancer. Int J Dev Biol, 55, 773-80. 

ELLIS, M. J., DING, L., SHEN, D., LUO, J., SUMAN, V. J., WALLIS, J. W., VAN TINE, B. 
A., HOOG, J., GOIFFON, R. J., GOLDSTEIN, T. C., NG, S., LIN, L., CROWDER, 
R., SNIDER, J., BALLMAN, K., WEBER, J., CHEN, K., KOBOLDT, D. C., 
KANDOTH, C., SCHIERDING, W. S., MCMICHAEL, J. F., MILLER, C. A., LU, C., 
HARRIS, C. C., MCLELLAN, M. D., WENDL, M. C., DESCHRYVER, K., ALLRED, 
D. C., ESSERMAN, L., UNZEITIG, G., MARGENTHALER, J., BABIERA, G. V., 
MARCOM, P. K., GUENTHER, J. M., LEITCH, M., HUNT, K., OLSON, J., TAO, Y., 
MAHER, C. A., FULTON, L. L., FULTON, R. S., HARRISON, M., OBERKFELL, B., 
DU, F., DEMETER, R., VICKERY, T. L., ELHAMMALI, A., PIWNICA-WORMS, H., 
MCDONALD, S., WATSON, M., DOOLING, D. J., OTA, D., CHANG, L. W., BOSE, 
R., LEY, T. J., PIWNICA-WORMS, D., STUART, J. M., WILSON, R. K. & MARDIS, 
E. R. 2012. Whole-genome analysis informs breast cancer response to aromatase 
inhibition. Nature, 486, 353-60. 

ELSTON, C. W. & ELLIS, I. O. 1991. Pathological prognostic factors in breast cancer. I. 
The value of histological grade in breast cancer: experience from a large study with 
long-term follow-up. Histopathology, 19, 403-10. 

ENGEL, J., ECKEL, R., KERR, J., SCHMIDT, M., FURSTENBERGER, G., RICHTER, R., 
SAUER, H., SENN, H. J. & HOLZEL, D. 2003. The process of metastasisation for 
breast cancer. Eur J Cancer, 39, 1794-806. 

EPSTEIN, M., MA, Y. & PRESS, M. 2010. ERBB2 testing: assessment of status for 
targeted therapies., Philadelphia, Wolters Kluwer Lippincott Williams & Wilkins. 

ETZELL, J. E., DEVRIES, S., CHEW, K., FLORENDO, C., MOLINARO, A., LJUNG, B. M. 
& WALDMAN, F. M. 2001. Loss of chromosome 16q in lobular carcinoma in situ. 
Human pathology, 32, 292-6. 

EUSEBI, V., MAGALHAES, F. & AZZOPARDI, J. G. 1992. Pleomorphic lobular carcinoma 
of the breast: an aggressive tumor showing apocrine differentiation. Hum Pathol, 
23, 655-62. 

EVANS, W. P., WARREN BURHENNE, L. J., LAURIE, L., O'SHAUGHNESSY, K. F. & 
CASTELLINO, R. A. 2002. Invasive lobular carcinoma of the breast: 
mammographic characteristics and computer-aided detection. Radiology, 225, 182-
9. 

EWING, J. 1928. Neoplastic Diseases: A Treatise on Tumours., Philadelphia and London. 
FABI, A., DI BENEDETTO, A., METRO, G., PERRACCHIO, L., NISTICO, C., DI FILIPPO, 

F., ERCOLANI, C., FERRETTI, G., MELUCCI, E., BUGLIONI, S., SPERDUTI, I., 
PAPALDO, P., COGNETTI, F. & MOTTOLESE, M. 2011. HER2 protein and gene 
variation between primary and metastatic breast cancer: significance and impact on 
patient care. Clinical cancer research : an official journal of the American 
Association for Cancer Research, 17, 2055-64. 

FARMER, P., BONNEFOI, H., BECETTE, V., TUBIANA-HULIN, M., FUMOLEAU, P., 
LARSIMONT, D., MACGROGAN, G., BERGH, J., CAMERON, D., GOLDSTEIN, D., 
DUSS, S., NICOULAZ, A. L., BRISKEN, C., FICHE, M., DELORENZI, M. & IGGO, 



 

 214 

R. 2005. Identification of molecular apocrine breast tumours by microarray analysis. 
Oncogene, 24, 4660-71. 

FERLICOT, S., VINCENT-SALOMON, A., MEDIONI, J., GENIN, P., ROSTY, C., SIGAL-
ZAFRANI, B., FRENEAUX, P., JOUVE, M., THIERY, J. P. & SASTRE-GARAU, X. 
2004. Wide metastatic spreading in infiltrating lobular carcinoma of the breast. 
European journal of cancer, 40, 336-41. 

FIDLER, I. J. 1970. Metastasis: guantitative analysis of distribution and fate of tumor 
embolilabeled with 125 I-5-iodo-2'-deoxyuridine. Journal of the National Cancer 
Institute, 45, 773-82. 

FIDLER, I. J. 2003. The pathogenesis of cancer metastasis: the 'seed and soil' hypothesis 
revisited. Nat Rev Cancer, 3, 453-458. 

FINN, R. S., CROWN, J. P., LANG, I., BOER, K., BONDARENKO, I. M., KULYK, S. O., 
ETTL, J., PATEL, R., PINTER, T., SCHMIDT, M., SHPARYK, Y., THUMMALA, A. 
R., VOYTKO, N. L., FOWST, C., HUANG, X., KIM, S. T., RANDOLPH, S. & 
SLAMON, D. J. 2015. The cyclin-dependent kinase 4/6 inhibitor palbociclib in 
combination with letrozole versus letrozole alone as first-line treatment of oestrogen 
receptor-positive, HER2-negative, advanced breast cancer (PALOMA-1/TRIO-18): 
a randomised phase 2 study. Lancet Oncol, 16, 25-35. 

FITZGERALD, R. C., HARDWICK, R., HUNTSMAN, D., CARNEIRO, F., GUILFORD, P., 
BLAIR, V., CHUNG, D. C., NORTON, J., RAGUNATH, K., VAN KRIEKEN, J. H., 
DWERRYHOUSE, S., CALDAS, C. & INTERNATIONAL GASTRIC CANCER 
LINKAGE, C. 2010. Hereditary diffuse gastric cancer: updated consensus 
guidelines for clinical management and directions for future research. J Med Genet, 
47, 436-44. 

FOOTE, F. W. & STEWART, F. W. 1941. Lobular carcinoma in situ: A rare form of 
mammary cancer. The American journal of pathology, 491-496. 

FOUQUET, S., LUGO-MARTINEZ, V. H., FAUSSAT, A. M., RENAUD, F., CARDOT, P., 
CHAMBAZ, J., PINCON-RAYMOND, M. & THENET, S. 2004. Early loss of E-
cadherin from cell-cell contacts is involved in the onset of Anoikis in enterocytes. J 
Biol Chem, 279, 43061-9. 

FOX, E. M., DAVIS, R. J. & SHUPNIK, M. A. 2008. ERbeta in breast cancer--onlooker, 
passive player, or active protector? Steroids, 73, 1039-51. 

FRAMPTON, G. M., FICHTENHOLTZ, A., OTTO, G. A., WANG, K., DOWNING, S. R., HE, 
J., SCHNALL-LEVIN, M., WHITE, J., SANFORD, E. M., AN, P., SUN, J., JUHN, F., 
BRENNAN, K., IWANIK, K., MAILLET, A., BUELL, J., WHITE, E., ZHAO, M., 
BALASUBRAMANIAN, S., TERZIC, S., RICHARDS, T., BANNING, V., GARCIA, L., 
MAHONEY, K., ZWIRKO, Z., DONAHUE, A., BELTRAN, H., MOSQUERA, J. M., 
RUBIN, M. A., DOGAN, S., HEDVAT, C. V., BERGER, M. F., PUSZTAI, L., 
LECHNER, M., BOSHOFF, C., JAROSZ, M., VIETZ, C., PARKER, A., MILLER, V. 
A., ROSS, J. S., CURRAN, J., CRONIN, M. T., STEPHENS, P. J., LIPSON, D. & 
YELENSKY, R. 2013. Development and validation of a clinical cancer genomic 
profiling test based on massively parallel DNA sequencing. Nat Biotechnol, 31, 
1023-31. 

FRANCIS, P. A., REGAN, M. M., FLEMING, G. F., LANG, I., CIRUELOS, E., BELLET, M., 
BONNEFOI, H. R., CLIMENT, M. A., DA PRADA, G. A., BURSTEIN, H. J., 
MARTINO, S., DAVIDSON, N. E., GEYER, C. E., JR., WALLEY, B. A., COLEMAN, 
R., KERBRAT, P., BUCHHOLZ, S., INGLE, J. N., WINER, E. P., RABAGLIO-
PORETTI, M., MAIBACH, R., RUEPP, B., GIOBBIE-HURDER, A., PRICE, K. N., 
COLLEONI, M., VIALE, G., COATES, A. S., GOLDHIRSCH, A., GELBER, R. D., 
INVESTIGATORS, S. & INTERNATIONAL BREAST CANCER STUDY, G. 2015. 
Adjuvant ovarian suppression in premenopausal breast cancer. N Engl J Med, 372, 
436-46. 



 

 215 

FRIBERG, S. & MATTSON, S. 1997. On the growth rates of human malignant tumors: 
implications for medical decision making. J Surg Oncol, 65, 284-97. 

FRITZ, G., BRACHETTI, C., BAHLMANN, F., SCHMIDT, M. & KAINA, B. 2002. Rho 
GTPases in human breast tumours: expression and mutation analyses and 
correlation with clinical parameters. Br J Cancer, 87, 635-44. 

FRIXEN, U. H., BEHRENS, J., SACHS, M., EBERLE, G., VOSS, B., WARDA, A., 
LOCHNER, D. & BIRCHMEIER, W. 1991. E-cadherin-mediated cell-cell adhesion 
prevents invasiveness of human carcinoma cells. J Cell Biol, 113, 173-85. 

FULFORD, L. G., EASTON, D. F., REIS-FILHO, J. S., SOFRONIS, A., GILLETT, C. E., 
LAKHANI, S. R. & HANBY, A. 2006. Specific morphological features predictive for 
the basal phenotype in grade 3 invasive ductal carcinoma of breast. Histopathology, 
49, 22-34. 

FULFORD, L. G., REIS-FILHO, J. S., RYDER, K., JONES, C., GILLETT, C. E., HANBY, 
A., EASTON, D. & LAKHANI, S. R. 2007. Basal-like grade III invasive ductal 
carcinoma of the breast: patterns of metastasis and long-term survival. Breast 
Cancer Res, 9, R4. 

FUQUA, S. A., GU, G. & RECHOUM, Y. 2014. Estrogen receptor (ER) alpha mutations in 
breast cancer: hidden in plain sight. Breast Cancer Res Treat, 144, 11-9. 

GAO, J., AKSOY, B. A., DOGRUSOZ, U., DRESDNER, G., GROSS, B., SUMER, S. O., 
SUN, Y., JACOBSEN, A., SINHA, R., LARSSON, E., CERAMI, E., SANDER, C. & 
SCHULTZ, N. 2013. Integrative analysis of complex cancer genomics and clinical 
profiles using the cBioPortal. Sci Signal, 6, pl1. 

GARAY, J. P. & PARK, B. H. 2012. Androgen receptor as a targeted therapy for breast 
cancer. Am J Cancer Res, 2, 434-45. 

GERDES, J., SCHWAB, U., LEMKE, H. & STEIN, H. 1983. Production of a mouse 
monoclonal antibody reactive with a human nuclear antigen associated with cell 
proliferation. Int J Cancer, 31, 13-20. 

GERLINGER, M., ROWAN, A. J., HORSWELL, S., LARKIN, J., ENDESFELDER, D., 
GRONROOS, E., MARTINEZ, P., MATTHEWS, N., STEWART, A., TARPEY, P., 
VARELA, I., PHILLIMORE, B., BEGUM, S., MCDONALD, N. Q., BUTLER, A., 
JONES, D., RAINE, K., LATIMER, C., SANTOS, C. R., NOHADANI, M., EKLUND, 
A. C., SPENCER-DENE, B., CLARK, G., PICKERING, L., STAMP, G., GORE, M., 
SZALLASI, Z., DOWNWARD, J., FUTREAL, P. A. & SWANTON, C. 2012. 
Intratumor heterogeneity and branched evolution revealed by multiregion 
sequencing. The New England journal of medicine, 366, 883-92. 

GHAJAR, C. M., PEINADO, H., MORI, H., MATEI, I. R., EVASON, K. J., BRAZIER, H., 
ALMEIDA, D., KOLLER, A., HAJJAR, K. A., STAINIER, D. Y., CHEN, E. I., LYDEN, 
D. & BISSELL, M. J. 2013. The perivascular niche regulates breast tumour 
dormancy. Nat Cell Biol, 15, 807-17. 

GIRETTI, M. S., FU, X. D., DE ROSA, G., SAROTTO, I., BALDACCI, C., GARIBALDI, S., 
MANNELLA, P., BIGLIA, N., SISMONDI, P., GENAZZANI, A. R. & SIMONCINI, T. 
2008. Extra-nuclear signalling of estrogen receptor to breast cancer cytoskeletal 
remodelling, migration and invasion. PLoS One, 3, e2238. 

GLIGORIJEVIC, B., WYCKOFF, J., YAMAGUCHI, H., WANG, Y., ROUSSOS, E. T. & 
CONDEELIS, J. 2012. N-WASP-mediated invadopodium formation is involved in 
intravasation and lung metastasis of mammary tumors. J Cell Sci, 125, 724-34. 

GOLDENBERG, I. S. 1964. Testosterone Propionate Therapy in Breast Cancer. JAMA, 
188, 1069-72. 

GRAYSON, M. 2012. Breast cancer. Nature, 485, S49. 
GREENE, F. L. & SOBIN, L. H. 2008. The staging of cancer: a retrospective and 

prospective appraisal. CA Cancer J Clin, 58, 180-90. 



 

 216 

GRIEVE, A. G. & RABOUILLE, C. 2014. Extracellular cleavage of E-cadherin promotes 
epithelial cell extrusion. J Cell Sci, 127, 3331-46. 

GRIGGS, J. J., SOMERFIELD, M. R., ANDERSON, H., HENRY, N. L., HUDIS, C. A., 
KHATCHERESSIAN, J. L., PARTRIDGE, A. H., PRESTRUD, A. A. & DAVIDSON, 
N. E. 2011. American Society of Clinical Oncology endorsement of the cancer care 
Ontario practice guideline on adjuvant ovarian ablation in the treatment of 
premenopausal women with early-stage invasive breast cancer. J Clin Oncol, 29, 
3939-42. 

GUILFORD, P., HOPKINS, J., HARRAWAY, J., MCLEOD, M., MCLEOD, N., HARAWIRA, 
P., TAITE, H., SCOULAR, R., MILLER, A. & REEVE, A. E. 1998. E-cadherin 
germline mutations in familial gastric cancer. Nature, 392, 402-5. 

GUNDEM, G., PEREZ-LLAMAS, C., JENE-SANZ, A., KEDZIERSKA, A., ISLAM, A., DEU-
PONS, J., FURNEY, S. J. & LOPEZ-BIGAS, N. 2010. IntOGen: integration and data 
mining of multidimensional oncogenomic data. Nat Methods, 7, 92-3. 

GUPTA, G. P. & MASSAGUE, J. 2006. Cancer metastasis: building a framework. Cell, 
127, 679-95. 

HACK, C. J. 2004. Integrated transcriptome and proteome data: the challenges ahead. 
Brief Funct Genomic Proteomic, 3, 212-9. 

HADFIELD, G. 1954. The dormant cancer cell. Br Med J, 2, 607-10. 
HAH, N., DANKO, C. G., CORE, L., WATERFALL, J. J., SIEPEL, A., LIS, J. T. & KRAUS, 

W. L. 2011. A rapid, extensive, and transient transcriptional response to estrogen 
signaling in breast cancer cells. Cell, 145, 622-34. 

HALDOSEN, L. A., ZHAO, C. & DAHLMAN-WRIGHT, K. 2014. Estrogen receptor beta in 
breast cancer. Mol Cell Endocrinol, 382, 665-72. 

HALL, A. 1998. Rho GTPases and the actin cytoskeleton. Science, 279, 509-14. 
HALL, R. E., ASPINALL, J. O., HORSFALL, D. J., BIRRELL, S. N., BENTEL, J. M., 

SUTHERLAND, R. L. & TILLEY, W. D. 1996. Expression of the androgen receptor 
and an androgen-responsive protein, apolipoprotein D, in human breast cancer. Br 
J Cancer, 74, 1175-80. 

HAMMOND, M. E., HAYES, D. F., DOWSETT, M., ALLRED, D. C., HAGERTY, K. L., 
BADVE, S., FITZGIBBONS, P. L., FRANCIS, G., GOLDSTEIN, N. S., HAYES, M., 
HICKS, D. G., LESTER, S., LOVE, R., MANGU, P. B., MCSHANE, L., MILLER, K., 
OSBORNE, C. K., PAIK, S., PERLMUTTER, J., RHODES, A., SASANO, H., 
SCHWARTZ, J. N., SWEEP, F. C., TAUBE, S., TORLAKOVIC, E. E., 
VALENSTEIN, P., VIALE, G., VISSCHER, D., WHEELER, T., WILLIAMS, R. B., 
WITTLIFF, J. L., WOLFF, A. C., AMERICAN SOCIETY OF CLINICAL, O. & 
COLLEGE OF AMERICAN, P. 2010. American Society of Clinical Oncology/College 
of American Pathologists guideline recommendations for immunohistochemical 
testing of estrogen and progesterone receptors in breast cancer (unabridged 
version). Arch Pathol Lab Med, 134, e48-72. 

HANAHAN, D. & COUSSENS, L. M. 2012. Accessories to the crime: functions of cells 
recruited to the tumor microenvironment. Cancer cell, 21, 309-22. 

HANAHAN, D. & WEINBERG, R. A. 2000. The hallmarks of cancer. Cell, 100, 57-70. 
HANSFORD, S., KAURAH, P., LI-CHANG, H., WOO, M., SENZ, J., PINHEIRO, H., 

SCHRADER, K. A., SCHAEFFER, D. F., SHUMANSKY, K., ZOGOPOULOS, G., 
SANTOS, T. A., CLARO, I., CARVALHO, J., NIELSEN, C., PADILLA, S., LUM, A., 
TALHOUK, A., BAKER-LANGE, K., RICHARDSON, S., LEWIS, I., LINDOR, N. M., 
PENNELL, E., MACMILLAN, A., FERNANDEZ, B., KELLER, G., LYNCH, H., 
SHAH, S. P., GUILFORD, P., GALLINGER, S., CORSO, G., ROVIELLO, F., 
CALDAS, C., OLIVEIRA, C., PHAROAH, P. D. & HUNTSMAN, D. G. 2015. 
Hereditary Diffuse Gastric Cancer Syndrome: CDH1 Mutations and Beyond. JAMA 
Oncol, 1, 23-32. 



 

 217 

HARRELL, J. C., PRAT, A., PARKER, J. S., FAN, C., HE, X., CAREY, L., ANDERS, C., 
EWEND, M. & PEROU, C. M. 2012. Genomic analysis identifies unique signatures 
predictive of brain, lung, and liver relapse. Breast Cancer Res Treat, 132, 523-35. 

HARRIS, L., FRITSCHE, H., MENNEL, R., NORTON, L., RAVDIN, P., TAUBE, S., 
SOMERFIELD, M. R., HAYES, D. F., BAST, R. C., JR. & AMERICAN SOCIETY OF 
CLINICAL, O. 2007. American Society of Clinical Oncology 2007 update of 
recommendations for the use of tumor markers in breast cancer. J Clin Oncol, 25, 
5287-312. 

HARRIS, M., HOWELL, A., CHRISSOHOU, M., SWINDELL, R. I., HUDSON, M. & 
SELLWOOD, R. A. 1984. A comparison of the metastatic pattern of infiltrating 
lobular carcinoma and infiltrating duct carcinoma of the breast. Br J Cancer, 50, 23-
30. 

HARRIS, T. J. & TEPASS, U. 2010. Adherens junctions: from molecules to 
morphogenesis. Nat Rev Mol Cell Biol, 11, 502-14. 

HARVEY, J. M., CLARK, G. M., OSBORNE, C. K. & ALLRED, D. C. 1999. Estrogen 
receptor status by immunohistochemistry is superior to the ligand-binding assay for 
predicting response to adjuvant endocrine therapy in breast cancer. J Clin Oncol, 
17, 1474-81. 

HELWANI, F. M., KOVACS, E. M., PATERSON, A. D., VERMA, S., ALI, R. G., FANNING, 
A. S., WEED, S. A. & YAP, A. S. 2004. Cortactin is necessary for E-cadherin-
mediated contact formation and actin reorganization. J Cell Biol, 164, 899-910. 

HIRATA, D., YAMABUKI, T., MIKI, D., ITO, T., TSUCHIYA, E., FUJITA, M., HOSOKAWA, 
M., CHAYAMA, K., NAKAMURA, Y. & DAIGO, Y. 2009. Involvement of epithelial 
cell transforming sequence-2 oncoantigen in lung and esophageal cancer 
progression. Clin Cancer Res, 15, 256-66. 

HISAMATSU, Y., TOKUNAGA, E., YAMASHITA, N., AKIYOSHI, S., OKADA, S., 
NAKASHIMA, Y., AISHIMA, S., MORITA, M., KAKEJI, Y. & MAEHARA, Y. 2012. 
Impact of FOXA1 expression on the prognosis of patients with hormone receptor-
positive breast cancer. Ann Surg Oncol, 19, 1145-52. 

HO, A. S., KANNAN, K., ROY, D. M., MORRIS, L. G., GANLY, I., KATABI, N., 
RAMASWAMI, D., WALSH, L. A., ENG, S., HUSE, J. T., ZHANG, J., DOLGALEV, 
I., HUBERMAN, K., HEGUY, A., VIALE, A., DROBNJAK, M., LEVERSHA, M. A., 
RICE, C. E., SINGH, B., IYER, N. G., LEEMANS, C. R., BLOEMENA, E., FERRIS, 
R. L., SEETHALA, R. R., GROSS, B. E., LIANG, Y., SINHA, R., PENG, L., 
RAPHAEL, B. J., TURCAN, S., GONG, Y., SCHULTZ, N., KIM, S., CHIOSEA, S., 
SHAH, J. P., SANDER, C., LEE, W. & CHAN, T. A. 2013. The mutational landscape 
of adenoid cystic carcinoma. Nat Genet, 45, 791-8. 

HOCH, R. V., THOMPSON, D. A., BAKER, R. J. & WEIGEL, R. J. 1999. GATA-3 is 
expressed in association with estrogen receptor in breast cancer. Int J Cancer, 84, 
122-8. 

HOEFNAGEL, L. D., MOELANS, C. B., MEIJER, S. L., VAN SLOOTEN, H. J., 
WESSELING, P., WESSELING, J., WESTENEND, P. J., BART, J., SELDENRIJK, 
C. A., NAGTEGAAL, I. D., OUDEJANS, J., VAN DER VALK, P., VAN GILS, C. H., 
VAN DER WALL, E. & VAN DIEST, P. J. 2012. Prognostic value of estrogen 
receptor alpha and progesterone receptor conversion in distant breast cancer 
metastases. Cancer, 118, 4929-35. 

HOGAN, C., DUPRE-CROCHET, S., NORMAN, M., KAJITA, M., ZIMMERMANN, C., 
PELLING, A. E., PIDDINI, E., BAENA-LOPEZ, L. A., VINCENT, J. P., ITOH, Y., 
HOSOYA, H., PICHAUD, F. & FUJITA, Y. 2009. Characterization of the interface 
between normal and transformed epithelial cells. Nat Cell Biol, 11, 460-7. 

HONMA, N., HORII, R., IWASE, T., SAJI, S., YOUNES, M., TAKUBO, K., MATSUURA, 
M., ITO, Y., AKIYAMA, F. & SAKAMOTO, G. 2008. Clinical importance of estrogen 



 

 218 

receptor-beta evaluation in breast cancer patients treated with adjuvant tamoxifen 
therapy. J Clin Oncol, 26, 3727-34. 

HU, Z., FAN, C., OH, D. S., MARRON, J. S., HE, X., QAQISH, B. F., LIVASY, C., CAREY, 
L. A., REYNOLDS, E., DRESSLER, L., NOBEL, A., PARKER, J., EWEND, M. G., 
SAWYER, L. R., WU, J., LIU, Y., NANDA, R., TRETIAKOVA, M., RUIZ ORRICO, 
A., DREHER, D., PALAZZO, J. P., PERREARD, L., NELSON, E., MONE, M., 
HANSEN, H., MULLINS, M., QUACKENBUSH, J. F., ELLIS, M. J., OLOPADE, O. 
I., BERNARD, P. S. & PEROU, C. M. 2006. The molecular portraits of breast 
tumors are conserved across microarray platforms. BMC Genomics, 7, 96. 

HUANG, C., LIU, J., HAUDENSCHILD, C. C. & ZHAN, X. 1998. The role of tyrosine 
phosphorylation of cortactin in the locomotion of endothelial cells. J Biol Chem, 273, 
25770-6. 

HUI, R., BALL, J. R., MACMILLAN, R. D., KENNY, F. S., PRALL, O. W., CAMPBELL, D. 
H., CORNISH, A. L., MCCLELLAND, R. A., DALY, R. J., FORBES, J. F., BLAMEY, 
R. W., MUSGROVE, E. A., ROBERTSON, J. F., NICHOLSON, R. I. & 
SUTHERLAND, R. L. 1998. EMS1 gene expression in primary breast cancer: 
relationship to cyclin D1 and oestrogen receptor expression and patient survival. 
Oncogene, 17, 1053-9. 

HUI, R., CAMPBELL, D. H., LEE, C. S., MCCAUL, K., HORSFALL, D. J., MUSGROVE, E. 
A., DALY, R. J., SESHADRI, R. & SUTHERLAND, R. L. 1997. EMS1 amplification 
can occur independently of CCND1 or INT-2 amplification at 11q13 and may 
identify different phenotypes in primary breast cancer. Oncogene, 15, 1617-23. 

HURTADO, A., HOLMES, K. A., GEISTLINGER, T. R., HUTCHESON, I. R., NICHOLSON, 
R. I., BROWN, M., JIANG, J., HOWAT, W. J., ALI, S. & CARROLL, J. S. 2008. 
Regulation of ERBB2 by oestrogen receptor-PAX2 determines response to 
tamoxifen. Nature, 456, 663-6. 

HURTADO, A., HOLMES, K. A., ROSS-INNES, C. S., SCHMIDT, D. & CARROLL, J. S. 
2011. FOXA1 is a key determinant of estrogen receptor function and endocrine 
response. Nat Genet, 43, 27-33. 

HUSEMANN, Y., GEIGL, J. B., SCHUBERT, F., MUSIANI, P., MEYER, M., BURGHART, 
E., FORNI, G., EILS, R., FEHM, T., RIETHMULLER, G. & KLEIN, C. A. 2008. 
Systemic spread is an early step in breast cancer. Cancer Cell, 13, 58-68. 

HWANG, E. S., NYANTE, S. J., YI CHEN, Y., MOORE, D., DEVRIES, S., KORKOLA, J. 
E., ESSERMAN, L. J. & WALDMAN, F. M. 2004. Clonality of lobular carcinoma in 
situ and synchronous invasive lobular carcinoma. Cancer, 100, 2562-72. 

IDIRISINGHE, P. K., THIKE, A. A., CHEOK, P. Y., TSE, G. M., LUI, P. C., FOOK-CHONG, 
S., WONG, N. S. & TAN, P. H. 2010. Hormone receptor and c-ERBB2 status in 
distant metastatic and locally recurrent breast cancer. Pathologic correlations and 
clinical significance. American journal of clinical pathology, 133, 416-29. 

INGOLF, J. B., RUSSALINA, M., SIMONA, M., JULIA, R., GILDA, S., BOHLE, R. M., 
ANDREA, H., ERICH, S. & DANIEL, H. 2014. Can ki-67 play a role in prediction of 
breast cancer patients' response to neoadjuvant chemotherapy? Biomed Res Int, 
2014, 628217. 

INTRA, M., ROTMENSZ, N., VIALE, G., MARIANI, L., BONANNI, B., MASTROPASQUA, 
M. G., GALIMBERTI, V., GENNARI, R., VERONESI, P., COLLEONI, M., 
TOUSIMIS, E., GALLI, A., GOLDHIRSCH, A. & VERONESI, U. 2004. 
Clinicopathologic characteristics of 143 patients with synchronous bilateral invasive 
breast carcinomas treated in a single institution. Cancer, 101, 905-12. 

ISOLA, J. J. 1993. Immunohistochemical demonstration of androgen receptor in breast 
cancer and its relationship to other prognostic factors. J Pathol, 170, 31-5. 

JACQUEMIER, J., CHARAFE-JAUFFRET, E., MONVILLE, F., ESTERNI, B., EXTRA, J. 
M., HOUVENAEGHEL, G., XERRI, L., BERTUCCI, F. & BIRNBAUM, D. 2009. 



 

 219 

Association of GATA3, P53, Ki67 status and vascular peritumoral invasion are 
strongly prognostic in luminal breast cancer. Breast Cancer Res, 11, R23. 

JAIN, S., FISHER, C., SMITH, P., MILLIS, R. R. & RUBENS, R. D. 1993. Patterns of 
metastatic breast cancer in relation to histological type. European journal of cancer, 
29A, 2155-7. 

JENG, M. H., YUE, W., EISCHEID, A., WANG, J. P. & SANTEN, R. J. 2000. Role of MAP 
kinase in the enhanced cell proliferation of long term estrogen deprived human 
breast cancer cells. Breast Cancer Res Treat, 62, 167-75. 

JESELSOHN, R., BUCHWALTER, G., ANGELIS, C., BROWN, M. & SCHIFF, R. 2015. 
ESR1 mutations-a mechanism for acquired endocrine resistance in breast cancer. 
Nat Rev Clin Oncol. 

JESELSOHN, R., YELENSKY, R., BUCHWALTER, G., FRAMPTON, G., MERIC-
BERNSTAM, F., GONZALEZ-ANGULO, A. M., FERRER-LOZANO, J., PEREZ-
FIDALGO, J. A., CRISTOFANILLI, M., GOMEZ, H., ARTEAGA, C. L., GILTNANE, 
J., BALKO, J. M., CRONIN, M. T., JAROSZ, M., SUN, J., HAWRYLUK, M., 
LIPSON, D., OTTO, G., ROSS, J. S., DVIR, A., SOUSSAN-GUTMAN, L., WOLF, I., 
RUBINEK, T., GILMORE, L., SCHNITT, S., COME, S. E., PUSZTAI, L., 
STEPHENS, P., BROWN, M. & MILLER, V. A. 2014. Emergence of constitutively 
active estrogen receptor-alpha mutations in pretreated advanced estrogen receptor-
positive breast cancer. Clin Cancer Res, 20, 1757-67. 

JIANG, S., KATAYAMA, H., WANG, J., LI, S. A., HONG, Y., RADVANYI, L., LI, J. J. & 
SEN, S. 2010. Estrogen-induced aurora kinase-A (AURKA) gene expression is 
activated by GATA-3 in estrogen receptor-positive breast cancer cells. Horm 
Cancer, 1, 11-20. 

JIANG, Y. Z., YU, K. D., ZUO, W. J., PENG, W. T. & SHAO, Z. M. 2014. GATA3 mutations 
define a unique subtype of luminal-like breast cancer with improved survival. 
Cancer, 120, 1329-37. 

JUNANKAR, S., BAKER, L. A., RODEN, D. L., NAIR, R., ELSWORTH, B., GALLEGO-
ORTEGA, D., LACAZE, P., CAZET, A., NIKOLIC, I., TEO, W. S., YANG, J., 
MCFARLAND, A., HARVEY, K., NAYLOR, M. J., LAKHANI, S. R., SIMPSON, P. T., 
RAGHAVENDRA, A., SAUNUS, J., MADORE, J., KAPLAN, W., ORMANDY, C., 
MILLAR, E. K., O'TOOLE, S., YUN, K. & SWARBRICK, A. 2015. ID4 controls 
mammary stem cells and marks breast cancers with a stem cell-like phenotype. Nat 
Commun, 6, 6548. 

JUSTILIEN, V. & FIELDS, A. P. 2009. Ect2 links the PKCiota-Par6alpha complex to Rac1 
activation and cellular transformation. Oncogene, 28, 3597-607. 

KALINSKY, K., HEGUY, A., BHANOT, U. K., PATIL, S. & MOYNAHAN, M. E. 2011. 
PIK3CA mutations rarely demonstrate genotypic intratumoral heterogeneity and are 
selected for in breast cancer progression. Breast Cancer Res Treat, 129, 635-43. 

KAPLAN, R. N., RIBA, R. D., ZACHAROULIS, S., BRAMLEY, A. H., VINCENT, L., 
COSTA, C., MACDONALD, D. D., JIN, D. K., SHIDO, K., KERNS, S. A., ZHU, Z., 
HICKLIN, D., WU, Y., PORT, J. L., ALTORKI, N., PORT, E. R., RUGGERO, D., 
SHMELKOV, S. V., JENSEN, K. K., RAFII, S. & LYDEN, D. 2005. VEGFR1-positive 
haematopoietic bone marrow progenitors initiate the pre-metastatic niche. Nature, 
438, 820-7. 

KARIHTALA, P., AUVINEN, P., KAUPPILA, S., HAAPASAARI, K. M., JUKKOLA-
VUORINEN, A. & SOINI, Y. 2013. Vimentin, zeb1 and Sip1 are up-regulated in 
triple-negative and basal-like breast cancers: association with an aggressive tumour 
phenotype. Breast Cancer Res Treat, 138, 81-90. 

KARNIK, P. S., KULKARNI, S., LIU, X. P., BUDD, G. T. & BUKOWSKI, R. M. 1994. 
Estrogen receptor mutations in tamoxifen-resistant breast cancer. Cancer Res, 54, 
349-53. 



 

 220 

KASHIWABA, M., TAMURA, G., SUZUKI, Y., MAESAWA, C., OGASAWARA, S., 
SAKATA, K. & SATODATE, R. 1995. Epithelial-cadherin gene is not mutated in 
ductal carcinomas of the breast. Jpn J Cancer Res, 86, 1054-9. 

KASSAHN, K. S., HOLMES, O., NONES, K., PATCH, A. M., MILLER, D. K., CHRIST, A. 
N., HARLIWONG, I., BRUXNER, T. J., XU, Q., ANDERSON, M., WOOD, S., 
LEONARD, C., TAYLOR, D., NEWELL, F., SONG, S., IDRISOGLU, S., NOURSE, 
C., NOURBAKHSH, E., MANNING, S., WANI, S., STEPTOE, A., PAJIC, M., 
COWLEY, M. J., PINESE, M., CHANG, D. K., GILL, A. J., JOHNS, A. L., WU, J., 
WILSON, P. J., FINK, L., BIANKIN, A. V., WADDELL, N., GRIMMOND, S. M. & 
PEARSON, J. V. 2013. Somatic point mutation calling in low cellularity tumors. PloS 
One, 8, e74380. 

KATZENELLENBOGEN, B. S. & KATZENELLENBOGEN, J. A. 2000. Estrogen receptor 
transcription and transactivation: Estrogen receptor alpha and estrogen receptor 
beta: regulation by selective estrogen receptor modulators and importance in breast 
cancer. Breast Cancer Res, 2, 335-44. 

KE, H. L., KE, R. H., LI, S. T., LI, B., LU, H. T. & WANG, X. Q. 2013. Expression of 
RACGAP1 in high grade meningiomas: a potential role in cancer progression. J 
Neurooncol, 113, 327-32. 

KIM, S. W., KIM, S. J., LANGLEY, R. R. & FIDLER, I. J. 2015. Modulation of the cancer 
cell transcriptome by culture media formulations and cell density. Int J Oncol. 

KLAUS, A. & BIRCHMEIER, W. 2008. Wnt signalling and its impact on development and 
cancer. Nat Rev Cancer, 8, 387-98. 

KLEIN, C. A. 2009. Parallel progression of primary tumours and metastases. Nature 
reviews. Cancer, 9, 302-12. 

KNUDSON, A. G., JR. 1971. Mutation and cancer: statistical study of retinoblastoma. 
Proceedings of the National Academy of Sciences of the United States of America, 
68, 820-3. 

KONDI-PAFITI, A., KAIRI-VASILATOU, E., IAVAZZO, C., DASTAMANI, C., 
BAKALIANOU, K., LIAPIS, A., HASSIAKOS, D. & FOTIOU, S. 2011. Metastatic 
neoplasms of the ovaries: a clinicopathological study of 97 cases. Archives of 
gynecology and obstetrics, 284, 1283-8. 

KORKOLA, J. E., DEVRIES, S., FRIDLYAND, J., HWANG, E. S., ESTEP, A. L., CHEN, Y. 
Y., CHEW, K. L., DAIRKEE, S. H., JENSEN, R. M. & WALDMAN, F. M. 2003. 
Differentiation of lobular versus ductal breast carcinomas by expression microarray 
analysis. Cancer Res, 63, 7167-75. 

KOUROS-MEHR, H., SLORACH, E. M., STERNLICHT, M. D. & WERB, Z. 2006. GATA-3 
maintains the differentiation of the luminal cell fate in the mammary gland. Cell, 127, 
1041-55. 

KOVACS, E. M., VERMA, S., ALI, R. G., RATHEESH, A., HAMILTON, N. A., 
AKHMANOVA, A. & YAP, A. S. 2011. N-WASP regulates the epithelial junctional 
actin cytoskeleton through a non-canonical post-nucleation pathway. Nature cell 
biology, 13, 934-43. 

KUENEN-BOUMEESTER, V., VAN DER KWAST, T. H., VAN PUTTEN, W. L., 
CLAASSEN, C., VAN OOIJEN, B. & HENZEN-LOGMANS, S. C. 1992. 
Immunohistochemical determination of androgen receptors in relation to oestrogen 
and progesterone receptors in female breast cancer. Int J Cancer, 52, 581-4. 

KUIPER, G. G., LEMMEN, J. G., CARLSSON, B., CORTON, J. C., SAFE, S. H., VAN 
DER SAAG, P. T., VAN DER BURG, B. & GUSTAFSSON, J. A. 1998. Interaction of 
estrogenic chemicals and phytoestrogens with estrogen receptor beta. 
Endocrinology, 139, 4252-63. 

KUTASOVIC, J. R. 2011. Investigating the molecular evolution of lobular breast 
carcinomas. BSc Honours, University of Queensland. 



 

 221 

KUTASOVIC, J. R., SIM, S. Y. M., MCCART REED, A. E., CUMMINGS, M. C. & 
SIMPSON, P. T. 2014. Intratumour heterogeneity in the progression to breast 
cancer metastasis. Cancer Forum, 38, 138-142. 

KUUKASJARVI, T., KARHU, R., TANNER, M., KAHKONEN, M., SCHAFFER, A., 
NUPPONEN, N., PENNANEN, S., KALLIONIEMI, A., KALLIONIEMI, O. P. & 
ISOLA, J. 1997a. Genetic heterogeneity and clonal evolution underlying 
development of asynchronous metastasis in human breast cancer. Cancer Res, 57, 
1597-604. 

KUUKASJARVI, T., TANNER, M., PENNANEN, S., KARHU, R., KALLIONIEMI, O. P. & 
ISOLA, J. 1997b. Genetic changes in intraductal breast cancer detected by 
comparative genomic hybridization. Am J Pathol, 150, 1465-71. 

LAGANIERE, J., DEBLOIS, G., LEFEBVRE, C., BATAILLE, A. R., ROBERT, F. & 
GIGUERE, V. 2005. From the Cover: Location analysis of estrogen receptor alpha 
target promoters reveals that FOXA1 defines a domain of the estrogen response. 
Proc Natl Acad Sci U S A, 102, 11651-6. 

LAGERWAARD, F. J., LEVENDAG, P. C., NOWAK, P. J., EIJKENBOOM, W. M., 
HANSSENS, P. E. & SCHMITZ, P. I. 1999. Identification of prognostic factors in 
patients with brain metastases: a review of 1292 patients. Int J Radiat Oncol Biol 
Phys, 43, 795-803. 

LAI, A., KAHRAMAN, M., GOVEK, S., NAGASAWA, J., BONNEFOUS, C., JULIEN, J., 
DOUGLAS, K., SENSINTAFFAR, J., LU, N., LEE, K. J., APARICIO, A., KAUFMAN, 
J., QIAN, J., SHAO, G., PRUDENTE, R., MOON, M. J., JOSEPH, J. D., 
DARIMONT, B., BRIGHAM, D., GRILLOT, K., HEYMAN, R., RIX, P. J., HAGER, J. 
H. & SMITH, N. D. 2015. Identification of GDC-0810 (ARN-810), an Orally 
Bioavailable Selective Estrogen Receptor Degrader (SERD) that Demonstrates 
Robust Activity in Tamoxifen-Resistant Breast Cancer Xenografts. J Med Chem, 58, 
4888-904. 

LAKHANI S. R., E. I. O., SCHINITT S. J., TAN .H., VAN DE VIJVER M. J. (EDS.) 2012. 
WHO Classification of Tumours of the Breast. 

LAKHANI, S. R., CHAGGAR, R., DAVIES, S., JONES, C., COLLINS, N., ODEL, C., 
STRATTON, M. R. & O'HARE, M. J. 1999. Genetic alterations in 'normal' luminal 
and myoepithelial cells of the breast. J Pathol, 189, 496-503. 

LAMOVEC, J. & BRACKO, M. 1991. Metastatic pattern of infiltrating lobular carcinoma of 
the breast: an autopsy study. Journal of surgical oncology, 48, 28-33. 

LANDAU, D. A., CARTER, S. L., STOJANOV, P., MCKENNA, A., STEVENSON, K., 
LAWRENCE, M. S., SOUGNEZ, C., STEWART, C., SIVACHENKO, A., WANG, L., 
WAN, Y., ZHANG, W., SHUKLA, S. A., VARTANOV, A., FERNANDES, S. M., 
SAKSENA, G., CIBULSKIS, K., TESAR, B., GABRIEL, S., HACOHEN, N., 
MEYERSON, M., LANDER, E. S., NEUBERG, D., BROWN, J. R., GETZ, G. & WU, 
C. J. 2013. Evolution and impact of subclonal mutations in chronic lymphocytic 
leukemia. Cell, 152, 714-26. 

LAWRENCE, M., HUBER, W., PAGES, H., ABOYOUN, P., CARLSON, M., GENTLEMAN, 
R., MORGAN, M. T. & CAREY, V. J. 2013. Software for computing and annotating 
genomic ranges. PLoS Comput Biol, 9, e1003118. 

LEE, Y. T. 1983. Breast carcinoma: pattern of metastasis at autopsy. J Surg Oncol, 23, 
175-80. 

LEUNG, C. T. & BRUGGE, J. S. 2012. Outgrowth of single oncogene-expressing cells 
from suppressive epithelial environments. Nature, 482, 410-3. 

LI, C. I., ANDERSON, B. O., DALING, J. R. & MOE, R. E. 2003. Trends in incidence rates 
of invasive lobular and ductal breast carcinoma. JAMA, 289, 1421-4. 



 

 222 

LI, C. I., ANDERSON, B. O., PORTER, P., HOLT, S. K., DALING, J. R. & MOE, R. E. 
2000. Changing incidence rate of invasive lobular breast carcinoma among older 
women. Cancer, 88, 2561-9. 

LI, C. I., CHLEBOWSKI, R. T., FREIBERG, M., JOHNSON, K. C., KULLER, L., LANE, D., 
LESSIN, L., O'SULLIVAN, M. J., WACTAWSKI-WENDE, J., YASMEEN, S. & 
PRENTICE, R. 2010a. Alcohol consumption and risk of postmenopausal breast 
cancer by subtype: the women's health initiative observational study. J Natl Cancer 
Inst, 102, 1422-31. 

LI, C. I., DALING, J. R., MALONE, K. E., BERNSTEIN, L., MARCHBANKS, P. A., LIFF, J. 
M., STROM, B. L., SIMON, M. S., PRESS, M. F., MCDONALD, J. A., URSIN, G., 
BURKMAN, R. T., DEAPEN, D. & SPIRTAS, R. 2006. Relationship between 
established breast cancer risk factors and risk of seven different histologic types of 
invasive breast cancer. Cancer epidemiology, biomarkers & prevention : a 
publication of the American Association for Cancer Research, cosponsored by the 
American Society of Preventive Oncology, 15, 946-54. 

LI, C. I., URIBE, D. J. & DALING, J. R. 2005. Clinical characteristics of different histologic 
types of breast cancer. Br J Cancer, 93, 1046-52. 

LI, H. & DURBIN, R. 2009 Fast and accurate short read alignment with Burrows-Wheeler 
transform. Bioinformatics, 24, 1754-60. 

LAWRENCE, M. S., STOJANOV, P., POLAK, P., KRYUKOV, G. V., CIBULSKIS, K., 
SIVACHENKO, A., CARTER, S. L., STEWART, C., MERMEL, C. H., ROBERTS, S. 
A., KIEZUN, A., HAMMERMAN, P. S., MCKENNA, A., DRIER, Y., ZOU, L., 
RAMOS, A. H., PUGH, T. J., STRANSKY, N., HELMAN, E., KIM, J., SOUGNEZ, C., 
AMBROGIO, L., NICKERSON, E., SHEFLER, E., CORTES, M. L., AUCLAIR, D., 
SAKSENA, G., VOET, D., NOBLE, M., DICARA, D., LIN, P., LICHTENSTEIN, L., 
HEIMAN, D. I., FENNELL, T., IMIELINSKI, M., HERNANDEZ, B., HODIS, E., 
BACA, S., DULAK, A. M., LOHR, J., LANDAU, D. A., WU, C. J., MELENDEZ-
ZAJGLA, J., HIDALGO-MIRANDA, A., KOREN, A., MCCARROLL, S. A., MORA, J., 
LEE, R. S., CROMPTON, B., ONOFRIO, R., PARKIN, M., WINCKLER, W., 
ARDLIE, K., GABRIEL, S. B., ROBERTS, C. W., BIEGEL, J. A., STEGMAIER, K., 
BASS, A. J., GARRAWAY, L. A., MEYERSON, M., GOLUB, T. R., GORDENIN, D. 
A., SUNYAEV, S., LANDER, E. S. & GETZ, G. 2013. Mutational heterogeneity in 
cancer and the search for new cancer-associated genes. Nature, 499, 214-8. 

LI, H., ZHU, R., WANG, L., ZHU, T., LI, Q., CHEN, Q., WANG, H. & ZHU, H. 2010b. 
PIK3CA mutations mostly begin to develop in ductal carcinoma of the breast. Exp 
Mol Pathol, 88, 150-5. 

LI, S., SHEN, D., SHAO, J., CROWDER, R., LIU, W., PRAT, A., HE, X., LIU, S., HOOG, 
J., LU, C., DING, L., GRIFFITH, O. L., MILLER, C., LARSON, D., FULTON, R. S., 
HARRISON, M., MOONEY, T., MCMICHAEL, J. F., LUO, J., TAO, Y., 
GONCALVES, R., SCHLOSBERG, C., HIKEN, J. F., SAIED, L., SANCHEZ, C., 
GIUNTOLI, T., BUMB, C., COOPER, C., KITCHENS, R. T., LIN, A., PHOMMALY, 
C., DAVIES, S. R., ZHANG, J., KAVURI, M. S., MCEACHERN, D., DONG, Y. Y., 
MA, C., PLUARD, T., NAUGHTON, M., BOSE, R., SURESH, R., MCDOWELL, R., 
MICHEL, L., AFT, R., GILLANDERS, W., DESCHRYVER, K., WILSON, R. K., 
WANG, S., MILLS, G. B., GONZALEZ-ANGULO, A., EDWARDS, J. R., MAHER, 
C., PEROU, C. M., MARDIS, E. R. & ELLIS, M. J. 2013. Endocrine-therapy-
resistant ESR1 variants revealed by genomic characterization of breast-cancer-
derived xenografts. Cell Rep, 4, 1116-30. 

LI, Y., WANG, J. P., SANTEN, R. J., KIM, T. H., PARK, H., FAN, P. & YUE, W. 2010c. 
Estrogen stimulation of cell migration involves multiple signaling pathway 
interactions. Endocrinology, 151, 5146-56. 



 

 223 

LIEDTKE, C., RODY, A., GLUZ, O., BAUMANN, K., BEYER, D., KOHLS, E. B., LAUSEN, 
K., HANKER, L., HOLTRICH, U., BECKER, S. & KARN, T. 2015. The prognostic 
impact of age in different molecular subtypes of breast cancer. Breast Cancer Res 
Treat. 

LIU, H., SHI, J., WILKERSON, M. L. & LIN, F. 2012. Immunohistochemical evaluation of 
GATA3 expression in tumors and normal tissues: a useful immunomarker for breast 
and urothelial carcinomas. Am J Clin Pathol, 138, 57-64. 

LIU, W., LAITINEN, S., KHAN, S., VIHINEN, M., KOWALSKI, J., YU, G., CHEN, L., 
EWING, C. M., EISENBERGER, M. A., CARDUCCI, M. A., NELSON, W. G., 
YEGNASUBRAMANIAN, S., LUO, J., WANG, Y., XU, J., ISAACS, W. B., 
VISAKORPI, T. & BOVA, G. S. 2009. Copy number analysis indicates monoclonal 
origin of lethal metastatic prostate cancer. Nat Med, 15, 559-65. 

LOPEZ-GARCIA, M. A., GEYER, F. C., LACROIX-TRIKI, M., MARCHIO, C. & REIS-
FILHO, J. S. 2010. Breast cancer precursors revisited: molecular features and 
progression pathways. Histopathology, 57, 171-92. 

LU, K. H., PATTERSON, A. P., WANG, L., MARQUEZ, R. T., ATKINSON, E. N., 
BAGGERLY, K. A., RAMOTH, L. R., ROSEN, D. G., LIU, J., HELLSTROM, I., 
SMITH, D., HARTMANN, L., FISHMAN, D., BERCHUCK, A., SCHMANDT, R., 
WHITAKER, R., GERSHENSON, D. M., MILLS, G. B. & BAST, R. C., JR. 2004. 
Selection of potential markers for epithelial ovarian cancer with gene expression 
arrays and recursive descent partition analysis. Clin Cancer Res, 10, 3291-300. 

LU, Y. J., OSIN, P., LAKHANI, S. R., DI PALMA, S., GUSTERSON, B. A. & SHIPLEY, J. 
M. 1998. Comparative genomic hybridization analysis of lobular carcinoma in situ 
and atypical lobular hyperplasia and potential roles for gains and losses of genetic 
material in breast neoplasia. Cancer Res, 58, 4721-7. 

LUPIEN, M., MEYER, C. A., BAILEY, S. T., EECKHOUTE, J., COOK, J., WESTERLING, 
T., ZHANG, X., CARROLL, J. S., RHODES, D. R., LIU, X. S. & BROWN, M. 2010. 
Growth factor stimulation induces a distinct ER(alpha) cistrome underlying breast 
cancer endocrine resistance. Genes Dev, 24, 2219-27. 

LYNCH, E. D., OSTERMEYER, E. A., LEE, M. K., ARENA, J. F., JI, H., DANN, J., 
SWISSHELM, K., SUCHARD, D., MACLEOD, P. M., KVINNSLAND, S., 
GJERTSEN, B. T., HEIMDAL, K., LUBS, H., MOLLER, P. & KING, M. C. 1997. 
Inherited mutations in PTEN that are associated with breast cancer, cowden 
disease, and juvenile polyposis. Am J Hum Genet, 61, 1254-60. 

MA, X. J., SALUNGA, R., TUGGLE, J. T., GAUDET, J., ENRIGHT, E., MCQUARY, P., 
PAYETTE, T., PISTONE, M., STECKER, K., ZHANG, B. M., ZHOU, Y. X., 
VARNHOLT, H., SMITH, B., GADD, M., CHATFIELD, E., KESSLER, J., BAER, T. 
M., ERLANDER, M. G. & SGROI, D. C. 2003. Gene expression profiles of human 
breast cancer progression. Proc Natl Acad Sci U S A, 100, 5974-9. 

MAKI, D. D. & GROSSMAN, R. I. 2000. Patterns of disease spread in metastatic breast 
carcinoma: influence of estrogen and progesterone receptor status. AJNR. 
American journal of neuroradiology, 21, 1064-6. 

MANGOLD, S., WU, S. K., NORWOOD, S. J., COLLINS, B. M., HAMILTON, N. A., 
THORN, P. & YAP, A. S. 2011. Hepatocyte growth factor acutely perturbs actin 
filament anchorage at the epithelial zonula adherens. Curr Biol, 21, 503-7. 

MARTIN, L. A., FARMER, I., JOHNSTON, S. R., ALI, S., MARSHALL, C. & DOWSETT, M. 
2003. Enhanced estrogen receptor (ER) alpha, ERBB2, and MAPK signal 
transduction pathways operate during the adaptation of MCF-7 cells to long term 
estrogen deprivation. J Biol Chem, 278, 30458-68. 

MARTIN TA, TOMS AM, DAVIES LM, CHENG S & WG, J. 2012. The clinical and 
biological implications of N-WASP expression in human colorectal cancer. Transl 
Gastrointest Cancer, 1, 10-20. 



 

 224 

MARTIN, T. A., PEREIRA, G., WATKINS, G., MANSEL, R. E. & JIANG, W. G. 2008. N-
WASP is a putative tumour suppressor in breast cancer cells, in vitro and in vivo, 
and is associated with clinical outcome in patients with breast cancer. Clin Exp 
Metastasis, 25, 97-108. 

MASTRACCI, T. L., SHADEO, A., COLBY, S. M., TUCK, A. B., O'MALLEY, F. P., BULL, 
S. B., LAM, W. L. & ANDRULIS, I. L. 2006. Genomic alterations in lobular 
neoplasia: a microarray comparative genomic hybridization signature for early 
neoplastic proliferationin the breast. Genes, chromosomes & cancer, 45, 1007-17. 

MASTRACCI, T. L., TJAN, S., BANE, A. L., O'MALLEY, F. P. & ANDRULIS, I. L. 2005. E-
cadherin alterations in atypical lobular hyperplasia and lobular carcinoma in situ of 
the breast. Modern pathology : an official journal of the United States and Canadian 
Academy of Pathology, Inc, 18, 741-51. 

MATTHEWS, H. K., DELABRE, U., ROHN, J. L., GUCK, J., KUNDA, P. & BAUM, B. 2012. 
Changes in Ect2 localization couple actomyosin-dependent cell shape changes to 
mitotic progression. Dev Cell, 23, 371-83. 

MAXMEN, A. 2012. The hard facts. Nature, 485, S50-S51. 
MC SHERRY, E. A., MC GOLDRICK, A., KAY, E. W., HOPKINS, A. M., GALLAGHER, W. 

M. & DERVAN, P. A. 2007. Formalin-fixed paraffin-embedded clinical tissues show 
spurious copy number changes in array-CGH profiles. Clin Genet, 72, 441-7. 

MCCART REED, A. E., KUTASOVIC, J. R., LAKHANI, S. R. & SIMPSON, P. T. 2015. 
Invasive lobular carcinoma of the breast: morphology, biomarkers and 'omics. 
Breast Cancer Res, 17, 519. 

MCFALL, A., ULKU, A., LAMBERT, Q. T., KUSA, A., ROGERS-GRAHAM, K. & DER, C. J. 
2001. Oncogenic Ras blocks anoikis by activation of a novel effector pathway 
independent of phosphatidylinositol 3-kinase. Mol Cell Biol, 21, 5488-99. 

MCGHAN, L. J., MCCULLOUGH, A. E., PROTHEROE, C. A., DUECK, A. C., LEE, J. J., 
NUNEZ-NATERAS, R., CASTLE, E. P., GRAY, R. J., WASIF, N., GOETZ, M. P., 
HAWSE, J. R., HENRY, T. J., BARRETT, M. T., CUNLIFFE, H. E. & POCKAJ, B. A. 
2014. Androgen receptor-positive triple negative breast cancer: a unique breast 
cancer subtype. Ann Surg Oncol, 21, 361-7. 

MCKENNA, A., HANNA, M., BANKS, E., SIVACHENKO, A., CIBULSKIS, K., 
KERNYTSKY, A., GARIMELLA, K., ALTSHULER, D., GABRIEL, S., DALY, M. & 
DEPRISTO, M. A. 2010. The Genome Analysis Toolkit: a MapReduce framework 
for analyzing next-generation DNA sequencing data. Genome Res, 20, 1297-303.  

MCVEIGH, T. P., CHOI, J. K., MILLER, N. M., GREEN, A. J. & KERIN, M. J. 2014. Lobular 
breast cancer in a CDH1 splice site mutation carrier: case report and review of the 
literature. Clin Breast Cancer, 14, e47-51. 

MEHRA, R., VARAMBALLY, S., DING, L., SHEN, R., SABEL, M. S., GHOSH, D., 
CHINNAIYAN, A. M. & KLEER, C. G. 2005. Identification of GATA3 as a breast 
cancer prognostic marker by global gene expression meta-analysis. Cancer Res, 
65, 11259-64. 

MEHTA, R. J., JAIN, R. K., LEUNG, S., CHOO, J., NIELSEN, T., HUNTSMAN, D., 
NAKSHATRI, H. & BADVE, S. 2012. FOXA1 is an independent prognostic marker 
for ER-positive breast cancer. Breast Cancer Res Treat, 131, 881-90. 

MERENBAKH-LAMIN, K., BEN-BARUCH, N., YEHESKEL, A., DVIR, A., SOUSSAN-
GUTMAN, L., JESELSOHN, R., YELENSKY, R., BROWN, M., MILLER, V. A., 
SARID, D., RIZEL, S., KLEIN, B., RUBINEK, T. & WOLF, I. 2013. D538G mutation 
in estrogen receptor-alpha: A novel mechanism for acquired endocrine resistance in 
breast cancer. Cancer Res, 73, 6856-64. 

MERIC-BERNSTAM, F., FRAMPTON, G. M., FERRER-LOZANO, J., YELENSKY, R., 
PEREZ-FIDALGO, J. A., WANG, Y., PALMER, G. A., ROSS, J. S., MILLER, V. A., 
SU, X., EROLES, P., BARRERA, J. A., BURGUES, O., LLUCH, A. M., ZHENG, X., 



 

 225 

SAHIN, A., STEPHENS, P. J., MILLS, G. B., CRONIN, M. T. & GONZALEZ-
ANGULO, A. M. 2014. Concordance of genomic alterations between primary and 
recurrent breast cancer. Mol Cancer Ther, 13, 1382-9. 

MERMEL, C. H., SCHUMACHER, S. E., HILL, B., MEYERSON, M. L., BEROUKHIM, R. & 
GETZ, G. 2011. GISTIC2.0 facilitates sensitive and confident localization of the 
targets of focal somatic copy-number alteration in human cancers. Genome Biol, 
12, R41. 

MIDDLETON, L. P., PALACIOS, D. M., BRYANT, B. R., KREBS, P., OTIS, C. N. & 
MERINO, M. J. 2000. Pleomorphic lobular carcinoma: morphology, 
immunohistochemistry, and molecular analysis. Am J Surg Pathol, 24, 1650-6. 

MILLER, T. W., HENNESSY, B. T., GONZALEZ-ANGULO, A. M., FOX, E. M., MILLS, G. 
B., CHEN, H., HIGHAM, C., GARCIA-ECHEVERRIA, C., SHYR, Y. & ARTEAGA, 
C. L. 2010. Hyperactivation of phosphatidylinositol-3 kinase promotes escape from 
hormone dependence in estrogen receptor-positive human breast cancer. J Clin 
Invest, 120, 2406-13. 

MIRON, A., VARADI, M., CARRASCO, D., LI, H., LUONGO, L., KIM, H. J., PARK, S. Y., 
CHO, E. Y., LEWIS, G., KEHOE, S., IGLEHART, J. D., DILLON, D., ALLRED, D. 
C., MACCONAILL, L., GELMAN, R. & POLYAK, K. 2010. PIK3CA mutations in in 
situ and invasive breast carcinomas. Cancer Res, 70, 5674-8. 

MOHAMMED, H., RUSSELL, I. A., STARK, R., RUEDA, O. M., HICKEY, T. E., TARULLI, 
G. A., SERANDOUR, A. A., BIRRELL, S. N., BRUNA, A., SAADI, A., MENON, S., 
HADFIELD, J., PUGH, M., RAJ, G. V., BROWN, G. D., D'SANTOS, C., 
ROBINSON, J. L., SILVA, G., LAUNCHBURY, R., PEROU, C. M., STINGL, J., 
CALDAS, C., TILLEY, W. D. & CARROLL, J. S. 2015. Progesterone receptor 
modulates ERalpha action in breast cancer. Nature, 523, 313-7. 

MOLENAAR, J. J., EBUS, M. E., KOSTER, J., SANTO, E., GEERTS, D., VERSTEEG, R. 
& CARON, H. N. 2010. Cyclin D1 is a direct transcriptional target of GATA3 in 
neuroblastoma tumor cells. Oncogene, 29, 2739-45. 

MOLL, R., MITZE, M., FRIXEN, U. H. & BIRCHMEIER, W. 1993. Differential loss of E-
cadherin expression in infiltrating ductal and lobular breast carcinomas. The 
American journal of pathology, 143, 1731-42. 

MOMENY, M., SAUNUS, J. M., MARTURANA, F., MCCART REED, A. E., BLACK, D., 
SALA, G., IACOBELLI, S., HOLLAND, J. D., YU, D., DA SILVA, L., SIMPSON, P. 
T., KHANNA, K. K., CHENEVIX-TRENCH, G. & LAKHANI, S. R. 2015. Heregulin-
HER3-HER2 signaling promotes matrix metalloproteinase-dependent blood-brain-
barrier transendothelial migration of human breast cancer cell lines. Oncotarget, 6, 
3932-46. 

MOORE, R. G., CHUNG, M., GRANAI, C. O., GAJEWSKI, W. & STEINHOFF, M. M. 2004. 
Incidence of metastasis to the ovaries from nongenital tract primary tumors. 
Gynecologic oncology, 93, 87-91. 

MOY, L., SLANETZ, P. J., MOORE, R., SATIJA, S., YEH, E. D., MCCARTHY, K. A., 
HALL, D., STAFFA, M., RAFFERTY, E. A., HALPERN, E. & KOPANS, D. B. 2002. 
Specificity of mammography and US in the evaluation of a palpable abnormality: 
retrospective review. Radiology, 225, 176-81. 

MUKHERJEE, S. & CONRAD, S. E. 2005. c-Myc suppresses p21WAF1/CIP1 expression 
during estrogen signaling and antiestrogen resistance in human breast cancer cells. 
J Biol Chem, 280, 17617-25. 

MUSGROVE, E. A. & SUTHERLAND, R. L. 2009. Biological determinants of endocrine 
resistance in breast cancer. Nat Rev Cancer, 9, 631-43. 

NAGAFUCHI, A., SHIRAYOSHI, Y., OKAZAKI, K., YASUDA, K. & TAKEICHI, M. 1987. 
Transformation of cell adhesion properties by exogenously introduced E-cadherin 
cDNA. Nature, 329, 341-3. 



 

 226 

NAGAO, T., KINOSHITA, T., HOJO, T., TSUDA, H., TAMURA, K. & FUJIWARA, Y. 2012. 
The differences in the histological types of breast cancer and the response to 
neoadjuvant chemotherapy: the relationship between the outcome and the 
clinicopathological characteristics. Breast, 21, 289-95. 

NAKSHATRI, H. & BADVE, S. 2007. FOXA1 as a therapeutic target for breast cancer. 
Expert Opin Ther Targets, 11, 507-14. 

NATRAJAN, R., WEIGELT, B., MACKAY, A., GEYER, F. C., GRIGORIADIS, A., TAN, D. 
S., JONES, C., LORD, C. J., VATCHEVA, R., RODRIGUEZ-PINILLA, S. M., 
PALACIOS, J., ASHWORTH, A. & REIS-FILHO, J. S. 2010. An integrative genomic 
and transcriptomic analysis reveals molecular pathways and networks regulated by 
copy number aberrations in basal-like, HER2 and luminal cancers. Breast Cancer 
Res Treat, 121, 575-89. 

NAVIN, N., KENDALL, J., TROGE, J., ANDREWS, P., RODGERS, L., MCINDOO, J., 
COOK, K., STEPANSKY, A., LEVY, D., ESPOSITO, D., MUTHUSWAMY, L., 
KRASNITZ, A., MCCOMBIE, W. R., HICKS, J. & WIGLER, M. 2011. Tumour 
evolution inferred by single-cell sequencing. Nature, 472, 90-4. 

NAYLOR, M. J. & ORMANDY, C. J. 2007. Gata-3 and mammary cell fate. Breast Cancer 
Res, 9, 302. 

NEWBURGER, D. E., KASHEF-HAGHIGHI, D., WENG, Z., SALARI, R., SWEENEY, R. T., 
BRUNNER, A. L., ZHU, S. X., GUO, X., VARMA, S., TROXELL, M. L., WEST, R. 
B., BATZOGLOU, S. & SIDOW, A. 2013. Genome evolution during progression to 
breast cancer. Genome Res, 23, 1097-108. 

NEWMAN, W. 1966. Lobular carcinoma of the female breast. Report of 73 cases. Annals 
of surgery, 164, 305-14. 

NG, C. K., MARTELOTTO, L. G., GAUTHIER, A., WEN, H. C., PISCUOGLIO, S., LIM, R. 
S., COWELL, C. F., WILKERSON, P. M., WAI, P., RODRIGUES, D. N., ARNOULD, 
L., GEYER, F. C., BROMBERG, S. E., LACROIX-TRIKI, M., PENAULT-LLORCA, 
F., GIARD, S., SASTRE-GARAU, X., NATRAJAN, R., NORTON, L., COTTU, P. H., 
WEIGELT, B., VINCENT-SALOMON, A. & REIS-FILHO, J. S. 2015. Intra-tumor 
genetic heterogeneity and alternative driver genetic alterations in breast cancers 
with heterogeneous HER2 gene amplification. Genome Biol, 16, 107. 

NI, M., CHEN, Y., LIM, E., WIMBERLY, H., BAILEY, S. T., IMAI, Y., RIMM, D. L., LIU, X. 
S. & BROWN, M. 2011. Targeting androgen receptor in estrogen receptor-negative 
breast cancer. Cancer Cell, 20, 119-31. 

NIELSEN, T. O., HSU, F. D., JENSEN, K., CHEANG, M., KARACA, G., HU, Z., 
HERNANDEZ-BOUSSARD, T., LIVASY, C., COWAN, D., DRESSLER, L., 
AKSLEN, L. A., RAGAZ, J., GOWN, A. M., GILKS, C. B., VAN DE RIJN, M. & 
PEROU, C. M. 2004. Immunohistochemical and clinical characterization of the 
basal-like subtype of invasive breast carcinoma. Clin Cancer Res, 10, 5367-74. 

NIEMEIER, L. A., DABBS, D. J., BERIWAL, S., STRIEBEL, J. M. & BHARGAVA, R. 2010. 
Androgen receptor in breast cancer: expression in estrogen receptor-positive 
tumors and in estrogen receptor-negative tumors with apocrine differentiation. Mod 
Pathol, 23, 205-12. 

NIK-ZAINAL, S., VAN LOO, P., WEDGE, D. C., ALEXANDROV, L. B., GREENMAN, C. D., 
LAU, K. W., RAINE, K., JONES, D., MARSHALL, J., RAMAKRISHNA, M., SHLIEN, 
A., COOKE, S. L., HINTON, J., MENZIES, A., STEBBINGS, L. A., LEROY, C., JIA, 
M., RANCE, R., MUDIE, L. J., GAMBLE, S. J., STEPHENS, P. J., MCLAREN, S., 
TARPEY, P. S., PAPAEMMANUIL, E., DAVIES, H. R., VARELA, I., MCBRIDE, D. 
J., BIGNELL, G. R., LEUNG, K., BUTLER, A. P., TEAGUE, J. W., MARTIN, S., 
JONSSON, G., MARIANI, O., BOYAULT, S., MIRON, P., FATIMA, A., LANGEROD, 
A., APARICIO, S. A., TUTT, A., SIEUWERTS, A. M., BORG, A., THOMAS, G., 
SALOMON, A. V., RICHARDSON, A. L., BORRESEN-DALE, A. L., FUTREAL, P. 



 

 227 

A., STRATTON, M. R., CAMPBELL, P. J. & BREAST CANCER WORKING GROUP 
OF THE INTERNATIONAL CANCER GENOME, C. 2012. The life history of 21 
breast cancers. Cell, 149, 994-1007. 

NILSEN, G., LIESTOL, K., VAN LOO, P., MOEN VOLLAN, H. K., EIDE, M. B., RUEDA, O. 
M., CHIN, S. F., RUSSELL, R., BAUMBUSCH, L. O., CALDAS, C., BORRESEN-
DALE, A. L. & LINGJAERDE, O. C. 2012. Copynumber: Efficient algorithms for 
single- and multi-track copy number segmentation. BMC Genomics, 13, 591. 

NOBES, C. D. & HALL, A. 1995. Rho, rac, and cdc42 GTPases regulate the assembly of 
multimolecular focal complexes associated with actin stress fibers, lamellipodia, and 
filopodia. Cell, 81, 53-62. 

NOVELLI, F., MILELLA, M., MELUCCI, E., DI BENEDETTO, A., SPERDUTI, I., 
PERRONE-DONNORSO, R., PERRACCHIO, L., VENTURO, I., NISTICO, C., FABI, 
A., BUGLIONI, S., NATALI, P. G. & MOTTOLESE, M. 2008. A divergent role for 
estrogen receptor-beta in node-positive and node-negative breast cancer classified 
according to molecular subtypes: an observational prospective study. Breast 
Cancer Res, 10, R74. 

O'BRIEN, R. N., SHEN, Z., TACHIKAWA, K., LEE, P. A. & BRIGGS, S. P. 2010. 
Quantitative proteome analysis of pluripotent cells by iTRAQ mass tagging reveals 
post-transcriptional regulation of proteins required for ES cell self-renewal. Mol Cell 
Proteomics, 9, 2238-51. 

OGAWA, Y., HAI, E., MATSUMOTO, K., IKEDA, K., TOKUNAGA, S., NAGAHARA, H., 
SAKURAI, K., INOUE, T. & NISHIGUCHI, Y. 2008. Androgen receptor expression 
in breast cancer: relationship with clinicopathological factors and biomarkers. Int J 
Clin Oncol, 13, 431-5. 

OLIVEROS, J. C. 2007-2015. Venny. An interactive tool for comparing lists with Venn's 
diagrams. 

OLSHEN, A. B., VENKATRAMAN, E. S., LUCITO, R. & WIGLER, M. 2004. Circular binary 
segmentation for the analysis of array-based DNA copy number data. Biostatistics, 
5, 557-72. 

ORVIETO, E., MAIORANO, E., BOTTIGLIERI, L., MAISONNEUVE, P., ROTMENSZ, N., 
GALIMBERTI, V., LUINI, A., BRENELLI, F., GATTI, G. & VIALE, G. 2008. 
Clinicopathologic characteristics of invasive lobular carcinoma of the breast: results 
of an analysis of 530 cases from a single institution. Cancer, 113, 1511-20. 

OSBORNE, C. K. & SCHIFF, R. 2011. Mechanisms of endocrine resistance in breast 
cancer. Annu Rev Med, 62, 233-47. 

OZAWA, M., BARIBAULT, H. & KEMLER, R. 1989. The cytoplasmic domain of the cell 
adhesion molecule uvomorulin associates with three independent proteins 
structurally related in different species. EMBO J, 8, 1711-7. 

PAGANI, O., REGAN, M. M., WALLEY, B. A., FLEMING, G. F., COLLEONI, M., LANG, I., 
GOMEZ, H. L., TONDINI, C., BURSTEIN, H. J., PEREZ, E. A., CIRUELOS, E., 
STEARNS, V., BONNEFOI, H. R., MARTINO, S., GEYER, C. E., JR., PINOTTI, G., 
PUGLISI, F., CRIVELLARI, D., RUHSTALLER, T., WINER, E. P., RABAGLIO-
PORETTI, M., MAIBACH, R., RUEPP, B., GIOBBIE-HURDER, A., PRICE, K. N., 
BERNHARD, J., LUO, W., RIBI, K., VIALE, G., COATES, A. S., GELBER, R. D., 
GOLDHIRSCH, A., FRANCIS, P. A., TEXT, INVESTIGATORS, S. & 
INTERNATIONAL BREAST CANCER STUDY, G. 2014. Adjuvant exemestane with 
ovarian suppression in premenopausal breast cancer. N Engl J Med, 371, 107-18. 

PAGET, S. 1889. The distribution of secondary growths in cancer of the breast. Lancet, 
133, 571-573. 

PAIK, S., SHAK, S., TANG, G., KIM, C., BAKER, J., CRONIN, M., BAEHNER, F. L., 
WALKER, M. G., WATSON, D., PARK, T., HILLER, W., FISHER, E. R., 
WICKERHAM, D. L., BRYANT, J. & WOLMARK, N. 2004. A multigene assay to 



 

 228 

predict recurrence of tamoxifen-treated, node-negative breast cancer. N Engl J 
Med, 351, 2817-26. 

PARANJAPE, T., HENEGHAN, H., LINDNER, R., KEANE, F. K., HOFFMAN, A., 
HOLLESTELLE, A., DORAIRAJ, J., GEYDA, K., PELLETIER, C., NALLUR, S., 
MARTENS, J. W., HOONING, M. J., KERIN, M., ZELTERMAN, D., ZHU, Y., TUCK, 
D., HARRIS, L., MILLER, N., SLACK, F. & WEIDHAAS, J. 2011. A 3'-untranslated 
region KRAS variant and triple-negative breast cancer: a case-control and genetic 
analysis. Lancet Oncol, 12, 377-86. 

PARIKH, P., PALAZZO, J. P., ROSE, L. J., DASKALAKIS, C. & WEIGEL, R. J. 2005. 
GATA-3 expression as a predictor of hormone response in breast cancer. J Am Coll 
Surg, 200, 705-10. 

PARISE, C. A., BAUER, K. R., BROWN, M. M. & CAGGIANO, V. 2009. Breast cancer 
subtypes as defined by the estrogen receptor (ER), progesterone receptor (PR), 
and the human epidermal growth factor receptor 2 (HER2) among women with 
invasive breast cancer in California, 1999-2004. Breast J, 15, 593-602. 

PARKER, J. S., MULLINS, M., CHEANG, M. C., LEUNG, S., VODUC, D., VICKERY, T., 
DAVIES, S., FAURON, C., HE, X., HU, Z., QUACKENBUSH, J. F., STIJLEMAN, I. 
J., PALAZZO, J., MARRON, J. S., NOBEL, A. B., MARDIS, E., NIELSEN, T. O., 
ELLIS, M. J., PEROU, C. M. & BERNARD, P. S. 2009. Supervised risk predictor of 
breast cancer based on intrinsic subtypes. J Clin Oncol, 27, 1160-7. 

PATANAPHAN, V. & SALAZAR, O. M. 1993. Colorectal cancer: metastatic patterns and 
prognosis. South Med J, 86, 38-41. 

PEINADO, H., ALECKOVIC, M., LAVOTSHKIN, S., MATEI, I., COSTA-SILVA, B., 
MORENO-BUENO, G., HERGUETA-REDONDO, M., WILLIAMS, C., GARCIA-
SANTOS, G., GHAJAR, C., NITADORI-HOSHINO, A., HOFFMAN, C., BADAL, K., 
GARCIA, B. A., CALLAHAN, M. K., YUAN, J., MARTINS, V. R., SKOG, J., 
KAPLAN, R. N., BRADY, M. S., WOLCHOK, J. D., CHAPMAN, P. B., KANG, Y., 
BROMBERG, J. & LYDEN, D. 2012. Melanoma exosomes educate bone marrow 
progenitor cells toward a pro-metastatic phenotype through MET. Nature medicine, 
18, 883-91. 

PEROU, C. M., SORLIE, T., EISEN, M. B., VAN DE RIJN, M., JEFFREY, S. S., REES, C. 
A., POLLACK, J. R., ROSS, D. T., JOHNSEN, H., AKSLEN, L. A., FLUGE, O., 
PERGAMENSCHIKOV, A., WILLIAMS, C., ZHU, S. X., LONNING, P. E., 
BORRESEN-DALE, A. L., BROWN, P. O. & BOTSTEIN, D. 2000. Molecular 
portraits of human breast tumours. Nature, 406, 747-52. 

PESTALOZZI, B. C., ZAHRIEH, D., MALLON, E., GUSTERSON, B. A., PRICE, K. N., 
GELBER, R. D., HOLMBERG, S. B., LINDTNER, J., SNYDER, R., THURLIMANN, 
B., MURRAY, E., VIALE, G., CASTIGLIONE-GERTSCH, M., COATES, A. S. & 
GOLDHIRSCH, A. 2008. Distinct clinical and prognostic features of infiltrating 
lobular carcinoma of the breast: combined results of 15 International Breast Cancer 
Study Group clinical trials. Journal of clinical oncology : official journal of the 
American Society of Clinical Oncology, 26, 3006-14. 

PETERS, A. A., BUCHANAN, G., RICCIARDELLI, C., BIANCO-MIOTTO, T., 
CENTENERA, M. M., HARRIS, J. M., JINDAL, S., SEGARA, D., JIA, L., MOORE, 
N. L., HENSHALL, S. M., BIRRELL, S. N., COETZEE, G. A., SUTHERLAND, R. L., 
BUTLER, L. M. & TILLEY, W. D. 2009. Androgen receptor inhibits estrogen 
receptor-alpha activity and is prognostic in breast cancer. Cancer Res, 69, 6131-40. 

PETERSON, J. R., LOKEY, R. S., MITCHISON, T. J. & KIRSCHNER, M. W. 2001. A 
chemical inhibitor of N-WASP reveals a new mechanism for targeting protein 
interactions. Proc Natl Acad Sci U S A, 98, 10624-9. 

PETRIDIS, C., SHINOMIYA, I., KOHUT, K., GORMAN, P., CANEPPELE, M., SHAH, V., 
TROY, M., PINDER, S. E., HANBY, A., TOMLINSON, I., TREMBATH, R. C., 



 

 229 

ROYLANCE, R., SIMPSON, M. A. & SAWYER, E. J. 2014. Germline CDH1 
mutations in bilateral lobular carcinoma in situ. Br J Cancer, 110, 1053-7. 

PLIARCHOPOULOU, K., KALOGERAS, K. T., KRONENWETT, R., WIRTZ, R. M., 
ELEFTHERAKI, A. G., BATISTATOU, A., BOBOS, M., SOUPOS, N., 
POLYCHRONIDOU, G., GOGAS, H., SAMANTAS, E., CHRISTODOULOU, C., 
MAKATSORIS, T., PAVLIDIS, N., PECTASIDES, D. & FOUNTZILAS, G. 2013. 
Prognostic significance of RACGAP1 mRNA expression in high-risk early breast 
cancer: a study in primary tumors of breast cancer patients participating in a 
randomized Hellenic Cooperative Oncology Group trial. Cancer Chemother 
Pharmacol, 71, 245-55. 

PORTER, G. J., EVANS, A. J., PINDER, S. E., JAMES, J. J., CORNFORD, E. C., 
BURRELL, H. C., CHAN, S. Y., CHEUNG, K. L. & ROBERTSON, J. F. 2004. 
Patterns of metastatic breast carcinoma: influence of tumour histological grade. Clin 
Radiol, 59, 1094-8. 

POSTE G., F. I. J. 1979. The pathogenesis of cancer metastasis. Nature, 283, 139-146. 
PRAT, A. & PEROU, C. M. 2011. Deconstructing the molecular portraits of breast cancer. 

Mol Oncol, 5, 5-23. 
PRICE, L. S. & COLLARD, J. G. 2001. Regulation of the cytoskeleton by Rho-family 

GTPases: implications for tumour cell invasion. Semin Cancer Biol, 11, 167-73. 
RAKHA, E. A., EL-SAYED, M. E., GREEN, A. R., LEE, A. H., ROBERTSON, J. F. & 

ELLIS, I. O. 2007. Prognostic markers in triple-negative breast cancer. Cancer, 109, 
25-32. 

RAKHA, E. A., EL-SAYED, M. E., POWE, D. G., GREEN, A. R., HABASHY, H., 
GRAINGE, M. J., ROBERTSON, J. F., BLAMEY, R., GEE, J., NICHOLSON, R. I., 
LEE, A. H. & ELLIS, I. O. 2008. Invasive lobular carcinoma of the breast: response 
to hormonal therapy and outcomes. European journal of cancer, 44, 73-83. 

RAKHA, E. A. & ELLIS, I. O. 2010. Lobular breast carcinoma and its variants. Semin 
Diagn Pathol, 27, 49-61. 

RAKHA, E. A., GILL, M. S., EL-SAYED, M. E., KHAN, M. M., HODI, Z., BLAMEY, R. W., 
EVANS, A. J., LEE, A. H. & ELLIS, I. O. 2009. The biological and clinical 
characteristics of breast carcinoma with mixed ductal and lobular morphology. 
Breast cancer research and treatment, 114, 243-50. 

RAKHA, E. A., REIS-FILHO, J. S., BAEHNER, F., DABBS, D. J., DECKER, T., EUSEBI, 
V., FOX, S. B., ICHIHARA, S., JACQUEMIER, J., LAKHANI, S. R., PALACIOS, J., 
RICHARDSON, A. L., SCHNITT, S. J., SCHMITT, F. C., TAN, P. H., TSE, G. M., 
BADVE, S. & ELLIS, I. O. 2010a. Breast cancer prognostic classification in the 
molecular era: the role of histological grade. Breast Cancer Res, 12, 207. 

RAKHA, E. A., REIS-FILHO, J. S. & ELLIS, I. O. 2010b. Combinatorial biomarker 
expression in breast cancer. Breast Cancer Res Treat, 120, 293-308. 

RATHEESH, A., GOMEZ, G. A., PRIYA, R., VERMA, S., KOVACS, E. M., JIANG, K., 
BROWN, N. H., AKHMANOVA, A., STEHBENS, S. J. & YAP, A. S. 2012. 
Centralspindlin and alpha-catenin regulate Rho signalling at the epithelial zonula 
adherens. Nat Cell Biol, 14, 818-28. 

RATHEESH, A. & YAP, A. S. 2012. A bigger picture: classical cadherins and the dynamic 
actin cytoskeleton. Nat Rev Mol Cell Biol, 13, 673-9. 

REEVES, G. K., BERAL, V., GREEN, J., GATHANI, T., BULL, D. & MILLION WOMEN 
STUDY, C. 2006. Hormonal therapy for menopause and breast-cancer risk by 
histological type: a cohort study and meta-analysis. Lancet Oncol, 7, 910-8. 

REIS-FILHO, J. S. & PUSZTAI, L. 2011. Gene expression profiling in breast cancer: 
classification, prognostication, and prediction. Lancet, 378, 1812-23. 

REIS-FILHO, J. S., SIMPSON, P. T., TURNER, N. C., LAMBROS, M. B., JONES, C., 
MACKAY, A., GRIGORIADIS, A., SARRIO, D., SAVAGE, K., DEXTER, T., 



 

 230 

IRAVANI, M., FENWICK, K., WEBER, B., HARDISSON, D., SCHMITT, F. C., 
PALACIOS, J., LAKHANI, S. R. & ASHWORTH, A. 2006. FGFR1 emerges as a 
potential therapeutic target for lobular breast carcinomas. Clinical cancer research : 
an official journal of the American Association for Cancer Research, 12, 6652-62. 

REYNOLDS, A. B., DANIEL, J., MCCREA, P. D., WHEELOCK, M. J., WU, J. & ZHANG, Z. 
1994. Identification of a new catenin: the tyrosine kinase substrate p120cas 
associates with E-cadherin complexes. Mol Cell Biol, 14, 8333-42. 

ROBINSON, D. R., WU, Y. M., VATS, P., SU, F., LONIGRO, R. J., CAO, X., KALYANA-
SUNDARAM, S., WANG, R., NING, Y., HODGES, L., GURSKY, A., SIDDIQUI, J., 
TOMLINS, S. A., ROYCHOWDHURY, S., PIENTA, K. J., KIM, S. Y., ROBERTS, J. 
S., RAE, J. M., VAN POZNAK, C. H., HAYES, D. F., CHUGH, R., KUNJU, L. P., 
TALPAZ, M., SCHOTT, A. F. & CHINNAIYAN, A. M. 2013a. Activating ESR1 
mutations in hormone-resistant metastatic breast cancer. Nat Genet, 45, 1446-51. 

ROBINSON, J. L., HOLMES, K. A. & CARROLL, J. S. 2013b. FOXA1 mutations in 
hormone-dependent cancers. Front Oncol, 3, 20. 

ROBINSON, J. L., MACARTHUR, S., ROSS-INNES, C. S., TILLEY, W. D., NEAL, D. E., 
MILLS, I. G. & CARROLL, J. S. 2011. Androgen receptor driven transcription in 
molecular apocrine breast cancer is mediated by FoxA1. EMBO J, 30, 3019-27. 

ROHATGI, R., MA, L., MIKI, H., LOPEZ, M., KIRCHHAUSEN, T., TAKENAWA, T. & 
KIRSCHNER, M. W. 1999. The interaction between N-WASP and the Arp2/3 
complex links Cdc42-dependent signals to actin assembly. Cell, 97, 221-31. 

ROODI, N., BAILEY, L. R., KAO, W. Y., VERRIER, C. S., YEE, C. J., DUPONT, W. D. & 
PARL, F. F. 1995. Estrogen receptor gene analysis in estrogen receptor-positive 
and receptor-negative primary breast cancer. J Natl Cancer Inst, 87, 446-51. 

ROSS, J. S., WANG, K., SHEEHAN, C. E., BOGUNIEWICZ, A. B., OTTO, G., DOWNING, 
S. R., SUN, J., HE, J., CURRAN, J. A., ALI, S., YELENSKY, R., LIPSON, D., 
PALMER, G., MILLER, V. A. & STEPHENS, P. J. 2013. Relapsed classic E-
cadherin (CDH1)-mutated invasive lobular breast cancer shows a high frequency of 
HER2 (ERBB2) gene mutations. Clin Cancer Res, 19, 2668-76. 

ROSS-INNES, C. S., STARK, R., TESCHENDORFF, A. E., HOLMES, K. A., ALI, H. R., 
DUNNING, M. J., BROWN, G. D., GOJIS, O., ELLIS, I. O., GREEN, A. R., ALI, S., 
CHIN, S. F., PALMIERI, C., CALDAS, C. & CARROLL, J. S. 2012. Differential 
oestrogen receptor binding is associated with clinical outcome in breast cancer. 
Nature, 481, 389-93. 

ROYLANCE, R., DROUFAKOU, S., GORMAN, P., GILLETT, C., HART, I. R., HANBY, A. 
& TOMLINSON, I. 2003. The role of E-cadherin in low-grade ductal breast 
tumourigenesis. J Pathol, 200, 53-8. 

ROYLANCE, R., GORMAN, P., HARRIS, W., LIEBMANN, R., BARNES, D., HANBY, A. & 
SHEER, D. 1999. Comparative genomic hybridization of breast tumors stratified by 
histological grade reveals new insights into the biological progression of breast 
cancer. Cancer Res, 59, 1433-6. 

SAHU, B., LAAKSO, M., OVASKA, K., MIRTTI, T., LUNDIN, J., RANNIKKO, A., SANKILA, 
A., TURUNEN, J. P., LUNDIN, M., KONSTI, J., VESTERINEN, T., NORDLING, S., 
KALLIONIEMI, O., HAUTANIEMI, S. & JANNE, O. A. 2011. Dual role of FoxA1 in 
androgen receptor binding to chromatin, androgen signalling and prostate cancer. 
EMBO J, 30, 3962-76. 

SAIGUSA, S., TANAKA, K., MOHRI, Y., OHI, M., SHIMURA, T., KITAJIMA, T., KONDO, 
S., OKUGAWA, Y., TOIYAMA, Y., INOUE, Y. & KUSUNOKI, M. 2015. Clinical 
significance of RacGAP1 expression at the invasive front of gastric cancer. Gastric 
Cancer, 18, 84-92. 

SAITO, S., LIU, X. F., KAMIJO, K., RAZIUDDIN, R., TATSUMOTO, T., OKAMOTO, I., 
CHEN, X., LEE, C. C., LORENZI, M. V., OHARA, N. & MIKI, T. 2004. Deregulation 



 

 231 

and mislocalization of the cytokinesis regulator ECT2 activate the Rho signaling 
pathways leading to malignant transformation. J Biol Chem, 279, 7169-79. 

SALAMALEKIS, E., BAKAS, P., SYKIOTIS, K., SALOUM, I., KONTOGIANNI, K., 
PABAMETO, E., PAFITI, A. & CREATSAS, G. 2004. Outcome of patients with 
ovarian metastatic tumors. Report of 83 cases and review. European journal of 
gynaecological oncology, 25, 713-5. 

SALAWU, A., UL-HASSAN, A., HAMMOND, D., FERNANDO, M., REED, M. & SISLEY, K. 
2012. High quality genomic copy number data from archival formalin-fixed paraffin-
embedded leiomyosarcoma: optimisation of universal linkage system labelling. 
PLoS One, 7, e50415. 

SALHIA, B., TRAN, N. L., CHAN, A., WOLF, A., NAKADA, M., RUTKA, F., ENNIS, M., 
MCDONOUGH, W. S., BERENS, M. E., SYMONS, M. & RUTKA, J. T. 2008. The 
guanine nucleotide exchange factors trio, Ect2, and Vav3 mediate the invasive 
behavior of glioblastoma. Am J Pathol, 173, 1828-38. 

SAMBUY, Y., DE ANGELIS, I., RANALDI, G., SCARINO, M. L., STAMMATI, A. & ZUCCO, 
F. 2005. The Caco-2 cell line as a model of the intestinal barrier: influence of cell 
and culture-related factors on Caco-2 cell functional characteristics. Cell Biol 
Toxicol, 21, 1-26. 

SANO, M., GENKAI, N., YAJIMA, N., TSUCHIYA, N., HOMMA, J., TANAKA, R., MIKI, T. & 
YAMANAKA, R. 2006. Expression level of ECT2 proto-oncogene correlates with 
prognosis in glioma patients. Oncol Rep, 16, 1093-8. 

SARRIO, D., MORENO-BUENO, G., HARDISSON, D., SANCHEZ-ESTEVEZ, C., GUO, 
M., HERMAN, J. G., GAMALLO, C., ESTELLER, M. & PALACIOS, J. 2003. 
Epigenetic and genetic alterations of APC and CDH1 genes in lobular breast 
cancer: relationships with abnormal E-cadherin and catenin expression and 
microsatellite instability. International journal of cancer. Journal international du 
cancer, 106, 208-15. 

SARRIO, D., RODRIGUEZ-PINILLA, S. M., HARDISSON, D., CANO, A., MORENO-
BUENO, G. & PALACIOS, J. 2008. Epithelial-mesenchymal transition in breast 
cancer relates to the basal-like phenotype. Cancer Res, 68, 989-97. 

SASTRE-GARAU, X., JOUVE, M., ASSELAIN, B., VINCENT-SALOMON, A., BEUZEBOC, 
P., DORVAL, T., DURAND, J. C., FOURQUET, A. & POUILLART, P. 1996. 
Infiltrating lobular carcinoma of the breast. Clinicopathologic analysis of 975 cases 
with reference to data on conservative therapy and metastatic patterns. Cancer, 77, 
113-20. 

SAUNUS, J. M., QUINN, M. C., PATCH, A. M., PEARSON, J. V., BAILEY, P. J., NONES, 
K., MCCART REED, A. E., MILLER, D., WILSON, P. J., AL-EJEH, F., 
MARIASEGARAM, M., LAU, Q., WITHERS, T., JEFFREE, R. L., REID, L. E., 
SILVA, L. D., MATSIKA, A., NILAND, C. M., CUMMINGS, M. C., BRUXNER, T. J., 
CHRIST, A. N., HARLIWONG, I., IDRISOGLU, S., MANNING, S., NOURSE, C., 
NOURBAKHSH, E., WANI, S., ANDERSON, M. J., LYNN FINK, J., HOLMES, O., 
KAZAKOFF, S., LEONARD, C., NEWELL, F., TAYLOR, D., WADDELL, N., WOOD, 
S., XU, Q., KASSAHN, K. S., NARAYANAN, V., TAIB, N. A., TEO, S. H., CHOW, Y. 
P., KCONFAB, JAT, P. S., BRANDNER, S., FLANAGAN, A. M., KHANNA, K., 
CHENEVIX-TRENCH, G., GRIMMOND, S. M., SIMPSON, P. T., WADDELL, N. & 
LAKHANI, S. R. 2015. Integrated genomic and transcriptomic analysis of human 
brain metastases identifies alterations of potential clinical significance. J Pathol. 

SCHACKMANN, R. C., VAN AMERSFOORT, M., HAARHUIS, J. H., VLUG, E. J., HALIM, 
V. A., ROODHART, J. M., VERMAAT, J. S., VOEST, E. E., VAN DER GROEP, P., 
VAN DIEST, P. J., JONKERS, J. & DERKSEN, P. W. 2011. Cytosolic p120-catenin 
regulates growth of metastatic lobular carcinoma through Rock1-mediated anoikis 
resistance. J Clin Invest, 121, 3176-88. 



 

 232 

SCHMIDT-KITTLER, O., RAGG, T., DASKALAKIS, A., GRANZOW, M., AHR, A., 
BLANKENSTEIN, T. J., KAUFMANN, M., DIEBOLD, J., ARNHOLDT, H., MULLER, 
P., BISCHOFF, J., HARICH, D., SCHLIMOK, G., RIETHMULLER, G., EILS, R. & 
KLEIN, C. A. 2003. From latent disseminated cells to overt metastasis: genetic 
analysis of systemic breast cancer progression. Proc Natl Acad Sci U S A, 100, 
7737-42. 

SCHMITZ, A. A., GOVEK, E. E., BOTTNER, B. & VAN AELST, L. 2000. Rho GTPases: 
signaling, migration, and invasion. Exp Cell Res, 261, 1-12. 

SCHRADER, K. A., MASCIARI, S., BOYD, N., SALAMANCA, C., SENZ, J., SAUNDERS, 
D. N., YORIDA, E., MAINES-BANDIERA, S., KAURAH, P., TUNG, N., ROBSON, 
M. E., RYAN, P. D., OLOPADE, O. I., DOMCHEK, S. M., FORD, J., ISAACS, C., 
BROWN, P., BALMANA, J., RAZZAK, A. R., MIRON, P., COFFEY, K., TERRY, M. 
B., JOHN, E. M., ANDRULIS, I. L., KNIGHT, J. A., O'MALLEY, F. P., DALY, M., 
BENDER, P., KCONFAB, MOORE, R., SOUTHEY, M. C., HOPPER, J. L., 
GARBER, J. E. & HUNTSMAN, D. G. 2011. Germline mutations in CDH1 are 
infrequent in women with early-onset or familial lobular breast cancers. J Med 
Genet, 48, 64-8. 

SCHUURING, E. 1995. The involvement of the chromosome 11q13 region in human 
malignancies: cyclin D1 and EMS1 are two new candidate oncogenes--a review. 
Gene, 159, 83-96. 

SCHUURING, E., VAN DAMME, H., SCHUURING-SCHOLTES, E., VERHOEVEN, E., 
MICHALIDES, R., GEELEN, E., DE BOER, C., BROK, H., VAN BUUREN, V. & 
KLUIN, P. 1998. Characterization of the EMS1 gene and its product, human 
Cortactin. Cell Adhes Commun, 6, 185-209. 

SEAL, S., BARFOOT, R., JAYATILAKE, H., SMITH, P., RENWICK, A., BASCOMBE, L., 
MCGUFFOG, L., EVANS, D. G., ECCLES, D., EASTON, D. F., STRATTON, M. R., 
RAHMAN, N. & BREAST CANCER SUSCEPTIBILITY, C. 2003. Evaluation of 
Fanconi Anemia genes in familial breast cancer predisposition. Cancer Res, 63, 
8596-9. 

SHAABAN, A. M., GREEN, A. R., KARTHIK, S., ALIZADEH, Y., HUGHES, T. A., 
HARKINS, L., ELLIS, I. O., ROBERTSON, J. F., PAISH, E. C., SAUNDERS, P. T., 
GROOME, N. P. & SPEIRS, V. 2008. Nuclear and cytoplasmic expression of 
ERbeta1, ERbeta2, and ERbeta5 identifies distinct prognostic outcome for breast 
cancer patients. Clin Cancer Res, 14, 5228-35. 

SHAH, S. P., MORIN, R. D., KHATTRA, J., PRENTICE, L., PUGH, T., BURLEIGH, A., 
DELANEY, A., GELMON, K., GULIANY, R., SENZ, J., STEIDL, C., HOLT, R. A., 
JONES, S., SUN, M., LEUNG, G., MOORE, R., SEVERSON, T., TAYLOR, G. A., 
TESCHENDORFF, A. E., TSE, K., TURASHVILI, G., VARHOL, R., WARREN, R. 
L., WATSON, P., ZHAO, Y., CALDAS, C., HUNTSMAN, D., HIRST, M., MARRA, M. 
A. & APARICIO, S. 2009. Mutational evolution in a lobular breast tumour profiled at 
single nucleotide resolution. Nature, 461, 809-813. 

SHAH, S. P., ROTH, A., GOYA, R., OLOUMI, A., HA, G., ZHAO, Y., TURASHVILI, G., 
DING, J., TSE, K., HAFFARI, G., BASHASHATI, A., PRENTICE, L. M., KHATTRA, 
J., BURLEIGH, A., YAP, D., BERNARD, V., MCPHERSON, A., SHUMANSKY, K., 
CRISAN, A., GIULIANY, R., HERAVI-MOUSSAVI, A., ROSNER, J., LAI, D., BIROL, 
I., VARHOL, R., TAM, A., DHALLA, N., ZENG, T., MA, K., CHAN, S. K., GRIFFITH, 
M., MORADIAN, A., CHENG, S. W., MORIN, G. B., WATSON, P., GELMON, K., 
CHIA, S., CHIN, S. F., CURTIS, C., RUEDA, O. M., PHAROAH, P. D., DAMARAJU, 
S., MACKEY, J., HOON, K., HARKINS, T., TADIGOTLA, V., SIGAROUDINIA, M., 
GASCARD, P., TLSTY, T., COSTELLO, J. F., MEYER, I. M., EAVES, C. J., 
WASSERMAN, W. W., JONES, S., HUNTSMAN, D., HIRST, M., CALDAS, C., 



 

 233 

MARRA, M. A. & APARICIO, S. 2012. The clonal and mutational evolution 
spectrum of primary triple-negative breast cancers. Nature, 486, 395-9. 

SHARIF, S., MORAN, A., HUSON, S. M., IDDENDEN, R., SHENTON, A., HOWARD, E. & 
EVANS, D. G. 2007. Women with neurofibromatosis 1 are at a moderately 
increased risk of developing breast cancer and should be considered for early 
screening. J Med Genet, 44, 481-4. 

SHEHATA, M., TESCHENDORFF, A., SHARP, G., NOVCIC, N., RUSSELL, I. A., AVRIL, 
S., PRATER, M., EIREW, P., CALDAS, C., WATSON, C. J. & STINGL, J. 2012. 
Phenotypic and functional characterisation of the luminal cell hierarchy of the 
mammary gland. Breast Cancer Res, 14, R134. 

SI, W., HUANG, W., ZHENG, Y., YANG, Y., LIU, X., SHAN, L., ZHOU, X., WANG, Y., SU, 
D., GAO, J., YAN, R., HAN, X., LI, W., HE, L., SHI, L., XUAN, C., LIANG, J., SUN, 
L., WANG, Y. & SHANG, Y. 2015. Dysfunction of the Reciprocal Feedback Loop 
between GATA3- and ZEB2-Nucleated Repression Programs Contributes to Breast 
Cancer Metastasis. Cancer Cell, 27, 822-36. 

SIEGEL, R., NAISHADHAM, D. & JEMAL, A. 2013. Cancer statistics, 2013. CA Cancer J 
Clin, 63, 11-30. 

SIHTO, H., LUNDIN, J., LUNDIN, M., LEHTIMAKI, T., RISTIMAKI, A., HOLLI, K., SAILAS, 
L., KATAJA, V., TURPEENNIEMI-HUJANEN, T., ISOLA, J., HEIKKILA, P. & 
JOENSUU, H. 2011. Breast cancer biological subtypes and protein expression 
predict for the preferential distant metastasis sites: a nationwide cohort study. 
Breast Cancer Res, 13, R87. 

SIMPSON, P. T., GALE, T., REIS-FILHO, J. S., JONES, C., PARRY, S., SLOANE, J. P., 
HANBY, A., PINDER, S. E., LEE, A. H., HUMPHREYS, S., ELLIS, I. O. & 
LAKHANI, S. R. 2005a. Columnar cell lesions of the breast: the missing link in 
breast cancer progression? A morphological and molecular analysis. Am J Surg 
Pathol, 29, 734-46. 

SIMPSON, P. T., REIS-FILHO, J. S., GALE, T. & LAKHANI, S. R. 2005b. Molecular 
evolution of breast cancer. J Pathol, 205, 248-54. 

SINGHAKOWINTA, A., POTTER, H. G., BUROKER, T. R., SAMAL, B., BROOKS, S. C. & 
VAITKEVICIUS, V. K. 1976. Estrogen receptor and natural course of breast cancer. 
Ann Surg, 183, 84-8. 

SINGHI, A. D., CIMINO-MATHEWS, A., JENKINS, R. B., LAN, F., FINK, S. R., NASSAR, 
H., VANG, R., FETTING, J. H., HICKS, J., SUKUMAR, S., DE MARZO, A. M. & 
ARGANI, P. 2012. MYC gene amplification is often acquired in lethal distant breast 
cancer metastases of unamplified primary tumors. Mod Pathol, 25, 378-87. 

SKIRNISDOTTIR, I., GARMO, H. & HOLMBERG, L. 2007. Non-genital tract metastases to 
the ovaries presented as ovarian tumors in Sweden 1990-2003: occurrence, origin 
and survival compared to ovarian cancer. Gynecologic oncology, 105, 166-71. 

SMITH, M. L., MARIONI, J. C., HARDCASTLE, T. J. & THORNE, N. P. 2006. snapCGH: 
Segmentation, Normalization and Processing of aCGH Data Users’ Guide. 

SMUTNY, M., COX, H. L., LEERBERG, J. M., KOVACS, E. M., CONTI, M. A., 
FERGUSON, C., HAMILTON, N. A., PARTON, R. G., ADELSTEIN, R. S. & YAP, A. 
S. 2010. Myosin II isoforms identify distinct functional modules that support integrity 
of the epithelial zonula adherens. Nature Cell Biology, 12, 696-U147. 

SOO, M. S., ROSEN, E. L., BAKER, J. A., VO, T. T. & BOYD, B. A. 2001. Negative 
predictive value of sonography with mammography in patients with palpable breast 
lesions. AJR Am J Roentgenol, 177, 1167-70. 

SORLIE, T., PEROU, C. M., TIBSHIRANI, R., AAS, T., GEISLER, S., JOHNSEN, H., 
HASTIE, T., EISEN, M. B., VAN DE RIJN, M., JEFFREY, S. S., THORSEN, T., 
QUIST, H., MATESE, J. C., BROWN, P. O., BOTSTEIN, D., LONNING, P. E. & 
BORRESEN-DALE, A. L. 2001. Gene expression patterns of breast carcinomas 



 

 234 

distinguish tumor subclasses with clinical implications. Proc Natl Acad Sci U S A, 
98, 10869-74. 

SORLIE, T., TIBSHIRANI, R., PARKER, J., HASTIE, T., MARRON, J. S., NOBEL, A., 
DENG, S., JOHNSEN, H., PESICH, R., GEISLER, S., DEMETER, J., PEROU, C. 
M., LONNING, P. E., BROWN, P. O., BORRESEN-DALE, A. L. & BOTSTEIN, D. 
2003. Repeated observation of breast tumor subtypes in independent gene 
expression data sets. Proc Natl Acad Sci U S A, 100, 8418-23. 

SOSA, M. S., BRAGADO, P. & AGUIRRE-GHISO, J. A. 2014. Mechanisms of 
disseminated cancer cell dormancy: an awakening field. Nat Rev Cancer, 14, 611-
22. 

SRINIVASAN, M., SEDMAK, D. & JEWELL, S. 2002. Effect of fixatives and tissue 
processing on the content and integrity of nucleic acids. Am J Pathol, 161, 1961-71. 

ST ROMAIN, P., MADAN, R., TAWFIK, O. W., DAMJANOV, I. & FAN, F. 2012. 
Organotropism and prognostic marker discordance in distant metastases of breast 
carcinoma: fact or fiction? A clinicopathologic analysis. Human pathology, 43, 398-
404. 

STEPHENS, P. J., TARPEY, P. S., DAVIES, H., VAN LOO, P., GREENMAN, C., WEDGE, 
D. C., NIK-ZAINAL, S., MARTIN, S., VARELA, I., BIGNELL, G. R., YATES, L. R., 
PAPAEMMANUIL, E., BEARE, D., BUTLER, A., CHEVERTON, A., GAMBLE, J., 
HINTON, J., JIA, M., JAYAKUMAR, A., JONES, D., LATIMER, C., LAU, K. W., 
MCLAREN, S., MCBRIDE, D. J., MENZIES, A., MUDIE, L., RAINE, K., RAD, R., 
CHAPMAN, M. S., TEAGUE, J., EASTON, D., LANGEROD, A., OSLO BREAST 
CANCER, C., LEE, M. T., SHEN, C. Y., TEE, B. T., HUIMIN, B. W., BROEKS, A., 
VARGAS, A. C., TURASHVILI, G., MARTENS, J., FATIMA, A., MIRON, P., CHIN, 
S. F., THOMAS, G., BOYAULT, S., MARIANI, O., LAKHANI, S. R., VAN DE 
VIJVER, M., VAN 'T VEER, L., FOEKENS, J., DESMEDT, C., SOTIRIOU, C., 
TUTT, A., CALDAS, C., REIS-FILHO, J. S., APARICIO, S. A., SALOMON, A. V., 
BORRESEN-DALE, A. L., RICHARDSON, A. L., CAMPBELL, P. J., FUTREAL, P. 
A. & STRATTON, M. R. 2012. The landscape of cancer genes and mutational 
processes in breast cancer. Nature, 486, 400-4. 

STRATTON, M. R., CAMPBELL, P. J. & FUTREAL, P. A. 2009. The cancer genome. 
Nature, 458, 719-24. 

SURGET, S., KHOURY, M. P. & BOURDON, J. C. 2013. Uncovering the role of p53 splice 
variants in human malignancy: a clinical perspective. Onco Targets Ther, 7, 57-68. 

SURYADEVARA, A., PARUCHURI, L. P., BANISAEED, N., DUNNINGTON, G. & RAO, K. 
A. 2010. The clinical behavior of mixed ductal/lobular carcinoma of the breast: a 
clinicopathologic analysis. World journal of surgical oncology, 8, 51. 

TAMBORERO, D., GONZALEZ-PEREZ, A. & LOPEZ-BIGAS, N. 2013. OncodriveCLUST: 
exploiting the positional clustering of somatic mutations to identify cancer genes. 
Bioinformatics, 29, 2238-44. 

TANG, H., LI, A., BI, J., VELTMAN, D. M., ZECH, T., SPENCE, H. J., YU, X., TIMPSON, 
P., INSALL, R. H., FRAME, M. C. & MACHESKY, L. M. 2013. Loss of Scar/WAVE 
complex promotes N-WASP- and FAK-dependent invasion. Curr Biol, 23, 107-17. 

TATSUMOTO, T., XIE, X., BLUMENTHAL, R., OKAMOTO, I. & MIKI, T. 1999. Human 
ECT2 is an exchange factor for Rho GTPases, phosphorylated in G2/M phases, 
and involved in cytokinesis. J Cell Biol, 147, 921-8. 

THE CANCER GENOME ATLAS NETWORK 2012. Comprehensive molecular portraits of 
human breast tumours. Nature, 490, 61-70. 

THEODOROU, V., STARK, R., MENON, S. & CARROLL, J. S. 2013. GATA3 acts 
upstream of FOXA1 in mediating ESR1 binding by shaping enhancer accessibility. 
Genome Res, 23, 12-22. 



 

 235 

THIERY, J. P., ACLOQUE, H., HUANG, R. Y. & NIETO, M. A. 2009. Epithelial-
mesenchymal transitions in development and disease. Cell, 139, 871-90. 

THOMAS, C. & GUSTAFSSON, J. A. 2011. The different roles of ER subtypes in cancer 
biology and therapy. Nat Rev Cancer, 11, 597-608. 

THOMAS, C., RAJAPAKSA, G., NIKOLOS, F., HAO, R., KATCHY, A., MCCOLLUM, C. 
W., BONDESSON, M., QUINLAN, P., THOMPSON, A., KRISHNAMURTHY, S., 
ESTEVA, F. J. & GUSTAFSSON, J. A. 2012. ERbeta1 represses basal breast 
cancer epithelial to mesenchymal transition by destabilizing EGFR. Breast Cancer 
Res, 14, R148. 

THULLBERG, M., GAD, A., LE GUYADER, S. & STROMBLAD, S. 2007. Oncogenic H-
Ras V12 promotes anchorage-independent cytokinesis in human fibroblasts. Proc 
Natl Acad Sci U S A, 104, 20338-43. 

TORRES, L., RIBEIRO, F. R., PANDIS, N., ANDERSEN, J. A., HEIM, S. & TEIXEIRA, M. 
R. 2007. Intratumor genomic heterogeneity in breast cancer with clonal divergence 
between primary carcinomas and lymph node metastases. Breast Cancer Res 
Treat, 102, 143-55. 

TOT, T. 2005. DCIS, cytokeratins, and the theory of the sick lobe. Virchows Arch, 447, 1-8. 
TOY, W., SHEN, Y., WON, H., GREEN, B., SAKR, R. A., WILL, M., LI, Z., GALA, K., 

FANNING, S., KING, T. A., HUDIS, C., CHEN, D., TARAN, T., HORTOBAGYI, G., 
GREENE, G., BERGER, M., BASELGA, J. & CHANDARLAPATY, S. 2013. ESR1 
ligand-binding domain mutations in hormone-resistant breast cancer. Nat Genet, 
45, 1439-45. 

TRIPATHI, A., KING, C., DE LA MORENAS, A., PERRY, V. K., BURKE, B., ANTOINE, G. 
A., HIRSCH, E. F., KAVANAH, M., MENDEZ, J., STONE, M., GERRY, N. P., 
LENBURG, M. E. & ROSENBERG, C. L. 2008. Gene expression abnormalities in 
histologically normal breast epithelium of breast cancer patients. Int J Cancer, 122, 
1557-66. 

TROXELL, M. L., BRUNNER, A. L., NEFF, T., WARRICK, A., BEADLING, C., 
MONTGOMERY, K., ZHU, S., CORLESS, C. L. & WEST, R. B. 2012. 
Phosphatidylinositol-3-kinase pathway mutations are common in breast columnar 
cell lesions. Mod Pathol, 25, 930-7. 

URUNO, T., LIU, J., ZHANG, P., FAN, Y., EGILE, C., LI, R., MUELLER, S. C. & ZHAN, X. 
2001. Activation of Arp2/3 complex-mediated actin polymerization by cortactin. Nat 
Cell Biol, 3, 259-66. 

USARY, J., LLACA, V., KARACA, G., PRESSWALA, S., KARACA, M., HE, X., 
LANGEROD, A., KARESEN, R., OH, D. S., DRESSLER, L. G., LONNING, P. E., 
STRAUSBERG, R. L., CHANOCK, S., BORRESEN-DALE, A. L. & PEROU, C. M. 
2004. Mutation of GATA3 in human breast tumors. Oncogene, 23, 7669-78. 

VAN BEERS, E. H., JOOSSE, S. A., LIGTENBERG, M. J., FLES, R., HOGERVORST, F. 
B., VERHOEF, S. & NEDERLOF, P. M. 2006. A multiplex PCR predictor for aCGH 
success of FFPE samples. Br J Cancer, 94, 333-7. 

VAN DE VIJVER, M. J., HE, Y. D., VAN'T VEER, L. J., DAI, H., HART, A. A., VOSKUIL, D. 
W., SCHREIBER, G. J., PETERSE, J. L., ROBERTS, C., MARTON, M. J., 
PARRISH, M., ATSMA, D., WITTEVEEN, A., GLAS, A., DELAHAYE, L., VAN DER 
VELDE, T., BARTELINK, H., RODENHUIS, S., RUTGERS, E. T., FRIEND, S. H. & 
BERNARDS, R. 2002. A gene-expression signature as a predictor of survival in 
breast cancer. N Engl J Med, 347, 1999-2009. 

VAN POZNAK, C., SOMERFIELD, M. R., BAST, R. C., CRISTOFANILLI, M., GOETZ, M. 
P., GONZALEZ-ANGULO, A. M., HICKS, D. G., HILL, E. G., LIU, M. C., LUCAS, 
W., MAYER, I. A., MENNEL, R. G., SYMMANS, W. F., HAYES, D. F. & HARRIS, L. 
N. 2015. Use of Biomarkers to Guide Decisions on Systemic Therapy for Women 



 

 236 

With Metastatic Breast Cancer: American Society of Clinical Oncology Clinical 
Practice Guideline. J Clin Oncol. 

VANNIER, C., MOCK, K., BRABLETZ, T. & DRIEVER, W. 2013. Zeb1 regulates E-
cadherin and Epcam (epithelial cell adhesion molecule) expression to control cell 
behavior in early zebrafish development. J Biol Chem, 288, 18643-59. 

VARGAS, A. C., MCCART REED, A. E., WADDELL, N., LANE, A., REID, L. E., SMART, 
C. E., COCCIARDI, S., DA SILVA, L., SONG, S., CHENEVIX-TRENCH, G., 
SIMPSON, P. T. & LAKHANI, S. R. 2012. Gene expression profiling of tumour 
epithelial and stromal compartments during breast cancer progression. Breast 
Cancer Res Treat, 135, 153-65. 

VEERARAGHAVAN, J., TAN, Y., CAO, X. X., KIM, J. A., WANG, X., CHAMNESS, G. C., 
MAITI, S. N., COOPER, L. J., EDWARDS, D. P., CONTRERAS, A., HILSENBECK, 
S. G., CHANG, E. C., SCHIFF, R. & WANG, X. S. 2014. Recurrent ESR1-
CCDC170 rearrangements in an aggressive subset of oestrogen receptor-positive 
breast cancers. Nat Commun, 5, 4577. 

VLEMINCKX, K., VAKAET, L., JR., MAREEL, M., FIERS, W. & VAN ROY, F. 1991. 
Genetic manipulation of E-cadherin expression by epithelial tumor cells reveals an 
invasion suppressor role. Cell, 66, 107-19. 

VODUC, D., CHEANG, M. & NIELSEN, T. 2008. GATA-3 expression in breast cancer has 
a strong association with estrogen receptor but lacks independent prognostic value. 
Cancer Epidemiol Biomarkers Prev, 17, 365-73. 

VOS, C. B., CLETON-JANSEN, A. M., BERX, G., DE LEEUW, W. J., TER HAAR, N. T., 
VAN ROY, F., CORNELISSE, C. J., PETERSE, J. L. & VAN DE VIJVER, M. J. 
1997. E-cadherin inactivation in lobular carcinoma in situ of the breast: an early 
event in tumorigenesis. British journal of cancer, 76, 1131-3. 

VUONG, D., SIMPSON, P. T., GREEN, B., CUMMINGS, M. C. & LAKHANI, S. R. 2014. 
Molecular classification of breast cancer. Virchows Arch, 465, 1-14. 

WAGNER, P. L., KITABAYASHI, N., CHEN, Y. T. & SHIN, S. J. 2009. Clonal relationship 
between closely approximated low-grade ductal and lobular lesions in the breast: a 
molecular study of 10 cases. American journal of clinical pathology, 132, 871-6. 

WALT, A. J., SINGHAKOWINTA, A., BROOKS, S. C. & CORTEZ, A. 1976. The surgical 
implications of estrophile protein estimations in carcinoma of the breast. Surgery, 
80, 506-12. 

WANG, D., GARCIA-BASSETS, I., BENNER, C., LI, W., SU, X., ZHOU, Y., QIU, J., LIU, 
W., KAIKKONEN, M. U., OHGI, K. A., GLASS, C. K., ROSENFELD, M. G. & FU, X. 
D. 2011a. Reprogramming transcription by distinct classes of enhancers 
functionally defined by eRNA. Nature, 474, 390-4. 

WANG, S. M., OOI, L. L. & HUI, K. M. 2011b. Upregulation of Rac GTPase-activating 
protein 1 is significantly associated with the early recurrence of human 
hepatocellular carcinoma. Clin Cancer Res, 17, 6040-51. 

WEIGELT, B., GLAS, A. M., WESSELS, L. F., WITTEVEEN, A. T., PETERSE, J. L. & 
VAN'T VEER, L. J. 2003. Gene expression profiles of primary breast tumors 
maintained in distant metastases. Proc Natl Acad Sci U S A, 100, 15901-5. 

WEIGELT, B., HORLINGS, H. M., KREIKE, B., HAYES, M. M., HAUPTMANN, M., 
WESSELS, L. F., DE JONG, D., VAN DE VIJVER, M. J., VAN'T VEER, L. J. & 
PETERSE, J. L. 2008. Refinement of breast cancer classification by molecular 
characterization of histological special types. J Pathol, 216, 141-50. 

WEIGELT, B., MACKAY, A., A'HERN, R., NATRAJAN, R., TAN, D. S., DOWSETT, M., 
ASHWORTH, A. & REIS-FILHO, J. S. 2010. Breast cancer molecular profiling with 
single sample predictors: a retrospective analysis. Lancet Oncol, 11, 339-49. 



 

 237 

WEIGELT, B. & REIS-FILHO, J. S. 2010. Molecular profiling currently offers no more than 
tumour morphology and basic immunohistochemistry. Breast Cancer Res, 12 Suppl 
4, S5. 

WEST, M., BLANCHETTE, C., DRESSMAN, H., HUANG, E., ISHIDA, S., SPANG, R., 
ZUZAN, H., OLSON, J. A., JR., MARKS, J. R. & NEVINS, J. R. 2001. Predicting the 
clinical status of human breast cancer by using gene expression profiles. Proc Natl 
Acad Sci U S A, 98, 11462-7. 

WICKHAM, H. 2011. The Split-Apply-Combine Strategy for Data Analysis. Journal of 
Statistical Software, 40, 1-29. 

WINCHESTER, D. J., CHANG, H. R., GRAVES, T. A., MENCK, H. R., BLAND, K. I. & 
WINCHESTER, D. P. 1998. A comparative analysis of lobular and ductal carcinoma 
of the breast: presentation, treatment, and outcomes. Journal of the American 
College of Surgeons, 186, 416-22. 

WOLFF, A. C., HAMMOND, M. E., SCHWARTZ, J. N., HAGERTY, K. L., ALLRED, D. C., 
COTE, R. J., DOWSETT, M., FITZGIBBONS, P. L., HANNA, W. M., LANGER, A., 
MCSHANE, L. M., PAIK, S., PEGRAM, M. D., PEREZ, E. A., PRESS, M. F., 
RHODES, A., STURGEON, C., TAUBE, S. E., TUBBS, R., VANCE, G. H., VAN DE 
VIJVER, M., WHEELER, T. M., HAYES, D. F., AMERICAN SOCIETY OF 
CLINICAL, O. & COLLEGE OF AMERICAN, P. 2007. American Society of Clinical 
Oncology/College of American Pathologists guideline recommendations for human 
epidermal growth factor receptor 2 testing in breast cancer. J Clin Oncol, 25, 118-
45. 

WONG, T., GAO, W. & CHAN, J. 2014. Transcription Regulation of E-Cadherin by Zinc 
Finger E-Box Binding Homeobox Proteins in Solid Tumors,. BioMed Research 
International, 2014. 

WU, J. M., FACKLER, M. J., HALUSHKA, M. K., MOLAVI, D. W., TAYLOR, M. E., TEO, 
W. W., GRIFFIN, C., FETTING, J., DAVIDSON, N. E., DE MARZO, A. M., HICKS, 
J. L., CHITALE, D., LADANYI, M., SUKUMAR, S. & ARGANI, P. 2008. 
Heterogeneity of breast cancer metastases: comparison of therapeutic target 
expression and promoter methylation between primary tumors and their multifocal 
metastases. Clinical cancer research : an official journal of the American 
Association for Cancer Research, 14, 1938-46. 

WU, J. N. & ROBERTS, C. W. 2013. ARID1A mutations in cancer: another epigenetic 
tumor suppressor? Cancer Discov, 3, 35-43. 

WU, S. K., GOMEZ, G. A., MICHAEL, M., VERMA, S., COX, H. L., LEFEVRE, J. G., 
PARTON, R. G., HAMILTON, N. A., NEUFELD, Z. & YAP, A. S. 2014. Cortical F-
actin stabilization generates apical-lateral patterns of junctional contractility that 
integrate cells into epithelia. Nat Cell Biol, 16, 167-78. 

YACHIDA, S., JONES, S., BOZIC, I., ANTAL, T., LEARY, R., FU, B., KAMIYAMA, M., 
HRUBAN, R. H., ESHLEMAN, J. R., NOWAK, M. A., VELCULESCU, V. E., 
KINZLER, K. W., VOGELSTEIN, B. & IACOBUZIO-DONAHUE, C. A. 2010. Distant 
metastasis occurs late during the genetic evolution of pancreatic cancer. Nature, 
467, 1114-7. 

YADA-HASHIMOTO, N., YAMAMOTO, T., KAMIURA, S., SEINO, H., OHIRA, H., SAWAI, 
K., KIMURA, T. & SAJI, F. 2003. Metastatic ovarian tumors: a review of 64 cases. 
Gynecologic oncology, 89, 314-7. 

YATES, L. R., GERSTUNG, M., KNAPPSKOG, S., DESMEDT, C., GUNDEM, G., VAN 
LOO, P., AAS, T., ALEXANDROV, L. B., LARSIMONT, D., DAVIES, H., LI, Y., JU, 
Y. S., RAMAKRISHNA, M., HAUGLAND, H. K., LILLENG, P. K., NIK-ZAINAL, S., 
MCLAREN, S., BUTLER, A., MARTIN, S., GLODZIK, D., MENZIES, A., RAINE, K., 
HINTON, J., JONES, D., MUDIE, L. J., JIANG, B., VINCENT, D., GREENE-
COLOZZI, A., ADNET, P. Y., FATIMA, A., MAETENS, M., IGNATIADIS, M., 



 

 238 

STRATTON, M. R., SOTIRIOU, C., RICHARDSON, A. L., LONNING, P. E., 
WEDGE, D. C. & CAMPBELL, P. J. 2015. Subclonal diversification of primary 
breast cancer revealed by multiregion sequencing. Nat Med, 21, 751-9. 

YOON, N. K., MARESH, E. L., SHEN, D., ELSHIMALI, Y., APPLE, S., HORVATH, S., 
MAH, V., BOSE, S., CHIA, D., CHANG, H. R. & GOODGLICK, L. 2010. Higher 
levels of GATA3 predict better survival in women with breast cancer. Hum Pathol, 
41, 1794-801. 

YOUNG, R. H. & SCULLY, R. E. 1991. Metastatic tumors in the ovary: a problem-oriented 
approach and review of the recent literature. Seminars in diagnostic pathology, 8, 
250-76. 

YU, X., ZECH, T., MCDONALD, L., GONZALEZ, E. G., LI, A., MACPHERSON, I., 
SCHWARZ, J. P., SPENCE, H., FUTO, K., TIMPSON, P., NIXON, C., MA, Y., 
ANTON, I. M., VISEGRADY, B., INSALL, R. H., OIEN, K., BLYTH, K., NORMAN, J. 
C. & MACHESKY, L. M. 2012. N-WASP coordinates the delivery and F-actin-
mediated capture of MT1-MMP at invasive pseudopods. J Cell Biol, 199, 527-44. 

YUAN, T. L. & CANTLEY, L. C. 2008. PI3K pathway alterations in cancer: variations on a 
theme. Oncogene, 27, 5497-510. 

ZARDAVAS, D., MAETENS, M., IRRTHUM, A., GOULIOTI, T., ENGELEN, K., 
FUMAGALLI, D., SALGADO, R., AFTIMOS, P., SAINI, K. S., SOTIRIOU, C., 
CAMPBELL, P., DINH, P., VON MINCKWITZ, G., GELBER, R. D., DOWSETT, M., 
DI LEO, A., CAMERON, D., BASELGA, J., GNANT, M., GOLDHIRSCH, A., 
NORTON, L. & PICCART, M. 2014. The AURORA initiative for metastatic breast 
cancer. Br J Cancer, 111, 1881-7. 

ZHAO, W. M. & FANG, G. 2005. MgcRacGAP controls the assembly of the contractile ring 
and the initiation of cytokinesis. Proc Natl Acad Sci U S A, 102, 13158-63. 

ZOU, D., YOON, H. S., PEREZ, D., WEEKS, R. J., GUILFORD, P. & HUMAR, B. 2009. 
Epigenetic silencing in non-neoplastic epithelia identifies E-cadherin (CDH1) as a 
target for chemoprevention of lobular neoplasia. The Journal of pathology, 218, 
265-72. 

ZWIJSEN, R. M., BUCKLE, R. S., HIJMANS, E. M., LOOMANS, C. J. & BERNARDS, R. 
1998. Ligand-independent recruitment of steroid receptor coactivators to estrogen 
receptor by cyclin D1. Genes Dev, 12, 3488-98. 



 

 239 

Appendices 

 
Appendix Figure 2.1: University of Queensland Human Research Ethics Approval form. 
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Appendix Figure 2.2: Gynaecological metastasis TMA 1 
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Appendix Figure 2.3: Gynaecological metastasis TMA 2 
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Appendix Figure 2.4: Gynaecological metastasis TMA 3 
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Appendix Figure 2.5: Gynaecological metastasis TMA 4 
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Appendix Figure 2.6: Gynaecological metastasis TMA 5 
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Appendix Figure 2.7: Gynaecological metastasis TMA 6 
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Appendix Table 3.1: List of genes relating to actin cytoskeleton regulation and the E-cadherin complex that were analysed in the TCGA 

meta-analysis.  

Actin regulators Signalling molecules E-cadherin complex genes 

Protein 
Gene 
name Alterations* Protein 

Gene 
name Alterations* Protein 

Gene 
name Alterations* 

Arp2/3 
complex ARPC1A 2% Rho RND1 0.30% E-cadherin CDH1 13% 
  ARPC1B 2%   RND2 2% a-catenin CTNNA1 2% 
  ACTR2 1%   RND3 0.6% b-catenin CTNNB1 0.60% 
  ACTR3 0.60% Rac RAC1 0.9% g-catenin JUP 3% 
  ARPC4 2%   RAC2 0.60% p120 CTNND1 2% 
  ARPC5 12%^   RAC3 6% 

  N-WASP WASL 1% Cdc42 CDC42 0.90% 
WAVE2 WASF2 1% Ect2 ECT2 5% Myosins 

WIRE WIPF2 7% MgcRacGAP RACGAP1 0.40% Protein 
Gene 
name   

Cortactin CTTN 14%^ 
KIF23 
(MLKP1) KIF23 1% Myosin IIA (MYO9) MYH9 2% 

MENA ENAH 14%^ RPTPalpha PTPRA 2% 
Myosin IIB 
(MYO10) MYH10 2% 

VASP VASP 2% Src SRC 2% Myosin VI MYO6 2% 
EVL EVL 1% Rap1 RAP1GAP 0.90% 

  

Vinculin VCL 3% p130Cas BCAR1 3% 
Abi1 ABI1 1% ROCK ROCK1 1% 

    ROCK2 3% 
*Alterations = Using the cBioportal, gene amplification, gene deletion and nonsynonomous mutions were investigated for all of the genes across 962 

breast cancer samples. The percentage indicates the number of samples with any alteration. ^ Since ARPC5, CTTN and ENAH had a high 

percentage of amplifications, gene expression was analysed and found there there was no mRNA overexpression alongside gene amplification. 

ARPC5 and ENAH are located on chromosome 1q (1q25 and 1q42, respectively) and therefore may be a consequence of high level amplification of 

chromosome 1q that occurs commonly in breast cacner. CTTN is located on 11q13 and is also amplified relatively frequenly in breast cancer.  
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Appendix Figure 3.2: N-WASP genomic alterations across all cancer types. 
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Appendix Figure 3.3: ECT2 genomic alterations across all cancer types. 
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Appendix Figure 3.4: RacGAP1 genomic alterations across all cancer types. 
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Appendix Figure 3.5: images of the most frequent phenotype observed when assessing co-

expression of E-cadherin with ECT2 and RacGAP1 within invasive lobular carcinoma. 
 



 

 251 

 
Appendix Figure 3.6: Representative images of the most frequent phenotype observed 

when assessing co-expression of E-cadherin with ECT2 and RacGAP1 within invasive 

carcinoma no special type. 
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Appendix Table 4.1: Whole exome sequencing metrics. 

  

Coverage 
(80% of 

the baits) 

Average 
Coverage 

Duplicate 
rate(%) TotalMuts 

Variants 
with rs 
number 

% 
Known 
variants 

SilentMuts 
Non-
silent 
Muts 

SNPs DNP INDEL
s 

MDL
4 

IDC 12 59.54 16.59 98   27 71 94 2 2 
ILC 21 72.27 20.77 149   37 112 137 2 10 

Normal 36 110.39 12.72 21129* 20829 98.5   

MDL
5 

Ecad pos 22 70.37 22.46 33   11 22 27 2 4 
Ecad neg 22 69.21 21.05 27   4 23 22 0 5 

DCIS 30 83.9 22.35 35   8 27 29 0 6 
Normal  23 74.1 22.26 16807* 16590 98.7   

MDL
6 

IDC 34 101.73 18.47 169   41 128 161 2 6 
DCIS 32 102.79 14.01 72   18 54 67 1 4 
PLC 33 100.53 13.51 467   90 377 459 2 6 

PLCIS 37 112.67 14.31 190   40 150 183 2 5 
Normal  47 120.56 15.22 21889* 21539 98.4   

MDL
7 

T1_IDC 16 76.36 21.06 22   5 17 20 0 2 
T2_ILC 16 75.1 18.23 25   6 19 24 1 0 

T3_DCIS 21 78.44 21.72 22   5 17 20 0 2 
T3_Ductal 
enriched 18 79.81 22.69 27 

  
7 20 22 1 4 

T3_Admixed  16 72.33 21.78 25   6 19 22 1 2 
T4_DCIS 21 84.7 18.83 25   5 20 24 0 1 
T4_Ductal 
enriched 12 65.49 17.14 19 

  
4 15 18 1 0 

T4_Admixed  13 73.32 19.05 25   8 17 24 1 0 
MDL90_Normal  21 63.82 29.12 18078* 17848 98.7   

* Germline mutations, Muts = mutations, SNPs = single nucleotide polymorphism, DNPs = dinucleotide polymorphism, INDELs = insertion or deletion. 
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Appendix Table 5.1: Distribution of gynaecological metastases. 

  n (%) 
Metastatic pattern 
Gynae only 7 (13) 
Gynae & other site 47 (87) 
Total 54 
    
Total number of metastatic sites 
All sites 255 
Gynaecological organs 137 
All non-gynaecological organs 118 
    
Gynaecological organs involved 
Ovary 64 (46.0) 
Fallopian tube 33 (23.7) 
Uterus (incl; endo/myometrium) 28 (20.1) 
Cervix 7 (5.0) 
Vagina 4 (2.9) 
Mons pubis 1 (0.7) 
Total 137 
Peritoneum 
Ascitic/peritoneal fluid 7 (5.9) 
Omentum 17 (14.4) 
Peritoneum/retroperitoneum 11 (9.3) 
Pouch of douglas 4 (3.4) 
Pelvic plaque 1 (0.8) 
Paracolic gutter 1 (0.8) 
Total 41 (34.7) 
Digestive system 
Appendix 6 (5.1) 
Liver 7 (5.9) 
Stomach 3 (2.5) 
Colon 2 (1.7) 
Intestine 2 (1.7) 
Rectum 1 (0.8) 
Anterior abdominal wall biopsy 1 (0.8) 
Jejunal plaque stomach 1 (0.8) 
Small bowel adhesion 1 (0.8) 
Ascending colon fat 1 (0.8) 
Total 25 (21.2) 
Musculoskeletal system 
Bone 20 (16.9) 
Total 20 (16.9) 

Table continued over page 
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Appendix Table 5.1: Distribution of gynaecological metastases. 

  n (%) 
Nervous system 
Brain 4 (3.4) 
Brachial plexus (nerves in neck) 2 (1.7) 
Cerebrospinal fluid 1 (0.8) 
Total 7 (5.9) 
Lymphatic system 
Distant LN 3 (2.5) 
Pelvic lymph node 2 (1.7) 
Iliac LN 2 (1.7) 
Para-aortic LN 1 (0.8) 
Peritoneal lymph node 2 (1.7) 
Total 10 (8.5) 
Respiratory system 
lung 5 (4.2) 
pleura/pleural fluid 5 (4.2) 
Intercostal space  1 (0.8) 
Total 11 
Integumentary system 
Skin 2 (1.7) 
Total 2 (1.7) 
Urinary system 
Bladder 2 (1.7) 
Total 2 (1.7) 

 

Appendix Table 5.2: Distribution of gynaecological metastases. 

First metastatic detected  n % 
Gynaecological organ  38 70.4 
Other 16 29.6 

bone 7 13.0 
Pleural fluid/lung 5 9.3 

Peritoneum/omentum 2 3.7 
Skin 2 3.7 
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Appendix Table 5.3 IHC raw data 

  Breast All mets Ovaries Other Gynaecological organs 

Immuno marker  total  n pos % total  n pos % total  n pos % total  n pos % 

ER (>1%) 46 43 93.5 120 112 93.3 53 49 92.5 39 38 97.4 

PR (>1%) 35 23 65.7 119 79 66.4 53 37 69.8 39 23 59.0 

HER2 3+ M 33 0 0.0 113 0 0.0 51 0 0.0 37 0 0.0 

CK5/6 (>10%) 19 0 0.0 101 1 1.0 49 0 0.0 32 1 3.1 

CK14 (>10%) 18 0 0.0 101 1 1.0 48 1 2.1 33 0 0.0 

EGFR 3+ M 17 0 0.0 99 1 1.0 49 1 2.0 29 0 0.0 

CK8/18 (>1%) 19 19 100.0 103 103 100.0 50 50 100.0 33 33 100.0 

Ki67  Low 
(<10%) 19 5 26.3 102 47 46.1 49 24 49.0 32 15 46.9 

  Mod (10-
30%)   0 0.0   23 22.5   10 20.4   7 21.9 

  High 
(>30%)   0 0.0   11 10.8   4 8.2   4 12.5 

p53 Low (10-
30%) 19 2 10.5 103 28 27.2 48 14 29.2 34 10 29.4 

  High 
(>30%)   4 21.1   39 37.9   19 39.6   11 32.4 

GATA3 (>1%) 19 19 100.0 105 57 54.3 47 32 68.1 35 18 51.4 

FOXA1 (>1%) 19 19 100.0 108 79 73.1 49 38 77.6 36 25 69.4 

AR (>1%) 19 17 89.5 102 79 77.5 49 39 79.6 33 23 69.7 

Table continued over page. 



 

 256 

Appendix Table 5.3 IHC raw data 

  Omentum/Peritoneum Gastrointestinal organs Lymph nodes (distant and regional) Brain 

Immuno marker  total  n pos % total  n pos % total  n pos % total  n pos % 

ER (>1%) 16 13 81.3 5 5 100 5 5 100 1 1 100 

PR (>1%) 16 8 50.0 5 5 100 5 5 100 x x x 

HER2 3+ M 13 0 0.0 6 0 0 5 0 0 1 0 0 

CK5/6 (>10%) 11 0 0.0 4 0 0 5 0 0 x x x 

CK14 (>10%) 11 0 0.0 2 0 0 5 0 0 x x x 

EGFR 3+ M 12 0 0.0 4 0 0 5 0 0 x x x 

CK8/18 (>1%) 11 11 100.0 4 4 100 5 5 100 x x   

Ki67  Low 
(<10%) 12 6 50.0 4 1 25 5 1 20 x x x 

  Mod (10-
30%)   2 16.7   2 50.0   2 40     x 

  High 
(>30%)   1 8.3   1 25.0   1 20     x 

p53 Low (10-
30%) 12 3 25.0 4 1 25.0 5 0 0 x x x 

  High 
(>30%)   4 33.3   3 75.0   2 40   x x 

GATA3 (>1%) 12 3 25.0 4 2 50.0 5 1 20 1 1 100 

FOXA1 (>1%) 12 9 75.0 5 4 80.0 5 3 60 1 0 0 

AR (>1%) 10 3 30.0 4 4 100 5 5 100 1 1 100 
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Appendix Table 5.4 Summary of the matched gynaecological metastatic breast cancer cases. 1 = positive, 0 = negative, x = no data. 
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GM01 Breast IC-NST 1 1 1 1 1 MDL Pre Y Y Y N Y N x x x 
GM01 Breast ILC 1 1 1 1 1   

       
x x x 

GM01 Ovaries 1 1 1 1 1                 x x x 
GM06 Breast 1 1 1 1 1 ILC Pre N Y Y N x x Y x x 
GM06 Cervix 1 0 1 1 1   

       
x x x 

GM06 Endomyometrium x x x 0 0   
       

x x x 
GM06 Lt ovary 1 1 1 1 1   

       
Y x x 

GM06 Rt ovary 1 1 1 1 1   
       

Y x x 
GM13 Breast  1 0 x x x IC-NST Pre x Y N Y x x x x x 
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N x x 
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GM36 Uterus 1 0 1 0 1                 Y x x 
GM39 Breast 1 1 1 1 1 IC-NST Pre Y x Y Y Y x N x x 
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Y x x 

GM39 Lt ovary 1 1 1 1 1   
       

Y x x 
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Y x x 

GM41 Breast  1 1 1 1 1 IC-NST Pre Y Y Y Y Y x Y x x 
GM41 Ovary x x x x 0   

       
x x x 

GM45 Breast  1 x x x x ILC Pre x x x x Y x x x x 
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Y x x 

GM45 Cervix x x x 0 0   
       

x x x 
GM45 Lt ovary 1 1 1 0 1   

       
Y x x 

GM45 Lt pelvic lymph node 1 1 1 0 1   
       

Y x x 
GM45 Lt fallopian tube 1 1 1 0 1   

       
x x x 

GM45 Myometrium 1 1 0 1 1   
       

x x x 
GM45 Omentum 1 1 1 0 1   

       
Y x x 

GM45 Omentum lymph node 1 1 1 0 1   
       

x x x 
GM45 Rt ovary 1 1 1 0 1   

       
Y x x 

GM45 Rt pelvic lymph node 1 1 1 0 1   
       

Y x x 
GM45 Rt fallopian tube 1 1 1 0 1                 Y x x 
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Y x x 

GM49 Lt fallopian tube 1 1 1 1 1   
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Y x x 
GM50 Lt fallopian tube P1 1 0 0 1 1   
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N x x 
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GM57 Rt ovary P2 1 1 1 1 1                 Y x x 



 

 260 

G
M
#
 

S
i
t
e
 

E
R
 

P
R
 

A
R
 

G
A
T
A
3
 

F
O
X
A
1
 

I
n
v
a
s
i
v
e
 
t
y
p
e
 

P
r
e
/
p
o
s
t
m
e
n
o
p
a
u
s
a
l
 
 

E
n
d
o
c
r
i
n
e
_
p
r
i
m
a
r
y
 

C
h
e
m
o
_
p
r
i
m
a
r
y
 

R
x
t
_
p
r
i
m
a
r
y
 

E
n
d
o
c
r
i
n
e
_
m
e
t
 

C
h
e
m
o
_
m
e
t
 

R
x
t
_
m
e
t
 

a
C
G
H
 

E
x
o
m
e
 
s
e
q
 

T
a
r
g
e
t
e
d
 
s
e
q
 

GM59 Breast 1 1 1 1 1 IC-NST Pre Y Y Y Y Y x Y x Y 
GM59 Lymph node 1 1 1 0 0   

       
x x x 

GM59 Pleura  0 0 0 0 1   
       

x x x 
GM59 Rt ovary 1 0 1 1 1   

       
Y x Y 

GM63 Breast 1 1 1 1 1 ILC Post x x x x x x Y Y x 
GM63 Lymph node 1 1 1 1 0   

       
Y N x 

GM63 Lt fallopian tube 1 0 0 1 1   
       

Y Y x 
GM63 Lt ovary 1 0 0 1 1   

       
Y Y x 

GM63 Omentum 1 0 0 1 1   
       

Y Y x 
GM63 Rt fallopian tube 1 0 0 1 1   

       
Y Y x 

GM63 Rt ovary 1 1 0 1 0               
 

Y Y x 
GM70 Breast 1 x x x x IC-NST Post x x x x x x x x x 
GM70 Ovary x 0 x x 0   

       
x x x 

GM70 Peritoneum 0 1 x 0 0   
      

  x x x 
GM73 Breast 1 x x x x Tubular Post x x Y x x x x x x 
GM73 Cervix 1 1 0 0 0   

       
x x x 

GM73 Vagina 1 1 0 0 0               
 

Y x x 
GM74 Breast 0 0 1 1 1 ILC Pre x Y Y x x x Y x x 
GM74 Lt ovary P1 0 0 0 0 0   

       
Y x x 

GM74 Lt ovary P2 0 0 0 0 0   
      

  Y x x 
GM76 Breast 1 1 x x x ILC Pre Y Y Y Y Y x x x x 
GM76 Endometrium 0 0 1 0 1   

       
x x x 

GM76 Ovary 1 0 1 0 1                 x x x 



 

 261 

G
M
#
 

S
i
t
e
 

E
R
 

P
R
 

A
R
 

G
A
T
A
3
 

F
O
X
A
1
 

I
n
v
a
s
i
v
e
 
t
y
p
e
 

P
r
e
/
p
o
s
t
m
e
n
o
p
a
u
s
a
l
 
 

E
n
d
o
c
r
i
n
e
_
p
r
i
m
a
r
y
 

C
h
e
m
o
_
p
r
i
m
a
r
y
 

R
x
t
_
p
r
i
m
a
r
y
 

E
n
d
o
c
r
i
n
e
_
m
e
t
 

C
h
e
m
o
_
m
e
t
 

R
x
t
_
m
e
t
 

a
C
G
H
 

E
x
o
m
e
 
s
e
q
 

T
a
r
g
e
t
e
d
 
s
e
q
 

GM77 Breast 1 1 1 1 1 ILC Pre Y Y Y x x x N x x 
GM77 Lt ovary 1 1 1 1 1   

       
Y x x 

GM77 Rt ovary 1 1 1 1 1   
       

Y x x 
GM78 Breast 1 1 1 1 1 ILC Pre x x x x Y Y Y x x 
GM78 Colon + surrounding fat 1 1 1 0 1   

       
Y x x 

GM78 Omentum 1 1 1 0 1   
       

Y x x 
GM78 Ovary P1 1 1 1 0 1   

       
Y x x 

GM78 Ovary P2 1 1 1 0 1                 x x x 
GM82 Breast 1 x x x x IC-NST Pre x x x x x x x x x 
GM82 Cervix P1 1 1 0 0 0   

       
Y x x 

GM82 Lt ovary P1 1 0 0 0 0   
       

x x x 
GM82 Lt ovary P3 1 1 0 0 0   

       
Y x x 

GM82 Pouch of douglas 1 0 x 0 0   
       

Y x x 
GM82 Rt ovary p1 1 1 0 1 0   

       
Y x x 

GM82 Rt ovary p3 0 1 0 0 0   
       

x x x 
GM82 Vagina P1 1 1 0 0 0   

       
Y x x 

GM82 Vulva P1 1 0 0 0 0   
       

Y x x 
GM82 Vulva P2 1 0 1 0 0   

       
Y x x 

GM87 Breast 1 1 x x x ILC Pre x x Y x x Y x x x 
GM87 Brain 1 x 1 1 0   

       
N x x 

GM87 Liver x x x x 0   
       

x x x 
GM87 Ovaries P1 1 0 1 1 1   

       
Y x x 

GM87 Ovaries P2 1 0 1 1 1   
       

x x x 
GM87 Ovaries P3 1 0 1 x 1                 x x x 
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GM88 Breast 1 1 x x x ILC Post x x x x x x x x x 
GM88 Endometrium 1 0 1 1 1                 Y x x 
GM89 Breast 1 x x x x IC-NST Pre Y Y Y Y Y Y x x x 
GM89 Rt ovary P1 1 0 1 1 1   

       
Y x x 

GM89 Rt ovary P2 1 1 1 1 1                 Y x x 
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Appendix Table 5.5: List of the genes located on the significantly amplified region in the 

ovarian metastases, 1q23.1.  

 
ARHGEF11 
BCAN 
C1orf66 
C1orf92 
CD5L 
CRABP2 
ETV3 
ETV3L 
FCRL1 
FCRL2 
FCRL3 
FCRL4 
FCRL5 
HDGF 
INSRR 
ISG20L2 
MRPL24 
NES 
NTRK1 
PEAR1 
PRCC 
SH2D2A 
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Appendix Figure 5.1: The frequency of genomic alterations across all chromosomes in 20 non-ovary gynaecological metastases.  Left 

panel displays gains and loss, right panel displays amplifications and homozygous deletions. 
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Appendix Figure 5.2: The frequency of genomic alterations across all chromosomes in 11 non-gynaecological metastases. Left panel 

displays gains and loss, right panel displays amplifications and homozygous deletions. 

 

 


