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Abstract 

Voltage-gated sodium channels (NaV) are integral membrane proteins that are responsible for the 

increase in sodium permeability that initiates and propagates the rising phase of action potentials, 

carrying electrical signals along nerve fibers and through excitable cells. NaV channels play a diverse 

role in neurophysiology and neurotransmission, as well as serving as molecular targets for several 

groups of neurotoxins that bind to different receptor sites and alter voltage-dependent activation, 

inactivation and conductance. There are nine NaV channel isoforms so far discovered, each of which 

display distinct functional profiles and tissue-specific expression patterns. The modulation of specific 

isoforms for therapeutic purposes has become an important research objective for the treatment of 

conductance diseases exhibiting phenotypes of chronic pain, epilepsy, myotonia, seizure, and cardiac 

arrhythmia. However, because of the high sequence similarity and structural homology between NaV 

channel isoforms, many current therapeutics that target NaV channels – the vast majority of which are 

small molecules – lack specificity between isoforms, or even other voltage-gated ion channels. The 

current push for greater selectivity while maintaining a relevant degree of potency has led the focus 

away from small molecules and towards the discovery and development of peptidic ligands for 

therapeutic use. Venom derived peptides have proven to be naturally potent and selective bioactive 

molecules, exhibiting inherent secondary structures that add stability through the formation of disulfide 

bonds. Organisms such as cone snails and spiders have evolved venom for the purpose of prey capture 

and defense, therefore many of the components exhibit paralytic qualities and specifically target NaV 

channels. Much of the discovery process has focused on screening crude venoms for a particular 

function and then isolating the molecule responsible for that function using assay guided purification. 

 

The first section of this thesis describes the development of a cell-based, high-throughput functional 

assay for the detection of NaV modulating venom peptides in crude venom. This assay was successfully 

implemented and resulted in the isolation and sequencing of MVIA from Conus magus. Initial results 

and sequence similarity placed MVIA into the δ-conotoxin family, a poorly described class of peptides 

that inhibits fast inactivation. However, multiple solid-phase synthesis and bacterial recombinant 

expression methods were unsuccessful in producing enough of the extremely hydrophobic δ-MVIA for 

further characterization. As no more C. magus crude venom was available, this project was left until 

optimized methods of production for highly hydrophobic peptides could be developed. 
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An optimized method of bacterial recombinant expression was successful in producing large yields of 

another venom peptide, β/δ-TRTX-Pre1a, isolated from the spider Psalmopoeus reduncus. The same 

recombinant expression method was also used to produce uniformly labeled 13C/15N-peptide for 

determination of a heteronuclear NMR solution structure. Pre1a was revealed to be a sub-micromolar 

inhibitor of both NaV1.2 and NaV1.7 peak currents, yet demonstrated potent inhibition of fast 

inactivation of NaV1.3. This dual mode of action on different NaV isoforms had not yet been reported 

for any known venom peptide. Further, Pre1a exhibited structural heterogeneity as determined by 

analysis of rpHPLC and NMR 15N-HSQC, which was traced to the contribution of residues making up 

the all aromatic, hydrophobic face of the peptide.  

 

The high sequence similarity of Pre1a to previously discovered spider venom peptides allowed 

comparative functional analysis and the identification of key residues contributing to NaV isoform 

selectivity. Mutagenesis focusing on both structural and functional aspects of Pre1a was performed 

incorporating both alanine and non-alanine substitutions. Through a single mutation a residue critical 

for the observed conformational heterogeneity was identified. This mutation served as a model for the 

obtainment of a high-resolution solution structure for comparison with the active Pre1a. Lastly, we 

identified a single residue on the C-terminus critical for NaV channel isoform selectivity. Substitution 

with amino acids exhibiting different properties of charge, polarity, and size could modify selectivity 

and in the process create a highly selective inhibitor of NaV1.2. This study not only revealed a unique 

mode of action for a venom peptide, but also demonstrated novelty as a proof-of-concept for the 

rational design and engineering of venom peptides using available information and non-standard 

methods of selective mutagenesis. 
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Chapter I: Introduction 

 

The use of plant and animal remedies to knowingly cure and treat disease predates written human 

history[1]. Although herbal remedies are arguably the most widely known examples of natural 

medicine throughout ancient history, treatments derived from animal venoms have been in use for 

thousands of years[2]. Venom is a complex mixture of molecular components that is administered via 

bite or sting for the purpose of prey capture and defense. Low molecular mass peptides make up the 

primary bioactive component of venoms. Millions of years of evolutionary selection have honed these 

peptides to maximize effectiveness for prey capture and defense[3]. 

Many venom peptides work together as a cabal to immobilize prey through selectively targeting ion 

channels, either by inhibiting conductance or altering gating kinetics[4]. It is this action that has led 

researchers to explore individual venom components as potential therapeutic leads for the discovery of 

new molecules to treat neurological disorders, such as chronic pain. Two organisms – the marine 

gastropods Conus spp. and spiders – have served as a rich source for the discovery of highly potent, 

selective, neurologically bioactive peptides, and are the focus of this thesis. 

This thesis outlines structure-function relationships of peptides isolated from two venomous organisms, 

the piscivorous Conus magus and a single species of old-world spider in the family Theraphosidae. The 

peptides isolated and characterized within represent molecules that – although from different organisms 

– share a similar structural motif and target mammalian voltage-gated sodium channels, which are ion 

channels associated with nerve signal transmission. 

 

1 Voltage-gated sodium channels 

 

Voltage-gated sodium (NaV) channels are integral membrane proteins which form gated pores that 

conduct Na+ ions passively across the cell membrane, via an electrochemical gradient[5]. This 

electrochemical gradient is maintained through the active transport by Na+/K+-ATPases as well as 

various potassium channels, imparting a negative resting potential – or resting state – of around -70 to -

90 mV for most neurons[6]. NaV are activated through cell membrane depolarization events  –  which 
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is a positive shift in the membrane 

potential past threshold – triggered by a 

variety of external stimuli, typically 

involving ligand-gated, mechano- or 

chemo-receptors[6].  

 

NaV channel depolarization is responsible 

for the initiation and propagation of the 

rising phase (or positive shift) of action 

potentials, which carry electro-chemical 

signals through nerve fibers and excitable 

cells (Figure 1). However, NaV channels 

are found on the surface of a wide range of 

cell types, both excitable and non-

excitable[7]. Because of their ubiquitous 

role in driving signal conduction 

throughout the entire nervous system, NaV 

channels make excellent therapeutic 

targets for a variety of neuropathic disorders. 

 

1.1 The mammalian NaV family 

Mammalian NaV channels are part of the superfamily of voltage-gated ion channels, which is the 

largest subgroup of ion channels[6]. Other members of this superfamily include voltage-gated calcium 

channels (CaV) and voltage-gated potassium channels (KV). Several other ion channel families share 

structural and functional homology to these primary members of the voltage-gated ion channels, 

however they lack the strong cation selectivity of their cousins. The cyclic nucleotide-gated (CNG) ion 

channels and some members of the transient receptor potential (TRP) family ion channels are weakly 

voltage dependent and retain voltage sensor domains with a few positive charges[8, 9]. The CNG 

channels have been showed to be involved with vertebrate phototransduction, olfaction[8], and smooth 

muscle contraction[10]. The TRP family has diverse functions, including invertebrate 

phototransduction[11] as well as vertebrate thermal-, mechano- and somatosensation[9]. 

 

Figure 1: An “ideal” action potential. 

NaV channels contribute to the “upward” 

depolarization – or a shift to more positive potential – 

of the cell membrane after a threshold is reached. 

Potassium channels are activated in response to 

depolarization and help to “reset” the resting 

membrane potential through repolarization. 
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Members of the voltage-gated ion channel superfamily share a tertiary structural homology composed 

of four homologous domains (DI-DIV). Each domain is composed of six transmembrane segments (S1-

S6)[6, 12], which fold into a voltage sensing region (S1-S4) and a pore forming region (S5-S6)[13]. 

The quaternary structure of these proteins is typically functionally expressed in association with a 

variety of auxiliary subunits that modify function and expression, such as the β-subunits in association 

with NaV channels. 

 

1.2 Evolution of mammalian NaV channels 

Mammalian NaV channels have evolutionary roots dating back to the earliest metazoans, with ancestral 

NaV genes detected in eukaryotic organisms without a nervous system, including a placazoan and a 

single-celled choanoflagellate[6, 14]. Human voltage-gated channels are believed to have derived from 

whole-gene duplication events that occurred early in the vertebrate lineage. The 2R hypothesis suggests 

two early whole genome duplication events in vertebrates led to four ancestral NaV genes in teleosts, 

which further evolved into the current set of mammalian channels[15-17]. Using electrophysiological 

recording, biochemical purification, and molecular cloning techniques, nine mammalian NaV α-

subunits – officially designated NaV1.1-1.9 – have been identified and functionally characterized 

(Table 1). Further reference to NaV channels will be in regards to mammalian isoforms, unless 

otherwise specified. The gene sequence homology between the nine NaV α-subunits – encoded by the 

SCNA genes – are all greater than 50% in the transmembrane and extracellular regions, enough that all 

nine isoforms are classed in the same NaV family[18]. By comparison, members of the CaV and KV 

channels can be grouped into distinct subfamilies with greater than 50% gene variation between each 

other, but a much higher relative sequence similarity within the subfamilies[19]. 

 

Differentiating between mammalian NaV isoforms has been aided with the discovery of subtype 

selective neurotoxins such as tetrodotoxin (TTX), a key natural product that helped early researchers 

divide NaV channels into either TTX-sensitive (TTXs) or TTX-resistant (TTXr) classes[20] (Table 1). 

Studies of NaV isoform expression have shown unique patterns of temporal and spatial expression 

throughout different tissues, with some localized to specific regions such as cardiac (NaV1.5) or 

skeletal muscle (NaV1.4) tissue. Many of the neuronal isoforms exhibit differential regulation after 

mechanical[21] or inflammatory[22] stress, as well as preferential expression to pre-natal versus post-
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natal tissue[23]. Further, splice variants of multiple isoforms have recently been discovered, expanding 

the potential for therapeutic targeting[24]. 

 

 

Table 1: Mammalian NaV channel family. 

Red indicates NaV channels contributing to pain transmission[18]. 

 

 

 

Channel	Name Gene TTX	sensitivity Preferential	Expression Attributes

NaV1.1 SCN1A TTXs	(10	nM) CNS,	cardiac KO	perinatal	lethal

NaV1.2 SCN2A TTXs	(10	nM) CNS,	peripheral Defects	implicated	w/	seizure
and	epilepsy

NaV1.3 SCN3A TTXs	(1.8‐4	nM) Embryonic	CNS Rapid	repriming
DRG,	sympathetic	 Amplifies	depolarizing	inputs
neurons ↑regulation	after	injury
Cardiac	myocyte LoF	attenuates	pain

NaV1.4 SCN4A TTXs	(5	nM) Skeletal	muscle Skeletal	muscle	function

NaV1.5 SCN5A TTXr	(1.8	μM) Cardiac	myocyte,	CNS Cardiac	pacemaker

NaV1.6 SCN8A TTXs	(1	nM) Nodes	of	Ranvier Ubiquitous.	Mutations	lead	to
DRG,		dendrites muscular,	neuro,	and	nocicepti
Synapses,	glia dysfunction

NaV1.7 SCN9A TTXs	(4‐25	nM) DRG,	sympathetic Slow	repriming,	amplifies
neurons,	dorsal	horn GoF	results	in	IEM,	PEPD
Sciatic	nerve LoF	results	in	CIPD
Schwann	cells ↑reg	postin lammation

NaV1.8 SCN10A TTXr	(40‐60	μM) DRG Rapid	repriming,	supports	
repetitive	firing
↑reg	after	injury,	in lammation

NaV1.9 SCN11A TTXr	(40	μM) Small	diameter	DRG Slow	activation,	Ultra‐slow
inactivation,	amplifies
Hyperpolarized	voltage‐
dependance	of	activation

Voltage‐gated	sodium	channel	family
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Although there has been some variation in the determination of NaV phylogeny in mammals, the most 

recent research supports a general consensus in agreement with the 2R hypothesis[25]. The entire NaV 

channel family is thought to be a product of pre-mammalian whole genome duplication events, with 

recent evidence suggesting evolution predating the development of the nervous system (Figure 2)[26, 

27]. This relatively high homology between members of the ion channel superfamily contributes to 

making the search for selective modulators quite difficult. 

 

 

Figure 2: Evolutionary relationships among key members of the ion channel superfamily.  

The top of the figure shows the structures of the channels. Moving from left to right: a linear leak K+ 

channel that is composed of two membrane-spanning helices and a pore (blue); a 6 transmembrane 

(TM) channel with a single voltage sensor (red); and 4 domain x 6TM channels with four voltage 

sensors. There is uncertainty about the origin of the 4x6TM family, which more likely evolved in 

eukaryotes than prokaryotes, as indicated in this figure. Figure used without permission from Zakon 

H.H. PNAS 2012[27] 
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The latest phylogenetic tree for the human Nav family used a method of maximum parsimony to 

compared aligned sequences for relatedness by measuring the number of nucleotide changes required 

for the change in codon at each position[19]. By this method NaV1.1, NaV1.2, NaV1.3, and NaV1.7 have 

been determined to be the most genetically related, with all four encoding genes occurring on human 

chromosome 2q23-24. All four channels are also strongly TTX-sensitive and widely expressed in 

neurons[15]. NaV1.5, NaV1.8, and NaV1.9 also have close phylogenic homology, with encoding genes 

found on human chromosome 3p21-24. These sodium channels are TTXr to varying degrees due to 

changes in amino acid sequence at a single position on the pore forming region[28]. NaV1.4 and NaV1.6 

are the most phylogenetically distinct TTXs subtypes, occurring on human chromosomes 17q23-25 and 

12q13, respectively. 

 

1.3 NaV channel structure 

The voltage sensitivity and Na+ ion selectivity of the NaV -subunit allows these membrane proteins to 

play an essential role in initiation and propagation of action potentials in neurons and other excitable 

cells[6]. NaV channels are defined by their activation through membrane depolarization events, 

allowing Na+ ions to flow passively along a gradient[6]. However, channel state and kinetics can be 

affected by various ligands – including toxins – as well as membrane potential, which will be discussed 

later. Understanding the structure of the NaV channel and how ligands can interact with different 

regions is fundamental to developing better regulatory therapeutics. 

 

1.3.1 The NaV -subunit 

The α-subunit of the Nav channel is arranged from four homologous domains (DI-DIV), each 

containing six highly conserved, hydrophobic, α-helical transmembrane segments (S1-S6) that form a 

protein approximately 260 kDa in size[29-32]. The transmembrane regions are connected by intra- and 

extracellular loops (Figure 3). The outer vestibule and ion selectivity filter of the NaV channel is 

formed by an extracellular “P-loop” on each domain that re-enters the membrane between S5 and S6, 

making up the pore forming region[33]. S4 is traditionally referenced at the voltage sensor, although 

the entire S1-S4 region has been referred to as the voltage sensor domain[34]. Co-expression with a β-

subunit is usually required for the -subunit to exhibit the endogenous kinetics and voltage-dependence 
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of native NaV channels, as well as regulating channel expression[35]. However, the α-subunit is fully 

functional as a voltage-mediated ion pore on its own. 

 

The predicted structure of the outer vestibule and selectivity filter were both discerned using the 

guanidinium toxins TTX and saxitoxin (STX). These small molecule toxins have similar structural 

properties, overlapping binding sites, and are highly selective for NaV channels. A number of 

interaction sites between the toxins and the NaV channel were determined through point mutation 

studies of the channel[36-39], then spatially arranged by Lipkind and Fozzard to produce a working 

model of the extracellular pore region[33]. An unexpected outcome of the model was the visualization 

of a narrowing in the pore caused by four conserved caboxylate amino acids – DEKA – that form an 

inner ring necessary for conveying Na+ ion selectivity to the P-loop. This precise region was initially 

proposed by Heinemann et al[40] to be a candidate for the selectivity filter after mutations to the 

DEKA amino acids were observed to cause a pronounced alteration of ion selectivity. Later studies 

demonstrated the importance of an additional outer ring composed of the carboxylate amino acids 

EE(M/D)D[39, 41, 42].  

 

These studies succeeded in linking critical toxin binding sites along the outer vestibule to residues 

controlling ion permeation that help define the first pharmacologically relevant site on the NaV channel, 

“Site 1”. An updated structural model for the NaV channel TTX-binding region within the outer 

vestibule has since been published, taking into account an additional 15 years of work and using the 

crystal structure of the bacterial KcsA channel as a template[43]. A structural model for the 

anticonvulsant binding site within the inner pore has also been published[44]. While these models have 

limitations as they are based on relatively low homology templates and a rigid conformation for ligand 

interactions, they remain useful for visualizing NaV channel residues important for drug interactions.  

 

Recently, a groundbreaking accomplishment was made utilizing a bacterial NaV channel from 

Arcobacter butzleri (NaVAb) to elucidate the first full crystal structure of a NaV channel[46]. This was 

quickly followed up with structures in potentially two inactivated states[45]. These detailed snapshots 

into the conformational changes of the NaV structure have great potential for understanding the 

complexities of how ligands bind and interact with the NaV channel, which is critical for the 

development of selective therapeutics. 
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Figure 3: NaV channel structure.  

A) Flat cartoon of general NaV structure based off crystal structure arrangement. Individual segments 

are numbered (1-6). Domains are labeled (I-IV). The S4 voltage sensor is labeled with (+) and the 

inactivation gate is labeled with IFM. The pore forming region is highlighted in green. B) Folded 

conformation of NaV channel based off crystal structure of NaVAb[45]. Green = voltage sensing 

region. Purple = pore forming region, boxed region = selectivity filter. Red = linker regions 

connecting the activation gate. 

 

1.3.2 NaV physiological states 

Electrophysiological experiments conducted over the past four decades have demonstrated three 

primary physiological states directly related to observed Na+ permeability, which can be further broken 

down mathematically into eight kinetic states[6]. The three primary states include: activated (open 

state), inactivated (closed state), and resting (primed closed state). These physiological states are 

dictated by conformational changes occurring within the NaV α-subunit. It wasn’t until 2005 when the 

first structural template of the mammalian KV1.2 (Shaker) channel was elucidated in an “activated-

open state” by X-ray crystallography[47]. This allowed the development of molecular dynamics 

simulations of the lipid membrane embedded KV1.2 receptor to characterize structural details[48-50], 

which later led to a series of more defined models detailing the “resting-closed state) as well as 

A) 

B) 
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transitional states [51-53]. This data culminated in a mechanistic model of voltage-dependant gating for 

the entire voltage gated cation channel superfamily[54].  

 

In 2011, the elucidation of a bacterial NaV α-subunit X-ray crystal structure from Arcobacter butzleri, 

NaVAb, was resolved at 2.7 Å[46]. This structure featured a closed PD and the four VSDs seemingly 

activated. The latter was interpreted as representative of the pre-open state of the channel or, in other 

words, a metastable (intermediate) structure along the pathway connecting the resting-closed state to 

the activated-open state. Consistently, recent MD simulations of the channel embedded in a lipid 

membrane have shown structural stability on timescales of ∼100 ns[55]. Importantly, the NaVAb 

structure provides a high-resolution template for enhancing our knowledge on Na+ and related 

Ca2+ channels, for which much less is known. However, there remains a pressing need to relate the 

reported NaVAb X-ray structure to specific functional states of the channel. Given the significant 

degree of structural similarity shared by members of the VGCC family, more extensive studies on KV 

channels are a resource for providing insight into this issue. 

 

The details of how the NaV channel conforms to each state is critical to understanding how ligands 

interact, as the different physiological states are able to preferentially bind small molecule and peptide 

ligands in what is known as “state-dependence”. The information gathered through molecular dynamics 

simulations and, more importantly, X-ray crystal structures, is instrumental in forming a unified model 

of voltage-dependant gating through a complete cycle. What is known will be summarize 

 

When in the resting state the NaV channel is closed and non-conducting, but primed for activation. 

Activation of the NaV channel occurs when membrane depolarization causes a conformation change of 

the voltage sensor region - specifically with the S4 helices - opening the outer pore to allow Na+ ions to 

flow down an electrical gradient. After activation of the NaV channel, an inward flow of Na+ ions (INa) 

occurs within milliseconds, immediately followed by decay in INa during the depolarization phase. This 

decay is due to inactivation of the channel by an intracellular gating motif and is a closed conformation 

state that is distinct from the resting state. The physiological role of the inactivated state is to stop ion 

conductance during prolonged depolarization, allowing the channel to reset to a fully closed (resting) 

conformational state. NaV channel inactivation is typically described as either fast or slow, with slow 

inactivation encompassing both ultraslow and intermediate modes[56]. 
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The primary role for fast inactivation is to aid in repolarization of the cell after firing of an action 

potential. In mammalian NaV channels, fast inactivation is well described and has been attributed to a 

highly conserved intracellular linker region between DIII-DIV of the α-subunit (Figure 3). Deletion of 

the linker[57] followed by targeted inactivation of the region using antibodies[58] provided the first 

experimental results pinpointing this region as the inactivation gate. Further point mutations of the 

DIII-DIV linker identified a cluster of three highly conserved hydrophobic amino acids – labeled the 

IFM motif – that is critical for inactivation[59]. To confirm the role of the IFM motif in inactivation, 

introduction of the peptide KIFMK via intracellular expression was shown to recover the function of 

inactivation on channels with deleted IFM motifs through open-state dependent block[60]. The first hi-

resolution NMR solution structure of the inactivation gate was published a year later[61], revealing an 

α-helical core with a flexible hinge-like N-terminal turn, which includes the IFM motif. This linker 

region was shown to be stabilized in the inactivated state through interactions with the C-terminal 

section of the NaV channel, which will be discussed in more detail below[62]. The IFM motif 

demonstrates precedence for the potential of intracellular NaV pore block. 

 

Slow inactivation has been shown to be a distinct process from fast inactivation, differing spatially, 

structurally, and pharmacologically - although the process is still not completely understood[63, 64]. 

Slow inactivation is a critical component of recovery from depolarization, controlling membrane 

excitability, firing properties, and spike frequency[65]. Abnormalities in slow inactivation have been 

linked to the neuromuscular disorders hyperkalemic periodic paralysis and myotonia[66], epilepsy[67], 

as well as several cardiac arrhythmia disorders such as Brugada syndrome[68], atrioventricular 

conduction block[69], and long-QT syndrome[70]. These associations underscore the physiological 

importance of this process. Slow inactivation is common to all mammalian NaV channels, although not 

as pronounced in the cardiac NaV1.5 isoform compared to nerve and skeletal muscle isoforms[71].  

 

This functional difference between NaV1.5 and skeletal NaV1.4 was exploited in attempts to isolate the 

structural components of slow inactivation[72]. A comprehensive study utilizing chimeras of hNaV1.4 

and hNaV1.5, as well as differential expression of an associated β1-subunit, resulted in two important 

observations involving the regulation of slow inactivation: (i) that P-loops are structural determinants 

of slow inactivation and (ii) that the β1-subunit modulates this process in hNaV1.4 but not hNaV1.5 

through a possible interaction with the P-loops[73]. P-loop association was further confirmed with 

mutational and modeling studies directed at the outer selectivity ring EEDD motif, which was shown to 
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play a crucial role in modulating slow inactivation[74]. This information was pieced together using a 

model of the TTX-bound channel to give the most comprehensive ionic model of slow inactivation to 

date, and in the process elucidated the binding of many state-dependant drugs that modulate slow 

inactivation[75]. This model suggested that slow inactivation involves disordering of the outer pore 

region rather than direct plugging, which may explain the different kinetic states of slow inactivation. 

However, there is much that remains unanswered, including the suggested involvement of the S4 

voltage sensor. The recent availability of a NaV crystal structure will help to address many of these 

questions. 

 

1.3.3 Voltage sensor 

The mechanism of voltage dependent gating is directly linked to changes in the membrane potential of 

the cell. A candidate for the voltage sensor, the S4 transmembrane helix, had already been suggested at 

the time of the first NaV channel cloning due its location within the membrane electric field and strong 

inherent positively charged residues[76]. This positive charge is due a polybasic region composed of 

arginine and lysine at every third position of the S4 helix. The S4 regions of each domain have 

subsequently been shown to be critical for voltage dependence through site-directed mutagenesis 

studies that targeted these key charged residues[57]. However, the voltage sensors in DI-DIII have been 

shown to be critical for channel gating, while the DIV voltage sensor is more closely associated with 

fast inactivation[77, 78]. This association has been demonstrated further with the use of gating modifier 

toxins, which interact directly with the voltage sensor region of S1-S4[79, 80]. 

 

The classical voltage sensor model suggests that in response to a change in the membrane’s electric 

field due to an influx of positive charge, the voltage sensors will undergo a conformational change, 

moving towards the extracellular space and opening the pore[81, 82]. Continuing research on the 

voltage sensor is revealing that voltage dependant gating is a much more intricate process, involving 

ion pair interactions between multiple segments after physical movement of the voltage sensor during 

depolarization of the membrane[83]. These interactions include a process described as “disulfide 

locking” of the S4 after activation, which is shown to contribute to slow inactivation[84, 85] and 

demonstrates that activation and inactivation are not completely independent processes[86]. 
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1.4 β-subunits 

The four known mammalian NaV channel β-subunits, β1-β4, are between 33-36 kDa in size and 

encoded by the genes SCN1B-SCN4B[87, 88]. SCN1B has been shown to produce species-specific 

splice variants, with humans expressing the variant β1B[89]. All four β-subunits share a similar 

structure, composed of an N-terminal extracellular immunoglobulin (Ig) domain, an alpha-helical 

transmembrane segment, and a short intracellular C-terminal region. All of the β-subunits belong to the 

Ig superfamily of cell adhesion molecules (CAMs)[90]. The NaV β-subunits are known to co-localize 

with NaV α-subunits, with β1 and β3 forming non-covalent bonds while β2 and β4 are covalently linked 

through disulfide bonding, although the residues responsible have not yet been identified[30, 91-93]. 

These interactions with NaV α-subunits have been shown to be multifunctional, affecting not only 

receptor excitability, but also cell adhesion, neuronal migration[94], neurite outgrowth[95], 

transcriptional regulation, and metastatic activity in cancer[96]. Through their interactions with NaV α-

subunits, β-subunits canact as regulators of both temporal and spatial expression of the α-subunits 

through the formation of macromolecular complexes [89].  

 

Because of their association with and regulation of NaV α-subunits, β-subunits have the potential to 

make useful therapeutic targets. However, their multifunctional role as CAMs may be a complication 

as well as a benefit. Using domains of the subunits to elicit a physiologic effect has already been 

demonstrated in vitro. For example, the Ig domain of β1 can promote neurite outgrowth on its own[95], 

which opens up the potential for designing peptide drugs based off of active regions of these subunits. 

Monitoring mutations of β-subunits can be a useful diagnostic tool to help identify the most appropriate 

treatments for variety of ailments such as cardiac arrhythmias[97], multiple forms of epilepsy[98, 99], 

and potentially even some cancers. Manipulating the expression or interaction with α-subunits has the 

potential to lead to multiple downstream signaling effects in vivo and has been shown to play an 

important role in affecting channel kinetics in vitro [90, 100]. However, the in vivo spatio-temporal 

relationships between β-subunits and associated α-subunits are yet to be fully understood. 
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2. Therapeutic relevance of NaV channels: Role in pain pathophysiology 

 

NaV channels play a diverse physiological role and function in many aspects of neurotransmission, 

such as nociception, as well as participating in the modulation of various cellular processes. Deleterious 

genetic defects can occur in domains that affect expression or function, such as the voltage sensor, N- 

and C-terminal domains, or loop regions that act to bind regulatory proteins. Amino acid substitutions, 

deletions, or additions also occur in regions of the channel responsible for voltage sensing, inactivation 

and ion selectivity, resulting in a wide array of conductance diseases, some of which will be discussed 

in detail. NaV isoforms are each expressed selectively in multiple tissues and cell types throughout the 

body, including both excitable and non-excitable cells, immune cells, myocytes, and nerve tissue. 

Therefore, defects among members of this family of voltage conducting channels can be attributed to 

numerous disease states involving electrical conductance throughout the body, including pain and 

inflammation pathways[101], neurodegeneration[102], cardiology[103], neurology[104], and even 

cancer[105]. This ability of NaV channels to contribute to a wide range of physiologic roles supports 

the advance of greater isoform selective targeting for therapeutic development, which has been lacking 

to date. This thesis primarily focuses on targeting the TTXs NaV1.3 and NaV1.7 channels, which are 

known to be involved in pain transmission and nociception. However, since selectivity is of the utmost 

importance for research and therapeutic purposes, all available NaV isoforms will be screened for 

activity. Of these, a few key selections will be discussed for their therapeutic relevance. 

 

2.1 Pain and inflammation 

Primary afferent nociceptors of the peripheral nervous system are responsible for detecting high 

threshold environmental input from thermal, mechanical, or chemical sources, and converting this 

stimulus into electrochemical signals [106].  These peripheral nerves can be divided based on 

morphology and function into three classes. Large diameter myelinated Aα/β-fibers have a low 

threshold for activation and mainly conduct information about innocuous touch. Both the fast 

conducting, lightly myelinated, medium diameter Aδ-fibers and the small, slow conducting, 

unmyelinated C-fibers contribute to nociception from noxious stimuli [107]. Because of their different 

conductance, it is thought that Aδ-fibers mediate the first rapid, acute response while C-fibers 

contribute to the second delayed, throbbing pain. 
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At the transition between the peripheral and the central spinal nervous system lie bundles of afferent 

nerve cell bodies (soma) called dorsal root ganglion (DRG). DRGs are located along the vertebral 

column along the spine just outside the CNS, where the afferent dendritic fibers interface with the soma 

and transition into axon. These ganglia are responsible for transmitting afferent signal from external 

thermo-, mechano-, or chemo-sensory input from the periphery to the spinal cord and on to the brain 

for processing. The channels and receptors responsible for transmission of peripheral nociception are 

expressed in DRGs, including an array of NaV channels that provide the inward current necessary for 

formation and propagation of action potentials[108]. Because of their function and composition, DRG 

neurons have provided researchers with a native cell type to identify the receptors involved in pain 

transmission at the periphery, as well as the mechanisms for neurite outgrowth.  

 

Early electrophysiology studies have demonstrated that after neuronal injury, DRG neurons become 

hyperexcitable, giving rise to the spontaneous action potentials and bursting that contribute to 

neuropathic chronic pain [109-111]. There is substantial evidence linking this hyperexcitability to a 

differential expression of a few key NaV isoforms [112]. In addition, an array of clinical and 

experimental observations using NaV channel inhibitors has demonstrated a link between NaV 

hyperexcitability and the propagation of neuropathic pain [113-115]. The contribution of two TTXs 

NaV channels to neuropathic pain will be discussed.  

 

2.1.1 NaV1.3 

NaV1.3, encoded by the SCN2A gene, is the most questionable in relation to its contribution to 

neuropathic pain. NaV1.3 mediates TTXs, fast-activating and fast-inactivating Na+ current.  It is 

developmentally regulated, with lower expression in adult compared to embryonic rodents[116]. In 

addition, studies using animal models for physical pain from injury – such as sciatic nerve axotomy or 

spinal nerve ligation – have shown marked increases in expression of NaV1.3 around injured nerve 

regions[117-120]. This isoform seems to be the only NaV consistently upregulated after nerve injury 

based on mRNA analysis, RT-PCR and electrophysiology experiments, which determine both 

functional and transcriptional expression[117, 120-122].  

 

This data points to NaV1.3 being an important contributor to the TTXs component apparent in the 

spontaneous, rapid repriming current seen in inflammatory and neuropathic pain. However, more 
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recent data has contradicted this hypothesis. Antisense oligonucleotides to knockdown expression of 

NaV1.3 after peripheral nerve injury reduced NaV1.3 expression by 50% in DRG neurons[123]. Yet this 

reduction failed to yield a therapeutic benefit by attenuating mechanical and thermal allodynia. In 

addition, the upregulation of NaV1.3 was shown to be non-specific to injured DRG. However, this 

study was contrary to previous results, again using oligonucleotides targeting NaV1.3, which showed 

that knockdown of mRNA and protein did attenuate hyperexcitability and allodynia[21]. In a pivotal 

study, normal levels of neuropathic pain were recorded in two conditional NaV1.3 knockout mice 

strains and hyperexcitability seen in neuropathic pain states was unaffected[122]. Thus, despite robust 

upregulation of NaV1.3 after nerve injury, its role in the development of neuropathic pain remains 

unclear[124]. 

 

In recent years, NaV1.3 has also received attention for its putative involvement in epilepsy. Although 

rodent NaV1.3 is down-regulated postnatally, adult human brain expresses significant levels of the 

NaV1.3 isoform, with mutations found in patients with cryptogenic pediatric partial epilepsy[125]. 

These mutations were found to enhance both the persistent and ramp currents of NaV1.3, and increase 

excitability in hippocampal neurons, a finding consistent with upregulation of NaV1.3 in spontaneously 

epileptic rats[126]. However, the precise contribution of NaV1.3 to various forms of epilepsy remains 

to be determined. Similarly, while specific site mutations have not been identified to date, recent data 

from animal models of epilepsy suggest an involvement of NaV1.6 in certain forms of epilepsy, 

including absence seizures. These data suggest that subtype-specific pharmacological modulators might 

emerge as useful treatments for multiple epileptic disease states. 

 

2.1.2 NaV1.7 

NaV1.7 is encoded by the SCN9A gene and preferentially expressed in both nociceptive DRG and 

sympathetic ganglion neurons[127, 128]. This channel also mediates a TTXs fast-activating, fast-

inactivating current, however it is slow to recover from inactivation as compared to other NaV 

channels[129-131]. NaV1.7 also exhibits slow inactivation from the closed-state, which allows the 

channel to generate a current in response to a small, slow ramp depolarization. This action helps set a 

gain by amplifying sub-threshold conductance that contribute to hyperexcitability[132, 133]. The 

ability of this channel to boost sub-threshold stimuli ultimately increases the total probability that a 
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neuron will reach its threshold to fire an action potential. This functional role has been observed in 

recent studies linking NaV1.7 to heat hypersensitivity after burn injury[134]. 

 

Originally detected in somatosensory and sympathetic ganglion neurons, NaV1.7 has since been 

reported in myenteric neurons[135], olfactory sensory neurons[136, 137], visceral sensory 

neurons[138] and vascular myocytes[139]. NaV1.7 expression is also well characterized in both the 

large diameter, myelinated aδ-fibers and small diameter, unmyelinated C-fibers[140]. Expression of 

NaV1.7 within free nerve endings in the epidermis is consistent with its proposed role of amplifying 

weak stimuli[134, 141]. NaV1.7 has also been detected in a variety of non-excitable cells, including 

prostate and breast tumor cells[105, 142], human erythroid progenitor cells[143] and immune 

cells[144]. However, there has been no evidence of CNS expression, except for within the superficial 

lamina of the dorsal horn in the spinal cord [128, 145]. 

 

NaV1.7 potentially represents one of the best validated pain targets for the development of therapeutics. 

The role for NaV1.7 in human acute and chronic neuropathic pain has been demonstrated through 

observations of human familial mutations, which are responsible for three pain syndromes. The two 

gain-of-function disorders, inherited erythromelalgia (IEM) and paroxysmal extreme pain disorder 

(PEPD), are dominantly-inherited mutations causing hyperexcitability and increased pain 

perception[146, 147]. Congenital insensitivity to pain (CIP) is a recessive loss-of-function disorder, 

with mutations inactivating the NaV1.7 channel[148]. CIP patients typically experience a complete loss 

of pain sensation, even after burns, fractures, or puncture wounds. The only other sensory deficit 

observed is a partial or global loss of olfaction. This loss of smell was determined to be the cause of 

prenatal mouse SCN9A-knockout lethality, since blind, prenatal mice require a sense of smell in order 

to feed, with no other deficit in sensory, motor or cognitive functions observed[149]. These mutations 

highlight the distinct role of NaV1.7 in nociception in humans. The reader is directed to a recent 

comprehensive review highlighting all known human mutations of NaV1.7[150]. 

 

Initial studies seeking to confirm the role of NaV1.7 in pain using NaV1.7 knockout animals were 

hampered due to the perinatal lethality of the global NaV1.7 null mutant. While this was originally 

attributed to decreased gut motility due to the presence of NaV1.7 in the gut, a more likely cause has 

been traced to loss of olfactory sensation, as is seen in human loss-of-function mutations, resulting in 

postnatal starvation as a consequence of loss of NaV1.7 in olfactory neurons. Conditional knock-out 
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and knock-down of NaV1.7 in animal models of pain have demonstrated that NaV1.7 plays a significant 

role in the development of acute and inflammatory pain, probably attributed to an upregulation of the 

channel caused by inflammatory cytokines[151, 152]. Thus, NaV1.7 has attracted considerable attention 

as a putative therapeutic target for the treatment of extreme pain conditions [153] with one lead 

compound, CNV1014802, already in Phase II clinical trials with Convergence Pharmaceuticals (a 

spinoff of GSK)[154]. Xenon Pharmaceuticals is currently working on its own lead compound, 

XEN402, which blocks NaV1.7-mediated pain associated with post-herpetic neuralgia [155]. Other 

major pharmaceutical companies contributing research into small molecule NaV1.7 inhibitors include 

Merck[156, 157], Pfizer, Amgen [158], and AstraZeneca[159], to name a few. 

 

2.2 Muscle channelopathies 

The human gene SCN4A encodes NaV1.4, which plays a critical role in affecting skeletal muscle 

excitability and maintaining resting membrane potential. Muscle channelopathies can be characterized 

by their affects on excitability by causing conditions associated with either nondystrophic myotonia 

(hyperexcitability) or periodic paralysis (nonexcitability) through a variety of ion channel mutations. 

Nondystrophic myotonia conditions are characterized by phenotypes of extreme muscle stiffness 

caused by prolonged relaxation of skeletal muscle after voluntary contraction or external mechanical 

stimulation. Periodic paralysis conditions are characterized by episodes of muscle weakness associated 

with variations in serum K+ concentrations and may be also involve symptoms of myotonia[160]. 

 

Missense mutations specifically affecting SCN4A are known to be responsible for a variety of human 

myotonia and periodic paralysis conditions. Hyperkalemic periodic paralysis and paramyotonia 

congenita (Eulenburg’s disease) are conditions resulting from gain-of-function mutations in SCN4A 

that impair inactivation, leading to persistent Na+ current and mild membrane depolarization[160]. 

NaV1.4 blockers are able to correct the associated myotonia, but are not very effective in preventing 

muscle weakness or frequency of attacks in these two conditions[161]. Potassium-aggravated 

myotonias include myotonia fluctuans, myotonia permanens, and acetazolamide-sensitive myotonia, 

are caused by various SCN4A mutations and aggravated by K+ ingestion[162, 163]. Thus, NaV1.4 is a 

promising therapeutic target for a variety of skeletal muscle disorders, although NaV1.4-specific 

antagonists are lacking, with the exception of certain µ-conotoxins. 
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2.3 Cardiac arrhythmias 

The fast-inactivating cardiac-specific NaV1.5 is encoded by the gene SCN5A and is essential for normal 

cardiac function. NaV1.5 directly contributes to phase 1 of the cardiac action potential, which is the 

depolarization phase caused by the rapid influx of Na+ ions (INa) into the cell, initiating and propagating 

Na+ current. NaV1.5 also contributes to setting the resting membrane potential[103]. Multiple disease 

states result from defects in INa conduction, typically resulting from point mutations on the SCN5A 

gene. Since the first identification of a mutation on the gene SCN5A that was attributed to long-QT 

syndrome (LQTS)[164], close to 200 mutations have been identified. NaV1.5 mutations have since 

been implicated in Brugada syndrome, progressive cardiac conduction defect, dilated cardiomyopathy, 

atrial fibrillation, and sick sinus node syndrome[103]. The numerous mutations implicated in the 

multiple cardiac rhythm disease states can aid the clinical diagnosis and help determine both latent risk 

factors and clinical severity. 

 

Reduced NaV availability due to diminished peak INa amplitude or negative shift in the inactivation 

profile is associated with loss-of-function phenotypes such as Brugada and sick sinus node 

syndrome[165, 166]. The impairment of conduction can act through different mechanisms, such as 

reduced membrane channel density, a voltage-dependant shift in the steady-state inactivation and 

activation profiles, or an increased onset of inactivation. These phenotypes are not pharmacologically 

treated by NaV channel blockers, although increasing NaV1.5 activity through subtype selective 

activators could be a potential treatment strategy. 

 

In contrast, mutations that cause increased late INa augment the depolarizing impact on cardiac 

myocytes and thereby prolong the action potential duration, as seen in LQTS[167]. This latter type of 

arrhythmias can be treated with Class I NaV channel blockers[168, 169]. Current antiarrhythmic drugs 

have low target specificity and potential for serious side effects[170]. Current antiarrhythmic drugs 

were developed at a time when the underlying molecular mechanisms of the pathology were little 

understood, so molecular target selectivity was not a factor. That said, there are currently no selective 

NaV1.5 drugs available on the market.  
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2.4 Epilepsy 

As one of the world’s most prevalent neurological disorders, epilepsy encompasses a group of diseases 

with a wide range of clinical features and causes, all sharing the similar phenotype of seizure. 

Monogenetically inherited epileptic syndromes are typically associated with mutations in genes 

encoding for ion channels. In the case of NaV channels, over 300 mutations on the SCN1A gene that 

encodes NaV1.1 have been discovered to date[171, 172]. Gene mutations and functional disturbances 

causally linked to the development of both inherited and acquired epilepsy have also been reported for 

SCN2A/NaV1.2, SCN3A/NaV1.3[125, 173] and SCN8A/NaV1.6[174]. It is interesting to note that 

NaV1.1, NaV1.2 and NaV1.6 are all highly expressed in the adult mammalian brain and their genes 

SCN1A, SCN2A, and SCN3A are all located on the same chromosomal cluster.  

 

NaV mutations have been correlated with multiple epileptic disease states [175], with NaV1.1 linked 

primarily to severe myoclonic epilepsy of infancy and generalized epilepsy with febrile seizures plus 

syndrome, while NaV1.2 has been linked to benign familial neonatal-infantile seizures. Reduced 

expression and mutations of the β1-, β2-, and β3-subunits have all been shown to contribute to seizure 

activity through modulation of NaV voltage-dependence towards a more increased level of persistent 

current, most likely by affecting expression patterns of associated NaV α-subunits[100, 176]. 

Intriguingly, loss of function mutations in NaV1.1, which intuitively would lead to decreased neuronal 

excitability, are also associated with the development of epilepsy. The majority of SCN1A mutations 

result in localized high-frequency repetitive firing and hyperexcitability through hyperpolarized shifts 

in voltage-dependence, persistent inward current, or inhibition of inactivation. The reason for this 

seeming discrepancy presumably arises from predominant expression of this NaV isoform in inhibitory 

interneurons, whose loss of NaV currents leads to increased excitability overall [177]. Compensatory 

inhibition of NaV1.6 has been suggested to partially correct the neuronal hyperexcitability resulting 

from loss-of-function mutations in NaV1.1[178]. Thus, inhibition of NaV activity remains a possible 

treatment strategy, even for types of epilepsy based on loss-of-function mutations. 

 

In recent years, NaV1.3 has also received attention for its putative involvement in epilepsy. While 

rodent NaV1.3 is downregulated postnatally, human brain expresses significant levels of NaV1.3, and 

mutations in NaV1.3 were found in patients with cryptogenic pediatric partial epilepsy[125]. These 

mutations were found to enhance both the persistent and ramp currents of NaV1.3, and increase 

excitability in hippocampal neurons, a finding consistent with upregulation of NaV1.3 in spontaneously 
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epileptic rats[126]. However, the precise contribution of NaV1.3 to various forms of epilepsy remains 

to be determined. Similarly, while specific site mutations have not been identified to date, recent data 

from animal models of epilepsy suggest an involvement of NaV1.6 in certain forms of epilepsy, 

including absence seizures. These data suggest that subtype-specific pharmacological modulators might 

emerge as useful treatments for multiple epileptic disease states. 

 

The antiepileptic drugs (AEDs) currently in use are not known to be NaV subtype selective[179]. 

However, they do act as use-dependent modulators, blocking the high-frequency repetitive firing that is 

believed to occur during seizures. AEDs preferentially block depolarized channels in a mechanism that 

resembles fast-inactivation. The current AED drugs on the market are all known to bind to a common 

site, the local anesthetic (LA) binding site, located within the pore of the NaV channel[180]. However, 

the slow onset of activity distinguishes AEDs from LAs. This slow binding is important because it 

highlights the requirement of repetitive depolarization events, as seen in epileptic seizures versus 

normal synaptic transmission. There is also evidence that current AEDs can inhibit persistent current, 

which contributes to the initiation and propagation of seizure-like current. NaV1.6 is the most 

abundantly expressed NaV channel in the nervous system and plays a significant role in promoting 

repetitive firing and enhanced excitability seen in persistent current[174, 181]. The specificity of AEDs 

to NaV isoforms including NaV1.1 and NaV1.6 is not yet known, although such experiments may prove 

enlightening.  

 

2.5 Summary 

The contribution of NaV channels to many other pathological conditions have been identified and are 

discussed in greater detail within the book chapter from which this was adapted[182]. This further 

demonstrates the relevance of NaV channel modulators as potential therapeutics. The broad spectrum of 

physiologic conductance roles also highlights the need to develop subtype specific modulators, which 

is something current small molecule therapeutics are lacking. 
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3. NaV channel neurotoxin receptor sites 

 

As a significant member of the ion channel superfamily, NaV channels act as unique molecular targets 

for several groups of naturally derived neurotoxins. Early pharmacological studies identified four 

neurotoxin receptor sites on mammalian NaV channels, primarily affecting ion conductance and 

voltage-dependent gating[183]. Later studies provided evidence for sites 5[184, 185] and 6[186] 

(Figure 4). Binding to these sites can influence gating kinetics by inducing conformational changes to 

the NaV channel or simply act as a plug, blocking the flow of ions and therefore the transmission of 

current.  

 

 

 

Figure 4: NaV channel neurotoxin binding sites.  

Neurotoxin binding sites are color coded where toxins are known to interact with mammalian NaV 

channels and cover broad regions of the extracellular loop domains and transmembrane helical 

regions. The S4 voltage sensor is labeled with (+) and the inactivation gate is labeled with IFM. 
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These sites have been determined primarily through a series of site-directed mutagenesis studies 

focusing on different regions of the NaV channels, used in combination with electrophysiology, 

isotopic ion permeability and radioligand competitive binding assays to assess the regions role in 

activity[187]. Similar neurotoxin binding  sites exist on insect NaV channels, with some venom 

peptides demonstrating activity for both insect and mammalian NaV channels[188-190]. However, 

insect NaV channels will not be discussed in this thesis for the sake of brevity.  

 

Because of their natural high affinity and specificity to individual sites on the NaV channel, several 

groups of neurotoxins have been instrumental tools for structure-function studies[191, 192]. Binding to 

these sites strongly modulate channel function by altering permeation and gating properties. There have 

been three proposed molecular mechanisms of action for neurotoxin modulation of NaV channels; pore 

block, indirect allosteric modulation of gating, and voltage sensor trapping[192]. These mechanisms 

will be explained in greater detail in the next section. 

 

3.1 Site 1 - Pore blockers 

Site 1 one the NaV channel is composed of residues that make up the re-entrant P-loop between S5 and 

S6 on all four domains. Binding to this site results in extracellular pore block and inhibition of INa 

conductance[193]. TTX and STX are both water-soluble heterocyclic guanidines that fall into the first 

class of neurotoxins known to interact with NaV channels[194]. As previously mentioned, these toxins 

have been fundamental tools in studies dissecting NaV channel structure and function[39, 195]. The 

peptidic μ-conotoxins have been isolated from marine cone snails and interact competitively with TTX 

and STX[196, 197] (Figure 4). However, certain mutations of the NaV pore forming region have been 

found to affect TTX affinity without altering μ-conotoxin binding, suggesting these toxins share only a 

partially overlapping binding site[198, 199]. More recent experiments have demonstrated synergistic 

inhibition of INa with both µ-KIIIA and TTX forming a ternary complex with the NaV channel pore 

region[200]. µ-KIIIA alone allows a small but measurable leak of INa, while the addition of TTX results 

in complete inhibition. Although the inhibition effect was more complete when both toxins were 

combined, kinetic effects for both toxins appeared competitive. The presence of prebound TTX 

accelerates the off rate of µ-KIIIA after subsequent addition, while the presence of prebound µ-KIIIA 

slows the on rate of TTX after subsequent addition. However, it was noted that the same ternary 

complex forms regardless of the order of ligand addition. TTX also appears to reduce the Kon of µ-
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KIIIA The authors explained these effects as being caused by differential binding on site-1 

“microsites”, dependent on the order of ligand binding. As µ-KIIIA binds closer to the vestibule, it 

would slow the Kon of TTX through partial physical occlusion of the inner binding site. Likewise, the 

presence of TTX would limit the affinity of subsequent µ-KIIIA binding. These results give hints 

towards the development of a peptide that could either i) act as a stronger inhibitor of NaV channels 

through the addition of guanidine side chains, or ii) bind strongly to the outer pore in a way to limit 

TTX binding while still allowing enough leak current to maintain a functional channel. This latter 

method could be developed as an effective treatment for paralytic shellfish poisoning. 

 

3.2 Site 2 

Toxins that bind to the transmembrane site 2 on the NaV channel are lipid soluble, small molecule, 

allosteric modulators, causing persistent activation as either full or partial agonists[192, 201-203] 

(Figure 4). However, these toxins are derived from a variety of organisms and are diverse in structure. 

Plant derived toxins include the diterpene grayanotoxins from the Ericaceae family[204], and the 

alkaloids aconotine from Aconitum[205] and veratridine from the Lilaceae family[206]. The alkaloidal 

steroid batrachotoxin (BTX) is found in frog, bird, and insect species and has served as a primary tool 

for determining site 2 functional roles in NaV channels[207]. Antillatoxin and hoiamide are two 

structurally unique NaV agonists isolated from marine cyanobacteria[208, 209]. Both molecules were 

found to partially displace [3H]BTX, but the precise site of binding remains undefined. 

 

Site 2 toxins share the characteristic of preferential binding to open-state NaV channels and are able to 

modulate several functional NaV properties. BTX has been used as a primary tool to study many 

functional roles of site 2 modulation as well as map residues composing the site 2 region. Site 2 

modulation results in a hyperpolarizing shift in the voltage-dependence of activation, resulting in 

activation at resting potential[210]; slowed or inhibited inactivation, resulting in sustained, non-

inactivating currents137; reduced INa conductance[211]; and modification of the selectivity filter, 

resulting in reduced selectivity for permeating ion[212]. 

 

Photoreactive BTX was initially used to determine an interaction site at DIS6[213]. Site-directed 

mutagenesis studies of NaV1.4 confirmed residues along DIS6 were necessary for toxin binding as well 

as demonstrating overlapping regions in DIVS6 that were common to both BTX and grayanotoxin[207, 
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214]. Accumulating evidence from computer modeling and molecular docking experiments suggests 

that BTX and veratridine – as well as potentially other site 2 agonists – interact with all four S6 

segments near the DEKA selectivity filter in a way that stabilizes the open-state of the NaV channel, as 

well as limiting fast inactivation through S6 interactions[212, 215, 216]. BTX has been shown to bind 

towards the cytosolic end of the pore region in an open-state dependent, irreversible manner[217]. 

Grayanotoxin has been shown to bind an overlapping but not identical region in the pore in a reversible 

manner[207]. The close interactions with the selectivity filter region helps explain observed changes to 

ion permeability. The modeling experiments demonstrating pore binding also helps explain the 

decrease in peak current, as well as the observation that close analogues to some site 2 agonists are able 

to act as NaV inhibitors[218, 219]. 

 

The mode of binding has been less studied for veratridine, although classical electrophysiology studies 

measuring whole tissue currents have been completed. Veratridine is known to have a reversible effect 

on NaV1.1-NaV1.7 and exhibits similar functional alterations of NaV channels[18, 220]. An interesting 

functional quality of veratridine is a lack of state-dependent binding in nerve tissue[221] while 

exhibiting state-dependence in muscle tissue[222-224]. Interestingly, in many of these same studies 

veratridine was also shown to have differential effects on peak amplitude in a tissue specific manner. 

Differences between cardiac myocytes, smooth muscle, and nerve tissue hint that the effect is most 

likely dependant on the NaV isoforms preferentially expressed in corresponding tissue. A more recent 

study on NaV1.6 in mouse vas deferens myocytes demonstrated a bell-shaped curve for peak amplitude 

in relation to veratridine concentration. Peak amplitude was enhanced until a concentration of 10 µM 

was reached, whereas higher concentrations reduced INa[225]. No change in ion selectivity was noted. 

The effect is likely due to partial pore obstruction caused by toxin binding. 

 

3.3 Site 3 and Site 4 

Toxins that bind to both site 3 and site 4 are gating modifier toxins that have evolved voltage sensor 

trapping mechanisms. They typically exhibit hydrophilic properties and therefore likely do not interact 

directly with the transmembrane segments, but instead exert their actions on the S4 voltage sensor 

through binding to extracellular loop domains[192]. Site 3 and site 4 were described for the first time as 

two distinct sites on rat brain synaptosomes while assessing competitive binding of the scorpion toxins 

AaH II (Androctonus australis Hector) and Css II (Centruroides suffusus suffusus) [226, 227]. The lack 
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of competition between these two toxins, which bound to distinct sites and exhibit different 

pharmacological profiles, led to the classification of α- and β-scorpion toxins, of which AaH II and Css 

II belong respectively[226, 227].  

 

Several classes of peptide toxins have been found to interact with site 3 through electrophysiological 

and competitive binding experiments, including α-scorpion toxins, sea anemone toxins, and the spider 

toxin families 2, 4, and 12[228-230]. This group of toxins work by preventing the outward movement 

of the DIVS4 transmembrane segment, thereby inhibiting conformational changes necessary for fast 

inactivation[231]. An important feature of these toxins is their voltage-dependent binding, which 

decreases in affinity as prolonged depolarization forces the outward movement of the S4 region, even 

causing voltage-dependant displacement of the ligand[229, 232]. Initial antibody mapping using 

photoaffinity labeling with α-scorpion and sea anemone toxins suggested the extracellular 

transmembrane segments S5-S6 in both DI and DIV, as well as part of the DIS5-S6 P-loop, comprised 

at least part of the site 3 binding domain[233, 234]. Experiments suggested that these extracellular 

loops are in close proximity and form a single binding space when the NaV channel is viewed in its 

tertiary structure. Further experiments revealed the additional contribution to α-scorpion toxin binding 

of the S3-S4 extracellular loop in DIV[231]. Research into NaV isoform selectivity using chimeras of 

DIVS3-S4 demonstrated only a few residues were critical for α-scorpion toxin binding and selectivity, 

demonstrating regions of importance that can be exploited when attempting to design specific ligands 

to NaV subtypes[235]. 

 

Site 3 neurotoxins function through the mechanism of voltage sensor trapping, where binding to the 

extracellular DIVS3-S4 loop is thought to slow or inhibit inactivation by preventing the normal 

outward movement of the DIVS4 transmembrane segment during channel gating. Site-specific 

fluorescent labeling of the S4 segment of NaV1.4 demonstrated the effect of stabilizing S4 of DI and 

DIV through α-scorpion toxin binding[236]. Both sea anemone and α-scorpion toxins have been shown 

to enhance the recovery of inactivation[232, 237]. As the S4 region is responsible for voltage-

dependant gating, toxins that interact with this region are referred to as gating modifier toxins. 

 

Venom peptides from two organisms have been instrumental in studying the mammalian NaV 

neurotoxin site 4: the β-scorpion toxins and spider NaV toxin families 1, 3, 5, and 7[226, 227, 238, 

239]. Unlike site 3 neurotoxins that inhibit inactivation, site 4 neurotoxins enhance activation by 
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trapping the voltage sensor region in its resting state, subsequently shifting the voltage-dependence of 

activation to a more hyperpolarized potential, as well as reducing peak current[240-242]. Site 4 

neurotoxins bind preferentially to resting state channels in a concentration-dependent manner. 

However, some more recently discovered spider venom peptides have redefined the original role for 

site 4 modulation, which will be discussed later[243-246]. 

 

In order to initially determine the site 4 region of interaction and learn more about voltage sensor 

function, the β-scorpion toxin TiTxγ (Tityus serrulatus) was tested against chimeras of NaV1.4 

(skeletal) and NaV1.5 (cardiac) domains. This research determined TiTxγ interacts preferentially with 

the NaV1.4 isoform at DII, which was necessary for the negative shift in the voltage-dependence of 

activation to occur[247]. A more detailed chimeric study using domains of NaV1.5 and the CNS 

expressed NaV1.2 with the highly potent β-scorpion toxin Css4 (Centruroides suffusus suffusus) 

confirmed DII, localized to the extracellular loops between DIIS1-S2 and DIIS3-S4. It was proposed 

that as the DIIS4 moves outward during depolarization, toxins will bind to newly accessible residues on 

the DIIS3-S4 loop, subsequently trapping the voltage sensor (S4) in an outward, activated position 

[248, 249]. The study also demonstrated that a single residue change of G845N is primarily responsible 

for the lack of affinity of NaV1.5 as compared to NaV1.2, giving further insight into the potential 

precision with which toxins interact with their receptors[242]. The β-scorpion toxin Tz1 (Tityus 

zulianus) helped resolve an additional interaction site on the NaV channel as well as determine 

specificity for different mammalian NaV isoforms[250]. Tz1 had the highest affinity for NaV1.4, 

followed by the neuronal NaV1.2 and NaV1.6, while NaV1.5 and NaV1.7 had little to no effect. Through 

chimeric studies with NaV1.2 and NaV1.4, the additional site 4 binding region of DIII was narrowed 

down to three residues on the C-terminal pore loop. The DIII region is critical for the observed NaV 

subtype specificity, which may be of interest when attempting to design specific NaV channel 

modulators[250]. 

 

Four NaV modulating spider toxin families are known to interact with mammalian neurotoxin site 4 

(Figure 4), all of which conform to an inhibitory cysteine knot (ICK) secondary structure and are 

thought to act as gating modifiers[251, 252]. Mg1a (Magi-5), isolated from Macrothele gigas, was the 

first spider venom to show affinity towards the mammalian site 4 through displacement of the β-

scorpion toxin, CssIV (Centruroides suffusus suffusus), using rat brain synaptosomes[188]. The 

electrophysiological properties of site 4 neurotoxins as defined by the β-scorpion toxins and Mg1a 
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exhibit a shift in the voltage-dependence of activation to a hyperpolarized potential, resulting in 

hyperexcitability through activation at sub-threshold potentials[188, 253, 254].  

 

Multiple other spider venom peptides have since been discovered with critical binding domains located 

on the site 4 DIIS3-S4 loop[239](Figure 4), as determined by either mutagenesis of key residues on this 

region of the NaV channel[243, 245, 255] or competitive assay with β-scorpion toxins[244]. However, 

many of these spider venom peptides exhibit a distinct functional profile to the β-scorpion toxins, 

whereby the peptide traps the DIIS4 voltage sensor in the closed state resulting in an inhibition of peak 

current [245, 255, 256]. Although a few of the jingzhaotoxins (Chilobrachys jingzhao) so far 

discovered have been shown to inhibit NaV current by acting as gating modifiers[244, 257-259], only 

one – β/κ-TRTX-Cj1a (jingzhaotoxin-III) – has so far demonstrated direct binding to the site 4 DIIS3-

S4 loop[245]. Two other spider venom peptides that have been shown to bind the DIIS3-S4 linker 

through mutational analysis include µ-TRTX-Hh2a (huwentoxin-IV isolated from Ornithoctonus 

huwena)[243] and µ-TRTX-Hhn2a (hainantoxin-III isolated from Ornithoctonus hainana)[255]. Both 

of these toxins also inhibit NaV current by interacting with the DIIS3-S4 linker and trapping the voltage 

sensor in the closed conformation. These NaV inhibitory spider venom peptides acting as gating 

modulators conform to a similar ICK secondary structure but exhibit highly variable NaV isoform 

selectivity profiles and promiscuous activity, affecting both CaV and KV channels[257, 259, 260]. This 

promiscuity across members of the voltage-gated ion channel superfamily could be attributed to partial 

binding in the vicinity of the highly conserved voltage sensor domain (S4) as many of these venom 

peptides have been shown to bind to S3-S4 linkers of the highly homologous voltage-gated ion channel 

family[261]. This should be taken into consideration when assessing the selectivity profiles of similar 

venom peptides. 

 

In addition to the spider venom peptides just mentioned, a single family of conotoxins, labeled µO, 

have been found to bind to a similar, overlapping region of site 4, also resulting in inhibition of current. 

Through NaV channel chimeric studies using NaV1.2 and NaV1.4, the µO-conotoxin MrVIA has been 

reported to interact with the C-terminal pore loop in DIII to inhibit activation[262]. Further, 

neutralization of the charged residues on the S4 segments of each domain demonstrated affinity to 

DII[263]. This same study also demonstrated functional competition between MrVIA and the β-

scorpion toxin Ts1a (Tityus serrulatus), suggesting µO conotoxins are site 4 modulators[263]. The 

inhibitory effects of these toxins can be reversed by strong, long-lasting positive voltage pulses, which 
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drive the voltage sensor back into its activated conformation[246]. Only five µO-conotoxins have been 

isolated to date, most varying only slightly in sequence homology[263-266]. 

 

The discovery of structurally related peptides that can exhibit two modes of voltage sensor trapping on 

the same receptor site demonstrates the unique ability of venom combinatorial libraries to exploit 

potential modulatory niches with only slight modifications in amino acid sequence. These small 

changes can be exploited to identify the functional necessity of charge, hydrophobicity, or chemical 

space for optimal interaction with the receptor. It also highlights the importance of continuing research 

into the discovery of venom peptides that might yet determine new functional roles or regulatory 

domains of the NaV channel. 

 

3.4 Site 5 

Marine dinoflagellates produce two classes of highly lipophilic, cyclic polyether compounds that 

interact with NaV neurotoxin site 5: brevetoxins (PbTX), produced by Karenia brevis and ciguatoxins 

(CTX), produced by Gambierdiscus toxicus[185, 267, 268]. Both classes of toxins bind preferentially 

to open-state, activated channels and result in a negative, hyperpolarized shift in the voltage-

dependence of activation, with some derivatives producing inhibition of fast inactivation[192]. 

Competitive NaV channel binding experiments demonstrated both toxins allosterically enhance 

[3H]batrachotoxin activation while they compete against each other for a unique binding site, 

subsequently labeled neurotoxin receptor site 5[269]. Photoaffinity labeling experiments using PbTX 

identified critical residues along DIS6 and DIVS5 that may form a binding pocket, as they would be 

located in close proximity in the native folded NaV channel[270] . 

 

To date, thirteen natural derivatives of PbTX and twenty-nine natural derivatives of Pacific (P)-CTX 

have been identified[271, 272]. However, most research has focused on synthetic studies of these 

molecules and has neglected a more in-depth look into NaV channel pharmacology, such as selectivity 

profiles or defined site 5 residues. 
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3.5 Site 6 

Site 6 on the NaV channel was originally identified through characterization of δ-conotoxin TxVIA, 

isolated from the cone snail C. textile[186, 273]. However, the first group of δ-conotoxins discovered 

was mollusk-specific and, although able to bind, had no effect on mammalian NaV channels. The 

isolation of δ-AM2766 from C. amadis was the first δ-conotoxin discovered to modulate mammalian 

NaV channels[274]. This discovery was quickly followed up by δ-EVIA from C. ermineus, which was 

found to be the first conotoxin selective for neuronal NaV isoforms – although activity was very low – 

with no effect on NaV1.4 or NaV1.5[275]. NMR solution structures for both toxins confirmed a 

common ICK motif for this class of peptide as well as visualizing the large hydrophobic surface area 

also common for the δ-conotoxins[276, 277].  

 

The δ-conotoxins have been shown to interact with NaV channels in a state-dependent manner, trapping 

the voltage sensor in the outward, activated position and resulting in an inhibition of fast inactivation, 

with sustained depolarization leading to toxin dissociation. Although the mechanism is extremely 

similar to site 3 modulation, δ-conotoxins so far discovered do not seem to exhibit voltage-

dependence[273, 275, 278]. The most in depth work to date on δ-conotoxins used δ-SVIE from C. 

striatus as a tool to discern the molecular mechanisms of interaction with NaV channel site 3, using two 

representative α-Lqh scorpion toxins in conjunction[279]. Mutagenesis of the NaV1.4 channel site 3 

DIVS3-S4 loop resolved a highly conserved triad of residues (Y1433-F1434-V1435) critical for δ-SVIE 

activity. Mutation of these residues also affected the function of α-Lqh-2 while doing nothing to α-Lqh-

3. This result was used to demonstrate functional competition with α-Lqh-2 and synergistic cooperative 

binding with α-Lqh-3 through mutual stabilization [279]. This work helped further define site 6, while 

maintaining strong overlapping effects between site 3 and site. However, site 6 still remains largely 

undefined and could simply be a natural extension of site 3, or could include residues completely 

unique to site 6. The discovery of novel δ-conotoxins is needed to further elucidate the structural 

interactions and functional roles this class has with NaV channels. 

 

3.6 Regarding toxin “sites” 

The classical nomenclature of neurotoxin sites has been essential in defining and classifying molecular 

interactions with the NaV channel. With the elucidation of a NaV channel crystal structure, more insight 

into how ligands interact with the various regions of the NaV channels can be explored in 3-
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dimensional space[45]. Computer aided modeling and co-crystallization studies can compliment 

traditional functional studies, which typically involve mutagenesis of key residues on either the ligand, 

receptor, or both. Macromolecular polypeptides most likely form complex interactions with multiple 

interaction sites across the NaV channel, such as what has been observed with sites 3, site 4, and site 6 

modulators. There still remains great potential for stronger definitions of binding regions. The classical 

definition of neurotoxin receptor sites as viewed on a planar map will likely shift to a more 3-

dimensional perspective as more ligands are discovered and receptor binding surfaces materialize. 

Furthermore, multiple regulatory roles for existing sites – such as in the dual modes of voltage sensor 

trapping apparent at site 4 – may yet to be determined. This is promising for structural bioengineering 

of ligands with greater selectivity profiles, among other functional properties. 

 

4. Conus and spider venom peptides targeting NaV channels 

 

Venoms represent a virtually untapped resource of novel pharmacologically active molecules[280]. In 

addition to potent drug leads, these highly specific peptides are also important tools to probe the 

structure and function of their receptor and ion channel targets[3]. Each venom producing species 

yields its own distinct natural combinatorial library of target selective molecules to be explored[281, 

282]. Of all the venom producing organisms, spiders and cone snails are of particular interest in the 

search for NaV channel modulators[283]. The majority of active peptides from these organisms are 

relatively small and contain multiple disulfide bonds, imparting a stable secondary structure[284].  

 

The genes encoding venom peptides are under intense selective pressure and have been shown to 

undergo rapid hypermutation, imparting target selectivity to individual peptides in a continual, 

generational predator-prey arms race[285]. These hypermutation events from ancestral genes have 

created venom peptide families with high sequence similarity as well as similar genetic precursors[239, 

285]. As sequencing technology becomes more accessible, this information can be used in the search 

for novel venom peptides at the transcribed gene level. This is accomplished through mRNA 

sequencing of venom producing tissue in a quickly arising offshoot of transcriptomics, dubbed 

venomics[286, 287]. 
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Further, as the number of new gene sequences and novel isolations from crude venom increases, 

methods for producing these toxins in a complimentary manner to solid phase peptide synthesis (SPPS) 

need to be developed. Recombinant expression has the ability to compliment SPPS and can be 

adaptable to both eukaryotic (yeast) and prokaryotic (bacterial) systems[288, 289]. By current 

measures, bacterial recombinant expression is by far the most cost-effective and straightforward means 

to express peptides and proteins. Issues such as solubility, folding, and purification can usually be 

overcome through the addition of a fusion protein, co-expression with chaperones, or the addition of 

molecular tags for directed expression or affinity chromatography. High-resolution structural 

elucidation has been improved through utilizing 15N/13C-labeling of peptides in combination with 

improved automated multidimensional NMR methods, requiring a fraction of the time of previously 

used methods, including crystallography[290]. Recombinant expression allows the fast labeling of 

peptides through simple media changes, at a fraction of the cost of SPPS[291]. 

 

4.1 Peptides as therapeutics 

Compared to small molecules, which can be developed and produced at low cost, orally bioactive, 

membrane-permeable, and generally stable, peptides are at a disadvantage[292, 293]. Nevertheless, 

venom peptides have become a source of novel ligands with potential therapeutic value. The rich 

diversity of venom peptides is a result of remarkable genetic hypervariability and accompanying post-

translational modifications (PTMs) which in turn generates species specific libraries of hundreds to 

thousands of primary structures[294-296]. Their high natural selectivity and potency towards key 

receptors, channels, transporters or enzymes of crucial biochemical signalling pathways involved in 

organism homeostasis make venom peptides an unrivalled and unexplored source of leads for the 

development of molecules with therapeutic potential. 

 

Many properties of venom peptides set them apart from the traditional limitations of peptides as 

therapeutics. Despite their variable size, averaging between 10–90 amino acids, most venom peptides 

have a high cysteine content which enables them to form specific disulfide bonds that provide them 

with a high level of thermodynamic stability as well as resistance to proteases. Conserved cysteine 

patterns and disulfide-bond connectivities with defined folds are found among the venom peptides of 

several thousands of different venomous animal species and in many cases are examples of either 

convergent or divergent evolution[296-298]. Coupled with secondary structure, many synthetic 
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methods are being developed to improve oral bioavailability and plasma/thermostability of 

peptides[299]. Some of these include cyclization[300, 301], substitution of cysteine with 

selenium[302], and the creation of peptidemimetics[303, 304]. 

 

Although peptide therapeutics are not historically well represented in the market compared to small 

molecules, the number of NCEs for peptide based drugs has grown by 27% at the turn of the century 

compared to the 1980s[305]. Methods of production and synthesis have increased in efficiency and 

ability, leading to a sharp increase in the number of new chemical entities. Six peptide drugs were 

approved in 2013 alone, with only one of those administered intravenously[306]. The clinical pipeline 

as of 2013 is composed of 128 peptide therapeutics under evaluation for a wide variety of ailments, 

with 40 in Phase I studies and 74 that have advanced to Phase I/II or Phase II studies[306]. The current 

increase in peptides approved for therapeutic use is a promising sign of future developments in the 

search for new drug entities.  

 

4.2 The inhibitory cysteine knot 

Despite the apparent sequence diversity among individual species, venom peptides appear to have 

evolved from a relatively small number of structural frameworks that are particularly well suited to 

addressing the crucial issues of potency, selectivity, and stability[280]. One of these structural motifs – 

the inhibitory cysteine knot (ICK) – is present in peptides and proteins from a variety of species, 

including both spider and cone snails[307]. The ICK motif is comprised of a two distinct structural 

features: i) a triple-banded antiparallel β-sheet and ii) a ring formed by two disulfide bonds and their 

connecting backbone segments, which is threaded by a third disulfide bond forming a “knot”[308] 

(Figure 5). Many ICK spider peptides lack a third β-strand, exhibiting a double-banded antiparallel β-

sheet[309]. 

 

It was previously suggested that the three-disulfide ICK motif is an elaboration of a simpler, ancestral 

two-disulfide fold coined the disulfide-directed β-hairpin (DDH)[310]. The discovery of DDH folded 

peptides in the venoms of both spiders (HWTX-II/Hh1a) and scorpions (Lw1a) lend support for the 

hypothesis that the DDH motif is an evolutionary precursor of the ICK[311]. 
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The most important aspect of ICK peptides is 

their inherent structural stability imparted by 

the knot motif. The term “knot” is actually a 

misnomer, as the ICK motif does not actually 

fold a true knot in the mathematical sense of 

the word, unlike its closed-loop cyclotide 

relative the cyclotide cysteine knot 

(CCK)[312, 313]. The ICK structure can be 

unfolded without the need for breaking any 

bonds whereas the CCK cannot[314]. 

Regardless of this discrepancy, ICK peptides 

still maintain a relatively high level of 

structural, thermal and biological stability, 

lending themselves as well-defined molecular 

scaffolds for drug design[315]. As ICK 

peptides do not require cyclization, they can 

be recombinantly expressed in single-celled 

organisms such as bacteria and yeast, which 

lack the enzymes necessary to catalyze such a 

reaction[289]. ICK peptides can also be 

converted to CCK peptides through chemical 

synthesis, which has been shown to increase 

gastric stability, leading to an orally active 

peptide[316]. 

 

4.3 Conotoxins 

Cone snails are marine venomous predators of the genus Conus. Conus is the largest known genus of 

marine invertebrates, with over 700 extant species described[317]. Cone snails are found in tropical 

marine environments and are particularly prominent around coral reefs and other shallow-water tropical 

marine habitats[318, 319]. They are prey specialists that include vermivorous, molluscivorous, and 

piscivorous species. The piscivorous species are expected to produce the most pharmacologically 

 

Figure 5: Inhibitory cysteine knot (ICK). 

A common structural motif adopted by many NaV 

modulating spider and cone snail peptides. 

Cysteines are labeled 1-6 and follow a 

connectivity pattern of I-IV; II-V; III-VI. Arrows 

represent β-strands. The 5 possible loops are 

variable regions of the peptide sequence, with n 

equating to the range of amino acids known to 

occur in different peptides. 
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interesting peptides to human health, since they have evolved to target chordates[320, 321]. The 

molecular diversity and enhanced target selectivity of individual peptides across each Conus spp. 

venom is thought to arise from the specificity of prey between different species[322]. Selective 

pressures forcing gene duplication events over millions of years of evolution have given rise to a vast 

resource of potent scaffolds, specific for a multitude of ion channel targets. The molecular targets of 

individual conotoxins are functionally diverse yet appear to act simultaneously in what has been termed 

cabals[4].  

 

A relatively rapid radiation of the Conus lineage has resulted in over 500 different species, with the 

venom of individual Conus species estimated to contain a unique compliment of over 200 peptide 

components[323, 324]. However, a more recent mass spectrometry analysis suggests the number of 

conopeptides per species could surpass 1000 unique peptides[325]. The majority of conotoxins so far 

discovered range in size from 12-35 amino acids and contain between 2 to 5 disulfide bonds between 

cysteine residues. Each Conus peptide gene encodes a precursor that typically has an N-terminal signal 

sequence of about 25 amino acids, an intervening “pro” region of 20-40 amino acids and a mature toxin 

sequence at the C-terminal end[326, 327]. The correlation between the conservation of both the 

disulfide framework and the “pre-pro” signal regions has allowed a definition of superfamilies based on 

both the pre-pro region and disulfide framework[4, 328]. Genome mining using these highly conserved 

signal sequences has allowed the discovery of new members belonging to defined superfamilies, as 

well as the discovery of completely novel superfamilies[329-332]. It is of interest to note the extremely 

high conservation of signal sequences is in direct conflict with the hypermutational variability of the 

mature toxin region, which is responsible for the amazing biodiversity of conotoxins[328]. These 

superfamilies were further subdivided into families based on molecular targets – represented by Greek 

nomenclature – with four of these families targeting NaV channels[322, 333].  

 

The ι-conotoxins are the most recently discovered family of NaV modulating peptides isolated from 

cone snails and have helped to define the I-superfamily[334, 335]. Eighteen paralogs were found within 

a single genome of C. radiatus, five of which demonstrated excitatory neuronal activity[334]. One 

interesting aspect of this class of peptides is the appearance of a D-epimerized amino acid at the C-

terminus, such as the D-Phe at position 44 of ι-RXIA[336]. To assess the functional role of ι-

conotoxins, ι-RXIA was used as a tool[335]. Results demonstrated ι-RXIA shifted the voltage-

dependence of activation to a more hyperpolarized potential, with some parallels made with the 
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mechanism of action to β-scorpion toxins. Some selectivity between NaV channel isoforms was 

observed. However, unlike β-scorpion toxins there were minimal effects on the voltage-dependence of 

inactivation or the kinetics of INa currents. The L-analog of ι-RXIA[L-Phe44] demonstrated severely 

decreased affinity and efficacy[335]. No binding site has been determined for this family of 

conopeptides. 

 

The µ-conotoxin family was previously mentioned for its ability to inhibit NaV current through site 1 

pore block in a manner complimentary to small molecule guanidinium toxins, like TTX. The µ-

conotoxins belong to the M-superfamily of conotoxins. They are small peptides ranging in size from 

16-30 amino acids, three disulfide bonds, and a highly conserved C-terminal helical region[337]. 

Recurring features include an Arg crucial for activity on the loop 2 region of the peptide, C-terminal 

amidation, and a hydroxylated Pro that seems to aid proper folding but is not always present[338]. 

 

The first µ-conotoxin isolated and characterized was µ-GIIIA from C. geographus. µ-GIIIA was shown 

to be a potent and selective inhibitor of the skeletal muscle NaV1.4, setting a precedence for the ability 

of conotoxins to possess inherent selectivity[339, 340]. Another NaV1.4 selective conotoxin, µ-PIIIA 

from C. purpurascens, demonstrated similar preference for NaV1.4, yet also affected some neuronal 

NaV isoforms, just with much lower potency[341]. Since those first discoveries, numerous µ-

conotoxins have been discovered through genomic analysis or activity-guided isolation from crude 

venom and have demonstrated a wide range of activity and selectivity profiles for NaV channels[342-

344]. Solution structures and mutagenesis studies of a few select µ-conotoxins have begun to reveal 

key residues, loop regions, and even backbone lengths necessary to impart selectivity between different 

NaV channel isoforms[337, 338, 342, 345]. The µ-conotoxins have been a focus for the development of 

novel analgesics targeting single-target NaV isoforms that contribute to nociception. Both µ-KIIIA (C. 

kinoshitai) and µ-SIIIA (C. striatus) have been shown to have analgesic properties in mouse 

inflammatory pain assays[338, 346]. The µ-conotoxins small size, high affinity and diverse selectivity 

of inhibition for TTXs and TTXr NaV channels make them strong prospective therapeutic agents. 

 

The NaV channel selective µO- and δ-conotoxins both belong to the O-superfamily and have been 

discussed in great detail in an earlier section regarding their interactions to NaV neurotoxin sites. Both 

are unusually hydrophobic peptides with the same disulfide scaffold that imparts an inhibitory cysteine 

knot (ICK) secondary structure, which is discussed in detail later[4]. This ICK fold mirrors that of the 
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spider toxins and imparts very high structural rigidity to these peptide classes. The µO-conotoxins 

inhibit activation of NaV current through voltage sensor trapping of the NaV channel in its resting 

state[263]. Peptides of this class can block both TTXs current and the NaV1.8 TTXr current by binding 

to the C-terminal section of the pore loop in DIII in a mechanism different to TTX[262]. Although the 

δ-conotoxins also act as gating modifiers, they exhibit a much different pharmacologic profile through 

trapping the voltage sensor in the activated state, resulting in inhibition of inactivation and channel 

hyperexcitability[279, 347]. The mechanism of action is very similar to α-scorpion toxins, with both 

toxin classes trapping the DIVS4 voltage sensor in an inward, more depolarized position. Research into 

this mechanism of action has demonstrated that δ-conotoxins bind to a region slightly overlapping from 

site 3 on the S3-S4 loop of DIV, which has been defined as the NaV neurotoxin receptor site 6[279]. An 

interesting feature of the δ-conotoxins that has not yet been addressed or explored is the reoccurrence 

of hydroxyprolines, an Arg on or around position 14, and C-terminal amidation; all of which are 

structural features seen repeated in the µ-conotoxin family of NaV channel inhibitors. These close 

structural characteristics could help predict binding regions of the δ-conotoxins or could simply be a 

vestigial feature evolutionary divergence. These questions remain to be answered and could serve as 

critical pieces of information for ligand design. 

 

To date, one conotoxin – the N-type calcium channel blocker MVIIA isolated from C. magus – has 

been approved in the US as an antinociceptive, marketed by Elan Pharmaceuticals under the name 

Prialt[328]. There are a handful of other conopeptides currently undergoing pre-clinical or clinical trials 

for treatment of various neuropathic disorders but presently these don’t include any NaV channel 

inhibitors[285, 348].  

 

4.4 Spider venom 

There are over 43,000 spider species within 110 families currently catalogued, with many more 

expected to be discovered[349]. Mass spectrometry analysis of the composition of different spider 

venoms determined the presence of between 500 and 1000 peptide components per sample, suggesting 

a potentially enormous total pool of bioactive peptides to be explored[350, 351]. Recently, in an 

attempt to categorize the ever increasing number of new peptides discovered, groups of known NaV-

active spider venom peptides (NaSpTx) have been assigned to twelve families based solely on 

sequence homology[239]. Those NaSpTxs specifically affecting mammalian NaV channels average 
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between 31 to 41 amino acids in length and are cross-linked with 3 or 4 disulfide bonds, which impart a 

secondary structure commonly exhibiting an ICK motif[352].  Rational nomenclature for spider 

venoms has also been adopted – loosely based on the conventions of conotoxin naming – where a 

Greek symbol denotes activity and is followed by a letter/number code describing the source organism 

and relation to similar toxins[353]. This nomenclature is extensively used throughout this thesis. 

 

Although many of these spider venom toxins demonstrate activity across ion channel targets, with a 

significant portion purely selective for insect receptors, only those active on mammalian NaV channels 

are of concern to this thesis. These families of toxins have already been discussed in detail regarding 

their classification and how they relate to NaV channel function through neurotoxin site-specific 

binding and the mechanism of voltage sensor trapping. 

 

5. Project summary 

Modulation of NaV channels has been applied as a therapeutic strategy for many years towards roles in 

local anesthesia, cardiac arrhythmia and epilepsy. Clinically available NaV channel modulators have 

also increasingly found applications in conditions ranging from neuropathic pain, migraine, bipolar 

disorder and Alzheimer’s disease to myotonia[354, 355]. In addition, new off-label applications for 

NaV channel modulators are being investigated for neurodegenerative disorders such as Parkinson’s 

disease and multiple sclerosis, neuropsychiatric disorders such as bulimia nervosa and obsessive 

compulsive disorder, and cancers[354-357].  

 

The usefulness of the limited number of clinically available small molecule compounds in such a 

diverse range of therapeutic areas most likely arises from their relatively poor ion channel and subtype 

selectivity, giving these molecules functional diversity. However, this same lack of selectivity 

contributes to the significant toxicity and side-effect profiles seen for these compounds, as well as their 

often narrow therapeutic index. The poor subtype selectivity of many these compounds is offset at least 

partially by their state-dependence, or preferential binding to either the open- or inactivated-state of its 

target receptor[358]. Thus, even poorly subtype-selective NaV channel inhibitors are able to somewhat 

selectively modulate excitability in hyperexcitable states and tissues.  
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As our understanding of the biology of NaV channels and their affiliations with disease states expands, 

so does their therapeutic potential for treating these various diseases through the development of 

selective NaV modulators. The identification of novel, subtype-selective NaV modulators would 

represent significant therapeutic advance in this regard. Unfortunately, little progress has been made 

towards this goal in recent years. This can be partially attributed to the high sequence homology of the 

different NaV subtypes, particularly in the region constituting the local anesthetic binding site in the 

channel pore. For the last few decades, the focus of drug research has been primarily focused on small 

molecules, which tend to occupy a smaller chemical space and lend themselves to receptor cross-

talk[359]. However, an increasing number of subtype-selective peptidic NaV modulators are being 

isolated and characterized from natural venom sources[239, 348]. 

 

This thesis attempts to describe research into the design and development of new methods to identify 

NaV modulators from venom peptides using whole-cell high-throughput technology and 

electrophysiology. Then, using information available from known peptides of related class, attempt to 

study variations of structure of a single peptide through mutagenesis to determine how it relates to 

function. This will benefit towards gaining a better understanding of NaV channel modulation by 

peptidic ligands, as well as potentially improve upon a natural ligand through guided mutagensis.  

 

 

The primary aims of the thesis were as follows: 

 

1) Develop a high throughput, cell-based assay for the screening of crude venoms for the purpose of 

isolating NaV channel modulators. 

 

2) Develop recombinant methods of production for venom peptides. 

 

2) Characterize the function and structure of TRTX-Pre1a, a NaV channel modulator isolated from 

spider venom with a unique pharmacologic profile. 

 

3) Develop mutants of Pre1a, targeting specific residues determined as important through comparative 

sequence homology to known, related peptides. 
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4) Test the function of these mutants to determine if they enhance NaV isoform selectivity or function, 

then solve the solution structure of a single mutant to compare physical attributes with functional 

changes. 
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Chapter II: Development of whole-cell microtiter plate assays to discover 

NaV modulating venom peptides 

 

1. Introduction 

As mentioned previously, voltage-gated sodium (NaV) channels are integral membrane proteins that 

play an essential role in the initiation and propagation of action potentials in excitable cells, making 

them excellent therapeutic targets for a variety of neuropathies involving conductance[6]. The study of 

NaV channel structure and function has been aided by using peptide components isolated from paralytic 

venoms from a variety of organisms, including cone snails and spiders. The individual venom peptides 

possess unique selectivity and affinity profiles that allow researchers to explore novel ligand binding 

domains and different modes of modulation, such as voltage sensor trapping. Less than 0.1% of 

naturally produced venom peptides are thought to have been discovered over the past few decades[3]. 

This estimate doesn’t even take into account the venomous organisms yet to be discovered or studied. 

 

A number of discovery techniques have evolved over the years to keep up with the ever-growing 

number of naturally produced bioactive compounds. One of those techniques heavily employed is 

assay-guided fractionation, which is the systematic isolation and characterization of bioactives from the 

mixture of peptides, proteins, small molecules, and salts present in venoms. The basic requirements of 

a functional assay include high sensitivity, accuracy, and reproducibility. This is especially important 

when dealing with unknown mixtures of crude venoms or partially purified fractions. A growing range 

of potential methods for functional assay are becoming more widely available. However, effective 

initial screens are still needed that are general enough discover an activity of interest (e.g., modulation 

of excitability) yet specific enough to discern a functional target (e.g., NaV channels). 

 

The purpose of this chapter was to develop a cell-based assay to search for NaV channel modulators, 

capable of meeting all the basic requirements of a functional assay, including having enough capacity 

and throughput to handle large volumes of crude or fractionated venoms over short time scales. The 

first aim was to identify potential cell lines demonstrating expression of neuronal NaV isoforms. After 

choosing three cell lines, they were carried forward for testing with two functional platforms using 

either absorbance or fluorescence detection, each measuring a different end-point demonstrating NaV 



41 

 

channel function. Each assay shared a common theme of requiring an agonist control to elicit a NaV 

response, which in turn could either be potentiated or inhibited upon addition to an unknown NaV 

modulator within crude venom. The absorbance assay was based on an end-point of cell survival 

measured with the color changing metabolite, MTT. Reversal of induced cell death through inhibition 

of INa resulted in “rescuing” or reversal of Na+ toxicity. The fluorescence based assays incorporated 

two fluorescent dyes: Fluo4 measured ICa as a product of NaV depolarization while the other measured 

direct changed to membrane depolarization. The details of all assays are discussed at the end of the 

chapter. 

 

Using assay methods developed herein, a previously unisolated δ-conotoxin was discovered, purified 

and sequenced.  

 

2. Methods 

 

2.1 Reagents 

Veratridine was obtained from Ascent Scientific (Bristol, UK), tetrodotoxin (TTX) was from Enzo Life 

Sciences (Farmingdale, NY, USA). P-CTX-1 (Pacific ciguatoxin 1) was isolated and purified by 

members of the Lewis laboratory[360]. All other reagents including MTT, unless otherwise stated, 

were obtained from Sigma–Aldrich (Castle Hill, NSW, Australia). MTT stock solutions were made by 

dissolving the powder in PBS to 5 mg/ml. TTX, veratridine, deltamethrin, P-CTX-1, and all peptide 

toxins were routinely diluted in 0.3–0.5% bovine serum albumin (BSA) solution to avoid adsorption to 

plastic surfaces. 

 

Dulbecco’s Modified Eagle Medium (DMEM), RPMI Medium, Ham’s F12 Medium, phosphate 

buffered saline (PBS), sodium pyruvate, and 0.25% trypsin/EDTA were obtained from Invitrogen 

(Australia). Fetal Bovine Serum (FBS) was obtained from Invivo Medical (NSW, Aus). 
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2.2 Cell culture 

SH-SY5Y human neuroblastoma cells were a kind gift from Victor Diaz (Max Planck Institute for 

Experimental Medicine, Goettingen, Germany). Cells were routinely maintained in RPMI medium 

(Invitrogen, 22400) supplemented with 15% FBS and L-glutamine.  

 

The Neuro2a rat neuroblastoma (ATCC-CCL131), F11 hybridoma of mouse neuroblastoma (N18TG-

2) with embryonic rat DRG (ATCC-HB11761), NG108 hybridoma of a mouse neuroblastoma with a 

rat glioma (HB12317), and PC12 rat pheochromocytoma (ATCC-CRL1721) cell lines  were obtained 

from the American Type Culture Collection (USA). Neuro2a and Ng108 cells were maintained in 

DMEM (Invitrogen, 11995) supplemented with 10% FBS. PC12 cells were maintained in Ham’s F12 

(Invitrogen, 11765) supplemented with 15% horse serum, 2.5% FBS, and 20 mM HEPES. F11 cells 

were maintained in Ham’s F12 supplemented with 10% FBS and HAT.  

 

The 50B11 rat immortalized DRG was a kind gift from Dr. Ahmet Höke (School of Medicine, Johns 

Hopkins University, MD, USA). Cell were routinely maintained in DMEM/F12 medium (Invitrogen, 

Carlsbad, CA) supplemented with 10% FBS, 0.5 mM L-Glutamine and 1x B-27 supplement 

(Invitrogen).  

 

The ND7/23 hybridoma of mouse neuroblastoma (N18TG-2) with rat DRG and the ND7/23-rNaV1.8 

stably transfected cell line were kindly donated by Dr. Tony Priestley (Department of Chemical 

Research, Schering-Plough Research Institute, NJ, USA) [361]. Cells were routinely maintained in 

DMEM medium supplemented with 10% FBS. ND7/23-rNaV1.8 cells were additionally cultured with 

200 µg/mL Geneticin-G418 to maintain selection (Invitrogen).  

 

All mammalian cell lines were passaged every 3-5 days at between 70-90% confluency using 0.25% 

trypsin/EDTA. Cells were incubated in a temperature, humidity, and CO2 controlled incubator set to 

37°C with 5% CO2. 

 

2.3 Semi-quantitative PCR methods 

Primer pairs were designed with PrimerX (http://www.bioinformatics.org) using NaV sequences 

acquired through BLAST (http://blast.ncbi.nlm.nih.gov) (Table 2). Oligos were ordered through Sigma 
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(Australia). Cells were cultured as previously described. Total RNA was isolated from cells using the 

Qiagen RNeasy Plus Mini Kit (Qiagen) according to the manufacturer’s instructions with on-column 

DNA digestion. The Omniscript Reverse Transcription Kit (Qiagen) was used to reverse transcribe 1 

μg of RNA, as determined by spectrophotometric absorbance at 260 nm, and 20 ng of the resulting 

cDNA was amplified using the Platinum® Pfx kit (Invitrogen). PCR reactions additionally contained 

final concentrations of 2× amplification buffer, 0.3 mM dNTP, 1 mM MgCl2, 0.4 μM primers and 1 U 

Pfx polymerase in a volume of 50 μl and were amplified under the following conditions: 94°C for 5 

min, 30 cycles of 94 for 15 s, 60-64 for 30 s, 68 for 1 min and a final extension at 68 for 10 min. 

Rodent NaV primers were designed using Primer BLAST (Table 2). 100 ng of plasmid encoding for 

each NaV1.1-1.8 verified amplification of the correct products for each subtype. All reaction products 

were analyzed on 2% agarose gels. 

 

Table 2: Primer sets for murine NaV channels 

 

Target
Accession 

number
Primer pair sequence Tm ° GC%

PCR 
product (bp)

Location 
(bp)

5'-TCCTCAGAAGGAAGCACAGT-3' 52.35 50.00%

5'-TCTGCACACAGCCTTCAGTG-3' 54.75 55.00%

5'-GCCTGATTTGGGACTGTTGT-3' 52.54 50.00%

5'-CCAAGCCGAGTTCCATTAAA-3' 50.26 45.00%

5'-GATTCGCGGGACGTCAAACT-3' 55.33 55.00%

5'-GCAGAAACTCCCCAGTGAAG-3' 52.7 55.00%

5'-GCCTGAGGATATCAAGAAGC-3' 49.96 50.00%

5'-TCAGAGTAGCCCAGCCAGTT-3' 54.57 55.00%

5'-ACAGGAATCCCAAGTTGTGT-3' 51.02 45.00%

5'-ATCAGGAAGTCCAGCCAGCA-3' 55.22 55.00%

5'-GGAGTGTCACCCCTACTGGA-3' 54.29 60.00%

5'-TCAGAAGCAAGGCCAGGAAT-3' 53.34 50.00%

5'-CAACGCACTCATAGGAGCAA-3' 52.55 50.00%

5'-GAATGTTGCAACTTGAAGCA-3' 49.71 40.00%

5'-CTGGCTGGACTTCAGTGTCA-3' 53.77 55.00%

5'-GGAACACACTGCCGTGGCTA-3' 56.91 60.00%
NaV1.8 NM_017247.1 944 605-1548

NaV1.6 NM_019266.2 734 2361-3094

NaV1.7 NM_133289.1 283 3927-4209

NaV1.4 NM_013178.1 525 3266-3790

NaV1.5 NM_013125.2 606 3431- 4036

NaV1.2 NM_012647.1 315 2261-2575

NaV1.3 NM_013119.1 442 4548-4989

NaV1.1 NM_030875.1 112 3702- 3813
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2.4 Specimen collection 

Conus spp. were collected from various locations throughout the Great Barrier Reef on the East coast 

of Australia and on the New Ireland Island group, Papua New Guinea [319]. C. magus was collected 

from intertidal zones on Lizard Island, Australia. 

 

Specimens were transported to the lab either on ice to be frozen whole at -80°C for dissection or kept 

alive in seawater for milking and genomic analysis. 

 

2.5 Venom extraction 

Two separate rounds of venom extraction were each performed on single species of C. magus. Crude 

venom duct contents were extracted with 30% acetonitrile/water acidified with 0.1% trifluoroacetic 

acid and centrifuged at 13,000 rpm for 20 minutes. The pellets were washed several times and re-

centrifuged under identical conditions. Soluble material was lyophilized and stored at -20°C prior to 

use. Crude venom pellets were stored separately at -20°C. After venom was removed from the duct 

sheath manually the remaining duct and bulb were stored at -80°C in RNAlater (Qiagen). 

 

2.6 Reversed phase high-performance liquid chromatography (rpHPLC) 

rpHPLC was performed on 200 μg of a 500 μg crude C. magus venom sample using a Dionex Ultimate 

3000 instrument and fitted with a Vydac C18 column (218TP54; 4.6 × 250 mm; 5 μm particle 

diameter; 300 Å pore size) with automated fraction collection. Peptides were eluted with a flow rate of 

0.7 mL/min using a 1.5% B/min linear gradient buffer exchange over 60 min using buffers A (H20, 

0.1% FA) and B (90% ACN, 10% H20, 0.1% FA). Further peptide purification was carried out by 

second rpHPLC run of fractions under equivalent conditions with slight variations to the gradient. 

rpHPLC fractions were collected at 1 min intervals by a 96-well autosampler. After purification, all 

samples were lyophilized and resuspended in 30% acetonitrile/water for storage at -20°C and further 

analysis. 
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2.7 Mass and sequence determination 

Toxin masses were confirmed by matrix-assisted laser desorption ionization–time-of-flight mass 

spectrometry (MALDI-TOF MS) using a model 4700 Proteomics Bioanalyser (Applied Biosystems, 

Foster City, CA). rpHPLC fractions were mixed [1:1 (v/v)] with α-cyano-4-hydroxy-cinnamic acid 

matrix (7.5 mg/ml in 70/30 acetonitrile/H2O) and MALDI-TOF spectra were collected in positive 

reflector mode. The mass range was set to m/z 800-8000 with a focus mass of 4500 Da. Shots were 

collected using manual acquisition control and close external calibration. The calculated molecular 

weights were obtained using Data Explorer (Applied Biosystems, CA). All masses given are for the 

monoisotopic M+H+ ions unless otherwise stated.  

 

The sequence of purified peptide was determined by Edman degradation at the Australian Proteome 

Research Facility. In brief, the peptide was dissolved in urea (4 M) in ammonium bicarbonate (50 mM) 

and reduced with dithiothreitol (100 mM) at 56 °C for 1 h under argon. The sample was then alkylated 

using acrylamide (220 mM) for 0.5 h in the dark. The reaction was quenched by the addition of excess 

dithiothreitol. After desalting by rpHPLC, the collected fraction was loaded onto pre-cycled bioprene 

discs and subjected to 35 cycles of Edman N-terminal sequencing using an Applied Biosystems 494 

Procise Protein Sequencing System. 

 

2.8 Na+ induced toxicity and measurement of survival by MTT 

Neuro2a and ND7/23 cells were plated at a density of 30-50 x 103 cells/well on 96-well clear imaging 

plates (Corning) 24 h prior to assay. SH-SY5Y cells were plated at a density of 120 x 103 cells/well on 

96-well black-walled imaging plates (Corning) 48 h prior to assay. All cells plated in 90 µl standard 

growth media in 96-well flat bottom microtiter plates (Corning). Cells were treated after 24 h 

incubation to allow settling, attachment, and the start of normal cell division. Ouabain, veratridine, and 

control toxins were all added at this step with no pre-incubation. Unlike the FLIPR assay, which 

measures fast responses to compound addition, the long compound incubation times inherent to cell 

survival assays meant that pre-incubation of a control agonist/antagonist would not likely influence the 

end point measurement of cell survival in a meaningful way, as the lethal effect of Na+ toxicity takes 

up to 24 h to observe. Ouabain and veratridine were diluted in unsupplemented DMEM to a single 10x 

stock. Samples to be tested, including all positive and negative controls, were diluted to a 5x working 
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concentration in unsupplemented DMEM. In the absence of control toxins, unsupplemented DMEM 

with appropriate buffer controls was added.  

 

To determine the maximum survival for each experiment, 60 µl of unsupplemented DMEM was added 

to a minimum of 4 wells per plate. To determine a maximal effect of control compounds on 

survivability, 30 µl of unsupplemented DMEM was added along with ouabain and veratridine to a 

minimum of 4 wells per plate. 

 

Treated microtiter plates were incubated with reagents for 48 h at 37°C with 5% CO2. After incubation, 

media was removed from microtiter plates and 60 µl of MTT was added to each well. Prior to addition, 

MTT was diluted 1:6 in unsupplemented DMEM. Plates were then incubated for 30 min at 37°C with 

5% CO2. After 30 min incubation, MTT solution was gently removed from each well and cells were 

solubilized with 60 µl DMSO. Absorbance at 580 nm was measured by the PerkinElmer Envision 2104 

microtiter plate reader. 

 

2.9 Fluorescence measurement of membrane potential changes  

To assess changes in membrane potential, SH-SY5Y cells were loaded with the red membrane 

potential dye (Molecular Devices, Sunnyvale, CA) according to the manufacturer’s instructions. In 

brief, red membrane potential dye (proprietary composition) was reconstituted with a volume of 

physiological salt solution (PSS; composition in mM: NaCl 140, glucose 11.5, KCl 5.9, MgCl2 1.4, 

NaH2PO4 1.2, NaHCO3 5, CaCl2 1.8, HEPES 10) as specified in the manufacturer’s instructions and 

after a wash with PSS, cells were incubated with 100 μl of the membrane potential solution at 37˚C for 

30 min. The cells were then transferred to the FLIPRTETRA fluorescent plate reader and changes in 

fluorescence (excitation 510–545 nm; emission 565–625 nm) in response to addition of agonists was 

measured every second for 300 s. 

 

2.10 Fluorescence measurement of calcium responses  

SH-SY5Y cells were loaded with the fluorescent calcium dye Fluo-4 acetoxymethyl ester (AM) by 

incubating the cells in PSS containing 0.3% bovine serum albumin and 4 mM Fluo-4-AM (Invitrogen) 

for 30 min at 37°C. To remove extracellular dye and facilitate dye hydrolysis, cells were washed with 
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PSS for 5–15 min prior to loading of plates into the FLIPRTETRA+ (Molecular Devices, Sunnyvale, CA) 

fluorescent plate reader. Fluorescence (excitation 470–495 nm; emission 515–575 nm) was measured 

using a cooled charge-coupled device (CCD) camera with camera gain and excitation intensity adjusted 

for each plate to yield an average baseline fluorescence value of 1000 AFU. After 10 baseline reads, 

buffer or control antagonists were added and the fluorescence response was measured every second for 

300 reads, followed by addition of agonists and fluorescence measurements every second for a further 

300 s. Raw fluorescence readings were converted to response over baseline using the analysis tool of 

Screenworks 3.1.1.4 (Molecular Devices) and were expressed relative to the maximum increase in 

fluorescence of control responses. 

2.11 Z’ factor determination of assay robustness 

The Z’ factor, a quantitative representation of assay quality, was determined as previously 

described[362], with 48 replicates of a negative control (PSS) and 48 replicates of positive controls (50 

μM veratridine) per plate. Mean and standard deviation for positive and negative controls were 

determined using GraphPad Prism v4.0 (San Diego, California) and the Z’ factor for each plate 

determined according to the following equation: 

 

Z’ = 1 – ((3SDpositive + 3SDnegative)/(meanpositive – meannegative)) 

 

2.12 Data analysis  

Unless otherwise stated, all data are expressed as the mean ± standard error of the mean (SEM) 

determined from at least n = 3 experimental replicates, with 2-4 replicates per plate. To establish 

concentration-response curves, responses after addition of compounds were plotted against agonist 

concentration and a 4-parameter Hill equation with variable Hill slope or a two-site model was fitted to 

the data using GraphPad Prism v4.0. Potency of agonists and antagonists are reported as the mean  

SEM of 3-4 separate experiments. Statistical significance was determined using an ANOVA analysis 

with statistical significance defined as p < 0.05 unless otherwise stated. 

 

Unless otherwise stated, all data are expressed as the mean ± standard error of the mean (SEM) 

determined from at least n = 3experimental replicates, with 2-4 replicates per plate. Positive absorbance 

as compared to the treated control is attributed to cell survival, or the ability of a NaV channel inhibitor 



48 

 

to reverse the induced toxic effect. The percent recovery from ouabain and veratridine (O/V) treatment 

was calculated by the following equation: 

 

 % Recovery =    (avg. test wells treated with O/V) - (avg. cont. wells treated with O/V) 

         (avg. untreated cont. wells) - (avg. cont. wells treated with O/V) 

 

Additive cell death as compared to the control is indicative of a possible NaV channel agonist and is 

measured by a decrease in absorbance. This was calculated by the following equation: 

 

 % Inhibition = (avg. test wells treated with O/V) - (avg. cont. wells treated with O/V) 

  (avg. cont. wells treated w/ O/V) 

 

All above calculations including standard error from the mean (SEM) were performed using GraphPad 

Prism 4.0. To establish concentration-response curves, responses after addition of compounds were 

plotted against the log of sample concentrations and a least squares fit 4-parameter Hill equation with 

variable Hill slope fit to the data using GraphPad Prism 4.0. Statistical significance was determined 

using an ANOVA analysis with statistical significance defined as p < 0.05 unless otherwise stated. 

 

3. Results 

 

3.1 Expression profiles of commonly used neuronal cell lines 

Seven neuronal derived cell lines were characterized by an initial PCR screen using primers designed 

to specific regions of the rat NaV isoform of interest. SH-SY5Y was also tested along with this pool of 

cells with the knowledge that it is a human derived cell line and would need specific primers 

developed, which was completed and published in a collaborative follow-up project[363]. 

 

PCR results suggested prevalent expression of NaV1.2 in all cell lines tested, with only a slight band 

apparent for 50B11 cells (Figure 6). NaV1.6 and NaV1.7 demonstrated a similar expression profile to 

each other, with bands for both isoforms apparent in the same cell lines. However, there did not seem 

to be correlation between cell line origin and expression pattern. There was a surprising lack of NaV1.8 
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expression, which is found prevalently in 

DRG neurons. The centrally expressed 

NaV1.1, peripherally expressed NaV1.3, and 

skeletal muscle isoform NaV1.4 were also 

absent in all experiments. NaV1.5 appeared 

to be expressed in three cell lines. All results 

were replicated with at least three separate 

experiments. However, the PCR was not 

performed in a quantitative manner, so not 

further conclusions on relative expression or 

receptor density could be made. 

 

3.2 MTT Results for ND7/23-NaV1.8 

The MTT survival assay platform was tested 

on the stably transfected ND7/23-rNaV1.8 

cell line. Veratridine does not affect TTXr 

NaV channels, which includes NaV1.8. 

However, the pyrethroid deltamethrin has 

been shown to inhibit inactivation of NaV1.8, 

causing sustained activation similar to 

veratridine [364, 365]. Therefore, 

deltamethrin was used in place of veratridine 

in the presence of 1 µM TTX, to block the contribution of TTXs sodium channels[366, 367].  

 

Deltamethrin showed no toxicity at concentrations tested up to 30 μM (Figure 7).  The LD50 of 

deltamethrin in the presence of 300 µM ouabain was 4.8 ± 2.8 µM, with a 100-fold drop in potency in 

the presence of 300 nM ouabain, suggesting a Na+ induced toxicity (Figure 7). The addition of 100 nM 

TTX did not affect the results of the deltamethrin induced toxicity in the presence of 300 µM ouabain ( 

Figure 8). This confirms TTXs NaV channels are not contributing to the observed toxic effect. Non-

transfected ND7/23 cells were tested under similar conditions and were unaffected by treatment up to 

 

 

Figure 6: Agarose gel of NaV channel PCR. 

Control lanes use 1 ng of pcDNA3.1 vector 

containing the NaV gene of interest. No NaV1.7 

control vector was available at the time of the 

experiment. 
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30 µM deltamethrin, suggesting that the NaV1.8 channel is playing a significant role in cell death from 

Na+ toxicity (Figure 9). 

 

P-CTX1 was also tested as an agonist in place of deltamethrin on the ND7/23-rNaV1.8 cell line in the 

presence of TTX (Figure 10). Not only was an attempt made to look at different agonist mechanisms on 

cell toxicity, but results suggest P-CTX1 may activate NaV1.8[368]. However, our results suggested 

that toxicity increased with higher levels of ouabain in combination with P-CTX1 without a 

concentration dependant effect of P-CTX1, which suggested a non-NaV induced mechanism of toxicity 

as well as no observable effect for NaV1.8 induced toxicity.   

 

 

Figure 7: Deltamethrin concentration 

response on ND7/23-rNaV1.8 cell line. 

Deltamethrin alone (black) did not induce 

lethality. Deltamethrin in the presence of 300 

µM ouabain (○) induced lethality in a 

concentration dependant manner. Reducing 

ouabain to 300 nM (●) resulted in a 100-fold 

shift to the right in deltamethrin toxicity. 

 

Figure 8: Concentration response of 

deltamethrin on ND7/23-rNaV1.8 with 

TTX. 

300µM ouabain is present. There is a 

lack of contribution to TTXs NaV 

channels to deltamethrin induced 

lethality. 
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In order to test for reversal of induced toxicity, concentrations of 300 µM ouabain and 30 µM 

deltamethrin were chosen. In order to recover the cells from Na+ induced toxicity, two NaV1.8 

inhibitors were used at pharmacologically relevant concentrations. Lidocaine is a use-dependant 

inhibitor of NaV1.8 and works by shifting the steady-state activation toward more depolarized 

potentials[369]. The same ND7/23-rNaV1.8 cell line was previously used to determine the use 

dependence of lidocaine, further justifying its use as a control inhibitor[370]. Additionally, the µO 

conotoxin MrVIB has been shown to inhibit NaV1.8 current with IC50 values of 100 nM[371]. This 

conopeptide represents a major and consistent component of C. marmoreus venom, with a distinctive 

peak that elutes consistently and yields an identifiable mass signature via MALDI MS. MrVIB was 

discovered through use of a bioassay, exhibiting the most potent NaV modulating activity apparent 

within the crude venom of C. marmoreus[372, 373]. Due to the extreme hydrophobicity of MrVIB, up 
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Figure 9: Untransfected ND7/23 cells. 

Tested under equivalent conditions to 

ND7/23-rNaV1.8, these cells demonstrated 

no significant effect on survival, suggesting 

NaV1.8 is the sole NaV contributor to the 

observed lethality. 
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Figure 10: Concentration response of P-

CTX on ND7/23-rNaV1.8 cells. 

P-CTX in combination with ouabain 

resulted in no measurable lethality, 

suggesting this molecule does not affect 

NaV1.8 at the conditions used. Dotted line 

represents the average absorbance of 

untreated controls. 
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to 80% of the expected mass is lost upon purification from crude venom. As no synthetic material and 

only a small amount of crude venom was available at the time of this experiment, it was decided to use 

a known active concentration of the whole venom. Therefore, 5 µg of crude C. marmoreus venom was 

used to test inhibition of NaV1.8 in the presence of 100 nM TTX (Figure 11). 

 

Neither lidocaine nor C. marmoreus crude venom resulted in cell death on their own (Figure 11). As 

lidocaine was incubated for 48 h, it is unlikely that the lack of effect seen was due to slow onset. Use-

dependence could be a factor in limiting activity. However, evidence has demonstrated in a similar 
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Figure 11: Reversal of induced Na+ tox on ND7/23-rNaV1.8 cells. 

Control represents maximum survival for untreated (light) and treated cells (dark). 

The addition of lidocaine at 1 µM and 1 mM  does not affect cell survival when 

added alone (light). However, lidocaine does not result in a reversal of induced Na+ 

toxicity (dark). The addition of 5 µg of C. marmoreus crude venom containing 

MrVIB also does not result in reversal of induced Na+ toxicity. 
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assay that compounds bind to the NaV channel in a manner comparable to the inactivated state, which 

exhibits an open conformation at the pore[374]. As lidocaine preferentially binds to a depolarized NaV 

channel (closer to the open state)[375, 376], then is can be inferred that the use-dependence of 

lidocaine was not a factor in its lack of activity for this assay. 

 

There was also no recovery from induced toxicity by treatment with either lidocaine or MrVIB, both 

known to block NaV1.8 channels (Figure 11). The question remains why there was no recovery from 

agonist induced toxicity by known NaV1.8 blockers. It is possible that deltamethrin binds competitively 

and preferentially versus both lidocaine and MrVIB. The results could also be attributed to off target 

effects, as deltamethrin and lidocaine are non-selective ligands, as will be discussed.  

 

3.3 MTT results for Neuro2a and SH-SY5Y 

The Neuro2a rat neuroblastoma cell line was chosen as a model for this assay due to its successful use 

on a similar assay platform[377]. Basic PCR analysis also suggested expression of NaV1.2, NaV1.6 and 

NaV1.7, of which NaV1.7 is currently a pursued target for the treatment of neuropathic pain.  

 

Methods described previously incorporating both ouabain and veratridine were used to assess viability 

and responsiveness to the drug combination for Neuro2a cells. A concentration dependent lethality was 

observed with veratridine in the presence of ouabain at 100 µM and 300 µM (Figure 12). Although 

both concentrations of ouabain allowed a comparable veratridine IC50, 300 µM ouabain resulted in a 

decrease of cell survival by 50%. This in turn lowers the effective window by an equivalent amount.  

 

Concentrations of 100 µM veratridine and 100 µM ouabain were used to test the effect of the NaV 

channel inhibitor TTX on preventing induced Na+ toxicity. Recovery from induced Na+ toxicity was 

observed with 30 nM concentrations of TTX (Figure 13A). TTXs NaV channels exhibit an IC50 of 

around 10 nM[18]. To observe agonist synergy with control toxins, the concentration of veratridine was 

lowered to 30 µM in order to stimulate a lowered but measurable lethality. The NaV neurotoxin site 5 

agonist brevetoxin (PbTX1) was used as a positive NaV agonist control[378]. PbTX1 was tested on its 

own and induced no lethality up to 1 nM. However, this same concentration induced an apparent 

synergistic lethality when tested in combination with ouabain and veratridine, demonstrating 

synergistic agonist induction of Na+ toxicity (Figure 13B). 
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Figure 12: Concentration response of 

veratridine on Neuro2a cells. 

A concentration response of veratridine was 

tested over both 300 µM and 100 µM ouabain. 

Although both concentrations of ouabain allowed 

a similar IC50, 300 µM ouabain decreased cell 

survival by approximately 50%. 
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Figure 13: Neuro2a MTT assay validation. 

A) The addition of 30 nM TTX inhibits the lethal combination of 100 µM veratridine and 

100 µM ouabain. B) 1 nM PbTX does not affect cell survival on untreated cells. However, 

in combination with 30 µM veratridine and 100 µM ouabain, 1 nM PbTX decreased cell 

survival by an additional 20%, demonstrating a possible synergistic effect. 

Asterisk indicates significance as compared to ouabain and veratridine treated wells 

(p < 0.05). 
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The SH-SY5Y human neuroblastoma cell line was also chosen as a model for this assay because of the 

expression profile of NaV channels relevant to pain transmission as well as this cell lines human origin, 

which is important when screening for human therapeutic relevance. In depth analysis of this cell line 

was performed using human specific PCR primers, functional characterization, and 

immunohistochemistry and results were subsequently published[363].  

 

Assay conditions were described previously. Ouabain induced lethality at concentrations above 100 nM 

(Figure 15). However, lower concentrations of ouabain were not used as the effect on the Na+/K+-

ATPase reverses at low nM concentrations. A concentration dependent lethality was observed with 

veratridine in the presence of 300 nM ouabain (Figure 14).  
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Figure 14: Lethal concentration response 

of veratridine on SH-SY5Y cells. 

Response measure with addition of 300 nM 

ouabain. The LD50 for veratridine over a 

background of 300 nM ouabain was 3 ± 0.4 

µM; n = 3. 
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Figure 15: Lethal concentration response 

of ouabain on SH-SY5Y cells.  
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To test the reversal of the induced toxic effect of ouabain and veratridine, two NaV channel inhibitors 

were used at pharmacologically relevant concentrations (Figure 16). In the presence of 20 µM 

veratridine and 300 nM ouabain, cell survival decreased by approximately 80%. The addition of 10 

mM lidocaine or 1 µM TTX both inhibited the toxic effect by almost 50%, demonstrating the ability of 

this assay to detect NaV channel inhibitors. The MTT based assay using Neuro2a and SH-SY5Y has not 

been used to screen crude venom in a high throughput manner. However, this assay has the potential to 

serve as another screening platform to guide identification of novel peptides. 
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Figure 16: SH-SY5Y recovery from induce Na+ toxicity. 

Control represents maximum survival for untreated SH-SH5Y cells. 200 µM of 

veratridine with 300 nM ouabain resulted in a decrease in survival by approximately 

90% compared to control. The addition of 10 µM lidocaine or 1 µM TTX in combination 

with ouabain and veratridine resulted in inhibition of induced Na+ toxicity. 

Asterisks indicate significant recovery from ouabain/veratridine induced toxicity 

(p < 0.05) 
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3.4 FLIPR assay results and assay validation 

The Neuro2a, ND7/23, and SH-SY5Y immortalized cell lines adapted for the MTT assay format were 

tested for total agonist-induced fluorescent response with two fluorescent dyes: Fluo4 AM (Figure 

17A), which monitors Ca+ flux as an endpoint; and the Molecular Devices Membrane Potential Assay 

Kit (MP-kit) (Figure 17B), which measures ionic changes in a cells resting membrane potential. 1 mM 

veratridine was used as a control agonist for all experiments. Neuro2a cells did not yield a significant 

response upon addition of veratridine when loaded with Fluo4. However, these cells did result in a 

small but measurable response with the MP-kit, which was inhibited in the presence of 100 nM TTX. 

ND7/23 cells loaded both Fluo4 and the MP-kit and elicited a TTXs veratridine response, but with total 

responses lower than the positive response for Neuro2a. SH-SY5Y cells demonstrated an ability to load 

both Fluo4 and the Membrane Potential dye, as well as yield the largest total response of all cells tested 

to veratridine stimulation. The SH-SY5Y fluorescent response for the Membrane Potential dye was 

approximately half that of Fluo4. Overall, it was determined that SH-SY5Y cells yielded the greatest 

overall veratridine induced fluorescence response, which is directly applicable to the observable 

window of efficacy, or Z-score, for determining activity of unknowns. Veratridine was also able to 

elicit a concentration-dependent response from SH-SY5Y cells loaded with Fluo4 (Figure 18). This 

data resulted in SH-SY5Y cells being subjected to further, in depth characterization of NaV α- and β- 

subunits as well as validating this cell line for use in a FLIPR-based Fluo4 assay with a number of 

control compounds[363]. 



59 

 

 

 

Figure 17: Cell line comparison of veratridine response with two fluorescent dyes.  

Three cell lines were loaded with either A) Fluo4 or B) the Membrane Potential Kit. Maximal response 

was elicited with 1 mM veratridine. The presence of 100 nM TTX demonstrates a NaV mediated 

response. 
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Figure 18: Veratridine concentration response using SH-SY5Y cells loaded with Fluo4.  

Maximal response could be elicited with 1 mM veratridine. 
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3.5 Activity guided isolation of δ-MVIA 

A FLIPR screen of Conus crude venoms tested in duplicate was conducted using SH-SY5Y cells with 

Fluo4. The wells containing C. magus demonstrated both excitation and potentiation of the veratridine 

control response (Figure 19). Initial analysis of C. magus crude venom demonstrated concentration 

dependant agonist activity when tested against SH-SY5Y cells loaded with Fluo4 (Figure 20). 

Potentiation of the fluorescent response for both agonists controls, veratridine and ciguatoxin (P-

CTX1), was also observed. This response was inhibited with the addition of 1 µM TTX, demonstrating 

a NaV channel mediated response. 

 

 

 

 

Figure 19: FLIPR screen of Conus crude venoms. C. magus is outlined in black. 
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Figure 20: Concentration dependence of C. magus crude venom on SH-SY5Y 

cells. 

Measured on the FLIPR with Fluo4. Crude venom was added at the solid red arrow.  

The dotted arrow represents the 2nd addition of agonist control A) veratridine or B) 

P-CTX1.  

B) 

A) 
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The crude venom was subject to analytical rpHPLC with fractions collected by autosampler, 

lyophilized, and resuspended at an equivalent volume of 100 µL. 10% volume of each fraction was 

tested for activity after reconstitution in PSS (composition in mM: NaCl 140, glucose 11.5, KCl 5.9, 

MgCl2 1.4, NaH2PO4 1.2, NaHCO3 5, CaCl2 1.8, HEPES 10). Fractions were added as a primary 

addition to corresponding wells of a 96-well microtiter cell plate containing SH-SY5Y cells. The 

FLIPRTETRA assay was carried out as previously described. Late eluting fractions demonstrated activity 

along consecutive wells corresponding to minute 45-50 (Figure 21). The discrepancy of well number 

and time was caused by a noted 7 minute early startup of the fraction collector plus a standard one 

minute lag due to travel from the detector to the collector. The active fractions from wells 55 and 56 

were pooled, freeze dried, and resuspended in 30% B.  

 

 

Figure 21: Activity guided fractionation of C. magus crude.rpHPLC of C. magus crude venom with 

active peak highlighted. Insert shows FLIPR assay plate with active wells 53-57, corresponding to the 

marked HPLC peak. Bell-shaped response is suggestive of one active constituent across fractions.   
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Approximately 0.05% of the pooled 

active peak from the primary 

fractionation was loaded onto a MALDI 

plate with a 1:1 ratio of 5 mg/mL CHCA 

matrix to yield a single strong M+H+ 

peak of 3536.5, corresponding to a 

molecular weight of 3535.5 Da (Figure 

22). This mass did not match any known 

Conus peptides in public databases, 

including ConoServer[379]. The pooled 

sample was reduced and alkylated before 

being submitted for N-terminal Edman 

degradation (Australian Proteome 

Analysis Facility), which yielded the 

following sequence (Figure 23):  

 

 

 

 

Figure 23: δ-MVIA sequence.  

1) As isolated by cDNA analysis with predicted PTMs[380]. 2) Experimentally determined mass of δ-

MVIA, which matches sequence mass + predicted PTMs. O=hydroxyproline; *=C-terminal amidation 

 

 

The determined peptide sequence was found to be previously discovered through cDNA analysis[380]. 

The methods to isolate the cDNA sequence for δ-MVIA used specific primers to pre/pro-toxin regions 

designed for ω- and δ-conotoxins and named the resulting peptide for which the sequence encodes, δ-

MVIA. C-terminal amidation and a position 14-hydroxyproline were predicted post-translational 

1) DGCYNAGTFCGIRPGLCCSEFCFLWCITFVDS 3526.5
16  = hydroxylation of proline
-6  = 3 disulfide bonds
-1  = C-terminal amidation

2) DGCYNAGTFCGIROGLCCSEFCFLWCITFVDS* 3535.5

 

 

Figure 22: MALDI-TOF analysis of C. magus 

pooled fractions 55 and 56. 

A strong, dominant mass signature of M+H+ of 

3536.5 was detected. 
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modifications (PTMs) due to sequence homology to other known δ-conotoxins. Based on current 

nomenclature convention, the original discovery should have been named “m6a” to represent a gene-

based discovery. This work represents the first known isolation of the δ-MVIA peptide from venom. 

 

The previous discovery helped to explain the observed discrepancy between the molecular mass of the 

determined sequence versus the experimental results. The mass detected experimentally for native δ-

MVIA corresponded to an oxidized peptide sequence containing three disulfide bonds and the original 

prediction of two PTMs: C-terminal amidation and 14P hydroxyproline.  

 

4. Discussion 

 

4.1 Assay development 

In order to quickly and efficiently screen a large number of crude venoms for NaV activity, high-

throughput methods of detection are needed. However, the discovery process has been hindered by a 

lack of effective, high throughput assays sensitive enough to detect active molecules from crude 

venoms, but accessible enough for use outside of the biotech industry[381, 382]. Ideally, assays should 

display high sensitivity and specificity, high-throughput and information content, high robustness and 

flexibility as well as high physiological and ideally pathological relevance, all at a relative low 

cost[383]. The ability of cell based multi-well microtiter detection assays to be developed into high-

throughput methods is well characterized [384, 385]. Many neuronal mammalian cell lines express 

endogenous NaV channels equivalent to the tissue isolated, such as cortex or DRG. Endogenously 

expressed receptors have greater pharmacologic relevance due to their expression in a native system, 

containing necessary auxiliary subunits and expression cofactors/enzymes, as opposed to being 

transfected into a non-neuronal host-cell. A variety of cell-based functional assays have been employed 

to guide the identification and characterization of novel, subtype-selective NaV modulators. Two such 

assay platforms include fluorescence-based and survival endpoint assays and have been commonly 

used for screening a variety of receptor targets, including both voltage-gated and ligand-gated ion 

channels. 
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Fluorescence-based assays are widely used for high-throughput screening[386]. A high-throughput 

assay platform particularly well suited to the primary identification of novel drug leads is the FLIPRTetra 

(Molecular Devices). This sophisticated technology consists of a fluorescence detection platform in 

combination with advanced robotics which enable multiple user-defined compound addition protocols 

and simultaneous fluorescent readings from 96-, 384- or 1536-well plates[387]. The FLIPR was 

designed for high-throughput Ca2+ flux assays and is rightly the industry leader in this application. 

However, this has limited the availability of different excitation and emission wavelengths. Na+ dyes 

with fluorescence spectra similar to calcium dyes, such as CoroNa Green, Sodium Green, or more 

recently Asante NAtrium, are commercially available. However, most of the single wavelength Na+ 

dyes amenable to high throughput FLIPR assays are relatively weakly fluorescent, a problem that is 

further compounded by the relatively shallow Na+ gradient that exists across cell membranes. The 

concentration difference of intracellular versus extracellular Na+ is roughly 10 fold, whereas the 

difference in Ca2+ is over 30 000 fold[388]. This results in a generally poor signal to noise ratio for 

fluorescent measurement of the movement of Na+ ions and makes these Na+ dyes poorly suited for drug 

discovery of NaV modulators.  

 

In contrast, membrane potential dyes measure changes in the electrical potential of the membrane, with 

significantly improved sensitivity to Na+ specific dyes[383, 389, 390]. Although this provides some 

functional and indirect kinetic data, the steady-state changes that are measured are neither specific nor 

precise enough for detecting compounds that modulate state-dependent NaV function[383, 390-392]. 

Experimental evidence has suggested that the MP dye, when used in combination with veratridine as a 

control agonist, correlates well with the inactivated state binding constant, obtained through 

electrophysiological experiments[374]. This suggests that the assay measures a single physiological 

state of NaV channels and potentially would not differentiate the state dependence of a compound. In 

addition, membrane potential dyes are particularly prone to artifacts arising from dye-compound 

interactions as well as non-specific effects of compounds on cell viability and membrane integrity and 

require specialized filter sets[383, 390]. 

 

Another assay platform that has been less widely used is based off a standard colorimetric cytotoxicity 

assay. Sustained, persistent INa leads to sufficiently high intracellular Na+ concentrations and is toxic to 

many cells. This principle is adapted for cytotoxicity assays, which measure cell survival after 

activation of NaV, usually through incorporation of dyes that are metabolically converted to 
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colorimetric end-products, such as the case with MTT or XTT[377, 393]. Exposure of cells to NaV 

activators – such as veratridine – causes increased INa and subsequent cell death, which can be reversed 

through NaV inhibitors[393]. These assays frequently require the need to incorporate ouabain, a potent 

cardiac glycoside that blocks the action of the Na+/K+-ATPase, shutting down the Na+ efflux pathway 

and aiding in accumulating toxic levels of [Na+]i to increase the signal window[393]. Moderate 

throughput can be achieved with these assays. They are also relatively inexpensive, both in regards to 

equipment needed (absorbance UV plate reader) and total reagent costs.  

 

A major drawback to survival endpoint assays is the requirement of both NaV agonists and ouabain for 

effective cell death to occur. The lack of selective agonists limits the use of this assay for primary 

screening, unless a heterologously expressing single-channel cell line is used. Using two control 

compounds may also complicate the interpretation of results, especially when testing crude venoms, as 

the action may be the result of inhibiting either receptor. This assay also provides no information on 

kinetics or state dependence of inhibition as channel activity is not directly measured. If this assay is 

adapted for agonist detection through a synergistic response with the control, false positives would be 

expected frequently, as inhibition of growth or proliferation would yield an equivalent result to 

cytotoxocity. Lastly, general toxicity – even minor – would mask potential reversal of INa induced 

toxicity through NaV inhibition, decreasing potential hits. The major drawback for fluorescence-based 

assays is that NaV channel gating modifiers, such as veratridine, deltamethrin or batrachotoxin, are 

required to elicit NaV responses in absence of electrical stimulation[389]. However, compared to the 

two compounds necessary for the cytotoxicity assay, this is an improvement. Kinetics and state 

dependence are also not available, as the fluorescent measurements are of downstream effects of NaV 

regulation. It has also been suggested that fluorescence-based assays – while providing the highest 

throughput by far – may be biased towards detection of pore blockers and results using these 

technologies will need to be interpreted carefully[394]. However, with these negatives addressed, the 

assays used are for general purpose primary discovery screening of crude venoms and many of these 

issues, once understood, can be addressed[384, 395]. The absolute goal of a cost-effective, reproducible 

assay with a large enough window to discern activity from a crude venom sample remains.  

 

To specifically address the SH-SY5Y MTT assay, although a higher concentration of TTX (1 µM) was 

used, the ability of TTX to fully inhibit the effects of ouabain and veratridine could be due to the 

endogenous expression of the TTXr NaV1.5[363], which has a reported IC50 of around 1 µM[396]. 
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Lidocaine is a known inhibitor of NaV1.5, as well as a range of TTXs NaV channels, although a 

complete inhibitory profile has not been performed [397, 398]. A similar explanation to TTX can be 

given for lidocaine, as the lack of full “recovery” after the addition of 1 µM lidocaine may not fully 

inhibit certain NaV channels expressed in SH-SY5Y cells at the concentration used. Additionally, it is 

apparent when looking at Figs. 14 and 15 that ouabain on its own is able to induce a lethal effect. This 

lethal effect could be influencing cell survival, thereby limiting the maximum amount of “recovery” 

upon addition of a NaV channel inhibitor. The mechanism of lethality of ouabain alone is not known. 

 

For the development of a whole cell, high-throughput, microtiter plate-based assay, much relies on the 

cell line used. Immortalized cell lines have been instrumental in the development of a wide variety of 

detection assays[399]. Immortalized cells are no longer subject to the Hayflick limit, which describes 

the number of times a cell population will divide before senescence, due to telomere shortening[400, 

401]. These cell lines are typically derived from cancerous cells, which already possess mechanisms for 

sustained division. However, immortalized cell lines can also be generated from “normal” cells through 

methods such as insertion of oncogenes[402] or induction of key proteins such as telomerase[403] or 

viral T protein[404]. Aside from their ability to divide for prolonged periods of time, immortalized cell 

lines have an added benefit of expressing endogenous receptors relevant to the tissue derived. 

Therefore, neuronal cell lines would preferentially express key neuronal ion channels and theoretically 

have a similar functional pharmacology to primary tissue as opposed to heterologously expressed 

channels. This has been apparent in previous experiments where a splice variant of NaV1.7 

demonstrated abnormalities when expressed in neurons that were not seen when expressed in non-

neuronal HEK cells[405]. However, the NaV expression profiles of many commercially available 

immortalized cell lines remain to be characterized. The initial investigation of this thesis focused on 

determining NaV α-subunit expression profiles for a select group of these neuronal cell lines, which 

included rat neuroblastomas, rat/mouse hybridomas of neuronally derived cells, and the human 

neuroblastoma SH-SY5Y. The expression of endogenous NaV α-subunits was assessed using PCR or, 

in the case of SH-SY5Y, immunohistochemistry and channel function via electrophysiology. 

 

4.2 Cell line characterization and adaptation for assay 

Seven commercially available neuronal cell lines were used in the development of a NaV channel assay. 

Comprehensive research into the NaV expression of most of these cell lines had not yet been completed 
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or submitted to the public domain. The cells that have been studied serve as controls. The initial goal of 

this project was to determine one or more effective cell lines to be used in a general primary screen for 

NaV channel activity. Optimally, expression of NaV1.3 and NaV1.7 with minimal expression of the 

other channels was desired as these two subunits represent high-interest targets for the treatment of 

pain, as described previously. Each cell line was chosen for its mammalian neuronal origins, having 

been isolated from rat, mouse, or human sources. Most have been extensively used as research models 

for neuronal differentiation and neurite growth, with some cell lines developed for use with various 

assays such as Fluo4 or MTT.  

 

SH-SY5Y is a dopaminergic cell line developed from a human neuroblastoma parental line, SK-N-SH, 

isolated from a metastatic bone tumor biopsy[406]. The parental SK-N-SH cell line was subcloned 

three times; first to SH-SY, then to SH-SY5, and finally to SH-SY5Y, then submitted to the ATCC cell 

bank in 1970 for public use[406]. Various research has demonstrated that undifferentiated SH-SY5Y 

cells express nACHr[407] such as α7[408], Kir2.1, KV1.4, KV2.1, KV4.2, KV7.1, [409], KV3.1 [410], 

CaV2.2[411], CaV1.3[411], various ASICs [412], NaV1.1 [413] and NaV1.7 [409, 414]. Conductance 

changes attributed to both NaV and CaV channels such as increased peak current and slower inactivation 

were observed after differentiation[415] [416]. SH-SY5Y cells have served as hosts for transfecting a 

number of receptors and ion channels, including TRP channels[417] and NaV1.8[367]. Both native and 

transfected cells have been extensively used for a variety of assays measuring neurotoxicity and cell 

survival[418-421] as well as being used with Fluo4 to measure Ca2+ flux triggered by activation of ion 

channels or GPCRs[422, 423]. 

 

Neuro2a is a CNS derived mouse neuroblastoma and has been extensively used to monitor NaV channel 

modulation by paralytic shellfish toxins[377, 424] with measurable NaV channel expression detected in 

a number of experiments[425-427]. A comprehensive study of NaV α- and β-subunits using RT-PCR 

demonstrated the endogenous expression of NaV1.2, NaV1.3, NaV1.4, NaV1.7 and the β1- and β3-

subunits, with the predominant α-subunit being NaV1.7[428]. A number of other receptors and ion 

channels have been detected, including Cl- channels[429], angiotensin II receptor subtypes AT1A, AT1B, 

and AT2[430], purinergic receptors[431, 432], somatostatin receptors[433], and the KV channels KV1.1, 

KV1.4, and KV2.1. Low level CaV expression was observed in cAMP differentiated cells using the Ca2+ 

sensitive dye fura-2[434]. Further, these cells have successfully been adapted for use with MTT[377, 

424]. 
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PC12 is another cell line derived from a CNS, isolated from a pheochromocytoma of rat adrenal 

medulla[435]. Differentiation has been shown to increase the number or responsiveness of several 

kinds of ion channels and receptors, such as nicotinic and muscarinic acetylcholine[436, 437], opiate 

[438], bradykinin[439, 440], 5-HT3[441], and both CaV1.2 and  CaV2.2[442-444].  More recently 

ASICs[445] and O2-sensitive KV channels[446] have been found in undifferentiated PC12 cells. 

Undifferentiated PC12 cells have very low NaV conductance and expression that can be upregulated 

through differentiation with NGF or cAMP [447-449]. Through mRNA hybridization analysis, NaV1.2 

and NaV1.7 were shown to be the primary NaV channels present in undifferentiated PC12 cells[450]. 

 

50B11 is a PNS derived cell line recently created from immortalize rat DRG[451]. The authors 

performed detailed electrophysiological analysis to demonstrate no difference between differentiated 

and undifferentiated cells at resting membrane potentials with no spontaneous activity reported. 

Depolarizing IV-stimulation of undifferentiated cells also did not induce action potentials. However, 

action potentials were observed under depolarizing conditions with differentiated cells, suggesting 

upregulation of NaV expression after neuronal differentiation[451]. Interestingly, real-time RT-PCR 

experiments of undifferentiated 50B11 cells confirmed NaV1.4 and NaV1.7 expression at high levels, 

while NaV1.8 was expressed at low levels. Differentiation in the presence of forskolin and NGF 

upregulated the expression of NaV1.4 and NaV1.8 alone, but differentiation in the presence of GDNF 

and forskolin had no significant effect[451]. This data suggests the presence of mRNA with limited to 

no active protein expression of NaV channels in undifferentiated cells. A comprehensive analysis of 

NaV channels has not been completed.  

 

The last three cell lines described are hybridomas of a mouse neuroblastoma (N18TG2) with either 

embryonic rat DRG for F11, adult rat DRG for ND7/23[452] or an immortalized rat glioma cell line 

(C6-BU-1) for Ng108. All three exhibit many properties of neuronal cells after differentiation, 

including neuronal response to bradykinin, expression of neuropeptides, and extensive neurite-like 

processes characteristic of DRG neurons, but with distinct electrophysiological profiles[452-456].  

 

F11 cells can differentiate in the presence of cAMP into neurons with increased expression of ion 

channels and receptors for bradykinin, opioids[457], volume-sensitive Cl- channels, KCNQ 

channels[458], and CaV channels, showing a similar functionally in many regards to DRG sensory 
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neurons[459-461]. Undifferentiated cells were shown to have only TTXs current[462]. However, no 

comprehensive study on NaV expression has been completed to date. F11 cells have also been validated 

for Fluo3 assay[463]. ND7/23 cells exhibit TTXs current similar to DRGs with no endogenous TTXr 

current and expression of both the β1- and β3-subunits[464]. These cells have been successfully used to 

recombinantly express ion channels, specifically multiple NaV isoforms[465-468]. The NG108 cell line 

was originally named 108CC15[469]. Undifferentiated cells have been found to express β-adrenergic 

receptors [470], 5-HT3[471], delayed rectifier K+ channel[472], KV3.1[473], ERG[474], bradykinin 

receptors[475]. Neuronal differentiation causes upregulation of NaV and CaV current [476] with 

upregulation of NaV current due partially to increase in NaV1.7 expression[477]. However, apparent 

change of NaV current only occurred after 15 days of differentiation[478]. A comprehensive analysis of 

CaV channels was recently completed in by Liu et. al., where the CaV1, CaV2, and CaV3 families of CaV 

channels were all observed. However, it was noted that changes in CaV mRNA, expression, and current 

were all strongly subject to time-dependence of differentiation[479]. 

 

This project did not include differentiated cell lines as terminally differentiated cells do not undergo 

cell division[480], require expensive reagents, and take days to weeks to undergo total differentiation. 

Additionally, the regulation of receptors and ion channels by differentiation is dependent on a variety 

of factors, including reagent used and time of incubation. This would be extremely limiting when 

attempting to develop and maintain reproducible, multi-well, high-throughput, functional assays. An 

initial PCR characterization of seven neuronal cell lines was completed using primers designed for 

specific regions of rat NaV channel isoforms. PCR results suggested prevalent expression of NaV1.2 in 

all cell lines tested, with only a slight band apparent for 50B11 cells. This is not a surprising result, as 

NaV1.2 was previously detected in Neuro2a cells[428] and is the most abundant α-subunit expressed in 

the CNS, contributing up to 70% of total NaV expression in rat brain[481]. All cell lines used, with the 

exception of the immortalized DRG line 50B11, are either fully or partially derived from CNS tissue. 

 

NaV1.6 and NaV1.7 demonstrated a similar expression profile with bands for both isoforms appearing 

in the same cell lines, although there did not seem to be correlation between cell line origin and 

expression pattern. NaV1.6 is the predominant NaV isoform found at the Nodes of Ranvier on small 

diameter, myelinated Aδ-fibers, and is also expressed on dendrites and synapses[482]. NaV1.7 

expression is more widely distributed and appears in the somata of all small diameter neurons as well 

as the central and peripheral terminal processes of small diameter DRG neurons[145]. Both NaV1.7 and 
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NaV1.6 at Nodes of Ranvier in small diameter Aδ-fibers occurring throughout the dorsal root and 

sciatic nerve had a 90% coincident of expression. This observation could help explain the concurrent 

expression seen in the cell lines. However, although all cell lines have been shown to express NaV1.7 in 

the literature, 50B11, Ng108, and PC12 did not in this experiment. Ng108 could be explained by its 

lack of differentiation resulting in decreased expression of the channel [477]. However, the discrepancy 

with PC12 cannot be explained, as previous experiments observed the presence of mRNA for 

undifferentiated cells [450, 451]. The lack of NaV1.3 and NaV1.4 mRNA was also a discrepancy from 

previous published results for Neuro2a [428] and 50B11[451]. In the case of murine derived Neuro2a, 

the primers were designed for rat specificity and may be binding to an area of the NaV channel that is 

not conserved for murine NaV isoforms. Finally, NaV1.8 was not detected in 50B11 or any other DRG 

hybridoma. The discrepancy with 50B11 is apparent as no NaV primers detected mRNA for each 

subunit tested. This was most likely due to an error in RNA extraction and cDNA production for this 

individual cell line. The expression profile for NaV1.7 shown here was very similar to that performed 

with human isoform-specific primers, with the only discrepancy being that of NaV1.3 shown to be 

expressed using human isoform specific primers [363].  

 

It is recognized that a more complete characterization would include a follow-up sequencing of each 

band to conclude with more confidence that each band correlates to the expected gene fragment, 

antibody detection of each α-subunit via Western, and electrophysiological characterization of NaV 

function. At the time, only a superficial characterization was required, as other phenotypic methods of 

determining viability of each cell line were used. Cell lines were judged on their ability to grow without 

treated plates, the time it takes to reach confluency within flasks or plates, and the ability of the cells to 

metabolize MTT efficiently or respond to a given fluorescent dye. Further characterization was 

reserved for the best performing cell lines. 

 

Most of the cell lines were determined to be deficient for assay use in an HTS format required for this 

project. The majority of cell lines tested require the presence of cAMP or growth factor for 

differentiation into a neuronal-type cell. Additional to the prohibitive affects of differentiation 

mentioned previously, without differentiation the cells tested either do not express the necessary NaV or 

CaV channels or express them at significantly reduced levels. Individually, the PC12 cell line is known 

to exhibit loss of proliferation after routine passage, with significant changes to phenotype 

observed[483]. This loss of proliferation and a change in phenotype to favor non-adherence was 
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observed after moderate use (approximately 5 passages). Optimally, a cell line that can withstand 

multiple passages while maintaining an equivalent phenotype is preferred, as changes in phenotype 

could signify changes within the genome that can affect expression profiles and, in turn, results. Both 

PC12 and NG108 cell lines grow optimally on the presence of poly-D-lysine or collagen I[484, 485]. 

Their lack of innate adherence could be overcome with the addition of an extracellular matrix. 

However, all assay formats tested require plate washing steps that can mechanically dissociate loosely 

attached cells. This greatly affects reproducibility and is a limiting factor. F11 cells exhibited slow 

proliferation and a suboptimal expression profile of NaV channels. The phenotypic traits described were 

all considered undesirable for our purposes of developing a cost-efficient, robust, and high-throughput 

primary NaV channel screen. The cell lines that did demonstrate robust growth, adherence to microtiter 

plate plastic, and a reasonable level of expression for a NaV isoforms without differentiation were 

carried through for evaluation with the survival based MTT assay and, finally, a fluorescence based 

assay. These included the Neuro2a, SH-SHY5Y, and ND7/23 cell lines. Once an optimal cell line was 

determined – in this case SH-SY5Y – a combination of semi-quantitative PCR, electrophysiology, and 

immunohistochemistry was used for a more detailed characterization of functional expression before a 

validated assay was finally developed. The methods and results for the validated assay have been 

published[363].  

 

4.3 MTT 

The purpose of the MTT assay platform was to develop a method that can stand alone as a NaV primary 

screen, yet inexpensive, easily accessible, and robust enough to identify new NaV regulators through 

assay-guided fractionation. The ability to adapt the assay for testing agonist activity was also explored. 

The attempt was made to use this assay with both stable and transiently transfected cell lines to probe 

single and pan NaV isoform activity. The stable cell line used was ND7/23-rNaV1.8, kindly donated by 

Dr. Tony Priestly. 

 

The MTT assay is a colorimetric, endpoint survival assay that measures the ability of cytosolic 

enzymes in viable cells to metabolize the yellow, soluble tetrazolium salt 3-(4,5-dimethylthiazol-2-yl)-

2,5-diphenyl tetrazolium bromide (MTT) to a deep purple, insoluble formazan dye[486] (Figure 24). 

The reduction of tetrazolium is dependent on NADPH-dependent oxidoreductase enzymes and 

increases with cellular metabolic activity due to elevated NADPH[487]. It is interesting to note that 
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viable resting cells that are metabolically quiet reduce very little MTT. In contrast, rapidly dividing 

cells exhibit high rates of MTT reduction. Changing assay conditions can alter metabolic activity and 

thus tetrazolium dye reduction without affecting cell viability. 

 

The concept of inducing cell death by forcing an influx of Na+ was originally used to screen STX-like 

paralytic shellfish toxins using MTT to measure a survival endpoint[377, 424]. The method uses a 

combination of two small molecule toxins, the alkaloidal site-2 agonist veratridine and the glycoside 

ouabain, the latter of which inhibits Na+ excretion through deactivation of the Na+/K+-ATPase. The 

synergistic action of these two 

molecules effectively promotes cell 

death through Na+ toxicity. It is 

important to note that the working 

concentration of ouabain is around 100 

µM for inhibition of the Na+/K+-

ATPase[488, 489]. However, low nM 

concentrations of ouabain have been 

shown to reverse the effect and 

stimulate Na+/K+-ATPase activity, as 

well as trigger multiple downstream signaling cascades involving the enhancement of ERK1/2 

phosphorylation and reduction of cellular ATP[490-492]. Further, when testing unknown samples it is 

not known for certain whether the recovery effect was caused by NaV channel block or an off-target 

effect. This could include chelation or disruption of ouabain or veratridine directly, reversal of ATPase 

inhibition, or another mechanism entirely. As this is a primary screen, this information can be assessed 

in greater detail during secondary screening or upon isolation and production of the active component. 

 

In the presence of a NaV channel inhibitor, the influx of Na+ ceases and the cell is saved from 

apoptosis. TTX or other known NaV channel inhibitors can act as a control for NaV cell recovery. 

Theoretically, this assay format should be transferrable to different NaV expressing cell lines - either 

transiently, stably, or endogenously – as long as the cells are able metabolize MTT. This assay format 

has the potential to serve as a primary screen for general NaV inhibitory activity in crude venoms or, in 

the case of single-channel expressing cell lines, could contribute to selectivity screening. Further, this 

assay format can potentially be adapted for discovering NaV channel agonists by adjusting ouabain and 

 

Figure 24: Chemical structure of MTT and its 

metabolized formazan product. 
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veratridine concentrations to elicit a minimally significant (20-30%) decrease in survival as compared 

to untreated controls. The addition of a NaV agonist should theoretically result in an additive decrease 

in survival as compared to control. It is possible to use other NaV channel activators, such as ciguatoxin 

or deltamethrin, as controls in place of veratridine. The time point of 48 h was necessary for two 

complimentary reasons: a) The cells were plated at a density where they were only partially confluent. 

The 48 h allowed cells enough time to grow to confluency; b) The 48 h incubation resulted in an 

exposure time sufficient enough to monitor both cell death and growth inhibition, both of which can 

result from Na+ overload at the cellular level [377, 493, 494]. Limited death from Na+ overload can be 

seen before 24 h. Longer exposure time increases the window (z-score) of apparent cell death. 

 

A variant of the ND7/23 cell line was obtained that expressed the TTXr NaV1.8. This cell line was 

tested in place of ND7/23 for its ability to serve as a potential screen of NaV1.8. The contribution of 

NaV1.8 can be isolated from other NaV channels endogenously expressed in ND7/23 with the addition 

of 1 mM TTX. ND7/23-rNaV1.8 cell line demonstrated the potential to serve as a model to screen for 

NaV1.8 activity with the MTT assay format. Initial results indicated a robust lethal response with a 

combination of ouabain and deltamethrin. This was unaffected with the combined addition of TTX, 

suggesting the response was defined by TTXr NaV channels. However, the lethal response elicited from 

ouabain and deltamethrin was not affected by the addition of the known NaV1.8 inhibitor lidocaine or a 

significant volume of C. marmoreus crude venom containing the potent NaV1.8 inhibitor MrVIB. A 

number of factors could be responsible for this occurrence. Ouabain appeared to have no lethal effect 

with the concentrations used. This was apparent in Figure 10, where the addition of P-CTX resulted in 

no significant change from baseline survival. This suggests that the induced toxicity could have been 

affected by the presence of the deltamethrin.  

 

Deltamethrin is a synthetic pyrethroid, which is a class of small molecules based of the naturally 

occurring pyrethrins from genus Chrysanthemum[495]. Because of their observed selectivity towards 

insect NaV channels and improved UV tolerance, these chemical were first synthesized during the 

1970s for use as commercial insecticides. They modulate NaV channel activity by shifting the voltage-

dependence of activation to a more hyperpolarized potential, resulting in persistent current. However, it 

was quickly demonstrated that pyrethrins cause acute toxicity in rats through a variety of mechanisms. 

Although these molecules bind preferentially to NaV1.3, NaV1.6 and NaV1.8, modulation of CaV, 

voltage-gated chloride channels, GABA, glutamate, and acetylcholine receptors have all been 
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reported[496]. This high receptor promiscuity, often seen with small molecule ion channel modulators, 

is most likely contributing to induced toxicity through other ion channel or ligand gated channel 

mechanism, which was not explored in this thesis. For example, acetylcholine receptors are permeable 

to Na+, therefore activation of this channel with deltamethrin would result in increased INa and cell 

lethality[6, 497]. This would help to explain the inability of both TTX and lidocaine to reverse NaV 

induced toxicity, although more experiments would have to be done in order to prove this theory, 

including characterization of multiple ion channel and ligand-gated receptors present in the ND7/23 

cell line. As the focus of this thesis was NaV channels, the project moved on to more promising cell 

lines. 

 

The Neuro2a and SH-SY5Y cell lines both resulted in MTT assay methods that could be used to screen 

for general NaV channel inhibitors for the endogenous NaV channels expressed in each cell line. 

Further, Neuro2a cells were able to be adapted to screen for NaV channel agonists. Each 96-well 

microtiter plate is able to screen up to 40 crude venoms with replicates. A fluorescence-based assay 

was also developed in parallel to the MTT assay. The ND7/23, Neuro2a, and SH-SY5Y cell lines were 

all attempted in order to determine the best method available for efficiently screening for NaV 

modulators. 

 

4.4 Fluorescence-based assays 

The Fluorometric Imaging Plate Reader Tetra [FLIPRTetra (Molecular Devices)] is a 96- or 384-well 

capable microtiter plate reader capable of simultaneous whole-plate addition of one or two rounds of 

test compound with continuous whole plate reads. This allows detection of inhibitors by pre-incubating 

with unknowns followed by addition of a control agonist. Likewise, agonists can be detected within the 

same assay.  

 

The FLIPRTetra was used to quantitate an induced fluorescent response via two mechanisms. Fluo-

4 acetoxymethyl ester [AM (Invitrogen)] is a small molecule calcium chelator, which is taken up by the 

cell where the acetoxymethyl ester group is cleaved, internalizing the fluorophore. External Fluo-4 is 

removed to enable the monitoring of calcium mobilization into the cell, in our case after a 

depolarization event. Fluo-4 excites at 488 nm upon binding with a Ca2+ ion[498] (Figure 25) and 

requires a moderate to high level of CaV channel expression to elicit a measurable response. The 
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contribution of NaV channels to the observed response can be tested with a follow up experiment in the 

presence of TTX or other known NaV blocking agents. 

 

A proprietary FLIPRTetra Membrane Potential Assay kit (Molecular Devices; R8126) was also used to 

determine NaV channel activity. This kit incorporates a no wash fluorophore in combination with a 

background quencher. Both chemicals bind to the outer lipid membrane of the cell (Figure 26). 

Membrane depolarization causes the fluorophore to dissociate from its quencher in the outer membrane 

by following the flow of cations into the cell. The dissociation results in a relative increase in the 

fluorescence response, which is measured by a fluorescent detector. The actions are similar to a FRET-

based assay. 

 

Initial experiments tested the 

fluorescent response of ND7/23, 

Neuro2a and SH-SY5Y cells with 

both Fluo4 and the MP-kit. All cell 

lines displayed a fluorescence 

response to depolarization invoked 

upon the addition of 1 mM 

veratridine using the MP-kit. This 

response was blocked with TTX, 

signifying a NaV specific response. 

Neuro2a cells did not respond with 

Fluo4, indicating a potential lack 

or limited availability of CaV 

channels to mediate entry of Ca2+ 

after NaV depolarization. ND7/23 

cells yielded an equivalent 

fluorescence response with both 

Fluo4 and the MP-kit. This 

suggests a minimal depolarizing 

 

Figure 25: Diagram of Fluo4 AM mode of action through 

NaV channel signaling. 

NaV activation results in Ca2+ entering the cytoplasm through 

two linked pathways: external entrance via activation of CaV 

channels and release of internal Ca2+ stored through GPCR 

pathways. Cytoplasmic Ca2+ then binds Fluo4, resulting in 

fluorescence. 
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effect from the addition of veratridine as well as potentially a limited availability of CaV channels for 

Fluo4 detection. SH-SY5Y cells demonstrated the largest comparative fluorescent response using both 

Fluo4 and the MP-kit.   

 

After initial experiments comparing cell lines available, the SH-SY5Y cell line was deemed the most 

applicable to the FLIPRTetra assay format. This was due to its robust nature, ability to load multiple 

fluorescent dyes efficiently, and endogenous expression of human CaV and NaV channels necessary for 

detection by fluorescence response[499, 500]. CaV channel expression in SH-SY5Y cells was 

determined separately[422]. Another large determining factor in choosing the SH-SY5Y cell line was 

the apparent endogenous expression of both human isoforms of NaV1.3 and NaV1.7[363].  

 

 

Because of the large fluorescent response, ability to respond using both Fluo4 and the MP-kit, and 

robust nature, human neuroblastoma cell line was adopted for primary use. The need for only one 

control compound coupled with the high-throughput, quick turn-around time and 384-well potential 

resulted in the FLIPRTetra assay platform as the lead choice for primary screening of crude venoms. The 

SH-SY5Y in conjunction with the FLIPRTetra fluorescent assay platform resulted in the most widely 

used cell-based method for in-house primary HTS of crude venoms[266]. Proof-of-concept for this 

assay was demonstrated after a 96-well crude venom screen of Conus venoms yielded multiple active 

 

Figure 26: Diagram of Molecular Devices Membrane Potential dye mode of action. 

Blue circles represent the charged fluorescent dye that moves in response to ionic flow 

across a membrane caused by depolarization events.  

From: http://www.moleculardevices.com 
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hits. One of those hits, from C. magus, resulted in the isolation and sequencing of a previously 

undiscovered δ-conotoxin. 

 

4.5 Discovery of δ-MVIA 

Using the Fluo4 assay format previously described, initial screening of cone snail crude venoms 

revealed multiple active hits. One of the most potent hits was an agonist of the Fluo4 response, which 

also demonstrated veratridine potentiation of the fluorescent control response. The active peptide was 

purified, sequenced, and found to be a previously unisolated member of the δ-conotoxin family. 

However, the sequence of this conotoxin had already been identified through transcriptome analysis 

and named δ-MVIA[380].  

 

The δ-conotoxins represent a poorly classified family of toxins with a unique mode of action. To date, 

only a small handful of mammalian selective δ-conotoxins have been isolated, with two solution 

structures resolved. They embody the only toxins that interact with the neurotoxin receptor site 6 of 

NaV channels. However, the precise site 6 residues of interaction remain to be determined. Molluscan 

selective δ-conotoxins have been shown to act as both competitive inhibitors and synergistic agonists 

with site 3 scorpion toxins, sharing overlapping but not identical binding regions[501]. Also similar to 

site 3 toxins the δ-conotoxins inhibit inactivation. However, δ-conotoxins also shift the voltage-

dependence of activation and steady-state inactivation to more hyperpolarized potentials, resulting in 

hyperexcitability[347]. Because of their unique interaction with NaV channels, δ-conotoxins have a 

high potential for use as tools to discern the site 6 binding region as well as further elucidate 

interactions with site 3 ligands. Further, as gating modifier toxins, it is possible that these peptides can 

be engineered to act as NaV inhibitors, similar to the variation that occurs with site 4 peptides derived 

from spider venom.  

 

The initially observed properties of δ-MVIA were consistent with the δ-family of conotoxins in 

function and structure. Like other δ-conotoxins discovered, δ-MVIA exhibits a cysteine arrangement 

typical of peptides that conform to the ICK structural motif. The ability to elicit depolarization on its 

own as well as act in synergy with both veratridine and P-CTX suggests binding to a different site on 

the NaV channel. However, the very small amount of isolated crude venom with no other source to 

obtain more limited initial experiments. Therefore, a method of production was needed before 
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pharmacologic characterization could be performed. The extremely high hydrophobicity of δ-

conotoxins can result in complications with solid-phase peptide synthesis, as has been seen with the 

similarly hydrophobic µO-conotoxins. This was the case with δ-MVIA as both BOC and FMOC solid-

solid phase synthesis were attempted but failed in yielding a soluble product. Recombinant expression 

methods have been tested in multiple systems and have proven to be successful means of producing 

conotoxins[265, 502]. However, recombinant expression with two fusion constructs failed to produce 

soluble, mature protein. One system for recombinant expression was developed in association with 

work completed in the following chapters utilizing an MBP fusion protein. Results and methods for δ-

MVIA expression can be found in Appendix A. Although expression was possible, the product was 

insoluble as a fusion protein. Methods to resolubilize were unsuccessful. The general methods for 

expressing an MBP fusion construct were successfully used in the following chapters and will be 

explained in depth.  
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Chapter III: Characterization of NaV modulating TRTX-Pre1a: 

Pharmacology and structure 

 

1. Introduction 

 

As previously discussed in the introduction, NaV1.7 has emerged as a leading target for the 

development of pain therapeutics. Studies involving animal pain models, localization, and functional 

excitability in neurons have demonstrated the contribution of NaV1.7 to pain pathophysiology[139, 

503]. However, it was clinical and genetic observations of NaV1.7’s role in familial inherited human 

pain disorders that has solidified this ion channel as a key molecular target for the treatment of pain. 

NaV1.7 is primarily expressed in somatosensory, peripheral nerve fibers. Gain-of-function mutations on 

the NaV1.7 encoding SCN9A gene develop into paroxysmal extreme pain disorder (PEPD) or primary 

erythromelalgia[146, 504]. By contrast, a different series of mutations that result in loss of channel 

function have been shown to contribute to a rare genetic disorder, congenital insensitivity to pain 

(CIP)[148]. Patients with CIP experience a complete loss of all forms of pain with no deficits to motor, 

cognitive, sympathetic and gastrointestinal function, or loss of any other sensory modality with the 

exception of some instances of impaired olfaction, detected in both rats and humans[149, 505]. The 

functional validation of NaV1.7 as a therapeutic target has initiated a huge research effort towards the 

discovery and development of selective and potent modulators. The majority of pharmaceutical 

research has historically been directed towards small molecule discovery platforms[506, 507]. 

However, over the past decade, venom peptides have proven to be a source of novel, selective, and 

potent modulators of ion channels, leading to an increasing interest in these molecules for therapeutic 

development[508]. 

 

Spiders are by far the most successful venomous predators on the planet with over 43,000 species so far 

described[349]. Individual species can produce a unique assemblage of up to 1000 peptide components, 

yielding a total bioactive compound library in the tens of millions, with less than 0.1% so far 

described[350, 509]. Given that the purpose of spider venom is rapid immobilization of prey, it is not 

surprising that one of their dominant pharmacological actions includes the modulation of NaV channels. 

Not only are spider venom peptides able to target NaV channels selectively, they have demonstrated an 
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ability to functionally differentiate between individual isoforms while still maintaining a high level of 

potency[252, 510]. The ability to selectively modulate NaV isoforms is related to these peptides ability 

to exhibit unique modes of modulatory action, interacting with the voltage sensor domain in order to 

trap the channel in different conformational states and shifting the voltage-dependence of gating. 

Unfortunately, much of this functional information has only been acquired over the past decade, with 

many questions regarding both receptor and ligand left unanswered.  

 

Recently, a unique peptide was isolated from the venom of the tarantula, Psalmopoeus reduncus. 

Named TRTX-Pre1a, this peptide demonstrated the ability to functionally regulate multiple NaV 

isoforms with two different mechanisms of action. Further, TRTX-Pre1a demonstrated structural 

heterogeneity, appearing to take on multiple conformational states in solution at room temperature. 

This chapter described the production, functional, and structural aspects of a new peptide isolated from 

spider venom via a NaV1.7 functional screen using two-electrode voltage clamp (TEVC) methods.  

 

The primary aims of this chapter were as follows:  

 

1) Produce correctly folded and isotopically labeled TRTX-Pre1a using a recombinant expression 

system. 

 

2) Characterize the NaV isoform activity through a combination of electrophysiology and cell-based 

assay. 

 

3) Determine the solution structure of TRTX-Pre1a through heteronuclear NMR.  
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2. Methods 

 

2.1 Expression vector design 

A synthetic gene encoding TRTX-Pre1a was codon optimized for expression in E. coli and cloned into 

a variant of the pLIC-MBP expression vector by GeneArt (Germany)[511] (Figure 27). This vector 

encodes a MalE signal sequence for periplasmic export, a His6 affinity tag for purification, a maltose 

binding protein (MBP) fusion tag to aid solubility, and a tobacco etch virus (TEV) protease recognition 

site directly preceding the TRTX-Pre1a sequence. This expression vector produces the native toxin 

with an additional N-terminal serine residue, a vestige of the TEV protease cleavage site. A T7 

promoter with a lac operon allows for inducible expression upon the addition of IPTG (Invitrogen). 

The pLIC vector also encodes for ampicillin resistance (AmpR).  

 

 

 

rPre1a:   SEDCLGWFSRCSPKNDKCCPNYKCSSKDLWCKYKIW 4314.9 

 

Figure 27: Gene encoding recombinant Pre1a. 

A) Gene segment of pLIC expression vector which encodes for the mature fusion protein. B) Sequence 

of recombinant Pre1a with a N-terminal Ser residue that remains after TEV cleavage. 
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2.2 Bacterial recombinant expression 

The pLIC vector containing the synthesized expression gene was transformed into BL21(ΔE3) 

chemically competent E.coli (Invitrogen, CA) by heat shock (60 s at 42°C) for recombinant toxin 

production. Cultures were started in 100 mL of Luria-Bertani (LB) medium inoculated from a glycerol 

stock. Starter cultures were grown overnight at 37°C with shaking at 200 rpm under ampicillin (Amp) 

selection. For test expressions, 10% of the starter culture was used to inoculate fresh 100 mL batches of 

LB + Amp and grown to an OD600 of 0.7 to 1.0 before induction with a final concentration of 1 mM 

IPTG (Invitrogen). Several incubation conditions were tested varying both temperature and time. 

Expression was terminated by centrifugation for 15 min at 6000 × g, 4°C. Cells were lysed by 

sonication on ice at 4°C. To check for solubility, the whole cell lysate was centrifuged at 18 000 × g for 

30 min at 4°C and the supernatant was collected for analysis on SDS PAGE. 

 

For large scale expression, 50 mL of starter cultures were added to fresh 2 L batches of LB medium 

and grown at 16°C with shaking at 150 rpm under Amp selection. Expression of the toxin gene was 

induced with 1 mM IPTG at an OD600 of 0.7 to 1.0 and expression was allowed to proceed at 37°C or 

16°C with 150 rpm shaking. Expression was terminated 18-20 h (16°C) or 3 h (37°C) later by 

centrifugation for 15 min at 6000 × g at 4°C. For production of uniformly 13C/15N-labeled TRTX-

Pre1a, cultures were grown as previously described in LB medium. Once an OD600 of 0.7 to 1.0 was 

reached in a 2 L culture, the entire culture was centrifuged at 3000 × g and the LB medium was 

removed. The pellet was washed once with unsupplemented minimal medium and then gently 

resuspended in 500 mL complete minimal medium supplemented with 13C6-glucose and 15NH4Cl as the 

sole carbon and nitrogen sources, respectively. Expression was allowed to continue at 16°C as 

previously described. 

 

2.3 Lysis and IMAC purification 

After removal of medium, the bacterial cell pellets were resuspended in 20 mL chilled TN buffer (40 

mM Tris, 400 mM NaCl, pH 8.0) per gram. TN buffer was supplemented with complete protease 

inhibitor cocktail (Roche) and DNaseI (Roche) then the His6-MBP-toxin fusion protein was extracted 

from the bacterial periplasm by continuous flow cell disruption (TS Series Benchtop System, Constant 

Systems Ltd, Northants, UK) at a constant pressure of 30 kPa. The resulting lysate was centrifuged for 
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30 min at 18000 × g at 4°C to collect the soluble protein. Upon confirmation that the fusion protein was 

in the soluble fraction, the insoluble pellet was discarded.  

 

The His6-MBP-toxin fusion protein was captured by passing the whole cell lysate over Ni-NTA 

Superflow resin (QIAGEN, Valencia, CA) followed by washing with 15 mM imidazole in TN buffer to 

remove nonspecific binders. The fusion protein was then eluted with 250 mM imidazole in lysis buffer. 

The buffer was exchanged with pure TN buffer by centrifugal filtration to remove imidazole (Amicon 

Ultra, Millipore). Reduced and oxidized glutathione were added to 3 and 0.3 mM, respectively, to 

activate TEV protease. TEV protease was made recombinantly in-house according to published 

methods[512]. Approximately 50 μg of His6-tagged TEV protease was added per mg of recombinant 

TRTX-Pre1a, and the cleavage reaction was allowed to proceed at 30°C for 3 h.  

 

2.4 Reversed-phase high performance liquid chromatography 

Semi-preparative rpHPLC was performed on a Shimadzu LC-20AT system with a SPD-10A dual 

wavelength UV/VIS detector. For purification of recombinantly expressed TRTX-Pre1a, the instrument 

was equipped with a Vydac C8 column (208TP1022; 50 × 250 mm; 5 μm particle diameter; 300 Å pore 

size) using a flow rate of 10 ml/min and a linear gradient of 15 to 60%. solvent B (0.1% trifluoroacetic 

acid in 90% acetonitrile) in solvent A (0.1% trifluoroacetic acid in water) over 30 min. Secondary 

purification was followed up on a Thermo Hypersil GOLD C18 (10 × 250 mm; 5 μm particle diameter; 

300 Å pore size) using a flow rate of 3 ml/min.  

 

Analytical rpHPLC was performed on a Shimadzu LC-20AT Prominence system equipped with SIL-

20AHT autosampler, SPD-20A dual 214/280 nm UV/VIS detector and CTO-20A column oven. An 

Onyx C18 monolithic column (Phenomenex; 2 × 100 mm; 130 Å pore size) was used for final 

purification (if needed) and analyzing purity of all samples. 

 

2.5 Determination of peptide concentration 

Peptide concentrations were calculated using the molar extinction coefficient and the absorbance at λ = 

280 nm. Absorbance was measured against a buffer blank on a NanoDrop (Thermo) 
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spectrophotometer. The extinction coefficient was calculated based on the methods of Gill and von 

Hippel[513]  using the following equation:  

 

εpeptide = (nW× εW)+(nY× εY)+(nC× εC)  

Where εW = 5500; εY = 1490; and εC = 125[514] 

 

The absorbance reading at 280 nm was then used to calculate molarity (M) of the peptide in solution 

using the calculated ε-value with a derivation of the Beer-Lambert Law: 

 

Mpeptide = A280/ εpeptide 

 

2.6 MALDI-TOF mass spectrometry  

Toxin masses were confirmed by matrix-assisted laser desorption ionization–time-of-flight mass 

spectrometry (MALDI-TOF MS) using a model 4700 Proteomics Bioanalyser (Applied Biosystems, 

Foster City, CA). rpHPLC fractions were mixed [1:1 (v/v)] with α-cyano-4-hydroxy-cinnamic acid 

matrix (7.5 mg/ml in 70/30 acetonitrile/H2O) were collected in positive reflector mode. The mass range 

was set to m/z 800-8000 with a focus mass of 4500 Da. Shots were collected using manual acquisition 

control and close external calibration. All masses given are for the monoisotopic M+H+ ions unless 

otherwise stated.  

 

2.7 Peptide sequence determination 

Prior to sequencing, approx. 2-3 µg of the peptide was dissolved in 5 µl of 100 mM ammonium acetate 

(pH 4.5) and reduced by adding 10 µl of 100 mM TCEP (1 hour, 37°C). Alkylation was carried out by 

adding 20 µl of 100 mM maleimide (made up in 10 % acetonitrile) and incubating for 1 hour at 37°C. 

The reaction was quenched by adding 100 µl of 0.1% TFA and desalted using rpHPLC (Prosphere C4 

column, 3x150 mm, 15-35% B in 18 mins). The mass of the reduced/alkylated peptide was determined 

using an API2000 mass spectrometer. The sequence of purified, reduced/alkylated peptide was 

determined by Edman degradation at the Australian Proteome Research Facility using an Applied 

Biosystems 494 Procise Protein Sequencing System. 
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2.8 TEVC methods 

Toxin activity was assessed using two-electrode voltage clamp experiments performed on Xenopus 

laevis oocytes expressing rat or human NaV channels. Oocytes were surgically removed from mature X. 

laevis frogs anesthetized by submersion in 0.13% tricaine methanesulfonate (MS-222). Stage V–VI 

oocytes were prepared for injection by dissociation in Ca2+-free solution containing the following: 

96 mM NaCl, 2 mM KCl, 2 mM MgCl2, 5 mM HEPES (pH 7.4), plus 1 mg/ml collagenase (Sigma, 

type I) for 1.5 h at room temperature. Oocytes were maintained in ND96 solution containing 96 mM 

NaCl, 2 mM KCl, 1 mM CaCl2, 2 mM MgCl2, 5 mM HEPES, 5 mM pyruvate, 50 μg/ml gentamicin 

(pH 7.4) and 2.5% horse serum. cRNA of NaV 1.2 (100 ng/µL), NaV1.3 (660 ng/µL), NaV1.4 (100 

ng/µL), NaV1.5 (100 ng/µL), and NaV1.7 (250 ng/µL) were injected using a precision injector 

(Nanoliter 2000) and incubated at 18°C for 2-4 days. cRNA was made using an Ambion mMessage 

mMachine kit (Invitrogen) with linearized pcDNA3.1 plasmid containing the NaV expression gene of 

interest. 

 

Voltage and current electrodes filled with 3M KCl had a final resistance of 0.5–2.0 MΩ. Stimulation, 

data acquisition, and analysis were performed using pCLAMP 10.0 software (Molecular Devices, CA, 

USA) using an Axoclamp 900A voltage clamp amplifier (Molecular Devices). All experiments were 

performed at room temperature (20–22 °C). Serial dilutions of stock peptide solution (100 μM in H2O) 

were made in ND96 solution containing 0.1% fatty acid free BSA (Sigma) to prevent adsorption to 

tubing. Current-voltage (I-V) relationship curves were evoked by depolarizations to 0 mV in 5 mV 

increments from a holding potential of -80 mV. The amount of toxin-induced block was measured at -

20 mV with the exception of NaV1.5, measured at -30 mV due this channels hyperpolarized shift in 

activation potential. I-V curves were taken both before addition of compound and after reaching 

steady-state activity (see Appendix B for example I-T plots). All toxins were tested on at least n = 3 

individual oocytes. 

 

The linear membrane capacitative and leak currents were subtracted using a -P/4 pulse protocol. 

Membrane currents were sampled at 20 kHz and filtered at 2 kHz. Oocytes showing <15% change in 

peak current amplitude over a 5 min incubation period were used in these studies to avoid effects 

associated with current run down. Perfusion was stopped, and cumulative additions of toxin were added 

to a Perspex chamber (0.1 ml volume) to achieve rapid mixing. Activity of peptide was assessed by 

monitoring the change in either peak current or late current over time, until equilibrium was reached 
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(Appendix B). An I-V protocol was performed before and after addition of peptide by holding the 

membrane potential at -80 mV and depolarizing for 20 ms in 5 or 10 mV steps, from -60 to +40 mV 

(Appendix C). Nonlinear regression and statistics calculations (means ± S.E; n ≥ 3) were performed 

using GraphPad Prism software 5.0 (San Diego, CA).  

 

2.9 Cell culture and FLIPR assay 

CHO-K1-hNaV1.4 cells were purchased from Chantest (USA; CT4005). HEK-rNaV1.6-TTXr and 

HEK-rNaV1.7-TTXr cell lines were a kind gift from Dr. Steven Waxman. All three cell lines were 

maintained in DMEM medium supplemented with 10% fetal bovine serum. All mammalian cell lines 

were passaged every 3-5 days using 0.25% trypsin/ EDTA and incubated in a temperature, humidity, 

and CO2 controlled incubator set to 37°C with 5% CO2. For assay, all three cell lines were plated at a 

density of 120-140 × 103 cells per well in a 96-well, black-walled imaging plate (Corning) 48 h prior to 

assay. 

 

The FLIPR assay was run as previously described in Chapter II, Section 2.8 for the Molecular Devices 

No-Wash Membrane Potential Kit, with the exception of using the above described single-channel 

expressing, stably transfected cell lines in place of SH-SY5Y cells. 

 

2.10 Data analysis 

FLIPR 

Unless otherwise stated, all data are expressed as the mean ± standard error of the mean (SEM) 

determined from at least n = 3 experimental replicates, with 2-4 replicates per plate. To establish 

concentration-response curves, responses after addition of compounds were plotted against agonist 

concentration and a 4-parameter Hill equation with variable Hill slope or a two-site model was fitted to 

the data using GraphPad Prism (Version 4.00, San Diego, California). Potency of agonists and 

antagonists are reported as the mean  SEM of 3-4 separate experiments. Statistical significance was 

determined using an unpaired student’s t-test with statistical significance defined as p < 0.05 unless 

otherwise stated. 

 

 



89 

 

TEVC 

Data were analyzed using pCLAMP 10.0 (Molecular Devices, CA, USA) and GraphPad Prism 5.0 

software programs. All data points are shown as mean ± S.E. where n is presented as the number of the 

separate experiments.  

	

To establish concentration-response curves, responses after addition of compounds were plotted against 

the log of sample concentrations and a least squares fit 4-parameter Hill equation with variable Hill 

slope fitted to the data using GraphPad Prism 5.0. Statistical significance was determined using an 

unpaired student’s t-test with statistical significance minimally defined as p < 0.05 unless otherwise 

stated. 

 

2.11 NMR methods and homology modeling 

Lyophilized 13C/15N labeled recombinant TRTX-Pre1a was resuspended at a final concentration of 300 

µM in 300 µl 10 mM sodium phosphate buffer, pH 6.0, constituted in 95% H2O / 5% D2O. An 

additional sample was prepared by lyophilizing the above sample and resuspending it into 100% D2O. 

These samples were both added to susceptibility-matched 5-mm outer diameter microtubes (Shigemi 

Inc., Japan). 

 

Data were acquired at 298 K using a 900 MHz NMR spectrometer (Bruker BioSpin GmbH, 

Rheinstetten, Germany) equipped with a cryogenically cooled triple resonance probe. Sequence 

specific backbone resonance assignments were obtained using 3D CBCA(CO)NH, 3D HNCACB, 3D 

HNCO, 3D H(CCCO)NH-TOCSY, 3D (H)CC(CO)NH-TOCSY, and 2D 1H-15N HSQC spectra, which 

were all acquired using non-uniform sampling and transformed using maximum entropy reconstruction 

with the Rowland NMR Toolkit (http://www.rowland.org/rnmrtk/toolkit.html) as described 

previously[515]. HSQC-NOESY (15N in H2O and 13C in D2O) spectra were obtained for assignment of 

disulfide bonds, using a mixing time of 250 ms. Secondary structure elements were predicted using 

TALOS+ chemical shift analysis [516]. NOESY spectra were manually peak picked and integrated 

using Sparky NMR analysis software[517]. The peak lists were then automatically assigned, distance 

restraints extracted, and an ensemble of structures calculated using the torsion angle dynamics package 

CYANA[518]. The tolerances used for CYANA were 0.03 ppm in the direct 1H dimension, 0.01 ppm 

in the indirect 1H dimension, and 0.4 ppm for the heteronucleus (13C/15N). During the automated 
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NOESY assignment/structure calculation process, CYANA assigned 90.1% of all NOESY cross-peaks 

(829of 920). 

 

TRTX-Pre1a was modeled against the solution structure of β-TRTX-Ps1a (phrixotoxin-3) using 

Modeler v9.8[519]. The solution structure data for β-TRTX-Ps1a was obtained from Prof. Glenn King 

and used with permission.  

 

3. Results 

3.1 Discovery background 

Initial analysis of crude venom from P. reduncus – a tarantula from the family Theraphosidae – using 

two-electrode voltage clamp (TEVC) electrophysiology demonstrated that it potently inhibited hNaV1.7 

channels expressed in X. laevis oocytes. The initial separation step showed that fraction 18 contained 

the desired hNaV1.7 inhibitory activity (Figure 28). Two subsequent steps of activity-guided rpHPLC 

purifications resulted in the identification of a major peak exhibiting inhibitory hNaV1.7 activity 

(Figure 28). The pure peptide also interacted with the rat isoform of NaV1.3. However, instead of 

inhibiting current, as was seen with hNaV1.7, TRTX-Pre1a inhibits the fast inactivation of rNaV1.3 as 

evidenced by the increase in late current (Figure 28 insert). Mass analysis via MALDI-TOF MS 

revealed an M+H+ of 4227.5 (or MW of 4226.5 Da). The mass of the fully reduced/alkylated peptide 

was found to be 588 Da (6 × 98, the MW of maleimide) higher than the native peptide, indicating the 

presence of six cysteines, thus the three disulfide bonds. Edman degradation of the reduced/alkylated 

peptide resulted in complete sequence determination and revealed a previously undiscovered spider 

venom peptide, highly similar to NaV modulating spider Family 1 toxins. This novel peptide was found 

to be 35 amino acids in length with six cysteine residues with spacing indicative of an ICK motif, 

commonly observed with spider venom peptides[239]. The peptide was named as TRTX-Pre1a 

according to standard rational nomenclature proposed by King et al. [520]. Table 3 highlights the 

sequence similarity of TRTX-Pre1a with multiple other spider toxin peptides and their known 

molecular targets. 

 

Reverse-phase HPLC analysis of pure TRTX-Pre1a revealed a leading tail and earlier eluting minor 

peak, as shown in the inset of Figure 28 B. The initial assumption that the lack of symmetry of the 
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peptide was due to the presence of an impurity was put into question when these regions revealed the 

presence of an equivalent mass to the major peak, suggesting there is potential structural heterogeneity 

of TRTX-Pre1a. 

 

 

 

Figure 28: rpHPLC purification of P. reduncus crude venom.  

A) Fraction F18 inhibited NaV1.7, as shown in the insert. B) Secondary purification of F18 

demonstrated NaV1.7 inhibition and NaV1.3 inhibition of fast inactivation. Tertiary purification yielded 

a dominant peak with a leading tail, both with a  M+H+ of 4227.5 (B; insert). 

 

 

A) 

B) 
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Table 3: Sequence alignment of TRTX-Pre1a and related Theraphotoxins.  

Numbering and % similarity are relative to TRTX-Pre1a. U = unknown assignment. 

 

 

3.2  Structural heterogeneity of TRTX-Pre1a as studied by rpHPLC 

It was a possibility that the apparent conformers were a result of cis-trans isomerization about the 

amide bonds, typically occurring around Pro residues but apparent in non-proline peptide bonds, as 

well (Figure 29). Cis-trans isomerization of a peptide bond can result in equilibrium between a cis- and 

trans-isomer as seen for the scorpion toxin BmKIT01[521] and BmK M7[522].  

 

The peptide bond has two stabilized resonance forms, which results in a partial double bond character 

and cis-trans isomerization. Normally peptide bonds adopt the energetically favorable trans-

conformation[523]. But in some instances a peptide bond can adopt cis-configuration as seen for the 

peptide bond Asp9-Tyr10 in the α-scorpion toxin BmK-IT01[521]. An Asn-Tyr bond is also present in 

TRTX-Pre1a so it is possible, that cis-trans isomerization around such a non-Pro peptide bond results 

in the two peaks in Figure 30. Isomerization of the peptide bond between Ser or Cys and Pro in TRTX-

Pre1a is also a possibility, as cis-isomers of peptide bonds between a random amino acid and Pro 

occurs at higher frequency than non-Pro peptide bonds[522]. 

 

In order to test whether the leading tail and minor peak seen with purified TRTX-Pre1a was an 

impurity, misfolded protein, or conformational isomer, a simple rpHPLC experiment based on methods 

developed by Swartz and Mackinnon was implemented[524]. Two fractions were collected covering 



93 

 

sections of the dominant peak of 

TRTX-Pre1a (Figure 30). These 

fractions were reinjected and a similar 

chromatographic profile with the minor 

peak and leading tail was evident. This 

experiment was repeated with 

recombinant TRTX-Pre1a with 

equivalent results. If the leading tail was 

an impurity or misfolded protein, it 

should not appear in the major peak. 

Therefore, reinjection of fractions 

collected from only the major peak 

would result in the absence of a minor 

peak and leading tail, yielding a single 

sharp peak. However, if the structure of 

TRTX-Pre1a has properties that lend it 

towards conformational instability, then 

the minor peak could represent a correctly folded conformational isomer. At room temperature, peptide 

isomerization around the amide bond tends to be a slow process[525, 526]. This could help explain the 

leading tail between the two visible peaks as transitional states between isomers. However, more 

experiments were necessary to test this hypothesis, as well as the possible contribution of one or both 

of the Pro residues. 

 

 

 

Figure 29: Schematic representation of cis-trans 

isomerization of a peptide bond. 

Rotation around the dihedral angle  of the partial 

double bond allows the isomerization. A) cis-trans 

isomerization of a non-Pro peptide bond and B) a Pro 

peptide bond. 
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Figure 30: Chromatographic profile of folded purified TRTX-Pre1a and reinjection of 

major peak.  

rpHPLC analysis of folded TRTX-Pre1a on an analytical C18 column with a 1 mL/min flow 

rate and linear gradient (0.25%/min, 25-35 %B) depicted by the dotted line. The grey bars 

indicate the fractions collected after initial injection. Inserts show rpHPLC analysis of the 

two reinjected fractions using the exact same parameters for analysis. 

 

3.3 TRTX-Pre1a homology model 

More information was required to explain the possible conformational heterogeneity seen with the 

rpHPLC chromatogram. In the absence of a solution structure of TRTX-Pre1a, a homology model was 

created based on the template of a previously isolated spider venom peptide with high sequence and 

structural homology. A sequence comparison of β-TRTX-Ps1a with TRTX-Pre1a shows strong 

homology between many of the loop regions, with some variation occurring over a four residue stretch 

of Loop 1 (Table 3). Isolated from the Chilean spider Paraphysa scrofa, β-TRTX-Ps1a is a non-

selective inhibitor of NaV channels that inhibits current through the mechanism of voltage sensor 

trapping[251]. The NMR solution structure of a β-TRTX-Ps1a has been solved by our close 

collaborator Professor Glenn King, although not yet in the public domain. The structure of β-TRTX-
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Ps1a was consequently used with permission as a template to create a homology model of TRTX-Pre1a 

(Figure 31). 

 

The model of TRTX-Pre1a revealed a hydrophobic face composed of five aromatic residues, W7, F8, 

Y22, W30 and Y32. Both W7 and F8 appeared to be towards the center of the hydrophobic stack on 

adjacent residues and may therefore result in steric clashes leading to energetically strained structural 

arrangement. Further, their sequence position followed directly after the G6 residue. Gly is known to 

contribute to a loss of structural rigidity due to its lack of a sterically hindering carbon side chain, 

resulting in increased flexibility and rotational capacity around this region[527, 528]. Interestingly, the 

highly homologous β-TRTX-Ps1a contains a Gly in a comparable position, but is structurally stable 

while maintaining nanomolar activity[251]. This stability could be attributed to the F5 and W7 residues 

of β-TRTX-Ps1a being separated by a non-aromatic Leu, resulting in a more stable arrangement of the 

F5, L6, W30, and Y33, while W7 is oriented towards the opposite face (Figure 31). The features described 

for Loop 1 of TRTX-rPre1a and its possible contribution to conformational heterogeneity will be 

explained in more detail in the discussion. 

 

Figure 31: Homology model of TRTX-rPre1a compared to β-TRTX-Ps1a. 

A) TRTX-Pre1a, with hydrophobic face residues highlighted in red, disulfide bonds in yellow. B) β-

TRTX-Ps1a solution structure with comparative features highlighted. 

A) B) 
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The homology model resolved structural features of note, specifically involving the close interactions 

between aromatic residues that make up the hydrophobic face and could contribute to aromatic 

stacking. However, as the actual structure of TRTX-Pre1a is likely to differ from the model, 

unanswered questions remain regarding the conformational stability of Loop 1. Therefore, a NMR 

solution structure of 13C/15N-labeled recombinantly expressed TRTX-rPre1a was solved and will be 

discussed in this chapter. 

 

3.4 Bacterial recombinant expression 

Further studies required the production of TRTX-Pre1a for pharmacological characterization as well as 

isotopic labeling for heteronuclear NMR experiments. In order to quickly and efficiently produce 

labeled and properly folded 

disulfide rich protein a method of 

recombinant expression developed 

in-house[529]. TRTX-Pre1a was 

successfully expressed 

recombinantly in E. coli as an MBP 

fusion protein. Before scale-up 

expression to 2 L LB, a 100 mL test 

expression was carried out with two 

temperature conditions with 

multiple time points. No observable 

difference in the level of inducible 

expression was seen between 

temperatures or time points tested 

when assessed by SDS-PAGE 

(Figure 32). The optimal growing 

temperature for E. coli is 37°C, 

which results in a shorter window 

for logarithmic growth and 

therefore faster induced expression 

of the peptide product[530].  

 

 

Figure 32: SDS-PAGE Coomassie stain of test expression 

for rPre1a. 

Time 0 refers to before addition of IPTG. All other times are 

hours after induction. Induction was observed to be 

equivalent for all time points measured. Fusion protein mass 

= MW of [MBP (~42 kDa) + His6 (~600 Da) + peptide (~4.3 

kDa)] = ~47 kDa, indicated by arrow. 
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These results prompted an initial 2 L expression at 37°C for 3 h. After IMAC and rpHPLC purification, 

multiple peaks of equivalent size were seen in the region of expected mature toxin elution (~40% 

solvent B, minute 25) with no clear dominant peak (Figure 33). These results could be indicative of 

either disulfide shuffling due to exposure of glutathione during TEV protease cleavage or improper 

folding occurring in vivo. The latter hypothesis could be tested by optimizing the expression protocol. 

Reducing the temperature of induced expression to 16°C has been proven effective for enhancing the 

expression of soluble protein, limiting protein aggregation, and ensuring proper folding[531]. 

Therefore, a second 2 L expression was carried out with an overnight induction period of 16°C. 

 

Equivalent protocols for IMAC purification and cleavage by TEV protease were performed as 

described previously (Figure 34). The entire cleavage reaction was separated by rpHPLC and a single 

 

Figure 33: rpHPLC trace of rPre1a 2L expression at 37°C post TEV 

cleavage. 

Cleaved MBP can be seen at minute 34. 
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dominant peak was observed (Figure 35A). This result was indicative of proper in vivo folding. The 

peak was identified by MALDI-TOF MS as containing the correct mass for recombinant (r)Pre1a, 

4314.5. The theoretical mass of rPre1a was determined by adding the molecular weight of native Pre1a 

to that of Ser, equating to 4314.93 (Figure 35B). Despite the addition of an N-terminal Ser residue, 

recombinant Pre1a also eluted at the same retention time as the synthetic, properly folded Pre1a (Figure 

36). The fraction was lyophilized and resuspended in pure H2O for further analysis and functional 

testing. 10 µM stocks of purified TRTX-rPre1a were made and stored individually at -20°C to limit 

freeze-thawing of primary stock.  

 

 

Figure 34: SDS-PAGE Coomassie stain of NiNTA purification of rPre1a lysate. 

A) Purification of lysate by NiNTA IMAC. WC=whole cell lysate; Sol=Soluble lysate; 

FT=initial flow through; W=15 mM imidazole wash; E=250 mM imidazole elution; 

1M=1 M final imidazole wash; L= molecular weight marker. B) Before (1) and after (2) 

TEV cleavage of fusion protein. 
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Figure 35: rpHPLC purification of rPre1a. 

A) rpHPLC trace of rPre1a 2L expression at 16°C post TEV cleavage. A dominant peak is visible at 

minute 25-27, suggesting one dominant fold. B) MALDI-TOF MS confirmed a M+H+ of 4314.5. 

 

3.5 NaV channel activity of TRTX-rPre1a 

TRTX-rPre1a was tested on X. laevis oocytes 

injected with rat (r) or human (h) NaV channel 

RNA and measured with two-electrode voltage 

clamp (TEVC) methods. Initial testing with 1 

µM concentrations across all available 

isoforms of NaV channels was performed to 

obtain a general selectivity profile, followed 

by concentration response curves for the more 

active isoforms. All available NaV channel 

constructs were tested, which included the 

centrally expressed neuronal rNaV1.2, the 

peripherally expressed neuronal rNaV1.3 and 

hNaV1.7, the skeletal muscle rNaV1.4, and the 
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Figure 36: Comparison of elution time of rPre1a 

with native Pre1a 
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cardiac hNaV1.5. 

 

The observed effect of TRTX-rPre1a on rNaV1.3 expressed in oocytes was consistent with previous 

results indicating inhibition of inactivation  (Figure 37). Inhibition of fast inactivation can be viewed as 

a prolongation of late current, or a failure of the channel to conform to the inactivated state during a 

depolarizing stimulus. A slight potentiation of peak current was also detectable at 1 µM concentrations. 

 

For all other NaV channels tested, TRTX-rPre1a exhibited either inhibition of current or resulted in no 

significant activity (Figure 38). TRTX-rPre1a had the greatest effect on the neuronally expressed 

rNaV1.2 and hNaV1.7, with 1 µM resulting in an approximate 70% reduction in peak current. 

Concentrations of 1 µM TRTX-rPre1a also inhibited rNaV1.4 to a lesser extent, resulting in 

approximately 15% reduction in peak current. The functional effect of TRTX-rPre1a on hNaV1.5 was 

negligible at a concentration of 1 µM. It is of interest to note that these initial results suggested 

neuronal selectivity over both skeletal and cardiac isoforms. 

 

 

Figure 37: TEVC rPre1a inhibition of inactivation on NaV1.3. 

A) Inhibition of fast inactivation of rNaV1.3 expressed in oocytes with 1 µM rPre1a, as measured by 

TEVC; n=5. Baseline inactivated current is equivalent to 0. Sample current trace for NaV1.3 (B) shows 

inhibition of fast inactivation of late current with 1 µM rPre1a (red) after depolarization to 0 mV from 

a holding potential of -80 mV. Control current is shown in black. 
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Figure 38: TEVC rPre1a inhibitory effects on NaV channels. 

A) Inhibition of NaV peak current with 1 µM rPre1a against four separate rat or human NaV isoforms 

expressed in oocytes, as measured by TEVC; n ≥ 3 for each. The dotted line represents baseline 

current. Significant inhibition of the neuronal rNaV1.2 and hNaV1.7 is observed (p < 0.001). rNaV1.4 is 

significantly inhibited to a lesser extent (p < 0.05). Example current traces for rNaV1.2 (B) and 

hNaV1.7 (C) showing inhibition of peak current with 1 µM rPre1a (red) after depolarization to 0 mV 

from a holding potential of -80 mV. Control currents are shown in black. 

 

TRTX-rPre1a demonstrated an equipotent concentration-dependent effect when tested on both rNaV1.2 

and hNaV1.7 using TEVC methods (Figure 39). The IC50 of TRTX-rPre1a is sub-micromolar a both 

channels: rNaV1.2 with 290 nM and hNaV1.7 with 340 nM. Concentration-response curves were also 

attempted on the FLIPRTetra platform using the Membrane Potential fluorescence kit with stably 

transfected, single NaV channel expressing cell lines. As each cell line was unique to the channel it 

expressed, each required a separate assay. Aside from the cells used all variables were kept consistent 

with the exception of rNaV1.3, where the concentration of veratridine used for depolarization was 

decreased to a submaximal concentration of 5 µM to allow for the observation of a potentiating 
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response. Assays were limited to available cell lines. Both rNaV1.6 (IC50 = 6.4 µM) and rNaV1.7 (IC50 = 

7.5 µM) exhibited a concentration-dependent response to TRTX-rPre1a (Figure 40). Comparing the 

NaV1.7 response between TEVC and FLIPR methods reveals a 22-fold difference in potency for the 

latter method. A range of TRTX-rPre1a concentrations were also tested on both rNaV1.3 and hNaV1.4 

stably expressing cell lines using the same FLIPR methods. No effect of the peptide was observed in 

hNaV1.4 in this assay up to 30 µM rPre1a. In the case of rNaV1.3, analysis of the raw data for each well 

indicated an “all-or-nothing” maximal response with no concentration dependence, rendering an assay 

measuring an agonist response impractical.  

 

 

 

 

 

Figure 39: TEVC concentration response of rPre1a. 

A) Equipotent inhibition of current for both rNaV1.2 (IC50 = 0.29 µM) and hNaV1.7 (IC50 = 0.34 

µM); n ≥ 3 for each data point. Example IV-curves for both B) rNaV1.2 and C) hNaV1.7 after 

addition of 1 µM rPre1a. 
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Figure 40: FLIPR membrane potential concentration response of rPre1a. 

rPre1a tested on stably transfected cell lines A) expressing either rNaV1.6 (IC50 = 6.4 µM) or rNaV1.7 

(IC50 = 7.5 µM. B) Neither rNaV1.3 nor hNaV1.4 resulted in a measurable fluorescent response after 

addition of rPre1a. 

 

3.6 Structure of rPre1a 

The development of an efficient bacterial expression system allowed the production of uniformly 
13C/15N-labelled TRTX-rPre1a for structure determination using heteronuclear NMR. The NMR data 

clearly indicated the presence of multiple stable conformations. Here we have chosen to characterize 

the most abundant form. Backbone assignments were fully completed using the 1HN, 15N, 13Cα, 
13Cβ, 

13C resonance assignments for the toxin obtained from analysis of amide proton strips in 3D HNCACB, 

CBCA(CO)NH, and HNCO spectra. Full peak assignment lists can be found in Appendix E. 

Unfortunately, backbone RMSD values did not converge sufficiently to obtain a high resolution 

structure. Side chain 1H and 13C chemical shifts were obtained primarily from 3D H(CC)(CO)NH-

TOCSY and (H)CC(CO)NH-TOCSY spectra, respectively. However, this pair of triple resonance 

experiments did not provide enough resolution for complete assignment of side chain 1H-13C 

connectivities, so some of the side chain 1H resonances could not be unambiguously assigned. 

Therefore, a high resolution solution structure showing side chain positions could not be determined 

due to insufficient constraints. However, some secondary structure could be determined using the data 

available.  
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Secondary structure prediction analysis was run using TALOS software using the chemical shifts of 

backbone atoms (Figure 41). Two β-sheet formations were predicted for residues C4-L5 and Y22-K23. 

Analysis of the 13C-NOESY strips confirmed the common ICK-motif disulfide folding pattern typical 

of many NaV channel modulating spider venoms (Figure 42). Typical ICK connectivity involves six 

cysteine residues bound in a I-IV, II-V, III-VI pattern. 13Cα and 13Cβ carbons of connecting cysteine 

residues can be visualized in corresponding strips, denoting a close proximity in 3-dimensional space 

consistent with disulfide bonds between the Cys side chains.  

 

 

Figure 41: Secondary structure predictions of rPre1a as calculated by 

TALOS.  β-sheet predictions are denoted by red arrows. 

 

The 15N-HSQC NMR data collected for TRTX-rPre1a also aided in the further characterization of its 

conformational heterogeneity. The 15N-HSQC spectrum revealed one major and two minor conformers 

in solution as demonstrated by a series of smaller peaks (chemical shift perturbations of certain 

residues) (Figure 43). It was possible to assign the backbone of the two minor isoforms thus identifying 

which residues are moving in the minor isoforms (See Appendix F for figure showing the 

CBCA(CO)NH strips). It was previously discussed that the possibility for the observed heterogeneity 

was due to cis-trans isomerization around or near proline residues, of which there are two in TRTX-

Pre1a. However, the residues in close sequence proximity to either P12 (S11, K13) and P19 (C18, N20) did 

not appear to exhibit chemical shift perturbations related to conformational heterogeneity. It should be 

noted that Pro is not visible on the 15N-HSQC spectra due to its lack of amide protons. 
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Figure 42: CBCA(CO)NH strips of the cysteine residues paired up as disulfide partners. 

The connectivity of Cys residues corresponds to a typical ICK arrangement.  

 

The residues that demonstrated the greatest chemical shift perturbations were C4, L5, G6, W7, F8 and 

R10, all of which occur in the Loop 1 region. G6 represents an excellent visual example of relative 

conformational populations as directly related to peak intensity in the 15N-HSQC. As seen in the insert 

of Figure 43, the major peak represents the major conformation in solution, while the two minor peaks 

represent 45% and 20% of the major form, respectively. This information coupled with the homology 

model strongly implicates the Loop 1 regions involvement with the apparent conformational 

heterogeneity of TRTX-Pre1a. 

 

Finally, the homology model of TRTX-Pre1a was aligned with the backbone of the solution structure to 

determine the models quality (Figure 44). The solution structure appears quite similar to the homology 

model. However, deviations do occur with the positioning of the C-terminal tail. 
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Figure 43: TRTX-rPre1a 15N-HSQC. Multiple conformational states are visible through peak 

shifting of a few residues, with Gly6 highlighted as an example. The peak height intensities of Gly6 

reflect the relative proportions of each form of the peptide in solution (A:B:C/1:0.45:0.2). Peak shifts 

of other residues are traced by blue line. Asp15 and Asp21 side chain groups are labeled. 

 

Figure 44: A backbone comparison of the TRTX-rPre1a solution structure and homology model. 

A) The dominant solution structure is represented in a single backbone structure. B) A comparison to 

the TRTX-rPre1a homology model. 

A) B) 
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4. Discussion 

 

Spider venoms have been instrumental in defining novel modes of action of and sites of functional 

regulation on NaV channels, demonstrating an ability to target extracellular loops around the S1-S4 

voltage sensor region and act as gating modifier toxins[34, 78, 532]. The discovery of TRTX-Pre1a 

highlights the very interesting functional modulatory capabilities of spider venom peptides and, 

potentially, many other classes of venom peptides that share the structural conformation of the ICK 

motif. Although the inhibitory mode of action was not fully determined through functional studies, 

evidence suggests that TRTX-Pre1a could work as a gating modifier toxin. The mode of action can be 

inferred from i) structural aspects such as the amphipathic hydrophobic face common among gating 

modifier toxins, ii) a high sequence similarity to related ICK-motif peptides with voltage-gated ion 

channel gating modifier properties (Table 3)[533], and most importantly iii) the functional role this 

peptide has on NaV1.3 through inhibiting inactivation, which in and of itself has been defined as a 

mechanism of voltage sensor trapping [215, 248]. In order to conclusively determine the mode of 

action as a gating modifier, one or more experiments can be conducted. Displacement of a 

radiolabelled ligand known to bind the NaV voltage sensor by titration of TRTX-Pre1a would suggest 

equivalent or overlapping binding sites. Mutagenesis of voltage sensor or loop regions of the NaV1.2 or 

NaV1.7 channels known to bind gating modifier toxins, with a subsequent drop in activity for TRTX-

Pre1a, would be a similar method of determination through active site association[34, 215]. An 

electrophysiological assessment could also be carried out that measures the voltage-dependence of 

activation, with a positive shift indicating gating modifier activity. However, experimental data remains 

to be completed in order to confirm this hypothesis.  

 

4.1 Recombinant expression 

Bacterial recombinant expression has been seen as a cost-effective and reliable alternative to producing 

peptides synthetically, potentially yielding milligrams of soluble, folded, mature peptide in a few liters 

of liquid medium[289]. The method used in this thesis for expressing recombinant TRTX-Pre1a was 

successful in producing high yields, with approximately 5 mg of mature, properly folded toxin 

produced per liter of LB medium. Recombinant expression also allowed the efficient production of 

uniform 13C/15N labeled peptide for NMR structural elucidation. The pLIC vector was chosen as a 

suitable candidate because of its production of a N-terminally fused maltose binding protein (MBP) and 
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periplasmic localization sequence[511]. The MBP protein acts as a solubility chaperone, limiting the 

occurrence of inclusion bodies that form from insoluble product. MBP has been show to be 

“uncommonly effective” at promoting peptide solubility when compared to other commonly used 

fusion proteins, such as glutathione S-transferase, and thioredoxin[534]. The exact mechanism of how 

and why MBP is so effective is not entirely known, although the periplasmic localization is known to 

aid folding. MBP itself is thought to have an “intrinsic” property of solubility, but endogenous 

chaperones within E. coli have also recently been demonstrated to mediate proper folding of the mature 

peptide[535].  

 

The cytoplasm of both eukaryotic and prokaryotic organisms is known be a reducing environment, not 

conducive to proper disulfide bond formation[536]. Eukaryotic organisms create an environment to 

properly fold peptides within an organelle called the endoplasmic reticulum (ER). Prokaryotic 

organisms lack an ER. However, gram-negative bacteria such as E. coli have a periplasmic space that 

exists between the inner and outer membrane. Not only is this space considered non-reducing, multiple 

disulfide bond isomerases and other chaperones have been found within the periplasm, making it a 

specialized region within the cell for post-translational folding[537]. The MalE periplasmic localization 

sequence on the pLIC vector promotes the fusion protein to be shuttled to the bacterial periplasm post-

production, where environmental conditions are more conducive to native folding [538]. 

 

The pLIC vector is completed with the addition of a TEV recognition site for cleavage of mature toxin 

from the fusion construct and an N-terminal His6 tag for immobilized-metal affinity chromatography 

(IMAC) with NiNTA resin. The TEV cleavage recognition site requires an optimal signal sequence of 

ENLYFQ/S. Although TEV cleavage has been shown to work effectively when the C-terminal Ser is 

replaced by multiple other residues[539], it was our observation that Ser was necessary to induce 

repeatable, full cleavage of the mature toxin from the MBP fusion protein. However, cleavage between 

the Gln and Ser leaves a N-terminal Ser residue as an artifact of cleavage on the mature toxin. This did 

not appear to have an effect on the function of this peptide as compared with the native peptide of the 

synthesized native sequence. 

 

In summary, the recombinant expression system efficiently produced milligrams of soluble, properly 

folded peptide in a reproducible, cost-effective manner.  
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4.2 Activity 

Many of the NaV modulating spider venoms toxins so far discovered conform to an ICK motif and act 

as gating modifier toxins, targeting extracellular loops around the S1-S4 voltage sensor region in DI-

DIV[34, 78, 532]. As discussed in Chapter 1, these regions have been segmented into neurotoxin 

receptor site 3 and site 4 as originally defined by α-scorpion toxin and β-scorpion toxin binding, 

respectively. Site 3 toxins are voltage-dependent inhibitors of inactivation that bind in a state-

dependent manner, trapping the voltage sensor in an open, hyperexcitability conformation[231]. 

Likewise, site 4 modulating peptides produce hyperexcitability by shifting the voltage-dependence of 

activation to a hyperpolarized potential, resulting in activation at sub-threshold potentials[188, 254, 

540]. A few spider venom peptides have been found to bind to the same loop regions comprising site 4 

but result in inhibition of current, or in some cases may occupy an undescribed binding region 

altogether. 

 

One of those venom peptides that may define a new site for gating modifier peptides is β/ω-TRTX-

Tp2a (ProTx-II)[251, 541]. Initial results using point mutations of specific extracellular loop amino 

acids of hNaV1.5 concluded that Tp2a does not bind to any extracellular region, but instead binds to a 

transmembrane helical region[542]. The amphipathic structure of Tp2a, caused by its hydrophobic face 

composed of Loop 1 residues, was shown to contribute to lipid binding[542]. This functional property 

was seen previously with other spider toxins and presented as a hypothesis of a lipid submerged 

binding site[532]. An exploration of NaV specificity found Tp2a to be 100-fold more selective to 

NaV1.7 than other isoforms, which is interesting because NaV1.7 possesses a unique residue on the C-

terminal portion of DIIS3[541]. Position 813 is a Phe, whereas all other NaV subtypes have a Gly or Ser 

(NaV1.6). Mutation of Phe813 to a Gly or Ser resulted in 100-fold reduced Tp2a sensitivity relative to 

other NaV subtype activity[541]. However, mutating the equivalent Gly839 residue in NaV1.2 to Phe 

did not significantly increase sensitivity to Tp2a, suggesting that the interaction of Tp2a is more 

complex and the Phe in this position is the only residue necessary to confer high affinity of Tp2a[541] 

[34]. Results focusing on larger regions of the voltage sensor domain further support the S3-S4 

segments as targets for Tp2a high affinity binding, and suggest that Tp2a may actually bind (at least 

partially) to extracellular S3-S4 loop regions[34]. Using chimeric expression of the rNaV1.2 voltage 

sensor “paddle” regions – composed of the C-terminal S3, N-terminal S4 regions, and the S3-S4 

extracellular linker –  spliced into KV2.1 domains, Tp2a was shown to inhibit activation by interacting 

with DI, DII, and DIV[34]. This finding was somewhat surprising given the presumed role of DIV in 
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inactivation as suggested by the authors. Based on the findings of this research, Bosmans et al. 

proposed that for a toxin to alter inactivation it must exclusively interact with the voltage sensor paddle 

of DIV and “any additional interactions with the other paddles will alter channel opening”[34]. This is 

an interesting finding that may give clues as to how Pre1a is able to alter the pharmacology of different 

NaV isoforms in two distinct ways. If this hypothesis is followed, the interaction of Pre1a with the 

individual domains of NaV1.3 should be explored, specifically whether it binds DIV without interacting 

with the other three domains of this isoform. However, the authors comment that there is high 

variability when dealing with specific toxins and receptor interfaces, and there is no “general lock-and-

key mechanism” to define a standard[34]. 

 

As stated previously in Chapter 1, µ-TRTX-Hh2a (huwentoxin-IV) has been shown to interact with 

neurotoxin receptor site 4 and because of its high affinity for NaV1.7, has become a popular candidate 

for intensive toxin profiling and NaV selectivity characterization through directed mutagenesis and 

functional studies[243, 256, 543-545]. Both Tp2a and Hh2a have been demonstrated to inhibit 

activation by trapping the DII voltage sensor in the resting configuration, although HWTX-IV may 

selectively bind to neurotoxin site 4[243, 546].   Both of these toxins were the highlight of an extensive 

study to define their voltage sensor activity on hNaV1.7[543]. The results of this study defined a new 

mode of action for Tp2a, where at concentrations above 1 µM the toxin was found to induce sustained 

currents through inhibition of fast inactivation in a mechanism similar to neurotoxin receptor site 3 α-

scorpion toxins, as well as reflecting activity seen with Pre1a on NaV1.3. This activity was found to be 

preferential to DIV of NaV1.7 and fully independent to inhibition of activation, which like Hh2a 

requires the DIIS3-S4 paddle region. Unlike Pre1a, Tp2a exerts its mode of action simultaneously and 

is unable to fully inhibit NaV current. These results suggest that Tp2a can bind to two different sites of 

the NaV channel simultaneously. This not only calls into question the previous proposal that DIV 

requires an exclusive interaction to inhibit NaV inactivation, but may also help redefine the roles of the 

classical view of NaV neurotoxin receptor sites[34, 543]. 

 

Data gathered from experiments with Hh2a and Tp2a not only demonstrate unique functional 

promiscuity, but also give much needed insight into the mechanism of interaction with NaV channels. 

Through the work described, the extracellular loops of the voltage sensor region of DII and DIV have 

been shown to be critical for the function of these two peptides’ specific mode of action. This insight 

can give us ideas on how to determine the functional role of Pre1a for future studies, as Pre1a exhibits 
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both inhibition of activation and inhibition of fast inactivation. Hh2a has been further characterized 

through Ala scanning and directed mutagenesis, demonstrating the functional necessity of hydrophobic 

residues on Loop 1 and the C-terminal region of the toxin[547]. Residues contributing to the 

hydrophobic face of Pre1a exist in similar Loop 1 and C-terminal regions, suggesting that this region of 

Pre1a is likely to be important for its activity at NaV channels. 

 

As with Tp2a, a significant structural feature of gating modifier peptides is their amphipathicity, with 

one face composed of hydrophobic residues surrounded by polar, mostly basic residues[254, 255, 548, 

549]. This structural composition is thought to aid in their observed ability to partially partition within 

the cellular membrane and interact with the transmembrane voltage sensor region[532]. This 

amphipathicity could also function to mediate interactions across different regions on the surface of the 

target receptor simultaneously, resulting in multi-domain binding[550]. Membrane partitioning should 

be included in future experiments to assess this ability in TRTX-Pre1a. Lipid model systems using 1-

palmitoyl-2-oleoyl-sn-3-phosphatidylcholine (POPC) or of a mixture of POPC and 1-palmitoyl-2-

oleoyl-sn-3-phosphatidylglycerol (POPG) to mimic the negative surface potential of the lipid leaflet 

facing the cytoplasm have been successfully tested and can be reproduced to determine if Pre1a 

exhibits membrane partitioning[551-553]. 

 

The functional profile of TRTX-Pre1a proved to be unique in that it not only inhibited NaV1.2 and 

NaV1.7 at sub-micromolar concentrations, but inhibited fast inactivation of NaV1.3 as well. As 

discussed, this inhibition of inactivation has been previously noted with Tp2a [543]. However, this 

effect was caused simultaneously with inhibition of activation. Sequence similarity to known peptides 

of similar class and known mechanisms of action give hints to the possible mechanism of Pre1a 

activity. The observed inhibition of fast inactivation of NaV1.3suggest that TRTX-Pre1a interacts with 

the voltage sensor as a gating modifier. A small depolarizing shift in the V1/2 max of NaV1.7 and 

NaV1.2 was observed for Pre1a (See Appendix C for normalized I-V plots), although more experiments 

are needed to confirm the results and decrease the standard error.. The inhibitory effect on NaV1.2 and 

NaV1.7 still remains to be determined. If NaV1.3 activity is due to a voltage sensor interaction, 

inhibition of activation could be via a mode of action similar to that of site 4 spider venom peptides, 

requiring the DIIS3-S4 paddle region. This mechanism involves voltage sensor trapping in the closed 

state, resulting in inhibition of current during a standard depolarization.  
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As to the binding sites through which it inhibits activation of NaV1.3, there are several possibilities: i) it 

binds to site 3 in a mechanism similar to Tp2a or α-scorpion toxins ii) it binds to site 4 of NaV1.3 but 

inhibits inactivation, not activation, or iii) it interacts with a completely novel binding site, around the 

voltage sensor domain or otherwise, to inhibit inactivation. As shown with Tp2a, these macromolecules 

are able to bind across sites, affecting multiple regions at once. Understanding the basis of the dual 

pharmacological action of Pre1a is an important step which requires further experimentation. Future 

studies to elucidate this activity could include using NaV channels with mutations of binding sites in 

combination with Pre1a mutants, the development of NaV channel chimeras similar to Bosmans 

referenced work, where a single domain of the NaV channel is substituted with a KV domain[79], and 

competitive binding experiments with known site 3 and site 4 toxins. Finally, the inhibitory effects of 

site 4 inhibitors can be reversed by strong, long-lasting positive voltage pulses, which drive the voltage 

sensor back into its activated conformation[246]. This experiment could be attempted as justification 

for site 4 interaction, although it is possible that an undefined interaction site in the voltage sensor 

region could be involved in the inhibitory activity of TRTX-Pre1a. More detailed examples of 

electrophysiology experiments are given in the final discussion. Regardless, defining the mode of 

action of Pre1a and its site of NaV channel interaction across the various isoforms remains as critical 

steps. If TRTX-Pre1a is shown to be a gating modifier and not a pore blocker, it is proposed that it be 

given the prefix “β/δ” to indicate the dual activity at NaV channels; β to indicate that it shifts the 

voltage-dependence of activation of NaV1.2 and NaV1.7, and δ to indicate inhibition of fast inactivation 

of NaV1.3, as per King et al. [353]. 

 

4.2.1 FLIPR and TEVC discrepancy 

An adaptation of the FLIPR assay developed in Chapter II was attempted using single NaV channel 

expressing cell lines against TRTX-rPre1a. For the initial cell lines tested, all showed a significant 

decrease in potency as compared to TEVC methods tested. A direct comparison could be made with 

NaV1.7, which has a 22-fold higher IC50 value while using the FLIPR platform. It is important to 

mention that different NaV1.7 channels were used between platforms, with the human homologue of 

NaV1.7 used for TEVC experiments and the rat homologue of NaV1.7 expressed in the cell lines used 

for FLIPR assay. It is unlikely that such a large discrepancy would be apparent when both channels 

share a 92.7% sequence homology, but the possibility cannot be completely discounted[554]. Another 

likely scenario involves cross-platform variability due to different endpoint responses being measured 
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and different host cells tested (oocytes versus mammalian cells) to name a few, all contributing to the 

apparent discrepancy in sensitivity. As TEVC was used for initial discovery purposes, the data obtained 

set a precedent for activity. The FLIPR assay resulted in much lower potencies overall and TEVC was 

pursued as the primary means of functional characterization for further studies. 

 

4.3 Structure 

Structural heterogeneity has been observed among a few tarantula toxins affecting the voltage sensor 

domain on voltage-gated ion channels[524, 555, 556]. VSTX3 is a toxin affecting the voltage-gated 

potassium channel from archeabacteria Aeropyrum pernix and showed a broad rpHPLC 

chromatographic profile[555]. Likewise, κ-TRTX-Gr1a (hanatoxin 1) has been shown to elute as two 

chromatographically separated peaks in equilibrium[524, 556]. In the case of κ-TRTX-Gr1a the authors 

concluded that the two peaks were a chromatographic phenomenon [524]. However, for VSTX3 it was 

proposed that some tarantula toxins affecting the voltage sensor domain of voltage-gated ion channels 

might exhibit a degree of conformational heterogeneity. As mentioned previously, κ-TRTX-Gr1a 

exhibits the ability to interact with multiple regions of the KV channel simultaneously. Perhaps the 

structural flexibility of these peptides allows them to occupy multiple binding domains and is necessary 

for their promiscuous function. This would be an extremely interesting phenomenon to explore, with 

relevant implications for rational drug design. Unfortunately, in the case of VSTX3, this phenomenon 

was not explored in more detail[555].  

 

The chromatography of κ-TRTX-Gr1a appears very much like the chromatographic behavior observed 

for TRTX-Pre1a, as can be seen in Figure 30 and the inset of Figure 28. Therefore an experiment 

similar to the one conducted by Swartz and Mackinnon was carried out [524]. Purified, folded TRTX-

Pre1a was injected and fractions of the dominant peak were collected. The fractions collected from the 

major peak were reinjected and a similar chromatographic profile with the two peaks was evident, as 

visualized in the inserts in Figure 30. This could be partially due to the multiple structural 

conformations that appear to be present in solution at room temperature. The possibility that the two 

visible peaks within the inset of Figure 28 originate from at least two conformational isomers of 

TRTX-Pre1a in solution was supported by information gained from making a homology model of the 

peptide and confirmed using NMR data collected to determine the solution structure of TRTX-rPre1a. 
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In order to gain a better understanding about the possible causes of the apparent conformational 

heterogeneity, a homology model of TRTX-Pre1a was made using the solution structure of β-TRTX-

Ps1a. The model revealed key structural features, such as a hydrophobic face made up of five residues, 

W7, F8, Y22, W30 and Y32. This structural feature is common with many NaV modulating, ICK motif, 

spider venom peptides[245] and has been hypothesized to contribute to the voltage sensor trapping 

mechanism of site 3 and site 4 gating modifier toxins[532]. The hydrophobic face has been theorized to 

allow the peptide to partition within the outer cell membrane, exposing a larger surface of interaction 

within the voltage sensor region[557]. The model revealed possible structural tension within the 

between the large aromatic residues of the hydrophobic face, hypothesized to be a product of aromatic 

stacking which will be discussed in detail later. To confirm the constraints and provide more evidence 

against the argument that this could be an artifact of the template used for modeling TRTX-Pre1a, a 

solution structure was attempted.  

 

The solution structure of TRTX-rPre1a was partially solved using heteronuclear NMR methods 

previously described. The peptide was uniformly 13C- and 15N-labeled through recombinant methods, 

which allows for high resolution chemical shift mapping of resonances [558]. However, the backbone 

RMSD values did not converge sufficiently to determine a high resolution structure, nor was the 

assignment of the aliphatic and aromatic side chain 1H and 13C atoms possible to complete using the 

acquired TOCSY spectra. Regardless, the information available was enough to assign secondary 

structure. Through analysis of the Cys residues through the 13C-NOESY strips, it was possible to 

identify disulfide bond connectivity through interproton nuclear Overhauser effect (NOE), which 

indicated the pairs of protons that are close to one another in space by around 6 Å. This was achieved 

by identifying NOEs between paired Cys residues, due to their proximity through space. The 

connectivity seen through this method was consistent with the standard ICK motif connectivity of I-IV, 

II-V, III-VI. Secondary structure of TRTX-rPre1a was predicted using TALOS software, which 

identified residues C4-L5 and Y22-K23 as potential contributors to β-sheet formation. The standard ICK 

fold as mapped in Figure 5 in the introduction identifies the typical antiparallel β-sheets found in many 

NaV modulating spider venom peptides. Residues C4-L5 represent a region on the ICK map that 

typically does not conform to a β-sheet on other peptides of similar class derived from spider 

venom[309]. Analysis of the backbone structure of TRTX-rPre1a suggests that a β-sheet in this 

position would not align in an antiparallel fashion (Figure 44). TALOS also did not predict a more 

common anti-parallel β-sheet that is known to occur in proximity to the 6th Cys residue. Relying on the 
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homology model, a β-sheet around the 6th Cys residue would likely align in an antiparallel fashion to 

the Y22-K23 β-sheets. 

 

Although it was not possible to determine a high resolution structure, important evidence for the cause 

of structural heterogeneity in TRTX-Pre1a was found upon examination of the 15N-HSQC spectrum. 

The hypothesis of cis-trans isomerization around the Pro amide bond was discounted a due to a lack of 

chemical shift perturbation in the vicinity of these residues. Perturbations were seen in residues 

associated with the Loop 1 region, confirming that the non-symmetrical peak observed on rpHPLC is 

due to structural heterogeneity under the chromatographic conditions. Furthermore, the NMR data 

indicates that the hydrophobic residues in this region – particularly W7 and F8 – are involved in the 

structural heterogeneity as hypothesized above. Analysis of the G6 chemical shift perturbations 

indicated a presence of at least three forms of the toxin in solution. 

 

These findings brought us back to the homology model in Figure 31 to study the Loop 1 region. 

Directly adjacent to the G6 residue are two aromatic residues contributing to the hydrophobic face, W7 

and F8. It is highly plausible that the five aromatic residues composing the hydrophobic face associate 

in a process known as aromatic stacking. Aromatic stacking involves non-covalent, weak interactions 

of ring centroids separated by a preferential distance of between 4.5-7 Å and typically results in 

structural stabilization, with multiple electrostatically favorable geometries possible [559]. The 

electrostatic component has been proposed to arise from interactions of the quadrupole moments of the 

aromatic rings. Two confirmations are found commonly in peptides i) π-interactions, which are side to 

face interactions of the ring centroid, and ii) offset stacking, which exhibits similar geometry to that of 

DNA base pairs [560]. Whereas β-TRTX-Ps1a and other similar toxins appear to form an ordered 

aromatic stack with two to three contributing residues, the association of five offset aromatic residues 

of TRTX-rPre1a may contribute to the shuffling of the aromatic stacks between multiple energetically 

favorable positions. In TRTX-Pre1a, the W7 residue is sandwiched between a F8 and W30 residue on 

one side and a Y22 and Y32 on the other, within 7 Å to each. This positioning is hypothesized to cause 

conformational fluctuations of W7 between multiple possible aromatic stacking interactions. 

Complicating the issue further, both W7 and F8 appear directly adjacent to each other, constrained by 

their proximity and the structural rigidity of disulfide bonding. The strong forces of disulfide bonds 

associated with the ICK motif secondary structure would work in opposition to weaker, non-covalent 

aromatic side chain interactions [561]. It is a hypothesis of this chapter that the aromatic stacking of 
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TRTX-Pre1a contributes to the structural instability, with one dominant form stabilized by the peptides 

structural motif. The W7A residue appears critical for this mode of action. 

 

4.4 Summary 

TRTX-Pre1a demonstrated a unique and interesting set of qualities, not yet seen with venom peptides 

characterized to date. Not only did Pre1a selectively inhibit neuronal NaV peak current – including the 

novel pain target NaV1.7 – but inhibited fast inactivation of the neuronal NaV1.3 channel at sub 

micromolar concentrations. Further, the appearance of conformational heterogeneity was demonstrated 

over multiple experiments. Data suggested the Loop 1 region of Pre1a contributes to this observed 

structural heterogeneity. This could likely be related to opposing forces due to favorable aromatic 

stacking interactions, steric clashes, and structural constraints due to the covalent disulfide bonds. The 

contribution of Gly6 to Loop 1 flexibility could also play a part. The role of this conformational 

flexibility, if any, is unknown, but it may be that it could play a role in the ability of Pre1a to exhibit 

two mechanisms of action at different channels.  

 

In order to test this hypothesis, as well as examine the functional effects of Pre1a in greater detail, a 

mutagenesis study was undertaken and will be discussed in detail in the next chapter. 
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Chapter IV: Guided mutagenesis and SAR of TRTX-rPre1a 

 

1. Introduction 

 

The previous chapter highlighted the unique, characteristics of /-TRTX-Pre1a and demonstrated an 

efficient method of production for this peptide that can be used as a platform to carry out structure-

activity relationship studies. The ability of TRTX-Pre1a to modulate different isoforms of the NaV 

receptor family with two distinct mechanisms of action can give helpful insight about how subtle 

changes in amino acid sequence can result in pronounced selectivity and functional changes. Not only 

did TRTX-Pre1a demonstrate functional characteristics not yet seen with other venom peptides, but it 

also exhibited conformational heterogeneity 

 

TRTX-Pre1a shares close sequence homology to many other spider venom peptides discovered over 

the last decade, specifically the NaV spider toxin Family 1[239] (Table 4). Many of these peptides 

already have pharmacological profiles of varying scope (from very basic nerve fiber function to in 

depth selectivity) that can be drawn upon to begin to understand which regions of Pre1a might 

contribute to its activity and subtype selectivity. Additionally, the inhibitory cysteine knot (ICK) motif 

apparent among these NaV modulating peptides imparts a further commonality. The structural rigidity 

of the ICK motif makes these peptides of interest for therapeutic development as it imparts high levels 

of thermal and biological stability. In combination, these similarities can be exploited in order to learn 

more of how structural and sequence characteristics impart functional differences. The close structural 

motif of all these peptides allows a close comparison of minor amino acid differences between them.  

  

In essence, using available data regarding known peptides of similar classes can help determine 

potential residues of functional importance. This chapter describes the directed mutagenesis of TRTX-

rPre1a and the resulting pharmacologic and structural changes imparted by these selected mutations. 

Using a combination of results obtained in the last chapter coupled with information collected from 

various sources describing studies on homologous venom peptides, five mutants were designed and 

produced. These mutations focused on points of interest regarding either i) the observed structural 

heterogeneity of TRTX-Pre1a, hypothesized to be a result of aromatic interactions within the Loop 1 
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region; or ii) the observed functional necessity of individual residues found through the alignment of 

characterized peptides with high sequence similarity yet differing selectivity.  

 

Table 4: NaV modulating spider toxin alignment.  

Comparative amino acid sequences of spider toxin family members with known NaV selectivity profiles. 

Green equates an IC50 <1 µM. Red is inactive up to 10 µM. Yellow is activity >1 µM. Blue represents 

<1 µM agonist activity. White is no data available. Data accessed through Arachnoserver[509]. 

 

 

Alanine (Ala) scanning is a commonly adopted method used to determine the functional significance of 

individual residues on both the structure and activity of a peptide[562, 563]. Out of the twenty standard 

amino acids, Ala is used because it contains a non-bulky, chemically inert methyl functional group that 

maintains the secondary structure preferences of many of the other amino acids while eliminating the 

side chain interactions. While Gly eliminates the functional side chain group completely, the 

replacement of the methyl group with a hydrogen atom creates added conformational flexibility that 

can distort a peptide’s secondary structure, hence its lack of use for a residue replacement[564]. This 

chapter incorporates both Ala substitutions as well as substituting residues based on functional 

properties, in this case charge. Recombinant methods of production optimized for TRTX-rPre1a in the 

previous chapter were used in lieu of solid phase synthesis. 
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The primary aims of this chapter were as follows:  

 

1) Identify the residue(s) responsible for the observed structural heterogeneity apparent in native 

TRTX-Pre1a and determine the functional effect of their mutation to alanine.  

 

2) Focus on functional mutations of a single C-terminal residue known to impart specific NaV1.3 

isoform selectivity and attempt to engineer in/out higher NaV1.7 selectivity for rPre1a. 

 

3) Solve the solution structure of a single mutant affecting the conformational heterogeneity seen with 

the native and recombinant Pre1a and compare both structural and functional characteristics. 

 

2. Methods 

 

2.1 Selection of rPre1a mutants 

TRTX-Pre1a has high sequence similarity to a variety of previously discovered ICK motif spider 

venom peptides across a range of genetic families, each with slightly differing NaV isoform selectivity 

profiles (Table 3/Table 4)[251]. The close sequence homologies coupled with associated changes in 

activity have the potential to indicate which residues of TRTX-Pre1a contribute to selectivity and 

general NaV activity. The first step was to access all known, published, and publicly available spider 

venom peptides on Arachnoserver [509]. Peptides were initially sorted for known biological activity 

towards mammalian NaV channels. Next, peptides were sorted for structural similarity, primarily being 

the six cysteine framework defining the ICK motif. Peptides exhibiting an ICK secondary structure but 

with more than six disulfide bonds were excluded [565]. The resulting Table 4 was used to determine 

residues that could be targeted for mutagenesis of rPre1a.  

 

There were two primary aims for the selection of residues for mutation. Residues were either chosen 

for their proximity to regions of conformational instability or for their known contribution to NaV 

channel function and selectivity. The first two mutations were decided based on structural aspects of 

rPre1a highlighted in the previous chapter, elucidated using a combination of homology modeling 

based on Ps1a and NMR data. The homology model revealed the dense clustering of aromatic side 
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chain residues in Pre1a that form the hydrophobic face common to this peptide family. In particular, it 

showed that the Loop 1 residues W7 and F8 are positioned in between several other aromatic residues – 

Y22, W30, and Y33 – in a potentially conformationally unstable position. The hydrophobic face of Pre1a 

differs from other known spider venom peptides of the same family in that all five contributing residues 

are aromatic. With Ps1a there is a significant contribution of Leu in the center of the hydrophobic 

face[251], while Tp2a has a Met[566], both of which are less bulky, non-aromatic residues. Neither 

toxin shows structural heterogeneity.  

 

A hypothesis regarding the close proximity of the hydrophobic stack of W7 and F8 of Pre1a as 

compared to F5 and L6 of Ps1a was explained in detail in the previous chapter. Based on this 

hypothesis, in this study W7 and F8 were independently mutated to Ala. The expected results of 

changing these residues to Ala would be to reduce the potential overcrowding of aromatic side chains, 

thereby decreasing or eliminating structural heterogeneity (Table 6). However, Trp is known to be a 

common protein-protein interaction “hotspot” residue, greatly contributing to receptor-ligand 

interactions [567]. It is therefore possible that these mutations may modify the rPre1a structure in such 

a way as to critically change the pharmacologic profile. It is therefore important to also assess whether 

these mutations affect NaV function in any way, including the dual mechanism of action.  

 

To address Pre1a function specifically, Table 4 was used to compare characterized peptides with high 

sequence similarity and known NaV activity profiles. After careful analysis of Table 4, an interesting 

sequence deviation was noted, which is highlighted in Table 5. The spider venom peptides Cm1a and 

Cm1b differ by only a single residue at position 32. Changing the aromatic Y32 residue of Cm1b to a 

negatively charged D32 of Cm1a abolishes the inhibitory activity at NaV1.3 while maintaining activity 

for all other NaV channels tested [251]. The equivalent residue position in Pre1a is the positively 

charged K34. Ps1a retains inhibitory activity to NaV1.3 and contains a polar, uncharged Q34 (Table 5). 

With this information, it was decided to focus on three functional charge mutations of the K34 residue 

for rPre1a, substituting it for i) a hydrophobic, but less sterically hindered Ala (A) to potentially 

remove side chain interactions, ii) a negatively charged Asp (D) as pre the NaV1.3 inactive Cm1b, and 

iii) a polar, uncharged Gln (Q) as per the NaV1.3 inhibitor Ps1a (Table 6). 
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Table 5: Sequence alignment of key peptides with summary.  

Spider toxin family alignment broken down to represent three structurally related peptides to Pre1a 

with the most interesting available functional information. Highlighted regions on the sequence 

correlate with Table 5. 

 

 

Table 6: Summary of TRTX-rPre1a mutations 

 

 

2.2 Production and purification of TRTX-Pre1a mutants 

Recombinant expression of all mutants and the resulting purification by IMAC and rpHPLC within this 

chapter followed methods described in Chapter III, section 2.1-2.6. 

 

2.3 Assessment of structural heterogeneity by rpHPLC 

rpHPLC experiments at increasing temperatures to observe the effect on isomerization were carried out 

using a CTO-20A column oven attached to a Shimadzu LC-20AT Prominence system equipped with a 

SIL-20AHT autosampler and a SPD-20A dual wavelength UV/VIS detector. The instrument was 

equipped with a Zorbax 300SB-C18 column (Agilent; 4.6 × 150 mm; 3.5 µm particle diameter) and run 

on a 10-50% linear gradient buffer exchange of solvent A (H20, 0.1% TFA) to B (90% ACN, 10% H20, 

0.1% TFA) over 20 min with a flow rate of 0.5 mL/min. 

 

Mutation

W7A

F8A

K34A Hydrophobic, occupies less space than Tyr of Cm1b

K34D Cm1a mimic, knocks down Nav1.3 activity (+) to (‐) charge

K34Q Ps1a mimic ‐ switched residue to polar, uncharged

Reasoning

Based on homology model of Ps1a. Area on Loop 1 in close 

proximity to Gly
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2.4 TEVC methods 

Handling of oocytes, buffers used, and all recording and analysis methods were completed as 

previously described in Chapter III, section 2.8 and analyzed according to methods in Chapter III, 

section 2.10. 

 

2.5 Structure determination by heteronuclear NMR 

Lyophilized 13C/15N-labeled recombinant rPre1a[W7A] was resuspended at a final concentration of 300 

µM in 300 µl 10 mM sodium phosphate buffer, pH 6.0, constituted in 95% H2O / 5% D2O. 

Subsequently sample was added to a susceptibility-matched 5 mm outer diameter microtube (Shigemi 

Inc., Japan). 

 

Data were acquired at 298 K using a 900 MHz NMR spectrometer (Bruker BioSpin GmbH, 

Rheinstetten, Germany) equipped with a cryogenically cooled triple resonance probe. Sequence 

specific backbone resonance assignments were obtained using 3D CBCA(CO)NH, 3D HNCACB, 3D 

HNCO, 2D 1H-15N HSQC, 3D HBHA(CO)NH, and 4D HCC(CO)NH-TOCSY spectra, which were all 

acquired using non-uniform sampling and transformed using maximum entropy reconstruction with the 

Rowland NMR Toolkit (http://www.rowland.org/rnmrtk/toolkit.html) as described previously [515].  

 

HSQC-NOESY (15N-, 13C aliphatic-, 13C aromatic-) spectra were obtained using uniform sampling and 

processed using standard Fourier transform methods, then used for extraction of inter proton distance 

restraints, with a mixing time of 220 ms. Dihedral-angles were derived from TALOS chemical shift 

analysis [516], and the restraints range for structure calculations were set to twice the estimated S.D. 

NOESY spectra were manually peak picked and integrated using Sparky NMR analysis software [517]. 

The peak lists were then automatically assigned, distance restraints extracted, and an ensemble of 

structures calculated using the torsion angle dynamics package CYANA[518]. During the automated 

NOESY assignment/structure calculation process, CYANA assigned 95.4% of all NOESY cross-peaks 

(1277 out of 1338). The final structure was calculated using 450 unique distance restraints (142 intra 

residue NOEs, 139 sequential NOEs, 63 medium range NOEs – to residues closer than 5 amino acids 

away in the sequence, and 106 long range NOEs – to residues further than 5 amino acids away in the 

sequence). The backbone root-mean-square deviation (RMSD) was calculated to be 0.65 Å and the 

side-chain RMSD was 1.79 Å. Dihedral-angles (26 φ, 27 ψ) were derived from TALOS chemical shift 
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analysis[516], and the restraint range for structure calculations was set to twice the estimated S.D. All 

X-Pro peptide bonds were identified as trans on the basis of characteristic NOEs and the Cα and 

Cβ chemical shifts of the Pro residues.  

 

Table 7: Statistical analysis of rPre1a[W7A] structures1 
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3. Results 

 

3.1 Purified TRTX-rPre1a mutants 

All five mutants of TRTX-rPre1a were successfully cleaved from their fusion protein and purified in 

milligram yields. Mass was confirmed by MALDI-TOF MS and purity was confirmed using analytical 

rpHPLC methods previously described. In reversed-phase chromatography, retention time of a peptide 

is directly related to its hydrophobicity [568]. A comparison of rpHPLC traces for each mutant showed 

shifts in retention times that reflect 

changes in hydrophobic surface 

properties (Figure 45). Both W7A and 

F8A resulted in a leftward shift of 

retention time as compared to native 

rPre1a, signifying a decrease in 

hydrophobic properties. This would 

be expected for each case, as a large 

hydrophobic side chain was 

substituted for one much smaller and 

presumably less surface exposed. Of 

the two mutations, W7A showed the 

greatest shift from the native peptide. 

In contrast, all three Lys mutations 

resulted in only a slight right-shift in 

retention time as compared to TRTX-

rPre1a, signifying a slight increase in hydrophobicity. All three Lys mutations co-eluted at the same 

retention time.  

 

An interesting point to note is the minor peak visible with TRTX-Pre1a is also apparent in an 

equivalent position on both the K34D and K34Q mutations (Figure 45). The W7A mutation also exhibits 

a minor peak, however the position of the major and minor peaks is reversed as compared to TRTX-

rPre1a such that the minor peak is now eluting at a later retention time (i.e. more hydrophobic). The 

most interesting point to note is the lack of a minor peak with F8A. Apparently, this mutation was 
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Figure 45: rpHPLC comparison of retention times of 

rPre1a with mutants. 
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successful in eliminating the structural heterogeneity apparent with the native TRTX-Pre1a. However, 

additional experiments are necessary to confirm this result.  

 

3.2  Conformational flexibility of rPre1a mutations 

It was clearly demonstrated within Chapter III that TRTX-Pre1a exhibits conformational heterogeneity. 

This property was observed first by rpHPLC in the form of a minor peak shown to by a conformer and 

then confirmed by analysis of the 15N-HSQC of rPre1a. Similar to TRTX-Pre1a, the K34D, W7A, and to 

a lesser extent K34Q mutations exhibited minor peaks suggestive of multiple structural conformations. 

The minor peak and leading tail for each was assessed using MALDI-TOF MS, with all regions yielded 

equivalent mass to the major peak, confirming they are structural isoforms rather than impurities. As a 

secondary test, an experiment was set up to study how the equilibrium between the two peaks from 

TRTX-Pre1a would be influenced by elevated temperatures.  

 

The rotational energy barrier between cis- and trans-isomers, cis-trans isomerization has been proven 

to be a slow process at room temperature [523]. Bearing this in mind, elevating the temperature speeds 

up the cis-trans isomerization of a peptide and shifts the equilibrium towards a single form. Although 

cis-trans isomerization has been discounted as an explanation for the structural heterogeneity of 

TRTX-Pre1a, the same concept of temperature dependence can be applied to other modes of 

conformational heterogeneity proposed for this peptide. For example, movement of aromatic residues 

has been proposed in Chapter III to be the primary force contributing to the conformational 

heterogeneity of TRTX-Pre1a. Therefore rpHPLC analysis of TRTX-Pre1a and mutations were carried 

out a room temperature (25°C) and 55°C to monitor the changes in peak shape (Figure 46). 

 

TRTX-Pre1a was tested alongside K34D and W7A. F8A was included to confirm its apparent 

conformational homogeneity using differing temperature conditions. Retention time is known to 

decrease with an increase in temperature, which was seen for each peptide tested[569]. Further, for 

each sample tested at 55°C a single peak was resolved. As expected, this result indicates that the slow 

interconversion between multiple conformational species that is evident from the retention data at 25°C 

occurred at a faster rate than the chromatographic separation time, converging into a single species. 

This data provides additional evidence for conformational heterogeneity apparent even in the K34 and 

W7 mutations. The results seen for F8A demonstrate that this mutation has eliminated the structural 
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heterogeneity seen with TRTX-Pre1a and the other mutations. The next step was to determine whether 

the mutations have affected functional activity at NaV channels and answer the question of whether 

structural heterogeneity is necessary for any of the functional effects of TRTX-Pre1a.  

 

 

 

Figure 46: rpHPLC experiment using heated column. 

An increase in temperature to 55°C (red) demonstrated that rPre1a and mutations present 

a single peak, suggesting the multiple peaks visible at 25°C (blue) are due to multiple 

conformational states. F8A appears to be an exception, exhibiting one visible, sharp peak 

state at both temperatures tested. 

 

3.3 Functional activity as measured by TEVC methods 

 Once purified, each of the five mutations were tested on X. laevis oocytes injected with rat (r) or 

human (h) NaV channel RNA and measured with two-electrode voltage clamp (TEVC) methods. 1 µM 

concentrations of each mutant were tested against all available NaV channel isoforms, including 

rNaV1.2, rNaV1.3, rNaV1.4, hNaV1.5 and hNaV1.7 (Figure 47/Figure 48). Mutations either increased or 

decreased the activity as compared to the wild-type, but did not result in an apparent change in the 

mechanism of action (e.g., inhibition of peak current versus inhibition of fast inactivation), nor did the 
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kinetics of activation change at the concentration used. No mutations tested had any effect on either 

rNaV1.4 or hNaV1.5 up to 1 µM. The only mutation that appeared to have no effect on activity 

compared to wild type rPre1a was F8A (Figure 49). This is a significant result, as F8A was also the only 

mutation to exhibit a single conformation as tested on rpHPLC (Figure 46). On the contrary, 1 µM 

W7A resulted in an almost complete loss of rNaV1.2 and hNaV1.7 inhibitory activity and rNaV1.3 

inhibition of fast inactivation (Figure 49). 

 

The three K34 mutations resulted in activity profiles that revealed how charged residues can greatly 

impact the efficacy of a peptide ligand, as well as which NaV channels may be more susceptible to 

ionic interactions. K34A replaced the positively charged long carbon side chain of Lys with a 

hydrophobic Ala, greatly reducing the side chain chemical space while abolishing the charge. This 

resulted in no significant change in rPre1a activity as tested on rNaV1.3 and hNaV1.7, but did result in a 
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Figure 47: Inhibition of rNaV1.2 and hNaV1.7 by rPre1a mutants. 

Comparison of rNaV1.2 and hNaV1.7 inhibition from baseline (dotted line) across 1 µM 

rPre1a mutants as tested by TEVC methods. n ≥ 3 for all experiments. Example I-T plots can 

be found in Appendix B. Significance was determined by ANOVA, denoted with * for >0.05 

or ** for >0.001. 
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reasonable (~2-fold) loss of activity at rNaV1.2 (Figure 47). K34Q replaced the Lys with an uncharged, 

polar side chain occupying a similar chemical space. This resulted in a slight decrease in activity for 

rNaV1.3 (Figure 48). However, there was an almost a 2-fold increase in activity for hNaV1.7. This was 

the only mutation that significantly increased activity for hNaV1.7.  

 

As mentioned in section 2.1 of this chapter, K34D was designed as a mimic of β-Cm1a – which has no 

activity at NaV1.3 – resulting in a single residue charge shift from positive to negative. As was hoped, 

this single mutation essentially abolished activity against rNaV1.3 at 1 µM, demonstrating the 

importance of this reside position for interaction with this NaV isoform. The K34D mutation 

unfortunately also dramatically decreased the activity of Pre1a at hNaV1.7 using a 1 µM concentration, 

 

Figure 48: TEVC rPre1a inhibition of inactivation on NaV1.3. 

Comparison of rNaV1.3 inhibition of fast inactivation across 1 µM rPre1a mutants as 

tested by TEVC methods. The results are expressed as fold increase in magnitude of the 

late current, calculated by dividing the late current amplitude in the presence of peptide 

by the control late current. n ≥ 3 for all experiments. Example I-T plots can be found in 

Appendix B. Control response = 1 (dotted line). Significance was determined by ANOVA, 

denoted with a * for >0.05 or ** for >0.001. 
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resulting in approximately 10% inhibition rather than 80%, as was seen with the wild-type. 

Surprisingly, the rNaV1.2 activity of K34D was increased 2-fold over native rPre1a. With these results 

combined with the inactivity at rNaV1.4 and hNaV1.5, it suggests that rPre1a[K34D] could be a highly 

selective inhibitor of NaV1.2. However, its activity at NaV1.1, NaV1.6, and NaV1.8 remain to be tested.  

 

3.4 Solution structure of rPre1a[W7A] 

The W7A mutation of rPre1a was selected for NMR structural elucidation due to its central position 

among the hydrophobic face, seen in Figure 31 of the previous chapter. Despite the appearance of a 

minor peak in the rpHPLC trace indicating a second structural isoform, the 15N-HSQC of rPre1a[W7A] 

showed only a single conformation in aqueous solution. The appearance of a minor, more hydrophobic 

isoform in the rpHPLC trace could be due to the more hydrophobic conditions used with rpHPLC (i.e. 

25-30% organic solvent when the peptide elutes), which would allow the appearance of the 

hydrophobic minor form. As there is no organic solvent in the aqueous buffer used with NMR, it seems 

the conditions are less favorable for the minor isoform seen in rpHPLC. Coupled with the high yields 
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Figure 49: Percent change in activity as compared to rPre1a[wt]. 

Normalized averaged results for each mutation were compared to their respective 

rPre1a results, repeated for three NaV subtypes. Negative values represent a 

decrease in activity. Positive values represent an increase in activity. 
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of rPre1a[W7A] from recombinant expression, it was decided to focus on solving the solution structure 

for this peptide. At the time, only limited pharmacology data was available to influence the decision.  

The solution structure for the rPre1a[W7A] 

was successfully solved using heteronuclear 

NMR experiments on recombinantly 

expressed 13C/15N-labelled peptide (Figure 

50). Backbone assignments were fully 

completed using the 1HN, 15N, 13Cα, 
13Cβ, 

13C 

resonance assignments for the toxin obtained 

from analysis of amide proton strips in 3D 

HNCACB, CBCA(CO)NH, and HNCO 

spectra. The full peak lists can be found in 

Appendix E. Side chain 1H and 13C chemical 

shifts were obtained primarily from using a 

4D HCC(CO)NH-TOCSY experiment, which 

has the advantage of providing side chain 1H-
13C connectivities[570]. Additional aliphatic 

side chain assignments as well as aromatic 

side chain assignments were derived from 3D 
15N- and 13C-edited NOESY-HSQC spectra. 

The NMR data indicated a single stable fold in 

solution and the rPre1a[W7A] structure was therefore more precisely determined than the original 

rPre1a solution structure (backbone RMSD of 0.34 ± 0.08 Å for C4-K34) (summarized in Table 7). 

CYANA[518] was used for automated NOESY assignment and structure calculation. 200 structures 

were calculated from random starting conformations, then the 20 conformers with highest 

stereochemical quality as judged by MolProbity[571] were selected to represent the solution structure 

of rPre1a[W7A]. 

 

As demonstrated previously with rPre1a, the structure of rPre1a[W7A] exhibits a standard ICK motif, 

with four inter-cysteine loops bounded by N- and C-terminal “tails” (Figure 50). The dominant 

secondary structural features are two β-sheets involving residues Y22-C24 and C31-Y33 (Figure 51). 

Previous prediction by TALOS for rPre1a secondary structure resulted in slight differences, although 

 

Figure 50: Overlay of 20 backbone structures 

for rPre1a[W7A]. 

The structure of the W7A mutant was well defined, 

even in the tail regions. Disulfide bonds in typical 

ICK motif arrangement are highlighted in yellow. 



131 

 

positively predicting the β-sheet at Y22. A β-sheet at C4 was predicted, while the C31 β-sheet was not. 

However, the two β-sheets typically seen with ICK peptides were clearly defined in the final structure 

(Figure 51). 

 

The position of the W7A mutation can clearly be seen as a central position between aromatic residues 

composing the hydrophobic face (Figure 52). The space-filling model highlights the gap, or cleft, left 

by the absence of the large aromatic Trp.  

 

 

 

 

 

Figure 51: Cartoon representation of 

rPre1a[W7A].  

W7A mutation is highlighted in red. 

Disulphide bonds are in yellow. β-sheets are 

in blue 
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3.4.1 Comparison of rPre1a[W7A]to rPre1a[wt] 

In order to determine the effects of the W7A mutation on structure, the changes in 15N and 1H chemical 

shifts of the 15N-HSQC were compared between rPre1a[wt] and rPre1a[W7A]. The 15N-HSQC of W7A 

does not exhibit the peak shifting associated with conformational heterogeneity as seen with the HSQC 

of rPre1a[wt] (Figure 53). Major chemical shift changes between rPre1a and W7A can be seen to occur 

at residues F8 and Y33. To quantitatively express changes in the chemical shifts of the individual amide 

pairs, a compound chemical shift change (in ppm) was defined as the weighted change in the δ-value, 

using the equation below:  

weighted 0.154 ∆ ∆  

 

Figure 52: Space filling model of rPre1a[W7A].  

Aromatic residues contributing to the hydrophobic face are in red. 
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The chemical shift scaling factor, Rscale, was determined from the ratio of the average variances to be 

0.154[572]. The results of the quantitative measurements of the change in weighted chemical shifts 

were plotted in Figure 54. The plot confirms that the largest changes occurred around residues F8 and 

Y33, both of which contribute to the hydrophobic face and aromatic stack, while the vast majority of the 

peaks overlay with the wild type peptide, confirming that the rPre1a[W7A] is correctly folded. 

 

 

Figure 53:  Overlay 15N-HSQC of rPre1a[wt] (blue) with rPre1a[W7A] (red).  Chemical shifts are 

traced by black lines. Asp15 and Asp21 side chain groups are also labeled. 
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Figure 54: Weighted 15N-HSQC chemical shift difference of 1H and 15N of rPre1a[wt] and 

rPre1a[W7A]. Large deviations are seen at F8 and Y33, which is consistent with the 15N-HSQC overlay. 
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This same 15N-HSQC comparison was completed for each mutation to confirm proper folding and 

check for major structural distortions. Each peptide was 15N-labeled through recombinant expression 

methods and the resulting 15N-HSQC was compared to that of rPre1a[wt]. A collection of the K34 

mutant 15N-HSQC plots overlaid with rPre1a[wt] can be found in Appendix D. Retention times of 

newly expressed mutants were checked against confirmed 15N-labeled retention times and 

corresponding peaks were isolated for pharmacologic testing.  

 

The 15N-HSQC of W7A was compared to that of F8A to identify regions of structural deviations caused 

by these mutations (Figure 55). Although F8A peaks were not picked and assigned, some inferences 

can be made using the rPre1a[wt] 15N-HSQC, due to their similarities. The spectrum of F8A appears 

more similar to that of rPre1a[wt] than W7A, without exhibiting the structural heterogeneity identified 

by peak shifts as  seen with rPre1a[wt] (Figure 56). There was also no major deviation of peaks from 

that of rPre1a[wt], indicating correct folding and minimal structural perturbation experienced by this 

mutation. 

.  

 

Figure 55: Overlay 15N-HSQC of rPre1a[W7A] (red) with rPre1a[F8A] (black).  Only rPre1a[W7A] 

peaks are labeled as peaks were not picked for rPre1a[F8A]. 
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Figure 56: Overlay 15N-HSQC of rPre1a[F8A] (black) with rPre1a[wt] (blue). Only rPre1a[wt] 

peaks are labeled as peaks were not picked for rPre1a[F8A], peaks can be inferred from the 

rPre1a[wt]. Peak shifting and structural heterogeneity is not seen with rPre1a[F8A]. 

 

4. Discussion  

This chapter described the directed mutagenesis of β/δ-TRTX-rPre1a and resulting structure-function 

changes, as well as elucidated the solution structure of a single mutant, rPre1a[W7A]. Mutations were 

chosen based on a combination of structural information gained from experiments conducted in 

Chapter III and identification of a critical C-terminal Lys residue after comparison of sequence 

similarity to spider venom peptides with known NaV subtype selectivity. In this chapter, we have 

successfully engineered rPre1a for enhanced NaV selectivity to NaV1.2 and NaV1.7. We have also 

solved the solution structure of a mutant version of the rPre1a with reduced activity, which will give 

valuable insights into structural aspects contributing to activity. 

 

Despite the relatively large number of NaV modulating spider venom peptides so far discovered and the 

high interest in discovering and developing subtype selective modulators there have been few SAR 

studies reported, with only one focusing on NaV1.7. The majority of research in the public domain 

involves full Ala scans of a peptide with a focus on activity at a single NaV isoform, such as the case of 
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β/ω-TRTX-Tp2a (protoxin-II) and β-TRTX-Cj1a (jingzhaotoxin-III) tested on NaV1.5 [245, 542]. 

Another example is β-hexatoxin-Mg1a (Magi-5), tested for potency changes at NaV1.2 [254]. Of these, 

only Tp2a exhibits a slight sequence similarity to the Family 1 NaV spider venom peptides, which 

includes β/δ-TRTX-Pre1a (Table 4). The most detailed SAR study is also the most recently published. 

This study involved not only a full Ala scan of µ-TRTX-Hhn2a (huwentoxin 4), but also followed up 

with directed mutagenesis of individual residues shown to be important form the scan [547]. This study 

focused solely on engineering the peptide’s potency on NaV1.7. However, as Hhn2a shares a high 

sequence similarity to Pre1a (Table 4), the results presented are directly relevant to the results observed 

with rPre1a mutations, as will be explained below. Taken together, this collection of published work 

demonstrates the novelty and scope of the work presented within this chapter, as it is to date the only 

directed engineering of a spider venom peptide in terms of both its potency and selectivity at different 

NaV channel isoforms as well as identifying the molecular basis of its structural stability. 

 

4.1 Functional aspects of K34 mutagenesis 

Mutations of the single K34 residue – based on both side chain length and charge – resulted in 

significant pharmacologic changes from the native rPre1a, with the two non-alanine mutations resulting 

in an increase in selectivity to different NaV isoforms. All mutations retained rPre1a’s relative 

inactivity against rNaV1.4 and hNav1.5. Changing the positively charged, long carbon chain Lys to a 

small hydrophobic Ala residue (K34A) does not appear to substantially alter NaV channel activity or 

selectivity as compared to rPre1a[wt]. The replacement of a positive charge at this position with a 

polar, neutral Gln (K34Q) resulted in an approximate 30% decrease in rNaV1.3 inhibition of fast 

inactivation compared to rPre1a[wt]. However, this same mutation increased hNaV1.7 inhibition of 

peak current by over 2-fold as compared to rPre1a[wt] resulting in favorable net improvement of 

hNaV1.7 to rNaV1.3 selectivity. However, activity at rNaV1.2 did not significantly change from that of 

rPre1a[wt], thus limiting its potential as a NaV1.7 selective therapeutic lead. It is important to note that 

the highly homologous Hh2a and Ps1a both have a Gln (Q) at this position and are potent Nav1.7 

inhibitors [543]. In the recent SAR study for Hh2a mentioned above, a change of Q34A also resulted in 

no change of potency for hNaV1.7, further supporting the lack of effect of an Ala mutation in this 

position on Pre1a. However, the results of the Hh2a study demonstrate the limitations with Ala 

scanning, as this residue was not followed up with further mutations due the observed lack of effect, 
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even though this chapter has demonstrated the importance of K34 for both function and selectivity to 

NaV channels. 

 

A shift from a positive to negative charge with the K34D mutation also resulted in an increase of 

selectivity for a single NaV channel. The natural single mutation from Y to D at this position in Cm1b 

and Cm1a, respectively, is sufficient to ablate the potent NaV1.3 activity of Cm1b. This impressive 

effect was the inspiration for making the K34D mutation of Pre1a. As was hoped the rPre1a[K34D] 

mutation eliminated rNaV1.3 activity. Unfortunately, inhibition of peak hNaV1.7 current was also 

dramatically decreased by this mutation. However, rNaV1.2 inhibitory activity increased 2-fold as 

compared to rPre1a. These two mutations highlight the ability to manipulate selectivity towards one 

NaV isoforms through a single residue change and give promise that more potent and selective NaV 

modulators can be rationally designed.   

 

An interesting observation to note is that the affinity to the NaV isoforms tested can be dictated by a 

single residue on the C-terminal tail. Considering K34D, this substitution of a negatively charged 

residue at the K34 position eliminates all functional activity for both NaV1.3 and NaV1.7. Although we 

had hoped to tailor activity to NaV1.7 with this mutation, it was equally exciting to reveal the 

impressive NaV1.2 selectivity imparted by this mutation. Future studies should include determining the 

full selectivity profile for rPre1a[K34D]. If it is found to be inactive at NaV1.1, NaV1.6 and NaV1.8 this 

would represent the first known highly selective inhibitor of NaV1.2. As such, rPre1a[K34D] could be 

an efficient research tool to determine the physiological and/or pathophysiological role of NaV1.2 using 

acute pharmacologic intervention, thus avoiding possible confounding results due to in vivo receptor 

compensation as can occur with genetic knock-out of a channel. Further, as NaV1.2 has been implicated 

in a wide variety of epilepsy disorders – many of which exhibit gain-of-function, excitatory phenotypes 

– it is reasonable to  assume a selective NaV1.2 inhibitor could undergo further development for use as 

a therapeutic for relevant epileptic conditions [175, 573]. Recently, some of the SCN2A mutations 

leading to epileptic conditions have even been linked to the development of autism [574]. 

 

While K34Q did not demonstrate the dramatic effects of K34D, it did increase the functional inhibition 

of NaV1.7 peak current. The structure for rPre1a[W7A] reveals another Lys residue in close association 

with K34, at position 22 on Loop 3. It would be of interest for future work to perform a similar 

mutagenesis experiment on this mutant – as well as create double-mutants of these Lys residues – in 
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order to further explore the effects of residue charge and size within this region. In combination with 

the recent work to improve the NaV1.7 potency of Hh2a by Revell et al., this mutation sets a 

precedence for engineering in selectivity to a specific NaV channel [547]. 

 

4.2 Function and structure of W7 and F8 mutations 

The mutations of W7A and F8A were chosen primarily because they represented two large, 

hydrophobic residues, directly adjacent on the rPre1a sequence on the Loop 1 region. In Chapter III of 

this thesis, the 15N-HSQC spectra of rPre1a revealed that residues of the Loop 1 region experienced 

three noticeable chemical shifts within the same spectra. The noticeable movement of residues within 

this region was therefore hypothesized to contribute to the conformational heterogeneity of rPre1a. 

Further, the central position of W7 on the hydrophobic face is typically occupied by a non-aromatic, 

hydrophobic residue, such as a Met for Tp2a, a Lys for Ps1a, and an Ile for Hh2a. It was our hypothesis 

that the presence of two large aromatic residues in Loop 1, as seen with Pre1a, creates tension between 

the five bulky aromatic residues of the hydrophobic face. 

 

The W7A mutation was chosen for NMR structural elucidation due to its central position within the 

hydrophobic face, high yields of correctly folded peptide from recombinant expression, and a 15N-

HSQC spectrum that exhibited a single conformation in aqueous solution. It was only after structural 

elucidation that the functional data was obtained, demonstrating an almost complete loss of function for 

all NaV isoforms tested. Despite this, solving the structure of an inactive mutant gives insight into the 

function of the specific mutated residue, as was demonstrated in an SAR experiment with µ-TRTX-

Hhn1b [575]. As suggested by Li et. al., if the mutation causes major structural perturbations, it can be 

inferred that the structural deformity is contributing to the loss of function. However, if the structure 

remains relatively intact – as was the case for W7A – then it is likely that the residue directly 

contributes to receptor interaction [575]. The loss of activity observed with W7A could be attributed to 

the contribution of the Trp to protein-protein interaction “hotspots”, which was mentioned previously 

[567]. However, an more in-depth publication that intricately detailed the development and use of 

hotspot prediction software suggests that Trp is only a low level contributor as a hotspot residue [576]. 

Although this data was based primarily on macro-proteins, it was recently confirmed to be the case in 

peptide-protein interactions, as well [577]. However, these results do not discount that W7 could 

contribute to a binding face, such as the highly conserved hydrophobic face. Further experiments are 
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needed to confirm the role of W7 towards function at this position. As the precise role of the 

hydrophobic face is yet to be determined, experiments could include mutagenesis of other residues 

within the hydrophobic stack, functional mutations of W7, identifying the precise binding site of rPre1a 

on NaV channels, and determining if W7 is involved in pairwise interactions with the NaV channel 

protein.. 

 

In contrast to W7A, the F8A mutation resulted in no change of activity for any NaV isoform tested, as 

compared to rPre1a[wt], yet resulted in the abolition of any detectable conformational heterogeneity. 

The solvophobic environment inherent with rpHPLC experiments at room temperature and 55°C 

resolved a single, sharp peak. Likewise, the 15N-HSQC overlaid closely with that of rPre1a[wt], 

suggesting proper folding, no structural perturbation, and a single conformational isomer. These results 

suggest that conformational heterogeneity is not necessary for the activity of rPre1a[wt]. However, it 

does not discount the possibility that rPre1a could occupy multiple interaction sites on the NaV channel, 

as is the case with κ-Gr1a [578]. 

 

The hypothesis regarding aromatic stacking in the hydrophobic face was proposed within Chapter III. 

Aromatic residues within 4.5-7 Ǻ have a tendency to form aromatic stacks, with multiple 

electrostatically favorable geometries possible in peptides [560]. The higher precision of the 

rPre1a[W7A] ensemble allows additional structural features to be recognized. This is especially 

apparent with the positioning of residues involved with the hydrophobic face. A 9 Ǻ spacing can be 

viewed between the F8-W30 residue pairs and the two Y22 -Y33 residue pairs in Figure 52 [579]. This 

large space creates an unfavorable conformation for aromatic interactions between these two pairs of 

aromatic residues [561]. However, each of the pairs mentioned would still be able to form aromatic 

interactions between each other, creating localized stability. With the addition of the W7 residue, it can 

be hypothesized that the aromatic ring of Trp might “flip” between energetically favorable positions in 

the offset aromatic pairs. With the F8A mutation, the removal of one of the external forces on W7 

strengthens the formation of a single aromatic position, resulting in a single conformer. However, to 

confirm this hypothesis, further mutagenesis and the structural elucidation of these analogs – especially 

F8A – is required. 
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4.3 Summary and future prospects 

In lieu of determining the precise NaV binding domain through experiments involving NaV channel 

point mutations, NaV chimeras, or competitive binding with Pre1a, it is difficult to make assertions on 

the precise mechanism of ligand interaction. Regardless, the results presented in this chapter give 

positive insight into the functional role of individual key residues for Pre1a and related venom peptides, 

as well as demonstrating an ability to manipulate structural heterogeneity. The results also demonstrate 

a proof of concept for the engineering of selectivity towards specific NaV isoforms. This data can be 

used to guide future projects, such as guiding the selection of residues for a more complete mutagenesis 

or indentifying residues between the NaV channel isoforms involved in ionic ligand binding. 
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Chapter V: Conclusion 

 

The continual progression of new technologies expands our ability to discover and isolate new 

compounds from natural sources previously overlooked; such is the case for animal venoms. As the 

tools for novel ligand discovery progress they fill databases with new molecular scaffolds and their 

corresponding pharmacologic data. To realize the full potential of the knowledge base we are building, 

utilization of this data needs to progress as well. This thesis describes the successful development and 

functional application of cell-based assays for the purpose of discovering and isolating NaV modulating 

peptides from crude venom. It then goes on to describe the in depth characterization of a single NaV 

modulating spider venom peptide demonstrating unique functional characteristics. This included 

guided mutagenesis of key residues through utilization of available data regarding peptides of a similar 

family. The experiments presented here successfully demonstrated a proof-of-concept for engineering 

selectivity towards specific NaV isoforms, with implications for therapeutic design and development of 

venom peptides. 

 

Although multiple functional assays using whole cells in microtiter format were developed, one assay 

in particular was carried forward to be used as a general screen of crude venoms. The choice was based 

on a few relevant factors, regarding the throughput of the assay and the robustness of response. The 

FLIPRTetra instrument was critical in this decision, as it was able to measure a fluorescence response 

over all wells simultaneously, whereas the Envision instrument was a single-well reader. The 

FLIPRTetra is able to read multiple fluorescent dyes, of which two were used to monitor either NaV 

depolarization induced Ca2+ influx or changes in the membrane potential. Aside from cell plating and 

compound preparation, the assay itself was completed within a time course of minutes, with the 

instrument capable of compound addition while simultaneously measuring the response. This not only 

gave us the ability to test our cone snail crude venoms, but venoms available from multiple other 

organisms through collaborative work.  

 

Out of this crude venom screening, a very potent NaV excitatory peptide was discovered, isolated, and 

sequenced. Belonging to the poorly classified group of δ-conotoxins, the discovery of δ-MVIA gave us 

an opportunity to attempt to further characterize the NaV neurotoxin receptor site 6. However, the 

extreme hydrophobic properties exhibited by this peptide made the production unattainable with 
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methods attempted for both SPPS and recombinant expression. Unfortunately, as no more C. magus 

specimens were available, this project was left until better methods for handling highly hydrophobic 

peptides could be developed. Future directions should include attempting recombinant expression in 

different organisms, such as the eukaryotic yeast Pischia pastoris, which may possess a more favorable 

environment for the expression of hydrophobic, disulfide rich peptides [580]. Fusion protein 

technology is also advancing rapidly [581-583], as is the possibility of co-expression with enzyme 

catalysts and isomerases that can aid proper folding and expression [289]. 

 

The discovery of TRTX-Pre1a and resulting characterization was in stark contrast to the difficulties 

experienced with the production of δ-MVIA. Pre1a, originally isolated from P. reduncus crude spider 

venom by Dr. Lachlan Rash, was produced successfully using bacterial recombinant expression 

methods. These methods allowed the production of enough recombinant peptide for all pharmacology 

experiments as well as providing a means for efficient, uniform isotopic labeling for structural 

elucidation. Pre1a presented a unique pharmacologic profile unlike any venom peptide described to 

date. Sub-micromolar inhibition of peak current was recorded for both rNaV1.2 and hNaV1.7, while 

potent inhibition of fast inactivation was observed at rNaV1.3. A lack of activity at rNaV1.4 and 

hNaV1.5 demonstrated a preference for neuronal NaV subtypes, as well. Further, Pre1a exhibited 

structural heterogeneity with multiple conformational states in solution, observable with both rpHPLC 

and the 15N-HSQC spectrum from heteronuclear NMR. To date, this phenomenon has only been 

reported for two spider venom peptides, of which neither study had attempted to identify the cause. In 

this study, we have made progress in attempting to describe the structural heterogeneity for rPre1a, 

identifying the Loop 1 region as a zone of flexibility through analysis of the 15N-HSQC chemical shifts. 

A homology model revealed an atypically close interaction of five aromatic residues (W7, F8, Y22, W30, 

and Y33) composing a hydrophobic face, where most other similar peptides characterized have less 

aromatics spaced by less bulky hydrophobic residues, such as Leu or Met..  

 

Of the five residues identified to contribute to the hydrophobic face, F8 and W7 were chosen for Ala 

substitution due to their adjacent proximity in sequence and location on the flexible Loop 1. The F8A 

mutation eliminated observed structural heterogeneity while maintaining function equivalent to the 

wild type rPre1a. In contrast, the W7A mutation – directly adjacent to F8 but located more centrally on 

the hydrophobic face – successfully eliminated all tested NaV function while improving structural 

stability as compared to rPre1a[wt]. These results demonstrated the necessity of a single residue (W7) 
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for direct, non-selective NaV channel interaction and also revealed that the structural heterogeneity of 

Pre1a is not necessary for either of its observed modes of activity or isoform selectivity. 

 

Pre1a belongs to a relatively large family of NaV modulating spider venom peptides with varying 

subtype selectivity. Residues that may contribute to their selectivity could be postulated by comparing 

peptides with the highest sequence similarity yet different selectivity for NaV channel subtypes. Despite 

the large number of partially characterized spider venom peptides in the literature, and full alanine 

scans of several of these peptides, the experimental approach used here (rational design based on 

existing knowledge) had not yet been implemented for these peptides. A single residue at position 34 

on the C-terminal tail was identified for its potential role in NaV1.3 selectivity and was subjected to 

rational mutagenesis involving both standard Ala substitution and replacement of amino acids with 

specific functional side chains. Of the three K34 mutations, two resulted in increased NaV isoforms 

selectivity. K34Q increased the potency to NaV1.7 while slightly decreasing potency to NaV1.3 as 

compared to Pre1a[wt]. However, this mutation did not improve on global selectivity, as NaV1.2 

potency remained unchanged from the wild type. Even so, the information gained from this mutant 

forms a foundation for combining with other point mutations to further improve the selectivity of 

Pre1a. K34D significantly decreased activity at both NaV1.3 and NaV1.7, but increased the potency to 

NaV1.2 by 2-fold. The rational mutagenesis of K34 and the resulting enhanced selectivity profiles sets a 

precedence for the utilization of publicly available information for the purpose of identifying key 

residues contributing to selectivity and function on specific ion channels and their isoforms. 

 

This thesis does not represent a complete story of Pre1a, but presents initial findings of a story that is 

currently ongoing. Aspects of this peptide are still needed to better understand its unique functional 

role. This will aid in the understanding of NaV-ligand interactions and how these can be incorporated 

into the development of molecular tools and therapeutics. There is no shortage of experiments yet to be 

completed. Exploring the binding site of Pre1a is of particular importance. Classical competitive 

binding experiments can be completed using radiolabelled peptides with known binding sites. 

Identifying the NaV domains involved in Pre1a binding can be accomplished using chimeric KV 

channels with a single NaV domain substituted in. As Kv channels are homotetramers, any one of their 

domains can be substituted with any one of the domains of a NaV channel and remain functional. This 

method has been used to successfully determine the domain of Ps1a binding[34]. Once narrowed to a 
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specific binding region, these results can help infer what residues of the NaV channel itself can be 

mutated and functionally tested with Pre1a to observe a change in activity. 

 

Concerning function, voltage dependence of steady-state inactivation of Pre1a should be tested on 

NaV1.2 and NaV1.7 using a standard double-pulse protocol, in which a 20 ms depolarizing test potential 

of 0 mV follows a 500 ms prepulse at potentials that range from -130 to -10 mV with a 10 mV 

increment[243]. Another experiment of interest tests voltage-dependence of reversal of inhibition by 

using a very strong depolarized conditioning potential (+100 to +240 mV) of varying length of time, or 

of standard time and varying potential, before a standard test depolarization to 0 mV. The test peak 

current (Y-axis) is compared to conditioning duration (X-axis) and gives functional information on 

whether the toxin binds to the voltage sensor region. Strong depolarization before a test pulse is 

thought to inhibit binding to the voltage sensor region by “pushing off” the toxin, so a loss of activity 

would be apparent over greater lengths of time[243, 255]. To test the voltage dependence of late 

currents for NaV1.3, the voltage can be varied after a standard 0 mV depolarization. Subsequent step to 

voltages ranging from −100 to −30 mV are then applied for an equivalent length of time to monitor 

their effects on inactivation[584]. Recovery from inactivation can be tested by administering standard 

depolarizing pulse potentials separated by increasing time intervals. 

 

Depending on the results of Pre1a, these experiments may also be applied to the mutants to observe 

possible changes in their mode of action. In regards to the mutations of Pre1a, full concentration 

dependence curves of each active mutant on NaV1.2, NaV1.3, and NaV1.7 is still needed for EC50 and 

IC50 values. Shifts of peak current under varying concentrations will also be apparent. Further 

mutagenesis of Pre1a using the information gained within this thesis and from new research will yield 

more information about the structural aspects of Pre1a and how they contribute to function. 

Specifically, focusing on the Loop 1 region and the Lys residues that seem to form a cluster are of 

interest as these have been shown to contribute strongly to selectivity and potency. 

 

In conclusion, this thesis has produced an improved means of isolating NaV channel modulators and 

contributed significantly to our understanding of the precise molecular details governing the structure 

and function of β/δ-TRTX-Pre1a. Moreover, it has uncovered several important considerations not only 

for future experimentation but also for future drug design. It is hoped that this information provides a 
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useful starting point for the further rational design and engineering of β/δ-TRTX-Pre1a analogs with 

high value as research tools and possible therapeutic leads for a broad range of neurological conditions. 
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Appendix A: δ-MVIA recombinant expression 

1. Methods 

1.1 Vector design for recombinant expression 

Vector design was performed as previously described in Chapter III, section 2.1. However, the 

synthetic gene was codon optimized and ordered through EZBiolab (Carmel, IN, USA) due to 

regulation restraints with GeneArt in Germany.  

 

In addition, a change had to be made to the original construct. The TEV cleavage recognition site 

requires an optimal signal sequence (ENLYFQ/S) to separate the peptide toxin at its N-terminus from 

the associated tags. The initial construct was designed for cleavage to occur between a Gln and Ser 

residue, leaving a residual Ser at the N-terminus of the peptide. Cleavage can occur between a number 

of residues in place of Ser - such as Asp, as is found at the N-terminal of δ-MVIA - so the addition of a 

Ser was not deemed necessary in the initial construct design[539]. However, a post-optimization 

change in the TEV enzyme resulted in an inability to cleave at Asp. Therefore, a mutational insertion of 

Ser at the N-terminal of the δ-MVIA sequence was needed. Primers were designed using PrimerX 

software for regions flanking the δ-MVIA sequence within the pLIC vector (Figure 57).  

 

 

 

Figure 57: Primer set for N-terminal Ser addition to δ-MVIA gene on the pLIC construct. 

 

Mutagenesis was performed using a QuickChange II Site Directed Mutagenesis Kit (Agilent, CA, 

USA) and confirmed by sequencing with the designed primers as templates (Australian Genome 

Research Facility). The sequenced pLIC-δ-Ser-MVIA construct was transformed into Top10 

chemically competent E. coli (Invitrogen, CA) for large-scale vector preparation and BL21ΔE3 

(Invitrogen, CA) for recombinant expression. Both transformants were stored as glycerol stocks (25% 

glycerol / 75% LB medium) at -80°C. 

 

 Forward:  5' GAAAACCTGTACTTCCAAAGCGATGGCTGCTATAATGC  3'
 Reverse:  5' GCATTATAGCAGCCATCGCTTTGGAAGTACAGGTTTTC  3'
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A second vector encoding a lysozyme fusion protein was also designed in parallel. The lysozyme 

sequence used was derived from chicken egg-white lysozyme (PDB: 1LSG_A) and codon optimized 

for bacterial expression[585]. The crystallization of chicken egg-white lysozyme has been well 

characterized and has great potential for acting as a crystallization chaperone, as is the case with recent 

publications[586-588]. The purpose was to express δ-MVIA as a mature fusion protein and crystallize 

the entire product, yielding a new method for structural elucidation of venom peptides, as no venom 

toxin has been characterized by this method to date. A N-terminal His10 affinity tag and a TEV 

cleavage site between the lysozyme and mature toxin sequence was designed into the construct. The 

designed fusion protein gene was synthesized and cloned into a pET11a expression vector, then 

sequenced by the UQ Protein Expression Facility (Australia). The sequenced pET11a-Lys-MVIA 

construct was transformed into Top10 chemically competent E. coli (Invitrogen, CA) for large-scale 

vector preparation and BL21ΔE3 (Invitrogen, CA) for recombinant expression. Both transformants 

were stored as glycerol stocks (25% glycerol / 75% LB medium) at -80°C. 

 

1.2 Bacterial recombinant expression and purification 

Recombinant expression of δ-MVIA and the resulting purification by IMAC and rpHPLC followed 

methods developed in Chapter III, section 2.1-2.5. 

 

2. Recombinant expression results 

 

After multiple failed synthesis attempts by collaborators, δ-MVIA was successfully expressed as an 

inducible 47 kDa fusion protein using methods proven in both Chapters III and IV (Figure 58). The 

fusion protein was also able to be purified through IMAC methods, yielding a band detectable by 

Western blot using an anti-His antibody (Figure 59). Unfortunately, the purified sample was unable to 

be cleaved or stored for any period of time without crashing out of solution. Post-cleavage using 

standard TEV protease methods resulted in undetectable levels of mature toxin. Isolation of the entire 

fusion protein was attempted, as well. However, there was no way to check for proper folding as the 

MBP protein dominated the molecule. Storage at 4°C, -20°C, and -80°C all resulted in the sample 

becoming a precipitate upon thawing. Quick buffer exchange and immediate assay as a fusion protein 
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was attempted post purification with irreproducible results. It was the recommendation of the 

supervisory committee to move on from this project. 

 

 

 

 

 

 

Figure 58: SDS-PAGE of inducible expression of 

MBP-MVIA. Positive induction of 100 mL LB culture 

of pLIC-S-MVIA. U = uninduced; L = molecular weight 

ladder (BioRad); I = induced with 1 mM IPTG. 
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Figure 59: SDS-PAGE of δ-MVIA IMAC purification. A) Coomassie stain; B) Western of NiNTA 

purification from 2L LB expression of pLIC-S-MVIA, induced with 1 mM IPTG, 16°C, 20 h. Sol = 

soluble lysate; FT = NiNTA flowthrough; W = 15 mM immidazole wash; E = 250 mM immidazole 

elution; final column wash of 1 M immidazole to check for residual binding. 

 

The attempt was also made to express δ-MVIA with a custom designed lysozyme fusion construct for 

co-crystallization studies. Although expression occurred for all tested conditions, no soluble protein 

was detected (Figure 60).  

 

 

 

Figure 60: Western of MVIA-Lysozyme test expression. The 

mature fusion protein yields a 12 kDa band. 1) Uninduced cell 

pellet (Insoluble fraction); 2) Uninduced cell lysate (soluble 

fraction); 3) 16 °C pellet; 4) 16 °C lysate; 5) 25 °C pellet; 6) 25 °C 

lysate; 7) 37 °C pellet; 8) 37 °C lysate.  
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Appendix B: I-T plots of Pre1a and K34Q addition to rNaV1.2, rNaV1.3, 

and hNaV1.7 

 

 

Figure 61: I-T plots Pre1a inhibition of rNaV1.2 and hNaV1.7. Concentration dependent inhibition 

of Pre1a on A) rNaV1.2 and B) hNaV1.7 expressed in oocytes. 1 µM Pre1a addition resulted in 

inhibition of peak current for C) rNaV1.2 and D) hNaV1.7. n is representative of data obtained from 

separate oocytes.I-V plots were taken before the first addition and after reaching steady-state 

inhibition of final addition of peptide (Appendix C). 
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Figure 62: I-T plot of Pre1a inhibition of inactivation of rNaV1.3. A) Concentration  dependent and 

B) 1 µM additions of Pre1a to rNaV1.3 expressing oocytes. Data points represent late current (late 

current) values, C) highlighted in red. Pre1a activity was partially reversible with extended saline 

wash, as seen in B). I-V plots were taken before the first addition and after reaching steady-state 

activity of final addition of peptide (Appendix C). 
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Figure 63: I-T plots for Pre1a[K34Q] inhibition of rNaV1.2 and hNaV1.7 and washout.  

1 µM addition of Pre1a[K34Q] resulted in inhibition of peak current for both A) rNaV1.2 and B) 

hNaV1.7 expressed in oocytes. B) Partial reversal of hNaV1.7 inhibition can be seen with 

extended wash.  I-V plots were for taken for Pre1a[K34Q] and all other mutations before the first 

addition and after reaching steady-state inhibition of final addition of peptide (Appendix C). 
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Appendix C: I-V relationships and steady-state activation of NaV1.2 and 

NaV1.7 

 

 

Figure 64: rNav1.2 I-V relationship curves.  Pre1a and each 

mutant analyzed at 1 µM on rNaV1.2 expressed in oocytes. Data 

was normalized to peak current. n represents the number of 

individual oocytes tested. 
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Figure 65: Steady-state activation of rNaV1.2.  Steady-state activation of 

rNaV1.2 was analyzed using the equation G(V) = I/(V − Vrev), where I, V, 

and Vrev represent inward current elicited as described for the I-V plot in 

Figure 61, test potential, and reversal potential, respectively.  
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Figure 66: hNav1.7 IV-relationship curves.  Pre1a and each 

mutant analyzed at 1 µM on hNaV1.7 expressed in oocytes. Data 

was normalized to peak current. n represents the number of oocytes 

tested. 
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Figure 67: Steady-state activation of hNaV1.7.  Steady-state activation of 

rNaV1.2 was analyzed using the equation G(V) = I/(V − Vrev), where I, V, 

and Vrev represent inward current elicited as described for the IV plot in Figure 

63, test potential, and reversal potential, respectively.  
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Appendix D: 15N-HSQC comparisons of rPre1a[wt] vs K34 mutants 

 

Each representation shows the 15N-HSQC of each mutant overlaid with the 15N-HSQC of wild-type 

rPre1a. No major deviations with Cys residues could be seen, suggesting proper folding of each 

peptide. Peaks were not assigned for any of the following mutants, so all labeling is specific to the 

rPre1a[wt] HSQC. 

 

 

Figure 68: Overlay 15N-HSQC of rPre1a[wt] (blue) and rPre1a[K34Q] (green).  
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Figure 69: Overlay 15N-HSQC of rPre1a[wt] (blue) and rPre1a[K34D] (purple).  

 

 

Figure 70: Overlay 15N-HSQC of rPre1a[wt] (blue) and rPre1a[K34A] (yellow).  
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Appendix E: Chemical shift lists for rPre1a[wt] and rPre1a[W7A] 

rPre1a[wt]     rPre1a[W7A] 

Residue  Atom  Nuc  Shift  SDev     Residue  Atom  Nuc  Shift  SDev 

S1  C  13C  170.659  0     S1  C  13C  169.892  0 

S1  CA  13C  57.432  0     S1  CA  13C  57.511  0.005 

S1  CB  13C  63.241  0     S1  CB  13C  63.161  0.015 

S1  HA  1H  4.093  0.001     S1  HA  1H  4.138  0.003 

S1  QB  1H  3.964  0     S1  QB  1H  3.977  0.002 

E2  C  13C  175.719  0     E2  C  13C  174.885  0 

E2  CA  13C  56.318  0.011     E2  CA  13C  56.301  0 

E2  CB  13C  30.565  0.019     E2  CB  13C  30.518  0.071 

E2  CG  13C  36.266  0     E2  CG  13C  36.205  0.029 

E2  H  1H  8.809  0.004     E2  H  1H  8.793  0.002 

E2  HA  1H  4.434  0.004     E2  HA  1H  4.417  0.006 

E2  HB2  1H  2.142  0.003     E2  HB2  1H  2.121  0.004 

E2  HB3  1H  1.966  0.002     E2  HB3  1H  1.935  0.004 

E2  MG  1H  2.296  0.001     E2  N  15N  121.504  0.007 

E2  N  15N  121.215  0.042     E2  QG  1H  2.279  0.001 

D3  CA  13C  54.142  0.011     D3  C  13C  174.551  0 

D3  CB  13C  41.078  0.009     D3  CB  13C  41.017  0.03 

D3  H  1H  8.597  0.002     D3  H  1H  8.535  0.003 

D3  HA  1H  4.692  0.001     D3  HA  1H  4.667  0.004 

D3  HB2  1H  2.744  0.003     D3  HB2  1H  2.722  0.002 

D3  HB3  1H  2.603  0.002     D3  HB3  1H  2.577  0.006 

D3  N  15N  122.467  0     D3  N  15N  122.579  0.031 

C4  C  13C  173.068  0     C4  C  13C  171.993  0 

C4  CA  13C  54.145  0.013     C4  CA  13C  54.027  0 

C4  CB  13C  43.215  0.012     C4  CB  13C  43.58  0.045 

C4  H  1H  8.155  0.002     C4  H  1H  8.149  0.004 

C4  HA  1H  4.927  0.003     C4  HA  1H  4.869  0.009 

C4  MB  1H  3.252  0.001     C4  HB2  1H  3.244  0.003 

C4  N  15N  116.255  0.036     C4  HB3  1H  3.156  0.001 

L5  C  13C  174.976  0     C4  N  15N  116.298  0.023 

L5  CA  13C  54.209  0.017     L5  C  13C  173.719  0 

L5  CB  13C  43.312  0.071     L5  CA  13C  54.256  0.042 

L5  CD1  13C  21.915  0     L5  CB  13C  43.386  0.037 

L5  CD2  13C  26.24  0     L5  CD1  13C  26.337  0 

L5  CG  13C  26.436  0     L5  CD2  13C  21.992  0 

L5  H  1H  8.599  0.003     L5  CG  13C  25.945  0.002 
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L5  HA  1H  4.431  0.008     L5  H  1H  8.517  0.003 

L5  HB2  1H  1.793  0.002     L5  HA  1H  4.374  0.004 

L5  HB3  1H  1.501  0.002     L5  HB2  1H  1.739  0.003 

L5  HG  1H  1.613  0.001     L5  HB3  1H  1.43  0.003 

L5  MD1  1H  0.866  0     L5  HG  1H  1.576  0.002 

L5  MD2  1H  0.974  0.002     L5  MD1  1H  0.944  0.001 

L5  N  15N  120.984  0.007     L5  MD2  1H  0.847  0.008 

G6  C  13C  173.072  0     L5  N  15N  120.874  0.029 

G6  CA  13C  42.796  0.026     G6  C  13C  172.186  0 

G6  H  1H  8.239  0.005     G6  CA  13C  42.79  0.059 

G6  HA2  1H  3.881  0.011     G6  H  1H  8.214  0.004 

G6  HA3  1H  3.586  0.003     G6  HA2  1H  3.659  0.003 

G6  N  15N  108.991  0.023     G6  HA3  1H  3.443  0.006 

W7  C  13C  177.322  0     G6  N  15N  109.079  0.005 

W7  CA  13C  58.027  0.079     A7  C  13C  177.284  0 

W7  CB  13C  29.212  0.098     A7  CA  13C  53.541  0.042 

W7  H  1H  7.789  0.001     A7  CB  13C  18.983  0.009 

W7  HA  1H  3.548  0.011     A7  H  1H  7.609  0.004 

W7  HB2  1H  3.047  0.01     A7  HA  1H  3.045  0.002 

W7  HB3  1H  2.833  0.009     A7  MB  1H  0.971  0.001 

W7  N  15N  119.174  0.024     A7  N  15N  119.572  0.008 

F8  C  13C  175.082  0     F8  C  13C  173.69  0 

F8  CA  13C  60.151  0.048     F8  CA  13C  60.177  0.021 

F8  CB  13C  37.092  0.051     F8  CB  13C  35.692  0.042 

F8  H  1H  8.742  0.004     F8  CD1  13C  131.54  0 

F8  HA  1H  3.456  0.011     F8  CE1  13C  131.22  0 

F8  HB2  1H  2.728  0.006     F8  CZ  13C  129.487  0 

F8  HB3  1H  2.127  0.005     F8  H  1H  8.63  0.003 

F8  N  15N  121.912  0.021     F8  HA  1H  3.575  0.002 

S9  C  13C  174.323  0     F8  HB2  1H  3.092  0.004 

S9  CA  13C  59.482  0     F8  HB3  1H  2.845  0.005 

S9  CB  13C  64.442  0.062     F8  HZ  1H  7.281  0 

S9  H  1H  7.997  0.005     F8  N  15N  113.92  0.014 

S9  HA  1H  4.422  0.001     F8  QD  1H  6.303  0.001 

S9  HB2  1H  3.877  0.002     F8  QE  1H  7.232  0 

S9  HB3  1H  3.824  0     S9  C  13C  173.186  0 

S9  N  15N  115.915  0.027     S9  CA  13C  59.534  0.046 

R10  C  13C  175.927  0     S9  CB  13C  64.653  0.046 

R10  CA  13C  56.346  0.047     S9  H  1H  7.957  0.004 

R10  CB  13C  29.487  0.029     S9  HA  1H  4.473  0.005 
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R10  CD  13C  42.717  0     S9  N  15N  116.697  0.013 

R10  CG  13C  26.806  0.047     S9  QB  1H  3.826  0.008 

R10  H  1H  8.671  0.002     R10  C  13C  174.838  0 

R10  HA  1H  4.866  0.009     R10  CA  13C  56.625  0 

R10  HD2  1H  3.378  0     R10  CB  13C  29.607  0.017 

R10  HD3  1H  3.314  0.002     R10  CD  13C  42.837  0 

R10  HG2  1H  1.841  0.002     R10  CG  13C  27.029  0.051 

R10  HG3  1H  1.751  0     R10  H  1H  8.724  0.003 

R10  MB  1H  1.895  0.002     R10  HA  1H  4.929  0.004 

R10  N  15N  125.042  0.013     R10  HD2  1H  3.431  0.006 

C11  C  13C  171.682  0     R10  HD3  1H  3.398  0.01 

C11  CA  13C  53.69  0.066     R10  HG2  1H  1.897  0.006 

C11  CB  13C  45.599  0.07     R10  HG3  1H  1.787  0.007 

C11  H  1H  8.123  0.003     R10  N  15N  125.153  0.005 

C11  HA  1H  4.853  0.001     R10  QB  1H  1.925  0.004 

C11  HB2  1H  3.139  0.003     C11  C  13C  170.698  0 

C11  HB3  1H  2.924  0.003     C11  CA  13C  53.805  0 

C11  N  15N  119.683  0.009     C11  CB  13C  45.408  0.014 

S12  CA  13C  52.826  0     C11  H  1H  8.121  0.003 

S12  CB  13C  64.908  0.091     C11  HA  1H  4.867  0.006 

S12  H  1H  8.939  0.008     C11  HB2  1H  3.14  0.004 

S12  HA  1H  5.077  0.001     C11  HB3  1H  2.886  0.005 

S12  HB2  1H  3.829  0.001     C11  N  15N  119.632  0.014 

S12  HB3  1H  3.699  0.002     S12  CA  13C  52.964  0 

S12  N  15N  114.775  0.005     S12  CB  13C  65.096  0.018 

P13  C  13C  176.979  0     S12  H  1H  8.932  0.005 

P13  CA  13C  64.338  0     S12  HA  1H  5.069  0.001 

P13  CB  13C  32.093  0.084     S12  HB2  1H  3.827  0.004 

P13  CD  13C  51.262  0.074     S12  HB3  1H  3.696  0 

P13  CG  13C  27.81  0.029     S12  N  15N  114.79  0.009 

P13  HA  1H  4.017  0.003     P13  C  13C  175.993  0 

P13  HB2  1H  2.166  0.001     P13  CA  13C  64.432  0.053 

P13  HB3  1H  1.931  0.001     P13  CB  13C  32.137  0.025 

P13  HD2  1H  3.848  0.007     P13  CD  13C  51.272  0.061 

P13  HD3  1H  3.772  0.001     P13  CG  13C  27.908  0.048 

P13  HG2  1H  2  0.001     P13  HA  1H  4.006  0.006 

P13  HG3  1H  1.634  0.001     P13  HB2  1H  2.196  0.003 

K14  C  13C  176.134  0     P13  HB3  1H  1.909  0.002 

K14  CA  13C  56.935  0     P13  HD2  1H  3.846  0.005 

K14  CB  13C  32.322  0.053     P13  HD3  1H  3.776  0 
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K14  CD  13C  28.904  0.037     P13  HG2  1H  1.995  0.002 

K14  CE  13C  42.114  0     P13  HG3  1H  1.606  0.01 

K14  CG  13C  25.029  0.028     K14  C  13C  175.117  0 

K14  H  1H  7.545  0.003     K14  CA  13C  56.925  0.038 

K14  HA  1H  4.179  0.008     K14  CB  13C  32.534  0.044 

K14  HB2  1H  1.807  0     K14  CD  13C  28.923  0.067 

K14  HB3  1H  1.625  0     K14  CE  13C  41.788  0 

K14  HD2  1H  1.646  0.001     K14  CG  13C  25.001  0.052 

K14  HD3  1H  1.59  0.001     K14  H  1H  7.55  0.003 

K14  HG2  1H  1.405  0.009     K14  HA  1H  4.175  0 

K14  HG3  1H  1.329  0.001     K14  HB2  1H  1.796  0.006 

K14  ME  1H  2.956  0     K14  HB3  1H  1.617  0.002 

K14  N  15N  114.749  0.015     K14  N  15N  114.438  0.021 

N15  C  13C  173.59  0     K14  QD  1H  1.575  0 

N15  CA  13C  52.55  0.045     K14  QE  1H  2.948  0.001 

N15  CB  13C  38.115  0.086     K14  QG  1H  1.376  0.001 

N15  H  1H  7.169  0.002     N15  C  13C  172.586  0 

N15  HA  1H  4.714  0.008     N15  CA  13C  52.854  0 

N15  HB2  1H  2.692  0.005     N15  CB  13C  38.069  0.019 

N15  HB3  1H  2.58  0.003     N15  H  1H  7.196  0.004 

N15  HD21  1H  7.492  0.003     N15  HA  1H  4.696  0.006 

N15  HD22  1H  6.829  0     N15  HB2  1H  2.682  0.005 

N15  N  15N  118.224  0.027     N15  HB3  1H  2.558  0.007 

N15  ND2  15N  110.828  0.003     N15  HD21  1H  7.496  0.001 

D16  C  13C  177.379  0     N15  HD22  1H  6.83  0.002 

D16  CA  13C  55.376  0     N15  N  15N  118.352  0.011 

D16  CB  13C  41.359  0.089     N15  ND2  15N  110.835  0.03 

D16  H  1H  8.524  0.002     D16  C  13C  176.411  0 

D16  HA  1H  4.374  0.006     D16  CA  13C  55.531  0.01 

D16  HB2  1H  3.031  0.004     D16  CB  13C  41.48  0.041 

D16  HB3  1H  2.515  0.003     D16  H  1H  8.509  0.002 

D16  N  15N  124.217  0.031     D16  HA  1H  4.34  0.009 

K17  C  13C  177.146  0     D16  HB2  1H  3.022  0.009 

K17  CA  13C  54.251  0.021     D16  HB3  1H  2.505  0.002 

K17  CB  13C  31.224  0.025     D16  N  15N  124.183  0.013 

K17  CD  13C  28.589  0     K17  C  13C  176.038  0 

K17  CE  13C  42.238  0     K17  CA  13C  54.467  0.067 

K17  CG  13C  24.557  0.046     K17  CB  13C  31.338  0.036 

K17  H  1H  8.071  0.004     K17  CE  13C  42.125  0.041 

K17  HA  1H  4.659  0.005     K17  CG  13C  24.499  0.009 
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K17  HB2  1H  2.393  0.002     K17  H  1H  8.002  0.004 

K17  HB3  1H  1.613  0.002     K17  HA  1H  4.65  0.009 

K17  HE2  1H  2.971  0.001     K17  HB2  1H  2.371  0.003 

K17  HE3  1H  2.899  0.005     K17  HB3  1H  1.579  0.002 

K17  HG2  1H  1.511  0.005     K17  HE2  1H  2.956  0 

K17  HG3  1H  1.406  0.002     K17  HE3  1H  2.895  0.004 

K17  MD  1H  1.643  0     K17  HG2  1H  1.488  0.004 

K17  N  15N  128.048  0.023     K17  HG3  1H  1.386  0.002 

C18  C  13C  175.735  0     K17  N  15N  128.081  0.014 

C18  CA  13C  56.889  0     K17  QD  1H  1.628  0.005 

C18  CB  13C  39.257  0     C18  C  13C  174.582  0 

C18  H  1H  9.367  0.006     C18  CA  13C  57.024  0.027 

C18  HA  1H  5.041  0.001     C18  CB  13C  39.294  0.036 

C18  MB  1H  2.98  0.011     C18  H  1H  9.326  0.002 

C18  N  15N  121.582  0.015     C18  HA  1H  4.975  0.002 

C19  CA  13C  53.747  0     C18  HB2  1H  2.944  0.004 

C19  CB  13C  38.497  0.087     C18  HB3  1H  2.88  0.001 

C19  H  1H  9.818  0.013     C18  N  15N  121.544  0.027 

C19  HA  1H  4.819  0     C19  CB  13C  38.762  0.017 

C19  HB2  1H  3.585  0.004     C19  H  1H  9.515  0.003 

C19  HB3  1H  2.534  0.003     C19  HA  1H  4.742  0 

C19  N  15N  122.814  0.051     C19  HB2  1H  3.504  0.002 

P20  C  13C  176.69  0     C19  HB3  1H  2.375  0.002 

P20  CA  13C  65.457  0     C19  N  15N  122.064  0.007 

P20  CB  13C  31.833  0.017     P20  C  13C  175.723  0 

P20  CD  13C  50.816  0.022     P20  CA  13C  65.208  0.032 

P20  CG  13C  27.791  0.045     P20  CB  13C  31.901  0.037 

P20  HA  1H  4.269  0.001     P20  CD  13C  50.767  0.027 

P20  HB2  1H  2.34  0.002     P20  CG  13C  27.92  0.005 

P20  HB3  1H  1.821  0.001     P20  HA  1H  4.112  0.003 

P20  HD2  1H  4.002  0.001     P20  HB2  1H  2.274  0.002 

P20  HD3  1H  3.719  0.001     P20  HB3  1H  1.76  0.002 

P20  HG2  1H  2.13  0     P20  HD2  1H  3.973  0.011 

P20  HG3  1H  2.044  0.002     P20  HD3  1H  3.678  0.006 

N21  C  13C  173.28  0     P20  HG2  1H  2.125  0.001 

N21  CA  13C  55.141  0     P20  HG3  1H  2.008  0 

N21  CB  13C  37.132  0     N21  C  13C  171.514  0 

N21  H  1H  8.152  0.01     N21  CA  13C  55.699  0 

N21  HA  1H  4.302  0.003     N21  CB  13C  37.357  0 

N21  HD21  1H  7.293  0     N21  H  1H  8.096  0.004 
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N21  HD22  1H  6.836  0.001     N21  HA  1H  4.119  0.003 

N21  MB  1H  2.474  0.005     N21  N  15N  113.149  0.018 

N21  N  15N  113.209  0.005     N21  QB  1H  2.537  0.005 

N21  ND2  15N  112.113  0.001     Y22  C  13C  172.996  0 

Y22  C  13C  173.825  0     Y22  CA  13C  56.673  0.085 

Y22  CA  13C  55.985  0.057     Y22  CB  13C  42.008  0.025 

Y22  CB  13C  42.015  0.049     Y22  CD1  13C  132.485  0 

Y22  H  1H  8.788  0.006     Y22  CE1  13C  117.919  0 

Y22  HA  1H  5.245  0.004     Y22  H  1H  8.697  0.003 

Y22  HB2  1H  3.142  0.001     Y22  HA  1H  4.947  0.007 

Y22  HB3  1H  2.784  0.003     Y22  HB2  1H  3.258  0.004 

Y22  N  15N  118.434  0.018     Y22  HB3  1H  2.46  0.008 

K23  C  13C  176.021  0     Y22  N  15N  117.389  0.009 

K23  CA  13C  54.775  0     Y22  QD  1H  6.657  0.002 

K23  CB  13C  37.046  0.008     Y22  QE  1H  6.662  0.002 

K23  CD  13C  29.249  0     K23  C  13C  175.088  0 

K23  CE  13C  42.205  0     K23  CB  13C  37.089  0.072 

K23  CG  13C  24.756  0.001     K23  CD  13C  28.994  0.008 

K23  H  1H  9.074  0.004     K23  CE  13C  42.36  0 

K23  HA  1H  4.611  0     K23  CG  13C  24.982  0.025 

K23  HG2  1H  1.403  0.001     K23  H  1H  8.96  0.002 

K23  HG3  1H  1.329  0     K23  HA  1H  4.66  0.007 

K23  MB  1H  1.628  0.004     K23  HB2  1H  1.651  0.002 

K23  MD  1H  1.676  0.001     K23  HB3  1H  1.591  0.002 

K23  ME  1H  2.991  0.002     K23  HD2  1H  1.652  0.002 

K23  N  15N  118.371  0.002     K23  HD3  1H  1.629  0 

C24  C  13C  174.447  0     K23  HG2  1H  1.402  0.002 

C24  CA  13C  56.71  0.012     K23  HG3  1H  1.31  0.003 

C24  CB  13C  38.427  0.096     K23  N  15N  118.693  0.005 

C24  H  1H  10.418  0.009     K23  QE  1H  2.962  0.004 

C24  HA  1H  4.457  0.005     C24  C  13C  173.357  0 

C24  HB2  1H  3.144  0.006     C24  CA  13C  56.627  0.054 

C24  HB3  1H  2.53  0.002     C24  CB  13C  38.442  0.063 

C24  N  15N  129.565  0.004     C24  H  1H  10.45  0.003 

S25  C  13C  176.005  0     C24  HA  1H  4.455  0.004 

S25  CA  13C  57.186  0     C24  HB2  1H  3.067  0.004 

S25  CB  13C  63.639  0.006     C24  HB3  1H  2.526  0.008 

S25  H  1H  7.94  0.004     C24  N  15N  129.112  0.011 

S25  HA  1H  4.487  0.007     S25  C  13C  175.099  0 

S25  HB2  1H  4.003  0.003     S25  CA  13C  57.147  0.042 
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S25  HB3  1H  3.835  0     S25  CB  13C  63.765  0.081 

S25  N  15N  124.487  0.025     S25  H  1H  8.056  0.002 

S26  C  13C  174.233  0     S25  HA  1H  4.519  0.002 

S26  CA  13C  61.049  0     S25  HB2  1H  4.092  0.009 

S26  CB  13C  62.567  0     S25  HB3  1H  3.891  0.008 

S26  H  1H  8.943  0.003     S25  N  15N  124.651  0.014 

S26  HA  1H  4.005  0.007     S26  C  13C  173.225  0 

S26  HB2  1H  3.942  0     S26  CA  13C  61.323  0 

S26  HB3  1H  3.856  0     S26  CB  13C  62.563  0.013 

S26  N  15N  125.324  0.024     S26  H  1H  8.976  0.003 

K27  C  13C  176.834  0     S26  HA  1H  4.009  0.005 

K27  CA  13C  57.225  0     S26  HB2  1H  3.942  0.003 

K27  CB  13C  33.369  0.025     S26  HB3  1H  3.855  0.002 

K27  CG  13C  24.524  0     S26  N  15N  125.423  0.073 

K27  H  1H  7.661  0.003     K27  C  13C  175.77  0 

K27  HA  1H  4.189  0.003     K27  CA  13C  57.612  0.11 

K27  HB2  1H  1.684  0.002     K27  CB  13C  33.45  0.031 

K27  HB3  1H  1.527  0.001     K27  CG  13C  24.501  0.014 

K27  HG2  1H  1.341  0.001     K27  H  1H  7.665  0.003 

K27  HG3  1H  1.268  0.002     K27  HA  1H  4.179  0.004 

K27  ME  1H  2.961  0.001     K27  HB2  1H  1.677  0.004 

K27  N  15N  119.27  0.016     K27  HB3  1H  1.521  0.004 

D28  C  13C  174.317  0     K27  HD2  1H  1.607  0 

D28  CA  13C  54.686  0     K27  HD3  1H  1.358  0 

D28  CB  13C  41.494  0.028     K27  HG2  1H  1.321  0.002 

D28  H  1H  7.28  0.003     K27  HG3  1H  1.243  0.003 

D28  HA  1H  4.304  0     K27  N  15N  119.394  0.03 

D28  HB2  1H  1.358  0     K27  QE  1H  2.953  0.001 

D28  HB3  1H  1.326  0     D28  C  13C  173.321  0 

D28  N  15N  114.442  0.017     D28  CA  13C  54.651  0.026 

L29  C  13C  176.066  0     D28  CB  13C  41.522  0.011 

L29  CA  13C  55.864  0.127     D28  H  1H  7.238  0.003 

L29  CB  13C  37.223  0.063     D28  HA  1H  4.234  0.007 

L29  CD1  13C  25.477  0.086     D28  HB2  1H  1.263  0.003 

L29  CD2  13C  23.464  0     D28  HB3  1H  1.022  0.001 

L29  CG  13C  27.237  0.053     D28  N  15N  114.542  0.04 

L29  H  1H  8.006  0.002     L29  C  13C  175.112  0 

L29  HA  1H  3.871  0.013     L29  CA  13C  55.61  0.046 

L29  HB2  1H  2.029  0.003     L29  CB  13C  37.504  0.007 

L29  HB3  1H  1.899  0.006     L29  CD1  13C  25.467  0 
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L29  HG  1H  1.316  0.007     L29  CD2  13C  23.493  0 

L29  MD1  1H  0.889  0.008     L29  CG  13C  26.827  0.128 

L29  MD2  1H  0.88  0.001     L29  H  1H  8.039  0.002 

L29  N  15N  113.436  0.028     L29  HA  1H  3.909  0.002 

W30  C  13C  178.068  0     L29  HB2  1H  2.034  0.009 

W30  CA  13C  55.363  0.025     L29  HB3  1H  1.893  0.005 

W30  CB  13C  31.864  0.032     L29  HG  1H  1.343  0.007 

W30  H  1H  6.72  0.002     L29  MD1  1H  0.899  0.008 

W30  HA  1H  5.686  0.004     L29  MD2  1H  0.881  0.005 

W30  HB2  1H  2.882  0.003     L29  N  15N  113.903  0.013 

W30  HB3  1H  2.486  0.003     W30  C  13C  177.328  0 

W30  N  15N  110.838  0.002     W30  CA  13C  55.009  0 

C31  C  13C  174.33  0     W30  CB  13C  31.66  0 

C31  CA  13C  54.847  0     W30  CD1  13C  125.402  0 

C31  CB  13C  39.176  0.023     W30  CE3  13C  121.466  0 

C31  H  1H  8.386  0.002     W30  CH2  13C  124.934  0 

C31  HA  1H  4.718  0     W30  CZ2  13C  114.181  0 

C31  HB2  1H  3.171  0.002     W30  CZ3  13C  122.009  0 

C31  HB3  1H  2.561  0.006     W30  H  1H  6.84  0.003 

C31  N  15N  118.497  0.013     W30  HA  1H  5.802  0.002 

K32  C  13C  175.228  0     W30  HB2  1H  3.147  0 

K32  CA  13C  55.081  0.035     W30  HB3  1H  2.702  0.002 

K32  CB  13C  35.787  0.038     W30  HD1  1H  6.917  0.002 

K32  CD  13C  29.567  0.017     W30  HE1  1H  10.28  0.003 

K32  CG  13C  25.486  0.016     W30  HE3  1H  7.525  0 

K32  H  1H  8.708  0.002     W30  HH2  1H  7.229  0.004 

K32  HA  1H  4.927  0.002     W30  HZ2  1H  7.521  0.001 

K32  HB2  1H  2.109  0.004     W30  HZ3  1H  7.163  0.002 

K32  HB3  1H  1.903  0.005     W30  N  15N  110.597  0.035 

K32  HD2  1H  1.744  0.002     W30  NE1  15N  128.965  0 

K32  HD3  1H  1.698  0.001     C31  C  13C  173.546  0 

K32  HG2  1H  1.548  0.002     C31  CB  13C  38.953  0.025 

K32  HG3  1H  1.432  0.002     C31  H  1H  8.397  0.003 

K32  N  15N  124.965  0.002     C31  HA  1H  4.691  0.004 

Y33  C  13C  176.539  0     C31  HB2  1H  3.009  0.002 

Y33  CA  13C  59.636  0     C31  HB3  1H  2.505  0.005 

Y33  CB  13C  38.402  0.069     C31  N  15N  118.911  0.021 

Y33  H  1H  8.16  0.01     K32  C  13C  174.473  0 

Y33  HA  1H  4.258  0     K32  CB  13C  29.666  0.048 

Y33  HB2  1H  2.948  0.005     K32  CE  13C  42.098  0.018 
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Y33  HB3  1H  2.637  0.005     K32  CG  13C  25.408  0.053 

Y33  N  15N  121.663  0.006     K32  H  1H  8.998  0.003 

K34  C  13C  174.818  0     K32  HA  1H  4.817  0.003 

K34  CA  13C  57.193  0     K32  HB2  1H  2.055  0.001 

K34  CB  13C  32.856  0.002     K32  HB3  1H  1.808  0.004 

K34  CD  13C  29.413  0.07     K32  HD2  1H  1.801  0.002 

K34  CE  13C  41.585  0.05     K32  HD3  1H  1.62  0.001 

K34  CG  13C  25.1  0     K32  HE2  1H  3.069  0.008 

K34  H  1H  8.17  0.004     K32  HE3  1H  2.979  0.004 

K34  HA  1H  3.899  0.001     K32  HG2  1H  1.662  0.002 

K34  HB2  1H  1.422  0.001     K32  HG3  1H  1.593  0.001 

K34  HB3  1H  1.352  0.002     K32  N  15N  126.63  0.007 

K34  HD2  1H  1.437  0.001     Y33  C  13C  175.057  0 

K34  HD3  1H  1.383  0.001     Y33  CA  13C  59.1  0.03 

K34  HE2  1H  2.725  0.001     Y33  CB  13C  38.389  0.015 

K34  HE3  1H  2.622  0.001     Y33  CD1  13C  132.998  0 

K34  MG  1H  0.915  0.001     Y33  CE1  13C  117.923  0 

K34  N  15N  125.608  0     Y33  H  1H  8.639  0.004 

I35  C  13C  175.036  0     Y33  HA  1H  3.861  0.001 

I35  CA  13C  60.845  0.033     Y33  N  15N  126.24  0.008 

I35  CB  13C  38.686  0.084     Y33  QB  1H  2.748  0.003 

I35  CD1  13C  12.809  0     Y33  QD  1H  6.659  0.002 

I35  CG1  13C  26.984  0.046     Y33  QE  1H  6.659  0.002 

I35  CG2  13C  17.457  0     K34  C  13C  173.383  0 

I35  H  1H  7.643  0.003     K34  CA  13C  56.979  0.019 

I35  HA  1H  4.07  0.004     K34  CB  13C  32.985  0 

I35  HB  1H  1.763  0.007     K34  CD  13C  29.331  0.095 

I35  HG12  1H  1.337  0.007     K34  CE  13C  41.913  0 

I35  HG13  1H  1.055  0.004     K34  CG  13C  24.783  0.056 

I35  MD1  1H  0.827  0     K34  H  1H  8.015  0.003 

I35  MG2  1H  0.826  0.005     K34  HA  1H  3.87  0.004 

I35  N  15N  121.316  0.023     K34  HB2  1H  1.339  0.003 

W36  CA  13C  58.461  0     K34  HB3  1H  1.309  0.001 

W36  CB  13C  30.149  0.049     K34  HD2  1H  1.396  0.008 

W36  H  1H  7.716  0.011     K34  HD3  1H  1.32  0.002 

W36  HA  1H  4.48  0.006     K34  HE2  1H  2.616  0 

W36  HB2  1H  3.324  0.001     K34  HE3  1H  2.672  0.003 

W36  HB3  1H  3.164  0.001     K34  HG2  1H  0.899  0.003 

W36  N  15N  129.657  0     K34  HG3  1H  0.832  0.004 

   K34  N  15N  127.575  0.089 
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   I35  C  13C  174.074  0 

   I35  CA  13C  61.104  0.024 

   I35  CB  13C  38.605  0.035 

   I35  CD1  13C  12.916  0.083 

   I35  CG1  13C  27.126  0.071 

   I35  CG2  13C  17.503  0.007 

   I35  H  1H  7.412  0.004 

   I35  HA  1H  3.983  0.009 

   I35  HB  1H  1.721  0.006 

   I35  HG12  1H  1.298  0.011 

   I35  HG13  1H  1.01  0.003 

   I35  MD1  1H  0.815  0.005 

   I35  MG2  1H  0.781  0.007 

   I35  N  15N  121.321  0.02 

   W36  CA  13C  58.548  0.034 

   W36  CB  13C  30.181  0.042 

   W36  CD1  13C  126.784  0 

   W36  CE3  13C  122.075  0 

   W36  CH2  13C  124.507  0 

   W36  CZ2  13C  114.827  0 

   W36  CZ3  13C  122.028  0 

   W36  H  1H  7.634  0.003 

   W36  HA  1H  4.473  0.004 

   W36  HB2  1H  3.289  0.002 

   W36  HB3  1H  3.156  0.002 

   W36  HD1  1H  7.21  0 

   W36  HE1  1H  10.092  0.001 

   W36  HE3  1H  7.66  0.001 

   W36  HH2  1H  7.21  0.002 

   W36  HZ2  1H  7.484  0.002 

   W36  HZ3  1H  7.129  0.002 

   W36  N  15N  129.671  0.014 

   W36  NE1  15N  128.851  0 
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Appendix F: Revealing minor isoforms of Pre1a 

 

 

Figure 71: CBCA(CO)NH strips for rPre1a structure. Two minor isoforms could be partially 

assigned using the CBCA(CO)NH strips pulled from the 15N-HSQC for rPre1a. 
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