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On the regularity of American options with regime-switching uncertainty

Saul D. Jacka∗† Adriana Ocejo‡

June 2017

Abstract

We study the regularity of the stochastic representation of the solution of a

class of initial-boundary value problems related to a regime-switching diffusion.

This representation is related to the value function of a finite-horizon optimal

stopping problem such as the price of an American-style option in finance. We show

continuity and smoothness of the value function using coupling and time-change

techniques. As an application, we find the minimal payoff scenario for the holder

of an American-style option in the presence of regime-switching uncertainty under

the assumption that the transition rates are known to lie within level-dependent

compact sets.

1 Introduction

Let B = (Bt)t≥0 be a Brownian motion and Y = (Yt)t≥0 be a continuous-time finite-

state Markov chain, with respect to a common filtered probability space (Ω,F , (Ft)t≥0, P ),

where (Ft)t≥0 satisfies the usual conditions. Note that Lemma 2.5 of [14] tells us that

B and Y are independent.

Let S = {1, 2, . . . ,m} denote the state space of Y and π = (π[i, j]) its Q-matrix so

that

π[i, j] ≥ 0, for i 6= j and
m∑
j=1

π[i, j] = 0 for i = 1, 2, . . . ,m.
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Suppose that the process X = (Xt)t≥0 obeys the stochastic differential equation with

regime-switching

Xt = x+

∫ t

0

a(Xs, Ys)dBs +

∫ t

0

µ(Xs, Ys)ds, x ∈ R, (1.1)

where, for each y ∈ S, a(·, y) and µ(·, y) are, locally Lipschitz continuous on the state

space of X and a is positive. Denote by Lπ the operator related to the generator of the

Markov process (X, Y ), given by

Lπw(x, y, t) =
1

2
a2(x, y)wxx(x, y, t) + µ(x, y)wx(x, y, t)− wt(x, y, t)

+
∑

y′∈S,y′ 6=y

[w(x, y′, t)− w(x, y, t)]π[y, y′].
(1.2)

For a given rate matrix π, consider the value of the optimal stopping problem with finite

time horizon T > 0 and regime-switching associated with (X, Y ):

v(x, y, t) = sup
τ≤t

Ex,y(e
−ατg(Xτ )), (x, y, t) ∈ R× S × [0, T ], (1.3)

where α ≥ 0 and g : R → [0,∞) is assumed to be a β-Hölder continuous function for

some 0 < β ≤ 1. We write Ex,y to denote the expectation conditioned on (X0 = x, Y0 =

y).

We are primarily interested in analytical properties of the value function in (1.3). In

particular, we will show that for each y ∈ S the function v(·, y, ·) : R × [0, T ] → R is

β/2-Hölder continuous and v solves the initial-boundary value problem

(Lπ − α )v(x, y, t) = 0, in C
v(x, y, 0) = g(x), in R× S × {0}
v(x, y, t) = g(x), on ∂C

(1.4)

where C = {(x, y, t) ∈ R×S× (0, T ] : v(x, y, t) > g(x)}. This in turn yields that v(·, y, ·)
is of the class C2,1 in the set

Cy = {(x, t) ∈ R× (0, T ] : v(x, y, t) > g(x)}.

The stochastic representation of the solution of a problem of the form in (1.4) and in

the setting where X is a diffusion without regime-switching is of course very well-known

(see [13]) and the relation to an optimal stopping problem is standard ([20], [21]). This

relationship allows the use of PDE methods to tackle the latter problem [21], such as
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finding a solution to an American option problem. However, in order to establish the

desired connection, one typically requires continuity of the value function v. To this

end, a number of subtle regularity conditions on the parameters of the problem must be

imposed. In Section 2 we show that v(·, y, ·) is locally β/2-Hölder continuous (Theorem

2.4 below). Our results generalise those of Fleming and Soner [12] and Byraktar, Song

and Yang [4] in the context of optimal stopping (although they deal with combined

control and stopping), since they assume uniformly Lipschitz coefficients and payoff and

do not allow the jumps present in our model.

In the context of regime-switching diffusions, an early explicit example is Di Masi,

Kabanov and Runggaldier [10], where they consider option pricing in an incomplete mar-

ket with regime switching. More recently Baran, Yin and Zhu [3] studied the stochastic

representation for a generic initial-boundary value problem generalizing the results by

Friedman [13]. A standing assumption in their theory is that the PDE problem is defined

on an open and bounded domain on the state space of X. In practice, such domains

may be unbounded but we can get around this issue by a local argument which requires

some continuity of the underlying value function (see proof of Theorem 3.1). Continuity

of v also plays a central role for instance, in the derivation of optimal stopping rules and

to determine the shape of the optimal stopping boundary. In general, so-called tangency

problems (see [12]) may prevent continuity of the value function, but in our model this

is precluded by a local ellipticity assumption (see the proof of Proposition 2.3).

The study of the solution of an American-style option problem of the form in (1.3) has

been addressed in the literature under the special case of Markov-modulated geometric

Brownian motion dynamics dSt = St(σ(Yt)dBt + µ(Yt)dt). For instance, Buffington and

Elliott [5] analyze the American put, with g(x) = (K − x)+, and discuss the determina-

tion of the value function and the shape of the optimal stopping boundary by means of

a direct application of Itô’s formula. More recently, Le and Wang [18] studied analytical

properties of the value function of an American-style option under the condition that

g belongs to the class of non-negative, non-increasing, convex functions with bounded

support and twice differentiable on the support.

In Sections 2 and 3, we study continuity and smoothness of v and we only assume that

g is Hölder continuous. Our approach is of interest because it uses coupling arguments

as well as classical path properties of Brownian motion, which are purely probabilistic

tools. The smoothness results ensure that standard numerical schemes for solving the

optimal stopping problem are stable.

Throughout the paper we make the following standing assumption:

(A1) Ex,y
(
sup0≤t≤T (|a(Xt, Yt)|+ |µ(Xt, Yt)|)

)
≤ N for some N = N(x, y, T ) <∞

and N is continuous as a function of x.
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Notice that if a(·, y) and µ(·, y) satisfy linear growth conditions for each y then (A1)

follows by results on estimates of the moments of regime-switching diffusions (see A).

In financial applications, regime-switching processes have been used to better repro-

duce asset price behavior from market data. For example, they can generate a volatility

smile [25], which is impossible under a constant volatility. Commodity prices such as

electricity are prone to spikes [7], and modeling based on regime-switching coefficients

has been proposed [19]. A similar effect of dramatic price rises and crashes appears

in so-called asset price bubbles. Bubbles have been addressed as following a regime-

switching structure [1] and characterized as strict local martingales (see [8], [15], [23]

and references therein).

Typically, the transition rates of the Markov chain are specified via a constant

Q-matrix. However, empirical studies suggest that time-varying transition and path-

dependent rates improve the forecasting ability of the phases of an economy such as

expansions, contractions and duration of the regimes (see [9], [11], [16] and references

therein).

In Section 4, we use the results of the foregoing sections to find the minimal payoff

scenario for the holder of an American-style option who only knows level-dependent

bounds on the transition rates of the Markov chain. More precisely, we let π denote an

admissible time-varying, (Ft)-adapted rate matrix π = (πt)t≥0 such that for each t ≥ 0,

the Q-matrix πt = (πt[i, j]) satisfies

πt[i, i+ z] ∈ A+
i,z, πt[i, i− z] ∈ A−i,z, t ≥ 0 (1.5)

where A+
i,z, A

−
i,z are compact subsets of (0,∞). Denote by A the set of all admissible rate

matrices. We aim to find, for each initial condition (x, y, t), an admissible rate matrix

πl that attains the infimum

V l(x, y, t) = inf
π∈A

v(x, y, t; π). (1.6)

Here, v(x, y, t; π) is as in (1.3) and the notation is to emphasize the dependence on π.

2 Continuity of v

First we show that the function v(x, y, ·) is β/2-Hölder continuous on [0, T ] over a

neighborhood of x. This is where Assumption (A1) is used. Next, we will see that

v(·, y, t) is locally Lipschitz continuous in the set {x : v(x, y, t) > g(x)} via path prop-

erties of Brownian motion. As a consequence, it is seen that these properties together

imply the main result of this section, Theorem 2.4.
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Proposition 2.1. For each (x, y) ∈ R×S, the function v(x, y, ·) is β/2-Hölder contin-

uous uniformly over a neighborhood of x.

Proof. Fix (x, y) ∈ R × S. Take C > 0 such that |g(z) − g(z′)| ≤ C|z − z′|β for all

z, z′ ∈ R, with 0 < β ≤ 1.

Let 0 ≤ t1 < t2 ≤ T and take an arbitrary ε > 0. Suppose that τ2 is an ε-optimal

stopping time for the problem v(x, y, t2) and set τ1 = τ2 ∧ t1 so that τ1 is suboptimal for

v(x, y, t1). Then τ1 ≤ τ2 ≤ t2 and since v(x, y, ·) must be an increasing function of time

we have, defining the martingale M by Mt =
∫ t
0
a(Xs, Ys)dBs,

0 ≤ v(x, y, t2)− v(x, y, t1) ≤ ε+ Ex,y(e
−ατ2g(Xτ2))− Ex,y(e−ατ1g(Xτ1))

≤ ε+ Ex,y(e
−ατ2|g(Xτ2)− g(Xτ1)|) ≤ ε+ C Ex,y(|Xτ2 −Xτ1|β)

≤ ε+ C Ex,y(|Xτ2 −Xt1|βI{t1<τ2})

≤ ε+ C ′Ex,y

({
|Mτ2 −Mt1|β +

∣∣∣∣∫ τ2

t1

µ(Xs, Ys)ds

∣∣∣∣β
}
I{t1<τ2}

)

≤ ε+ C ′Ex,y

(
sup

t1≤t≤t2
|Mt −Mt1|β +

[
sup

t1≤t≤t2
|µ(Xt, Yt)|(t2 − t1)

]β)

≤ ε+ C ′′Ex,y

(
[〈M〉t2 − 〈M〉t1 ]

β
2 +

[
sup

t1≤t≤t2
|µ(Xt, Yt)|(t2 − t1)

]β)
(2.1)

where the last inequality follows from the Burkholder-David-Gundy inequalities [24,

Corollary IV.4.2], and constants vary from line to line.

Now

〈M〉t =

∫ t

0

a2(Xs, Ys)ds

so the last line of (2.1) is dominated by

ε+ C ′′Ex,y

([∫ t2

t1

a2(Xs, Ys)ds

]β
2

+

[
sup

t1≤t≤t2
|µ(Xt, Yt)|(t2 − t1)

]β)

≤ ε+ C ′′Ex,y

([
sup

t1≤t≤t2
a2(Xt, Yt)(t2 − t1)

]β
2

+

[
sup

t1≤t≤t2
|µ(Xt, Yt)|(t2 − t1)

]β)
.

(2.2)

Now taking t2 ≤ t1 + 1 without loss of generality, and noting that β ≤ 1, we see that

the last line in (2.2) is dominated by

ε+ C ′′′Ex,y

(
sup
t≤T

(|a(Xt, Yt)|+ |µ(Xt, Yt)|)
)

(t2 − t1)
β
2 ≤ ε+ C ′′′N(x, y, T )(t2 − t1)

β
2 ,
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where by (A1), N = N(x, y, T ) depends on x, y and T only and is continuous in x.

Finally, recalling that ε > 0 can be made arbitrarily small, we obtain

0 ≤ v(x, y, t2)− v(x, y, t1) ≤ C ′′′(t2 − t1)β/2N, (2.3)

and conclude that v is β/2-Hölder continuous in t, uniformly in a neighborhood of x.

The proof of the next lemma uses standard techniques so we defer the proof to the

B. We note that we only impose continuity and boundedness from below as conditions

on g in this result and Proposition 2.3 below.

Lemma 2.2. Assume that g is continuous. For each (y, t) ∈ S × (0, T ], the function

v(·, y, t) is lower semi-continuous in R.

We now establish that v is locally Lipschitz continuous as a function of x in the

continuation region C = {(x, y, t) ∈ R × S × (0, T ] : v(x, y, t) > g(x)} via coupling of

stochastic processes and elementary properties of Brownian motion. Let us introduce

the following notation. For each (y, t) ∈ S × (0, T ] the (y, t)-section of the continuation

region is

Cy,t = {x ∈ R : v(x, y, t) > g(x)}. (2.4)

As a consequence of the lower semi-continuity of v(·, y, t), for t > 0, the (y, t)-section

Cy,t is an open subset of R. Notice that if t = 0 then v(x, y, 0) = g(x) for all (x, y) and

so Cy,0 = ∅. Similarly for each y ∈ S, the y-section is

Cy = {(x, t) ∈ R× (0, T ] : v(x, y, t) > g(x)}. (2.5)

Proposition 2.3. Assume that g is continuous. For each (y, t) ∈ S×(0, T ], the function

v(·, y, t) is locally Lipschitz continuous in the section Cy,t.

Proof. Fix (y, t) ∈ S × (0, T ] and note that without loss of generality, we may assume

that Cy,t is non-empty. Let I be an open and bounded interval whose closure is in Cy,t.

Since v is increasing in t, the open subsets Cy,t increase in t as well and we must have

that Cy,t0 ⊆ Cy,t ⊆ Cy,t1 whenever 0 < t0 < t < t1 ≤ T . Let t0 < t be sufficiently large

so that I ⊂ Cy,t0 . In particular, for some t1 < T ,

R := I × (t0, t1) ( Cy.
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Let x, x′ ∈ I and assume without loss of generality that x > x′ (the reverse case

follows by symmetry). Suppose that Xt = x +
∫ t
0
a(Xs, Ys)dBs +

∫ t
0
µ(Xs, Ys)ds starts

from x and let X ′t = x′+
∫ t
0
a(X ′s, Ys)dB

′
s+
∫ t
0
µ(X ′s, Ys)ds be started from x′, with driving

Brownian motion B′ = −B. Note that, by uniqueness in law of the solution to (1.1),

v(x′, y, t) = sup
τ≤t

E(e−ατg(X ′τ )).

Define Z = (Zs)s≥0 by Zs := Xs−X ′s so that Zs = r+Ms +As where r = x−x′ > 0

and

Ms =

∫ s

0

[ a(Xu, Yu) + a(X ′u, Yu) ]dBu,

As =

∫ s

0

[µ(Xu, Yu)− µ(X ′u, Yu)]du, s ≥ 0.

(2.6)

Consider the coupling time τ(x, x′) := inf{s > 0 : Zs ≤ 0} of X and X ′. Let

t2 = t − t0. The function v(·, y, t) is bounded on I (as it is lower semi-continuous and

finite), say by K/2. Thus upon stopping Xs and X ′s at first exit from the interval I it

follows that

|v(x, y, t)− v(x′, y, t)| ≤ K P ( t2 < τ(x, x′) ). (2.7)

We next show that P (t2 < τ(x, x′)) is O(x − x′) as r = x − x′ → 0, which implies

Lipschitz continuity on the interval I. Since a and µ are continuous, we must have that

a(·, ·) ≥ δ > 0 and µ(·, ·) ≤ η on I × S. Setting k(s) = 4δ2 s and ν = η
2δ2

we obtain

〈M〉s =

∫ s

0

[ a(Xu) + a(X ′u) ]2σ2(Yu)du

≥
∫ s

0

[ 2 min{a(Xu, Yu), a(X ′u, Yu)} ]2du ≥ k(s).

and

As ≤ ηs ≤ ν〈M〉s.

Using the Dubins-Dambis-Schwarz Theorem (see [24, V.1.6]), there is a standard Brow-

nian motion W = (Ws)s≥0 such that Ms = W〈M〉s . Moreover, 〈M〉s has continuously

increasing paths and so

{ t2 < τ(x, x′) } ⊆ {W〈M〉s + ν〈M〉s > −r, ∀ s ≤ t2 }
= {Ws + νs > −r, ∀s ≤ 〈M〉t2 }
⊆ { inf

s≤〈M〉t2
Ws + νs ≥ −r } ⊆ { inf

s≤k(t2)
Ws + νs ≥ −r }.

(2.8)

7



It follows that (see e. g. [6])

P (t2 < τ(x, x′)) ≤ P

(
inf

s≤k(τ2)
Ws + νs ≥ −r

)
≤ 1− Φ

(
−r − νk(t2)√

k(t2)

)
− e−2νrΦ

(
−r + νk(t2)√

k(t2)

)

and the right-hand side is O(r) as r → 0, which concludes the proof.

Theorem 2.4. Consider the value function v in (1.3). For each y ∈ S, the function

v(·, y, ·) : R× [0, T ]→ R is locally β/2-Hölder continuous.

Proof. Let K be a compact subset of R× [0, T ] and (x, t), (x′, t′) ∈ K. Fixing y ∈ S, we

shall write v(x, t) ≡ v(x, y, t) and v(x′, t′) ≡ v(x′, y, t′).

By Proposition 2.1, v(x′, ·) is β/2-Hölder continuous. Recall that the Hölder constant

in (2.3) depends on x continuously. In particular, it is bounded in the compact set K

as a function of x, say by some N̄ > 0. Then we have

|v(x′, t)− v(x′, t′)| ≤ N̄ |t− t′|β/2.

Also, by Proposition 2.3, v(·, t) is locally Lipschitz continuous in Cy,t and β-Hölder con-

tinuous everywhere else (since v = g outside Cy,t). Thus v(·, t) is β/2-Hölder continuous

on the bounded set {x ∈ R : (x, t) ∈ K}, and so for some C = C(K) > 0 we have

|v(x, t)− v(x′, t)| ≤ C|x− x′|β/2.

Setting M = max{C, N̄}, the triangle inequality yields

|v(x, t)− v(x′, t′)| ≤ C|x− x′|β/2 + N̄ |t− t′|β/2

≤M 21−β/4 (
√
|x− x′|2 + |t− t′|2 )β/2.

This shows that v is locally β/2-Hölder continuous.

3 Smoothness of v

In this section we use the continuity of v to show smoothness via a localization

argument.
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Theorem 3.1. For each fixed y ∈ S, define f : R× [0, T ]→ R+ by

f(x, t) :=
∑
y′ 6=y

π[y, y′] v(x, y′, t).

By Theorem 2.4, v(·, y′, ·) is a β/2-Hölder continuous function and so is f .

Define L̃ to be the linear operator given by

L̃ :=
1

2
a(x, y)2

∂2

∂ x2
+ µ(x, y)

∂

∂x
− ∂

∂ t
− π[y],

where −π[y] =
∑

y′ 6=y π[y, y′] is the rate of leaving y.

The function v in (1.3) is the probabilistic solution of the initial-boundary value

problem

(Lπ − α )v(x, y, t) = 0, in C
v(x, y, 0) = g(x), in R× S × {0}
v(x, y, t) = g(x), on ∂C

t where C = {(x, y, t) ∈ R × S × (0, T ] : v(x, y, t) > g(x)}, and Lπ is given in equation

(1.2). In particular, v(·, y, ·) ∈ C2,1(C).

Proof. By definition of C and v, it is clear that v = g on ∂C and also v(x, y, 0) = g(x).

Fix y ∈ S and consider the y-section Cy which is an open subset of R × [0, T ]. Let

R = (x0, x1)×(t0, t1) be an open and bounded rectangle in Cy. Now consider the classical

initial-boundary value problem

(L̃− α)H(x, t) = −f(x, t), in R ∪Bu

H(x, t) = v(x, y, t), on ∂R\Bu,
(3.1)

where Bu = (x0, x1)× {t1}.
Given that both a and −f are uniformly Hölder in R, and that the operator L̃− α

is uniformly Hölder parabolic in R (as a2(·, y) is bounded away from zero in R), there

exists a unique solution H to (3.1) which is continuous in R̄ and such that H ∈ C2,1(R)

(see Theorem 6.3.6 in [13]).

Recall that y ∈ S is fixed from the beginning. Now, for each (x, t) ∈ R and y′ ∈ S,

extend H as follows:

h(x, y′, t) :=

H(x, t) if y′ = y

v(x, y′, t) if y′ 6= y.
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Fix (x, t) ∈ R and consider the stopping times T1 = inf{s ≥ 0 : (Xs, t− s) /∈ R} and

T2 = inf{s ≥ 0 : Ys 6= y}, and set τ = T1 ∧ T2. Notice that T1 ≤ t Px,y-a.s. Since Ys ≡ y

up to the time τ , an application of Dynkin’s formula yields

h(x, y, t) = Ex,y
(
e−ατh(Xτ , Yτ , t− τ)

)
− Ex,y

(∫ τ

0

e−ατ (Lπ − α)h(Xs, Ys, t− s)ds
)
.

Now, h(Xτ , Yτ , t − τ) = v(Xτ , Yτ , t − τ) Px,y-a.s. Indeed, if τ = T1 we use the

boundary condition in (3.1), otherwise the equality still holds by the definition of h.

Moreover, after a simple algebraic manipulation it can be seen that, for each (x, t) ∈ R,

(Lπ − α)h(x, y, t) = (L̃− α)h(x, y, t) + f(x, t) = 0.

We then arrive to the expression

h(x, y, t) = Ex,y
(
e−ατv(Xτ , Yτ , t− τ)

)
, (x, t) ∈ R.

Given that τ is bounded above by the first exit time of (Xs, t − s) from the continua-

tion region, the dynamic programming principle implies that h(·, y, ·) = v(·, y, ·) in the

rectangle R. Therefore v(·, y, ·) ≡ H in R and so v(·, y, ·) ∈ C2,1(R) and

(Lπ − α)v(x, y, t) = 0 in R.

which concludes the proof since R was arbitrary.

4 Extremal payoff scenarios

In this section, we assume that a and µ are both in product form and give conditions

under which the function V l in (1.6) is the value function of an optimal stopping problem

associated with an extremal jump rate scenario. To emphasize the dependence on π, we

write (Xπ, Y π) and v(x, y, t; π) instead of (X, Y ) and v(x, y, t), respectively. Roughly,

one expects that increasing the variance of Xπ (controlled by π) expedites the time at

which Xπ reaches the high values of g, hence increasing the payoff since the penalty for

the elapsed time via the discount factor is smaller. This intuition leads to the natural

candidate strategy: to choose minimal (resp. maximal) variance to achieve the infimum

(resp. supremum).

We make the following standing assumption

(A2) Ex,y
(
sup0≤t≤T [e−ατg(Xπ

t )]
)
<∞.
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Notice that if g has polynomial growth and the coefficients a and µ have linear

growth then (A2) follows by results on estimates of the moments of regime-switching

diffusions (see Appendix A). In particular, the expectation is uniformly bounded over

all π because it does not depend on the transition rates.

We now consider the special case

Xt = x+

∫ t

0

a(Xs)σ(Ys)dBs +

∫ t

0

r(Xs)µ(Ys)ds (4.1)

and assume that r is positive. Before we state the main result of this section we need

some preliminary results and definitions.

Definition 4.1. We say that transition rates qi,j on S are well-ordered if∑
w≥z

qi,w ≤
∑
w≥z

qj,w for any i < j < z

and∑
w≤z

qi,w ≥
∑
w≤z

qj,w for any z < i < j

(4.2)

Definition 4.2. We say that a coupling of Y and Y ′, copies of a Markov chain on S
with Y0 = y < Y0 = y′, is an ordered coupling if Y ′t ≥ Yt for all t a.s.

The following theorem, although fairly obvious, may be of some independent interest.

Theorem 4.3. Suppose that (qi,j)(i,j)∈S×S is a Q-matrix on S, then we can find an

ordered coupling on S with transition rates q for every y < y′ if and only if the transition

rates qi,j are well-ordered.

Proof. Let the coupling measure be P. Consider Y and Y ′. Since they are ordered,

P(Yt ≥ z) ≤ P(Y ′t ≥ z) for all t. (4.3)

Dividing both sides of (4.3) by t and letting t→ 0, we obtain for z > y′:∑
w≥z

qy,w ≤
∑
w≥z

qy′,w,

and this is true for every y < y′. A similar argument gives the second inequality in (4.2).

11



Conversely, suppose that the transition rates qi,j satisfy (4.2), we sketch a standard

argument based on thinning Poisson processes. Define independent Poisson processes L

and M with suitably large rates λ and µ respectively. Define an independent sequence

of independent, identically distributed Uniform[0,1] random variables (Un)n≥1; these will

be used for randomisation. We use jumps of L to generate (possible) up-jumps of the

copies of the Markov chain and jumps of M to generate down-jumps.

Define the (joint) process Y as follows. First set

Y i
0 = i for i ∈ S.

Then let Y be constant until the first jump time J1 of L+M . Now, if the first jump is

a jump of L, define Y i
J1

by Y i
J1
≥ i and, for k > i

Y i
J1
≥ k if and only if U1 ≥ 1−

∑
w≥k qi,w

λ
.

Similarly, if the first jump is a jump of M , define Y i
J1

by Y i
J1
≤ i and, for k < i

Y i
J1
≤ k if and only if U1 ≤

∑
w≥k qi,w

µ
.

Now proceed recursively, using the successive jumps of L + M and the successive ran-

domising Un. It is clear that the ith component of Y is a copy of the MC started at

i. Then a quick comparison of the jump constructions shows that the components of Y

remain ordered thanks to (4.2) and an inductive argument on the chain at jump times

of L+M .

Remark 4.4. Note that any skip-free chain, i.e. one where qi,j = 0 for |i − j| > 1, is

well-ordered.

Definition 4.5. For any Q-matrix, q, on S define qσ by

qσi,j =
qi,j
σ2(i)

.

Remark 4.6. If Y is a Markov chain with Q-matrix π, then πσ is the Q-matrix for Ỹ ,

the Markov chain obtained by time-changing Y using the additive functional A given by

At =
∫ t
0
σ2(Ys)ds.

12



Theorem 4.7. Define πl by

πl[y, y + z] = inf A+
y,z πl[y, y − z] = supA−y,z. (4.4)

Suppose that σ(·) is monotone increasing, and (πl)σ is well-ordered, then in the following

three cases,

1. µ = 0;

2. µ/σ2 is decreasing and g is decreasing;

3. µ/σ2 is increasing and g is increasing;

the constant rate matrix πl attains the infimum in (1.6).

Remark 4.8. Theorem 4.7 covers the case of pricing American put options with stochas-

tic/regime-switching volatility. Here µ = 1, r(x) = αx > 0 and it is normally assumed

that Y is skip-free. Thus σ2 increasing is enough for the result to hold.

Lemma 4.9. Suppose that π is such that πσ = (πσ[i, j]), i, j ∈ S = {1, 2, . . . ,m} is

well-ordered, then in case 1,2 and 3 of Theorem 4.7 above v(x, ·, t; π) is also increasing

on S, for each (x, t) ∈ R× [0, T ].

Proof. Suppose that σ(·) is increasing. In case 1, the result is proved in exactly the

same way as Theorem 2.5 by Assing et al. [2] with Y replaced by σ(Y ). There it is

insisted that πl is skip-free, but only stochastic monotonicity of Y is actually used. In

case 2 a very similar, but extended argument can be used, time-changing away the Y

dependence in the diffusion term in the SDE for X to

dX̃t = a(X̃t)dWt + r(X̃t)
µ(Ỹt)

σ2(Ỹt)

and deducing by uniqueness in law that the two time-changed solutions, (X̃, Ỹ ) and

(X̃ ′, Ỹ ′), to the dynamics started at x, y and x′, y′ with y ≤ y′ and x ≥ x′ have compo-

nents which can be ordered:

X̃ ′ ≤ X̃ and Ỹ ′ ≥ Ỹ .

A similar argument with ordering on X and X ′ reversed, works in case 3.

13



Since π ∈ A, the generator Lπ takes the form

Lπw(x, y, t) =
1

2
a2(x)σ2(y)wxx(x, y, t) + r(x)− wt(x, y, t)

+

m−y∑
z=1

[w(x, y + z, t)− w(x, y, t)]π[y, y + z]

+

y−1∑
z=1

[w(x, y − z, t)− w(x, y, t)]π[y, y − z].

(4.5)

The following verification result gives sufficient conditions for a suitable function w

to be a lower bound for V l.

Proposition 4.10. (Lower bounds on V l) Suppose that w : R× S × [0, T ]→ R is a

function such that for each y ∈ S, w(·, y, ·) is continuous, and the restriction of w(·, y, ·)
on the open set {(x, t) ∈ R× [0, T ] : w(x, y, t) > g(x)} is C2,1. Suppose that w satisfies:

inf
π

(Lπ − α )w(x, y, t) = 0 in C,

w(x, y, 0) = g(x) on R× S × {0},
w(x, y, t) = g(x) on R× S × (0, T ]\C,

(4.6)

where C = {(x, y, t) ∈ R× S × [0, T ] : w(x, y, t) > g(x)} and the infimum is taken over

all constant and admissible rate matrices. Then, for each initial condition (x, y, u),

w(x, y, u) ≤ V l(x, y, u). (4.7)

Proof. If u = 0 then V l(x, y, 0) = g(x) = w(x, y, 0). Fix an initial condition (x, y, u) ∈
R× S × (0, T ]. Pick an arbitrary π ∈ A and define the process N(π) = (Nt(π))t≥0 by

Nt(π) := e−αtw(Xπ
t , Y

π
t , u− t), 0 ≤ t ≤ u

Let τ̂ ≡ τ̂π := inf{t ≥ 0 : (Xπ
t , Y

π
t , u− t) /∈ C} ≤ u and, for each R > 0, let UR ⊂ R2

be an open ball centered at (x, y) of radius R. Let τR be given by

τR = min{τ̂ , inf{t ≥ 0 : (Xπ
t , Y

π
t ) /∈ UR} }.

Notice that τR → τ̂ almost surely as R→∞.

Since w is sufficiently smooth in C, we can apply Itô’s formula for semimartingales

14



(see Theorem II.33 in [22]) to obtain, for each 0 ≤ t ≤ u,

Nt∧τR(π)− w(x, y, u) =

∫ t∧τR

0

e−αu(Lπs − α)w(Xπ
s , Y

π
s , t− s)ds+Mt∧τR ,

where Mt =
∫ t
0
e−αswx(X

π
s , Y

π
s , t− s) a(Xπ

s )σ(Y π
s )dBs and Lπs is Lπs as in (4.5).

Given that wx(·, y, ·), wy(·, y, ·) and a(·) are continuous in C, and UR is a bounded

domain, it follows that Mt∧τR has bounded quadratic variation for each t ≥ 0, and hence

the process M·∧τR is a true martingale. Moreover, by (4.6) we have that

(Lπs − α )w(x, y, t− s) ≥ 0 ∀ (x, y, t− s) ∈ C,

which yields, for each R > 0, Nt∧τR(π) − w(x, y, u) ≥ Mt∧τR . After taking expectation

we obtain

w(x, y, u) ≤ Ex,y(Nt∧τR(π)). (4.8)

Using that τR → τ̂ and the boundary conditions in (4.6), we obtain the limit

lim
t,R→∞

Nt∧τR(π) = e−ατ̂w(Xπ
τ̂ , Y

π
τ̂ , u− τ̂) = e−ατ̂g(Xπ

τ̂ ), a.s.

Thus by dominated convergence (recall that (A2) is assumed), after taking the limit as

R→∞ and t→∞ in (4.8), we obtain

w(x, y, u) ≤ Ex,y(e
−ατ̂g(Xπ

τ̂ )) ≤ sup
τ≤u

Ex,y(e
−ατg(Xπ

τ )), (4.9)

and this is true for each π ∈ A. Therefore

w(x, y, u) ≤ inf
π∈A

sup
τ≤u

Ex,y(e
−ατg(Xπ

τ )) ≡ V l(x, y, u)

and the proof is complete.

Proof of Theorem 4.7. Suppose that σ is increasing. First note that

v(x, y, t; πl) ≡ sup
τ≤t

Ex,y(e
−ατg(Xπl

τ )) ≥ inf
π∈A

sup
τ≤t

Ex,y(e
−ατg(Xπ

τ )),

so that it remains to show the reverse inequality. By Lemma 4.9, v(x, ·, t; πl) is increasing
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and so we have that

arg min
λ∈A+

y,z

[v(x, y + z, t; πl)− v(x, y, t; πl)]λ = inf A+
y,z = πl[y, y + z],

arg min
µ∈A−y,z

[v(x, y − z, t; πl)− v(x, y, t; πl)]µ = sup A−y,z = πl[y, y − z]
(4.10)

so that the infimum in (4.6) is attained at π = πl. This fact and Theorem 3.1 to-

gether imply that w(x, y, t) = v(x, y, t; πl) satisfies the system in (4.6). Therefore all the

conditions of Proposition 4.10 are fulfilled by w(x, y, t) = v(x, y, t; πl) and the proof is

complete. �

Reversing the labelling of the states in S yields:

Corollary 4.11. Suppose that σ(·) is monotone decreasing. and (πs)σ is well-ordered,

where

πls[y, y + z] = supA+
y,z πls[y, y − z] = inf A−y,z

then in the following three cases,

1. µ = 0;

2. µ/σ2 is increasing and g is decreasing;

3. µ/σ2 is decreasing and g is increasing;

Then the result in Theorem 4.7 remains true.

A Estimates of moments and integrability

The main goal of this Appendix is to derive some estimates of the moments of the

solution to a stochastic differential equation with regime-switching coefficients.

The proof of the proposition below is inspired by ideas in Kyrlov [17], and it is

somewhat an extension of Corollary 2.5.12 in that text. This result is of independent

interest, and this is the reason why we assume the following general set-up.

Let (Wt,Ft) be a d1-dimensional Brownian motion. Suppose that y = (yt)t≥0 is a

continuous-time Markov chain, adapted to (Ft)t≥0, with finite state space S ⊂ R. The

process r determines the regime-switching dynamics.

For d ∈ N and x0 ∈ Rd, x = (xt)t≥0 is a progressively measurable process in Rd, with

respect to (Ft)t≥0, satisfying that

xt = x0 +

∫ t

0

σs(xs, ys)dWs +

∫ t

0

bs(xs, ys)ds, a.s. (A.1)
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where σt(x, y) is a random matrix of dimension d × d1; and bt(x, y) is a random vector

of dimension d.

The next result corresponds to Corollary 2.5.12 in [17] in the particular case when S
is a singleton.

Proposition A.1. Fix T > 0, and the initial condition (x0, y0). Let there exist a

constant K > 0 such that

‖σt(x, y)‖+ |bt(x, y)| ≤ K(1 + |x|), for all t ≥ 0, x ∈ Rd, y ∈ S. (A.2)

Then for all t ∈ [0, T ] and q ≥ 0, there exists a positive constant N = N(x0, K, t, q) such

that

E

(
sup
s≤t
|xs|q

)
≤ N. (A.3)

Proof. Fix an arbitrary t ∈ [0, T ] and q ≥ 0. We split the proof into three parts.

(I). Assume that xt(ω) is bounded in ω and t. Notice that

|xt|2 ≤ 4

[
|x0|2 +

∣∣∣∣∫ t

0

σs(xs, ys)dWs

∣∣∣∣2 +

∣∣∣∣∫ t

0

bs(xs, ys)ds

∣∣∣∣2
]
.

The linear growth condition in (A.2) implies the following. First, the stochastic

integral M· =
∫ ·
0
σs(xs, ys)dWs satisfies

E(〈M〉t) = E

(∫ t

0

‖σs(xs, ys)‖2ds
)
≤ 2K2E

(∫ t

0

(1 + |xs|2)ds
)
<∞

for all t ≥ 0, since xt is assumed to be bounded. Then M is a martingale. Second, using

Hölder’s inequality,∣∣∣∣∫ t

0

bs(xs, ys)ds

∣∣∣∣2 ≤ t

∫ t

0

|bs(xs, ys)|2ds ≤ 2K2t

∫ t

0

(1 + |xs|2)ds.

Putting the last assertions together we obtain, after taking supremum over [0, t] and

expectation,
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E

(
sup
0≤s≤t

|xs|2
)
≤ 4

[
|x0|2 + E

(
sup
0≤s≤t

|Ms|2
)

+ 2K2t E

(∫ t

0

(1 + |xs|2)ds
)]

≤ 4

[
|x0|2 + 4E |Mt|2 + 2K2t E

(∫ t

0

(1 + |xs|2)ds
)]

≤ 4

[
|x0|2 + (2K2)4E

(∫ t

0

(1 + |xs|2)ds
)

+ 2K2t E

(∫ t

0

(1 + |xs|2)ds
)]

≤ 4|x0|2 + 8K2(4 + t)

∫ t

0

(
1 + E

(
sup

0≤u≤s
|xu|2

))
ds

where we have used Doob’s inequality, the fact that M2
t − 〈M〉t is a martingale (see for

instance [24, II.1.7 and IV.1.3]), the linear growth condition in (A.2), Fubini’s Theorem

and the boundedness of xt.

Now set ϕ(t) = sup0≤s≤t |xs|2, a = 1 + 4|x0|2, and b = 8K2(4 + t), so that

1 + E(ϕ(t)) ≤ a+ b

∫ t

0

{ 1 + E(ϕ(s)) }ds.

Then, by Grownwall’s Lemma, we have that 1 + Eϕ(t) ≤ a ebt, that is

E

(
sup
0≤s≤t

|xs|2
)
≤ N̄(x0, K, t)

where N̄(x0, K, t) = (1 + 4|x0|2)e8K
2t(4+t).

(II). Since xt is continuous and bounded in t, it follows that sups≤t |xs|p = (sups≤t |xs|)p

for any p ≥ 0. Using this equality with p = q and then with p = 2, we obtain that

E

(
sup
0≤s≤t

|xs|q
)
≤
(
E sup

0≤s≤t
|xs|2

)q/2
≤ N(x0, K, t, q)

where we also used Hölder’s inequality in the form E(ηq) ≤ [E(η2)]q/2. Here, N ≡
N(x0, K, t, q) = N̄(x0, K, t)

q/2.

(III). We now assume the general case for xt(ω).

For each R > 0, consider the stopping time τR = inf{t ≥ 0 : |xt| ≥ R}. Then the

stopped process xt∧τR(ω) is bounded in ω, t and moreover,
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xt∧τR = x0 +

∫ t∧τR

0

σs(xs, ys)dWs +

∫ t∧τR

0

bs(xs, ys)ds

= x0 +

∫ t

0

I{s < τR}σs(xs∧τR , ys∧τR)dWs

+

∫ t

0

I{s < τR}bs(xs∧τR , ys∧τR)ds.

Notice that xt∧τR solves (A.1) only that with the coefficients σs(x, y), bs(x, y) replaced

by I{s < τR}σs(x, y), I{s < τR}bs(x, y), respectively. However, for each fixed ω,

‖I{s < τR}σs(x, y)‖ ≤ ‖σt(x, y)‖, and |I{s < τR}bt(x, y)| ≤ |bt(x, y)|.

Then the linear growth condition in (A.2) is satisfied for the coefficients of xt∧τR .

From parts (I)-(II), we know that

E

(
sup
0≤s≤t

|xs∧τR |q
)
≤ N, for each R > 0.

Given that limR→∞ τR = ∞ a.s, it follows that limR→∞ |xs∧τR |q = |xs|q a.s. by con-

tinuity of the paths of xt. As this is true for each s ≤ t, we must have |xs|q ≤
limR→∞ supu≤t |xu∧τR |q for each s ≤ t. Hence

sup
0≤s≤t

|xs|q ≤ lim
R→∞

sup
0≤s≤t

|xs∧τR |q, a.s.

Finally, Fatou’s Lemma implies

E

(
sup
0≤s≤t

|xs|q
)
≤ lim inf

R→∞
E

(
sup
0≤s≤t

|xs∧τR |q
)
≤ N,

and the proof is complete.

Notice that the bound N on (A.3) does not depend on the transition rates of the

Markov chain y.

B Proof of Lemma 2.2

Proof of Lemma 2.2. Let us fix y ∈ S throughout. Given an initial condition x ∈ R,

we shall denote by Xx = (Xx
t )t≥0 the solution to

Xt = x+

∫ t

0

a(Xs, Ys)dBs +

∫ t

0

b(Xs, Ys)ds, t ≥ 0, Y0 = y. (B.1)
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We will show that, for every stopping time τ ≤ t with t ∈ (0, T ], the mapping x 7→
E e−ατg(Xx

τ ) is lower semi-continuous. This implies that

x 7→ sup
τ≤t

E(e−ατg(Xx
τ )) ≡ v(x, y, t) is lower semi-continuous,

concluding the proof.

Fix x ∈ R and let N be a neighborhood of x. For any x′ ∈ N , define the stopping

times τx
′

R = inf{t ≥ 0 : |Xx′
t | ≥ R} for R > 0. Let τR := τxR ∧ τx

′
R , it follows that

(Xx
t∧τR −X

x′

t∧τR)2 ≤ 4
[
|x− x′|2 +

∣∣∣∫ t∧τR0
{a(Xx

s , Ys)− a(Xx′
s , Ys)}dBs

∣∣∣2
+ (
∫ t∧τR
0

(µ(Xx
s , Ys)− µ(Xx′

s , Ys))ds)
2
]
.

Taking expectation on both sides we obtain

E(|Xx
t∧τR −X

x′

t∧τR |
2) ≤ 4|x− x′|2 + 4D2

R(1 + T )

∫ t

0

E (|Xx
s∧τR −X

x′

s∧τR |
2)ds

where DR > 0 is a Lipschitz constant for a(·, y) and µ(·, y) uniformly in y. So, Gronwall’s

Inequality implies

E(|Xx
t∧τR −X

x′

t∧τR |
2) ≤ 4|x− x′|2e(4D2

R(1+T )) t,

so it is clear that Xx′
t∧τR → Xx

t∧τR in L2-norm as x→ x′, for each t > 0 and R > 0.

Let {xn} be a sequence in N such that xn → x. By the previous argument (after

passing to a subsequence and relabeling if necessary) Xxn
t∧τR → Xx

t∧τR a.s. for each t > 0.

Since the paths of Xxn and Xx are continuous and τR → ∞ as R → ∞ a.s., we have

that

lim
n→∞

Xxn
t = Xx

t , ∀ t > 0 a.s.

after letting R → ∞. Finally, as g is continuous and bounded from below, Fatou’s

Lemma yields

E(e−ατg(Xx
τ )) ≤ lim inf

n→∞
E(e−ατg(Xxn

τ ))

for every stopping time τ ≤ t, that is, the mapping x 7→ E(e−ατg(Xx
τ )) is lower semi-

continuous and the proof is complete. �
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[16] T. Kanamura, K. Ōhashi, On transition probabilities of regime switching in elec-

tricity prices, Energy Economics 30 (2008) 1158-1172.

[17] N.V. Krylov, Controlled Diffusion Processes, Springer-Verlag, Berlin-Heidelberg,

1980.

[18] H. Le, C. Wang, A finite time horizon optimal stopping problem with regime switch-

ing, SIAM J. Control Optim. 48 (2010) 5193-5213.

[19] T.D. Mount, Y. Ning, X. Cai, Predicting price spikes in electricity markets using a

regime-switching model with time-varying parameters, Enery Economics 28 (2008)

62-80.

[20] B. Øksendal, Stochastic Differential Equations: an Introduction with Applications,

sixth ed., fourth corrected printing 2007, Berlin Heidelberg: Springer-Verlag, 2003.

[21] G. Peskir, A. Shiryaev, Optimal Stopping and Free-Boundary Problems, Birkhäuser
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