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Summary 

 

Conventional seismic-resistant structural systems are currently designed to 

develop a global sway plastic mechanism under strong earthquakes, which is 

achieved by allowing the development of controlled inelastic deformations in 

specific locations of main structural members such as beams, bases of columns 

and braces. Inelastic deformations in structural members result in damage and 

residual drifts, and therefore, in economic losses such as repair costs and 

downtime. Moreover, earthquake reconnaissance reports reveal large economic 

losses related to non-structural damage, e.g. failure of walls due to large storey 

drifts or failure of acceleration-sensitive equipment due to large peak floor 

accelerations. These losses highlight the need for resilient structures with the 

potential to remain intact after frequently occurred earthquakes and return to 

service within an acceptable short, if not immediate, time after strong rare 

earthquakes. Moreover, resilient structures should provide a very low probability 

of collapse (i.e. increased life safety) under very rare maximum considered 

earthquake.  

 

Steel self-centering moment-resisting frames using post-tensioned beam-column 

connections are a promising class of resilient structures. They exhibit softening 

force-drift behaviour and eliminate inelastic deformations and residual drifts as 

the result of gap openings developed in beam-column interfaces and elastic post 

tensioned bars which clamp beams to columns and provide self-centering 

capability. Also, post tensioned connections use energy dissipation devices, which 

are activated when gaps open and can be easily replaced if damaged. Steel frames 

equipped with passive dampers are another class of resilient structures. Dampers 

provide supplemental damping to control drifts, and thus, provide an effective 

means to achieve economical designs with high performance.  

 

The main goal of this PhD is to develop a seismic design and assessment 

procedure for steel self-centering moment-resisting frames (SC-MRFs) with 

viscous dampers within the framework of Eurocodes 3 and 8. To achieve this 

goal, nonlinear models of post-tensioned connections, able to capture the strength 

and stiffness deterioration due to local buckling, are developed. These models 
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enable the assessment of the seismic behaviour of SC-MRFs with viscous 

dampers up to collapse with the aid of nonlinear dynamic analysis. A seismic 

design method, which incorporates a robust way to estimate rotation demands in 

post-tensioned connections, is then formulated. Different SC-MRFs with viscous 

dampers are designed using the proposed design procedure to study different 

design scenarios. The accuracy of the design procedure is evaluated through 

nonlinear dynamic analysis. In addition, the superior collapse resistance of SC-

MRFs with viscous dampers is validated through incremental dynamic analysis. 

The thesis concludes with the implementation of an advanced probabilistic 

framework for direct economic seismic loss estimation and its application to 

confirm the potential of SC-MRFs with viscous dampers to significantly reduce 

economic seismic losses. 
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1 Introduction 

 

1.1 Conventional seismic-resistant steel structural systems  

 

Steel structures are a suitable construction solution in areas of high seismicity. The 

reason is the very good material properties of steel (strength and ductility) and that 

the industrial production of steel shapes guarantees high quality assurance. The most 

commonly used seismic resistant steel frames for multi-story buildings are classified 

as steel moment resisting frames (MRFs), concentric-braced frames (CBFs), and 

eccentric-braced frames (EBFs). Figures 1.1-1.3 show examples of structures 

designed using the aforementioned steel frames. 

 

 

Figure 1.1 Building with MRFs (All structure engineering LLC webpage) 
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Figure 1.2 Building with EBFs (Ogren engineering Web page) 

 

 

Figure 1.3 Building with CBFs (Ogren engineering web page) 

 

According to the current seismic design practice, which in Europe is based on EC8 

(Eurocode 8 2013), structures can be designed to develop non-dissipative or 

dissipative behaviour. The design of structures to respond elastically is limited into 

structures of special use, or areas of low seismicity. In all other cases structures are 

designed to have dissipative behaviour, where significant inelastic deformations are 

developed during high severity seismic events.  

 

The design for dissipative behaviour of regular structures is usually performed by 

assigning a structural behaviour factor (i.e. force reduction or modification factor) 
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which is used to reduce the code-specified forces resulting from idealised elastic 

response spectra. This is carried out in conjunction with the capacity design concept 

which requires an appropriate determination of the capacity of the structure based on 

a pre-defined plastic mechanism (often referred to as failure mode), coupled with the 

provision of sufficient ductility in plastic zones and adequate over-strength factors 

for other regions. Figure 1.4 shows the elastic and the design response spectra, using 

a behaviour factor “q” equal to 3 in soil type B according to EC8 (Eurocode 8 2013). 

Figure 1.5 shows the predefined plastic mechanism of steel MRFs, with plastic 

hinges developed at the end of beams and at the columns bases according to EC8 

(Eurocode 8 2013). 

 

 

Figure 1.4 Elastic and design response spectra (Eurocode 8 2013) 
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Figure 1.5 Collapse plastic mechanism of a steel MRF designed according to modern 

seismic codes (Eurocode 8 2013) 

 

1.2 Need for resilient structures 

 

The ideal earthquake resistant structure must be able to develop inelastic 

deformations during an earthquake while sustaining its integrity (Christopoulos and 

Filiatrault 2002a,b). This way the disadvantages of buildings withstanding 

earthquakes elastically can be avoided and residual drifts are eliminated. Structures 

that respond elastically during earthquakes develop high floor accelerations resulting 

in non-structural elements and contents damage, and so cost associated with loss of 

business operation and repair of damage. On the other hand, excessive residual drifts 

can result in the total loss of a structure if second order effects induced by gravity 

loads bring the system near collapse (Christopoulos et al 2003). Also, non-structural 

systems start to lose functionality under certain values of residual drifts (McCormick 

et al 2008) and there is a probability of buildings to be demolished because of 

residual (permanent) drifts. 

 

The design of conventional earthquake resistant systems is intended to ensure 

serviceability under a frequent earthquake and life safety level while avoiding 

catastrophic failures under a severe earthquake. If the structure does not collapse 

under a design basis earthquake (DBE; 475 years return period) (FEMA-368 2000a) 

and the occupants can evacuate it safely, this structure fulfils its function even if it 

will be never functional again. The socio-economic needs in modern societies have 
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pushed the barrier of seismic design of buildings considerably higher. In particular, 

important structures such as hospitals and major bridges must be designed to achieve 

higher performance levels under severe earthquakes (Christopoulos and Filiatrault 

2006).  

 

Previous studies on seismic design and evaluation of conventional seismic-resistant 

systems, such as steel MRFs (Sanchez and Plumier 2008, Elghazouli 2012, Tzimas 

et al 2013), showed that these systems experience significant inelastic deformations 

in structural members under the DBE (Eurocode 8 2013). Inelastic deformations 

result in structural damage and residual drifts, and therefore, in economic losses such 

as repair costs and downtime. Moreover, earthquake reconnaissance reports reveal 

large economic losses related to non-structural damage, e.g. failure of walls due to 

large story drifts (Dolce and Manfredi 2009, FEMA-P695 2008). 

 

The cost of a new structure designed to meet higher performance levels is weighted 

against the estimated losses associated with damage, loss of property and downtime 

in the event of a severe earthquake. So, the need for resilient structures with the 

inherent potential to minimize structural and non-structural damage is highlighted. 

By resilient structures we mean that these structures result in lower damage of the 

structural elements. Structural damage can be isolated in elements that can be easily 

removed after a strong earthquake, and so repair cost and downtime is minimised. 

Also the change of use for the structural elements can be easily carried out since 

they are damage free. Such structures should remain intact under the frequently 

occurred earthquake (FOE; return period of 95 years) (FEMA-368 2000a) and return 

to service within an acceptable short, if not immediate, time after the DBE. A 

resilient structure should also provide a low probability of collapse under the 

maximum considered earthquake (MCE; return period of 2500 years) (FEMA-368 

2000a). The ATC-63 (FEMA-P695 2008) project sets a limit on the permissible 

probability of collapse under the MCE equal to 10%. As this limit has been 

primarily set for conventional structural systems, lower probabilities of collapse 

should be offered by resilient structures. 

 

Two promising classes of resilient structures are (a) steel self-centering moment 

resisting frames (SC-MRFs) using post-tensioned (PT) beam-column connections; 
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and (b) steel MRFs equipped with passive dampers. Steel SC-MRFs are discussed in 

section 1.3 and steel frames with passive dampers are discussed in section 1.4.  

1.3 Self-centering moment resisting frames  

 

Steel SC-MRFs experience inelastic behaviour under earthquakes, and so have 

limited seismic forces and floor accelerations. Moreover, SC-MRFs allow the 

structural system to return to or near to its original position after an earthquake, and 

reduce or eliminate cumulative damage to the main structural elements.  

 

SC-MRFs use elastic pre-tensioning elements (e.g., high strength steel bars) which 

clamp beams to the columns. PT connections use carefully designed energy 

dissipation devices which are activated when gaps open and can be classified into 

yielding devices which dissipate energy through inelastic deformations and devices 

which dissipate energy through friction.   

 

Yielding devices were proposed as (1) angles bolted on the top and bottom flanges 

of the beam and on the column flanges, dissipating energy through inelastic bending 

(Ricles et al 2001, 2002; Garlock et al 2005); (2) buckling restrained steel bars 

placed between the beam flanges and welded on the beam and column, dissipating 

energy through axial deformations (Christopoulos et al 2002a); (3) reduced flange 

plates welded around a square-hollow-section column and bolted on the beam 

flanges (Chou et al 2006); and (4) reduced-section or cross-shaped steel plates 

placed below the bottom flange of the beam (Chou and Lai 2009). Friction-based 

devices were proposed as friction bolted surfaces placed on the top and bottom 

flanges of the beam (Rojas et al 2005; Kim and Christopoulos 2008; Kim and 

Christopoulos 2009a,b), on the web of the beam (Tsai et al 2008) or on the bottom 

flange of the beam (Wolski et al 2009). 

 

A new steel PT connection using web hourglass shape steel pins (WHPs) has been 

recently developed, modelled in ABAQUS and experimentally validated 

(Vasdravellis et al 2013a,b). The connection isolates inelastic deformations in 

WHPs, avoids damage in other connection parts as well as in beams and columns, 

and, eliminates residual drifts. WHPs do not interfere with the composite slab and 
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are very easy-to-replace without bolting or welding, and so, the connection enables 

non-disruptive repair and rapid return to building occupancy in the aftermath of a 

strong earthquake. Figure 1.6 shows a SC-MRF using PT connections with WHPs, 

and Figure 1.7 shows an exterior PT connection with WHPs. Two high strength steel 

bars located at the mid depth of the beam, one at each side of the beam web, pass 

through holes drilled on the column flanges. The bars are post-tensioned and 

anchored to the exterior columns. WHPs are inserted in aligned holes on the beam 

web and on supporting plates welded to the column flanges. Energy is dissipated 

through inelastic bending of the WHPs that have an optimized hourglass shape 

(Figure 1.8) with enhanced fracture capacity (Vasdravellis et al 2015) 

 

 

Figure 1.6 SC-MRF 

 

 

Figure 1.7 Exterior PT connection with WHPs 
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Figure 1.8 Half WHP geometry 

 

1.4 Steel frames with passive dampers 

 

The development of supplemental damping has been attributed to the pioneering 

work of (Housner 1956) who laid out the foundations for the seismic design of 

structures based on energy concepts. The use of separate elements in order to 

increase the damping in a structure was firstly developed by Muto 1969, Kelly et al 

1972, Skinner et al 1975. A variety of supplemental dampers has been used in 

hundreds of buildings around the world in the last twenty years. Passive dampers are 

types of supplemental dampers which dissipate a part of the energy induced in a 

structure during an earthquake without using power supplies, actuators or computers. 

So, instead of using external power sources, passive dampers are activated by the 

structural system movements. Passive dampers include metallic dampers, friction 

dampers, visco-elastic dampers, and viscous dampers. 

 

Metallic and friction dampers (Tyler 1977, Pall 1980) are displacement activated, so 

they dissipate energy through the relative displacements that occur between their 

connected points. The maximum forces developed in these dampers occur 

simultaneously with the structure‟s maximum internal forces during an earthquake. 
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Metallic and friction dampers exhibit hysteretic behaviour that can be simulated by 

an elastic-perfectly plastic load displacement as shown in Figure 1.9. For metallic 

damper, the force Fa corresponds to the yield force of the damper. For a friction 

damper, the force Fa corresponds to the slip force, also the elastic stiffness of a 

friction damper is very steep and its behaviour is associated with a rigid-perfectly 

plastic response.    

 

 

Figure 1.9 Idealized Load-Displacement relationship for metallic and friction 

dampers (Christopoulos and Filiatrault 2006) 

 

Viscous dampers (Constantinou and Symans 1992) are velocity activated, so they 

dissipate energy through the relative velocities that occur between their connected 

points. The maximum forces developed in these dampers do not occur 

simultaneously with the maximum drifts that a structure experiences during an 

earthquake. There are two types of viscous dampers, i.e. linear viscous dampers and 

non-linear viscous dampers. Figure 1.10 shows the hysteretic behaviour and the 

force-velocity behaviour of a linear viscous damper, while figure 1.11 shows the 

hysteretic behaviour and the force-velocity behaviour of a non-linear viscous 

damper. The effect of velocity, expressed by the non-linear viscous damping 

constant (αvd), increases the energy dissipation and more details can be found in 

(Christopoulos and Filiatrault 2006). 
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Figure 1.10 (a) Hysteretic behaviour; (b) force-velocity behaviour of linear viscous 

damper; (Christopoulos and Filiatrault 2006)  

 

 

 

 

Figure 1.11 (a) Hysteretic behaviour; (b) force velocity behaviour of non-linear 

viscous damper (Christopoulos and Filiatrault 2006) 

 

Visco-elastic dampers provide both velocity and displacement dependent forces. 

Figure 1.12 shows the configuration of a visco-elastic damper, which dissipates 

energy by the shear deformation of the visco-elastic material. Figure 1.13 shows the 

hysteretic behaviour of a visco-elastic damper, which depends both on deformation 

and velocity. 

 

(a) (b) 

(a) (b) 
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Figure 1.12 Typical visco-elastic damper acting in shear in a bracing member 

(Christopoulos and Filiatrault 2006) 

 

 

Figure 1.13 Hysteretic behaviour of a visco-elastic damper (Christopoulos and 

Filiatrault 2006) 

 

Previous analytical and experimental research showed that steel MRFs with visco-

elastic dampers can be designed to be lighter and perform better than conventional 

steel MRFs under the DBE (Karavasilis et al 2011, Karavasilis et al 2012). However, 

it was shown that it is generally not feasible to design steel MRFs with passive 

dampers at a practical size to eliminate inelastic deformations in main structural 

members under the DBE (Karavasilis et al 2011, Karavasilis et al 2012). To address 

this issue, a seismic design strategy for steel MRFs, which isolates damage in 
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removable steel energy dissipation devices and uses in parallel viscous dampers to 

reduce drifts, has been proposed (Karavasilis et al 2012). A study shows that 

supplemental viscous damping does not always ensure adequate reduction of 

residual drifts (Karavasilis and Seo 2011). A recent work evaluates the seismic 

collapse resistance of steel MRFs with viscous dampers and shows that 

supplemental viscous damping does not always guarantee a better seismic collapse 

resistance when the strength of the steel MRF with dampers is lower or equal to 75% 

of the strength of a conventional steel MRF (Seo et al 2014).  

 

1.5 Combined systems 

 

The use of viscous dampers in parallel to self-centering precast concrete base 

rocking walls has been proposed as an effective way to control peak story drifts and 

residual drifts (Kurama 2000). The parallel combination of hysteretic and viscous 

energy dissipation along with a friction slip mechanism in series connected to the 

viscous energy dissipation mechanism were found to achieve high levels of seismic 

performance for self-centering systems (Kam et al  2010). A displacement-based 

seismic design procedure for self-centering frames using combinations of energy 

dissipation mechanisms has been proposed and evaluated in (Kam et al 2008).  

 

A seismic design procedure of steel SC-MRFs and viscous dampers within the 

framework of Eurocode 8 (EC8) is presented in Tzimas et al (2015). In this work 

performance levels are defined with respect to drifts, residual drifts, and limit states 

in the PT connections. Several design scenarios are implemented in a prototype 

building combining SC-MRFs with or without viscous dampers. The results of this 

work show that SC-MRFs with viscous dampers can be designed for less steel 

weight (resulting in less strength) without compromising their DBE and MCE drift 

performance. Supplemental damping is very effective in improving the residual drift 

performance of SC-MRFs. Also the supplemental damping along with strict design 

criteria for the PT connections can significantly improve the collapse resistance of 

SC-MRFs. The potential of SC-MRFs with viscous dampers to reduce the economic 

seismic losses in steel buildings has been evaluated in (Dimopoulos et al 2016).    
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1.6 Summary 

 

This chapter briefly describes conventional seismic-resistant steel frames and the 

existing seismic design methodology followed by EC8 (Eurocode 8 2013). The need 

of resilient structures, which could minimize structural and non-structural damage 

and the associated losses due to repair cost and downtime, is highlighted. A brief 

literature review of several types of resilient structural systems like SC-MRFs and 

passive dampers is briefly presented and several types of PT connections and passive 

dampers are discussed. Moreover, combined systems using self-centering frames 

equipped with passive dampers are also briefly discussed.  
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2 Literature review, research objectives and thesis structure 

 

2.1 Introduction  

 

In this chapter an extensive review of all the existing PT connections in literature is 

presented. Drawings, design procedures, numerical models, and experimental setups 

of existing PT connection are outlined and discussed. All the available design 

procedures of SC-MRFs in literature are presented and discussed. Results from 

numerical simulations, shaking table tests, and hybrid tests of SC-MRFs in the 

existing literature are presented and discussed. Also, a preliminary assessment study 

of SC-MRFs with PT connections and web hourglass shaped pins is presented. The 

research needs and objectives of this PhD thesis are provided and the PhD thesis 

structure is outlined.      

 

2.2 Existing PT connections in literature  

 

Figure 2.1 shows the PT connection proposed in the work of Ricles et al (2001). The 

connection uses high strength steel strands that are post-tensioned after bolted top 

and seat angles are installed. Contact stresses are developed at the interface between 

beams and columns under the action of post-tensioning force. Moment resistance is 

provided by the pre-stressed contact surface, and shear resistance is provided by 

friction at the contact surface. The PT strands run through the column and are 

anchored outside the connection region. Shim plates are used between the end of the 

beam and the column face for construction fit up, with additional steel plates used to 

reinforce the beam flanges. 
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Figure 2.1 Post-tensioned connection (Ricles et al 2001) 

 

An analytical study was undertaken to model the PT connection in the computer 

program DRAIN-2DX (Prakesh et al 1993). Fiber beam-column elements were used 

to model the beams and columns. Multi-linear stress strain behaviour is assigned on 

the beam and column fibers. Compression-only stress strain behaviour is assigned on 

the fibers of the beam end segment that models the portion of the beam initially in 

contact with the shim plate at the beam-column interface. Using this modelling 

procedure the gap-opening behaviour is simulated. Parallel springs are used to model 

the angles. Each PT strand is modelled using a truss element. The proposed 

modelling procedure has been validated against experimental cyclic tests. Figure 2.2 

shows the analytical model for an interior PT connection and figure 2.3 shows the 

comparison between the experimental tests and analytical results.  
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Figure 2.2 Analytical model for an interior PT connection (Ricles et al 2001)  

  

 

Figure 2.3 Lateral load-Displacement behavior of pot-tensioned connections (Ricles 

et al 2001)  

 

Nine large-scale PT connection subassemblies were tested under inelastic cyclic 

loading in (Ricles et al 2002). Figure 2.4 shows the PT connection subassembly test 

setup. The test results demonstrated that PT connections provide excellent elastic 
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stiffness, strength and ductility under cyclic loading with energy dissipation 

occurring primarily in the angles. The study showed that the PT connection has an 

initial stiffness similar to that of a fully restrained welded connection, and that the 

PT connection is self-centering without residual deformation. Also the beams and 

columns remain essentially elastic while inelastic deformation is isolated to the top 

and seat angles.    

 

 

Figure 2.4 PT connection subassembly setup (Ricles et al 2002) 

 

In the work of (Garlock et al 2005) six full-scale interior connection subassemblies 

of PT connections as shown in figure 1 were subjected to inelastic cyclic loading up 

to 4% story drift to simulate earthquake loading effects. The experimental setup is 

similar to that in figure 2.4. The test results show that PT connections exhibit stable 

self-centering hysteretic behaviour when beam local buckling and strand yielding do 

not occur. Beam local buckling prevents the specimen from self-centering and limits 

the ductility, so the connection should be designed to avoid this limit state, by using 

longer reinforcing plates or using smaller PT force. For the prevention of strand 

yielding, a larger number of strands, with a smaller initial PT force per strand is 

recommended.  

 

In (Garlock et al 2005) it was found that plane sections do not remain plane along 

the length of the reinforcing plate, but do remain plane beyond the end of the 
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reinforcing plate. It was also found that when the yield strain εy is exceeded by two 

times in the beam flanges at the end of the reinforcing plate, a significant increase of 

plastic strain was occurred,  indicating the onset of beam local buckling.  

 

A post-tensioned friction damped connection (PFDC) for steel MRFs was developed 

in the work of (Rojas et al 2005). Figure 2.5 shows that PFDC has PT high strength 

strands running parallel to the beam and anchored outside of the connection. Figure 

2.6 shows that reinforcing plates are placed on the beam flanges to limit beam 

compression yielding, and so to minimize structural damage. Shim plates are placed 

between the column flange and the beam flanges so that only the beam flanges and 

reinforcing plates are in contact with the column, and so protecting the beam web 

from yielding under bearing stress.   

 

Figure 2.6 shows that the friction devices are located at the beam flanges. Friction 

devices consist of a friction plate sandwiched by two brass shim plates that are 

inserted between the beam flange reinforcing and outer plates. All plates are bolted 

to the beam flanges, and long slotted holes are drilled in the friction plate. The 

friction plate is attached to a tee flange that also serves as a shim plate. A shear tab is 

bolted to the beam web (with slotted holes) and welded to the column flange to 

transmit the beam gravity shear forces.  

 

 

Figure 2.5 Schematic elevation of one floor of frame with PT friction damped 

connections (Rojas et al 2005) 
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Figure 2.6 PT friction damped connection details (Rojas et al 2005) 

 

In Rojas et al (2005), appropriate formulas for the calculation of the connection 

moment capacity are provided as a function of the connection relative rotations (θ). 

Also simplified formulas for the estimation of the relative rotation demands under 

the DBE and the MCE are presented. Once θ is known, the parameters needed to 

design the PT connections can be estimated since they are directly or indirectly 

related to it. A modelling procedure similar to that in (Ricles et al 2001) was also 

developed for the PT connections and implemented in a six storeys frame. 

 

In the work of Christopoulos et al (2002a) a PT connection with energy dissipating 

devices (EDs) for steel MRFs is presented and evaluated both experimentally and 

analytically. High strength PT bars are used in the connections in order to provide 

self-centering capability and ED bars provide energy dissipation.  

 

Figure 2.7 shows the geometric configuration of a frame incorporating the PT 

connection.  Figure 2.8 shows the detail of an exterior beam to column PT 

connection. The PT force T is provided by two high strength bars located at mid-

depth of the beam one on each side of the web. Four ED bars are symmetrically 

placed to provide energy dissipation. The ED bars are threaded into couplers which 

are welded to the inside face of the beam flanges and continuity plates of column. 

Holes are drilled on the column flange, for the PT and ED bars to pass through. ED 
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bars are inserted into confining steel cylinders that are welded to the beam flanges, 

and so are prevented from buckling in compression under cyclic loading.  

 

 

Figure 2.7 Steel frame with post-tensioned energy dissipating steel connection 

(Christopoulos et al 2002a) 
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Figure 2.8 Geometric configuration and free body diagram of exterior post-tensioned 

energy dissipating connection (Christopoulos et al 2002a) 

 

An analytical study was undertaken to develop the relationship between moment and 

rotation of the PT connection. Using this analytical study a design procedure for the 

PT connection was developed. According to this design procedure PT bars must 

remain elastic. Bending moment generated by EDs must remain smaller than that of 

PT bars, and so self-centering capability is provided. Beams must be designed for 

combination of gravity loads, PT force and PT connection moment. Shear force must 

be transferred from beam to column though friction force at the interface between 

beam and column. The panel zone‟s shear force comes from PT bars force, ED bars 

force and contact force between beam and column.  The flexural design of column is 

based on weak beam – strong column philosophy. 

 

An experimental study was also undertaken. In the experimental study, a cyclic 

component test was performed on two energy dissipating bars to ensure that welded 

couplers were sufficient to develop the full axial strength of the bars, and to see if 

the confinement cylinders could prevent buckling of the ED bars. A cyclic loading 

test was also undertaken on PT connection up to an inter-story drift equal to 5%. 

Figure 2.9 shows the experimental setup and figure 2.10 shows both the analytical 
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and experimental the Moment – gap opening angle behaviour. Experimental tests 

show that the PT connection is capable of self-centering and provides adequate 

energy dissipation through ED bars yielding. Figure 2.10 also shows that the 

analytical model is able to accurately predict the experimental behaviour.  

 

Figure 2.9 Experimental setup for PT connection with EDs (Christopoulos et al 

2002a) 

 

 

Figure 2.10 Moment (MPTED) – gap opening angle behaviour of PT connection 

 

In the work of Chou et al (2006), the seismic performance of a steel PT connection 

for MRFs was examined experimentally and analytically. Figure 2.11 shows a 

frame, which incorporates high-strength steel strands that are anchored outside the 

exterior concrete filled tube (CFT) column and reduced flange plates (RFPs) that are 
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used to increase energy dissipation of the connection. Figure 2.12 shows section B-B 

of the frame in figure 2.11.   

 

 

Figure 2.11 Proposed PT beam to CFT column connection (Chou et al 2006) 

 

 

Figure 2.12 Section B-B of the PT beam to CFT connection (Chou et al 2006) 

 

Formulas estimating the moment rotation behaviour of the proposed PT connection 

and the forces developed on the beam, PT strands, and RFPs are provided. The 

length of the flange reinforcing plate is determined to limit the beam flange strain at 

the end of the flange reinforcing plate to the yield strain at the target rotation angle 

of 0.02 rad.  Design steps required to determine the size of the RFPs, corresponding 

to the target gap opening angle are provided. RFPs are sized based on their expected 

moment contribution and a tensile strain (0.08) at the target rotation angle.  
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Cyclic tests were conducted on three full scale subassemblies, which had two steel 

beams, post tensioned to a CFT column with high-strength strands to provide re-

centering response. The tests results indicated that the proposed RFPs provide 

adequate energy dissipation. The subassemblies could reach 4% interstorey drift 

without strength degradation. Also buckling of the beam occurred at 5% interstorey 

drift, causing loss of the strand force, recentering response and maximum capacity. 

The beam flange strain, near the end of the flange reinforcing plate, was measured to 

be 1.4εy, when beam local buckling occurred. This strain value is slightly less than 

2εy based on the experiments of Garlock et al (2005). One of the specimens in this 

study was modelled with the non-linear finite element analysis program ABAQUS 

(ABAQUS 2010) to study the behaviour of the steel beam under combined post-

tensioning and flexural loadings. Figure 2.13 shows that the predicted beam-

moment-deflection relationship agrees with the experimental results. 

 

 

Figure 2.13 ABAQUS prediction versus test results (Chou et al 2006) 

 

In the work of Wolski et al (2009) a new beam-to-column connection for earthquake 

resistant MRFs is introduced. The connection has a beam bottom flange friction 

device (BFFD) and PT high-strength steel strands running parallel to the beam. The 

BFFD provides energy dissipation to the connection and avoids interference with the 

floor slab.  Also when properly designed the BFFD would not have to be replaced 

after the DBE. Figure 2.14 shows a schematic representation of steel MRF with PT 
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connections with BFFDs and figure 2.15 shows details of a PT connection with 

BFFD (Wolski et al 2009). 

 

 

Figure 2.14 Schematic representation of a steel MRF with PT connections with 

BFFDs 

  

 

Figure 2.15 Details for a PT connection with BFFD (Wolski et al 2009) 
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Formulas estimating the moment rotation behaviour of the proposed PT connection 

and the forces developed on the beam, PT strands, and BFFDs as a function of the 

rotation angle are provided. Figure 2.16 shows that the moment rotation behaviour 

of the proposed PT beam to column connection is un-symmetric. 

 

 

Figure 2.16 Conceptual moment – rotation cyclic response of a one sided PT 

connection with a BFFD (Wolski et al 2009)  

 

A design approach, preserving self-centering behaviour under the DBE is suggested, 

and so the moment in the imminent gap opening of the connection must be greater 

than two times the moment developed by the BFFD. A maximum relative rotation 

equal to 0.035 under the DBE was selected, based on time history analyses results by 

(Rojas 2003). The size of the slotted bolt holes in the BFFD was based on this 

relative rotation angle.  The PT strands were designed to remain elastic (i.e., with the 

PT force less than 80% of the strand tensile strength) for relative rotation up to 0.07.  

 

Figure 2.17 shows the test setup in which experiments of the PT connections with 

BFFDs were conducted.  A series of seven large-scale tests were performed to 

investigate the effect of the BFFD friction force. The effects of several parameters 

on the cyclic loading behaviour of the connection are investigated such as 1) the 
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level of friction force in the BFFD; and 2) the friction bolt bearing against the end of 

the slotted bolt holes. The test results show that the BFFD provides reliably energy 

dissipation to the PT beam to column connections. The energy dissipation 

characteristics were predictable, consistent and repeatable under different loading 

histories. However, the flexibility of the outstanding leg of the column angles which 

attached the BFFD to the column reduced the PT connection stiffness under load 

reversal and consequently reduced the energy dissipation in the BFFD.  

 

 

Figure 2.17 PT connection with a BFFD subassembly test setup 

 

In the work of Chou and Lai (2009) experimental and analytical studies of a PT 

connection are presented. Figure 2.18 shows the geometric configuration of a frame 

incorporating the proposed beam flange energy dissipators, while figure 2.19 shows 

the proposed PT connection details. The steel beam web is first positioned to a splice 

plate, which is embedded in the concrete column and has slotted holes for bolted 

connection. Beams are post-tensioned to columns via high-strength steel strands 

before the energy dissipators are bolted below the beam bottom flange and column. 

Two types of energy dissipators are proposed 1) buckling-restrained energy 

dissipators (BREDs), which have a reduced section plate restrained by two cover 
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plates; (2) and cross shaped energy dissipators (CSEDs), which have a reduced 

section plate welded with two plates in transverse direction. 

 

 

Figure 2.18 The proposed SC-MRF (Chou and Lai 2009) 

 

 

Figure 2.19 The proposed PT connection details (Chou and Lai 2009) 

 

Formulas estimating the moment rotation behaviour of the proposed PT connection 

are presented. Also an iterative procedure for the prediction of the forces developed 

in the beam, PT strands, and energy dissipators as a function of the rotation angle is 

provided. Since no energy dissipator is located on the beam top flange, the hysteretic 

loop in un-symmetrical and beam decompression in the negative bending occurs 

earlier than that in the positive bending. Figure 2.20 shows the moment versus 

relative rotation gap opening angle relationship of the proposed PT connection.  
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Figure 2.20 Moment provided by strands and energy dissipators (Chou and Lai 

2009) 

 

Figure 2.21 shows the test setup of cyclic tests that have been conducted on three 

full scale PT connection subassemblies and six energy dissipators. The relative 

rotation angles predicted by the iterative procedure differ by 10% from the 

experimental ones after n interstorey drift of 1.5%. The iterative analytical steps 

were reasonably predicted the test response. In the two specimens using BREDs, 

their fracture occurred at 3% interstorey drift, while in the specimen using CSED the 

fracture occurred at 4% interstorey drift. These drift values are relatively low. Also 

in this study six BREDs were tested and analysed in Abaqus to evaluate their cyclic 

performance.  
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Figure 2.21 Test setup (Chou and Lai 2009) 

 

Figure 2.22 shows  a steel beam to column PT connection, constructed with web 

friction devices (FDs), as proposed in the work of (Tsai et al 2008). Two wide flange 

beams are connected to a wide flange column through two beam web FDs. Each FD 

consists of two web clamping plates welded to the column flange and connected to 

the beam web using slip-critical bolts. PT tendons run along two sides of the beam 

web and run through the column flanges.  
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Figure 2.22 Schematic representation of beam to column connection using FDs (Tsai 

et al 2008) 

 

Formulas estimating the moment rotation behaviour of the proposed PT connection 

and the forces developed on the beam, PT tendons, and FDs as a function of the 

rotation angle are provided. In this work experimental cyclic tests were performed 

on four bolted FDs and on four full-scale PT beam to column connections 

subassemblies. Figure 2.23 shows the experimental setup of the PT connection. 

Cover plates were added to the beam flanges to ensure that the beam remained 

elastic. The size of the overused circular bolt holes on the beam web was determined 

from the requirement of a maximum beam rotation of 0.05 rad. In order to ensure the 

re-centering mechanism, the lower bound of the initial PT tendon force is 

determined from the peak friction force. The upper bound of the initial PT force is 

determined based on a number of factors, including the beam peak rotation demand, 

the maximum allowed tendon stress, and the combined axial-flexural capacity of the 

beam.  
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Figure 2.23 PT connection experimental setup (Tsai et al 2008) 

 

In general the decompression moments obtained from the analytical expressions 

overestimated the experimental responses. The flexural contributions of the PT 

tendons and the FDs can be reasonably predicted by the proposed analytical 

expressions. Also, the cyclic response of the PT connection can be accurately 

predicted using the analytical methods outlined in this study. It has been also 

concluded that if the beams and the columns are designed to remain elastic, the 

proposed PT connections can sustain repeated large cyclic deformations without 

evidence of stiffness or strength deterioration.  

 

A new PT connection that incorporates PT elements to provide self-centering 

capacity along with friction mechanisms to dissipate energy is proposed in (Kim and 

Christopoulos 2008; Kim and Christopoulos 2009a,b). Figure 2.24 shows the 

proposed PT connection. Initial PT force is provided by PT bars, passing through the 

interior column flanges and are anchored outside the flange faces of the exterior 

columns. The friction energy dissipation devices (FEDs) are symmetrically installed 

on the top and bottom beam flanges.  



33 
 

 

Figure 2.24 Proposed PT connection (Kim and Christopoulos 2008) 

 

Formulas, estimating the forces of the beams, PT bars and FEDs are proposed as a 

function of the relative rotation angle. Also the relation between the relative rotation 

angle and the drift is provided. Three different friction materials were investigated 

under direct dynamic axial cyclic loading. Cyclic tests of the PT connections were 

conducted to investigate the efficiency of the proposed friction interface and its 

performance under loading conditions that are expected during seismic loading. 

Figure 2.25 show the testing setup for an interior beam-column assembly for the 

proposed PT connection and the geometry of an interior PT connection. Figure 2.26 

shows details of the beam column interface, and figure 2.27 shows the elements 

comprising an FED.  
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Figure 2.25 Test specimen for interior beam-column assembly (Kim and 

Christopoulos 2008) 

 

 

Figure 2.26 Details of beam column interface (Kim and Christopoulos 2008) 

 

 

Figure 2.27 Elements comprising FEDs (Kim and Christopoulos 2008) 
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Within the self-centering limit, no residual drift was observed in the test results, as 

well as no structural damage. The tests also demonstrated the system‟s stability and 

good energy dissipation capacity.  

 

A numerical model was developed using the commercial computer program 

RUAUMOKO (Carr 2005). Figure 2.28 shows the proposed numerical model in an 

interior connection and figure 2.29 shows the proposed model in an exterior 

connection. The proposed model consists of a number of one-dimensional contact 

(CT), friction (FR) and PT springs that are used to simulate the gap-opening 

response, the friction dissipative mechanisms and the PT elements.  

 

 

Figure 2.28 Numerical model for an interior PT connection (Kim and Christopoulos 

2009a) 
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Figure 2.29 Numerical model for exterior PT connection (Kim and Christopoulos 

2009a) 

 

The experimental response of the proposed PT connection was also investigated at 

the ultimate stage. One PT connection specimen was subjected up to 6.2% drift. The 

web and compression flange of beam around the end of the longitudinal stiffeners 

abruptly suffered local buckling at a maximum drift 6.2%. Further detailing 

requirements are proposed in (Kim and Christopoulos 2009a) to assure that flexural 

hinges form in the beams in order to improve the cyclic response of steel PT 

connections when drifts exceeding the design drifts are imposed to the system.  

 

In (Kim and Christopoulos 2009a) a non-linear solid finite element model (FEM) 

was developed, able to predict the PT connection response at ultimate deformation 

levels. The FEM consisted of solid elements and a number of spring elements to 

represent the gap-opening and closing phenomena and the frictional energy 

dissipation capabilities characterizing PT connections. 
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2.3 Design procedures for SC-MRFs  

 

In the work of Garlock et al (2007) a performance based seismic design approach for 

SC-MRFs is presented. Seismic performance levels, seismic input levels, structural 

limit states and capacities and structural demands for a SC-MRF are defined. Design 

criteria to enforce the design objectives and a step by step design procedure are 

outlined. Figure 2.30 shows that the gap opening in the PT connections causes a SC-

MRF to expand, as mentioned in Garlock et al (2007). This SC-MRF expansion 

increases with the number of bays. This SC-MRF expansion is accommodated by 

the floor system and the collector elements that transmit inertial forces from the 

floor system to the SC-MRF.  Figure 2.31 shows the floor system and collector 

element configuration that accommodates SC-MRF expansion. The SC-MRF must 

be designed to accommodate the forces that develop as the floor system partially 

restrains the expansion. It is also mentioned that first story columns can restrain the 

expansion of the first floor beams, since the SC-MRFs does not expand at the 

ground floor. Above the first floor, this interaction between floor levels through the 

columns is small as the frame expansion is similar at each floor. For this reason, the 

restraint by the columns is neglected in Garlock et al (2007).  

 

 

Figure 2.30 Elevation of one floor of a SC-MRF: (a) un-deformed (b) deformed 

shame (Garlock et al 2007) 
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Figure 2.31 (a) Floor inertia forces on building elevation; (b) plan of hypothetical 

building; (c) deformation of collector beam; (d) interaction of SC-MRF with gravity 

system; (e) beam axial forces (P) on each bay of floor x; and (f) idealized moment-

relative rotation plot of the connection moments on floor x. (Garlock et al 2007) 

 

The design approach for SC-MRFs outlined in Garlock et al (2007) uses two 

performance levels: Immediate occupancy (IO) and collapse prevention (CP). The 

design approach has 2 objectives that relate the seismic performance levels to the 

seismic input levels. Damage to the SC-MRF under the DBE must conform to the IO 

performance level and damage to the SC-MRF under the MCE must conform to the 

CP performance level. Structural demands are used to enforce these design 

objectives. Structural demands quantify the deformations, forces and moments in 

SC-MRF for the DBE and MCE seismic input levels.      

 

The iterative seismic design procedure for SC-MRFs presented in Garlock et al 

(2007) is briefly described in the following steps.  
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Step 1: From appropriate seismic design provisions the design response spectrum for 

5% damping (Sa(5%)), the design base shear (Vdes), the force reduction factor (q), the 

equivalent lateral forces at each floor (Fx,des) and the story allowable drift limit are 

obtained. 

 

Step 2: It is assumed that the beams moment under the DBE (MDBE) equal to the 

nominal beam plastic moment capacity (Mp,n). Also it is assumed that the beams 

moment at the columns face under the design response spectrum (Mdes) is lower than 

0.55∙Mp,n. 

 

Step 3: Beams and columns are selected considering the strong column –weak beam 

design criterion (ΣMc>ΣΜb). Formulas for the estimation of Mc and Mb are provided 

in Garlock et al (2007). 

 

Step 4: An elastic analysis of the frame is performed under the Fx,des where rigid 

beam-column connections have been assumed but the panel zones flexibility and the 

beam reinforcing plated have been considered. The frame must satisfy the story 

allowable drift limit otherwise the beams and columns are increased and step 3 is 

repeated. At the end of this step Mdes, the initial elastic frame stiffness (KfΔ), Vdes, the 

elastic displacement under the design response spectrum (Δel-des), and the roof 

displacement demands under the DBE and MCE (Δroof, DBE, Δroof,MCE) are obtained. 

Formulas estimating Δroof, DBE and Δroof,MCE based on the equal displacement rule are 

provided in (Garlock et al 2007). 

 

Step 5: Collector beams are designed according to the following principles. The 

initial PT force, T0, should be greater than the force causing a plastic hinge in the 

outer collector beam. Also the outer collector beams should not yield under the 

DBE. A formula estimating the PT connection rotation when the collector beam 

forms a plastic hinge is provided in Garlock et al (2007)  

 

Formulas estimating the PT connections relative rotation demands under the DBE 

and MCE (θDBE and θMCE) are provided in Garlock et al (2007). These values are 

obtained by subtracting the elastic story drift (θs,e) from the total story drift demand 

(θs,DBE or θs,MCE). θs,e is estimated based on the solid  assumptions  (Garlock 2002) 
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that the beams, columns and panel zones of SC-MRFs remain elastic under the DBE. 

θs,DBE and θs,MCE are obtained by the Δroof, DBE and Δroof,MCE based on studies by 

(Rojas et al 2005) indicating that the ratio between interstorey drift (θs) to roof drift 

(θr)  approximately equals to 1.5. Also base shear demands VDBE and VMCE are 

estimated by multiplying Vdes by over strength factors (ΩDBE, ΩMCE). Suggested Ω 

values are given in Garlock et al (2007). 

 

Step 6: The structural demands (VDBE, VMCE, θs,DBE, θs,MCE, θDBE and θMCE) are 

estimated using formulas provided in Garlock et al (2007). 

 

Step 7: Mdes is multiplied by a selected αα factor to determine the required 

connection moment at the yield of the FED (Ma≥ αα ∙Mdes), which is an angle (see 

Figure 2.1). The PT strands number, size and T0 and the FEDs (top and seat angles) 

properties are selected.  

 

Step 8: The reinforcing plate length (Lrp) and reinforcing plate area (Arp) are 

iteratively selected in order to satisfy certain design criteria. Lrp must satisfy the 

criterion for beam local buckling and the criterion for beam horizontal shear 

strength, while Arp must satisfy the criterion for yielding under bearing stresses. 

Beam local buckling under the MCE is prevented by limiting the beam flange strain 

at the end of the reinforcing plate to two times the yield strain (2εy) (Garlock et al 

2005). The design criterion for beam horizontal shear strength, is provided in 

Garlock et al (2007) based on equilibrium of horizontal forces under the DBE. The 

criterion for yielding under bearing stresses is provided in Garlock et al (2007) under 

the DBE. If design criteria are not satisfied after several selections of Lrp and Arp a 

new connection is selected. If the beam size needs to be modified the procedure 

continues from step 3 otherwise from step 6.  

 

Step 9: The panel zones properties are selected, by applying the panel zone yield 

criterion under the DBE, which is provided in Garlock et al (2007). 

 

Step 10: A nonlinear pushover analysis is performed to evaluate the Ω values, and if 

these values are significantly different than those assumed the connection design is 

checked by returning to step 6.   
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The proposed design procedure is evaluated via comparisons with time history 

analysis results. SC-MRFs designed using the design approach satisfied the design 

criteria for the limit states of connection strength, angle fracture, and strand yield. 

The other design criteria were not always satisfied for a few beams or columns in the 

frame 

 

In the work of Kim and Christopoulos (2009b) a comprehensive step by step seismic 

design procedure of SC-MRFs with PT connections presented in Kim and 

Christopoulos (2008), and Kim and Christopoulos (2009a) that is adapted from 

current seismic design practices and that can be extended to any other SC-MRF with 

different PT connections is proposed. A formula for the PT connection gap opening 

moment (MGap) is provided. Formulas for the beam axial compressive force (Fb) and 

bending moment (Mb) after the PT connection gap opening are provided. In these 

formulas the beams and PT bars axial stiffness (Kb, KPT) are considered as well as 

the restraint effect on the SC-MRF expansion from the columns and the floor slab. 

Also, formulas for the bending stiffness of columns in the direction of the beam 

member axis are provided.   

 

 
Figure 2.32 Detailing between concrete slab and SC-MRF to eliminate the 

restraining effect of slabs (Kim and Christopoulos 2009b). 

 

Figure 2.32 shows the proposed in Kim and Christopoulos (2009b) detailing along 

the boundaries of the slabs that allow for the gap opening to be accommodated. Two 

of the four sides are restrained by the shear connectors while the other side moves 
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along with the frame expansion. To allow for a smooth sliding motion, Teflon pads 

are placed underneath the slab at the sides where sliding of the slab is allowed. 

 

According to the design strategy of Kim and Christopoulos (2009b), SC-MRFs are 

designed to respond within their self-centering range with no damage to any 

structural elements and no residual deformation (except for minor residuals caused 

by the yielding of the column bases) under the DBE level earthquake. While, under 

the MCE level earthquake, SC-MRFs are designed to form a ductile mechanism with 

significant inelastic deformation reserve through the flexural yielding of beams at 

carefully detailed locations. 

In Kim and Christopoulos (2009b) a formula estimating the beam moment MSC at 

the maximum drift where self-centering is provided (θs,SC), is proposed. By 

assuming that the elastic drift of the corresponding MRF (θs,y,MRF) equals to 1%, MSC 

is provided as a function of MGap, θs,SC, and post yield stiffness ratio (αp). θs,SC must 

be equal to or larger than a target design drift θDBE to ensure self-centering behavior 

under DBE level earthquakes. The maximum drift θs,max of SC-MRFs is considered 

as θs,SC + 3% rad since properly detailed beam sections allow for a plastic rotation of 

3% rad. Therefore the target drift θs,MCE of a SC-MRF must be less than θs,max to 

prevent a sudden loss of stiffness and strength due to local buckling at critical beam 

sections and/or yielding of PT bars. Figure 2.33 shows the moment – interstorey 

drift relations for self centering systems without ultimate ductile mechanism. Figure 

2.34 shows the moment – interstorey drift relations for self centering systems 

designed according to the procedure proposed in Kim and Christopoulos (2009b). 

Considering that θs,y,MRF equals to 1% rad and that the gap opening angle θs,SC for 

SC-MRFs is approximately 3% rad, we get θs,SC equal to 4% rad, which is 

significantly larger than the drift θs,DBE of 2% of a common building under DBE 

level earthquakes.      
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Figure 2.33 Moment-interstorey drift relations for self-centering systems without 

ultimate ductile mechanism (Kim and Christopoulos 2009b) 

 

 

Figure 2.34 Moment-interstorey drift relations for self-centering systems, designed 

according to procedure proposed in (Kim and Christopoulos 2009b) 

 

In Kim and Christopoulos (2009b) a range of values for αp and energy dissipation 

factor (β), where β=2MFR/MGap and MFR is the moment contribution of the friction 

devices (FEDs) are suggested. So, values of 0.1< αp <0.15 and (0.2 for the first 

story) and values of 0.7<β<1 are suggested. If αp and β valued are in the 

recommended range we ensure that self centering is provided, and that SC-MRFs 
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have similar drifts with MRFs. The last observation has been investigated using both 

multi degree of freedom systems (MDOF) and single degree of freedom systems 

(SDOF) (Christopoulos et al 2002a,b). 

 

The steps of the design procedure presented in (Kim and Christopoulos 2009b) are 

the following. 

 

Step 1: Size the initial beams and columns sections using typical design procedures 

for MRFs  

 

Step 2: Determine the target drifts, θs,DBE and θs,MCE for a given seismic hazard level 

and choose ΔSC consequently. 

 

Step 3: Set to about 0.1 the post yield stiffness ratio (αp) and between 0.7 and 1 the 

energy dissipation factor. 

 

Step 4: Design of the main components of the PT connections, PT bars and FEDs. 

For the sizing of the PT bars, the beams section design moment capacity, 

considering the reinforcing plates thickness should be met under the θs,SC drift limit. 

The PT bars force should be less than 75% of the ultimate strength of the PT bars 

under the θs,SC drift limit. The moment MGap should be greater than the moment 

caused by gravity and wind load effects to prevent any gap opening under such 

loading conditions. By selecting β, the MFR is obtained and so the friction devices 

are designed to achieve this moment. 

 

Step 5: Size the reinforcing plates. If reinforcing plates greater than 2 times the beam 

depth are required, iterate from step 1 with bigger beam sections. Seismic demands, 

such as the design base shear should be re-calculated since a decrease in the 

structural period is expected. The reinforcing plate thickness is taken as the 

thickness of the beam flange. The reinforcing plate length is chosen in order to meet 

the design capacity (axial force and bending moment) of the beam, reduced with a 

safety factor, at the end of the reinforcing plates under the θs,SC drift limit.  
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Step 6: Design longitudinal stiffeners welded on the beam webs according to 

equations presented in (Kim and Christopoulos 2009b). Beams flexural plastic 

hinges are developed under θs,SC = 4% drift limit, at the end of the reinforcing plates. 

The beam detailing equations provided in (Kim and Christopoulos 2009b) ensure 

3% additional inelastic rotation capacity without sudden loss of stiffness and 

strength due to beam local buckling. 

 

Step 7: Size and detail the other structural members of the SC-MRFs according to 

capacity design principles to remain elastic at the target design drift. Panel zones are 

designed to prevent inelastic behavior under shear force equal to the beam axial 

forces. Also, continuity plates in the columns can be used to minimize local yielding 

of the columns flanges. 
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2.4 Assessment of the seismic response of SC-MRFs (numerical simulations, 

shaking table tests, hybrid tests) 

 

In Rojas et al  (2005) a six storey, four bay perimeter MRF was designed as a SC-

MRF using post tensioned friction damped connections PFDC-MRF, according to 

the criteria described in Rojas et al (2005). A second six storey, four bay perimeter 

special MRF (FR-MRF) with welded connections was designed using the IBC 2000 

provisions (ICC 2000). Figure 2.35 shows the layout of the gravity frames and 

seismic resisting frames when the prototype building is design with FR-MRFs and 

figure 2.36 shows the layout when the prototype building is designed with PFDC-

MRFs.  More details for the design properties of the frames are given in Rojas et al 

(2005). 

 

 

Figure 2.35 Gravity frames and FR-MRFs of prototype building (Rojas et al 2005) 
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Figure 2.36 Gravity frames and PFDC-MRFs of prototype building (Rojas et al 

2005) 

 

Figure 2.37 shows the model in Drain-2DX for FR-MRF and figure 2.38 shows the 

model for PDFC-MRF used in this study. A beam plastic hinge model, considering 

strength degradation due to local buckling was used to the FR-MRF beams. Leaning 

columns were used into the models, incorporating P-Delta effects. Masses are 

located as shown in figure 2.37 and gravity loads are located in both the leaning 

columns and MRFs of both frames. The rotational flexibility of the foundation was 

also considered. PT connections have been modelled according to Ricles et al (2001) 

modelling approach, and initial stress condition was imposed to account for the 

initial post tensioning. Springs were used to model the interaction between the floor 

diaphragm and the PFDC-MRF. Link elements were used to keep the initial post 

tensioning forces from entering into the collector beam elements during the post 
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tensioning, since the construction sequence of a PFDC-MRF assumes that the beams 

are post tensioned before the slab is poured.  

 

 

Figure 2.37 Frame model for fully restrained-moment resisting frame (Rojas et al 

2005). 
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Figure 2.38 post tensioned friction damped connection-moment resisting frame 

(Rojas et al 2005). 

 

Figure 2.39 shows the results of nonlinear static pushover analysis of each frame. 

The PFDC-MRF has a larger initial stiffness than the FR-MRF. The first gap 

opening in the PFDC-MRF occurs when the roof drift is 0.27%, but the reduction in 

the lateral stiffness due to gap opening at several locations occurs at roof drift equal 

to 0.53%. Beam compression yielding at the ends of the reinforcing plates of the 

PFDC-MRF begins when roof drift is 1.90%. 
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Figure 2.39 Static pushover results for fully restrained moment resisting frames and 

post tensioned friction damped connection moment resisting frames and comparison 

with design base shear (Rojas et al 2005) 

 

Nonlinear dynamic time history analyses were conducted using eight ground 

motions, scaled to the DBE and MCE level, according to the Somerville (1997) 

approach. Figure 2.40-41 show the mean and mean plus one standard deviation of 

the maximum story drifts under the DBE and MCE respectively. Under the DBE the 

FR-MRF has higher drifts in the upper stories and lower drifts in the lower stories 

than the PFCD-MRF, while under the MCE the FR-MRF has lower drifts in all 

stories. 
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Figure 2.40 Maximum story drifts for DBE considered earthquake records (Rojas et 

al 2005) 

 

 

Figure 2.41 Maximum story drifts for MCE considered earthquake records (Rojas et 

al 2005) 
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Figure 2.42-43 shows the mean and mean plus one standard deviation of the residual 

story drifts under the DBE and MCE respectively. The PFDC shows negligible 

residual story drifts both under the DBE and MCE, which means that inelastic 

behavior (damage) is minimal.  

 

 

Figure 2.42 Maximum residual story drifts for DBE considered earthquake records 

(Rojas et al 2005) 
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Figure 2.43 Maximum residual story drifts for MCE considered earthquake records 

(Rojas et al 2005) 

 

A six storey six bay building is designed according to the recommended procedure 

in Garlock et al (2007) and nonlinear time history analyses were conducted using 3 

ground motions, scaled on the DBE and MCE level. Figure 2.44 shows the prototype 

building which consist of four bay perimeter SC-MRFs.  Two different designs of 

SC-MRFs are considered, by selecting two different αα values, which control the 

yielding moment of the FEDs, which are angles (see Figure 2.1).  The use of larger 

αα results in larger beams and columns and a stiffer and stronger frame, which 

results in smaller story drifts. 
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Figure 2.44 (a) Plan of prototype building; (b) Elevation of prototype frame 

(Garlock et al 2007) 

 

The story drift and relative rotation design values agree with the time history results. 

Also time-history results indicate that the steel strain (ε) at the end of the reinforcing 

plates under the DBE approximately equals to two times the yield strain (2∙εy) as 

expected by the design procedure. The beam axial force and bending moment design 

values underestimate the time-history results. The design criteria for the limit states 

of PT connections strength, angles fracture and PT strands yielding were satisfied, 

but the remaining criteria of the design procedure proposed in Garlock et al (2007) 

were not always satisfied. 

 

A six story building incorporating welded moment resisting frames (WMRFs) in the 

east-west direction was designed and a similar building incorporating self centering 

friction damped steel frames (SCFR) was re-designed by the proposed seismic 

design procedure in Kim and Christopoulos (2009b). Figure 2.45 shows the plan 

view of the prototype building. The columns and the beams comprising the steel 

WMRFs were denoted as C1 and G1 respectively. Design properties of frames used 

in this study are giver in more detail in Kim and Christopoulos (2009b). An 

important observation is that in the first floor of the SCFR, a higher post yielding 

stiffness ratio (αp) was used in the PT connections, because of the amplified column 

restraining effects, resulting from the fixity at the column bases. This increase in αp 
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resulted in higher PT bars area, and so premature yielding of the beam sections, 

which was addressed by reducing the initial PT force.  

 

 

Figure 2.45 Plan view of a six-story framed prototype building (Kim and 

Christopoulos 2009b) 

 

Numerical models of both the WMRF and the SCFR were developed in 

RUAUMOKO (Carr 2005). Figure 2.46 shows the numerical model of the SCFR, 

used in Kim and Christopoulos (2009b). Gravity loads were modelled by applying 

axial forces on columns and fixed moments and shear forces on the beams. Four 

leaning columns were used to count for the P-Δ effects. Each leaning column nodes 

were slaved to one SCFR column nodes, to allow the frame expansion resulting from 

the gap opening at the beam column interfaces. The strength and stiffness 

degradation due to local buckling on the beams was not considered. Columns and 

beams were modelled using beam column elements and PT connections were 

modelled using the modelling approach of Kim and Christopoulos (2009a) (see 

figure 2.28-29). 
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Figure 2.46 Modelling of a SCFR (Kim and Christopoulos 2009b) 

 

Figure 2.47 shows the normalised base shear-roof drift diagrams (pushover curves) 

for the WMRF and SCFR. Strength deterioration of SCFR does not initiate in roof 

drifts up to 8%, even if P-Δ effects were considered, since this modelling does not 

count for stiffness and strength deterioration due to local buckling. The initial 

stiffness of both frames was almost the same, since they consist of same beams and 

columns. For roof drifts beyond 1% the SCFR resulted in small residual drifts due to 

yielding at the column bases. After a roof drift of 4.5%, plastic hinges were 

developed at the beam sections of the SCFR. 
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Figure 2.47 Cyclic pushover curved of WMRF and SCFR (Kim and Christopoulos 

2009b) 

 

 

Figure 2.48 Mean plus one standard deviation values of maximum interstorey drift 

under the DBE ground motions (Kim and Christopoulos 2009b) 
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Figure 2.49 Mean plus one standard deviation values of residual drift under the DBE 

ground motions (Kim and Christopoulos 2009b) 

 

 

Figure 2.50 Mean plus one standard deviation values of maximum floor 

accelerations under the DBE ground motions (Kim and Christopoulos 2009b) 
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Time history anayses were conducted in both frames using set of ground motions 

scaled to the DBE and MCE level. Figures 2.48-50 show the mean and mean plus 

one standard deviation values of the maximum storey driftt, residual storey drifts 

and  peak floor acceleration for borth the WMRF and SCFR under ground motions 

scaled to the DBE. While figures 2.51-53 show the same values under ground 

motions scaled to the MCE. The SCFR has similar storey drifts with the WMRF, 

satisfying the design drift demand (2%) both under the DBE and MCE level. The 

SCFR has almost eliminated residual drifts apart from the first storey due to yielding 

at the column bases, under both the DBE and the MCE level. Both frames have 

similar peak floor accelerations. The SCFR beam plastic rotations range from minor 

yielding to 0.4% under the MCE. The maximum M plus one standard deviation story 

drift value of the SCFR under the MCE is 4.6%,which highlights the need to ensure 

a ductile response (without strength and stiffness deterioration) of the SCFR.  

 

 

Figure 2.51 Mean and M+SDV values of maximum interstorey drift under the MCE 

ground motions (Kim and Christopoulos 2009b) 
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Figure 2.52 Mean and M+SDV values of residual drift under the MCE ground 

motions (Kim and Christopoulos 2009b) 
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Figure 2.53 Mean and M+SDV values of maximum floor accelerations under the 

DBE ground motions (Kim and Christopoulos 2009b) 

 

In (Lin et al 2013) a 7 bay, 4 story prototype office building was designed using 

perimeter SC-MRFs with PT connections and web friction devices (FDs). Figure 

2.54 shows the FD, which includes two channel sections welded to column flanges. 

Brass plates are installed between the channels and the beam web, to provide a 

reliable brass-steel friction interface. Channels are clamped to the beam web by 

friction bolts, which are tightened and produce a normal force on the friction 

interface.  

 



62 
 

 

Figure 2.54 (a) Elevation of a 2-bay SC-MRF with PT strands and FDs; (b) 

connection details (Lin et al 2013a, b) 

   

Figure 2.55 (a) shows the plan view of the 7x7 bay, 4 story prototype office 

building. Each perimeter frame has two 2 bay steel SC-MRFs with PT connections 

and FDs. The prototype building was designed according to (ASCE 2005) and the 

design procedure of (Garlock et al 2007).  
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Figure 2.55 (a) prototype building plan; (b) SC-MRF test frame elevation (Lin et al 

2013a,b) 

 

One quarter of the building was simulated using the hybrid simulation method, 

considering the symmetry of the plan. The experimental substructure consisted of 

one 2 bay SC-MRF acting in one direction of the building, while the remaining one 

quarter of the building was simulated as an analytical substructure. Figure 2.55 (b) 

shows the SC-MRF test frame elevation, which has a 0.6 scale factor. A pin support 

is installed at the columns base, representing the inflection point of the basement 

story column. Welded beam-column connections are used for the ground level 

beams and PT connections are used for the beams above ground level.  

 



64 
 

The floor diaphragm is attached to the beam in one bay (“FD” bay). The beam in the 

other bay (“sliding” bay) and the columns are free to move horizontally relative to 

the FD to avoid restraining gap opening of the PT connections. The floor diaphragm 

is simulated through a concrete slab, connected to the test frame with shear studs. To 

accommodate the relative movements between the slab and the columns, equations 

for the sizing of cutouts on the slab are provided in Lin et al (2013a,b).  

 

The tested SC-MRF was subjected into 4 ground motions scaled to the DBE level 

and 2 ground motions scaled to the MCE level. Figure 2.56-59 show the 

displacement time histories of all floors of the SC-MRF under 4 ground motions 

scaled to DBE.  

 

Under the DBE ground motions all floors displacements return to zero, so residual 

drifts are eliminated and self-centering behaviour is demonstrated. The design 

demands (relative rotation, interstorey drift) have been exceeded in two of the four 

DBE ground motions. Also the DBE results indicate that the ratio between the 

interstorey drift and roof drift which is assumed equal to 1.5 in the design procedure 

of Garlock et al (2007), appears to be conservative for the lower stories. Minor 

yielding occurred on the beams under the DBE ground motions, since the maximum 

recorded steel strain was 1.02εy.  

 

 

Figure 2.56 Floor displacement time histories from one ground motion scaled to 

DBE (Lin et al 2013a) 
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Figure 2.57 Floor displacement time histories from one ground motion scaled to 

DBE (Lin et al 2013a) 

 

 

Figure 2.58 Floor displacement time histories from one ground motion scaled to 

DBE (Lin et al 2013a) 

 

 

Figure 2.59 Floor displacement time histories from one ground motion scaled to 

DBE (Lin et al 2013a) 

 

Figure 2.60-61 show the displacement time histories of all floors of the SC-MRF 

under 2 ground motions scaled to the MCE. The largest residual drift obtained under 

the MCE ground motions is 0.18%, which is very small and so self centering 

behaviour is provided. The connections relative rotations under the MCE are higher 

than the MCE demands. Also significant yielding occurred on the beams flanges, up 

to 9 εy, however beam local buckling did not occur.  
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Figure 2.60 Floor displacement time histories from one ground motions scaled to 

MCE (Lin et al 2013b) 

 

 

Figure 2.61 Floor displacement time histories from one ground motions scaled to 

MCE (Lin et al 2013b) 

 

Also quasi static tests were performed up to higher interstorey drifts than those of 

the MCE, to examine the ultimate behaviour of the PT connections. Figure 2.62 

shows local buckling on the bottom flange and bottom part of the web of the beam, 

occurred under roof drift higher than 1.8 times the MCE demand.  
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Figure 2.62 Buckling of beam bottom flange and web  

 

To prevent PT strands yielding, (Lin et al 2013b) use a PT strand fuse, which yields 

at a specific load to limit the force developed in the PT strands.  Quasi static tests 

indicate that the recommended fuses controlled the force developed in the PT strands 

and prevented the PT strands from yielding.  

 

2.5 Preliminary assessment of SC-MRFs with PT connections using web 

hourglass shape pins 

 

A new steel PT connection using web hourglass shape steel pins (WHPs) has been 

recently developed, modelled in ABAQUS and experimentally validated in 

Vasdravellis et al (2013a,b). The connection isolates inelastic deformations in 

WHPs, avoids damage in other connection parts as well as in beams and columns, 

and, eliminates residual drifts. WHPs do not interfere with the composite slab and 

are very easy-to-replace without bolting or welding, and so, the connection enables 

non-disruptive repair and rapid return to building occupancy in the aftermath of a 

strong earthquake.  

 

Figure 2.63 shows a schematic representation of a SC-MRF incorporating PT 

connections with WHPs, and figure 2.64 shows the details of an exterior PT 

connection. Two high strength steel bars located at the mid-depth of the beam, one at 

each side of the web, pass through holes drilled on the column flanges. The bars are 

post-tensioned and anchored to the exterior column flange, and so, clamp the beam 

to the column. Four WHPs are inserted in aligned holes drilled on the web of the 
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beam and on strong supporting plates. The supporting plates are welded on the 

column flanges and have large thickness to provide fixed support boundary 

conditions to WHPs. Energy dissipation is provided by inelastic bending of the 

WHPs which are symmetrically placed (close to the top and bottom beam flange) to 

provide increased lever arm, and so, increased internal moment resistance. Both 

sides of the beam web are reinforced with steel plates to increase the contact surface 

of the WHPs with the web. So, possible ovalization of the holes drilled on the web 

and the reinforcing plates under the WHP bearing forces will be negligible and 

pronounced pinching behavior under cyclic deformations can be avoided. The 

connection includes beam flange reinforcing plates to avoid excessive early yielding 

in the beam flanges under the high PT bars forces. In addition, the panel zone is 

strengthened with doubler and continuity plates. 

 

 

Figure 2.63 SC-MRF incorporating PT connections with WHPs (Vasdravellis et al 

2013a,b) 
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Figure 2.64 Exterior PT connection details (Vasdravellis et al 2013a,b) 

 

Preliminary studies on SC-MRFs using PT connections with WHPs have been 

carried out as part of this PhD, and presented in (Dimopoulos et al 2013). In these 

studies a model for the PT connection with WHPs and the associated beams and 

columns was developed in OpenSees. This model consists of nonlinear beam-

column elements, and hysteretic and contact zero-length spring elements 

appropriately placed in the beam-column interface. More details on the modelling 

procedure followed are provided in (Dimopoulos et al 2013) and in chapter 3 of this 

PhD thesis. The model was calibrated against experimental results and found to 

accurately simulate the connection behavior.  

 

Figure 2.65 (a) shows the plan view of the 5-storey, 4-bay by 3-bay prototype office 

building used for the study. The building has four identical MRFs to resist lateral 

loads in the longitudinal plan direction. The design study focused on one of the 

interior MRFs shown in figure 2.65 (b). This MRF was designed either as a 

conventional steel MRF according to EC8 (Eurocode 8 2013) or as a steel SC-MRF 

using PT connections with WHPs according to Garlock et al (2007) to compare their 

seismic performance. Both the MRF and the SC-MRF have same beam and column 

cross sections, while WHPs and the required beam flange reinforcing plated of the 

SC-MRF have practical sizes. 
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Figure 2.65 (a) Plan view of prototype building; (b) elevation of interior MRF 

(Dimopoulos et al 2013) 

 

Figure 2.66-67 show the base shear coefficient (V/W) - roof drift (θr) behaviour of 

the conventional MRF and the SC-MRF from nonlinear monotonic (pushover) static 

analysis using nonlinear models of the MRF and the SC-MRF in OpenSees 

(Mazzoni et al. 2006). V is the base shear and W is the seismic weight. An inverted 

triangular force distribution along with roof displacement control was used in these 

analyses. The MRF and the SC-MRF have comparable base shear strengths and 

comparable initial stiffness. The pushover curves are plotted along with points 

associated with structural limit states and vertical lines corresponding to roof drifts 

expected under the FOE, DBE and MCE. The structural limit states for the 

conventional MRF are beam yielding and base column yielding and occur at θr equal 

to 0.82%  and 0.92% respectively. The conventional MRF avoids damage under the 

FOE but experiences significant damage under the DBE. The structural limit states 
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for the SC-MRF are decompression in a PT connection, WHP yielding, base column 

yielding and beam yielding. Figure 2.67 shows that the beams of the SC-MRF are 

damage-free for θr equal or lower than 3%, i.e., drifts higher than the MCE.  Damage 

in the SC-MRF is experienced at the column bases that yield at θr equal to 0.97%.  

No PT bar yielding is observed. The first decompression occurs at θr equal to 0.4% 

while WHPs yield at θr equal to 0.62% which is almost equal to the FOE drift. 

Decompression does not involve damage while yielding of the WHPs is acceptable 

under low drifts since WHPs can be easily replaced without bolting or welding. The 

conventional MRF experiences softening at θr equal to 1.25% while the SC-MRF 

shows a more gradual softening behaviour. In particular, the SC-MRF shows 

softening due to decompression in the PT connections at low drifts and further 

softening due to plastic deformations at the column bases and yielding of a large 

number of WHPs at θr equal to 1%. 

 

 

Figure 2.66 Base shear coefficient – roof drift behavior of MRF from nonlinear 

monotonic (pushover) static analysis (Dimopoulos et al 2013) 

 

 

Figure 2.67 Base shear coefficient– roof drift behavior of SC-MRF from nonlinear 

monotonic (pushover) static analysis (Dimopoulos et al 2013) 
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Figures 2.68-69 show the V/W - θr behaviour of the MRF and the SC-MRF from 

nonlinear cyclic (push-pull) static analysis. The first cycle of the analysis is 

performed up to the DBE drift, while the next cycle up to the MCE drift. The SC-

MRF shows full re-centering capability under the DBE, adequate energy dissipation 

and a small residual drift under the MCE due to plastic deformations at the column 

bases. The conventional MRF shows large energy dissipation capacity due to plastic 

deformations at the beam ends and at the column bases, and the possibility of 

experiencing large residual drifts under the DBE and MCE.  

 

 

Figure 2.68 Base shear coefficient-roof drift behavior of MRF from nonlinear cyclic 

(push-pull) static analysis (Dimopoulos et al 2013) 
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Figure 2.69 Base shear coefficient-roof drift behavior of SC-MRF from nonlinear 

cyclic (push-pull) static analysis (Dimopoulos et al 2013) 

 

A set of 20 earthquake ground motions were selected, and scaled to the FOE, DBE 

and MCE level, according to the scaling procedure of Somerville (1997). These 

ground motions were used in 2D nonlinear dynamic time history analyses to 

evaluate the performance of the SC-MRF and the performance of the conventional 

MRF. More details on the selection and scaling of the ground motions can be found 

in Dimopoulos et al (2013). 

 

Figures 2.70-71 show the comparison of the roof drift time histories for the 

conventional MRF and the SC-MRF under one of the 20 selected ground motions, 

scaled to the DBE and MCE.  Near the end of the time histories the SC-MRF 

oscillates around the origin, indicating negligible residual drift, while the 

conventional MRF experiences residual drifts. The peak roof displacements of the 

MRF and the SC-MRF are similar.  
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Figure 2.70 Comparison of the roof drift time histories under one of the 20 selected 

ground motions, scaled to the DBE (Dimopoulos et al 2013) 

 

 

Figure 2.71 Comparison of the roof drift time histories under one of the 20 selected 

ground motions, scaled to the MCE (Dimopoulos et al 2013) 
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Figures 2.72-73 show the stress-strain hysteresis at points A and B (extreme column 

base flange fibers), and, C and D (extreme beam flange fibers) of the first storey of 

the conventional MRF under one of the 20 ground motions scaled to the DBE and 

MCE. Figures 2.78-79 show similar information for the SC-MRF. The stress-strain 

hysteresis immediately after the end of the beam flange reinforcing plate (points E 

and F) of the SC-MRF is also shown. The SC-MRF eliminates beam plastic 

deformations under both the DBE and MCE, while the conventional MRF 

experiences appreciable beam damage.  

 

 

Figure 2.72 Stress-strain hysteresis at points A, B, C and D of the conventional MRF 

under one of the 20 ground motions scaled at the DBE (Dimopoulos et al 2013) 
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Figure 2.73 Stress-strain hysteresis at points A, B, C and D of the conventional MRF 

under one of the 20 ground motions scaled at the MCE (Dimopoulos et al 2013) 

 

Figures 2.74-75 show that the column bases of the SC-MRF experience larger 

plastic deformations than those of the column bases of the conventional MRF. 

 

 

Figure 2.74 Stress-strain hysteresis at points A, B, C, D, E and F of the SC-MRF 

under one of the 20 ground motions scaled at the DBE  
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Figure 2.75 Stress-strain hysteresis at points A, B, C, D, E and F of the SC-MRF 

under one of the 20 ground motions scaled at the MCE  

 

Figures 2.76-81 show the μ, μ + σ and median maximum interstorey drift (θs-max) 

values of the MRF and SC-MRF under the 20 selected earthquake ground motions 

scaled to the FOE, DBE and MCE. The μ, μ + σ and median height-wise θs-max 

distributions show identical shapes. The MRF has the largest θs-max in the fourth 

storey with μ values equal to 0.75% under the FOE, 1.65% under the DBE and 2.2% 

under the MCE, i.e., close to the design values of 0.64% under the FOE and 1.6% 

under the DBE, and, smaller than the design value of 2.4% under the MCE. The SC-

MRF has the largest θs-max in the fourth storey with mean values equal to 0.75% 

under the FOE, 1.8% under the DBE and 2.5% under the MCE, i.e., slightly larger 

than the DBE and MCE design ones.  
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Figure 2.76 Statistics of peak storey drifts of the conventional MRF under 20 

earthquake ground motions scaled to the FOE (Dimopoulos et al 2013) 

 

 

Figure 2.77 Statistics of peak storey drifts of the conventional MRF under 20 

earthquake ground motions scaled to the DBE (Dimopoulos et al 2013) 
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Figure 2.78 Statistics of peak storey drifts of the conventional MRF under 20 

earthquake ground motions scaled to the MCE (Dimopoulos et al 2013) 

 

 

Figure 2.79 Statistics of peak storey drifts of the SC-MRF under 20 earthquake 

ground motions scaled to the FOE (Dimopoulos et al 2013) 
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Figure 2.80 Statistics of peak storey drifts of the SC-MRF under 20 earthquake 

ground motions scaled to the DBE (Dimopoulos et al 2013) 

 

 

Figure 2.81 Statistics of peak storey drifts of the SC-MRF under 20 earthquake 

ground motions scaled to the MCE (Dimopoulos et al 2013) 

 

Figures 2.82-87 show the μ, μ + σ and median values of the residual storey drift (θs-

res). θs-res show a uniform height-wise distribution for the conventional MRF and 

large dispersion compared to that of θs-max. The largest θs-res of the conventional MRF 

occurs in the first storey with mean values equal to 0.1% under the DBE and 0.3% 

under the MCE. The associated μ + σ θs-res values are equal to 0.25% under the DBE 

and 0.6% under the MCE. The latter θs-res values indicate that repair of damage in the 

conventional MRF would be costly and disruptive after the DBE and not financially 

viable after the MCE (McCormick et al 2008). These results highlight the need for 

EC8 (Eurocode 8 2013) to include residual deformations as an additional seismic 



81 
 

performance parameter. The SC-MRF practically eliminates residual storey drifts 

apart from the first storey that has μ and μ + σ θs-res values equal to 0.1% and 0.15% 

under both the DBE and MCE. The latter θs-res values are lower than the global sway 

imperfections defined in EC3 (Eurocode 3 2010) and so it can be assumed that there 

will be no need for these residual drifts to be straightened out. Figure 2.87 shows 

small μ + ζ θs-res values in the third storey of the SC-MRF due to modest yielding in 

the beam ends.  

 

 

Figure 2.82 Statistics of residual storey drifts of the conventional MRF under 20 

earthquake ground motions scaled to the FOE (Dimopoulos et al 2013) 

 

 

Figure 2.83 Statistics of residual storey drifts of the conventional MRF under 20 

earthquake ground motions scaled to the DBE (Dimopoulos et al 2013) 

 



82 
 

 

Figure 2.84 Statistics of residual storey drifts of the conventional MRF under 20 

earthquake ground motions scaled to the MCE (Dimopoulos et al 2013) 

 

 

Figure 2.85 Statistics of residual storey drifts of the SC-MRF under 20 earthquake 

ground motions scaled to the FOE (Dimopoulos et al 2013) 
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Figure 2.86 Statistics of residual storey drifts of the SC-MRF under 20 earthquake 

ground motions scaled to the DBE (Dimopoulos et al 2013) 

 

 

Figure 2.87 Statistics of residual storey drifts of the SC-MRF under 20 earthquake 

ground motions scaled to the MCE (Dimopoulos et al 2013) 
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2.6 Research needs 

  

On the basis of the literature review in Sections 2.2 to 2.4, several research needs 

have been identified and discussed in the following paragraphs.  

 

Research towards the standardization of steel SC-MRFs within the framework of 

EC8 (Eurocode 8 2013) is missing. In particular, there are no previous studies that 

focused on designing steel SC-MRFs according to the guidelines of EC8 (Eurocode 

8 2013). Moreover, according to the existing design procedures for SC-MRFs 

(Garlock et al 2007, Kim and Christopoulos 2009b), PT connections rotation 

demands are estimated using approximate formulae. Hybrid simulation tests of SC-

MRFs developed by (Lin et al 2013a,b) showed that these formulae result in 

underestimation of the rotations obtained both under the DBE and MCE. These 

results highlight the need of a more robust way to estimate the PT connections 

rotation demands. In addition, SC-MRFs have similar peak story drifts with 

conventional MRFs. Viscous dampers could be combined with SC-MRFs to control 

peak story drifts but an integrated design approach for SC-MRFs with viscous 

dampers has not been reported. 

 

The ATC-63 (FEMA-P695 2008) project sets a limit on the permissible probability 

of collapse under the MCE equal to 10%. As this limit has been primarily set for 

conventional structural systems, lower probabilities of collapse should be offered by 

resilient structures. The behaviour under seismic intensities higher than MCE and 

the collapse resistance of SC-MRFs have not been examined in the existing 

literature. Nonlinear models of PT connections, able to capture the strength and 

stiffness deterioration due to local buckling should be developed in order to evaluate 

the seismic response of SC-MRFs up to collapse.  

 

To properly assess the seismic resilience of SC-MRFs, the actual economic seismic 

losses should be rigorously estimated. The literature review shows that the potential 

of steel SC-MRFs to reduce economic seismic losses has not been assessed and 

quantified. In order to accurately estimate the seismic losses of SC-MRFs, the effect 

of the residual story drift value, beyond which is less expensive to rebuild a structure 

than to repair should be carefully studied. Moreover, the probability of collapse (i.e. 
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total loss of the building) should be considered during a seismic economic loss 

estimation study. 

 

2.7  Research objectives 

 

The objectives of this PhD thesis research are outlined below: 

 

 To develop nonlinear models of PT connections, able to capture the strength 

and stiffness deterioration due to local buckling in order to evaluate the seismic 

response of SC-MRFs up to collapse.  

 To develop a seismic design procedure of steel SC-MRFs with viscous 

dampers, within the framework of EC8 (Eurocode 8 2013), where a robust way to 

estimate the PT connections rotation demands will be implemented. 

 To assess the accuracy of the proposed design procedure, and investigate 

different design scenarios of SC-MRFs with viscous dampers. 

 To assess the behaviour of SC-MRFs with viscous dampers under seismic 

intensities higher than MCE, and their collapse resistance. 

 To assess and quantify the potential of steel SC-MRFs with viscous dampers 

to reduce economic seismic losses. 

 

2.8 Thesis structure 

 

A modelling procedure in OpenSees (Mazzoni et al 2006) of PT connections able to 

capture the stiffness and strength deterioration due to local buckling is presented in 

chapter 3 of this PhD thesis. Experimental tests results and finite element models 

(FEM) in Abaqus of beams and PT connections, loaded up to the occurrence of local 

buckling have been used for the validation of the proposed OpenSees model.   

 

A design procedure of steel SC-MRFs with viscous dampers, within the framework 

of EC8 (Eurocode 8 2013) is described in chapter 4 of this PhD thesis. SC-MRFs are 

using the recently developed PT connection with WHPs (Vasdravellis et al 2013a,b), 

presented in section 2.5 (see figures 2.63-64). Performance levels are defined with 

respect to drifts, residual drifts and limit states in the PT connections. A preliminary 
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pushover analysis is conducted at the early phase of the design process to estimate 

rotations and axial forces in PT connections instead of using approximate formulae. 

  

The recommended seismic design procedure of SC-MRFs with viscous dampers 

presented in chapter 4 is evaluated in chapter 5 of this PhD thesis. A prototype 

building is designed as a SC-MRF with or without viscous dampers. Different 

designs of the SC-MRF with viscous dampers are considered to investigate all 

possible scenarios, i.e. use of dampers to achieve drifts significantly lower than the 

EC8 (Eurocode 8 2013) drift limit; to significantly reduce steel weight without 

exceeding the EC8 (Eurocode 8 2013) drift limit; or to reduce steel weight and 

achieve drifts lower than the EC8 (Eurocode 8 2013) drift limit. Nonlinear dynamic 

analyses in OpenSees using models capable of simulating all structural limit states 

up to collapse confirm the minimal-damage performance of the SC-MRFs, and the 

accuracy of the seismic design procedure. 

 

The seismic behaviour of SC-MRFs with viscous dampers up to collapse is 

evaluated in chapter 6 of this PhD thesis by conducting incremental dynamic 

analysis (IDA) (Vamvatsikos and Cornell 2002), and their superior collapse 

resistance is confirmed. The economic seismic losses of steel buildings using SC-

MRFs with viscous dampers are evaluated and compared with that of conventional 

MRFs in chapter 7 of this PhD thesis. For the economic seismic loss estimation the 

FEMA-P58 (FEMA P-58 2012) methodology is implemented. The probability of 

collapse and the probability of the building to be demolished due to high values of 

residual drifts are considered. Damage states of PT connections are defined based on 

nonlinear dynamic analysis results. A parametric study on the effect of the assumed 

residual story drift value beyond which is less expensive to rebuild a structure than 

to repair is conducted. Results show that the use of SC-MRFs with viscous dampers 

achieves significant repair cost reductions compared to the conventional MRF. The 

conclusions of this PhD thesis are presented in chapter 8. 
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3 Development of models for PT connections 

 

3.1 Introduction 

 

In this chapter, a modelling procedure of PT connections with WHPs and the 

associated beams and columns in OpenSees is developed and presented. The 

recommended model has been calibrated against results from large-scale 

experimental tests conducted by (Vasdravellis et al 2013a) and found to accurately 

simulate the connection behavior (see Figure 2.68) before the occurrence of local 

buckling. In PT connections, beam local buckling is expected just after the end of 

the reinforcing plates. The model of Lignos and Krawinkler (2007) is able to capture 

the stiffness and strength deterioration of steel beams, but has not been calibrated 

against beams, subjected to axial compressive forces like in PT connections.  

  

For this reason, the validity of the proposed OpenSees model to capture stiffness and 

strength deterioration due to beam local buckling, using the model of Lignos and 

Krawinkler (2007) is examined. The OpenSees model is compared against finite 

elements models (FEM) in Abaqus, developed for the available experimental setups 

of PT connections (Kim and Christopoulos 2008a, Kim and Christopoulos 2008b) 

where the local buckling occurred in the beams. For the development of FEM 

models, able to reliably simulate the local buckling on the PT connections beams, a 

parametric study has been carried out. In this parametric study, FEM models for the 

experimental specimens of Elkady et al (2014) and D‟Aniello et al (2012) in beam 

elements with and with no axial force respectively have been developed. The 

OpenSees model is validated against the FEM and it is concluded that the 

recommended OpenSees model is capable to accurately capture the stiffness and 

strength deterioration in the beams of the PT connections under high drifts.  

 

3.2 FEM models for beams with no axial force. 

 

In this section three beam elements with I cross section, that were tested by 

D‟Aniello et al (2007) have been modelled in Abaqus and subjected to both 

monotonic and cyclic loading. The cross sections, yielding strength (fy), and ultimate 

strength (fu) of the beams are shown in Table 3.1. The height of the tested beams is 
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1875mm, and fixed conditions have been applied on their bases. The beams were 

modelled using C3D8R solid elements apart from 300mm over their fixed base that 

was modelled using solid elements with incompatible modes C3D8I. C3D8I are first 

order elements that are enhanced by incompatible modes to improve their bending 

behaviour (Abaqus 2010). The mesh was refined in regions where severe plastic 

deformations or buckling phenomena were expected to occur, i.e. 300 mm over the 

fixed base. For this part of the beam there are have 12 elements along the length of 

the beam web, and 10 elements along the length of the flanges, and 15 elements 

along the beam length of this part. A coarser mesh was used for regions that were 

expected to remain essentially elastic, i.e. the top 300mm of the column. At this part 

there are 4 elements along the length of the beam web, 8 elements along the length 

of the beam flanges and 3 elements along the beam length of this part. For the 

remaining beam part an approximate global size of 50mm is applied. All over the 

beam, there are 4 elements along the thickness of the flange and the web. Figure 3.1 

shows the mesh of model for the IPE300. An elasto-plastic law with combined 

isotropic-kinematic hardening rule was specified for the steel material. The 

kinematic hard parameter and the γ value for the combined isotropic-kinematic 

hardening law were defined equal to 3500 and 15 respectively according to a 

preliminary parametric study on these parameters. A multi-point beam type 

constrain has been defined at the top surface of the beam. The control point of this 

constrain is a point along the top surface and slave nodes are all the nodes of this 

surface. The horizontal load was applied as an imposed displacement at the control 

point of the top surface. This loading configuration allows to the beam to rotate at 

the top. In order to capture local buckling phenomena, geometrical imperfections 

have been inserted into the analysis. To insert geometrical imperfections in the 

model, a modal analysis is first performed, and a number of eigenvalues are 

obtained. After the modal analysis a geometrical imperfection equal to the beam web 

length divided by 200 is applied over the mode that results in beam web and flange 

local buckling according to Eurocode 3 (EC3 part 1-5 2006).  For the cyclic tests the 

AISC 2005 (AISC 341-05 2005) loading protocol was adopted.  
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Table 3.1 Steel properties of tested beams 

Section Location fy (MPa) fu (MPa) 

HEB 160 

Web 338 475 

Upper flange 328 456 

Lower flange 346 463 

HEB 240 

Web 318 351 

Upper flange 295 433 

Lower flange 273 448 

IPE 300 

Web 353 447 

Upper flange 317 438 

Lower flange 342 440 

 

 

 

Figure 3.1 Mesh configuration of the model for the IPE300 specimen  

 

3.2.1 IPE300 

 

Figure 3.2 shows the drift – moment curve for the IPE300 beam under monotonic 

loading, and figure 3.3 shows the drift – moment curve for the IPE300 beam under 

cyclic loading respectively. It is observed that the FEM modelling is able to capture 

the stiffness and strength deterioration due to local buckling phenomena with 

sufficient accuracy at similar drifts with the experiments. Figure 3.4 shows the 
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failure mode observed in Abaqus and experiment for the IPE300 beam under 

monotonic and figure 3.5 shows the failure mode observed in Abaqus and 

experiment for the IPE300 beam under cyclic loading respectively. The failure 

modes in Abaqus coincide with the failure modes observed in the experiments.  

 

Figure 3.2 Experimental against tests results under monotonic loading for IPE300 

  

 

Figure 3.3 Experimental against tests results under cyclic loading for IPE300 
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Figure 3.4 Failure mode of IPE300 under monotonic loading in (a) Abaqus; and (b) 

experiment of (D‟Aniello et al 2007)  

 

 

 

 

Figure 3.5 Failure mode of IPE300 under cyclic loading in (a) Abaqus and (b) 

experiment of (D‟Aniello et al 2007) 
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3.2.2 HEA160 

 

Figure 3.6 shows the drift – moment curve for the HEA160 beam under monotonic 

loading and figure 3.7 shows the drift – moment curve for the HEA160 beam under 

cyclic loading respectively. It is observed that the FEM modelling is able to capture 

the stiffness and strength deterioration due to local buckling phenomena with 

sufficient accuracy at similar drifts with the experiments. Figure 3.8 shows the 

failure mode observed in Abaqus and experiment for the HEA160 beam under 

monotonic and figure 3.9 shows the failure mode observed in Abaqus and 

experiment for the HEA160 beam under cyclic loading. The failure modes in 

Abaqus coincide with the failure modes observed in the experiments.  

 

Figure 3.6 Experimental against test results under monotonic loading for HEA 160  

 

Figure 3.7 Experimental against test results under cyclic loading for HEA 160 
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Figure 3.8 Failure mode of HEA160 under monotonic loading in (a) Abaqus and (b) 

experiment of (D‟Aniello et al 2007)  
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Figure 3.9 Failure mode of HEA160 under cyclic loading in (a) Abaqus and (b) 

experiment of (D‟Aniello et al 2007) 

 

 

3.2.3 HEB240 

 

Figure 3.10 shows the drift – moment curve for the HEB240 beam under monotonic 

and loading and figure 3.11 shows the drift – moment curve for the HEB240 beam 

under cyclic loading respectively. It‟s observed that the FEM modelling is able to 

capture the stiffness and strength deterioration due to local buckling phenomena 

with sufficient accuracy at similar drifts with the experiments. Figure 3.12 shows the 

failure mode observed in Abaqus and the experiment for the HEB240 beam under 

monotonic loading. Figure 3.13 shows the failure mode observed in Abaqus and the 

experiment for the HEB240 beam under cyclic loading. The failure modes in 

Abaqus coincide with the failure modes observed in the experiments.  
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Figure 3.10 Experimental against tests results under monotonic loading for HEB240 

 

 

 

 

Figure 3.11 Experimental against tests results under cyclic loading for HEB240 
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Figure 3.12 Failure mode of HEB240 under monotonic loading in (a) Abaqus and 

(b) experiment of D‟Aniello et al (2007) 

 

 

 

Figure 3.13 Failure mode of HEB240 under cyclic loading in (a) Abaqus and (b) 

experiment of (D‟Aniello et al 2007) 

 

(a) (b) 

(a) (b) 
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3.3 FEM models for beams with axial force. 

 

It has already been mentioned that beams in PT connections are subjected into 

compressive forces. The main scope of this chapter is to study the cyclic behaviour 

of a steel beam section subjected into compressive force. For this reason, test results 

from a specimen in Newell and Uang (2006) and Elkady et al (2014) representing 

typical first-story interior column have been collected, and FEM has been 

developed. The column has a length of 4600mm, which represents typical first story 

height in steel MRFs. Fully fixed boundary conditions are applied at the base of the 

column (i.e. fixed support), while partially fixed boundary conditions with flexible 

rotational stiffness are applied at the top of the column (i.e., flexible support) in 

order to consider the flexibility of the beam-to-column connection at the same 

location. The column cross section is W14x176 of steel grade A992. The material 

properties are for the top flange (fy: 409MPa, fu: 555MPa), for the bottom flange (fy: 

389MPa, fu: 520MPa), and for the web (fy: 402MPa, fu: 550MPa).  The column was 

modelled using C3D8R solid elements apart from 600mm over its fixed base and 

600mm under the top flexible support, that were modelled using solid elements with 

incompatible modes C3D8I. The mesh was refined in regions where severe plastic 

deformations or buckling phenomena were expected to occur (600 mm over the 

fixed base and 600mm under the flexible support). In these parts there are 50 

elements along the length of the beam part both in the beam web and flange. There 

are 10 elements along the flanges length and 12 elements along the beam web 

length. Also there are 4 elements along the thickness of the flanges and the web. A 

coarser mesh was used for regions that were expected to remain essentially elastic 

(the middle part of the column between the two refined meshed parts). At this part 

there are elements of approximate size equal to 50mm. Figure 3.14 shows the mesh 

of model for the W14x176.  
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Figure 3.14 Mesh configuration and vertical springs at the top surface of the model 

for the W14x176 specimen 

 

An elasto-plastic law with kinematic hardening rule was specified for the steel 

material. The partially fixed conditions at the column‟s top surface were modelled 

by defining vertical springs at the column‟s top surface (shown in figure 3.14). A 

multi-point beam type constrain as been defined at the top surface of the beam. The 

control point of this constrain is a point along the top surface and slave nodes are all 

the nodes of this surface. The horizontal load was applied as an imposed 

displacement at the control point of the top surface. This configuration allows to the 

column to rotate with a certain rotational stiffness developed by vertical springs at 

the top surface. In order to capture local buckling phenomena, geometrical 

imperfections have been inserted into the analysis as described in section 3.2. The 
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loading protocol is described in Newell and Uang (2006), where for the application 

of the axial force a bilinear “drift-axial force” diagram has been adopted. The 

inclination of the “drift - axial force” diagram has a constant value until 0.3% drift, 

and after that is reduced by 97%. The axial force equals to 35% of the cross section 

yielding axial force (Py) at 0.6% drift. The axial force P is added to or subscribed 

from the gravity force, which is applied on its own at the first step. The axial force is 

applied at each analysis step as a vertical imposed displacement at the top of 

column. This imposed displacement comes through division of the axial force by the 

column‟s axial stiffness. 

 

Figure 3.15 shows the drift– moment curve for the W14x176 beam under cyclic 

loading. It‟s observed that the FEM modelling is able to capture the stiffness and 

strength deterioration due to local buckling phenomena with sufficient accuracy at 

similar drifts with the experiment. Figure 3.16 shows the failure mode observed in 

Abaqus and the experiment of Newell and Uang (2006) for the W14x176 beam 

under cyclic loading. The failure mode in Abaqus coincides with the failure mode 

observed in the experiment.  

 

 

Figure 3.15 Experimental against tests results under cyclic loading for W14x176 
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Figure 3.16 Failure mode of W14x176 under cyclic loading in (a) Abaqus and (b) 

experiment of (Newell and Uang 2006) 
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3.4 FEM models for PT connections 

 

3.4.1 Experimental setup of PT connection 

 

A steel PT connection is developed and experimentally validated in (Kim and 

Christopoulos 2008). The connection incorporates bolt-stressed FEDs consisting of 

stainless steel interfaces and new non asbestos (NAO) break lining pads as the 

energy dissipating mechanism. Figure 2.27 shows details of the FEDs. PT high 

strength steel bars are running parallel to the beam to provide self-centering 

capability to the system. Figure 3.17 shows a photo of the experimental setup in 

(Kim and Christopoulos 2008). Results from cyclic tests on the PT connection are 

presented in (Kim and Christopoulos 2008). The tests have been developed up to 

high drifts, where local buckling on the beam has been occurred.  

 

The column and beams were W360x509 and W610x113 sections, respectively. Both 

members were 350W steel with nominal yield strength of 350MPa. Steel plates with 

12mm thickness and nominal yield strength of 550MPa, were welded to the beam 

flanges and ended at 835mm from the column flange. Continuity plates, 20mm thick 

were welded to the inside of the column flanges and web to provide appropriate 

force flow from the beam to the column. Contact plates, 25mm thick (Grade 550) 

were placed between the beam and the column flange. Longitudinal stiffeners along 

the beam web have been inserted to prevent local buckling on the web. Roller 

supports have been inserted along the beams. Six 60-mm-diameter holes were 

introduced in the column flanges to accommodate the PT bars and the vertical 

movements expected during testing. Six 32-mm-diameter Dywidag high-strength 

bars with a nominal ultimate strength of 1,030 MPa were selected to provide the 

post-tensioning. Figure 3.18 shows a drawing depicting the experimental setup and 

Figure 2.19 shows the details of the PT connection. The initial tension of each PT 

bar was 200kN, which corresponded to 24% of their ultimate strength. The total 

friction developed by each FED was about 280kN. The loading protocol of AISC 

(2005) was applied on the specimen and the results are presented in (Kim and 

Christopoulos 2008). 
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Figure 3.17 Photo from the experimental setup (Kim and Christopoulos 2008) 

 

 

Figure 3.18 Experimental setup developed (Kim and Christopoulos 2008) 
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3.4.2 FEM in Abaqus of PT connection 

 

FEM models have been developed in Abaqus, simulating the aforementioned 

experimental setup. Figure 3.19 shows the model in Abaqus for the PT connection. 

The column, the longitudinal stiffeners, the anchor block the continuity plates and 

the beam apart from the areas where local buckling phenomena are expected to 

occur are modeled using C3D8R solid elements. The part of the beams after beam 

reinforcing plates, where local buckling is expected to occur (300mm along the 

beam axis) are modeled using solid elements with incompatible modes C3D8I and 

with a refined mesh. There are 16 elements along the length of the beam web, and 4 

elements along the flanges length. There is one element along the thickness of the 

web and 2 elements along the thickness of the flanges and the reinforcing plates. The 

approximate global size of the beams elements is 75mm. The approximate global 

size of the washers elements is 15mm. The approximate global size of the column‟s 

elements is 50mm, while there are 12 elements along the perimeter of the holes. 

Anchor blocks have elements of 25mm global size. The web reinforcing plates have 

elements of 30mm global size. Figure 3.20 shows the mesh of the model for the PT 

connection.  

 

 

Figure 3.19 FEM of the PT connection developed in Kim and Christopoulos (2008) 
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Figure 3.20 Mesh of the model for the PT connection developed in Kim and 

Christopoulos (2008) 

 

 

An elasto-plastic law with isotropic hardening rule was specified for the steel 

material. PT bars were modeled using truss elements. The post tensioning was 

modeled using bolt load on the PT bars and by applying a certain shortening (Adjust 

length) on the truss elements in the first step of the analysis. The start and end points 

of the PT bars trusses are connected with the surfaces of the washers which are 

attached on the anchor blocks using tie constraints. The washers are connected to the 

anchor blocks using surface to surface contact with “hard contact” normal, and with 

friction coefficient 0.6 tangential behaviors. The beams are connected to the anchor 

blocks using tie constraints. Also, the beams are connected to the column using 

surface to surface contact with “hard contact” normal, and with friction coefficient 

0.6 tangential behaviors. The FEDs were modeled using connector elements between 

the beams flanges and the column, where a perfectly plastic law was specified for 

the connector material. For the modelling of the column‟s support a beam element 

has been inserted under the column and has been restrained on the base in all the 

translational degrees of freedom but is free to rotate. The top point of the beam 
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element is constrained with the column‟s base using kinematic coupling constraint in 

all the degrees of freedom. The rollers supports on the beams have been modeled by 

applying restrains on the vertical translational degree of freedom in certain areas of 

the beams flanges.       

 

3.5 Models of PT connections in OpenSees 

 

3.5.1 Model of PT connection with WHPs in OpenSees 

 

A model for the PT connection with WHPs and the associated beams and columns 

was developed in OpenSees. Figure 3.24 shows the proposed model, which was 

calibrated against experimental results and found capable to accurately simulate the 

PT connection behaviour. The columns and the reinforced lengths of the beams are 

modelled as nonlinear force-based beam-column fiber elements. Fibers have bilinear 

elastoplastic stress-strain behaviour (Steel01 in OpenSees) with post-yield stiffness 

ratio of 0.003. The assumption of stable hysteresis for the columns is fully justified 

as heavy columns with webs and flanges of low slenderness (e.g. compact HEB 

sections) do not show cyclic deterioration even under large drifts (Newell and Uang 

2008). Beam local buckling is expected just after the end of the reinforcing plates.  

 

Stiffness and strength deterioration due to beam local buckling just after the end of 

the beam flange reinforcing plates is captured using the Modified Ibarra-Medina-

Krawinkler Deterioration Model (Lignos and Krawinkler 2007) with Bilinear 

Hysteretic Response (Bilin in OpenSees). This model provides the moment-rotation 

hysteresis of steel beams and has been calibrated with data from more than 350 

experiments on steel beam-to-column connections. Figures 3.21-22 show the 

monotonic backbone curve and the cyclic curve of the model in (Lignos and 

Krawinkler 2007). Three strength parameters (My: Effective yield moment; Mcap: 

capping moment strength; and residual moment Mr=κ∙My) and four deformation 

parameters (θy: yield rotation; θp: pre-capping plastic rotation for monotonic loading; 

θpc: post-capping plastic rotation; and θu: ultimate rotation capacity) define the 

monotonic backbone curve (see figure 3.21). Regression formulas are provided in 

(Lignos and Krawinkler 2007) to estimate the moment rotation deterioration 

parameters in different connection types. So, the unreinfo1rced lengths of the beams 
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are modelled as elastic elements with zero length rotational springs at their ends that 

exhibit the model of (Lignos and Krawinkler 2007). This modelling procedure for 

the beams is shown in shown in section 5.3 (See figure 5.3).    

 

 

Figure 3.21 Monotonic backbone curve of model in Lignos and Krawinkler (2007)   
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Figure 3.22 Cyclic curve of model in Lignos and Krawinkler (2007)   

 

In this section, the unreinforced lengths of the beams are modelled using force-based 

beam-column fiber elements with end hinges (Scott and Fenves 2006). And the 

model in (Lignos and Krawinkler 2007) is used for the stress-strain cyclic behavior 

of the fibers using appropriate calibration (See figure 3.24). So, the stiffness and 

strength deterioration due to beam local buckling is captured. This modelling 

approach results in smoother hysteretic curves for flexural members similar to that 

observed in experiments (Hamidia et al 2014). For this higher smoothness in the 

hysteresis, this modelling approach is also preferable for analysis up to collapse 

because non-smooth hysteresis results in convergence problems.  The same 

modelling approach is used in section 6.3 (see figure 6.2). 

 

Rigid elastic beam-column elements are used to model the beam-column interface. 

To capture the gap opening mechanism in the beam-column interface, three zero-

length contact spring elements are placed at equal spaces along the beam flange 

thickness. These contact springs have an elastic compression-no tension force-

displacement behaviour (ENT material in OpenSees) with compression stiffness 

(Ecomp) of 20 times the axial stiffness of the beam. Larger values for this stiffness 

were found to produce practically the same results but with more iterations to 
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achieve convergence in nonlinear analysis. Figure 3.23 shows the force-

displacement curve of the model (ENT material in OpenSees). 

 

 

Figure 3.23 Force displacement curve of the model (ENT material in OpenSees) 

 

Two zero-length hysteretic springs are placed at the exact locations of WHPs along 

the depth of the beam web. These springs are associated with a smooth Giuffre-

Menegotto-Pinto model with isotropic hardening (Steel 02 material in OpenSees) 

(See model hysteresis in figure 3.27) as recent experimental studies show that WHPs 

have stable hysteresis and do not fracture under collapse loading protocols 

associated with storey drifts of more than 10% (Vasdravellis et al 2015).  

 

Panel zones are modelled using the Scissors model (Charney and Downs 2004) 

which introduces four additional rigid elastic beam-column elements and two nodes 

in the panel zone centre connected with two zero-length rotational springs. These 

springs have bilinear elastoplastic hysteresis (Steel01 material in OpenSees) with 

properties that reflect the contribution of the column web (including doupler plates) 

and the column flanges in the force-deformation panel zone shear behaviour. PT 

bars were modelled using a truss element running parallel to beam center-line axis 

and connected to the exterior nodes of the panel zones of the exterior columns of the 

SC-MRF. The truss element has a cross-section area equal to APT and material with 

bilinear elastoplastic hysteresis. To account for post-tensioning, an initial strain 

equal to T0/(APT∙EPT) is imposed to the truss element, where T0 is the initial PT force 

and EPT is the modulus of elasticity of the PT bar material. Post-tensioning results in 
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axial shortening of beams and deflections of columns which decrease the PT force. 

To avoid this decrease, the initial strain in the truss element is increased to ensure 

that the post-tensioning force in the PT bars is equal to T0 after beam shortening. 

 

 

Figure 3.24 Model for a PT connection with WHPs and associated columns and 

beam 

 

3.5.2 Assessment of OpenSees model for WHPs 

 

WHPs are designed to have an hourglass shape to provide enhanced energy 

dissipation and fracture capacity (Kobori et al. 1992). Figure 3.25 shows the 

assumed static system for half a WHP. The yield strength, VWHP, of half a WHP is 

controlled either by the plastic moment of resistance, Mpl, or the plastic shear 

resistance, Vpl EC3 (Eurocode 3 2010): 

 

𝑀pl =
𝐷e
3

6
𝑓y  

(3.1) 

𝑉pl = 0.9
𝜋𝐷i

2

4
𝑓y/ 3 

(3.2) 
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Where fy is the yield strength of the WHP material, De is the equivalent external 

diameter (to be defined later), and Di is the diameter at the mid-length of half a 

WHP, as indicated in Figure 3.25. The factor 0.9 in equation 2 accounts for the 

relation between the average shear stress and the maximum shear stress in a circular 

section. The internal WHP part is connected to the external WHP part using a radius 

of 5 mm to avoid stress concentration and early fracture. It is assumed that De, which 

controls the WHP bending resistance, is equal to the diameter at the start of the 

round-shaped part with radius r. Plastic analysis assumes that the plastic moment of 

resistance should be reached at the ends before the plastic shear resistance is reached 

at the mid-length of half a WHP. By equilibrium, the aforementioned condition can 

be written as: 

 

𝑉WHP =
2𝑀Pl

𝐿WHP
< 𝑉pl  

(3.3) 

 

Where, LWHP is the clear length of the bending parts of half a WHP. The yield force 

of a WHP, Fy,WHP, is then calculated as: 

 

𝐹y,WHP = 2𝑉WHP  (3.4) 

       

Based on the virtual work method along with analytical integration, the elastic 

stiffness Kfe of a WHP is calculated as: 

 

𝐾fe = 2
9𝜋𝐷e

3𝐷i𝐸𝐺

(40𝐸𝐷e2𝐿WHP + 48𝐺𝐿WHP
3 )

 
(3.5) 

 

Where, E is the modulus of elasticity and G the shear modulus of the WHPs 

material.  
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Figure 3.25 Geometry of half a WHP, assumed static system, and internal forces 

diagrams. 

 

The Steel02 OpenSees hysteretic model used for the WHP force-displacement 

behaviour was calibrated against experimental results from WHPs component tests 

previously conducted by (Vasdravellis et al 2013a). Figure 3.26 shows the 

experimental setup for a pair of WHPs with the following properties.  De=20 mm, 

Di=14 mm, LWHP=40 mm, fy=560 MPa and E=200 GPa. Figure 3.27 shows a 

comparison between the experimental hysteresis and the Steel02 hysteretic model 

and confirms a good agreement. The Steel02 model has a yield strength equal to 

2∙Fy,WHP; initial elastic stiffness equal to 0.6∙(2∙Kfe); strain hardening ratio equal to 

0.01; parameters controlling the transition from the elastic to inelastic regions of the 

hysteresis Ro=30, CR1=0.925 and CR2=0.15; and isotropic hardening parameters  

a1=0.025, a2=2.5, a3=0.0 and a4=1.0. The factor '2' for the calculation of the yield 

strength and stiffness reflects that a zero-length spring represents a pair of WHPs.  

 

 

VWHP 

Di De 

[V] 

[M] 

δ 

LWHP 
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Figure 3.26 Setup for WHP component tests 

 

 

 

Figure 3.27 Comparison of experimental hysteresis and OpenSees hysteretic model 

of WHPs 
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3.5.3 Assessment of OpenSees model for PT connection with WHPs 

 

The accuracy of the model for the PT connection with WHPs and the associated 

beams and columns (discussed in Section 3.5.1) was assessed using results from 

large-scale experimental tests previously conducted by Vasdravellis et al (2013a). 

Figure 3.28 shows the experimental test setup. A strong 310UC158 column was used 

along with two additional steel members welded to the column to form a truss 

system which increases the horizontal stiffness of the test setup. The whole system 

was bolted on the strong floor. The beam had a 250UB37 cross-section. The length 

of the beam flange reinforcing plates was 0.7 m. The total post-tensioning force was 

504 kN.  The displacement history was applied vertically by a hydraulic actuator 

positioned at a distance of 1800mm from the inner face of the column. The beam 

sections, column sections and beam flange reinforcing plates were made of steel 

with yield strength equal to 300 MPa. The WHPs were made of steel with yield 

strength equal to 560 MPa. The material of the PT bars had nominal yield strength 

equal to 930 MPa, tensile stress 1050 MPa and elongation capacity 6%, according to 

the specifications of the supplier. The AISC (2005) loading protocol was used. This 

protocol consisted of three initial sets of six cycles at 6.75 mm, 9 mm, and 13.5 mm 

displacements, four subsequent cycles at 18 mm, and six sets of two cycles at 27, 36, 

and 54 mm. These displacements correspond to drifts equal to 0.00375, 0.005, 

0.0075, 0.01, 0.015, 0.02, and 0.03. Figure 3.29 shows the experimental and 

analytical hysteresis for the PT connection and confirms a good agreement between 

the proposed model and the test results. 
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Figure 3.28 Setup for tests of PT connection with WHPs 

 

 

Figure 3.29 Comparison of experimental hysteresis and OpenSees model 

 

3.6 Assessment of FEM and OpenSees model for PT connections under high drifts 

 

In this chapter the FEM and the OpenSees model, will be compared against 

experiments conducted in Kim and Christopoulos (2008). The FEM is the one 

discussed in section 3.4.2. The OpenSees model has been developed following the 

procedure discussed in section 3.5.1. In this OpenSees model two zero-length 

hysteretic springs are placed at the exact locations of FEDs along the depth of the 

beam web. These springs have bilinear elastoplastic stress-strain behavior (Steel01 

in OpenSees) instead of (Steel02 in OpenSees) used for WHPs. Very high elastic 
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stiffness and negligible post yield stiffness is use in (Steel01 in OpenSees) to 

provide perfectly plastic behavior.  

 

Figure 3.30 shows the drift – force curve for the PT connection under monotonic 

loading. It is observed that both the FEM in Abaqus and the modelling in OpenSees 

are able to capture the deterioration due to local buckling phenomena with sufficient 

accuracy at similar drifts with the experiment. 

 

 

Figure 3.30 Experimental against modelling results under monotonic loading 

 

Figure 3.31 shows the failure mode observed in Abaqus for the PT connection under 

cyclic loading. Figure 3.32 shows the failure mode observed in the experiment under 

cyclic loading, which coincides with the failure mode observed in Abaqus. 
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Figure 3.31 Failure mode of PT connection under monotonic loading in Abaqus 

 

 

Figure 3.32 Experimental failure mode of PT connection under monotonic loading 

(Kim and Christopoulos 2008) 

 

 

Beam flange local buckling 

Beam web local buckling 
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Figure 3.33 shows the drift – force curve, following (AISC 2005) for the PT 

connection under cyclic loading up to a drift equal to 3.5%. A good agreement 

between the FEM in Abaqus, the model in OpenSees and the tests results is 

confirmed. 

 

 

Figure 3.33 FEM & OpenSees model against experimental results under cyclic 

loading 

 

Figure 3.34 shows the drift – force curve for the PT connection under cyclic loading 

for drift equal to 2%, 4%, 6% and 8%. It is shown that the OpenSees model is 

capable to capture the stiffness and strength deterioration due to local buckling 

phenomena with sufficient accuracy at similar drifts with the FEM. 
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Figure 3.34 FEM & OpenSees model under high drifts cyclic loading 
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3.7 Summary 

 

In this chapter, FEM of steel beams with or without axial force were developed in 

Abaqus and subjected into cyclic and monotonic loading. The FEM were compared 

against experimental results, and the comparison showed that the recommended 

modelling procedure is capable to simulate the beam local buckling. A FEM of a PT 

connection was developed according to the aforementioned procedure in Abaqus and 

validated against experimental results. This FEM was subjected into monotonic and 

cyclic loading under high drifts in order to develop beam flange and web local 

buckling. A modelling procedure for PT connections in OpenSees has been 

developed and compared against FEM and experimental results. The comparison 

showed that the PT connection model in OpenSees is able to accurately capture the 

connection behaviour and the stiffness and strength deterioration because of local 

buckling under high drifts. So the proposed model can be used in the modelling of 

SC-MRFs up to collapse.  
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4 Seismic design procedure for SC-MRFs with viscous dampers 

 

4.1 Introduction 

 

In this chapter a seismic design and assessment procedure of steel SC-MRFs with 

viscous dampers within the framework of EC8 (Eurocode 8 2013) is developed. 

Research towards the standardization of steel SC-MRFs within the framework of 

EC8 (Eurocode 8 2013) is missing. Moreover, the effectiveness of the seismic 

design strategy that combines steel SC-MRFs with viscous dampers to 

simultaneously control peak story drifts and residual story drifts has not been 

assessed. In this chapter the SC-MRFs are using the recently developed PT 

connection with WHPs (Vasdravellis et al 2013a,b; Dimopoulos et al 2013). 

Performance levels are defined with respect to drifts, residual drifts and limit states 

in the PT connections. A preliminary pushover analysis is conducted at the early 

phase of the design process to estimate rotations and axial forces in PT connections 

instead of using approximate formulae. 

 

4.2 SC-MRF using PT connections with WHPs 

 

4.2.1 Structural details 

 

Figure 4.1 shows a SC-MRF using PT connections with WHPs, and figure 4.2 shows 

an exterior PT connection with WHPs (Vasdravellis et al 2013a). Two high strength 

steel bars located at the mid depth of the beam, one at each side of the beam web, 

pass through holes drilled on the column flanges. The bars are post-tensioned and 

anchored to the exterior columns. WHPs are inserted in aligned holes on the beam 

web and on supporting plates welded to the column flanges. Energy is dissipated 

through inelastic bending of the WHPs that have an optimized hourglass shape 

(Figure 4.3) with enhanced fracture capacity (Vasdravellis et al 2015). The beam 

web and the beam flanges are reinforced with steel plates. The panel zone is 

strengthened with doubler and continuity plates. A fin plate welded on the column 

flange and bolted on the beam web is used for easy erection and resistance against 

gravity loads before post-tensioning. Slotted holes on the beam web ensure 

negligible influence of the fin plate on the PT connection behaviour.  



121 
 

 

Figure 4.1 SC-MRF 

 

 

Figure 4.2 Exterior PT connections with WHPs 
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Figure 4.3 WHP geometry and assumed static system 

 

A discontinuous steel-concrete composite slab (details shown in figures 4.4-5) is 

used to avoid damage in the slab as the gaps in the PT connections open and close 

(see figures 4.6-7), i.e. similar to the solutions proposed in (Chou et al 2009, Kim 

and Christopoulos 2008a,b Kim and Christopoulos 2009a). Shear studs for 

composite action are welded only on the secondary beams. The slab discontinuity is 

achieved by using two angle sections sliding on the beam framing perpendicularly to 

the SC-MRF columns. The slab reinforcing mesh is discontinued at the level of the 

angles. The secondary beams and the slab are placed after post-tensioning. The slab 

diaphragm eliminates beam shortening, and so, the internal axial forces in the beams 

remain constant and equal to those due to initial post-tensioning of the PT bars. Any 

further increase in the PT bars forces due to elongation under gap opening is 

transferred to the beam-column interfaces by the slab diaphragm. 
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Figure 4.4 Discontinuous steel-concrete composite slab details 

 

 

Figure 4.5 Discontinuous steel-concrete composite slab details (section B-B) 

 

 

Figure 4.6 Free body diagram of an external PT connection 
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Figure 4.7 SC-MRF expansion and horizontal forces equilibrium 

 

4.2.2 PT connection behavior      

 

Figure 4.6 shows the free body diagram of an external PT connection where d1u and 

d1l are the distances of the upper and lower WHPs from the center of rotation that is 

assumed to be at the inner edge of the beam flange reinforcing plates; d2 is the 

distance of the PT bars from the center of rotation; T is the total force in both PT 

bars; FWHP,u and FWHP,l are the forces in the upper and lower WHPs; CF is the 

compressive force in the beam-column interface; VC1u and VC1l are the shear forces 

in the upper and lower column, M is the PT connection moment, V is the beam shear 

force; and N is the horizontal clamping force that is transferred to the beam-column 

interface through the slab diaphragm and the beam. Figure 4.7 shows the SC-MRF 

expansion due to rotations θ in the PT connections. N is given by  

 

                                                                                               (4.1.a) 

 

for the external connection of figure 4.6 and by 

 

                                                                         (4.1.b) 

 

for an internal connection of figure 4.7 where VCiu and VCil are the shear forces 

developed in all the columns i and FDj are the slab inertia forces transferred (by the 

secondary beams) to the mid-depth of all the beams j up to the point of the examined 

internal connection. Equations (4.1.a) and (4.1.b) are derived by horizontal 

equilibrium of the free body diagrams of figures 4.6 and 4.7. 

 

C1u C1lN T V V  

Ciu Cil Dj( )N T V V F    
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Figure 4.8 shows the theoretical cyclic M-θ behaviour of the PT connection with 

WHPs. M is given by  

 

                                                                                                    (4.2) 

 

where MN is the moment contribution from N (shown in figure 4.9) and MWHP is the 

moment contribution from the WHPs (shown in figure 4.10). Similar expressions 

can be found in the literature (Vasdravellis et al 2013a, Garlock et al 2007, Kim and 

Christopoulos 2008a, Kim and Christopoulos 2009a). After decompression of the PT 

connection (Point 1 in figure 4.8), gap opens and the behaviour becomes nonlinear 

elastic with rotational stiffness S1. At point 2, the upper WHPs yield and M 

continues to increase with slope S2. At point 3, the lower WHPs yield and M 

continues to increase with slope S3. When loading is reversed, the connection begins 

to unload until the gap closes. Equations to calculate SWHP,1 to SWHP,3, SN, S1 to S3 and 

θ2 to θ3 are provided in section 4.2.3.   

  

The MWHP-θ behaviour is multi-linear elastoplastic (see Figure 4.10). When loading 

is reversed and until the gap closes, the PT bars unload with their elastic stiffness. 

This explains why the MN-θ curve fully unloads with its initial stiffness.  

 

 

Figure 4.8 Theoretical cyclic behaviour of the PT connection with WHPs 

N WHPM M M 
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Figure 4.9 Moment contribution from N 

 

 

Figure 4.10 Moment contribution from the WHPs 

 

4.2.3 Design procedure for the PT connection  

      

Given the rotations of the PT connection under the DBE and MCE (i.e. θDBE and 

θMCE) and the corresponding forces VCiu, VCil and FDj from a preliminary pushover 

analysis of the SC-MRF that is discussed in Section 4.3, the design procedure 
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involves sizing of the connection components (e.g. PT bars, WHPs, fuse, reinforcing 

plates) to achieve a target connection performance, and has the following steps: 

      

Step (1): Calculate the initial post-tensioning force. Select a value for the ratio 

MIGO/Mpl,b where MIGO is the moment at point 2 in figure 4.8 and Mpl,b is the plastic 

moment of resistance of the beam. MIGO/Mpl,b should be less than one for the SC-

MRF to have base shear strength comparable to that of conventional MRFs. Select a 

value for the ratio Md/MIGO where Md is the moment contribution from the total 

initial post-tensioning force T0 in both PT bars. In past research, Md is referred as 

decompression moment (Garlock et al 2007, Kim and Christopoulos 2008a, Kim and 

Christopoulos 2009a). Md/MIGO should be larger than 0.5 to approximately achieve 

self-centering behaviour of the PT connection (Rojas et al 2005, Garlock et al 2007) 

(the effectiveness of the selected Md/MIGO value is accurately evaluated in design 

Step 4). T0 is given by 

 

                                                                                                                 (4.3) 

 

Step (2): Design the PT bars. Assume an initial PT bar diameter dPT and calculate 

the total yield force of both PT bars, Ty, by 

 

                                                                                              (4.4) 

 

where fy,PT is the yield strength of the PT bar material. Calculate T by 

 

                                                                                             (4.5) 

 

where KPT is the total axial stiffness of both PT bars, calculated by 

 

                                                                                       (4.6) 
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where EPT is the Young‟s moduli, APT is the total cross-section areas, and LPT is the 

total length of the PT bars. Δgap,i is the gap opening at the mid-depth of the beam of a 

connection i, n is the total number of connections per floor, and Δgap is the gap 

opening of the specific connection to be designed. The gap opening of any 

connection can be calculated as 

 

                                                                                                         (4.7) 

 

Select the safety factor against PT bar yielding γPT
 
(recommendations are given in 

chapter 5) and check if Ty/T(γPT·θMCE)≥1.0. If Ty/T(γPT·θMCE)<1.0, design Step 2 

should be repeated with a larger dPT.  

 

The difference of equation (4.5) with those proposed in (Garlock et al 2007, Kim 

and Christopoulos 2009b) is that beam shortening is not considered as this is 

eliminated by the slab diaphragm (see previous discussion in section 4.2.1). 

 

Step (3): Design the WHPs. Select the number of upper and lower WHPs, nWHPs (=2 

in figure 4.2), and calculate the required yield force of one WHP, FWHP,y, from 

 

                                                                              (4.8) 

 

by substituting Md for MN(θ2) as MN(θ2) is still unknown. The required plastic 

moment of resistance of the WHPs cross-section, Mpl,WHP is calculated by  

 

                                                                                  (4.9) 

 

where LWHP is the length of half a WHP (see figure 4.3). The external, De, and 

internal, Di, diameters of the WHP (Figure 4.3) are designed by using 

 

                                                                                              (4.10) 
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                                                                                            (4.11) 

 

where fy,WHP is the yield strength of the WHP material. The elastic stiffness of a 

WHP is calculated from (Vasdravellis et al 2013a) 

 

                                                     (4.12) 

 

where EWHP is the Young's modulus and GWHP the shear modulus of the WHP 

material. θ2 and θ3 (Figure 4.10) are calculated by  

 

                                                                                         (4.13) 

 

                                                                                          (4.14) 

 

With θ2 known, MN(θ2) is calculated by 

    

                                                                     (4.15) 

 

where SF is the additional rotational stiffness of the frame due to the columns 

restraint that opposes gap opening. SF is calculated by 

 

                                                                                         (4.16) 

 

where (N(θ2)-T(θ2)) is calculated from equation (4.1) by using values for VCil, VCiu 

and FDj from a preliminary pushover analysis (discussed in Section 4.3). The new 

value of MN(θ2) is used in equation. (4.8) and the WHP design process (Equations 

(4.8)-(4.16)) is repeated.  
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(Step 4): Self-centering capability. To check whether the PT connection provides 

self-centering behaviour up to a desired rotation θSC, the following relation should be 

satisfied: 

 

                                                                         (4.17) 

 

where S1 to S3 (see figure 4.8) are given by 

 

                                      (4.18a) 

 

                             (4.18b) 

 

                                     (4.18c) 

 

and Kfp is the post-yield stiffness of a WHP that is assumed equal to 2% the initial 

stiffness. If equation (4.17) is not satisfied, return to design Step 1 and repeat the 

design procedure with a higher Md/MIGO ratio. Equation (4.17) was derived by 

following the procedure described in (Christopoulos et al 2002). 

  

(Step 5): Design the reinforcing plates. Following the design procedure in (Garlock 

et al 2007), the length, Lrp, and the area, Arp, of the beam flange reinforcing plate 

(Figure 4.2) are designed to control beam flange yielding at θ=θDBE. Lrp is given by 

 

                                                                                                (4.19) 

 

where Lb is the beam clear length and Mrp is the moment at the end of the reinforcing 

plate. Mrp is calculated as a function of the beam internal axial force and a 

predefined target value of εc/εy where εc the maximum compressive strain in the 

beam flange at the end of the reinforcing plate and εy the yield strain of the beam 

material (Garlock et al 2007). As was discussed, the beam internal axial force 

remains constant due to the slab diaphragm and can be conservatively assumed equal 
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to T0 without considering the column restraint. M depends on the rotation θ, i.e. for 

θ2<θ<θ3    

  

        (4.20a) 

 

and for θ≥θ3 

(4.20b) 

 

The minimum Arp to avoid beam flange yielding at the beam-column interface is 

calculated by 

  

                                                                                             (4.21) 

 

where fy,rp is the yield strength of the reinforcing plate material and tf and bf are the 

thickness and width of the beam flange, respectively. For θ2<θ<θ3, CF (see figure 

4.8) is obtained by 

         

                                  (4.22a)  

  

and for θ>θ3 by 

 

         (4.22b) 

 

Equations (4.19) – (4.22b) were derived following the design methodology 

described in (Garlock et al 2007). The beam web reinforcing plates and the 

supporting plates are designed to avoid yielding under the peak WHP bearing forces 

following the design procedure in (Vasdravellis et al 2015). The panel zones are 

designed according to EC8 (Eurocode 8 2013) and EC3 (Eurocode 3 2010) and are 

reinforced with doubler and continuity plates. 
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4.3 Performance-based seismic design procedure 

 

The seismic design procedure for steel SC-MRFs with or without viscous dampers is 

based on the force based design method (e.g. EC8 (Eurocode 8 2013)) using 

multiple limit states. SC-MRFs reduce the structural damage, by avoiding the 

development of plastic deformations on the beams, while the use of viscous dampers 

results in reduce of buildings displacements and accelerations. So this way we 

achieve reduce in the damage of structural, non structural elements and contents. 

The proposed design procedure ensures a pre-defined structural and non-structural 

target building performance, and has the following steps:  

 

(Step 1): Define target building performance. Structural limit states include limit 

states of the PT connections, yielding and plastic hinge formation at the column 

bases, and limit values for the maximum residual storey drift, θs,res. Limit states of 

the PT connections include WHPs yielding (controlled by MIGO/Mpl,b), PT bar 

yielding (controlled by γPT), beam flange yielding at the end of the reinforcing plate 

(controlled by εc/εy), beam flange yielding at the beam-column interface (controlled 

by equation (4.21)), and self-centering behaviour (controlled by Md/MIGO and 

equation (4.17)). Non-structural limit states include limit values for the peak storey 

drift, θs,max. For example, the following target building performance can be defined 

for a SC-MRF with viscous dampers and PT connections with WHPs by associating 

limit states with seismic intensities: Operational under the FOE: no yielding in 

beams and column bases; θs,max lower than the 'damage limitation' values of EC8; 

and PT connection decompression and modest yielding in WHPs. Rapid Return to 

Occupancy under the DBE: elimination of θs,res; modest or no yielding in the beam 

flanges; modest or no yielding in base columns; low θs,max to ensure rapid repair of 

damaged drift-sensitive non-structural elements; and yielding and rapid replacement 

of WHPs. Life Safety and Reparability under the MCE: no beam plastic hinge 

formation; modest base column plastic hinge rotations; and θs,res lower than the 

global sway imperfections defined in EC3 (Eurocode 3 2010). 

 

(Step 2): Select supplemental damping. The supplemental damping ratio ξs is added 

to the inherent damping ratio to provide a total damping ratio ξt which is then used to 

calculate the damping reduction factor B (Whittaker et al 2003) or η in EC8 
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(Eurocode 8 2013). This factor is used to scale down the elastic design spectrum of 

EC8. 

 

(Step 3): Design beams and columns. The beam and column cross-sections are sized 

by designing the building as a conventional steel MRF on the basis of the modal 

response spectrum analysis (e.g. EC8 Eurocode 8 2013) and with respect to the 

highly damped spectrum of Step 2. A strength-based design for the DBE is first 

performed by reducing the highly damped spectrum with the behaviour factor q (i.e., 

6.5 in EC8 (Eurocode 8 2013) for high ductility class MRFs). θs,max is then estimated 

on the basis of the equal displacement rule of EC8 (Eurocode 8 2013) to check the 

design against the FOE and DBE θs,max criteria of Step 1. The DBE ultimate limit 

state of EC8 (Eurocode 8 2013) is satisfied by enforcing the capacity design rule and 

the local ductility details for steel MRFs, and by taking into account second-order 

effects (P-Δ) through the storey drift sensitivity coefficient (Eurocode 8 2013).  

 

(Step 4): Design fluid viscous dampers. Given ξs from Step 2 and the fundamental 

period of vibration T1 from Step 3, nonlinear viscous dampers are designed by using 

the formula (Whittaker et al 2003): 

 

                                                           (4.23)     

                                  

where j denotes a specific storey, α is the velocity exponent of the nonlinear viscous 

dampers, λj a dimensionless parameter that depends on α, fj the cosine of the angle of 

the damper centerline to the horizontal (e.g. fj=1.0 for horizontal damper placement), 

cj the damper constant, ur the amplitude of the roof displacement, mj the storey mass, 

and φj the modal coordinate of the first mode shape. Equation (4.23) assumes that 

viscous dampers are supported by braces stiff enough so that drift produces damper 

rather than brace deformation. Figures 4.11-12 show that dampers and supporting 

braces can be inserted in a gravity frame of the building. Equation (4.23) suggests 

that the required ξs can be provided by different combinations of cj. A recent work 

showed small differences in the seismic performance of steel MRFs with viscous 
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dampers designed for the same ξs yet different methods (two advanced based on 

numerical optimization and three simplified of distributing cj along the height of the 

building (Whittle et al 2012). Based on the latter finding and on recent research 

results presented in (Seo et al 2014), viscous dampers can be sized to satisfy a 

simple stiffness proportional distribution, i.e.  cj=εKj, where Kj is the horizontal 

storey stiffness of the SC-MRF and ε is a constant that is obtained by substituting 

cj=εKj into equation (4.23). The columns and braces of the gravity frame with 

dampers are designed to avoid buckling under the peak damper forces which are 

estimated using simplified procedures in (Whittaker et 2003). In case of large not 

practical cj values, Steps 2 to 4 should be repeated by selecting a lower ξs value in 

Step 2. 

 

 

Figure 4.11 Plan view of a prototype building with SC-MRFs and viscous dampers 
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Figure 4.12 Elevation view of a prototype building with SC-MRFs and viscous 

dampers 

 

(Step 5): Preliminary pushover analysis. A preliminary pushover analysis is 

performed using a simple model with nonlinear beam-column elements for the 

columns, elastic elements for the beams and nonlinear rotational springs at the ends 

of the beams to simulate the M-θ behaviour of the PT connections. The rotational 

springs should have a large initial stiffness (e.g. 60 times the beam flexural stiffness 

to provide stable and accurate results), a yield moment equal to MIGO calculated from 

an appropriate MIGO/Mpl,b value as explained in section 4.2.3, and post-yield stiffness 

equal to KPT∙d2
2
 where KPT is estimated from equation (4.6).  APT in equation (4.6) is 

calculated on the basis of an appropriate Md/MIGO value as explained in section 4.2.3. 

The required PT bar diameter can be estimated by assuming T0/Ty≈0.5, which 

approximately ensures that PT bars avoid yielding under large rotations in the PT 

connections (Rojas et al 2004). At each step of the pushover analysis, the connection 

rotations and member forces are post-processed. PT connection rotations and 

member forces of a SC-MRF can be also estimated using approximate formulae, 

such as those presented in (Garlock et al 2007), instead of using pushover analysis. 

However, pushover analysis is now available in most commercial software packages 

and is also promoted by EC8 (Eurocode 8 2013) as an alternative to linear analysis 

methods. In addition, the limit states of Step 1 associated with base column yielding 

and plastic hinge formation are checked. Modest yielding at column bases, i.e. low 

rotation ductility values (e.g. less than 2 (FEMA-273 1997)), under the DBE and 
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MCE along with full self-centering capability of the PT connections will ensure 

satisfaction of the θs,res criteria of Step 1.  

 

(Step 6): Design PT connections. Given the results of the preliminary pushover 

analysis of Step 5, PT connections are designed using the procedure in section 4.2.3 

to achieve the target connection performance defined in Step 1.  

 

4.4 Summary 

 

This chapter focused on seismic design and assessment of steel SC-MRFs with 

viscous dampers within the framework of EC8 (Eurocode 8 2013). SC-MRFs are 

using the recently developed PT connection with WHPs (Vasdravellis et al 2013a,b). 

Performance levels are defined with respect to drifts, residual drifts and limit states 

in the PT connections. A preliminary pushover analysis is conducted at the early 

phase of the design process to estimate rotations and axial forces in PT connections 

instead of using approximate formulae. Strict design criteria for the PT connections 

along with a low peak storey drift target value should be enforced to genuinely 

achieve seismic resilience, e.g. rapid return to building occupancy after the DBE. 
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5 Design modelling and seismic assessment of SC-MRFs with viscous 

dampers 

 

5.1 Introduction 

 

In this chapter a prototype building is designed as a SC-MRF with or without 

viscous dampers according to the design procedure presented in chapter 4. Different 

designs of the SC-MRF with viscous dampers are considered to investigate all 

possible scenarios, i.e. use of dampers to achieve drifts significantly lower than the 

EC8 (Eurocode 8 2013) drift limit; to significantly reduce steel weight without 

exceeding the EC8 (Eurocode 8 2013) drift limit; or to reduce steel weight and 

achieve drifts lower than the EC8 (Eurocode 8 2013) drift limit. Nonlinear dynamic 

analyses in OpenSees (Mazzoni et al 2006) using models capable of simulating all 

structural limit states up to collapse confirm the minimal-damage performance of the 

SC-MRFs. It is shown that the use of the preliminary pushover analysis makes the 

design procedure very accurate in predicting structural and non-structural limit 

states. Supplemental damping along with strict design criteria for the PT connections 

are found to significantly improve the seismic performance of the SC-MRFs  

 

5.2 SC-MRFs with viscous dampers 

 

5.2.1 Prototype building 

 

Figures 5.1-2 show the plan and elevation view respectively, of a 5-storey, 5-bay by 

3-bay prototype building having two identical SC-MRFs in the 'x' plan direction. 

Viscous dampers are inserted in the interior gravity frames (with pinned beam-

column and column base connections) that are coupled with the perimeter SC-MRFs 

through the floor diaphragm to form SC-MRFs with viscous dampers as shown in 

figure 5.2. This chapter focuses on one of the SC-MRFs with dampers. The building 

has ductile non-structural elements, and so, θs,max should be lower than 0.75% under 

the FOE according to EC8 (Eurocode 8 2013). The DBE is expressed by the Type 1 

elastic response spectrum of EC8 (Eurocode 8 2013) with peak ground acceleration 

equal to 0.35g and ground type B. The FOE has intensity of 40% (reduction factor 

v=0.4 in EC8 (Eurocode 8 2013)) the intensity of the DBE. The MCE has intensity 
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of 150% the intensity of the DBE (FEMA-368 2000a). The model used for the 

design is based on the centerline dimensions of the SC-MRF without accounting for 

the finite panel zone dimensions. A 'lean-on' column is included in the model to 

account for the P-Δ effects of the vertical loads acting on the gravity columns in the 

tributary plan area (half of the total plan area) assigned to the SC-MRF. A rigid 

diaphragm constraint is imposed at the nodes of each floor level for the design. The 

steel yield strength is equal to 355 MPa for the columns, 275 MPa for the beams, 

835 MPa for PT bars, 235 MPa for the WHPs, and 275 MPa for the beam 

reinforcing plates. Nonlinear viscous dampers are designed with a horizontal 

configuration (i.e. fj =1) and a=0.5. The inherent damping ratio of the SC-MRF is 

equal to 3%. 

  

 

Figure 5.1 Plan view of a prototype building with SC-MRFs and viscous dampers 
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Figure 5.2 Elevation view of a prototype building with SC-MRFs and viscous 

dampers 

5.2.2 Design cases 

 

Different versions of the SC-MRF with viscous dampers (see figure 5.2) are 

designed to investigate different design scenarios. The PT connections are designed 

for MIGO/Mpl,b=0.65 and Md/MIGO=0.6. A εc/εy value equal to 2 under the DBE was 

used for conventional performance SC-MRFs, i.e. according to the recommendation 

in Garlock et al (2007). To achieve structural and non-structural damage 

harmonization, stricter design criteria (εc/εy and γPT) are used for the PT connections 

of the SC-MRFs designed for lower θs,max. Table 5.1 provides a comparison of the 

steel weight, T, ξt and design criteria of the SC-MRFs which are discussed below: 
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Table 5.1 Data and design criteria for the SC-MRFs with viscous dampers 

SC-MRF 

Steel 

Weight
 a 

(kN) 

T  

(s.) 

ξt 

(%) 

θs,max 

FOE 

(%) 

θs,max 

DBE 

(%) 

θs,max 

MCE 

(%) 

εc/εy 

(DBE) 
γPT 

CP3D100W 268 1.27 3.00 0.72 1.80 2.70 2.0 2.1 

HP20D100W 268 1.27 20.0 0.48 1.20 1.80 1.0 3.5 

CP11D86W 230 1.63 11.0 0.72 1.80 2.70 2.0 2.1 

HP19.5D86W 230 1.63 19.5 0.60 1.50 2.25 1.3 2.6 

CP22D70W 190 2.22 22.0 0.72 1.80 2.70 2.0 2.1 

a 
Beams and columns 
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CP3D100W: Conventional performance SC-MRF without viscous dampers (ξt =3%). 

 

HP20D100W: High performance SC-MRF with viscous dampers (ξt =20%). It 

demonstrates the design scenario where viscous dampers are used to achieve θs,max 

significantly lower than the EC8 (Eurocode 8 2013) limit. It also demonstrates the 

design scenario where strict design criteria for the PT connections along with a low 

θs,max target value are enforced to genuinely achieve seismic resilience. Its target 

performance led to the same cross sections and PT connections details with those of 

CP3D100W. 

 

CP11D86W: Conventional performance SC-MRF with viscous dampers (ξt =11%). 

Its steel weight is 86% the steel weight of CP3D100W. It represents the design 

scenario where viscous dampers are used to reduce steel weight without exceeding 

the EC8 (Eurocode 8 2013) θs,max limit. 

 

HP19.5D86W: High performance SC-MRF with viscous dampers (ξt=19.5%). It 

represents the design scenario where viscous dampers are used to reduce steel 

weight and achieve θs,max lower than the EC8 (Eurocode 8 2013) limit. Its target 

performance led to the same cross sections and PT connections details with those of 

CP11D86W. 

 

CP22D70W: Conventional performance SC-MRF with viscous dampers (ξt=22%). 

Its steel weight is 70% the steel weight of CP3D100W. It represents the design 

scenario where viscous dampers are used to significantly reduce steel weight without 

exceeding the EC8 (Eurocode 8 2013) θs,max limit. 

 

Table 5.2 provides the θDBE and θMCE (from preliminary pushover analyses; Step 5 in 

chapter 4.3) used to design the PT connections of the SC-MRFs. Tables 5.3-5.5 

provide the beams and columns cross-sections, dPT and T0, Lrp and Arp, and c of the 

SC-MRFs. 
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Table 5.2 θDBE and θMCE (in rads) used to design the PT connections of the SC-MRFs 

Storey 
CP3D100W HP20D100W CP11D86W HP19.5D86W CP22D70W 

θDBE θMCE θDBE θMCE θDBE θMCE θDBE θMCE θDBE θMCE 

1 0.013 0.023 0.008 0.013 0.011 0.020 0.009 0.015 0.012 0.018 

2 0.015 0.024 0.009 0.015 0.014 0.023 0.012 0.019 0.015 0.022 

3 0.015 0.024 0.009 0.015 0.016 0.025 0.013 0.020 0.017 0.025 

4 0.013 0.021 0.007 0.013 0.015 0.024 0.012 0.019 0.017 0.025 

5 0.010 0.018 0.004 0.010 0.013 0.022 0.010 0.018 0.015 0.023 
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Table 5.3 Design details for the CP3D100W and HP20D100W SC-MRFs 

Storey 

  

Cross sections PT bars WHPs 
Reinforcing 

plates 

Viscous dampers 

c (kN∙(s./m)0.5) 

Beams Columns 
Gravity 

columns 

T0 

(kN) 

dPT 

(mm) 

De 

(mm) 

Di 

(mm) 

LWHP 

(mm) 

Lrp 

(mm) 

Arp 

(mm) 
CP3D100W HP20D100W 

1 IPE550 HEB650 HEB240 1087 43 43 33 70 1258 6720 - 1156 

2 IPE600 HEB650 HEB240 1256 50 46 36 70 1461 8580 - 887 

3 IPE550 HEB650 HEB240 1087 43 44 33 70 1311 6720 - 765 

4 IPE500 HEB600 HEB220 941 37 41 30 70 1073 5200 - 596 

5 IPE500 HEB600 HEB220 941 35 39 28 70 724 4200 - 438 
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Table 5.4 Design details for the CP11D86W and HP19.5D86W SC-MRFs 

Storey Cross sections PT bars WHPs 
Reinforcing 

plates 

Dampers 

c (kN∙(s./m)0.5) 

  Beams Columns 
Gravity 

columns 

T0 

(kN) 

dPT 

(mm) 

De 

(mm) 

Di 

(mm) 

LWHP 

(mm) 

Lrp 

(mm) 

Arp 

(mm) 
CP11D86W HP19.5D86W 

1 IPE450 HEB600 HEB240 811 33 40 29 70 942 3990 961 1812 

2 IPE500 HEB600 HEB240 941 39 42 32 70 1150 5200 676 1275 

3 IPE450 HEB600 HEB240 811 35 40 29 70 1129 4370 549 1035 

4 IPE400 HEB550 HEB220 701 30 38 27 70 1065 3600 426 803 

5 IPE400 HEB550 HEB220 701 30 36 25 70 829 3240 279 525 
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Table 5.5 Design details for the CP22D70W SC-MRF 

Storey Cross sections PT bars WHPs 
Reinforcing 

plates 

Dampers 

c (kN∙(s./m)0.5) 

  Beams Columns 
Gravity 

columns 

T0 

(kN) 

dPT 

(mm) 

De 

(mm) 

Di 

(mm) 

LWHP 

(mm) 

Lrp 

(mm) 

Arp 

(mm) 
CP22D70W 

1 IPE360 HEB500 HEB240 607 27 36 25 70 867 2890 1655 

2 IPE400 HEB500 HEB240 701 30 39 28 70 961 3420 1094 

3 IPE360 HEB500 HEB240 607 28 37 25 70 953 2890 877 

4 IPE330 HEB450 HEB220 523 25 35 24 70 992 2560 666 

5 IPE330 HEB450 HEB220 523 25 33 22 70 745 2240 435 
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A conventional steel MRF without dampers has been also designed for comparison 

with the SC-MRFs. This MRF has the same cross-sections and the same drift 

performance with the CP3D100W SC-MRF.  

 

5.3 Nonlinear Models 

 

Figure 5.3 shows the model developed in OpenSees for the SC-MRFs, based on the 

PT connection model, proposed in section 3.5.1. Annex A shows the OpenSees script 

for the conventional performance SC-MRF without viscous dampers (CP3D100W) 

for a monotonic pushover static analysis. The proposed model for PT connections 

and the associated beams and columns (see figure 3.28) was validated against FEM 

and experimental results and found capable to simulate accurately the PT connection 

behaviour. Also the proposed model is able to capture the stiffness and strength 

deterioration due to beam local buckling under high drifts. The assumption of stable 

hysteresis for the columns is fully justified as heavy columns with webs and flanges 

of low slenderness (e.g. compact HEB sections in Tables 5.3-5.5) do not show cyclic 

deterioration even under large drifts (Newell and Uang 2008). PT bars are modelled 

as a truss element running parallel to the beam center-line axis and connected to the 

exterior nodes of the panel zones of the left and right exterior columns.  

 

To account for P-Δ effects, the gravity columns associated with one of the two lateral 

resisting frames of the plan in figure 5.2 are modelled as 3 lean-on columns, i.e. one 

for each bay of the frame. Diaphragm action is modelled with truss elements 

connecting the lean on columns nodes to nodes defined along the length of the beams 

at the points where secondary beams are placed. These trusses have stiffness of 100 

times the axial beam stiffness. 

 

Nonlinear viscous dampers are modelled with zero length elements (Viscous material 

of OpenSees). While their supporting braces are modelled with elastic braces as they 

are strong enough to avoid buckling. In the analytical model, the damper limit states 

caused by their stroke limit are not considered, i.e. it is assumed that dampers will be 

manufactured with enough stroke to avoid reaching their limit states even under very 

large storey drifts. 
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The connections of the conventional MRF are assumed to be rigid and have full 

strength, while beams are modeled as elastic elements with zero length rotational 

springs at their ends that exhibit strength and stiffness deterioration (Lignos and 

Krawinkler 2007). Columns and panel zones are modeled as described above for the 

SC-MRFs.  

 

The OpenSees models for the SC-MRFs and the conventional MRF include the 

effect of the panel zone stiffness, and so, result in shorter T values than those shown 

in Table 5.1 that are based on the centerline models used for design. T from the 

OpenSees models is 1.00 s. for the CP3D100W and the HP20D100W, 1.35 s. for the 

CP11D86W and the HP19.5D86W, 1.95 s. for the CP22D70W, and 1.18 s. for the 

conventional MRF. 

 

 

Figure 5.3 Model for an exterior PT connection and the associated beams and 

columns 

 

5.4 Monotonic and cyclic base shear vs. roof drift behaviour 

 

Figures 5.4-8 show the base shear coefficient (V/W; V:base shear and W:seismic 

weight) - roof drift (θr) behaviour of the SC-MRFs and the conventional MRF from 

nonlinear monotonic static (pushover) analysis under an inverted triangular force 

distribution, similar to that specified in EC8 (Eurocode 8 2013). A nonlinear force-

controlled static analysis under gravity loads and the applied post-tensioning is first 

performed. The stiff truss elements that simulate diaphragm action are not included 



148 
 

in the SC-MRF models for this analysis to allow post tensioning and initial beam 

shortening without the slab presence. Then, the stiff truss elements are added into the 

model and a displacement-controlled pushover analysis is executed up to θr of 10%. 

Pushover curves are shown along with structural limit states and θr estimations under 

the FOE, DBE and MCE.  

 

Figure 5.4 shows the pushover curve of CP3D100W. WHPs yield at θr lower than 

the FOE θr (0.6%) followed by column plastic hinge at θr equal to 1.0%. Plastic 

hinge at the end of the beam flange reinforcing plate occurs at θr equal to 2.5%. The 

strength of the CP3D100W continues to increase up to θr equal to 4.7% where beam 

local buckling occurs and strength deterioration initiates. The behaviour of 

CP3D100W is consistent with the target performance of minor beam yielding 

(εc/εy=2) under the DBE. PT bars do not yield even under very large drifts as the 

beam plastic hinge rotations drastically reduce gap opening and PT bar elongation. 

The peak V/W is 0.34. Viscous dampers do not affect the behaviour of the SC-MRFs 

under static loading, and so, HP20D100W has the same pushover curve (see figure 

5.5) with CP3D100W apart from lower θr under the FOE, DBE and MCE. The 

behaviour of HP20D100W is consistent with the target performance of εc/εy=1 under 

the DBE. Column plastic hinge occurs at θr equal to 1%, while beam plastic hinge 

occurs at θr higher than the MCE θr. 

 

 

Figure 5.4 Base shear coefficient - roof drift behaviour from nonlinear monotonic 

(pushover) static analysis of CP3D100W 
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Figure 5.5 Base shear coefficient - roof drift behaviour from nonlinear monotonic 

(pushover) static analysis of HP20D100W 

 

Figure 5.6 shows the pushover curve of CP11D86W. WHPs yield at θr lower than 

the FOE θr (0.59%). Column and beam plastic hinge occurs at the MCE θr (2.40%). 

The beam plastic hinge rotation capacity is reached at 6% θr. The behaviour of 

CP11D86W is consistent with the target performance of minor beam yielding 

(εc/εy=2). The peak V/W is 0.16. HP19.5D86W has the same pushover curve (see 

figure 5.7) with CP11D86W apart from lower θr under the FOE, DBE and MCE. The 

behaviour of CP11D86W is consistent with the target performance of εc/εy=1.3 under 

the DBE and. Column plastic hinge and beam plastic hinge occur at θr higher than 

the MCE θr (1.95%). 
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Figure 5.6 Base shear coefficient - roof drift behaviour from nonlinear monotonic 

(pushover) static analysis of CP11D86W 

 

 

Figure 5.7 Base shear coefficient - roof drift behaviour from nonlinear monotonic 

(pushover) static analysis of HP19.5D86W 

 

Figure 5.8 shows the pushover curve of CP22D70W. WHPs yield at θr lower than 

the FOE θr (0.61%) followed by beam plastic hinge after the DBE θr (1.50%). The 

descending branch of the pushover curve initiates at the MCE θr (2.23%) solely due 

to excessive P-Δ effects. Column plastic hinge occurs at 7.1% θr followed by beam 

local buckling at 8.2% θr. The behaviour of CP22D70W is consistent with the target 

performance of minor beam yielding (εc/εy=2). The peak V/W is 0.11. 
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Figure 5.8 Base shear coefficient - roof drift behaviour from nonlinear monotonic 

(pushover) static analysis of CP22D70W 

 

Figure 5.9 shows the pushover curve of the conventional MRF. Column plastic hinge 

occurs at 0.55% θr followed by beam plastic hinge formation at 1.03% θr and beam 

local buckling at 3.0% θr. The behaviour of the conventional MRF is worse than the 

behaviour of the CP3D100W SC-MRF with the same cross-sections as all structural 

limit states are reached at lower θr. The peak V/W is 0.26. 

 

 

Figure 5.9 Base shear coefficient - roof drift behaviour from nonlinear monotonic 

(pushover) static analysis of conventional MRF 

 

Figures 5.10-15 show the V/W-θr behaviour of the SC-MRFs and the conventional 

MRF from nonlinear cyclic (push-pull) static analysis up to the DBE θr. All SC-

MRFs have good energy dissipation capacity and self-centering capability. 



152 
 

CP3D100W has a small residual θr due to modest column base yielding. The 

conventional MRF shows higher energy dissipation capacity but has significant 

residual θr compared to all SC-MRFs.  

 

 

Figure 5.10 Base shear coefficient - roof drift behaviour from nonlinear cyclic (push-

pull) static analysis up to DBE roof drift for CP3D100W 

 

 

Figure 5.11 Base shear coefficient - roof drift behaviour from nonlinear cyclic (push-

pull) static analysis up to DBE roof drift for HP20D100W 
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Figure 5.12 Base shear coefficient - roof drift behaviour from nonlinear cyclic (push-

pull) static analysis up to DBE roof drift for CP11D86W 

 

 

Figure 5.13 Base shear coefficient - roof drift behaviour from nonlinear cyclic (push-

pull) static analysis up to DBE roof drift for HP19.5D86W 
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Figure 5.14 Base shear coefficient - roof drift behaviour from nonlinear cyclic (push-

pull) static analysis up to DBE roof drift for CP22D70W 

 

 

Figure 5.15 Base shear coefficient - roof drift behaviour from nonlinear cyclic (push-

pull) static analysis up to DBE roof drift for conventional MRF 
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5.5 Fragilities under the DBE and MCE 

 

5.5.1 Ground motions 

 

A set of 22 recorded far-field ground motion pairs (i.e. 44 time histories) developed 

by the ATC-63 project (FEMA P695 2008) are used for nonlinear time history 

analyses. Ground motions were recorded on stiff soil, do not exhibit pulse-type near-

fault characteristics, and were scaled at the DBE and MCE where seismic intensity is 

represented by the 5% spectral acceleration, Sa, at T from the OpenSees models in 

Section 5.3.  

 

5.5.2 Nonlinear dynamic analysis 

 

The Newmark method with constant acceleration is used to integrate the equations of 

motion. The Newton method with tangent stiffness is used to minimize the 

unbalanced forces within each integration time step. A Rayleigh damping matrix is 

used to model the inherent 3% critical damping at the first two modes of vibration. A 

nonlinear force-controlled static analysis under gravity loads and the applied post-

tensioning is first performed. The stiff truss elements that simulate diaphragm action 

are not included in the SC-MRF model for this analysis to allow post tensioning and 

initial beam shortening without the slab presence. Then, the stiff truss elements are 

added into the model and the nonlinear dynamic analysis is executed. Each dynamic 

analysis is extended well beyond the actual earthquake time to allow for damped free 

vibration decay and accurate θs,res calculation. 

 

5.5.3 Fragilities 

 

Having θs,max and θs,res for a SC-MRF from nonlinear dynamic analyses using the 44 

ground motions of Section 5.5.1 scaled at a specific seismic intensity, a fragility 

curve is constructed by fitting a lognormal cumulative distribution function to the 

ranked probabilities of non-exceedance, as shown in figure 5.16 for the CP3D100W 

under the DBE. 
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Figure 5.16 Fitted θs,max lognormal cumulative distribution function for the 

CP3D100W under the DBE; 

 

Figure 5.17 shows the θs,max fragility curves of the SC-MRFs and the conventional 

MRF under the DBE. The θs,max at  50% probability of non-exceedance is 1.54% for 

the CP3D100W, 1.01% for the HP20D100W, 1.44% for the CP11D86W, 1.07% for 

the HP19.5D86W, 1.47% for the CP22D70W and 1.74% for the conventional MRF. 

These values are smaller than the design DBE θs,max values in Table 5.1 because the 

centerline models used for design are more flexible than the OpenSees models used 

in seismic analyses (see last paragraph of section 5.3). HP20D100W and 

HP19.5D86W have significantly better performance with fragility curves clearly 

shifted to the left of those of the other SC-MRFs. This demonstrates the effectiveness 

of supplemental damping to improve the structural and non-structural seismic 

performance of steel SC-MRFs. Although designed for different θs,max (1.2% vs. 

1.5%), HP20D100W and HP19.5D86W have almost identical performance with no 

evident differences among their fragility curves. The other SC-MRFs, CP3D100W, 

CP11D86W CP22D70W (all designed for 1.8% θs,max) have almost identical 

performance apart from probabilities of non-exceedance higher than 70% for which 

CP22D70W has a worse performance. This demonstrates that steel SC-MRFs with 

viscous dampers can be designed for less steel weight without compromising their 
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DBE performance. For probabilities of non-exceedance lower than 70%, the 

conventional MRF has worse performance compared to the SC-MRFs.  

 

 

Figure 5.17 θs,max fragility curves under the DBE 

 

Figure 5.18 shows the θs,max fragility curves of the SC-MRFs and the conventional 

MRF under the MCE. The θs,max at 50% probability of non-exceedance is 2.32% for 

the CP3D100W, 1.54% for the HP20D100W, 2.36% for the CP11D86W, 1.85% for 

the HP19.5D86W, 2.56% for the CP22D70W and 2.3% for the conventional MRF. 

These values are lower than the design MCE θs,max values in Table 5.1 for the reason 

explained in the previous paragraph. Similar to the DBE case, HP20D100W and 

HP19.5D86W have significantly better performance with fragility curves shifted to 

the left with respect to those of the other SC-MRFs. Contrary to the DBE case, 

HP20D100W has clearly better MCE performance than that of HP19.5D86W. 

CP3D100W, CP11D86W and the MRF have almost identical performance. Contrary 

to the DBE case, CP22D70W has worse MCE performance than that of CP3D100W 

and CP11D86W. These results demonstrate that steel SC-MRFs with viscous 

dampers can be generally designed for less steel weight without compromising their 

MCE performance; yet a restriction on the strength reduction may need to be 

established.  
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Figure 5.18 θs,max fragility curves under the MCE 

 

Figure 5.19 shows the θs,res fragility curves of the SC-MRFs and the conventional 

MRF under the DBE. CP3D100W (that experiences larger plastic deformations at 

the column bases compared to the other SC-MRFs; see section 5.4) has the largest 

θs,res among the SC-MRFs with a value of 0.1% at 50% probability of non-

exceedance. This θs,res value is lower than the global sway imperfections defined in 

EC3 (Eurocode 3 2010), and so, is considered very small. HP20D100W eliminates 

θs,res. This demonstrates the effectiveness of supplemental damping to improve the 

θs,res performance of SC-MRFs. In general, figure 5.19 shows that the proposed 

design procedure results in SC-MRFs that eliminate θs,res under the DBE, whereas the 

conventional MRF has high θs,res with a value of 0.49% at 50% probability of non-

exceedance.  
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Figure 5.19 θs,res fragility curves under the DBE 

 

Figure 5.20 shows the θs,res fragility curves of the SC-MRFs and the conventional 

MRF under the MCE. CP3D100W has the largest θs,res among the SC-MRFs with a 

value of 0.17% at 50% probability of non-exceedance. This θs,res value is lower than 

the global sway imperfections defined in EC3 (Eurocode 3 2010), and so, is 

considered very small. All the other SC-MRFs have θs,res lower or equal than 0.1% at 

50% probability of non-exceedance. Similar to the DBE case, figure 5.20 shows the 

effectiveness of supplemental damping to improve the θs,res performance and that the 

proposed design procedure results in SC-MRFs with very low θs,res under the MCE. 

The conventional MRF has significant θs,res with a value of 0.75% at 50% probability 

of non-exceedance. It should be noted that a building may have to be demolished if 

the θs,res is higher than 0.5% (McCormick et al 2008).  
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Figure 5.20 θs,res fragility curves under MCE  

 

5.6 Summary 

 

In this chapter a prototype building was designed as an SC-MRF with or without 

viscous dampers according to the design procedure presented in chapter 4. SC-MRF 

designs with different base shear strength and supplemental damping were 

investigated. Pushover and seismic analyses were conducted in OpenSees using 

models capable to capture all structural limit states up to collapse. Based on the 

results presented in this chapter, the following conclusions are drawn: 

 

1. The preliminary pushover analysis makes the design procedure very accurate 

in predicting structural limit states.   

 

2. The SC-MRFs designed in this chapter avoid beam and column base plastic 
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same is generally true for the MCE drift performance; yet a restriction on the 

strength reduction should be established. 

 

4. Supplemental damping is very effective in improving the residual drift 

performance of SC-MRFs. 
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6 Collapse assessment of SC-MRFS with viscous dampers 

 

6.1 Introduction 

 

In this chapter, the potential of SC-MRFs and viscous dampers to improve the 

collapse resistance against that of MRFs is evaluated. The evaluation is based on the 

prototype steel building, presented in section 5.2.1 (see figures 5.1-2), designed 

using four different seismic resistant frames: (a) conventional MRFs; (b) MRFs with 

viscous dampers; (c) SC-MRFs; or (d) SC-MRFs with viscous dampers. All frames, 

are designed according to EC8 (Eurocode 8 2013), and have the same column/beam 

cross-sections and similar periods of vibration. Viscous dampers are designed to 

reduce the peak story drift under DBE from 1.8% to 1.2%. IDAs are conducted for 

all frames using models capable to simulate all limit states up to collapse.  It is 

shown that the SC-MRF has higher collapse resistance than that of the MRF, while 

the use of viscous dampers results in higher collapse for both the MRF and the SC-

MRF. 

 

6.2 Design cases 

 

This study focuses on one perimeter seismic resistant frame of the prototype 

building, presented in section 5.2.1 (see figures 5.1-2). This frame is designed as 

conventional MRF, MRF with viscous dampers, SC-MRF, or SC-MRF with viscous 

dampers using the seismic design procedures of chapter 4. The SC-MRF and the SC-

MRF with viscous dampers have been presented in section 5.2.2 as CP3D100W and 

HP20D100W respectively. The conventional MRF has been also presented in section 

5.2.2 while the MRF with viscous dampers has the same cross sections with the 

conventional MRF and the same viscous dampers with the SC-MRF with viscous 

dampers (see Table 5.3). Figures 5.4-5 and 5.9 show the V/W-θr behavior of the SC-

MRF, the SC-MRF with viscous dampers and the conventional MRF from 

monotonic pushover analysis. Figure 6.1 shows the V/W-θr behavior of the MRF 

with viscous dampers from monotonic pushover analysis. The MRF with viscous 

dampers has the same pushover curve (see figure 6.1) with the MRF (see figure 5.9) 

but its performance is better because of the reduction in θr estimates under the FOE, 

DBE and MCE 
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Figure 6.1 Base shear coefficient - roof drift behavior from nonlinear monotonic 

(pushover) static analysis of the conventional MRF with viscous dampers   

 

6.3 Models for nonlinear analysis 

 

Due to the high computational cost of IDAs (Vamvatsikos and Cornell 2002), 

conducted for the SC-MRFs, a simplified OpenSees model for the PT connections 

with WPHs has been adopted. In this simplified model, the M-θ behavior of the PT 

connection is simulated by inserting 2 parallel rotational springs at the beams ends. 

These rotational springs simulate the contribution of the WHPs and the PT bars on 

the overall rotational behavior of the PT connection. The accuracy of this simplified 

model has been evaluated against the PT connection model of sections 3.5.1 and 5.3, 

which is based on contact and hysteretic springs at the beam-column interface.  

 

The stiffness and strength deterioration due to local buckling at the unreinforced 

lengths of the beams is modelled using force-based beam-column fiber elements 

with end hinges (Scott and Fenves 2006), where the model in Lignos and Krawinkler 

(2007) is used for the stress-strain cyclic behavior of the fibers. This modeling 
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approach results in smoother hysteretic curves and so, less convergence problems in 

high seismic intensity analysis as discussed in section 3.5.1.  

 

Panel zones are modelled using the Krawinkler model (Krawinkler 1978). 

Krawinkler model introduces four additional rigid elastic beam column elements, 

which are connected at the upper left and lower right corners with rotational springs 

to represent panel zone shear resistance and column-flange bending resistance 

respectively. The lower left and upper right corners act like true hinges (see Figure 

6.2). Figure 6.2 shows the model developed in OpenSees (Mazzoni et al 2006) for 

the SC-MRFs, based on the simplified PT connection model, discussed above. P-Δ 

effects and nonlinear viscous dampers are modelled based on section 5.3. 

 

Figure 6.3 compares the base shear coefficient (V/W; V: base shear and W: seismic 

weight) - roof drift (θr) behaviors from nonlinear monotonic static (pushover) 

analysis, while Figure 6.4 compares the V/W-θr behaviors from nonlinear cyclic 

static (push-pull) analysis of the SC-MRF using either the simplified or the detailed 

PT connection model.  

 

 

Figure 6.2 Simplified model for an exterior PT connection and the associated beams 

and columns  
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Figure 6.3 Comparison of the monotonic static (pushover) behaviors of the SC-MRF 

using either the simplified PT connection model in section 6.3 or the model in 5.3 for 

the PT connections. 

 

 

Figure 6.4 Comparison of the cyclic static (push-pull) behaviors of the SC-MRF 

using either the simplified PT connection model in section 6.3 or the model in 5.3 for 

the PT connections. 
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The connections of the conventional MRF are assumed to be rigid and have full 

strength, while beams are modeled as elastic elements with zero length rotational 

springs at their ends that exhibit strength and stiffness deterioration (Lignos and 

Krawinkler 2007). Columns and panel zones are modeled as described above for the 

SC-MRF. 

 

6.4 Incremental dynamic analysis and collapse prediction 

 

A single IDA of a frame under an earthquake ground motion consists of a dynamic 

analysis sequence of this frame under scaled images of the ground motion 

accelerogram. The accelerogram scaling is applied to cover the whole range from 

elastic to non-linear behaviour and finally to collapse of the structure. Collapse is 

defined as the point, on which deformations increase in an infinite way (without 

bound). An IDA curve is a plot of an engineering demand parameter (EDP) (e.g. 

θs,max) recorded in an IDA study versus one or more intensity measure (IM) (e.g. The 

spectral acceleration at the fundamental period of vibration, Sa(T1)). At the collapse 

point the IDA curve flattens out in a plateau (flatline).   

 

For all the design cases of this chapter, IDA (Vamvatsikos and Cornell 2002) was 

performed up to collapse under a set of 22 far-field ground motions pairs (i.e. 44 

time histories) used in the FEMA P695 project (FEMA P695 2008). For each design 

case and ground motion, the Sa(T1) collapse value at which θs,max increases without 

bound was obtained.  

 

For the IDA implementation of a MRF under 44 time histories, the Matlab code 

presented in Annex B was developed. According to this code, a scale factor is 

progressively applied in every time history, corresponding to Sa(T1) values from 

0.02g with an incremental step equal to 0.02g. 

 

When a scale factor is applied into the time history, a dynamic analysis is performed 

for the frame under the scaled time history. If the analysis cannot be completed due 

to in-convergence, the analysis time step is progressively divided by 1, 10, 20, 50, 

100, 500, and 1000, until convergence is achieved. If the analysis cannot be 
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completed even after this procedure, we assume that for this scale factor, structural 

collapse has been occurred. 

 

If the analysis was completed for this scale factor, the floor displacements and 

accelerations are collected, so θs,max and peak floor accelerations (PFA) are known. 

In order to examine if structural collapse has been occurred, even if the analysis was 

complete, two collapse conditions are inserted. The first condition is that structural 

collapse occurs if θs,max is more than 10% (Vamvatsikos and Cornell 2002). The 

second condition is that structural collapse occurs if the inclination of the IDA curve 

for an earthquake between the last two IDA points is less than 20% of the initial IDA 

inclination (Vamvatsikos and Cornell 2002).           

 

A Rayleigh damping matrix was used to model the inherent 3% critical damping at 

the first two modes of vibration. Each dynamic analysis was extended well beyond 

the actual earthquake time to allow for damped free vibration decay and accurate 

θs,res calculation. Figures 6.5-6.8 show the IDA curves of all design cases. 

 

 

Figure 6.5 IDA curves of the SC-MRF 
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Figure 6.6 IDA curves of the SC-MRF with viscous dampers 

 

 

Figure 6.7 IDA curves of the conventional MRF 
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Figure 6.8 IDA curves of the MRF with viscous dampers 

 

Figure 6.9 shows a collapse fragility curve, constructed by fitting a lognormal 

cumulative distribution function to the Sa(T1) collapse values for the SC-MRF. 

Figure 6.10 shows the collapse fragility curves of all design cases, where Sa(T1) is 

normalized by Sa,MCE, i.e. the MCE spectral acceleration at T1. Beyond just 

simplifying the discussion to follow, this normalization will also simplify the 

comparison of structures having (mildly, in this case) different fundamental periods. 

Thus, the Sa(T1) at 50% probability of collapse is 5.5∙Sa,MCE for the SC-MRF with 

viscous dampers, 5.0∙Sa,MCE for the MRF with viscous dampers, 4.5∙Sa,MCE for the 

SC-MRF and 3.6∙Sa,MCE for the MRF. The results show that the SC-MRFs have 

collapse resistance higher than that of the MRFs. It is also evident that supplemental 

viscous damping significantly improves the collapse resistance of both the MRF and 

the SC-MRF. 
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Figure 6.9 Collapse fragility curve of to SC-MRF fitted to the Sa(T1) collapse values 

 

 

Figure 6.10 Collapse fragility curves of all design cases (Sa(T1) is normalized by 

Sa,MCE) 
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6.5 Summary 

 

In this chapter the potential of SC-MRFs and viscous dampers to improve the 

collapse resistance against that of MRFs has been evaluated. The evaluation is based 

on a 5-story prototype steel building designed to use different seismic-resistant 

frames, i.e.: conventional MRFs; MRFs with viscous dampers; SC-MRFs; or SC-

MRFs with viscous dampers. These frames were designed according to EC8 

(Eurocode 8 2013), and have the same beam/column cross-sections and similar 

periods of vibration. Viscous dampers are designed to achieve a total damping ratio 

of 20% at the fundamental period of vibration. The estimated peak story drift under 

the design earthquake for the frames with and without dampers is 1.2% and 1.8%, 

respectively. IDAs have been conducted using models capable of simulating all 

structural limit states up to collapse. 

 

Based on the results presented in this chapter The SC-MRF has higher collapse 

resistance than that of the MRF, while the use of viscous dampers results in higher 

collapse resistance for both the MRF and the SC-MRF. The 50% probability of 

collapse is associated with seismic intensities of 5.5·MCE for the SC-MRF with 

viscous dampers; 5.0·MCE for the MRF with viscous dampers; 4.5·MCE for the SC-

MRF; and 3.6·MCE for the MRF. 
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7 Probabilistic economic seismic loss estimation in steel buildings using SC-

MRFs and viscous dampers 

 

7.1 Introduction 

 

In this chapter, the potential of SC-MRFs and viscous dampers to reduce the 

economic seismic losses in steel buildings is evaluated. The evaluation is based on 

the prototype steel building, presented in section 5.2.1 (see figures 5.1-2), and the four 

design cases of seismic resistant frames presented in section 6.2: (a) conventional 

MRFs; (b) MRFs with viscous dampers; (c) SC-MRFs; or (d) SC-MRFs with 

viscous dampers. All frames are designed according to EC8 (Eurocode 8 2013), and 

have the same column/beam cross-sections and similar periods of vibration. Viscous 

dampers are designed to reduce the peak story drift under the DBE from 1.8% to 

1.2%. Losses are estimated by developing vulnerability functions according to the 

FEMA P-58 (FEMA P-58 2012) methodology, which considers uncertainties in 

earthquake ground motion, structural response, and repair costs. Both the probability 

of collapse and the probability of demolition due to excessive residual story drifts are 

taken into account. A parametric study on the effect of the residual story drift 

threshold beyond which is less expensive to rebuild a structure than to repair is also 

conducted. It is shown that viscous dampers reduce the repair cost for seismic 

intensities up to three times the MCE. On the other hand, post-tensioning reduces the 

repair cost only for seismic intensities higher than the DBE. Viscous dampers are 

more effective than post-tensioning for seismic intensities equal or lower than the 

MCE, while the opposite is true for seismic intensities higher than 2·MCE. This 

chapter also highlights the effectiveness of combining post-tensioning and 

supplemental viscous damping by showing that the SC-MRF with viscous dampers 

achieves repair cost reductions between 70% and 100% compared to the repair cost 

of the conventional MRF under both the DBE and MCE.  

 

7.2 Literature review on economic seismic losses  

 

To properly assess the seismic resilience of a structural system, the actual economic 

seismic losses should be rigorously estimated. This can be accomplished using 

procedures that quantify and propagate uncertainties such as the early one developed 
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by Porter et al (2001), which uses nonlinear dynamic analyses, predicts damage at 

the component level using fragility functions, and finally estimates the total building 

repair cost. This procedure was further developed to become the PEER (Pacific 

Earthquake Engineering Research) methodology that is now known as the 2
nd

 

generation performance based earthquake engineering (PBEE-2) (Cornell and 

Krawinkler 2000). Early studies on PBEE-2 showed that component damageability 

and ground motion time histories have strong influence on loss uncertainty, while 

material properties and other uncertainties in the structural model may have 

relatively little influence (Porter et al 2002 and Aslani and Miranda 2005). Ramirez 

and Miranda [Ramirez and Miranda 2012] showed how the probability of having to 

demolish a building as the result of excessive residual story drifts influences seismic 

loss estimation. Furthermore, they conducted sensitivity analysis to show that the 

estimate of loss is more sensitive to the median residual drift threshold for 

demolition rather than its dispersion. A critical review of PBEE-2 and examination 

of its limitations has been conducted by Gunay and Mosalam (Gunay and Mosalam 

2013). The state-of-art in economic seismic loss estimation is described by the 

FEMA P-58 methodology that adopts PBEE-2 along with a database of structural 

and non-structural component fragility functions and repair cost estimates (FEMA P-

58 2012). 
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7.3 Economic seismic loss estimation framework 

 

7.3.1 Loss estimation framework 

 

According to FEMA P-58 (FEMA P-58 2012), the seismic losses for a building are 

split into: (a) structural loss due to damage in load-carrying structural members; (b) 

non-structural loss due to damage in non-load carrying components such as 

partitions, piping systems, etc.; and (c) building contents loss. These losses are 

assessed using detailed component fragility functions, i.e., functions of relevant  

EDPs, such as θs,max or PFA occurred during an earthquake, that determine the 

probability of violating a certain damage state (DS). Thus, for a given value of the 

chosen seismic IM, each component is assigned with the corresponding probability 

of being in any DS, which is then associated with a probabilistic cost function. This 

function defines the cumulative distribution of the repair cost of the component for 

the given DS. Summing up all component costs over the entire building yields the 

total economic seismic loss (see Section 7.3.4 for more details).  

 

7.3.2 Probability of collapse and probability of demolition 

 

The probability of collapse can be explicitly incorporated in the loss estimation 

framework following the methodology in Aslani and Miranda (2005), i.e. collapse is 

assumed to cause instant loss of the entire building and its contents. The probability 

of demolition can be also explicitly incorporated following the methodology in 

(Ramirez and Miranda 2012), i.e. by recognising that the building will be 

demolished when a critical value of the maximum residual story drift between all 

stories (θs,res) is exceeded.  For example, McCormick et al (2008) concluded that in 

Japan is generally less expensive to rebuild a structure than to repair it when θs,res is 

higher than 0.5%. In this work, the probability of having to demolish the structure 

conditioned on θs,res, P(D|θs,res), is assumed to follow a lognormal distribution with 

log-standard deviation (standard deviation of the logarithm of the data) equal to 0.3 

(Ramirez and Miranda 2012) and a median value equal to 0.5%, 1.0% and 1.5% to 

allow a parametric study to be conducted.  
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7.3.3 Vulnerability functions 

 

The mean annual frequency (MAF) of exceeding values of a decision variable (DV), 

such as the repair cost or the loss ratio (i.e. repair cost over the building replacement 

cost), is estimated as (Cornell and Krawinkler 2000):  

 

( )
( ) ( ) ( ) ( )DV

IM DM EDP

d IM
DV dv G dv DM dG DM EDP dG EDP IM dIM

dIM


     

 

(7.1) 

 

where λDV(DV ≥ dv) is the MAF of exceeding loss level dv for the given site and 

building. G(dv|DM) is the probability of exceedance of dv given a damage measure 

DM. This continuous DM was employed by Cornell and Krawinkler (2000) for 

theoretical simplicity and it is typically discretized in practice into two or more 

discrete damage states (DSs) to simplify the assignment of associated repair costs. 

Thus G(DM|EDP), i.e., the probability of exceedance of DM given an EDP, 

becomes G(DS|EDP), the familiar component fragility function. Finally, G(EDP|IM) 

is the probability of exceedance of EDP given an IM and λ(IM) is the MAF of 

exceedance of the IM. 

 

In this chapter, only a part of Equation (7.1) is used to assess the performance of a 

building in an objective manner that does not depend on the site, i.e. using only the 

integrals of loss over EDP and DM (or DS) without the final convolution with λ(IM). 

The result is known as vulnerability function, formally written as: 

 

( ) ( ) ( ) ( )
DM EDP

G DV IM G dv DM dG DM EDP dG EDP IM    (7.2) 

 

Vulnerability functions essentially represent entire distributions of the building loss 

at each level of the IM. Thus, they can be visualized as continuous curves of any 

desired distribution statistic given the IM, such as their 16%, 50% and 84% fractile 

values. Monte Carlo Simulation (MCS) is used to evaluate the integrals in Equation 

(7.2). The MCS procedure involves seven steps (see Section 7.3.4) and simulates all 
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random variables in Equation (2) (i.e. DV, EDP, DS) to finally compute DV for a 

wide range of IMs. 

7.3.4 Steps of MCS procedure 

 

Step (1): EDPs prediction. IDA is conducted up to global collapse for a large enough 

suite of ground motions (44 used in this study), while appropriate interpolation 

(Vamvatsikos and Cornell 2002) of the analysis results is employed to extract the 

distribution of the EDPs (θs,max, PFA and θs,res) at any level of the IM. Sa(T1) is 

chosen as IM following FEMA P-58 (FEMA P-58 2012) guidelines.  As no scaling 

limit is employed, nor are the records carefully selected for a given site and intensity 

level, this approach may be questionable for high levels of intensity, since 

sufficiency is not assured (Luco and Bazzurro 2007). Still, this is only an issue when 

convolution with seismic hazard is attempted (Equation. (7.1)). When using Sa(T1) 

solely for comparing the response or vulnerability of buildings with close periods, 

similar levels of bias will creep in, thus cancelling each other out when taking ratios, 

as attested, for example, by the spectral-shape correction formula of (FEMA P695 

2008). Thus, although the absolute values of loss estimated may become 

conservative at high IM levels, their relevant sizes will remain valid for comparison. 

  

Step (2): Estimate the total replacement cost of the building. The distribution of the 

replacement cost of the building itself, considering only structural and non-structural 

components, is estimated using data for new steel construction from 

(www.SteelConstruction.info). This is augmented by the distribution of the 

replacement cost for the building contents, as obtained from the corresponding 

content repair cost functions at their most severe DS (FEMA P-58 2012), indicative 

of replacement. To combine them, Monte Carlo simulation is employed using 

uncorrelated stratified sampling. Since we are not interested in the extreme values, 

but mainly in the first few moments of the uncertain cost, the efficiency of stratified 

sampling (McKay et al 979) allows us to use only (Nc= 40) samples from each 

constituent distribution to accurately capture the distribution of the total building 

replacement cost (cost replacement new).  

 

Step (3): Three-dimensional (3D) table ‘C’. A 3D table „C‟ is created. The number 

of rows of the table is equal to the IM values (60 Sa(T1) values from 0 to 4.0g) 
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considered in the loss estimation framework. The number of columns is equal to the 

number of ground motions (Nrec) used to conduct the IDA in Step (1) (Nrec = 44 in 

this study), and the third dimension is equal to N. The following steps describe how 

table „C‟ is filled with cost values.  

 

Step (4): Incorporate the probability of collapse. If collapse has occurred for the i
th

 

value of IM and the j
th

 ground motion, the C(i, j, 1:Nc) cells are filled by randomly 

permuting the Nc total building replacement cost values from Step (2). 

 

Step (5): Incorporate the probability of demolition given no collapse. θs,res is 

obtained for the i
th

 value of IM and the j
th

 ground motion to allow calculation of 

P(D|θs,res). If collapse has not already occurred (step 4), Ndem (where Ndem 

=P(D|θs,res)∙Nc) out of the Nc cells C(i, j, 1:Nc) are randomly filled by using stratified 

sampling on  the total building replacement cost distribution.  

 

Step (6): Estimate the total repair cost of the building given no collapse or 

demolition. A number of DSs and corresponding fragility curves are defined for each 

structural, non-structural and content component of the building using data available 

in FEMA P-58 (FEMA P-58 2012). For a specific value of an EDP (i.e. EDPk) 

corresponding to the i
th

 value of IM and the j
th

 ground motion, the component 

fragility curve defines the probability G(DS|EDPk) that the component will 

experience damage equal or higher than that associated with a specific DS (see 

Figures 7.1-2). Subtracting these probabilities for two sequential DSs provides the 

probability ΔG(DS|EDPk) of the component to experience damage equal to that 

associated with a DS (see Figure 7.3). This probability is multiplied by (Nc -Ndem) to 

calculate the number of repair cost values associated with the DS. Repair cost values 

are obtained from the cost function of the specific DS and component. Repeating this 

procedure for all DSs results in N-Ndem repair cost values for the component. Repair 

costs for all components are calculated using the aforementioned procedure and are 

added to provide the total repair cost values used to fill the remaining N-Ndem empty 

cells of the C(i, j, 1: Nc) matrix, respecting the desired correlation structure. Any of 

these total repair cost values should be lower than the total building replacement 

cost, otherwise the former is replaced with the latter on a case-by-case basis. 
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Figure 7.1 Component fragility curve  

 

 

Figure 7.2 Probability G(DS|EDPk) that the component will experience damage 

equal or higher than that associated with a specific DS 
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Figure 7.3 Probability ΔG(DS|EDPk) of the component to experience damage equal 

to that associated with a DS  

 

Step (7): Quantile cost values at each IM. For all N∙Nrec cost values at the same IM 

level, quantile values at 16%, 50% and 84% (or any desired distribution statistic) are 

estimated and plotted.  

 

7.4 Prototype building 

 

This study is based on the prototype steel building, presented in section 5.2.1 (see 

figures 5.1-2), and the four design cases of seismic resistant frames presented in 

section 6.2: (a) conventional MRFs; (b) MRFs with viscous dampers; (c) SC-MRFs; 

or (d) SC-MRFs with viscous dampers. All frames are designed according to EC8 

(Eurocode 8 2013), and have the same column/beam cross-sections and similar 

periods of vibration. Viscous dampers are designed to reduce the peak story drift 

under the DBE from 1.8% to 1.2%.  
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Table 7.1 Prototype building components per story 

MRF components 
FEMA P-58 

(ID) 

SC-MRF 

components 
units EDP 

Steel column base plate B1031.011b -//- 8 θs,max 

Post-Northridge welded steel moment connection 

beam, one side 

B1035.021 / 

None 

PT connection, 

beam one side 
4 θs,max 

Post-Northridge welded steel moment 

connection, beams both sides 

B1035.031 / 

None 

PT connection, 

beams both sides 
4 θs,max 

Bolted shear tab gravity connections B1031.001 -//- 28 θs,max 

Curtain walls B2022.001 -//- 54 θs,max 

Suspended ceiling C3032.003a -//- 26 PFA 

Cold water piping D2021.011a -//- 1 PFA 

Hot water piping D2022.012b -//- 1 PFA 

HVAC D3041.001a -//- 3 PFA 

Modular office work stations E2022.001 -//- 90 PFA 

Unsecured fragile objects on shelves E2022.010 -//- 90 PFA 

Electronic equipment on wall E2022.021 -//- 1 PFA 

Desktop electronics E2022.022 -//- 90 PFA 

Book case E2022.102a -//- 90 PFA 
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It is assumed that the prototype building includes the structural components, non-

structural components and contents listed in Table 7.1. Table 7.1 lists the type of 

component, the associated FEMA P-58 (FEMA P-58 2012) identification (ID), the 

component units that the building includes per story, and the associated EDP used to 

assess the component DS. Table 7.2 lists the components and total buildings costs. 
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Table 7.2 Components and total building costs ($∙10
6
) 

Components cost 

 MRF SC-MRF 
Gravity 

frames 

Braces and 

dampers 

Non-structural 

elements 

Cost 2.586 2.609 1.522 0.060 1.473 

 

Total building cost 

 MRF 
MRF with 

dampers 
SC-MRF 

SC-MRF with 

dampers 

Cost 5.581 5.641 5.604 5.664 
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Market research and engineering judgment are used to determine fragility and cost 

functions for the PT connections, which are not provided by FEMA P-58 (FEMA P-

58 2012). The DSs in the PT connections are associated with the replacement of 

WHPs and the plastic hinge rotation, θp, at the end of the beam flange reinforcing 

plate. θp is associated to θs,max on the basis of pushover analysis. Replacement of 

WHPs corresponds to only one DS associated with θs,max equal to 1.8%. The cost 

functions related to θp at the end of the beam flange reinforcing plate were 

determined using mean and dispersion values from conventional welded moment 

resisting connections. The labour and material cost of the WHPs, which is negligible 

compared to the cost of other building components, has been used to determine the 

cost function related with WHPs replacement. The contents cost functions have been 

developed based on USA market prices. The cost of the dampers is based on their 

stroke and force capacities and results in a 2% of the building cost. 

 

7.5 Economic seismic losses 

 

7.5.1 Vulnerability functions 

 

Figures 7.4-7.6 show the vulnerability functions of the repair cost and figures 7.7-7.9 

show the vulnerability functions of the loss ratio at 16%, 50% and 84% probability of 

exceedance for all frames. These results are obtained for median and lognormal 

standard deviation values of the P(D|θs,res) distribution equal to 0.5% (McCormick et 

al 2008) and 0.3 (Ramirez and Miranda 2012) respectively. Figure 7.5 shows that at 

50% probability of exceedance, the repair cost of the MRF, the MRF with viscous 

dampers, the SC-MRF, and the SC-MRF with viscous dampers significantly 

increases after a seismic intensity of 0.9·MCE, 1.2·MCE, 1.9·MCE, and 2.8·MCE, 

respectively. The results clearly show three different regions of loss given IM. First 

is the low-intensity gradually ascending part that is dominated by non-structural and 

contents loss plus some early structural damage (mainly due to yielding). Second is 

the horizontal plateau that appears when demolition (or collapse) starts becoming 

influential, quickly accelerating losses to reach the total replacement cost. Finally, a 

near-vertical segment indicates where the building has practically lost all value at 

high intensities, needing replacement regardless of the specific value of the IM. In all 

cases, the introduction of dampers clearly pushes the plateau to appear at higher IMs, 
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thus delaying the need for demolition. Post-tensioning seems to have a similar and 

actually additive beneficial effect. 

 

 

Figure 7.4 Vulnerability functions of the repair cost at 16% probability of 

exceedance (the P(D|θs.res) distribution has median value equal to 0.5%). 

 

 

Figure 7.5 Vulnerability functions of the repair cost at 50% probability of 

exceedance (the P(D|θs.res) distribution has median value equal to 0.5%). 

 

 

Figure 7.6 Vulnerability functions of the repair cost at 84% probability of 

exceedance (the P(D|θs.res) distribution has median value equal to 0.5%). 
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Figure 7.7 Vulnerability functions of the loss ratio at 16% probability of exceedance 

(the P(D|θs.res) distribution has median value equal to 0.5%). 

 

 

Figure 7.8 Vulnerability functions of the loss ratio at 50% probability of exceedance 

(the P(D|θs.res) distribution has median value equal to 0.5%). 

 

 

Figure 7.9 Vulnerability functions of the loss ratio at 84% probability of exceedance 

(the P(D|θs.res) distribution has median value equal to 0.5%). 
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Table 7.3 presents repair cost values at 50% probability of exceedance for all design 

cases and for different seismic intensities. Under the FOE and DBE, the SC-MRF has 

repair costs similar to those of the MRF. Under the MCE and 2·MCE, the repair 

costs of the SC-MRF are 92% and 14% less than the repair costs of the MRF, 

respectively. For higher seismic intensities, the SC-MRF and the MRF have similar 

repair costs. These results demonstrate that for a median value of the P(D|θs,res) 

distribution equal to 0.5%, post-tensioning is effective in reducing the repair cost for 

seismic intensities between the DBE and 2·MCE. Under the FOE, DBE and MCE, 

the MRF with viscous dampers has 100%, 57% and 95% less repair costs than those 

of the MRF. For seismic intensities equal or higher than the 2·MCE, the MRF and 

the MRF with viscous dampers have similar repair costs. These results demonstrate 

that for a median value of the P(D|θs,res) distribution equal to 0.5%, supplemental 

viscous damping is effective in reducing the repair cost for seismic intensities lower 

than 2·MCE. Moreover, Table 7.3 shows that the SC-MRF with viscous dampers has 

the best performance with repair costs significantly lower than those of the MRF for 

seismic intensities lower than 3·MCE.  
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Table 7.3 Repair cost (in $ (10
6
)) at 50% probability of exceedance for different seismic intensities (the P(D|θs.res) 

distribution has median value equal to 0.5%). 

 

Design cases FOE DBE MCE 2·MCE 3·MCE 4·MCE 

MRF 0.01 0.14 5.36 6.46 6.67 6.68 

MRF - Dampers 0.00 0.06 0.25 6.46 6.67 6.73 

SC-MRF 0.01 0.13 0.45 5.54 6.49 6.66 

SC-MRF - Dampers 0.00 0.04 0.16 1.28 5.72 6.54 
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7.5.2 Sensitivity of loss estimates to changes in the probability of 

demolition 

 

To examine the sensitivity of the economic seismic loss to the probability of 

demolition, additional loss analyses are conducted using median vales of the 

P(D|θs,res) distribution equal to 1.0% and 1.5%, while holding the dispersion constant 

at 0.3. Figures 7.10-7.11 show vulnerability functions of the repair cost and loss ratio 

at 50% probability of exceedance for median values of the P(D|θs,res) equal to 1.0%. 

Figures 7.12-7.13 show vulnerability functions of the repair cost and loss ratio at 

50% probability of exceedance for median values of the P(D|θs,res) equal to 1.5%. 

Figure 7.10 shows that at 50% probability of exceedance, the repair costs of the 

MRF, the MRF with viscous dampers, the SC-MRF, and the SC-MRF with viscous 

dampers significantly increase after a seismic intensity of 1.5·MCE, 1.6·MCE, 

2.5·MCE, and 3.3·MCE, respectively. The corresponding seismic intensities in 

Figure 7.12 are equal to 1.7·MCE, 1.9·MCE, 3.0·MCE, and 3.7·MCE, respectively. 

 

 

Figure 7.10 Vulnerability function of the repair cost at 50% probability of 

exceedance (the P(D|θs.res) distribution has median value equal to 1.0%). 
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Figure 7.11 Vulnerability function of the loss ratio at 50% probability of exceedance 

(the P(D|θs.res) distribution has median value equal to 1.0%). 

 

 

Figure 7.12 Vulnerability function of the repair cost at 50% probability of 

exceedance (the P(D|θs.res) distribution has median value equal to 1.5%). 

 

 

Figure 7.13 Vulnerability function of the loss ratio at 50% probability of exceedance 

(the P(D|θs.res) distribution has median value equal to 1.5%). 
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Table 7.4 presents repair cost values at 50% probability of exceedance for all design 

cases and for a median value of the P(D|θs,res) distribution equal to 1.0%. Under the 

FOE, DBE and MCE, the SC-MRF has similar repair costs with those of the MRF. 

Under the 2·MCE, the SC-MRF has 64% less repair costs than those of the MRF. For 

seismic intensities higher than 3·MCE, the SC-MRF and the MRF have similar repair 

costs. These results demonstrate that for a median value of the P(D|θs,res) distribution 

equal to 1.0%, post-tensioning is effective in reducing the repair cost for seismic 

intensities between the MCE and 3·MCE. Under the FOE, DBE and MCE, the MRF 

with viscous dampers has 100%, 73% and 67% less repair costs than those of the 

MRF. For seismic intensities higher than 2·MCE, the MRF with viscous dampers and 

the MRF have similar repair costs. These results demonstrate that for a median value 

of the P(D|θs,res) distribution equal to 1.0%, supplemental viscous damping is 

effective in reducing the repair cost for seismic intensities lower than 2·MCE. Table 

7.4 also shows that the SC-MRF with viscous dampers has the best performance with 

significantly lower repair costs than those of the MRF for seismic intensities lower 

than 4·MCE. 
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Table 7.4 Repair cost (in $ (10
6
)) at 50% probability of exceedance for different seismic intensities (the P(D|θs.res) 

distribution has median value equal to 1.0%). 

 

Design cases Sa,FOE Sa,DBE Sa,MCE 2· Sa,MCE 3· Sa,MCE 4· Sa,MCE 

MRF 0.01 0.15 0.54 6.11 6.59 6.65 

MRF - Dampers 0.00 0.04 0.18 6.00 6.57 6.68 

SC-MRF 0.01 0.12 0.45 2.20 5.94 6.54 

SC-MRF - Dampers 0.00 0.04 0.16 1.22 2.70 6.11 
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The results in Table 7.5 show that under the FOE, DBE and MCE, the SC-MRF has 

repair costs similar to those of the MRF. Under the 2·MCE, 3·MCE and 4·MCE, the 

SC-MRF has 74%, 55% and 12% less repair costs than those of the MRF. These 

results demonstrate that for a median value of the P(D|θs,res) distribution equal to 

1.5%, post-tensioning is effective in reducing the repair cost for seismic intensities 

between the MCE and 4·MCE. Under the FOE, DBE, MCE and 2·MCE, the MRF 

with viscous dampers has 100%, 75%, 75% and 29% less repair costs than those of 

the MRF. For seismic intensities higher than 3·MCE, the MRF with viscous dampers 

and the MRF have similar repair costs. These results demonstrate that for a median 

value of the P(D|θs,res) distribution equal to 1.5%, supplemental viscous damping is 

effective in reducing the repair cost for seismic intensities lower than 3·MCE. Table 

7.5 also shows that the SC-MRF with viscous dampers has the best performance with 

significantly lower repair costs than those of the MRF for seismic intensities equal or 

lower than 4·MCE. 
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Table 7.5 Repair cost (in $ (10
6
)) at 50% probability of exceedance for different seismic intensities (the P(D|θs.res) 

distribution has median value equal to 1.5%). 

 

Design cases Sa,FOE Sa,DBE Sa,MCE 2· Sa,MCE 3· Sa,MCE 4· Sa,MCE 

MRF 0.01 0.16 0.51 5.67 6.46 6.53 

MRF - Dampers 0.00 0.04 0.13 4.05 6.38 6.60 

SC-MRF 0.01 0.12 0.44 1.50 2.88 5.72 

SC-MRF - Dampers 0.00 0.04 0.15 0.66 1.79 3.04 
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A careful comparison among the results of Tables 7.3, 7.4, and 7.5 shows that supplemental 

viscous damping is more effective than post-tensioning in reducing the repair cost for seismic 

intensities equal or lower than the MCE. The opposite is true for seismic intensities higher 

than 2·MCE. The effectiveness of post-tensioning increases as the median of the P(D|θs,res) 

distribution increases for seismic intensities equal or higher than the 2·MCE. Moreover, the 

effectiveness of viscous damping is not clearly affected by the median of the P(D|θs,res) 

distribution. In addition, the repair cost of the MRF under the MCE is significantly increased 

with a decrease of the median of the P(D|θs,res) distribution from 1.0% to 0.5%. It should be 

highlighted that seismic intensities higher than MCE have low probability of occurrence, yet 

this chapter examines such high seismic intensities to identify the intensity level after which 

the repair cost of the low damage SC-MRF with viscous dampers quickly accelerates, 

 

7.6 Summary 

 

In this chapter the potential of SC-MRFs and viscous dampers to reduce the economic seismic 

losses in steel buildings has been evaluated. The evaluation is based on a 5-story prototype 

steel building designed to use different seismic-resistant frames, i.e.: conventional MRFs; 

MRFs with viscous dampers; SC-MRFs; or SC-MRFs with viscous dampers. These frames 

were designed according to EC8 (Eurocode 8 2013), and have the same beam/column cross-

sections and similar periods of vibration. The SC-MRF has similar initial stiffness but higher 

post-yield stiffness and peak base shear coefficient than the conventional. Viscous dampers 

are designed to achieve a total damping ratio of 20% at the fundamental period of vibration. 

The estimated peak story drift under the design earthquake for the frames with and without 

dampers is 1.2% and 1.8%, respectively. The economic losses are estimated by developing 

vulnerability functions according to the FEMA P-58 (FEMA P-58 2012) methodology, which 

considers uncertainties in earthquake ground motion, structural response, and repair costs. 

Both the probability of sidesway collapse and the probability of demolition due to excessive 

residual story drifts are taken into account. Moreover, a parametric study on the effect of the 

assumed residual story drift value beyond which is less expensive to rebuild a structure than 

to repair has been conducted. In particular, the probability of having to demolish the building 

conditioned to residual story drift, i.e. P(D|θs,res), was assumed to follow a lognormal 

distribution with median values of 0.5%, 1.0% and 1.5%. 
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Based on the results presented in this paper and given the properties of the steel frames and 

ground motions as well as the assumptions used in loss analyses, the following conclusions 

are drawn: 

 

1. The repair cost of the MRF under the MCE significantly increases with a decrease of the 

median value of the P(D|θs,res) distribution from 1.0% to 0.5%. 

 

2. For a median value of the P(D|θs,res) distribution equal to 0.5%, viscous dampers are 

effective in reducing the repair cost for seismic intensities lower than 2·MCE. On the 

other hand, post-tensioning is effective only for seismic intensities between the DBE and 

2·MCE.  

 

3. For a median value of the P(D|θs,res) distribution equal to 1.0%, viscous dampers are 

effective in reducing the repair cost for seismic intensities lower than 2·MCE. On the 

other hand, post-tensioning is effective only for seismic intensities between the MCE and 

3·MCE.  

 

4. For a median value of the P(D|θs,res) distribution equal to 1.5%, viscous dampers are 

effective in reducing the repair cost for seismic intensities lower than 3·MCE. On the 

other hand, post-tensioning is effective only for seismic intensities between the MCE and 

4·MCE.  

 

5. Supplemental viscous damping is more effective than post-tensioning in 

reducing the repair cost for seismic intensities equal or lower than the MCE. The 

opposite is true for seismic intensities higher than 2·MCE. 

 

6. The effectiveness of post-tensioning to reduce repair costs increases as the 

median value of the P(D|θs,res) distribution increases for seismic intensities equal 

or higher than the 2·MCE. The effectiveness of supplemental viscous damping 

is not clearly affected by the median value of the P(D|θs,res) distribution.  

 

7. For seismic intensities lower or equal to 3·MCE, the SC-MRF with viscous 

dampers has superior seismic performance. For example, under both the DBE 

and MCE and for all the median values of the P(D|θs,res) distribution, the SC-
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MRF achieves repair cost reductions between 70% and 100% compared to the 

repair cost of the conventional MRF. 
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8 Conclusions and recommendations for further work 

 

8.1 Conclusions 

 

In this PhD thesis, conventional seismic-resistant steel frames and the associated 

seismic design methodology according to EC8 (Eurocode 8 2013) are first discussed. 

Several types of resilient structural systems like SC-MRFs, passive dampers, and 

combined systems, which can minimize structural and non-structural damage, are 

also discussed. An extensive literature review of all the existing PT connections is 

presented. In this literature review, all the existing numerical models and 

experiments for PT connections and SC-MRFs are presented, and, all the available 

seismic assessment studies on SC-MRFs are discussed. Based on the literature 

review, research needs are identified. 

 

A modelling procedure of PT connections with WHPs and the associated beams and 

columns in OpenSees is developed. The recommended model has been calibrated 

against experimental results and found to accurately simulate the connection 

behavior. The ability of the recommended model to capture the stiffness and strength 

deterioration due to beam local buckling is also validated. The OpenSees model is 

compared against FEM models in Abaqus, which were developed and calibrated 

against experimental setups of PT connections where local buckling occurs in the 

beams. It is concluded that the recommended model of PT connections in OpenSees 

is able to accurately capture the connection behaviour, including the stiffness and 

strength deterioration due to local buckling in the beam flange and web. Therefore, 

the proposed model can be used in collapse simulations of SC-MRFs. 

 

A seismic design and assessment procedure of steel SC-MRFs with viscous dampers 

within the framework of EC8 (Eurocode 8 2013) was developed. This design 

strategy combines steel SC-MRFs with viscous dampers to simultaneously control 

peak story drifts and residual story drifts. The SC-MRFs are using a recently 

developed PT connection with WHPs (Vasdravellis et al 2013a,b). In the proposed 

design procedure, performance levels are defined with respect to drifts, residual 

drifts and limit states in the PT connections. Also, a preliminary pushover analysis is 
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conducted at the early phase of the design process to estimate rotations and axial 

forces in PT connections instead of using approximate formulae. 

 

A 5-story prototype steel building was designed using MRFs or SC-MRFs with 

different base shear strengths and viscous dampers. Different designs of the SC-

MRFs with viscous dampers are considered to investigate all possible scenarios, i.e. 

use of dampers to achieve drifts significantly lower than the EC8 (Eurocode 8 2013) 

drift limit; to significantly reduce steel weight without exceeding the EC8 (Eurocode 

8 2013) drift limit; or to reduce steel weight and achieve drifts lower than the EC8 

(Eurocode 8 2013) drift limit. All the design cases were evaluated under the FOE, 

DBE and MCE seismic intensities through nonlinear dynamic analysis. Moreover, 

IDAs were conducted to evaluate the potential of SC-MRFs and viscous dampers to 

improve the collapse resistance in comparison to MRFs. For all the analysis, models 

capable of simulating all structural limit states up to collapse were used. 

 

Based on the IDAs results, the potential of SC-MRFs and viscous dampers to reduce 

the economic seismic losses has been also evaluated. The economic losses are 

estimated by developing vulnerability functions according to the FEMA P-58 

(FEMA P-58 2012) methodology, which considers uncertainties in earthquake 

ground motion, structural response, and repair costs. The probability of collapse and 

the probability of demolition due to excessive residual story drifts have been taken 

into account. Moreover, a parametric study on the effect of the residual story drift 

threshold beyond which is less expensive to rebuild a structure than to repair is also 

conducted. In particular, the probability of having to demolish the building 

conditioned to residual story drift, i.e. P(D|θs,res), was assumed to follow a lognormal 

distribution with median values of 0.5%, 1.0% and 1.5%. 

 

Based on the PhD research work briefly described above, the following conclusions 

are drawn. 

 

 3D FEM models in ABAQUS are capable to simulate the complex inelastic 

buckling that occurs either in the beam web or the beam flanges of PT 

connections under high axial forces and large drifts.  
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 Models for PT connections in OpenSees, which incorporate fiber beam-column 

elements along with zero-length nonlinear springs simulating contact/friction, 

are capable to simulate the complex hysteretic behaviour of PT connections 

under large cyclic drifts.  

 The preliminary pushover analysis recommended as a major step of the 

proposed design procedure results in very accurate prediction of structural limit 

states in the PT connections. 

  

 The SC-MRFs avoid beam and column base plastic hinge formation under the 

MCE and experience strength deterioration at roof drifts higher than 5%.  

 

 The SC-MRFs with viscous dampers can be designed for less steel weight 

(resulting in less strength) without compromising their DBE drift performance. 

The same is generally true for the MCE drift performance, but a restriction on 

the strength reduction should be established. 

 

 Viscous dampers are very effective in improving the residual drift performance 

of SC-MRFs.  

 

 The SC-MRFs have higher collapse resistance than that of the MRFs, while the 

use of viscous dampers results in higher collapse resistance for both the MRFs 

and the SC-MRFs. The 50% probability of collapse is associated with seismic 

intensities of 5.5·MCE for the SC-MRF with viscous dampers; 5.0·MCE for the 

MRF with viscous dampers; 4.5·MCE for the SC-MRF; and 3.6·MCE for the 

MRF. 

 

 The repair cost of the MRF under the MCE significantly increases with a 

decrease of the median value of the P(D|θs,res) distribution from 1.0% to 0.5%. 

 

 For a median value of the P(D|θs,res) distribution equal to 0.5%, viscous dampers 

are effective in reducing the repair cost for seismic intensities lower than 

2·MCE. On the other hand, post-tensioning is effective only for seismic 

intensities between the DBE and 2·MCE.  
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 For a median value of the P(D|θs,res) distribution equal to 1.0%, viscous dampers 

are effective in reducing the repair cost for seismic intensities lower than 

2·MCE. On the other hand, post-tensioning is effective only for seismic 

intensities between the MCE and 3·MCE.  

 

 For a median value of the P(D|θs,res) distribution equal to 1.5%, viscous dampers 

are effective in reducing the repair cost for seismic intensities lower than 

3·MCE. On the other hand, post-tensioning is effective only for seismic 

intensities between the MCE and 4·MCE.  

 

 Supplemental viscous damping is more effective than post-tensioning in 

reducing the repair cost for seismic intensities equal or lower than the MCE. The 

opposite is true for seismic intensities higher than 2·MCE. 

 

 The effectiveness of post-tensioning to reduce repair costs increases as the 

median value of the P(D|θs,res) distribution increases for seismic intensities equal 

or higher than the 2·MCE. The effectiveness of supplemental viscous damping 

is not clearly affected by the median value of the P(D|θs,res) distribution.  

 

 For seismic intensities lower or equal to 3·MCE, the SC-MRF with viscous 

dampers has superior seismic performance. For example, under both the DBE 

and MCE and for all the median values of the P(D|θs,res) distribution, the SC-

MRF achieves repair cost reductions between 70% and 100% compared to the 

repair cost of the conventional MRF. 
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8.2 Recommendations for further research 

 

 Evaluation of the behaviour of steel SC-MRFs under progressive collapse 

conditions in a column loss scenario. A finite element model can be developed 

in Abaqus, simulating a building with SC-MRFs and a loss of column scenario 

analysis can be implemented.  

 

 The fire resistance of SC-MRFs can be evaluated. Premature failure of the 

connections could be cause due to relaxation of the post-tensioning force in the 

PT bars or reduction of the strength and stiffness of the WHPs under 

temperature increase. PT bars could be protected with fire coating and WHPs 

could be made of fire resistant steel. Additionally, premature failure could be 

caused by local buckling in the beams as a result of bending moment and high 

compressive forces due to thermal expansion. Both experimental tests and 

numerical modelling will be needed to study the fire behaviour of SC-MRFs 

under fire.  

 

 Experimental cyclic tests of PT connections with WHPs up to high drifts, after 

the occurrence of beams local buckling at the end of the reinforcing plates. Such 

tests will be carried out in the structures laboratory of University of Warwick, 

where cyclic tests will be implemented up to the structural collapse of a PT 

connection.  

 

 Development of component fragility curves and cost functions for PT 

connections based on large data of experimental and FEM results. Finite 

elements of several PT connections from the existing literature can be 

developed. The finite element results can be combined with available 

experimental tests of PT connections from the existing literature.  The analytical 

and the experimental results can be used to define damage states of PT 

connections and so to develop component fragility curves. Also in combination 

with experience of industrial market prices, cost functions of PT connections can 

be developed.  

  



202 
 

References 

 

Abaqus user‟s manual. Version 6.10. Providence, RI, USA; 2010. 

 

AISC 341‐05. Seismic provisions for structural steel buildings; 2005. 

 

All structure engineering LLC webpage 

 

ASCE. Minimum design loads for buildings and other structures. ASCE 7, Reston, 

VA; 2005 

 

Aslani H, Miranda E. Probabilistic earthquake loss estimation and loss 

disaggregation in buildings, Report No. 157, John A. Blume Earthquake 

Engineering Research Center, Stanford, CA, 2005. 

 

Carr AJ. RUAUMOKO—Inelastic Dynamic Analysis Program. Department of Civil 

Engineering, University of Canterbury, Christchurch, New Zealand, 2005. 

 

Charney FA, Downs WM. Connections in steel structures V. ESSC/AISC 

Workshop. Amsterdam; June 3-4 2004. 

 

Chou CC, Chen JH, Chen YC and Tsai KC. Evaluating performance of post-

tensioned steel connections with strands and reduced flange plates. Earthquake 

Engineering and Structural Dynamics 2006; 35(9): 1167-1185. 

 

Chou C-C, Tsai K-C, Yang W-C. Self-centering steel connections with steel bars and 

a discontinuous composite slab. Earthquake Engineering and Structural Dynamics 

2009; 38: 403-422.  

 

Chou CC, Lai YJ. Post-tensioned self-centering moment connections with beam 

bottom flange energy dissipators. Journal of Constructional Steel Research 2009; 

65(10-11): 1931-1941. 

 



203 
 

Christopoulos C, Filiatrault A, Uang CM, Folz B. Posttensioned energy dissipating 

connections for moment-resisting steel frames. Journal of Structural Engineering 

(ASCE) 2002a; 128(9): 1111-1120. 

 

Christopoulos C, Filiatrault A, and Folz B. Seismic response of self-centering 

hysteretic SDOF systems. Earthquake engineering and structural dynamics 2002b; 

31: 1131-1150. 

 

Christopoulos C, Pampanin S, Priestley MJN. New damage index for framed 

systems based on residual deformations. Journal of earthquake engineering 2003; 

7(1), 97-118. 

Christopoulos C, Filiatrault A. Principles of passive supplemental damping and 

seismic isolation, Italy; 2006. 

 

Constantinou MC, Symans MD, Experimental and analytical investigation of seismic 

response of structures with supplemental fluid viscous dampers. Technical report 

NCEER-92-0032, NCER1992. National center for earthquake research, Buffalo, 

New York; 1992. 

 

Cornell CA, Krawinkler H. Progress and challenges in seismic performance 

assessment. PEER Center News 2000; 3(2):1–4. 

 

D‟Aniello M, Landolfo R, Piluso V, Rizzano G. Ultimate behavior of steel beams 

under non uniform bending. Journal of Constructional Steel Research 2012; 78: 144-

158 

 

Dimopoulos AI, Karavasilis TL, Vasdravellis G, Uy B. Seismic design, modelling 

and assessment of self-centering steel frames using post-tensioned connections with 

web hourglass shape pins. Bulletin of Earthquake Engineering 2013; 11:1797–1816. 

 

Dimopoulos AI, Tzimas AS, Karavasilis TL, and Vamvatsikos D. Probabilistic 

economic seismic loss estimation in steel buildings using post-tensioned moment 



204 
 

resisting frames and viscous dampers. Earthquake engineering and structural 

dynamics 2016; DOI: 10.1002/eqe.2722. 

  

Dolce M, Manfredi G. Research needs in earthquake engineering highlighted by the 

2009 L‟Aquila earthquake. The ReLUIS-DPC Project Report; 2009.  

 

Elghazouli AY. Assessment of European seismic design procedures for steel framed 

structures. Bulletin of Earthquake Engineering 2010; 8:65–89. 

 

Elkady A, Lignos DG. Analytical investigation of the cyclic behavior and plastic 

hinge formation in deep wide-flange steel beam-columns. Bulletin of Earthquake 

Engineering 2014; DOI 10.1007/s10518-014-9640-y. 

 

EC3. Eurocode 3: Design of steel structures - Part 1-1: General rules and rules for 

steel buildings; 2010.  

 

EC3. Eurocode 3: Design of steel structures - Part 1-5: Plated structural elements; 

2006. 

 

EC8. Eurocode 8: Design of structures for earthquake resistance; 2013. 

 

Federal Emergency Management Agency, FEMA. NEHRP guidelines for the 

seismic rehabilitation of buildings. Report FEMA-273. Washington (DC); 1997. 

 

Federal Emergency Management Agency (FEMA). NEHRP recommended 

provisions for seismic regulations for new buildings and other structures, Part 1 - 

provisions. Report FEMA-368, Washington (D.C); 2000a 

 

FEMA P695. Quantification of building seismic performance factors. ATC-63 

Project. Applied Technology Council. CA. USA; 2008.  

 

FEMA P58. Seismic Performance Assessment of Buildings. ATC. Applied 

Technology Council. CA. USA; 2012. 

 



205 
 

Garlock M, Ricles JM, Sause R. Experimental studies of full-scale posttensioned 

steel connections. Journal of Structural Engineering 2005; 131(3): 438-448. 

 

Garlock M, Sause R, Ricles JM. Behavior and design of posttensioned steel frame 

systems. Journal of Structural Engineering 2007; 133(3): 389-399.  

 

Gunay S, Mosalam KM. PEER Performance-Based Earthquake Engineering 

Methodology, Revisited. Journal of Earthquake Engineering 2013; 17:829-858. 

 

Housner GW. Limit design of structures to resist earthquakes. 1
st
 World Conference 

on Earthquake Engineering, Berkeley, CA, 5.1-5.13; 1956. 

 

Hamidia M, Filiatrault A, Aref A. Simplified seismic sidesway collapse analysis of 

frame buildings. Earthquake engineering and structural dynamics 2014; 43:429-448. 

 

Kam WY, Pampanin S, Carr AJ, Palermo A. Design procedure and behaviour of 

advanced flag-shape (AFS) MDOF systems. NZSEE Conference; 2008.  

 

Kam WY, Pampanin S, Palermo A, Car AJ. Self-centering structural systems with 

combination of hysteretic and viscous energy dissipations. Earthquake Engineering 

and Structural Dynamics 2010; 39(10): 1083-1108.  

 

Karavasilis TL, Ricles JM, Sause R, Chen C. Experimental evaluation of the seismic 

performance of steel MRFs with compressed elastomer dampers using large-scale 

real-time hybrid simulation. Engineering Structures 2011; 33(6):1859-1869. 

 

Karavasilis TL, Kerawala S, Hale E. Model for hysteretic behaviour of steel energy 

dissipation devices and evaluation of a minimal-damage seismic design approach for 

steel frames. Journal of Constructional Steel Research 2012; 70:358-367. 

 

Karavasilis TL, Seo C-Y. Seismic structural and non-structural performance 

evaluation of highly damped self-centering and conventional systems. Engineering 

Structures 2011; 33: 2248-2258. 



206 
 

 

Kelly JM, Skinner RI, and Heine AJ. Mechanisms of energy absorption in special 

devices for use in earthquake resistant structures. Bulletin of the New York Zealand 

Society for earthquake engineering 1972; 5(3), 63-88.  

 

Kim HJ, Christopoulos C. Friction damped posttensioned self-centering steel 

moment-resisting frames. Journal of Structural Engineering 2008a; 134(11): 1768-

1779. 

 

Kim HJ and Christopoulos C. Numerical models and ductile ultimate deformation 

response of post-tensioned self-centering moment connections. Earthquake 

engineering and structural dynamics 2009a; 38: 1-21. 

 

Kim HJ, Christopoulos C. Seismic design procedure and seismic response of post-

tensioned self-centering steel frames. Earthquake Engineering and Structural 

Dynamics 2009b; 38: 355-376. 

 

Kobori T, Miura Y, Fukuzawa E, Yamada T, Arita T, Takenaka Y, Miyagawa N, 

Tanaka N, Fukumoto T. Development and application of hysteresis steel dampers. 

Earthquake Engineering, 10
th

 World Conference. Rotterdam: Balkema; 1992; 

 

Krawinkler H. Shear in Beam-Column joints in Seismic Design of Frames. 

Engineering Journal 1978; 15(2) AISC, Chicago, Illinois. 

 

Kurama YC. Seismic design of unbonded post-tensioned precast concrete walls with 

supplementary viscous damping. ACI Structural Journal 2000; 97(3):648–658. 

 

Lignos DG, Krawinkler H. A database in support of modelling of component 

deterioration for collapse prediction of steel frame structures. ASCE Structures 

Congress, SEI institute, Long Beach CA; 2007. 

 

Lin YC, Sause R, and Ricles JM. Seismic performance of a self-centering steel 

moment resisting frame system with beam web friction devices: Hybrid simulations 

under the DBE. Journal of structural engineering 2013a 139(11), 1823–1832. 



207 
 

 

Lin YC, Sause R, and Ricles JM. Seismic performance of a large-scale steel self-

centering moment resisting frame: MCE hybrid simulations and quasi-static 

pushover tests. Journal of structural engineering 2013b; 139(7), 1227–1236. 

 

Luco N, Bazzurro P. Does amplitude scaling of ground motion records result in 

biased nonlinear structural drift responses? Earthquake Engineering and Structural 

Dynamics 2007; 36(13): 1813-1835. 

 

Mazzoni S, McKenna F, Scott M, Fenves G. Open system for earthquake 

engineering simulation (OpenSees). User Command Language Manual, Pacific 

Earthquake Engineering Research Center, University of California, Berkeley; 2006.  

 

McCormick J, Aburano H, Ikenaga M, Nakashima M. Permissible residual 

deformation levels for building structures considering both safety and human 

elements. 14
th

 Word Conference of Earthquake Engineering, Beijing, China; 2008. 

 

McKay MD, Beckman RJ, Conover WJ. A comparison of three methods for 

selecting values of input variables in the analysis of output from a computer code. 

Technometrics 1979; 21(2): 239-245. 

 

Muto K. Earthquake resistant design of 36-storied Kasamigaseki building. 4
th

 world 

conference on earthquake engineering, 3, J-4, 16-33; 1969. 

Newell J, Uang C-M. Cyclic behaviour of steel columns with combined high axial 

load and drift demand. Report No. SSRP-06/22. Department of Structural 

Engineering, University of California, San Diego, La Jolla; 2006. 

 

Newell J, Uang C-M. Cyclic behavior of steel wide-flange columns subjected to 

large drift. Journal of Structural Engineering 2008; 134:1334-1342. 

 

Ogreen engineering web page. 

 



208 
 

Pall AS, Marsh C, Fazio P. Friction joints for seismic control of large panel 

structures. Journal of prestressed concrete institute 1980; 25(6), 38-61. 

 

Porter KA, Kiremidjian AS, LeGrue JS. Assembly-based vulnerability of buildings 

and its use in performance evaluation. Earthquake Spectra 2001; 17(2):291-312. 

 

Porter, KA, Beck, JL, Shaikhutdinov, RV. Sensitivity of building loss estimates to 

major uncertain variables. Earthquake Spectra 2002; 18 (4): 719-743. 

 

Prakash V, Powell G, and Campbell S. „DRAIN-2DX base program description and 

user guide, version 1.10. Report No UCB/ SEMM-93/17&18. Structural Engineering 

Mechanics and Materials. Department of Civil Engineering. University of California, 

Berkeley, Calif; 1993. 

 

Ramirez CM, Miranda E. Significance of residual drifts in building earthquake loss 

estimation. Earthquake Engineering and Structural Dynamics 2012; 41:1477-1493. 

 

Ricles J, Sause R, Garlock M, and Zhao C. Posttensioned seismic-resistant 

connections for steel frames. Journal of structural engineering 2001; 127(2): 113–

121. 

 

Ricles J, Sause R, Peng SW, and Lu LW. Experimental evaluation of earthquake 

resistant posttensioned steel connections. Journal of structural engineering 2002; 

128(7): 850–859. 

 

Rojas P. Seismic analysis, design, and evaluation of posttensioned friction damped 

connections for steel moment resisting frames. PhD dissertation in Civil and 

Environmental Engineering Department. Lehigh University, Bethlehem, Pa; 2003. 

 

Rojas P, Ricles JM, Sause R. Seismic performance of post-tensioned steel moment 

resisting frames with friction devices.  Journal of Structural Engineering 2005; 

131(4): 529-540. 

 



209 
 

Sanchez-Ricart L, Plumier A. Parametric study of ductile moment-resisting steel 

frames: A first step towards Eurocode 8 calibration. Earthquake Engineering and 

Structural Dynamics 2008; 37(7): 1135–1155.  

 

Scott MH, Fenves GL. Plastic hinge integration methods for force –based beam-

column elements. Journal of Structural Engineering 2006; 132(2): 244-252.  

 

Skinner RI, Kelly KM, Heine AJ. Optimal seismic response control with dampers. 

Earthquake engineering and structural dynamics 1975; 3: 287-296. 

  

Tsai KC, Chou CC, Lin CL, Chen PC, Jhang SJ. Seismic self-centering steel beam-

to-column moment connections using bolted friction devices. Earthquake 

Engineering and Structural Dynamics 2008; 37: 627-645. 

 

Tyler RG. Damping in Building structures by Means of PTFE sliding joints. Bulletin 

of the New Zealand society for earthquake engineering 1977; 10(3): 139-142. 

 

Tzimas AS, Karavasilis TL, Bazeos N, Beskos DE. A hybrid force/displacement 

seismic design method for steel building frames. Engineering Structures 2013; 56: 

1452-1463. 

 

Tzimas AS, Dimopoulos AI, Karavasilis TL. EC8-based seismic design and 

assessment of self-centering post-tensioned steel frames with viscous dampers. 

Journal of Constructional Steel Research 2015; 105:60-73.  

 

Vamvatsikos D, Cornell CA. Incremental dynamic analysis. Earthquake Engineering 

and Structural Dynamics 2002; 31(3): 491-514. 

 

Vasdravellis G, Karavasilis TL, Uy B. Large-scale experimental validation of steel 

post-tensioned connections with web hourglass pins. Journal of Structural 

Engineering 2013a; 139(6):1033-1042. 

  



210 
 

Vasdravellis G, Karavasilis TL, Uy B.  Finite element models and cyclic behaviour 

of self-centering post-tensioned connections with web hourglass pins. Engineering 

Structures 2013b; 52:1-16. 

 

Vasdravellis G, Karavasilis TL, Uy B. Design rules, experimental evaluation, and 

fracture models for high-strength and stainless steel hourglass shape energy 

dissipation devices. Journal of Structural Engineering 2015; 140(11):04014087 

 

Whittaker AS, Constantinou MC, Ramirez OM, Johnson MW, Chrysostomou CZ. 

Equivalent lateral force and modal analysis procedures of the 2000 NEHRP 

Provisions for buildings with damping systems. Earthquake Spectra 2003; 

19(4):959–80. 

 

Wolski M, Ricles JM, Sause R. Experimental study of a self-centering beam-column 

connection with bottom flange friction device. Journal of Structural Engineering 

2009; 135(5): 479-488. 

  



A 
 

Annex A. OpenSees script for a 5 storeys - 3 bays SC-MRF using PT 

connections with WHPs 

 

#------------------------------------------------------------------------------------------------- 

# OpenSees script for a 5 storeys - 3 bays SC-MRF using PT connection with WHPs 

# Written by: Athanasios Dimopoulos  
#------------------------------------------------------------------------------------------------- 

 

# Clear database 
 

wipe 

 
 

# Units: KN, m                     

 
# Define the model builder 

           

model BasicBuilder -ndm 2 -ndf 3; 
 

# Define basic grid lines 

 
# x: hoizontal axis 

 

# y: vertical axis 
 

# Define lean on columns x coordinates 

 
set xL1 -24.0; 

set xL2 -16.0; 

set xL3 -8.00; 
 

# Define columns vertical x coordinates 

 
set x1 0.0; 

set x2 8.0; 

set x3 16.00; 
set x4 24.00; 

 

# Define floors horizontal y coordinates 
 

set y1 0.0; 

set y2 4.0; 
set y3 7.2; 

set y4 10.4; 

set y5 13.6; 
set y6 16.8; 

 

# Define beam section geometrical properties  

 

# R: for sections of beam elements with reinforcing plates on the flanges) 
 

# 1, 2, 3, 4, 5 stands for storey 

 
# d: section height; tw: web thickness; bf: flange width; tf: flange thickness; As: shear area 

 

# b stands for beams and c for columns 
 

# IPE500R1  

set dbr1 0.614 ; 
set twbr1 0.0111 ; 

set bfbr1 0.21 ; 

set tfbr1 0.0492 ; 
set Asbr1 0.006815 ; 

 

# IPE500R3  

set dbr3 0.614 ; 

set twbr3 0.0111 ; 

set bfbr3 0.21 ; 
set tfbr3 0.0492 ; 

set Asbr3 0.006815 ; 

 
# IPE550R2 



B 
 

set dbr2 0.678 ; 

set twbr2 0.012 ; 
set bfbr2 0.22 ; 

set tfbr2 0.058 ; 

set Asbr2 0.008136 ; 
 

# IPE450R4 

set dbr4 0.552 ; 
set twbr4 0.0102 ; 

set bfbr4 0.2 ; 

set tfbr4 0.042 ; 
set Asbr4 0.00563 ; 

 

# IPE450R5 
set dbr5 0.542 ; 

set twbr5 0.0102 ; 

set bfbr5 0.2 ; 

set tfbr5 0.037 ; 

set Asbr5 0.005528 ; 

 
# Define Column sections 

 

# HEB600 
set dc2 0.6 ; 

set twc2 0.0155 ; 

set bfc2 0.3 ; 
set tfc2 0.03 ; 

set Asc2 0.0093 ; 
 

# HEB650 

set dc1 0.65 ; 
set twc1 0.016 ; 

set bfc1 0.3 ; 

set tfc1 0.031 ; 

set Asc1 0.0104 ; 

 

# Define Additional grids for the rigid components of the panel zones (scissor model), simulating the sc connections' interface 
 

CGrid points in x direction for the simulation of the rigid components (first 3 floors) 

 
# C stands for column; B stands for beams; L stands for left; R stands for right; T stands for top of the beam; B stands for 

bottom of the beam;  

 
# 1 stands for the y coordinate of the exterior fiber of the beam reinforcing plate 

 

# 2 stands for the y coordinate of the interior fiber of the beam reinforcing plate  
 

# 3 stands for the y coordinate of the interior fiber of the beam flange 

 
set x11CL [expr $x1-0.5*$dc1]; 

set x11CR [expr $x1+0.5*$dc1]; 

 
set x12CL [expr $x2-0.5*$dc1]; 

set x12CR [expr $x2+0.5*$dc1]; 

 
set x13CL [expr $x3-0.5*$dc1]; 

set x13CR [expr $x3+0.5*$dc1]; 

 
set x14CL [expr $x4-0.5*$dc1]; 

set x14CR [expr $x4+0.5*$dc1]; 

 
 

# Grid points in x direction for the simulation of the rigid components (4 & 5 floors)  

 
set x21CL [expr $x1-0.5*$dc2]; 

set x21CR [expr $x1+0.5*$dc2]; 

 
set x22CL [expr $x2-0.5*$dc2]; 

set x22CR [expr $x2+0.5*$dc2]; 

 
set x23CL [expr $x3-0.5*$dc2]; 

set x23CR [expr $x3+0.5*$dc2]; 

 
set x24CL [expr $x4-0.5*$dc2]; 

set x24CR [expr $x4+0.5*$dc2]; 
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# Grid points in y direction for the simulation of the rigid components (1 & 2 floors) 
 

set y2BT  [expr $y2+0.5*$dbr1]; 

set y2BT1 [expr $y2BT-($tfbr1-$tfb13)]; 
set y2BT2 [expr $y2BT1-$tfb13]; 

set y2BT3 [expr $y2BT2-0.05]; 

 
set y2BB  [expr $y2-0.5*$dbr1]; 

set y2BB1 [expr $y2BB+($tfbr1-$tfb13)]; 

set y2BB2 [expr $y2BB1+$tfb13]; 
set y2BB3 [expr $y2BB2+0.05]; 

 

set y3BT  [expr $y3+0.5*$dbr2]; 
set y3BT1 [expr $y3BT-($tfbr2-$tfb2)]; 

set y3BT2 [expr $y3BT1-$tfb2]; 

set y3BT3 [expr $y3BT2-0.05]; 

 

set y3BB  [expr $y3-0.5*$dbr2]; 

set y3BB1 [expr $y3BB+($tfbr2-$tfb2)]; 
set y3BB2 [expr $y3BB1+$tfb2]; 

set y3BB3 [expr $y3BB2+0.05]; 

 
# Grid points in y direction for the simulation of the rigid components (3 & 4 floors) 

 

set y4BT  [expr $y4+0.5*$dbr3]; 
set y4BT1 [expr $y4BT-($tfbr3-$tfb13)]; 

set y4BT2 [expr $y4BT1-$tfb13]; 
set y4BT3 [expr $y4BT2-0.05]; 

 

set y4BB  [expr $y4-0.5*$dbr3]; 
set y4BB1 [expr $y4BB+($tfbr3-$tfb13)]; 

set y4BB2 [expr $y4BB1+$tfb13]; 

set y4BB3 [expr $y4BB2+0.05]; 

 

set y5BT  [expr $y5+0.5*$dbr4]; 

set y5BT1 [expr $y5BT-($tfbr4-$tfb45)]; 
set y5BT2 [expr $y5BT1-$tfb45]; 

set y5BT3 [expr $y5BT2-0.05]; 

 
set y5BB  [expr $y5-0.5*$dbr4]; 

set y5BB1 [expr $y5BB+($tfbr4-$tfb45)]; 

set y5BB2 [expr $y5BB1+$tfb45]; 
set y5BB3 [expr $y5BB2+0.05]; 

 

# Grid points in y direction for the simulation of the rigid components (5 floor) 
 

set y6BT  [expr $y6+0.5*$dbr5]; 

set y6BT1 [expr $y6BT-($tfbr5-$tfb45)]; 
set y6BT2 [expr $y6BT1-$tfb45]; 

set y6BT3 [expr $y6BT2-0.05]; 

 
set y6BB  [expr $y6-0.5*$dbr5]; 

set y6BB1 [expr $y6BB+($tfbr5-$tfb45)]; 

set y6BB2 [expr $y6BB1+$tfb45]; 
set y6BB3 [expr $y6BB2+0.05]; 

 

# Define x coordinates for for the beams discretization (reinforcing plates at the supports) 
 

# Floors 1  

 
# RLength stands for reinforcing plate length and the number stands for the floor 

 

set RLength1 1.258; 
  

# bay 1 

set xA1 [expr $x11CR+$RLength1]; 
set xA2 [expr $x12CL-$RLength1]; 

# bay 2 

set xA3 [expr $x12CR+$RLength1]; 
set xA4 [expr $x13CL-$RLength1]; 

# bay 3 

set xA5 [expr $x13CR+$RLength1]; 
set xA6 [expr $x14CL-$RLength1]; 
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# Floor 2  

set RLength2 1.461; 
  

# bay 1 

set xB1 [expr $x11CR+$RLength2]; 
set xB2 [expr $x12CL-$RLength2]; 

# bay 2 

set xB3 [expr $x12CR+$RLength2]; 
set xB4 [expr $x13CL-$RLength2]; 

# bay 3 

set xB5 [expr $x13CR+$RLength2]; 
set xB6 [expr $x14CL-$RLength2]; 

 

 
# Floor 3 

 

set RLength3 1.311; 

 

# bay 1 

set xC1 [expr $x11CR+$RLength3]; 
set xC2 [expr $x12CL-$RLength3]; 

# bay 2 

set xC3 [expr $x12CR+$RLength3]; 
set xC4 [expr $x13CL-$RLength3]; 

# bay 3 

set xC5 [expr $x13CR+$RLength3]; 
set xC6 [expr $x14CL-$RLength3]; 

 
# Floor 4 

 

set RLength4 1.073; 
 

# bay 1 

set xD1 [expr $x21CR+$RLength4]; 

set xD2 [expr $x22CL-$RLength4]; 

# bay 2 

set xD3 [expr $x22CR+$RLength4]; 
set xD4 [expr $x23CL-$RLength4]; 

# bay 3 

set xD5 [expr $x23CR+$RLength4]; 
set xD6 [expr $x24CL-$RLength4]; 

 

# Floor 5 
 

set RLength5 0.724; 

 
# bay 1 

set xE1 [expr $x21CR+$RLength5]; 

set xE2 [expr $x22CL-$RLength5]; 
# bay 2 

set xE3 [expr $x22CR+$RLength5]; 

set xE4 [expr $x23CL-$RLength5]; 
# bay 3 

set xE5 [expr $x23CR+$RLength5]; 

set xE6 [expr $x24CL-$RLength5]; 
 

# Define nodes coordinates 

 
# Column's nodes 

 

# Col1 
node 1  $x1 $y1; 

node 2  $x1 $y2BB; 

node 3  $x1 $y2BT; 
node 4  $x1 $y3BB; 

node 5  $x1 $y3BT; 

node 6  $x1 $y4BB; 
node 7  $x1 $y4BT; 

node 8  $x1 $y5BB; 

node 9  $x1 $y5BT; 
node 10 $x1 $y6BB; 

# Col2 

node 11 $x2 $y1; 
node 12 $x2 $y2BB; 

node 13 $x2 $y2BT; 



E 
 

node 14 $x2 $y3BB; 

node 15 $x2 $y3BT; 
node 16 $x2 $y4BB; 

node 17 $x2 $y4BT; 

node 18 $x2 $y5BB; 
node 19 $x2 $y5BT; 

node 20 $x2 $y6BB; 

# Col3 
node 21 $x3 $y1; 

node 22 $x3 $y2BB; 

node 23 $x3 $y2BT; 
node 24 $x3 $y3BB; 

node 25 $x3 $y3BT; 

node 26 $x3 $y4BB; 
node 27 $x3 $y4BT; 

node 28 $x3 $y5BB; 

node 29 $x3 $y5BT; 

node 30 $x3 $y6BB; 

# Col4 

node 31 $x4 $y1; 
node 32 $x4 $y2BB; 

node 33 $x4 $y2BT; 

node 34 $x4 $y3BB; 
node 35 $x4 $y3BT; 

node 36 $x4 $y4BB; 

node 37 $x4 $y4BT; 
node 38 $x4 $y5BB; 

node 39 $x4 $y5BT; 
node 40 $x4 $y6BB; 

 

#beam's nodes 
 

#1st floor 

#1st bay 

node 41 $x11CR $y2; 

node 42 $xA1  $y2; 

node 43 $xA2  $y2; 
node 44 $x12CL $y2; 

#2nd bay 

node 45 $x12CR $y2; 
node 46 $xA3  $y2; 

node 47 $xA4  $y2; 

node 48 $x13CL $y2; 
#3rd bay 

node 49 $x13CR $y2; 

node 50 $xA5  $y2; 
node 51 $xA6  $y2; 

node 52 $x14CL $y2; 

 
 

#2nd floor 

#1st bay 
node 53 $x11CR $y3; 

node 54 $xB1  $y3; 

node 55 $xB2  $y3; 
node 56 $x12CL $y3; 

#2nd bay 

node 57 $x12CR $y3; 
node 58 $xB3  $y3; 

node 59 $xB4  $y3; 

node 60 $x13CL $y3; 
#3rd bay 

node 61 $x13CR $y3; 

node 62 $xB5  $y3; 
node 63 $xB6  $y3; 

node 64 $x14CL $y3; 

 
 

#3rd floor 

#1st bay 
node 65 $x11CR $y4; 

node 66 $xC1  $y4; 

node 67 $xC2  $y4; 
node 68 $x12CL $y4; 

#2nd bay 
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node 69 $x12CR $y4; 

node 70 $xC3  $y4; 
node 71 $xC4  $y4; 

node 72 $x13CL $y4; 

#3rd bay 
node 73 $x13CR $y4; 

node 74 $xC5  $y4; 

node 75 $xC6  $y4; 
node 76 $x14CL $y4; 

 

 
#4rth floor 

#1st bay 

node 77 $x21CR $y5; 
node 78 $xD1  $y5; 

node 79 $xD2  $y5; 

node 80 $x22CL $y5; 

#2nd bay 

node 81 $x22CR $y5; 

node 82 $xD3  $y5; 
node 83 $xD4  $y5; 

node 84 $x23CL $y5; 

#3rd bay 
node 85 $x23CR $y5; 

node 86 $xD5  $y5; 

node 87 $xD6  $y5; 
node 88 $x24CL $y5; 

 
#5th floor 

#1st bay 

node 89 $x21CR $y6; 
node 90 $xE1  $y6; 

node 91 $xE2  $y6; 

node 92 $x22CL $y6; 

#2nd bay 

node 93 $x22CR $y6; 

node 94 $xE3  $y6; 
node 95 $xE4  $y6; 

node 96 $x23CL $y6; 

#3rd bay 
node 97 $x23CR $y6; 

node 98 $xE5  $y6; 

node 99 $xE6  $y6; 
node 100 $x24CL $y6; 

 

# Nodes of Horizontal rigid Panel zones (scissors model) components 
 

# 1st floor 

 
node 101 $x11CL $y2; 

node 102 $x1 $y2; 

node 103 $x11CR $y2; 
node 104 $x12CL $y2; 

node 105 $x2 $y2; 

node 106 $x12CR $y2; 
node 107 $x13CL $y2; 

node 108 $x3 $y2; 

node 109 $x13CR $y2; 
node 110 $x14CL $y2; 

node 111 $x4 $y2; 

node 112 $x14CR $y2; 
    

    

# 2nd floor  
    

node 113 $x11CL $y3; 

node 114 $x1 $y3; 
node 115 $x11CR $y3; 

node 116 $x12CL $y3; 

node 117 $x2 $y3; 
node 118 $x12CR $y3; 

node 119 $x13CL $y3; 

node 120 $x3 $y3; 
node 121 $x13CR $y3; 

node 122 $x14CL $y3; 
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node 123 $x4 $y3; 

node 124 $x14CR $y3; 
    

    

# 3rd floor  
    

node 125 $x11CL $y4; 

node 126 $x1 $y4; 
node 127 $x11CR $y4; 

node 128 $x12CL $y4; 

node 129 $x2 $y4; 
node 130 $x12CR $y4; 

node 131 $x13CL $y4; 

node 132 $x3 $y4; 
node 133 $x13CR $y4; 

node 134 $x14CL $y4; 

node 135 $x4 $y4; 

node 136 $x14CR $y4; 

    

    
# 4rth floor  

    

node 137 $x21CL $y5; 
node 138 $x1 $y5; 

node 139 $x21CR $y5; 

node 140 $x22CL $y5; 
node 141 $x2 $y5; 

node 142 $x22CR $y5; 
node 143 $x23CL $y5; 

node 144 $x3 $y5; 

node 145 $x23CR $y5; 
node 146 $x24CL $y5; 

node 147 $x4 $y5; 

node 148 $x24CR $y5; 

    

    

# 5th floor  
    

node 149 $x21CL $y6; 

node 150 $x1 $y6; 
node 151 $x21CR $y6; 

node 152 $x22CL $y6; 

node 153 $x2 $y6; 
node 154 $x22CR $y6; 

node 155 $x23CL $y6; 

node 156 $x3 $y6; 
node 157 $x23CR $y6; 

node 158 $x24CL $y6; 

node 159 $x4 $y6; 
node 160 $x24CR $y6; 

 

 
# Nodes of vertical rigid Panel zones (scissors model) components 

 

# 1st floor 
node 161 $x1 $y2; 

node 162 $x2 $y2; 

node 163 $x3 $y2; 
node 164 $x4 $y2; 

 

# 2nd floor 
node 165 $x1 $y3; 

node 166 $x2 $y3; 

node 167 $x3 $y3; 
node 168 $x4 $y3; 

 

 
# 3rd floor 

node 169 $x1 $y4; 

node 170 $x2 $y4; 
node 171 $x3 $y4; 

node 172 $x4 $y4; 

 
 

# 4rth floor 
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node 173 $x1 $y5; 

node 174 $x2 $y5; 
node 175 $x3 $y5; 

node 176 $x4 $y5; 

 
 

# 5th floor 

node 177 $x1 $y6; 
node 178 $x2 $y6; 

node 179 $x3 $y6; 

node 180 $x4 $y6; 
 

# Nodes for the rigid plates simulating beam column interface 

 
# x coordinate: x1CR   

    

# y coordinate: y2   

    

# Upper part of plate   

    
node 181 $x11CR $y2BT3; 

node 182 $x11CR $y2BT2; 

node 183 $x11CR $y2BT1; 
node 184 $x11CR $y2BT; 

    

node 185 $x11CR $y2BT3; 
node 186 $x11CR $y2BT2; 

node 187 $x11CR $y2BT1; 
node 188 $x11CR $y2BT; 

    

# Bottom part of plate   
    

node 189 $x11CR $y2BB3; 

node 190 $x11CR $y2BB2; 

node 191 $x11CR $y2BB1; 

node 192 $x11CR $y2BB; 

    
node 193 $x11CR $y2BB3; 

node 194 $x11CR $y2BB2; 

node 195 $x11CR $y2BB1; 
node 196 $x11CR $y2BB; 

    

# y coordinate: y3   
    

# Upper part of plate   

    
node 197 $x11CR $y3BT3; 

node 198 $x11CR $y3BT2; 

node 199 $x11CR $y3BT1; 
node 200 $x11CR $y3BT; 

    

node 201 $x11CR $y3BT3; 
node 202 $x11CR $y3BT2; 

node 203 $x11CR $y3BT1; 

node 204 $x11CR $y3BT; 
    

# Bottom part of plate   

    
node 205 $x11CR $y3BB3; 

node 206 $x11CR $y3BB2; 

node 207 $x11CR $y3BB1; 
node 208 $x11CR $y3BB; 

    

node 209 $x11CR $y3BB3; 
node 210 $x11CR $y3BB2; 

node 211 $x11CR $y3BB1; 

node 212 $x11CR $y3BB; 
    

# y coordinate: y4   

    
# Upper part of plate   

    

node 213 $x11CR $y4BT3; 
node 214 $x11CR $y4BT2; 

node 215 $x11CR $y4BT1; 
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node 216 $x11CR $y4BT; 

    
node 217 $x11CR $y4BT3; 

node 218 $x11CR $y4BT2; 

node 219 $x11CR $y4BT1; 
node 220 $x11CR $y4BT; 

    

# Bottom part of plate   
    

node 221 $x11CR $y4BB3; 

node 222 $x11CR $y4BB2; 
node 223 $x11CR $y4BB1; 

node 224 $x11CR $y4BB; 

    
node 225 $x11CR $y4BB3; 

node 226 $x11CR $y4BB2; 

node 227 $x11CR $y4BB1; 

node 228 $x11CR $y4BB; 

    

# y: coordinate y5   
    

# Upper part of plate   

    
node 229 $x21CR $y5BT3; 

node 230 $x21CR $y5BT2; 

node 231 $x21CR $y5BT1; 
node 232 $x21CR $y5BT; 

    
node 233 $x21CR $y5BT3; 

node 234 $x21CR $y5BT2; 

node 235 $x21CR $y5BT1; 
node 236 $x21CR $y5BT; 

    

# Bottom part of plate   

    

node 237 $x21CR $y5BB3; 

node 238 $x21CR $y5BB2; 
node 239 $x21CR $y5BB1; 

node 240 $x21CR $y5BB; 

    
node 241 $x21CR $y5BB3; 

node 242 $x21CR $y5BB2; 

node 243 $x21CR $y5BB1; 
node 244 $x21CR $y5BB; 

    

# y: coordinate y6   
    

# Upper part of plate   

    
node 245 $x21CR $y6BT3; 

node 246 $x21CR $y6BT2; 

node 247 $x21CR $y6BT1; 
node 248 $x21CR $y6BT; 

    

node 249 $x21CR $y6BT3; 
node 250 $x21CR $y6BT2; 

node 251 $x21CR $y6BT1; 

node 252 $x21CR $y6BT; 
    

# Bottom part of plate   

    
node 253 $x21CR $y6BB3; 

node 254 $x21CR $y6BB2; 

node 255 $x21CR $y6BB1; 
node 256 $x21CR $y6BB; 

    

node 257 $x21CR $y6BB3; 
node 258 $x21CR $y6BB2; 

node 259 $x21CR $y6BB1; 

node 260 $x21CR $y6BB; 
    

# x coordinate: x2CL   

    
# y coordinate: y2   
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# Upper part of plate   

    
node 261 $x12CL $y2BT3; 

node 262 $x12CL $y2BT2; 

node 263 $x12CL $y2BT1; 
node 264 $x12CL $y2BT; 

    

node 265 $x12CL $y2BT3; 
node 266 $x12CL $y2BT2; 

node 267 $x12CL $y2BT1; 

node 268 $x12CL $y2BT; 
    

# Bottom   

    
node 269 $x12CL $y2BB3; 

node 270 $x12CL $y2BB2; 

node 271 $x12CL $y2BB1; 

node 272 $x12CL $y2BB; 

    

node 273 $x12CL $y2BB3; 
node 274 $x12CL $y2BB2; 

node 275 $x12CL $y2BB1; 

node 276 $x12CL $y2BB; 
    

# y coordinate: y3   

    
# Upper part of plate   

    
node 277 $x12CL $y3BT3; 

node 278 $x12CL $y3BT2; 

node 279 $x12CL $y3BT1; 
node 280 $x12CL $y3BT; 

    

node 281 $x12CL $y3BT3; 

node 282 $x12CL $y3BT2; 

node 283 $x12CL $y3BT1; 

node 284 $x12CL $y3BT; 
    

# Bottom part of plate   

    
node 285 $x12CL $y3BB3; 

node 286 $x12CL $y3BB2; 

node 287 $x12CL $y3BB1; 
node 288 $x12CL $y3BB; 

    

node 289 $x12CL $y3BB3; 
node 290 $x12CL $y3BB2; 

node 291 $x12CL $y3BB1; 

node 292 $x12CL $y3BB; 
    

# y coordinate: y4   

    
# Upper part of plate   

    

node 293 $x12CL $y4BT3; 
node 294 $x12CL $y4BT2; 

node 295 $x12CL $y4BT1; 

node 296 $x12CL $y4BT; 
    

node 297 $x12CL $y4BT3; 

node 298 $x12CL $y4BT2; 
node 299 $x12CL $y4BT1; 

node 300 $x12CL $y4BT; 

    
# Bottom part of plate   

    

node 301 $x12CL $y4BB3; 
node 302 $x12CL $y4BB2; 

node 303 $x12CL $y4BB1; 

node 304 $x12CL $y4BB; 
    

node 305 $x12CL $y4BB3; 

node 306 $x12CL $y4BB2; 
node 307 $x12CL $y4BB1; 

node 308 $x12CL $y4BB; 
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# y: coordinate y5   
    

# Upper part of plate   

    
node 309 $x22CL $y5BT3; 

node 310 $x22CL $y5BT2; 

node 311 $x22CL $y5BT1; 
node 312 $x22CL $y5BT; 

    

node 313 $x22CL $y5BT3; 
node 314 $x22CL $y5BT2; 

node 315 $x22CL $y5BT1; 

node 316 $x22CL $y5BT; 
    

# Bottom part of plate   

    

node 317 $x22CL $y5BB3; 

node 318 $x22CL $y5BB2; 

node 319 $x22CL $y5BB1; 
node 320 $x22CL $y5BB; 

    

node 321 $x22CL $y5BB3; 
node 322 $x22CL $y5BB2; 

node 323 $x22CL $y5BB1; 

node 324 $x22CL $y5BB; 
    

# y: coordinate y6   
    

# Upper part of plate   

    
node 325 $x22CL $y6BT3; 

node 326 $x22CL $y6BT2; 

node 327 $x22CL $y6BT1; 

node 328 $x22CL $y6BT; 

    

node 329 $x22CL $y6BT3; 
node 330 $x22CL $y6BT2; 

node 331 $x22CL $y6BT1; 

node 332 $x22CL $y6BT; 
    

# Bottom part of plate   

    
node 333 $x22CL $y6BB3; 

node 334 $x22CL $y6BB2; 

node 335 $x22CL $y6BB1; 
node 336 $x22CL $y6BB; 

    

node 337 $x22CL $y6BB3; 
node 338 $x22CL $y6BB2; 

node 339 $x22CL $y6BB1; 

node 340 $x22CL $y6BB; 
    

# x coordinate: x2CR   

    
# y coordinate: y2   

    

# Upper part of plate   
    

node 341 $x12CR $y2BT3; 

node 342 $x12CR $y2BT2; 
node 343 $x12CR $y2BT1; 

node 344 $x12CR $y2BT; 

    
node 345 $x12CR $y2BT3; 

node 346 $x12CR $y2BT2; 

node 347 $x12CR $y2BT1; 
node 348 $x12CR $y2BT; 

    

# Bottom   
    

node 349 $x12CR $y2BB3; 

node 350 $x12CR $y2BB2; 
node 351 $x12CR $y2BB1; 

node 352 $x12CR $y2BB; 
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node 353 $x12CR $y2BB3; 
node 354 $x12CR $y2BB2; 

node 355 $x12CR $y2BB1; 

node 356 $x12CR $y2BB; 
    

# y coordinate: y3   

    
# Upper part of plate   

    

node 357 $x12CR $y3BT3; 
node 358 $x12CR $y3BT2; 

node 359 $x12CR $y3BT1; 

node 360 $x12CR $y3BT; 
    

node 361 $x12CR $y3BT3; 

node 362 $x12CR $y3BT2; 

node 363 $x12CR $y3BT1; 

node 364 $x12CR $y3BT; 

    
# Bottom part of plate   

    

node 365 $x12CR $y3BB3; 
node 366 $x12CR $y3BB2; 

node 367 $x12CR $y3BB1; 

node 368 $x12CR $y3BB; 
    

node 369 $x12CR $y3BB3; 
node 370 $x12CR $y3BB2; 

node 371 $x12CR $y3BB1; 

node 372 $x12CR $y3BB; 
    

# y coordinate: y4   

    

# Upper part of plate   

    

node 373 $x12CR $y4BT3; 
node 374 $x12CR $y4BT2; 

node 375 $x12CR $y4BT1; 

node 376 $x12CR $y4BT; 
    

node 377 $x12CR $y4BT3; 

node 378 $x12CR $y4BT2; 
node 379 $x12CR $y4BT1; 

node 380 $x12CR $y4BT; 

    
# Bottom part of plate   

    

node 381 $x12CR $y4BB3; 
node 382 $x12CR $y4BB2; 

node 383 $x12CR $y4BB1; 

node 384 $x12CR $y4BB; 
    

node 385 $x12CR $y4BB3; 

node 386 $x12CR $y4BB2; 
node 387 $x12CR $y4BB1; 

node 388 $x12CR $y4BB; 

    
# y: coordinate y5   

    

# Upper part of plate   
    

node 389 $x22CR $y5BT3; 

node 390 $x22CR $y5BT2; 
node 391 $x22CR $y5BT1; 

node 392 $x22CR $y5BT; 

    
node 393 $x22CR $y5BT3; 

node 394 $x22CR $y5BT2; 

node 395 $x22CR $y5BT1; 
node 396 $x22CR $y5BT; 

    

# Bottom part of plate   
    

node 397 $x22CR $y5BB3; 
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node 398 $x22CR $y5BB2; 

node 399 $x22CR $y5BB1; 
node 400 $x22CR $y5BB; 

    

node 401 $x22CR $y5BB3; 
node 402 $x22CR $y5BB2; 

node 403 $x22CR $y5BB1; 

node 404 $x22CR $y5BB; 
    

# y: coordinate y6   

    
# Upper part of plate   

    

node 405 $x22CR $y6BT3; 
node 406 $x22CR $y6BT2; 

node 407 $x22CR $y6BT1; 

node 408 $x22CR $y6BT; 

    

node 409 $x22CR $y6BT3; 

node 410 $x22CR $y6BT2; 
node 411 $x22CR $y6BT1; 

node 412 $x22CR $y6BT; 

    
# Bottom part of plate   

    

node 413 $x22CR $y6BB3; 
node 414 $x22CR $y6BB2; 

node 415 $x22CR $y6BB1; 
node 416 $x22CR $y6BB; 

    

node 417 $x22CR $y6BB3; 
node 418 $x22CR $y6BB2; 

node 419 $x22CR $y6BB1; 

node 420 $x22CR $y6BB; 

    

# x coordinate: x3CL   

    
# y coordinate: y2   

    

# Upper part of plate   
    

node 421 $x13CL $y2BT3; 

node 422 $x13CL $y2BT2; 
node 423 $x13CL $y2BT1; 

node 424 $x13CL $y2BT; 

    
node 425 $x13CL $y2BT3; 

node 426 $x13CL $y2BT2; 

node 427 $x13CL $y2BT1; 
node 428 $x13CL $y2BT; 

    

# Bottom part of plate  
    

node 429 $x13CL $y2BB3; 

node 430 $x13CL $y2BB2; 
node 431 $x13CL $y2BB1; 

node 432 $x13CL $y2BB; 

    
node 433 $x13CL $y2BB3; 

node 434 $x13CL $y2BB2; 

node 435 $x13CL $y2BB1; 
node 436 $x13CL $y2BB; 

    

# y coordinate: y3   
    

# Upper part of plate   

    
node 437 $x13CL $y3BT3; 

node 438 $x13CL $y3BT2; 

node 439 $x13CL $y3BT1; 
node 440 $x13CL $y3BT; 

    

node 441 $x13CL $y3BT3; 
node 442 $x13CL $y3BT2; 

node 443 $x13CL $y3BT1; 
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node 444 $x13CL $y3BT; 

    
# Bottom part of plate   

    

node 445 $x13CL $y3BB3; 
node 446 $x13CL $y3BB2; 

node 447 $x13CL $y3BB1; 

node 448 $x13CL $y3BB; 
    

node 449 $x13CL $y3BB3; 

node 450 $x13CL $y3BB2; 
node 451 $x13CL $y3BB1; 

node 452 $x13CL $y3BB; 

    
# y coordinate: y4   

    

# Upper part of plate   

    

node 453 $x13CL $y4BT3; 

node 454 $x13CL $y4BT2; 
node 455 $x13CL $y4BT1; 

node 456 $x13CL $y4BT; 

    
node 457 $x13CL $y4BT3; 

node 458 $x13CL $y4BT2; 

node 459 $x13CL $y4BT1; 
node 460 $x13CL $y4BT; 

    
# Bottom part of plate   

    

node 461 $x13CL $y4BB3; 
node 462 $x13CL $y4BB2; 

node 463 $x13CL $y4BB1; 

node 464 $x13CL $y4BB; 

    

node 465 $x13CL $y4BB3; 

node 466 $x13CL $y4BB2; 
node 467 $x13CL $y4BB1; 

node 468 $x13CL $y4BB; 

    
# y: coordinate y5   

    

# Upper part of plate   
    

node 469 $x23CL $y5BT3; 

node 470 $x23CL $y5BT2; 
node 471 $x23CL $y5BT1; 

node 472 $x23CL $y5BT; 

    
node 473 $x23CL $y5BT3; 

node 474 $x23CL $y5BT2; 

node 475 $x23CL $y5BT1; 
node 476 $x23CL $y5BT; 

    

# Bottom part of plate   
    

node 477 $x23CL $y5BB3; 

node 478 $x23CL $y5BB2; 
node 479 $x23CL $y5BB1; 

node 480 $x23CL $y5BB; 

    
node 481 $x23CL $y5BB3; 

node 482 $x23CL $y5BB2; 

node 483 $x23CL $y5BB1; 
node 484 $x23CL $y5BB; 

    

# y: coordinate y6   
    

# Upper part of plate   

    
node 485 $x23CL $y6BT3; 

node 486 $x23CL $y6BT2; 

node 487 $x23CL $y6BT1; 
node 488 $x23CL $y6BT; 
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node 489 $x23CL $y6BT3; 

node 490 $x23CL $y6BT2; 
node 491 $x23CL $y6BT1; 

node 492 $x23CL $y6BT; 

    
# Bottom part of plate   

    

node 493 $x23CL $y6BB3; 
node 494 $x23CL $y6BB2; 

node 495 $x23CL $y6BB1; 

node 496 $x23CL $y6BB; 
    

node 497 $x23CL $y6BB3; 

node 498 $x23CL $y6BB2; 
node 499 $x23CL $y6BB1; 

node 500 $x23CL $y6BB; 

    

# x coordinate: x3CR   

    

# y coordinate: y2   
    

# Upper part of plate   

    
node 501 $x13CR $y2BT3; 

node 502 $x13CR $y2BT2; 

node 503 $x13CR $y2BT1; 
node 504 $x13CR $y2BT; 

    
node 505 $x13CR $y2BT3; 

node 506 $x13CR $y2BT2; 

node 507 $x13CR $y2BT1; 
node 508 $x13CR $y2BT; 

    

# Bottom part of plate   

    

node 509 $x13CR $y2BB3; 

node 510 $x13CR $y2BB2; 
node 511 $x13CR $y2BB1; 

node 512 $x13CR $y2BB; 

    
node 513 $x13CR $y2BB3; 

node 514 $x13CR $y2BB2; 

node 515 $x13CR $y2BB1; 
node 516 $x13CR $y2BB; 

    

# y coordinate: y3   
    

# Upper part of plate   

    
node 517 $x13CR $y3BT3; 

node 518 $x13CR $y3BT2; 

node 519 $x13CR $y3BT1; 
node 520 $x13CR $y3BT; 

    

node 521 $x13CR $y3BT3; 
node 522 $x13CR $y3BT2; 

node 523 $x13CR $y3BT1; 

node 524 $x13CR $y3BT; 
    

# Bottom part of plate   

    
node 525 $x13CR $y3BB3; 

node 526 $x13CR $y3BB2; 

node 527 $x13CR $y3BB1; 
node 528 $x13CR $y3BB; 

    

node 529 $x13CR $y3BB3; 
node 530 $x13CR $y3BB2; 

node 531 $x13CR $y3BB1; 

node 532 $x13CR $y3BB; 
    

# y coordinate: y4   

    
# Upper part of plate   

    



P 
 

node 533 $x13CR $y4BT3; 

node 534 $x13CR $y4BT2; 
node 535 $x13CR $y4BT1; 

node 536 $x13CR $y4BT; 

    
node 537 $x13CR $y4BT3; 

node 538 $x13CR $y4BT2; 

node 539 $x13CR $y4BT1; 
node 540 $x13CR $y4BT; 

    

# Bottom part of plate   
    

node 541 $x13CR $y4BB3; 

node 542 $x13CR $y4BB2; 
node 543 $x13CR $y4BB1; 

node 544 $x13CR $y4BB; 

    

node 545 $x13CR $y4BB3; 

node 546 $x13CR $y4BB2; 

node 547 $x13CR $y4BB1; 
node 548 $x13CR $y4BB; 

    

# y: coordinate y5   
    

# Upper part of plate   

    
node 549 $x23CR $y5BT3; 

node 550 $x23CR $y5BT2; 
node 551 $x23CR $y5BT1; 

node 552 $x23CR $y5BT; 

    
node 553 $x23CR $y5BT3; 

node 554 $x23CR $y5BT2; 

node 555 $x23CR $y5BT1; 

node 556 $x23CR $y5BT; 

    

# Bottom part of plate   
    

node 557 $x23CR $y5BB3; 

node 558 $x23CR $y5BB2; 
node 559 $x23CR $y5BB1; 

node 560 $x23CR $y5BB; 

    
node 561 $x23CR $y5BB3; 

node 562 $x23CR $y5BB2; 

node 563 $x23CR $y5BB1; 
node 564 $x23CR $y5BB; 

    

# y: coordinate y6   
    

# Upper part of plate   

    
node 565 $x23CR $y6BT3; 

node 566 $x23CR $y6BT2; 

node 567 $x23CR $y6BT1; 
node 568 $x23CR $y6BT; 

    

node 569 $x23CR $y6BT3; 
node 570 $x23CR $y6BT2; 

node 571 $x23CR $y6BT1; 

node 572 $x23CR $y6BT; 
    

# Bottom part of plate   

    
node 573 $x23CR $y6BB3; 

node 574 $x23CR $y6BB2; 

node 575 $x23CR $y6BB1; 
node 576 $x23CR $y6BB; 

    

node 577 $x23CR $y6BB3; 
node 578 $x23CR $y6BB2; 

node 579 $x23CR $y6BB1; 

node 580 $x23CR $y6BB; 
    

# x coordinate: x4CL   
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# y coordinate: y2   
    

# Upper part of plate   

    
node 581 $x14CL $y2BT3; 

node 582 $x14CL $y2BT2; 

node 583 $x14CL $y2BT1; 
node 584 $x14CL $y2BT; 

    

node 585 $x14CL $y2BT3; 
node 586 $x14CL $y2BT2; 

node 587 $x14CL $y2BT1; 

node 588 $x14CL $y2BT; 
    

# Bottom part of plate   

    

node 589 $x14CL $y2BB3; 

node 590 $x14CL $y2BB2; 

node 591 $x14CL $y2BB1; 
node 592 $x14CL $y2BB; 

    

node 593 $x14CL $y2BB3; 
node 594 $x14CL $y2BB2; 

node 595 $x14CL $y2BB1; 

node 596 $x14CL $y2BB; 
    

# y coordinate: y3   
    

# Upper part of plate   

    
node 597 $x14CL $y3BT3; 

node 598 $x14CL $y3BT2; 

node 599 $x14CL $y3BT1; 

node 600 $x14CL $y3BT; 

    

node 601 $x14CL $y3BT3; 
node 602 $x14CL $y3BT2; 

node 603 $x14CL $y3BT1; 

node 604 $x14CL $y3BT; 
    

# Bottom part of plate   

    
node 605 $x14CL $y3BB3; 

node 606 $x14CL $y3BB2; 

node 607 $x14CL $y3BB1; 
node 608 $x14CL $y3BB; 

    

node 609 $x14CL $y3BB3; 
node 610 $x14CL $y3BB2; 

node 611 $x14CL $y3BB1; 

node 612 $x14CL $y3BB; 
    

# y coordinate: y4   

    
# Upper part of plate   

    

node 613 $x14CL $y4BT3; 
node 614 $x14CL $y4BT2; 

node 615 $x14CL $y4BT1; 

node 616 $x14CL $y4BT; 
    

node 617 $x14CL $y4BT3; 

node 618 $x14CL $y4BT2; 
node 619 $x14CL $y4BT1; 

node 620 $x14CL $y4BT; 

    
# Bottom part of plate   

    

node 621 $x14CL $y4BB3; 
node 622 $x14CL $y4BB2; 

node 623 $x14CL $y4BB1; 

node 624 $x14CL $y4BB; 
    

node 625 $x14CL $y4BB3; 
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node 626 $x14CL $y4BB2; 

node 627 $x14CL $y4BB1; 
node 628 $x14CL $y4BB; 

    

# y: coordinate y5   
    

# Upper part of plate   

    
node 629 $x24CL $y5BT3; 

node 630 $x24CL $y5BT2; 

node 631 $x24CL $y5BT1; 
node 632 $x24CL $y5BT; 

    

node 633 $x24CL $y5BT3; 
node 634 $x24CL $y5BT2; 

node 635 $x24CL $y5BT1; 

node 636 $x24CL $y5BT; 

    

# Bottom part of plate   

    
node 637 $x24CL $y5BB3; 

node 638 $x24CL $y5BB2; 

node 639 $x24CL $y5BB1; 
node 640 $x24CL $y5BB; 

    

node 641 $x24CL $y5BB3; 
node 642 $x24CL $y5BB2; 

node 643 $x24CL $y5BB1; 
node 644 $x24CL $y5BB; 

    

# y: coordinate y6   
    

# Upper part of plate   

    

node 645 $x24CL $y6BT3; 

node 646 $x24CL $y6BT2; 

node 647 $x24CL $y6BT1; 
node 648 $x24CL $y6BT; 

    

node 649 $x24CL $y6BT3; 
node 650 $x24CL $y6BT2; 

node 651 $x24CL $y6BT1; 

node 652 $x24CL $y6BT; 
    

# Bottom part of plate   

    
node 653 $x24CL $y6BB3; 

node 654 $x24CL $y6BB2; 

node 655 $x24CL $y6BB1; 
node 656 $x24CL $y6BB; 

    

node 657 $x24CL $y6BB3; 
node 658 $x24CL $y6BB2; 

node 659 $x24CL $y6BB1; 

node 660 $x24CL $y6BB; 
 

 

# Nodes of Lean on columns 
 

node 661 $xL1 $y1; 

node 662 $xL1 $y2; 
node 663 $xL1 $y3; 

node 664 $xL1 $y4; 

node 665 $xL1 $y5; 
node 666 $xL1 $y6; 

 

node 667 $xL2 $y1; 
node 668 $xL2 $y2; 

node 669 $xL2 $y3; 

node 670 $xL2 $y4; 
node 671 $xL2 $y5; 

node 672 $xL2 $y6; 

 
node 673 $xL3 $y1; 

node 674 $xL3 $y2; 
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node 675 $xL3 $y3; 

node 676 $xL3 $y4; 
node 677 $xL3 $y5; 

node 678 $xL3 $y6; 

 
# Additional nodes for flexural deterioration rotational springs (Lignos and Krawinkler 2007) definition 

 

node 684 $xA1  $y2;  
node 685 $xA2  $y2;  

node 686 $xA3  $y2;  

node 687 $xA4  $y2;  
node 688 $xA5  $y2;  

node 689 $xA6  $y2;  

node 690 $xB1  $y3;  
node 691 $xB2  $y3;  

node 692 $xB3  $y3;  

node 693 $xB4  $y3;  

node 694 $xB5  $y3;  

node 695 $xB6  $y3;  

node 696 $xC1  $y4;  
node 697 $xC2  $y4;  

node 698 $xC3  $y4;  

node 699 $xC4  $y4;  
node 700 $xC5  $y4;  

node 701 $xC6  $y4;  

node 702 $xD1  $y5;  
node 703 $xD2  $y5;  

node 704 $xD3  $y5;  
node 705 $xD4  $y5;  

node 706 $xD5  $y5;  

node 707 $xD6  $y5;  
node 708 $xE1  $y6;  

node 709 $xE2  $y6;  

node 710 $xE3  $y6;  

node 711 $xE4  $y6;  

node 712 $xE5  $y6;  

node 713 $xE6  $y6; 
 

# Restrains (Boundary conditions) 

   
fix 1  1 1 1;                         

fix 11 1 1 1; 

fix 21 1 1 1; 
fix 31 1 1 1; 

 

fix 661 1 1 0; 
fix 667 1 1 0; 

fix 673 1 1 0; 

 
fix 679 0 1 1; 

fix 680 0 1 1; 

fix 681 0 1 1; 
fix 682 0 1 1; 

fix 683 0 1 1; 

 
# Constrains (Nodes with equal degrees of freedom) 

 

# For the panel zones (scissors model), where the rotational springs are located (constrained in vertical and horizontal direction) 
 

equalDOF 102 161 1 2 ; 

equalDOF 105 162 1 2 ; 
equalDOF 108 163 1 2 ; 

equalDOF 111 164 1 2 ; 

equalDOF 114 165 1 2 ; 
equalDOF 117 166 1 2 ; 

equalDOF 120 167 1 2 ; 

equalDOF 123 168 1 2 ; 
equalDOF 126 169 1 2 ; 

equalDOF 129 170 1 2 ; 

equalDOF 132 171 1 2 ; 
equalDOF 135 172 1 2 ; 

equalDOF 138 173 1 2 ; 

equalDOF 141 174 1 2 ; 
equalDOF 144 175 1 2 ; 

equalDOF 147 176 1 2 ; 
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equalDOF 150 177 1 2 ; 

equalDOF 153 178 1 2 ; 
equalDOF 156 179 1 2 ; 

equalDOF 159 180 1 2 ; 

 
 

# For the nodes between the beam and the panel zones (constraint in vertical direction) 

 
# 1st bay 

 

equalDOF 151 89 2; 
equalDOF 152 92 2; 

equalDOF 139 77 2; 

equalDOF 140 80 2; 
equalDOF 127 65 2; 

equalDOF 128 68 2; 

equalDOF 115 53 2; 

equalDOF 116 56 2; 

equalDOF 103 41 2; 

equalDOF 104 44 2; 
      

# 2nd bay    

      
equalDOF 154 93 2; 

equalDOF 155 96 2; 

equalDOF 142 81 2; 
equalDOF 143 84 2; 

equalDOF 130 69 2; 
equalDOF 131 72 2; 

equalDOF 118 57 2; 

equalDOF 119 60 2; 
equalDOF 106 45 2; 

equalDOF 107 48 2; 

      

# 3rd bay    

      

equalDOF 157 97 2; 
equalDOF 158 100 2; 

equalDOF 145 85 2; 

equalDOF 146 88 2; 
equalDOF 133 73 2; 

equalDOF 134 76 2; 

equalDOF 121 61 2; 
equalDOF 122 64 2; 

equalDOF 109 49 2; 

equalDOF 110 52 2; 
 

# For the nodes between the reinfored and unreinforced parts of the beams, where the rotational springs of (Lignos and 

Krawinkler 2007) are located 
 

equalDOF 42 684 1 2 ; 

equalDOF 685 43 1 2 ; 
equalDOF 46 686 1 2 ; 

equalDOF 687 47 1 2 ; 

equalDOF 50 688 1 2 ; 
equalDOF 689 51 1 2 ; 

equalDOF 54 690 1 2 ; 

equalDOF 691 55 1 2 ; 
equalDOF 58 692 1 2 ; 

equalDOF 693 59 1 2 ; 

equalDOF 62 694 1 2 ; 
equalDOF 695 63 1 2 ; 

equalDOF 66 696 1 2 ; 

equalDOF 697 67 1 2 ; 
equalDOF 70 698 1 2 ; 

equalDOF 699 71 1 2 ; 

equalDOF 74 700 1 2 ; 
equalDOF 701 75 1 2 ; 

equalDOF 78 702 1 2 ; 

equalDOF 703 79 1 2 ; 
equalDOF 82 704 1 2 ; 

equalDOF 705 83 1 2 ; 

equalDOF 86 706 1 2 ; 
equalDOF 707 87 1 2 ; 

equalDOF 90 708 1 2 ; 
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equalDOF 709 91 1 2 ; 

equalDOF 94 710 1 2 ; 
equalDOF 711 95 1 2 ; 

equalDOF 98 712 1 2 ; 

equalDOF 713 99 1 2 ; 
 

 

# Materials IDs  
 

# Steel hysteresis S275, S235 

 
set S275 1; 

set S355 2; 

 
# Rigid hysteresis 

 

set Srigid 3; 

 

 

# Shear on columns material 
 

set shearc1 20; 

set shearc2 21; 
 

# contact translational sptings materials 

 
set ctTag1 22; 

set ctTag2 23; 
set ctTag3 24; 

set ctTag4 25; 

set ctTag5 26; 
 

# PT bars trusses materials 

 

set PT1 27; 

set PT2 28; 

set PT3 29; 
set PT4 30; 

set PT5 31; 

set PTm 32; 
 

# Panel zones rotational springs materials 

 
set Spanel1  33; 

set Sflange1 34; 

 
set Spanel2  35; 

set Sflange2 36; 

 
set Spanel3  37; 

set Sflange3 38; 

 
set Spanel4  39; 

set Sflange4 40;  

 
set Spanel5 41; 

set Sflange5 42; 

 
# WHPs translational springs materials 

 

set whpTag1 43; 
set whpTag2 44; 

set whpTag3 45; 

set whpTag4 46; 
set whpTag5 47; 

 

# Diaphragm truss materias 
 

set Diaph 59; 

 
# deterioration (Lignos and Krawinkler 2007) translational springs materials 

 

set lignos1 60; 
set lignos2 61; 

set lignos3 62; 
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set lignos4 63; 

set lignos5 64; 
 

# Materials properties  

 
# Frame members' hysteretic behaviour  

 

set E0        2.1e+08; 
set nu        0.3; 

set G         [expr $E0/(2.+2.*$nu)]; 

set FyS275    275000.0; 
set FyS355    355000.0; 

set p         0.002; 

 
# Define S275 materials  

uniaxialMaterial Steel01 $S275 $FyS275 $E0 $p  ; 

uniaxialMaterial Steel01 $S355 $FyS355 $E0 $p  ; 

 

# Rigid members hysteretic behaviour (elastic material with high modulus of elasticity x 1000) 

 
uniaxial Material Elastic $Srigid [expr 1000*$E0]; 

 

# CONTACT translational spring behaviour  
 

#define properties of the contact elements 

 
set E1 [expr (20*$E0*0.0112)/8.0]; # compression stiffness 20 x Ebeam x Abeam (IPE450) / Lbeam (Christopoulos et al 2009) 

set E2 [expr (20*$E0*0.0129)/8.0];  
set E3 [expr (20*$E0*0.0112)/8.0];  

set E4 [expr (20*$E0*0.009504)/8.0];  

set E5 [expr (20*$E0*0.009504)/8.0];  
 

# Define force-deformation relationship for CT spring (material) 

  

uniaxialMaterial ENT $ctTag1 $E1 

uniaxialMaterial ENT $ctTag2 $E2 

uniaxialMaterial ENT $ctTag3 $E3 
uniaxialMaterial ENT $ctTag4 $E4 

uniaxialMaterial ENT $ctTag5 $E5 

 
# PT bars hysteretic behaviour  

 

uniaxialMaterial Steel01 $PTm 850000 2.1e+08 0.002 ; 
 

# Insert initial strain to apply post tensioning 

 
uniaxialMaterial InitStrainMaterial $PT1 $PTm [expr (1.14*1086.93/(2*3.14*0.043*0.043/4))/(2.1e+08)]; 

uniaxialMaterial InitStrainMaterial $PT2 $PTm [expr (1.195*1255.54/(2*3.14*0.050*0.050/4))/(2.1e+08)]; 

uniaxialMaterial InitStrainMaterial $PT3 $PTm [expr (1.17*1086.93/(2*3.14*0.043*0.043/4))/(2.1e+08)]; 
uniaxialMaterial InitStrainMaterial $PT4 $PTm [expr (1.155*941.226/(2*3.14*0.037*0.037/4))/(2.1e+08)]; 

uniaxialMaterial InitStrainMaterial $PT5 $PTm [expr (1.15*941.226/(2*3.14*0.035*0.035/4))/(2.1e+08)]; 

 
# Panel zones rotational springs' hysteretic behaviour  

 

# spring behaviour due to panel 
 

uniaxialMaterial Steel01 $Spanel1   3966.649016      1924876.259      [expr 0.001/1924876.259]; 

uniaxialMaterial Steel01 $Spanel2   4635.338218      2411541.372      [expr 0.001/2411541.372]; 
uniaxialMaterial Steel01 $Spanel3   4154.315573      2111320.843      [expr 0.001/2111320.843]; 

uniaxialMaterial Steel01 $Spanel4   3253.374804      1603475.660      [expr 0.001/1603475.660]; 

uniaxialMaterial Steel01 $Spanel5   3246.781017      1596982.548      [expr 0.001/1596982.548]; 
 

# spring behaviour due to flange 

 
uniaxialMaterial Steel01 $Sflange1 235.7535272 28600.73867  [expr 0.001/28600.73867]; 

uniaxialMaterial Steel01 $Sflange2 252.7507460 32873.48474  [expr 0.001/32873.48474]; 

uniaxialMaterial Steel01 $Sflange3 246.9072877 31371.02210  [expr 0.001/31371.02210]; 
uniaxialMaterial Steel01 $Sflange4 224.2469537 27630.88745  [expr 0.001/27630.88745]; 

uniaxialMaterial Steel01 $Sflange5 223.7924605 27518.99897  [expr 0.001/27518.99897]; 

 
# WHPs translational spring hysteretic behaviour  

     

set factor1 1.0; 
 

set Fy1 [expr $factor1*355.89]; #yield strength 
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set Fy2 [expr $factor1*435.69]; 

set Fy3 [expr $factor1*381.30]; 
set Fy4 [expr $factor1*308.50]; 

set Fy5 [expr $factor1*265.52]; 

 
set factor2 0.3; 

 

set E01 [expr 2*1041.19*1000]; #initial elastic tangent multipliedx1000 (kN,m) and x 0.6 due to calibration purposes 
set E02 [expr 2*1305.74*1000]; 

set E03 [expr 2*930.670*1000]; 

set E04 [expr 2*855.470*1000]; 
set E05 [expr 2*716.270*1000]; 

 

set b 0.01; #strain-hardening ratio (ratio between post-yield tangent and initial elastic tangent) 
 

#parameters to control the transition from elastic to plastic branches. 

 

#The following values have been extracted from callibration process 

 

set R0 30;                                
set CR1 0.925; 

set CR2 0.15; 

set a1 0.025;   
set a2 2.5;      

set a3 0;   

set a4 1; 
     

uniaxialMaterial Steel02 $whpTag1 $Fy1 $E01 $b $R0 $CR1 $CR2 $a1 $a2 $a3 $a4; 
uniaxialMaterial Steel02 $whpTag2 $Fy2 $E02 $b $R0 $CR1 $CR2 $a1 $a2 $a3 $a4; 

uniaxialMaterial Steel02 $whpTag3 $Fy3 $E03 $b $R0 $CR1 $CR2 $a1 $a2 $a3 $a4; 

uniaxialMaterial Steel02 $whpTag4 $Fy4 $E04 $b $R0 $CR1 $CR2 $a1 $a2 $a3 $a4; 
uniaxialMaterial Steel02 $whpTag5 $Fy5 $E05 $b $R0 $CR1 $CR2 $a1 $a2 $a3 $a4; 

 

# Deterioarion (Lignos and Krawinkler 2007) rotational springs  

 

uniaxialMaterial Bilin $lignos1 1833855.192 0.001376415 0.001376415 716.0645075

 -716.0645075 1.079674696 1.079674696 1.079674696 1.079674696 1
 1 1 1 0.028368595 0.028368595 0.167493363 0.167493363

 0.4 0.4 0.3 0.3 1 1 ; 

uniaxialMaterial Bilin $lignos2 2764800.813 0.00146471 0.00146471 1021.24         -
1021.24 1.102081185 1.102081185 1.102081185 1.102081185 1 1 1

 1 0.025218094 0.025218094 0.16975396 0.16975396 0.4 0.4

 0.3 0.3 1 1 ; 
uniaxialMaterial Bilin $lignos3 1874969.543 0.001356419 0.001356419 716.0645075

 -716.0645075 1.079674696 1.079674696 1.079674696 1.079674696 1

 1 1 1 0.028155543 0.028155543 0.167493363 0.167493363
 0.4 0.4 0.3 0.3 1 1 ; 

uniaxialMaterial Bilin $lignos4 1219015.226 0.001429396 0.001429396 563.2996023

 -563.2996023 1.082365181 1.082365181 1.082365181 1.082365181 1
 1 1 1 0.032327923 0.032327923 0.169993268 0.169993268

 0.4 0.4 0.3 0.3 1 1 ; 

uniaxialMaterial Bilin $lignos5 1076059.476 0.001552053 0.001552053 563.2996023
 -563.2996023 1.082365181 1.082365181 1.082365181 1.082365181 1

 1 1 1 0.033728465 0.033728465 0.169993268 0.169993268

 0.4 0.4 0.3 0.3 1 1 ; 
 

# Diaphragm trusses material 

 
uniaxialMaterial Elastic $Diaph $E0; 

 

# Define Elements  
 

# Define section IDs 

 
set  IPE500R1V       114 ; 

set  IPE500R3V 116 ; 

set  IPE550R2V 120 ; 
set  IPE450R4V 124 ; 

set  IPE450R5V 126 ; 

 
set  HEB500         127 ; 

set  HEB500V         128 ; 

set  HEB450         129 ; 
set  HEB450V         130 ; 
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# Define transformation IDs 
 

set    PDTrans  1;  

set    LNTrans  2; 
 

# Define transformation 

 
geomTransf PDelta $PDTrans; 

geomTransf Linear $LNTrans;  

 
# Include subroutine for WF sections 

 

source WFSection.tcl 
 

# Define Sections for reinforced lengths of beams 

 

WFSection $IPE500R1V  $S275 $dbr1 $twbr1 $bfbr1 $tfbr1 8 4; 

WFSection $IPE500R3V  $S275 $dbr3 $twbr3 $bfbr3 $tfbr3 8 4; 

WFSection $IPE550R2V  $S275 $dbr2 $twbr2 $bfbr2 $tfbr2 8 4; 
WFSection $IPE450R4V  $S275 $dbr4 $twbr4 $bfbr4 $tfbr4 8 4; 

WFSection $IPE450R5V  $S275 $dbr5 $twbr5 $bfbr5 $tfbr5 8 4; 

 
# Define Sections for columns 

 

uniaxialMaterial Elastic $shearc1 [expr $G*$Asc1]; 
WFSection $HEB500 $S355 $dc1 $twc1 $bfc1 $tfc1 8 4; 

section Aggregator $HEB500V $shearc1 Vy -section $HEB500; 
 

uniaxialMaterial Elastic $shearc2 [expr $G*$Asc2]; 

WFSection $HEB450 $S355 $dc2 $twc2 $bfc2 $tfc2 8 4; 
section Aggregator $HEB450V $shearc2 Vy -section $HEB450; 

 

# Define number of integration points 

 

set nI6 6; 

 
# column's elements 

 

# col1 
element nonlinearBeamColumn       1      1 2       $nI6    $HEB500V     $PDTrans; 

element nonlinearBeamColumn       2      3 4       $nI6    $HEB500V     $PDTrans; 

element nonlinearBeamColumn       3      5 6       $nI6    $HEB500V     $PDTrans; 
element nonlinearBeamColumn       4      7 8       $nI6    $HEB450V     $PDTrans; 

element nonlinearBeamColumn       5      9 10      $nI6    $HEB450V     $PDTrans; 

 
# col2 

element nonlinearBeamColumn       6      11 12     $nI6    $HEB500V     $PDTrans; 

element nonlinearBeamColumn       7      13 14     $nI6    $HEB500V     $PDTrans; 
element nonlinearBeamColumn       8      15 16     $nI6    $HEB500V     $PDTrans; 

element nonlinearBeamColumn       9      17 18     $nI6    $HEB450V     $PDTrans; 

element nonlinearBeamColumn       10     19 20     $nI6    $HEB450V     $PDTrans; 
 

# col3 

element nonlinearBeamColumn       11     21 22     $nI6    $HEB500V     $PDTrans; 
element nonlinearBeamColumn       12     23 24     $nI6    $HEB500V     $PDTrans; 

element nonlinearBeamColumn       13     25 26     $nI6    $HEB500V     $PDTrans; 

element nonlinearBeamColumn       14     27 28     $nI6    $HEB450V     $PDTrans; 
element nonlinearBeamColumn       15     29 30     $nI6    $HEB450V     $PDTrans; 

 

# col4 
element nonlinearBeamColumn       16     31 32     $nI6    $HEB500V     $PDTrans; 

element nonlinearBeamColumn       17     33 34     $nI6    $HEB500V     $PDTrans; 

element nonlinearBeamColumn       18     35 36     $nI6    $HEB500V     $PDTrans; 
element nonlinearBeamColumn       19     37 38     $nI6    $HEB450V     $PDTrans; 

element nonlinearBeamColumn       20     39 40     $nI6    $HEB450V     $PDTrans; 

 
 

# Beams elements 

 
# 1st floor beams     

        

element nonlinearBeamColumn 21 41 42 $nI6 $IPE500R1V $PDTrans; 
element elasticBeamColumn 22 684 685 0.0129 $E0 0.00070356 $PDTrans; 

element nonlinearBeamColumn 23 43 44 $nI6 $IPE500R1V $PDTrans; 



Y 
 

        

element nonlinearBeamColumn 24 45 46 $nI6 $IPE500R1V $PDTrans; 
element elasticBeamColumn 25 686 687 0.0129 $E0 0.00070356 $PDTrans; 

element nonlinearBeamColumn 26 47 48 $nI6 $IPE500R1V $PDTrans; 

        
element nonlinearBeamColumn 27 49 50 $nI6 $IPE500R1V $PDTrans; 

element elasticBeamColumn 28 688 689 0.0129 $E0 0.00070356 $PDTrans; 

element nonlinearBeamColumn 29 51 52 $nI6 $IPE500R1V $PDTrans; 
        

        

# 2nd floor beams     
        

element nonlinearBeamColumn 30 53 54 $nI6 $IPE550R2V $PDTrans; 

element elasticBeamColumn 31 690 691 0.0151 $E0 0.00097163 $PDTrans; 
element nonlinearBeamColumn 32 55 56 $nI6 $IPE550R2V $PDTrans; 

        

element nonlinearBeamColumn 33 57 58 $nI6 $IPE550R2V $PDTrans; 

element elasticBeamColumn 34 692 693 0.0151 $E0 0.00097163 $PDTrans; 

element nonlinearBeamColumn 35 59 60 $nI6 $IPE550R2V $PDTrans; 

        
element nonlinearBeamColumn 36 61 62 $nI6 $IPE550R2V $PDTrans; 

element elasticBeamColumn 37 694 695 0.0151 $E0 0.00097163 $PDTrans; 

element nonlinearBeamColumn 38 63 64 $nI6 $IPE550R2V $PDTrans; 
        

        

# 3rd floor beams     
        

element nonlinearBeamColumn 39 65 66 $nI6 $IPE500R3V $PDTrans; 
element elasticBeamColumn       40 696 697 0.0129 $E0 0.00070356 $PDTrans; 

element nonlinearBeamColumn 41 67 68 $nI6 $IPE500R3V $PDTrans; 

        
element nonlinearBeamColumn 42 69 70 $nI6 $IPE500R3V $PDTrans; 

element elasticBeamColumn 43 698 699 0.0129 $E0 0.00070356 $PDTrans; 

element nonlinearBeamColumn 44 71 72 $nI6 $IPE500R3V $PDTrans; 

        

element nonlinearBeamColumn 45 73 74 $nI6 $IPE500R3V $PDTrans; 

element elasticBeamColumn 46 700 701 0.0129 $E0 0.00070356 $PDTrans; 
element nonlinearBeamColumn 47 75 76 $nI6 $IPE500R3V $PDTrans; 

        

        
# 4rth floor beams     

        

element nonlinearBeamColumn 48 77 78 $nI6 $IPE450R4V $PDTrans; 
element elasticBeamColumn 49 702 703 0.0112 $E0 0.00050831 $PDTrans; 

element nonlinearBeamColumn 50 79 80 $nI6 $IPE450R4V $PDTrans; 

        
element nonlinearBeamColumn 51 81 82 $nI6 $IPE450R4V $PDTrans; 

element elasticBeamColumn 52 704 705 0.0112 $E0 0.00050831 $PDTrans; 

element nonlinearBeamColumn 53 83 84 $nI6 $IPE450R4V $PDTrans; 
        

element nonlinearBeamColumn 54 85 86 $nI6 $IPE450R4V $PDTrans; 

element elasticBeamColumn 55 706 707 0.0112 $E0 0.00050831 $PDTrans; 
element nonlinearBeamColumn 56 87 88 $nI6 $IPE450R4V $PDTrans; 

        

   
# 5th floor beams     

        

element nonlinearBeamColumn 57 89 90 $nI6 $IPE450R5V $PDTrans; 
element elasticBeamColumn 58 708 709 0.0112 $E0 0.00050831 $PDTrans; 

element nonlinearBeamColumn 59 91 92 $nI6 $IPE450R5V $PDTrans; 

        
element nonlinearBeamColumn 60 93 94 $nI6 $IPE450R5V $PDTrans; 

element elasticBeamColumn 61 710 711 0.0112 $E0 0.00050831 $PDTrans; 

element nonlinearBeamColumn 62 95 96 $nI6 $IPE450R5V $PDTrans; 
        

element nonlinearBeamColumn 63 97 98 $nI6 $IPE450R5V $PDTrans; 

element elasticBeamColumn 64 712 713 0.0112 $E0 0.00050831 $PDTrans; 
element nonlinearBeamColumn 65 99 100 $nI6 $IPE450R5V $PDTrans; 

 

# Define rigid elements 
 

set    HEB450rigid  321; 

 
# DEfine rigid sections 
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WFSection $HEB450rigid $Srigid $dc2 $twc2 $bfc2 $tfc2 8 4; 

 
# Define vertical panel zones elements         

         

element elasticBeamColumn 66 2 161 0.0218 2.10E+11 7.99E-04 $LNTrans; 
element elasticBeamColumn 67 161 3 0.0218 2.10E+11 7.99E-04 $LNTrans; 

element elasticBeamColumn 68 4 165 0.0218 2.10E+11 7.99E-04 $LNTrans; 

element elasticBeamColumn 69 165 5 0.0218 2.10E+11 7.99E-04 $LNTrans; 
element elasticBeamColumn 70 6 169 0.0218 2.10E+11 7.99E-04 $LNTrans; 

element elasticBeamColumn 71 169 7 0.0218 2.10E+11 7.99E-04 $LNTrans; 

element elasticBeamColumn 72 8 173 0.0218 2.10E+11 7.99E-04 $LNTrans; 
element elasticBeamColumn 73 173 9 0.0218 2.10E+11 7.99E-04 $LNTrans; 

element elasticBeamColumn 74 10 177 0.0218 2.10E+11 7.99E-04 $LNTrans; 

         
element elasticBeamColumn 75 12 162 0.0218 2.10E+11 7.99E-04 $LNTrans; 

element elasticBeamColumn 76 162 13 0.0218 2.10E+11 7.99E-04 $LNTrans; 

element elasticBeamColumn 77 14 166 0.0218 2.10E+11 7.99E-04 $LNTrans; 

element elasticBeamColumn 78 166 15 0.0218 2.10E+11 7.99E-04 $LNTrans; 

element elasticBeamColumn 79 16 170 0.0218 2.10E+11 7.99E-04 $LNTrans; 

element elasticBeamColumn 80 170 17 0.0218 2.10E+11 7.99E-04 $LNTrans; 
element elasticBeamColumn 81 18 174 0.0218 2.10E+11 7.99E-04 $LNTrans; 

element elasticBeamColumn 82 174 19 0.0218 2.10E+11 7.99E-04 $LNTrans; 

element elasticBeamColumn 83 20 178 0.0218 2.10E+11 7.99E-04 $LNTrans; 
         

element elasticBeamColumn 84 22 163 0.0218 2.10E+11 7.99E-04 $LNTrans; 

element elasticBeamColumn 85 163 23 0.0218 2.10E+11 7.99E-04 $LNTrans; 
element elasticBeamColumn 86 24 167 0.0218 2.10E+11 7.99E-04 $LNTrans; 

element elasticBeamColumn 87 167 25 0.0218 2.10E+11 7.99E-04 $LNTrans; 
element elasticBeamColumn 88 26 171 0.0218 2.10E+11 7.99E-04 $LNTrans; 

element elasticBeamColumn 89 171 27 0.0218 2.10E+11 7.99E-04 $LNTrans; 

element elasticBeamColumn 90 28 175 0.0218 2.10E+11 7.99E-04 $LNTrans; 
element elasticBeamColumn 91 175 29 0.0218 2.10E+11 7.99E-04 $LNTrans; 

element elasticBeamColumn 92 30 179 0.0218 2.10E+11 7.99E-04 $LNTrans; 

         

element elasticBeamColumn 93 32 164 0.0218 2.10E+11 7.99E-04 $LNTrans; 

element elasticBeamColumn 94 164 33 0.0218 2.10E+11 7.99E-04 $LNTrans; 

element elasticBeamColumn 95 34 168 0.0218 2.10E+11 7.99E-04 $LNTrans; 
element elasticBeamColumn 96 168 35 0.0218 2.10E+11 7.99E-04 $LNTrans; 

element elasticBeamColumn 97 36 172 0.0218 2.10E+11 7.99E-04 $LNTrans; 

element elasticBeamColumn 98 172 37 0.0218 2.10E+11 7.99E-04 $LNTrans; 
element elasticBeamColumn 99 38 176 0.0218 2.10E+11 7.99E-04 $LNTrans; 

element elasticBeamColumn 100 176 39 0.0218 2.10E+11 7.99E-04 $LNTrans; 

element elasticBeamColumn 101 40 180 0.0218 2.10E+11 7.99E-04 $LNTrans; 
         

         

# Define horizontal panel zones elements    
         

# 1st floor       

element elasticBeamColumn 102 101 102 0.0218 2.10E+11 7.99E-04 $LNTrans; 
element elasticBeamColumn 103 102 103 0.0218 2.10E+11 7.99E-04 $LNTrans; 

element elasticBeamColumn 104 104 105 0.0218 2.10E+11 7.99E-04 $LNTrans; 

element elasticBeamColumn 105 105 106 0.0218 2.10E+11 7.99E-04 $LNTrans; 
element elasticBeamColumn 106 107 108 0.0218 2.10E+11 7.99E-04 $LNTrans; 

element elasticBeamColumn 107 108 109 0.0218 2.10E+11 7.99E-04 $LNTrans; 

element elasticBeamColumn 108 110 111 0.0218 2.10E+11 7.99E-04 $LNTrans; 
element elasticBeamColumn 109 111 112 0.0218 2.10E+11 7.99E-04 $LNTrans; 

         

# 2nd floor       
element elasticBeamColumn 110 113 114 0.0218 2.10E+11 7.99E-04 $LNTrans; 

element elasticBeamColumn 111 114 115 0.0218 2.10E+11 7.99E-04 $LNTrans; 

element elasticBeamColumn 112 116 117 0.0218 2.10E+11 7.99E-04 $LNTrans; 
element elasticBeamColumn 113 117 118 0.0218 2.10E+11 7.99E-04 $LNTrans; 

element elasticBeamColumn 114 119 120 0.0218 2.10E+11 7.99E-04 $LNTrans; 

element elasticBeamColumn 115 120 121 0.0218 2.10E+11 7.99E-04 $LNTrans; 
element elasticBeamColumn 116 122 123 0.0218 2.10E+11 7.99E-04 $LNTrans; 

element elasticBeamColumn 117 123 124 0.0218 2.10E+11 7.99E-04 $LNTrans; 

         
# 3rd floor       

element elasticBeamColumn 118 125 126 0.0218 2.10E+11 7.99E-04 $LNTrans; 

element elasticBeamColumn 119 126 127 0.0218 2.10E+11 7.99E-04 $LNTrans; 
element elasticBeamColumn 120 128 129 0.0218 2.10E+11 7.99E-04 $LNTrans; 

element elasticBeamColumn 121 129 130 0.0218 2.10E+11 7.99E-04 $LNTrans; 

element elasticBeamColumn 122 131 132 0.0218 2.10E+11 7.99E-04 $LNTrans; 
element elasticBeamColumn 123 132 133 0.0218 2.10E+11 7.99E-04 $LNTrans; 

element elasticBeamColumn 124 134 135 0.0218 2.10E+11 7.99E-04 $LNTrans; 
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element elasticBeamColumn 125 135 136 0.0218 2.10E+11 7.99E-04 $LNTrans; 

         
# 4rth floor       

element elasticBeamColumn 126 137 138 0.0218 2.10E+11 7.99E-04 $LNTrans; 

element elasticBeamColumn 127 138 139 0.0218 2.10E+11 7.99E-04 $LNTrans; 
element elasticBeamColumn 128 140 141 0.0218 2.10E+11 7.99E-04 $LNTrans; 

element elasticBeamColumn 129 141 142 0.0218 2.10E+11 7.99E-04 $LNTrans; 

element elasticBeamColumn 130 143 144 0.0218 2.10E+11 7.99E-04 $LNTrans; 
element elasticBeamColumn 131 144 145 0.0218 2.10E+11 7.99E-04 $LNTrans; 

element elasticBeamColumn 132 146 147 0.0218 2.10E+11 7.99E-04 $LNTrans; 

element elasticBeamColumn 133 147 148 0.0218 2.10E+11 7.99E-04 $LNTrans; 
         

# 5th floor       

element elasticBeamColumn 134 149 150 0.0218 2.10E+11 7.99E-04 $LNTrans; 
element elasticBeamColumn 135 150 151 0.0218 2.10E+11 7.99E-04 $LNTrans; 

element elasticBeamColumn 136 152 153 0.0218 2.10E+11 7.99E-04 $LNTrans; 

element elasticBeamColumn 137 153 154 0.0218 2.10E+11 7.99E-04 $LNTrans; 

element elasticBeamColumn 138 155 156 0.0218 2.10E+11 7.99E-04 $LNTrans; 

element elasticBeamColumn 139 156 157 0.0218 2.10E+11 7.99E-04 $LNTrans; 

element elasticBeamColumn 140 158 159 0.0218 2.10E+11 7.99E-04 $LNTrans; 
element elasticBeamColumn 141 159 160 0.0218 2.10E+11 7.99E-04 $LNTrans; 

         

   
# Define Beam column interface rigid elements       

  

         
# x1CR        

         
# y2       

         

# Top        
         

element elasticBeamColumn 142 103 181 0.0218 2.10E+11 7.99E-04 $LNTrans; 

element elasticBeamColumn 143 181 182 0.0218 2.10E+11 7.99E-04 $LNTrans; 

element elasticBeamColumn 144 182 183 0.0218 2.10E+11 7.99E-04 $LNTrans; 

element elasticBeamColumn 145 183 184 0.0218 2.10E+11 7.99E-04 $LNTrans; 

element elasticBeamColumn 146 41 185 0.0218 2.10E+11 7.99E-04 $LNTrans; 
element elasticBeamColumn 147 185 186 0.0218 2.10E+11 7.99E-04 $LNTrans; 

element elasticBeamColumn 148 186 187 0.0218 2.10E+11 7.99E-04 $LNTrans; 

element elasticBeamColumn 149 187 188 0.0218 2.10E+11 7.99E-04 $LNTrans; 
         

# Bottom        

         
element elasticBeamColumn 150 103 189 0.0218 2.10E+11 7.99E-04 $LNTrans; 

element elasticBeamColumn 151 189 190 0.0218 2.10E+11 7.99E-04 $LNTrans; 

element elasticBeamColumn 152 190 191 0.0218 2.10E+11 7.99E-04 $LNTrans; 
element elasticBeamColumn 153 191 192 0.0218 2.10E+11 7.99E-04 $LNTrans; 

element elasticBeamColumn 154 41 193 0.0218 2.10E+11 7.99E-04 $LNTrans; 

element elasticBeamColumn 155 193 194 0.0218 2.10E+11 7.99E-04 $LNTrans; 
element elasticBeamColumn 156 194 195 0.0218 2.10E+11 7.99E-04 $LNTrans; 

element elasticBeamColumn 157 195 196 0.0218 2.10E+11 7.99E-04 $LNTrans; 

         
# y3        

         

# Top        
         

element elasticBeamColumn 158 115 197 0.0218 2.10E+11 7.99E-04 $LNTrans; 

element elasticBeamColumn 159 197 198 0.0218 2.10E+11 7.99E-04 $LNTrans; 
element elasticBeamColumn 160 198 199 0.0218 2.10E+11 7.99E-04 $LNTrans; 

element elasticBeamColumn 161 199 200 0.0218 2.10E+11 7.99E-04 $LNTrans; 

element elasticBeamColumn 162 53 201 0.0218 2.10E+11 7.99E-04 $LNTrans; 
element elasticBeamColumn 163 201 202 0.0218 2.10E+11 7.99E-04 $LNTrans; 

element elasticBeamColumn 164 202 203 0.0218 2.10E+11 7.99E-04 $LNTrans; 

element elasticBeamColumn 165 203 204 0.0218 2.10E+11 7.99E-04 $LNTrans; 
         

# Bottom        

         
element elasticBeamColumn 166 115 205 0.0218 2.10E+11 7.99E-04 $LNTrans; 

element elasticBeamColumn 167 205 206 0.0218 2.10E+11 7.99E-04 $LNTrans; 

element elasticBeamColumn 168 206 207 0.0218 2.10E+11 7.99E-04 $LNTrans; 
element elasticBeamColumn 169 207 208 0.0218 2.10E+11 7.99E-04 $LNTrans; 

element elasticBeamColumn 170 53 209 0.0218 2.10E+11 7.99E-04 $LNTrans; 

element elasticBeamColumn 171 209 210 0.0218 2.10E+11 7.99E-04 $LNTrans; 
element elasticBeamColumn 172 210 211 0.0218 2.10E+11 7.99E-04 $LNTrans; 

element elasticBeamColumn 173 211 212 0.0218 2.10E+11 7.99E-04 $LNTrans; 
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# y4        
         

# Top        

         
element elasticBeamColumn 174 127 213 0.0218 2.10E+11 7.99E-04 $LNTrans; 

element elasticBeamColumn 175 213 214 0.0218 2.10E+11 7.99E-04 $LNTrans; 

element elasticBeamColumn 176 214 215 0.0218 2.10E+11 7.99E-04 $LNTrans; 
element elasticBeamColumn 177 215 216 0.0218 2.10E+11 7.99E-04 $LNTrans; 

element elasticBeamColumn 178 65 217 0.0218 2.10E+11 7.99E-04 $LNTrans; 

element elasticBeamColumn 179 217 218 0.0218 2.10E+11 7.99E-04 $LNTrans; 
element elasticBeamColumn 180 218 219 0.0218 2.10E+11 7.99E-04 $LNTrans; 

element elasticBeamColumn 181 219 220 0.0218 2.10E+11 7.99E-04 $LNTrans; 

         
# Bottom        

         

element elasticBeamColumn 182 127 221 0.0218 2.10E+11 7.99E-04 $LNTrans; 

element elasticBeamColumn 183 221 222 0.0218 2.10E+11 7.99E-04 $LNTrans; 

element elasticBeamColumn 184 222 223 0.0218 2.10E+11 7.99E-04 $LNTrans; 

element elasticBeamColumn 185 223 224 0.0218 2.10E+11 7.99E-04 $LNTrans; 
element elasticBeamColumn 186 65 225 0.0218 2.10E+11 7.99E-04 $LNTrans; 

element elasticBeamColumn 187 225 226 0.0218 2.10E+11 7.99E-04 $LNTrans; 

element elasticBeamColumn 188 226 227 0.0218 2.10E+11 7.99E-04 $LNTrans; 
element elasticBeamColumn 189 227 228 0.0218 2.10E+11 7.99E-04 $LNTrans; 

         

# y5       
         

# Top        
         

element elasticBeamColumn 190 139 229 0.0218 2.10E+11 7.99E-04 $LNTrans; 

element elasticBeamColumn 191 229 230 0.0218 2.10E+11 7.99E-04 $LNTrans; 
element elasticBeamColumn 192 230 231 0.0218 2.10E+11 7.99E-04 $LNTrans; 

element elasticBeamColumn 193 231 232 0.0218 2.10E+11 7.99E-04 $LNTrans; 

element elasticBeamColumn 194 77 233 0.0218 2.10E+11 7.99E-04 $LNTrans; 

element elasticBeamColumn 195 233 234 0.0218 2.10E+11 7.99E-04 $LNTrans; 

element elasticBeamColumn 196 234 235 0.0218 2.10E+11 7.99E-04 $LNTrans; 

element elasticBeamColumn 197 235 236 0.0218 2.10E+11 7.99E-04 $LNTrans; 
         

# Bottom        

         
element elasticBeamColumn 198 139 237 0.0218 2.10E+11 7.99E-04 $LNTrans; 

element elasticBeamColumn 199 237 238 0.0218 2.10E+11 7.99E-04 $LNTrans; 

element elasticBeamColumn 200 238 239 0.0218 2.10E+11 7.99E-04 $LNTrans; 
element elasticBeamColumn 201 239 240 0.0218 2.10E+11 7.99E-04 $LNTrans; 

element elasticBeamColumn 202 77 241 0.0218 2.10E+11 7.99E-04 $LNTrans; 

element elasticBeamColumn 203 241 242 0.0218 2.10E+11 7.99E-04 $LNTrans; 
element elasticBeamColumn 204 242 243 0.0218 2.10E+11 7.99E-04 $LNTrans; 

element elasticBeamColumn 205 243 244 0.0218 2.10E+11 7.99E-04 $LNTrans; 

         
# y6        

         

# Top        
         

element elasticBeamColumn 206 151 245 0.0218 2.10E+11 7.99E-04 $LNTrans; 

element elasticBeamColumn 207 245 246 0.0218 2.10E+11 7.99E-04 $LNTrans; 
element elasticBeamColumn 208 246 247 0.0218 2.10E+11 7.99E-04 $LNTrans; 

element elasticBeamColumn 209 247 248 0.0218 2.10E+11 7.99E-04 $LNTrans; 

element elasticBeamColumn 210 89 249 0.0218 2.10E+11 7.99E-04 $LNTrans; 
element elasticBeamColumn 211 249 250 0.0218 2.10E+11 7.99E-04 $LNTrans; 

element elasticBeamColumn 212 250 251 0.0218 2.10E+11 7.99E-04 $LNTrans; 

element elasticBeamColumn 213 251 252 0.0218 2.10E+11 7.99E-04 $LNTrans; 
         

# Bottom        

         
element elasticBeamColumn 214 151 253 0.0218 2.10E+11 7.99E-04 $LNTrans; 

element elasticBeamColumn 215 253 254 0.0218 2.10E+11 7.99E-04 $LNTrans; 

element elasticBeamColumn 216 254 255 0.0218 2.10E+11 7.99E-04 $LNTrans; 
element elasticBeamColumn 217 255 256 0.0218 2.10E+11 7.99E-04 $LNTrans; 

element elasticBeamColumn 218 89 257 0.0218 2.10E+11 7.99E-04 $LNTrans; 

element elasticBeamColumn 219 257 258 0.0218 2.10E+11 7.99E-04 $LNTrans; 
element elasticBeamColumn 220 258 259 0.0218 2.10E+11 7.99E-04 $LNTrans; 

element elasticBeamColumn 221 259 260 0.0218 2.10E+11 7.99E-04 $LNTrans; 

 
# x2CL        
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# y2        

         
# Top        

         

element elasticBeamColumn 222 104 261 0.0218 2.10E+11 7.99E-04 $LNTrans; 
element elasticBeamColumn 223 261 262 0.0218 2.10E+11 7.99E-04 $LNTrans; 

element elasticBeamColumn 224 262 263 0.0218 2.10E+11 7.99E-04 $LNTrans; 

element elasticBeamColumn 225 263 264 0.0218 2.10E+11 7.99E-04 $LNTrans; 
element elasticBeamColumn 226 44 265 0.0218 2.10E+11 7.99E-04 $LNTrans; 

element elasticBeamColumn 227 265 266 0.0218 2.10E+11 7.99E-04 $LNTrans; 

element elasticBeamColumn 228 266 267 0.0218 2.10E+11 7.99E-04 $LNTrans; 
element elasticBeamColumn 229 267 268 0.0218 2.10E+11 7.99E-04 $LNTrans; 

         

# Bottom        
         

element elasticBeamColumn 230 104 269 0.0218 2.10E+11 7.99E-04 $LNTrans; 

element elasticBeamColumn 231 269 270 0.0218 2.10E+11 7.99E-04 $LNTrans; 

element elasticBeamColumn 232 270 271 0.0218 2.10E+11 7.99E-04 $LNTrans; 

element elasticBeamColumn 233 271 272 0.0218 2.10E+11 7.99E-04 $LNTrans; 

element elasticBeamColumn 234 44 273 0.0218 2.10E+11 7.99E-04 $LNTrans; 
element elasticBeamColumn 235 273 274 0.0218 2.10E+11 7.99E-04 $LNTrans; 

element elasticBeamColumn 236 274 275 0.0218 2.10E+11 7.99E-04 $LNTrans; 

element elasticBeamColumn 237 275 276 0.0218 2.10E+11 7.99E-04 $LNTrans; 
         

# y3        

         
# Top        

         
element elasticBeamColumn 238 116 277 0.0218 2.10E+11 7.99E-04 $LNTrans; 

element elasticBeamColumn 239 277 278 0.0218 2.10E+11 7.99E-04 $LNTrans; 

element elasticBeamColumn 240 278 279 0.0218 2.10E+11 7.99E-04 $LNTrans; 
element elasticBeamColumn 241 279 280 0.0218 2.10E+11 7.99E-04 $LNTrans; 

element elasticBeamColumn 242 56 281 0.0218 2.10E+11 7.99E-04 $LNTrans; 

element elasticBeamColumn 243 281 282 0.0218 2.10E+11 7.99E-04 $LNTrans; 

element elasticBeamColumn 244 282 283 0.0218 2.10E+11 7.99E-04 $LNTrans; 

element elasticBeamColumn 245 283 284 0.0218 2.10E+11 7.99E-04 $LNTrans; 

         
# Bottom        

         

element elasticBeamColumn 246 116 285 0.0218 2.10E+11 7.99E-04 $LNTrans; 
element elasticBeamColumn 247 285 286 0.0218 2.10E+11 7.99E-04 $LNTrans; 

element elasticBeamColumn 248 286 287 0.0218 2.10E+11 7.99E-04 $LNTrans; 

element elasticBeamColumn 249 287 288 0.0218 2.10E+11 7.99E-04 $LNTrans; 
element elasticBeamColumn 250 56 289 0.0218 2.10E+11 7.99E-04 $LNTrans; 

element elasticBeamColumn 251 289 290 0.0218 2.10E+11 7.99E-04 $LNTrans; 

element elasticBeamColumn 252 290 291 0.0218 2.10E+11 7.99E-04 $LNTrans; 
element elasticBeamColumn 253 291 292 0.0218 2.10E+11 7.99E-04 $LNTrans; 

         

# y4        
         

# Top        

         
element elasticBeamColumn 254 128 293 0.0218 2.10E+11 7.99E-04 $LNTrans; 

element elasticBeamColumn 255 293 294 0.0218 2.10E+11 7.99E-04 $LNTrans; 

element elasticBeamColumn 256 294 295 0.0218 2.10E+11 7.99E-04 $LNTrans; 
element elasticBeamColumn 257 295 296 0.0218 2.10E+11 7.99E-04 $LNTrans; 

element elasticBeamColumn 258 68 297 0.0218 2.10E+11 7.99E-04 $LNTrans; 

element elasticBeamColumn 259 297 298 0.0218 2.10E+11 7.99E-04 $LNTrans; 
element elasticBeamColumn 260 298 299 0.0218 2.10E+11 7.99E-04 $LNTrans; 

element elasticBeamColumn 261 299 300 0.0218 2.10E+11 7.99E-04 $LNTrans; 

         
# Bottom        

         

element elasticBeamColumn 262 128 301 0.0218 2.10E+11 7.99E-04 $LNTrans; 
element elasticBeamColumn 263 301 302 0.0218 2.10E+11 7.99E-04 $LNTrans; 

element elasticBeamColumn 264 302 303 0.0218 2.10E+11 7.99E-04 $LNTrans; 

element elasticBeamColumn 265 303 304 0.0218 2.10E+11 7.99E-04 $LNTrans; 
element elasticBeamColumn 266 68 305 0.0218 2.10E+11 7.99E-04 $LNTrans; 

element elasticBeamColumn 267 305 306 0.0218 2.10E+11 7.99E-04 $LNTrans; 

element elasticBeamColumn 268 306 307 0.0218 2.10E+11 7.99E-04 $LNTrans; 
element elasticBeamColumn 269 307 308 0.0218 2.10E+11 7.99E-04 $LNTrans; 

         

# y5        
         

# Top        



DD 
 

         

element elasticBeamColumn 270 140 309 0.0218 2.10E+11 7.99E-04 $LNTrans; 
element elasticBeamColumn 271 309 310 0.0218 2.10E+11 7.99E-04 $LNTrans; 

element elasticBeamColumn 272 310 311 0.0218 2.10E+11 7.99E-04 $LNTrans; 

element elasticBeamColumn 273 311 312 0.0218 2.10E+11 7.99E-04 $LNTrans; 
element elasticBeamColumn 274 80 313 0.0218 2.10E+11 7.99E-04 $LNTrans; 

element elasticBeamColumn 275 313 314 0.0218 2.10E+11 7.99E-04 $LNTrans; 

element elasticBeamColumn 276 314 315 0.0218 2.10E+11 7.99E-04 $LNTrans; 
element elasticBeamColumn 277 315 316 0.0218 2.10E+11 7.99E-04 $LNTrans; 

         

# Bottom        
         

element elasticBeamColumn 278 140 317 0.0218 2.10E+11 7.99E-04 $LNTrans; 

element elasticBeamColumn 279 317 318 0.0218 2.10E+11 7.99E-04 $LNTrans; 
element elasticBeamColumn 280 318 319 0.0218 2.10E+11 7.99E-04 $LNTrans; 

element elasticBeamColumn 281 319 320 0.0218 2.10E+11 7.99E-04 $LNTrans; 

element elasticBeamColumn 282 80 321 0.0218 2.10E+11 7.99E-04 $LNTrans; 

element elasticBeamColumn 283 321 322 0.0218 2.10E+11 7.99E-04 $LNTrans; 

element elasticBeamColumn 284 322 323 0.0218 2.10E+11 7.99E-04 $LNTrans; 

element elasticBeamColumn 285 323 324 0.0218 2.10E+11 7.99E-04 $LNTrans; 
         

# y6        

         
# Top        

         

element elasticBeamColumn 286 152 325 0.0218 2.10E+11 7.99E-04 $LNTrans; 
element elasticBeamColumn 287 325 326 0.0218 2.10E+11 7.99E-04 $LNTrans; 

element elasticBeamColumn 288 326 327 0.0218 2.10E+11 7.99E-04 $LNTrans; 
element elasticBeamColumn 289 327 328 0.0218 2.10E+11 7.99E-04 $LNTrans; 

element elasticBeamColumn 290 92 329 0.0218 2.10E+11 7.99E-04 $LNTrans; 

element elasticBeamColumn 291 329 330 0.0218 2.10E+11 7.99E-04 $LNTrans; 
element elasticBeamColumn 292 330 331 0.0218 2.10E+11 7.99E-04 $LNTrans; 

element elasticBeamColumn 293 331 332 0.0218 2.10E+11 7.99E-04 $LNTrans; 

         

# Bottom        

         

element elasticBeamColumn 294 152 333 0.0218 2.10E+11 7.99E-04 $LNTrans; 
element elasticBeamColumn 295 333 334 0.0218 2.10E+11 7.99E-04 $LNTrans; 

element elasticBeamColumn 296 334 335 0.0218 2.10E+11 7.99E-04 $LNTrans; 

element elasticBeamColumn 297 335 336 0.0218 2.10E+11 7.99E-04 $LNTrans; 
element elasticBeamColumn 298 92 337 0.0218 2.10E+11 7.99E-04 $LNTrans; 

element elasticBeamColumn 299 337 338 0.0218 2.10E+11 7.99E-04 $LNTrans; 

element elasticBeamColumn 300 338 339 0.0218 2.10E+11 7.99E-04 $LNTrans; 
element elasticBeamColumn 301 339 340 0.0218 2.10E+11 7.99E-04 $LNTrans; 

 

# x2CR        
         

# y2        

         
# Top        

         

element elasticBeamColumn 302 106 341 0.0218 2.10E+11 7.99E-04 $LNTrans; 
element elasticBeamColumn 303 341 342 0.0218 2.10E+11 7.99E-04 $LNTrans; 

element elasticBeamColumn 304 342 343 0.0218 2.10E+11 7.99E-04 $LNTrans; 

element elasticBeamColumn 305 343 344 0.0218 2.10E+11 7.99E-04 $LNTrans; 
element elasticBeamColumn 306 45 345 0.0218 2.10E+11 7.99E-04 $LNTrans; 

element elasticBeamColumn 307 345 346 0.0218 2.10E+11 7.99E-04 $LNTrans; 

element elasticBeamColumn 308 346 347 0.0218 2.10E+11 7.99E-04 $LNTrans; 
element elasticBeamColumn 309 347 348 0.0218 2.10E+11 7.99E-04 $LNTrans; 

         

# Bottom        
         

element elasticBeamColumn 310 106 349 0.0218 2.10E+11 7.99E-04 $LNTrans; 

element elasticBeamColumn 311 349 350 0.0218 2.10E+11 7.99E-04 $LNTrans; 
element elasticBeamColumn 312 350 351 0.0218 2.10E+11 7.99E-04 $LNTrans; 

element elasticBeamColumn 313 351 352 0.0218 2.10E+11 7.99E-04 $LNTrans; 

element elasticBeamColumn 314 45 353 0.0218 2.10E+11 7.99E-04 $LNTrans; 
element elasticBeamColumn 315 353 354 0.0218 2.10E+11 7.99E-04 $LNTrans; 

element elasticBeamColumn 316 354 355 0.0218 2.10E+11 7.99E-04 $LNTrans; 

element elasticBeamColumn 317 355 356 0.0218 2.10E+11 7.99E-04 $LNTrans; 
         

# y3        

         
# Top        

         



EE 
 

element elasticBeamColumn 318 118 357 0.0218 2.10E+11 7.99E-04 $LNTrans; 

element elasticBeamColumn 319 357 358 0.0218 2.10E+11 7.99E-04 $LNTrans; 
element elasticBeamColumn 320 358 359 0.0218 2.10E+11 7.99E-04 $LNTrans; 

element elasticBeamColumn 321 359 360 0.0218 2.10E+11 7.99E-04 $LNTrans; 

element elasticBeamColumn 322 57 361 0.0218 2.10E+11 7.99E-04 $LNTrans; 
element elasticBeamColumn 323 361 362 0.0218 2.10E+11 7.99E-04 $LNTrans; 

element elasticBeamColumn 324 362 363 0.0218 2.10E+11 7.99E-04 $LNTrans; 

element elasticBeamColumn 325 363 364 0.0218 2.10E+11 7.99E-04 $LNTrans; 
         

# Bottom        

         
element elasticBeamColumn 326 118 365 0.0218 2.10E+11 7.99E-04 $LNTrans; 

element elasticBeamColumn 327 365 366 0.0218 2.10E+11 7.99E-04 $LNTrans; 

element elasticBeamColumn 328 366 367 0.0218 2.10E+11 7.99E-04 $LNTrans; 
element elasticBeamColumn 329 367 368 0.0218 2.10E+11 7.99E-04 $LNTrans; 

element elasticBeamColumn 330 57 369 0.0218 2.10E+11 7.99E-04 $LNTrans; 

element elasticBeamColumn 331 369 370 0.0218 2.10E+11 7.99E-04 $LNTrans; 

element elasticBeamColumn 332 370 371 0.0218 2.10E+11 7.99E-04 $LNTrans; 

element elasticBeamColumn 333 371 372 0.0218 2.10E+11 7.99E-04 $LNTrans; 

         
# y4        

         

# Top        
         

element elasticBeamColumn 334 130 373 0.0218 2.10E+11 7.99E-04 $LNTrans; 

element elasticBeamColumn 335 373 374 0.0218 2.10E+11 7.99E-04 $LNTrans; 
element elasticBeamColumn 336 374 375 0.0218 2.10E+11 7.99E-04 $LNTrans; 

element elasticBeamColumn 337 375 376 0.0218 2.10E+11 7.99E-04 $LNTrans; 
element elasticBeamColumn 338 69 377 0.0218 2.10E+11 7.99E-04 $LNTrans; 

element elasticBeamColumn 339 377 378 0.0218 2.10E+11 7.99E-04 $LNTrans; 

element elasticBeamColumn 340 378 379 0.0218 2.10E+11 7.99E-04 $LNTrans; 
element elasticBeamColumn 341 379 380 0.0218 2.10E+11 7.99E-04 $LNTrans; 

         

# Bottom        

         

element elasticBeamColumn 342 130 381 0.0218 2.10E+11 7.99E-04 $LNTrans; 

element elasticBeamColumn 343 381 382 0.0218 2.10E+11 7.99E-04 $LNTrans; 
element elasticBeamColumn 344 382 383 0.0218 2.10E+11 7.99E-04 $LNTrans; 

element elasticBeamColumn 345 383 384 0.0218 2.10E+11 7.99E-04 $LNTrans; 

element elasticBeamColumn 346 69 385 0.0218 2.10E+11 7.99E-04 $LNTrans; 
element elasticBeamColumn 347 385 386 0.0218 2.10E+11 7.99E-04 $LNTrans; 

element elasticBeamColumn 348 386 387 0.0218 2.10E+11 7.99E-04 $LNTrans; 

element elasticBeamColumn 349 387 388 0.0218 2.10E+11 7.99E-04 $LNTrans; 
         

# y5        

         
# Top        

         

element elasticBeamColumn 350 142 389 0.0218 2.10E+11 7.99E-04 $LNTrans; 
element elasticBeamColumn 351 389 390 0.0218 2.10E+11 7.99E-04 $LNTrans; 

element elasticBeamColumn 352 390 391 0.0218 2.10E+11 7.99E-04 $LNTrans; 

element elasticBeamColumn 353 391 392 0.0218 2.10E+11 7.99E-04 $LNTrans; 
element elasticBeamColumn 354 81 393 0.0218 2.10E+11 7.99E-04 $LNTrans; 

element elasticBeamColumn 355 393 394 0.0218 2.10E+11 7.99E-04 $LNTrans; 

element elasticBeamColumn 356 394 395 0.0218 2.10E+11 7.99E-04 $LNTrans; 
element elasticBeamColumn 357 395 396 0.0218 2.10E+11 7.99E-04 $LNTrans; 

         

# Bottom        
         

element elasticBeamColumn 358 142 397 0.0218 2.10E+11 7.99E-04 $LNTrans; 

element elasticBeamColumn 359 397 398 0.0218 2.10E+11 7.99E-04 $LNTrans; 
element elasticBeamColumn 360 398 399 0.0218 2.10E+11 7.99E-04 $LNTrans; 

element elasticBeamColumn 361 399 400 0.0218 2.10E+11 7.99E-04 $LNTrans; 

element elasticBeamColumn 362 81 401 0.0218 2.10E+11 7.99E-04 $LNTrans; 
element elasticBeamColumn 363 401 402 0.0218 2.10E+11 7.99E-04 $LNTrans; 

element elasticBeamColumn 364 402 403 0.0218 2.10E+11 7.99E-04 $LNTrans; 

element elasticBeamColumn 365 403 404 0.0218 2.10E+11 7.99E-04 $LNTrans; 
         

# y6        

         
# Top        

         

element elasticBeamColumn 366 154 405 0.0218 2.10E+11 7.99E-04 $LNTrans; 
element elasticBeamColumn 367 405 406 0.0218 2.10E+11 7.99E-04 $LNTrans; 

element elasticBeamColumn 368 406 407 0.0218 2.10E+11 7.99E-04 $LNTrans; 



FF 
 

element elasticBeamColumn 369 407 408 0.0218 2.10E+11 7.99E-04 $LNTrans; 

element elasticBeamColumn 370 93 409 0.0218 2.10E+11 7.99E-04 $LNTrans; 
element elasticBeamColumn 371 409 410 0.0218 2.10E+11 7.99E-04 $LNTrans; 

element elasticBeamColumn 372 410 411 0.0218 2.10E+11 7.99E-04 $LNTrans; 

element elasticBeamColumn 373 411 412 0.0218 2.10E+11 7.99E-04 $LNTrans; 
         

# Bottom        

         
element elasticBeamColumn 374 154 413 0.0218 2.10E+11 7.99E-04 $LNTrans; 

element elasticBeamColumn 375 413 414 0.0218 2.10E+11 7.99E-04 $LNTrans; 

element elasticBeamColumn 376 414 415 0.0218 2.10E+11 7.99E-04 $LNTrans; 
element elasticBeamColumn 377 415 416 0.0218 2.10E+11 7.99E-04 $LNTrans; 

element elasticBeamColumn 378 93 417 0.0218 2.10E+11 7.99E-04 $LNTrans; 

element elasticBeamColumn 379 417 418 0.0218 2.10E+11 7.99E-04 $LNTrans; 
element elasticBeamColumn 380 418 419 0.0218 2.10E+11 7.99E-04 $LNTrans; 

element elasticBeamColumn 381 419 420 0.0218 2.10E+11 7.99E-04 $LNTrans; 

 

# x3CL        

         

# y2        
         

# Top        

         
element elasticBeamColumn 382 107 421 0.0218 2.10E+11 7.99E-04 $LNTrans; 

element elasticBeamColumn 383 421 422 0.0218 2.10E+11 7.99E-04 $LNTrans; 

element elasticBeamColumn 384 422 423 0.0218 2.10E+11 7.99E-04 $LNTrans; 
element elasticBeamColumn 385 423 424 0.0218 2.10E+11 7.99E-04 $LNTrans; 

element elasticBeamColumn 386 48 425 0.0218 2.10E+11 7.99E-04 $LNTrans; 
element elasticBeamColumn 387 425 426 0.0218 2.10E+11 7.99E-04 $LNTrans; 

element elasticBeamColumn 388 426 427 0.0218 2.10E+11 7.99E-04 $LNTrans; 

element elasticBeamColumn 389 427 428 0.0218 2.10E+11 7.99E-04 $LNTrans; 
         

# Bottom        

         

element elasticBeamColumn 390 107 429 0.0218 2.10E+11 7.99E-04 $LNTrans; 

element elasticBeamColumn 391 429 430 0.0218 2.10E+11 7.99E-04 $LNTrans; 

element elasticBeamColumn 392 430 431 0.0218 2.10E+11 7.99E-04 $LNTrans; 
element elasticBeamColumn 393 431 432 0.0218 2.10E+11 7.99E-04 $LNTrans; 

element elasticBeamColumn 394 48 433 0.0218 2.10E+11 7.99E-04 $LNTrans; 

element elasticBeamColumn 395 433 434 0.0218 2.10E+11 7.99E-04 $LNTrans; 
element elasticBeamColumn 396 434 435 0.0218 2.10E+11 7.99E-04 $LNTrans; 

element elasticBeamColumn 397 435 436 0.0218 2.10E+11 7.99E-04 $LNTrans; 

         
# y3        

         

# Top        
         

element elasticBeamColumn 398 119 437 0.0218 2.10E+11 7.99E-04 $LNTrans; 

element elasticBeamColumn 399 437 438 0.0218 2.10E+11 7.99E-04 $LNTrans; 
element elasticBeamColumn 400 438 439 0.0218 2.10E+11 7.99E-04 $LNTrans; 

element elasticBeamColumn 401 439 440 0.0218 2.10E+11 7.99E-04 $LNTrans; 

element elasticBeamColumn 402 60 441 0.0218 2.10E+11 7.99E-04 $LNTrans; 
element elasticBeamColumn 403 441 442 0.0218 2.10E+11 7.99E-04 $LNTrans; 

element elasticBeamColumn 404 442 443 0.0218 2.10E+11 7.99E-04 $LNTrans; 

element elasticBeamColumn 405 443 444 0.0218 2.10E+11 7.99E-04 $LNTrans; 
         

# Bottom        

         
element elasticBeamColumn 406 119 445 0.0218 2.10E+11 7.99E-04 $LNTrans; 

element elasticBeamColumn 407 445 446 0.0218 2.10E+11 7.99E-04 $LNTrans; 

element elasticBeamColumn 408 446 447 0.0218 2.10E+11 7.99E-04 $LNTrans; 
element elasticBeamColumn 409 447 448 0.0218 2.10E+11 7.99E-04 $LNTrans; 

element elasticBeamColumn 410 60 449 0.0218 2.10E+11 7.99E-04 $LNTrans; 

element elasticBeamColumn 411 449 450 0.0218 2.10E+11 7.99E-04 $LNTrans; 
element elasticBeamColumn 412 450 451 0.0218 2.10E+11 7.99E-04 $LNTrans; 

element elasticBeamColumn 413 451 452 0.0218 2.10E+11 7.99E-04 $LNTrans; 

         
# y4        

         

# Top        
         

element elasticBeamColumn 414 131 453 0.0218 2.10E+11 7.99E-04 $LNTrans; 

element elasticBeamColumn 415 453 454 0.0218 2.10E+11 7.99E-04 $LNTrans; 
element elasticBeamColumn 416 454 455 0.0218 2.10E+11 7.99E-04 $LNTrans; 

element elasticBeamColumn 417 455 456 0.0218 2.10E+11 7.99E-04 $LNTrans; 



GG 
 

element elasticBeamColumn 418 72 457 0.0218 2.10E+11 7.99E-04 $LNTrans; 

element elasticBeamColumn 419 457 458 0.0218 2.10E+11 7.99E-04 $LNTrans; 
element elasticBeamColumn 420 458 459 0.0218 2.10E+11 7.99E-04 $LNTrans; 

element elasticBeamColumn 421 459 460 0.0218 2.10E+11 7.99E-04 $LNTrans; 

         
# Bottom        

         

element elasticBeamColumn 422 131 461 0.0218 2.10E+11 7.99E-04 $LNTrans; 
element elasticBeamColumn 423 461 462 0.0218 2.10E+11 7.99E-04 $LNTrans; 

element elasticBeamColumn 424 462 463 0.0218 2.10E+11 7.99E-04 $LNTrans; 

element elasticBeamColumn 425 463 464 0.0218 2.10E+11 7.99E-04 $LNTrans; 
element elasticBeamColumn 426 72 465 0.0218 2.10E+11 7.99E-04 $LNTrans; 

element elasticBeamColumn 427 465 466 0.0218 2.10E+11 7.99E-04 $LNTrans; 

element elasticBeamColumn 428 466 467 0.0218 2.10E+11 7.99E-04 $LNTrans; 
element elasticBeamColumn 429 467 468 0.0218 2.10E+11 7.99E-04 $LNTrans; 

         

# y5        

         

# Top        

         
element elasticBeamColumn 430 143 469 0.0218 2.10E+11 7.99E-04 $LNTrans; 

element elasticBeamColumn 431 469 470 0.0218 2.10E+11 7.99E-04 $LNTrans; 

element elasticBeamColumn 432 470 471 0.0218 2.10E+11 7.99E-04 $LNTrans; 
element elasticBeamColumn 433 471 472 0.0218 2.10E+11 7.99E-04 $LNTrans; 

element elasticBeamColumn 434 84 473 0.0218 2.10E+11 7.99E-04 $LNTrans; 

element elasticBeamColumn 435 473 474 0.0218 2.10E+11 7.99E-04 $LNTrans; 
element elasticBeamColumn 436 474 475 0.0218 2.10E+11 7.99E-04 $LNTrans; 

element elasticBeamColumn 437 475 476 0.0218 2.10E+11 7.99E-04 $LNTrans; 
         

# Bottom        

         
element elasticBeamColumn 438 143 477 0.0218 2.10E+11 7.99E-04 $LNTrans; 

element elasticBeamColumn 439 477 478 0.0218 2.10E+11 7.99E-04 $LNTrans; 

element elasticBeamColumn 440 478 479 0.0218 2.10E+11 7.99E-04 $LNTrans; 

element elasticBeamColumn 441 479 480 0.0218 2.10E+11 7.99E-04 $LNTrans; 

element elasticBeamColumn 442 84 481 0.0218 2.10E+11 7.99E-04 $LNTrans; 

element elasticBeamColumn 443 481 482 0.0218 2.10E+11 7.99E-04 $LNTrans; 
element elasticBeamColumn 444 482 483 0.0218 2.10E+11 7.99E-04 $LNTrans; 

element elasticBeamColumn 445 483 484 0.0218 2.10E+11 7.99E-04 $LNTrans; 

         
# y6        

         

# Top        
         

element elasticBeamColumn 446 155 485 0.0218 2.10E+11 7.99E-04 $LNTrans; 

element elasticBeamColumn 447 485 486 0.0218 2.10E+11 7.99E-04 $LNTrans; 
element elasticBeamColumn 448 486 487 0.0218 2.10E+11 7.99E-04 $LNTrans; 

element elasticBeamColumn 449 487 488 0.0218 2.10E+11 7.99E-04 $LNTrans; 

element elasticBeamColumn 450 96 489 0.0218 2.10E+11 7.99E-04 $LNTrans; 
element elasticBeamColumn 451 489 490 0.0218 2.10E+11 7.99E-04 $LNTrans; 

element elasticBeamColumn 452 490 491 0.0218 2.10E+11 7.99E-04 $LNTrans; 

element elasticBeamColumn 453 491 492 0.0218 2.10E+11 7.99E-04 $LNTrans; 
         

# Bottom        

         
element elasticBeamColumn 454 155 493 0.0218 2.10E+11 7.99E-04 $LNTrans; 

element elasticBeamColumn 455 493 494 0.0218 2.10E+11 7.99E-04 $LNTrans; 

element elasticBeamColumn 456 494 495 0.0218 2.10E+11 7.99E-04 $LNTrans; 
element elasticBeamColumn 457 495 496 0.0218 2.10E+11 7.99E-04 $LNTrans; 

element elasticBeamColumn 458 96 497 0.0218 2.10E+11 7.99E-04 $LNTrans; 

element elasticBeamColumn 459 497 498 0.0218 2.10E+11 7.99E-04 $LNTrans; 
element elasticBeamColumn 460 498 499 0.0218 2.10E+11 7.99E-04 $LNTrans; 

element elasticBeamColumn 461 499 500 0.0218 2.10E+11 7.99E-04 $LNTrans; 

 
# x3CR        

         

# y2       
         

# Top        

         
element elasticBeamColumn 462 109 501 0.0218 2.10E+11 7.99E-04 $LNTrans; 

element elasticBeamColumn 463 501 502 0.0218 2.10E+11 7.99E-04 $LNTrans; 

element elasticBeamColumn 464 502 503 0.0218 2.10E+11 7.99E-04 $LNTrans; 
element elasticBeamColumn 465 503 504 0.0218 2.10E+11 7.99E-04 $LNTrans; 

element elasticBeamColumn 466 49 505 0.0218 2.10E+11 7.99E-04 $LNTrans; 



HH 
 

element elasticBeamColumn 467 505 506 0.0218 2.10E+11 7.99E-04 $LNTrans; 

element elasticBeamColumn 468 506 507 0.0218 2.10E+11 7.99E-04 $LNTrans; 
element elasticBeamColumn 469 507 508 0.0218 2.10E+11 7.99E-04 $LNTrans; 

         

# Bottom        
         

element elasticBeamColumn 470 109 509 0.0218 2.10E+11 7.99E-04 $LNTrans; 

element elasticBeamColumn 471 509 510 0.0218 2.10E+11 7.99E-04 $LNTrans; 
element elasticBeamColumn 472 510 511 0.0218 2.10E+11 7.99E-04 $LNTrans; 

element elasticBeamColumn 473 511 512 0.0218 2.10E+11 7.99E-04 $LNTrans; 

element elasticBeamColumn 474 49 513 0.0218 2.10E+11 7.99E-04 $LNTrans; 
element elasticBeamColumn 475 513 514 0.0218 2.10E+11 7.99E-04 $LNTrans; 

element elasticBeamColumn 476 514 515 0.0218 2.10E+11 7.99E-04 $LNTrans; 

element elasticBeamColumn 477 515 516 0.0218 2.10E+11 7.99E-04 $LNTrans; 
         

# y3        

         

# Top        

         

element elasticBeamColumn 478 121 517 0.0218 2.10E+11 7.99E-04 $LNTrans; 
element elasticBeamColumn 479 517 518 0.0218 2.10E+11 7.99E-04 $LNTrans; 

element elasticBeamColumn 480 518 519 0.0218 2.10E+11 7.99E-04 $LNTrans; 

element elasticBeamColumn 481 519 520 0.0218 2.10E+11 7.99E-04 $LNTrans; 
element elasticBeamColumn 482 61 521 0.0218 2.10E+11 7.99E-04 $LNTrans; 

element elasticBeamColumn 483 521 522 0.0218 2.10E+11 7.99E-04 $LNTrans; 

element elasticBeamColumn 484 522 523 0.0218 2.10E+11 7.99E-04 $LNTrans; 
element elasticBeamColumn 485 523 524 0.0218 2.10E+11 7.99E-04 $LNTrans; 

         
# Bottom        

         

element elasticBeamColumn 486 121 525 0.0218 2.10E+11 7.99E-04 $LNTrans; 
element elasticBeamColumn 487 525 526 0.0218 2.10E+11 7.99E-04 $LNTrans; 

element elasticBeamColumn 488 526 527 0.0218 2.10E+11 7.99E-04 $LNTrans; 

element elasticBeamColumn 489 527 528 0.0218 2.10E+11 7.99E-04 $LNTrans; 

element elasticBeamColumn 490 61 529 0.0218 2.10E+11 7.99E-04 $LNTrans; 

element elasticBeamColumn 491 529 530 0.0218 2.10E+11 7.99E-04 $LNTrans; 

element elasticBeamColumn 492 530 531 0.0218 2.10E+11 7.99E-04 $LNTrans; 
element elasticBeamColumn 493 531 532 0.0218 2.10E+11 7.99E-04 $LNTrans; 

         

# y4        
         

# Top        

         
element elasticBeamColumn 494 133 533 0.0218 2.10E+11 7.99E-04 $LNTrans; 

element elasticBeamColumn 495 533 534 0.0218 2.10E+11 7.99E-04 $LNTrans; 

element elasticBeamColumn 496 534 535 0.0218 2.10E+11 7.99E-04 $LNTrans; 
element elasticBeamColumn 497 535 536 0.0218 2.10E+11 7.99E-04 $LNTrans; 

element elasticBeamColumn 498 73 537 0.0218 2.10E+11 7.99E-04 $LNTrans; 

element elasticBeamColumn 499 537 538 0.0218 2.10E+11 7.99E-04 $LNTrans; 
element elasticBeamColumn 500 538 539 0.0218 2.10E+11 7.99E-04 $LNTrans; 

element elasticBeamColumn 501 539 540 0.0218 2.10E+11 7.99E-04 $LNTrans; 

         
# Bottom        

         

element elasticBeamColumn 502 133 541 0.0218 2.10E+11 7.99E-04 $LNTrans; 
element elasticBeamColumn 503 541 542 0.0218 2.10E+11 7.99E-04 $LNTrans; 

element elasticBeamColumn 504 542 543 0.0218 2.10E+11 7.99E-04 $LNTrans; 

element elasticBeamColumn 505 543 544 0.0218 2.10E+11 7.99E-04 $LNTrans; 
element elasticBeamColumn 506 73 545 0.0218 2.10E+11 7.99E-04 $LNTrans; 

element elasticBeamColumn 507 545 546 0.0218 2.10E+11 7.99E-04 $LNTrans; 

element elasticBeamColumn 508 546 547 0.0218 2.10E+11 7.99E-04 $LNTrans; 
element elasticBeamColumn 509 547 548 0.0218 2.10E+11 7.99E-04 $LNTrans; 

         

# y5       
         

# Top        

         
element elasticBeamColumn 510 145 549 0.0218 2.10E+11 7.99E-04 $LNTrans; 

element elasticBeamColumn 511 549 550 0.0218 2.10E+11 7.99E-04 $LNTrans; 

element elasticBeamColumn 512 550 551 0.0218 2.10E+11 7.99E-04 $LNTrans; 
element elasticBeamColumn 513 551 552 0.0218 2.10E+11 7.99E-04 $LNTrans; 

element elasticBeamColumn 514 85 553 0.0218 2.10E+11 7.99E-04 $LNTrans; 

element elasticBeamColumn 515 553 554 0.0218 2.10E+11 7.99E-04 $LNTrans; 
element elasticBeamColumn 516 554 555 0.0218 2.10E+11 7.99E-04 $LNTrans; 

element elasticBeamColumn 517 555 556 0.0218 2.10E+11 7.99E-04 $LNTrans; 



II 
 

         

# Bottom        
         

element elasticBeamColumn 518 145 557 0.0218 2.10E+11 7.99E-04 $LNTrans; 

element elasticBeamColumn 519 557 558 0.0218 2.10E+11 7.99E-04 $LNTrans; 
element elasticBeamColumn 520 558 559 0.0218 2.10E+11 7.99E-04 $LNTrans; 

element elasticBeamColumn 521 559 560 0.0218 2.10E+11 7.99E-04 $LNTrans; 

element elasticBeamColumn 522 85 561 0.0218 2.10E+11 7.99E-04 $LNTrans; 
element elasticBeamColumn 523 561 562 0.0218 2.10E+11 7.99E-04 $LNTrans; 

element elasticBeamColumn 524 562 563 0.0218 2.10E+11 7.99E-04 $LNTrans; 

element elasticBeamColumn 525 563 564 0.0218 2.10E+11 7.99E-04 $LNTrans; 
         

# y6        

         
# Top        

         

element elasticBeamColumn 526 157 565 0.0218 2.10E+11 7.99E-04 $LNTrans; 

element elasticBeamColumn 527 565 566 0.0218 2.10E+11 7.99E-04 $LNTrans; 

element elasticBeamColumn 528 566 567 0.0218 2.10E+11 7.99E-04 $LNTrans; 

element elasticBeamColumn 529 567 568 0.0218 2.10E+11 7.99E-04 $LNTrans; 
element elasticBeamColumn 530 97 569 0.0218 2.10E+11 7.99E-04 $LNTrans; 

element elasticBeamColumn 531 569 570 0.0218 2.10E+11 7.99E-04 $LNTrans; 

element elasticBeamColumn 532 570 571 0.0218 2.10E+11 7.99E-04 $LNTrans; 
element elasticBeamColumn 533 571 572 0.0218 2.10E+11 7.99E-04 $LNTrans; 

         

# Bottom        
         

element elasticBeamColumn 534 157 573 0.0218 2.10E+11 7.99E-04 $LNTrans; 
element elasticBeamColumn 535 573 574 0.0218 2.10E+11 7.99E-04 $LNTrans; 

element elasticBeamColumn 536 574 575 0.0218 2.10E+11 7.99E-04 $LNTrans; 

element elasticBeamColumn 537 575 576 0.0218 2.10E+11 7.99E-04 $LNTrans; 
element elasticBeamColumn 538 97 577 0.0218 2.10E+11 7.99E-04 $LNTrans; 

element elasticBeamColumn 539 577 578 0.0218 2.10E+11 7.99E-04 $LNTrans; 

element elasticBeamColumn 540 578 579 0.0218 2.10E+11 7.99E-04 $LNTrans; 

element elasticBeamColumn 541 579 580 0.0218 2.10E+11 7.99E-04 $LNTrans; 

 

# x4CL        
         

# y2        

         
# Top        

         

element elasticBeamColumn 542 110 581 0.0218 2.10E+11 7.99E-04 $LNTrans; 
element elasticBeamColumn 543 581 582 0.0218 2.10E+11 7.99E-04 $LNTrans; 

element elasticBeamColumn 544 582 583 0.0218 2.10E+11 7.99E-04 $LNTrans; 

element elasticBeamColumn 545 583 584 0.0218 2.10E+11 7.99E-04 $LNTrans; 
element elasticBeamColumn 546 52 585 0.0218 2.10E+11 7.99E-04 $LNTrans; 

element elasticBeamColumn 547 585 586 0.0218 2.10E+11 7.99E-04 $LNTrans; 

element elasticBeamColumn 548 586 587 0.0218 2.10E+11 7.99E-04 $LNTrans; 
element elasticBeamColumn 549 587 588 0.0218 2.10E+11 7.99E-04 $LNTrans; 

         

# Bottom        
         

element elasticBeamColumn 550 110 589 0.0218 2.10E+11 7.99E-04 $LNTrans; 

element elasticBeamColumn 551 589 590 0.0218 2.10E+11 7.99E-04 $LNTrans; 
element elasticBeamColumn 552 590 591 0.0218 2.10E+11 7.99E-04 $LNTrans; 

element elasticBeamColumn 553 591 592 0.0218 2.10E+11 7.99E-04 $LNTrans; 

element elasticBeamColumn 554 52 593 0.0218 2.10E+11 7.99E-04 $LNTrans; 
element elasticBeamColumn 555 593 594 0.0218 2.10E+11 7.99E-04 $LNTrans; 

element elasticBeamColumn 556 594 595 0.0218 2.10E+11 7.99E-04 $LNTrans; 

element elasticBeamColumn 557 595 596 0.0218 2.10E+11 7.99E-04 $LNTrans; 
         

# y3        

         
# Top        

         

element elasticBeamColumn 558 122 597 0.0218 2.10E+11 7.99E-04 $LNTrans; 
element elasticBeamColumn 559 597 598 0.0218 2.10E+11 7.99E-04 $LNTrans; 

element elasticBeamColumn 560 598 599 0.0218 2.10E+11 7.99E-04 $LNTrans; 

element elasticBeamColumn 561 599 600 0.0218 2.10E+11 7.99E-04 $LNTrans; 
element elasticBeamColumn 562 64 601 0.0218 2.10E+11 7.99E-04 $LNTrans; 

element elasticBeamColumn 563 601 602 0.0218 2.10E+11 7.99E-04 $LNTrans; 

element elasticBeamColumn 564 602 603 0.0218 2.10E+11 7.99E-04 $LNTrans; 
element elasticBeamColumn 565 603 604 0.0218 2.10E+11 7.99E-04 $LNTrans; 

         



JJ 
 

# Bottom        

         
element elasticBeamColumn 566 122 605 0.0218 2.10E+11 7.99E-04 $LNTrans; 

element elasticBeamColumn 567 605 606 0.0218 2.10E+11 7.99E-04 $LNTrans; 

element elasticBeamColumn 568 606 607 0.0218 2.10E+11 7.99E-04 $LNTrans; 
element elasticBeamColumn 569 607 608 0.0218 2.10E+11 7.99E-04 $LNTrans; 

element elasticBeamColumn 570 64 609 0.0218 2.10E+11 7.99E-04 $LNTrans; 

element elasticBeamColumn 571 609 610 0.0218 2.10E+11 7.99E-04 $LNTrans; 
element elasticBeamColumn 572 610 611 0.0218 2.10E+11 7.99E-04 $LNTrans; 

element elasticBeamColumn 573 611 612 0.0218 2.10E+11 7.99E-04 $LNTrans; 

         
# y4        

         

# Top        
         

element elasticBeamColumn 574 134 613 0.0218 2.10E+11 7.99E-04 $LNTrans; 

element elasticBeamColumn 575 613 614 0.0218 2.10E+11 7.99E-04 $LNTrans; 

element elasticBeamColumn 576 614 615 0.0218 2.10E+11 7.99E-04 $LNTrans; 

element elasticBeamColumn 577 615 616 0.0218 2.10E+11 7.99E-04 $LNTrans; 

element elasticBeamColumn 578 76 617 0.0218 2.10E+11 7.99E-04 $LNTrans; 
element elasticBeamColumn 579 617 618 0.0218 2.10E+11 7.99E-04 $LNTrans; 

element elasticBeamColumn 580 618 619 0.0218 2.10E+11 7.99E-04 $LNTrans; 

element elasticBeamColumn 581 619 620 0.0218 2.10E+11 7.99E-04 $LNTrans; 
         

# Bottom        

         
element elasticBeamColumn 582 134 621 0.0218 2.10E+11 7.99E-04 $LNTrans; 

element elasticBeamColumn 583 621 622 0.0218 2.10E+11 7.99E-04 $LNTrans; 
element elasticBeamColumn 584 622 623 0.0218 2.10E+11 7.99E-04 $LNTrans; 

element elasticBeamColumn 585 623 624 0.0218 2.10E+11 7.99E-04 $LNTrans; 

element elasticBeamColumn 586 76 625 0.0218 2.10E+11 7.99E-04 $LNTrans; 
element elasticBeamColumn 587 625 626 0.0218 2.10E+11 7.99E-04 $LNTrans; 

element elasticBeamColumn 588 626 627 0.0218 2.10E+11 7.99E-04 $LNTrans; 

element elasticBeamColumn 589 627 628 0.0218 2.10E+11 7.99E-04 $LNTrans; 

         

# y5       

         
# Top        

         

element elasticBeamColumn 590 146 629 0.0218 2.10E+11 7.99E-04 $LNTrans; 
element elasticBeamColumn 591 629 630 0.0218 2.10E+11 7.99E-04 $LNTrans; 

element elasticBeamColumn 592 630 631 0.0218 2.10E+11 7.99E-04 $LNTrans; 

element elasticBeamColumn 593 631 632 0.0218 2.10E+11 7.99E-04 $LNTrans; 
element elasticBeamColumn 594 88 633 0.0218 2.10E+11 7.99E-04 $LNTrans; 

element elasticBeamColumn 595 633 634 0.0218 2.10E+11 7.99E-04 $LNTrans; 

element elasticBeamColumn 596 634 635 0.0218 2.10E+11 7.99E-04 $LNTrans; 
element elasticBeamColumn 597 635 636 0.0218 2.10E+11 7.99E-04 $LNTrans; 

         

# Bottom        
         

element elasticBeamColumn 598 146 637 0.0218 2.10E+11 7.99E-04 $LNTrans; 

element elasticBeamColumn 599 637 638 0.0218 2.10E+11 7.99E-04 $LNTrans; 
element elasticBeamColumn 600 638 639 0.0218 2.10E+11 7.99E-04 $LNTrans; 

element elasticBeamColumn 601 639 640 0.0218 2.10E+11 7.99E-04 $LNTrans; 

element elasticBeamColumn 602 88 641 0.0218 2.10E+11 7.99E-04 $LNTrans; 
element elasticBeamColumn 603 641 642 0.0218 2.10E+11 7.99E-04 $LNTrans; 

element elasticBeamColumn 604 642 643 0.0218 2.10E+11 7.99E-04 $LNTrans; 

element elasticBeamColumn 605 643 644 0.0218 2.10E+11 7.99E-04 $LNTrans; 
         

# y6        

         
# Top        

         

element elasticBeamColumn 606 158 645 0.0218 2.10E+11 7.99E-04 $LNTrans; 
element elasticBeamColumn 607 645 646 0.0218 2.10E+11 7.99E-04 $LNTrans; 

element elasticBeamColumn 608 646 647 0.0218 2.10E+11 7.99E-04 $LNTrans; 

element elasticBeamColumn 609 647 648 0.0218 2.10E+11 7.99E-04 $LNTrans; 
element elasticBeamColumn 610 100 649 0.0218 2.10E+11 7.99E-04 $LNTrans; 

element elasticBeamColumn 611 649 650 0.0218 2.10E+11 7.99E-04 $LNTrans; 

element elasticBeamColumn 612 650 651 0.0218 2.10E+11 7.99E-04 $LNTrans; 
element elasticBeamColumn 613 651 652 0.0218 2.10E+11 7.99E-04 $LNTrans; 

         

# Bottom        
         

element elasticBeamColumn 614 158 653 0.0218 2.10E+11 7.99E-04 $LNTrans; 



KK 
 

element elasticBeamColumn 615 653 654 0.0218 2.10E+11 7.99E-04 $LNTrans; 

element elasticBeamColumn 616 654 655 0.0218 2.10E+11 7.99E-04 $LNTrans; 
element elasticBeamColumn 617 655 656 0.0218 2.10E+11 7.99E-04 $LNTrans; 

element elasticBeamColumn 618 100 657 0.0218 2.10E+11 7.99E-04 $LNTrans; 

element elasticBeamColumn 619 657 658 0.0218 2.10E+11 7.99E-04 $LNTrans; 
element elasticBeamColumn 620 658 659 0.0218 2.10E+11 7.99E-04 $LNTrans; 

element elasticBeamColumn 621 659 660 0.0218 2.10E+11 7.99E-04 $LNTrans; 

 
 

#      Define contact zero length elements 

 
element zeroLength 622 182 186 -mat $ctTag1 -dir 1; 

element zeroLength 623 183 187 -mat $ctTag1 -dir 1; 

element zeroLength 624 184 188 -mat $ctTag1 -dir 1; 
element zeroLength 625 190 194 -mat $ctTag1 -dir 1; 

element zeroLength 626 191 195 -mat $ctTag1 -dir 1; 

element zeroLength 627 192 196 -mat $ctTag1 -dir 1; 

element zeroLength 628 198 202 -mat $ctTag2 -dir 1; 

element zeroLength 629 199 203 -mat $ctTag2 -dir 1; 

element zeroLength 630 200 204 -mat $ctTag2 -dir 1; 
element zeroLength 631 206 210 -mat $ctTag2 -dir 1; 

element zeroLength 632 207 211 -mat $ctTag2 -dir 1; 

element zeroLength 633 208 212 -mat $ctTag2 -dir 1; 
element zeroLength 634 214 218 -mat $ctTag3 -dir 1; 

element zeroLength 635 215 219 -mat $ctTag3 -dir 1; 

element zeroLength 636 216 220 -mat $ctTag3 -dir 1; 
element zeroLength 637 222 226 -mat $ctTag3 -dir 1; 

element zeroLength 638 223 227 -mat $ctTag3 -dir 1; 
element zeroLength 639 224 228 -mat $ctTag3 -dir 1; 

element zeroLength 640 230 234 -mat $ctTag4 -dir 1; 

element zeroLength 641 231 235 -mat $ctTag4 -dir 1; 
element zeroLength 642 232 236 -mat $ctTag4 -dir 1; 

element zeroLength 643 238 242 -mat $ctTag4 -dir 1; 

element zeroLength 644 239 243 -mat $ctTag4 -dir 1; 

element zeroLength 645 240 244 -mat $ctTag4 -dir 1; 

element zeroLength 646 246 250 -mat $ctTag5 -dir 1; 

element zeroLength 647 247 251 -mat $ctTag5 -dir 1; 
element zeroLength 648 248 252 -mat $ctTag5 -dir 1; 

element zeroLength 649 254 258 -mat $ctTag5 -dir 1; 

element zeroLength 650 255 259 -mat $ctTag5 -dir 1; 
element zeroLength 651 256 260 -mat $ctTag5 -dir 1; 

element zeroLength 652 266 262 -mat $ctTag1 -dir 1; 

element zeroLength 653 267 263 -mat $ctTag1 -dir 1; 
element zeroLength 654 268 264 -mat $ctTag1 -dir 1; 

element zeroLength 655 274 270 -mat $ctTag1 -dir 1; 

element zeroLength 656 275 271 -mat $ctTag1 -dir 1; 
element zeroLength 657 276 272 -mat $ctTag1 -dir 1; 

element zeroLength 658 282 278 -mat $ctTag2 -dir 1; 

element zeroLength 659 283 279 -mat $ctTag2 -dir 1; 
element zeroLength 660 284 280 -mat $ctTag2 -dir 1; 

element zeroLength 661 290 286 -mat $ctTag2 -dir 1; 

element zeroLength 662 291 287 -mat $ctTag2 -dir 1; 
element zeroLength 663 292 288 -mat $ctTag2 -dir 1; 

element zeroLength 664 298 294 -mat $ctTag3 -dir 1; 

element zeroLength 665 299 295 -mat $ctTag3 -dir 1; 
element zeroLength 666 300 296 -mat $ctTag3 -dir 1; 

element zeroLength 667 306 302 -mat $ctTag3 -dir 1; 

element zeroLength 668 307 303 -mat $ctTag3 -dir 1; 
element zeroLength 669 308 304 -mat $ctTag3 -dir 1; 

element zeroLength 670 314 310 -mat $ctTag4 -dir 1; 

element zeroLength 671 315 311 -mat $ctTag4 -dir 1; 
element zeroLength 672 316 312 -mat $ctTag4 -dir 1; 

element zeroLength 673 322 318 -mat $ctTag4 -dir 1; 

element zeroLength 674 323 319 -mat $ctTag4 -dir 1; 
element zeroLength 675 324 320 -mat $ctTag4 -dir 1; 

element zeroLength 676 330 326 -mat $ctTag5 -dir 1; 

element zeroLength 677 331 327 -mat $ctTag5 -dir 1; 
element zeroLength 678 332 328 -mat $ctTag5 -dir 1; 

element zeroLength 679 338 334 -mat $ctTag5 -dir 1; 

element zeroLength 680 339 335 -mat $ctTag5 -dir 1; 
element zeroLength 681 340 336 -mat $ctTag5 -dir 1; 

element zeroLength 682 342 346 -mat $ctTag1 -dir 1; 

element zeroLength 683 343 347 -mat $ctTag1 -dir 1; 
element zeroLength 684 344 348 -mat $ctTag1 -dir 1; 

element zeroLength 685 350 354 -mat $ctTag1 -dir 1; 



LL 
 

element zeroLength 686 351 355 -mat $ctTag1 -dir 1; 

element zeroLength 687 352 356 -mat $ctTag1 -dir 1; 
element zeroLength 688 358 362 -mat $ctTag2 -dir 1; 

element zeroLength 689 359 363 -mat $ctTag2 -dir 1; 

element zeroLength 690 360 364 -mat $ctTag2 -dir 1; 
element zeroLength 691 366 370 -mat $ctTag2 -dir 1; 

element zeroLength 692 367 371 -mat $ctTag2 -dir 1; 

element zeroLength 693 368 372 -mat $ctTag2 -dir 1; 
element zeroLength 694 374 378 -mat $ctTag3 -dir 1; 

element zeroLength 695 375 379 -mat $ctTag3 -dir 1; 

element zeroLength 696 376 380 -mat $ctTag3 -dir 1; 
element zeroLength 697 382 386 -mat $ctTag3 -dir 1; 

element zeroLength 698 383 387 -mat $ctTag3 -dir 1; 

element zeroLength 699 384 388 -mat $ctTag3 -dir 1; 
element zeroLength 700 390 394 -mat $ctTag4 -dir 1; 

element zeroLength 701 391 395 -mat $ctTag4 -dir 1; 

element zeroLength 702 392 396 -mat $ctTag4 -dir 1; 

element zeroLength 703 398 402 -mat $ctTag4 -dir 1; 

element zeroLength 704 399 403 -mat $ctTag4 -dir 1; 

element zeroLength 705 400 404 -mat $ctTag4 -dir 1; 
element zeroLength 706 406 410 -mat $ctTag5 -dir 1; 

element zeroLength 707 407 411 -mat $ctTag5 -dir 1; 

element zeroLength 708 408 412 -mat $ctTag5 -dir 1; 
element zeroLength 709 414 418 -mat $ctTag5 -dir 1; 

element zeroLength 710 415 419 -mat $ctTag5 -dir 1; 

element zeroLength 711 416 420 -mat $ctTag5 -dir 1; 
element zeroLength 712 426 422 -mat $ctTag1 -dir 1; 

element zeroLength 713 427 423 -mat $ctTag1 -dir 1; 
element zeroLength 714 428 424 -mat $ctTag1 -dir 1; 

element zeroLength 715 434 430 -mat $ctTag1 -dir 1; 

element zeroLength 716 435 431 -mat $ctTag1 -dir 1; 
element zeroLength 717 436 432 -mat $ctTag1 -dir 1; 

element zeroLength 718 442 438 -mat $ctTag2 -dir 1; 

element zeroLength 719 443 439 -mat $ctTag2 -dir 1; 

element zeroLength 720 444 440 -mat $ctTag2 -dir 1; 

element zeroLength 721 450 446 -mat $ctTag2 -dir 1; 

element zeroLength 722 451 447 -mat $ctTag2 -dir 1; 
element zeroLength 723 452 448 -mat $ctTag2 -dir 1; 

element zeroLength 724 458 454 -mat $ctTag3 -dir 1; 

element zeroLength 725 459 455 -mat $ctTag3 -dir 1; 
element zeroLength 726 460 456 -mat $ctTag3 -dir 1; 

element zeroLength 727 466 462 -mat $ctTag3 -dir 1; 

element zeroLength 728 467 463 -mat $ctTag3 -dir 1; 
element zeroLength 729 468 464 -mat $ctTag3 -dir 1; 

element zeroLength 730 474 470 -mat $ctTag4 -dir 1; 

element zeroLength 731 475 471 -mat $ctTag4 -dir 1; 
element zeroLength 732 476 472 -mat $ctTag4 -dir 1; 

element zeroLength 733 482 478 -mat $ctTag4 -dir 1; 

element zeroLength 734 483 479 -mat $ctTag4 -dir 1; 
element zeroLength 735 484 480 -mat $ctTag4 -dir 1; 

element zeroLength 736 490 486 -mat $ctTag5 -dir 1; 

element zeroLength 737 491 487 -mat $ctTag5 -dir 1; 
element zeroLength 738 492 488 -mat $ctTag5 -dir 1; 

element zeroLength 739 498 494 -mat $ctTag5 -dir 1; 

element zeroLength 740 499 495 -mat $ctTag5 -dir 1; 
element zeroLength 741 500 496 -mat $ctTag5 -dir 1; 

element zeroLength 742 502 506 -mat $ctTag1 -dir 1; 

element zeroLength 743 503 507 -mat $ctTag1 -dir 1; 
element zeroLength 744 504 508 -mat $ctTag1 -dir 1; 

element zeroLength 745 510 514 -mat $ctTag1 -dir 1; 

element zeroLength 746 511 515 -mat $ctTag1 -dir 1; 
element zeroLength 747 512 516 -mat $ctTag1 -dir 1; 

element zeroLength 748 518 522 -mat $ctTag2 -dir 1; 

element zeroLength 749 519 523 -mat $ctTag2 -dir 1; 
element zeroLength 750 520 524 -mat $ctTag2 -dir 1; 

element zeroLength 751 526 530 -mat $ctTag2 -dir 1; 

element zeroLength 752 527 531 -mat $ctTag2 -dir 1; 
element zeroLength 753 528 532 -mat $ctTag2 -dir 1; 

element zeroLength 754 534 538 -mat $ctTag3 -dir 1; 

element zeroLength 755 535 539 -mat $ctTag3 -dir 1; 
element zeroLength 756 536 540 -mat $ctTag3 -dir 1; 

element zeroLength 757 542 546 -mat $ctTag3 -dir 1; 

element zeroLength 758 543 547 -mat $ctTag3 -dir 1; 
element zeroLength 759 544 548 -mat $ctTag3 -dir 1; 

element zeroLength 760 550 554 -mat $ctTag4 -dir 1; 
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element zeroLength 761 551 555 -mat $ctTag4 -dir 1; 

element zeroLength 762 552 556 -mat $ctTag4 -dir 1; 
element zeroLength 763 558 562 -mat $ctTag4 -dir 1; 

element zeroLength 764 559 563 -mat $ctTag4 -dir 1; 

element zeroLength 765 560 564 -mat $ctTag4 -dir 1; 
element zeroLength 766 566 570 -mat $ctTag5 -dir 1; 

element zeroLength 767 567 571 -mat $ctTag5 -dir 1; 

element zeroLength 768 568 572 -mat $ctTag5 -dir 1; 
element zeroLength 769 574 578 -mat $ctTag5 -dir 1; 

element zeroLength 770 575 579 -mat $ctTag5 -dir 1; 

element zeroLength 771 576 580 -mat $ctTag5 -dir 1; 
element zeroLength 772 586 582 -mat $ctTag1 -dir 1; 

element zeroLength 773 587 583 -mat $ctTag1 -dir 1; 

element zeroLength 774 588 584 -mat $ctTag1 -dir 1; 
element zeroLength 775 594 590 -mat $ctTag1 -dir 1; 

element zeroLength 776 595 591 -mat $ctTag1 -dir 1; 

element zeroLength 777 596 592 -mat $ctTag1 -dir 1; 

element zeroLength 778 602 598 -mat $ctTag2 -dir 1; 

element zeroLength 779 603 599 -mat $ctTag2 -dir 1; 

element zeroLength 780 604 600 -mat $ctTag2 -dir 1; 
element zeroLength 781 610 606 -mat $ctTag2 -dir 1; 

element zeroLength 782 611 607 -mat $ctTag2 -dir 1; 

element zeroLength 783 612 608 -mat $ctTag2 -dir 1; 
element zeroLength 784 618 614 -mat $ctTag3 -dir 1; 

element zeroLength 785 619 615 -mat $ctTag3 -dir 1; 

element zeroLength 786 620 616 -mat $ctTag3 -dir 1; 
element zeroLength 787 626 622 -mat $ctTag3 -dir 1; 

element zeroLength 788 627 623 -mat $ctTag3 -dir 1; 
element zeroLength 789 628 624 -mat $ctTag3 -dir 1; 

element zeroLength 790 634 630 -mat $ctTag4 -dir 1; 

element zeroLength 791 635 631 -mat $ctTag4 -dir 1; 
element zeroLength 792 636 632 -mat $ctTag4 -dir 1; 

element zeroLength 793 642 638 -mat $ctTag4 -dir 1; 

element zeroLength 794 643 639 -mat $ctTag4 -dir 1; 

element zeroLength 795 644 640 -mat $ctTag4 -dir 1; 

element zeroLength 796 650 646 -mat $ctTag5 -dir 1; 

element zeroLength 797 651 647 -mat $ctTag5 -dir 1; 
element zeroLength 798 652 648 -mat $ctTag5 -dir 1; 

element zeroLength 799 658 654 -mat $ctTag5 -dir 1; 

element zeroLength 800 659 655 -mat $ctTag5 -dir 1; 
element zeroLength 801 660 656 -mat $ctTag5 -dir 1; 

 

# PT bars (Truss elements) 
 

element truss 802 679 112 [expr 2*3.14*0.043*0.043/4] $PT1; 

element truss 803 680 124 [expr 2*3.14*0.050*0.050/4] $PT2; 
element truss 804 681 136 [expr 2*3.14*0.043*0.043/4] $PT3; 

element truss 805 682 148 [expr 2*3.14*0.037*0.037/4] $PT4; 

element truss 806 683 160 [expr 2*3.14*0.035*0.035/4] $PT5; 
 

# Panel zones rotational springs (both for panel and flange)   

 
element zeroLength 807 161 102   -mat $Spanel1  -dir 6; 

element zeroLength 808 162 105   -mat $Spanel1  -dir 6; 

element zeroLength 809 163 108   -mat $Spanel1  -dir 6; 
element zeroLength 810 164 111   -mat $Spanel1  -dir 6; 

     

element zeroLength 811 165 114   -mat $Spanel2  -dir 6; 
element zeroLength 812 166 117   -mat $Spanel2  -dir 6; 

element zeroLength 813 167 120   -mat $Spanel2  -dir 6; 

element zeroLength 814 168 123   -mat $Spanel2  -dir 6; 
         

element zeroLength 815 169 126   -mat $Spanel3  -dir 6; 

element zeroLength 816 170 129   -mat $Spanel3  -dir 6; 
element zeroLength 817 171 132   -mat $Spanel3  -dir 6; 

element zeroLength 818 172 135   -mat $Spanel3  -dir 6; 

         
element zeroLength 819 173 138   -mat $Spanel4  -dir 6; 

element zeroLength 820 174 141   -mat $Spanel4  -dir 6; 

element zeroLength 821 175 144   -mat $Spanel4  -dir 6; 
element zeroLength 822 176 147   -mat $Spanel4  -dir 6; 

         

element zeroLength 823 177 150   -mat $Spanel5  -dir 6; 
element zeroLength 824 178 153   -mat $Spanel5  -dir 6; 

element zeroLength 825 179 156   -mat $Spanel5  -dir 6; 
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element zeroLength 826 180 159   -mat $Spanel5  -dir 6; 

         
element zeroLength 827 161 102   -mat $Sflange1  -dir 6; 

element zeroLength 828 162 105   -mat $Sflange1  -dir 6; 

element zeroLength 829 163 108   -mat $Sflange1  -dir 6; 
element zeroLength 830 164 111   -mat $Sflange1  -dir 6; 

         

element zeroLength 831 165 114   -mat $Sflange2  -dir 6; 
element zeroLength 832 166 117   -mat $Sflange2  -dir 6; 

element zeroLength 833 167 120   -mat $Sflange2  -dir 6; 

element zeroLength 834 168 123   -mat $Sflange2  -dir 6; 
         

element zeroLength 835 169 126   -mat $Sflange3  -dir 6; 

element zeroLength 836 170 129   -mat $Sflange3  -dir 6; 
element zeroLength 837 171 132   -mat $Sflange3  -dir 6; 

element zeroLength 838 172 135   -mat $Sflange3  -dir 6; 

         

element zeroLength 839 173 138   -mat $Sflange4  -dir 6; 

element zeroLength 840 174 141   -mat $Sflange4  -dir 6; 

element zeroLength 841 175 144   -mat $Sflange4  -dir 6; 
element zeroLength 842 176 147   -mat $Sflange4  -dir 6; 

         

element zeroLength 843 177 150   -mat $Sflange5  -dir 6; 
element zeroLength 844 178 153   -mat $Sflange5  -dir 6; 

element zeroLength 845 179 156   -mat $Sflange5  -dir 6; 

element zeroLength 846 180 159   -mat $Sflange5  -dir 6; 
 

# WHPs (Translational springs) 
 

element zeroLength 847 181 185  -mat $whpTag1  -dir 1; 

element zeroLength 848 189 193  -mat $whpTag1  -dir 1; 
element zeroLength 849 197 201  -mat $whpTag2  -dir 1; 

element zeroLength 850 205 209  -mat $whpTag2  -dir 1; 

element zeroLength 851 213 217  -mat $whpTag3  -dir 1; 

element zeroLength 852 221 225  -mat $whpTag3  -dir 1; 

element zeroLength 853 229 233  -mat $whpTag4  -dir 1; 

element zeroLength 854 237 241  -mat $whpTag4  -dir 1; 
element zeroLength 855 245 249  -mat $whpTag5  -dir 1; 

element zeroLength 856 253 257  -mat $whpTag5  -dir 1; 

element zeroLength 857 265 261  -mat $whpTag1  -dir 1; 
element zeroLength 858 273 269  -mat $whpTag1  -dir 1; 

element zeroLength 859 281 277  -mat $whpTag2  -dir 1; 

element zeroLength 860 289 285  -mat $whpTag2  -dir 1; 
element zeroLength 861 297 293  -mat $whpTag3  -dir 1; 

element zeroLength 862 305 301  -mat $whpTag3  -dir 1; 

element zeroLength 863 313 309  -mat $whpTag4  -dir 1; 
element zeroLength 864 321 317  -mat $whpTag4  -dir 1; 

element zeroLength 865 329 325  -mat $whpTag5  -dir 1; 

element zeroLength 866 337 333  -mat $whpTag5  -dir 1; 
element zeroLength 867 341 345  -mat $whpTag1  -dir 1; 

element zeroLength 868 349 353  -mat $whpTag1  -dir 1; 

element zeroLength 869 357 361  -mat $whpTag2  -dir 1; 
element zeroLength 870 365 369  -mat $whpTag2  -dir 1; 

element zeroLength 871 373 377  -mat $whpTag3  -dir 1; 

element zeroLength 872 381 385  -mat $whpTag3  -dir 1; 
element zeroLength 873 389 393  -mat $whpTag4  -dir 1; 

element zeroLength 874 397 401  -mat $whpTag4  -dir 1; 

element zeroLength 875 405 409  -mat $whpTag5  -dir 1; 
element zeroLength 876 413 417  -mat $whpTag5  -dir 1; 

element zeroLength 877 425 421  -mat $whpTag1  -dir 1; 

element zeroLength 878 433 429  -mat $whpTag1  -dir 1; 
element zeroLength 879 441 437  -mat $whpTag2  -dir 1; 

element zeroLength 880 449 445  -mat $whpTag2  -dir 1; 

element zeroLength 881 457 453  -mat $whpTag3  -dir 1; 
element zeroLength 882 465 461  -mat $whpTag3  -dir 1; 

element zeroLength 883 473 469  -mat $whpTag4  -dir 1; 

element zeroLength 884 481 477  -mat $whpTag4  -dir 1; 
element zeroLength 885 489 485  -mat $whpTag5  -dir 1; 

element zeroLength 886 497 493  -mat $whpTag5  -dir 1; 

element zeroLength 887 501 505  -mat $whpTag1  -dir 1; 
element zeroLength 888 509 513  -mat $whpTag1  -dir 1; 

element zeroLength 889 517 521  -mat $whpTag2  -dir 1; 

element zeroLength 890 525 529  -mat $whpTag2  -dir 1; 
element zeroLength 891 533 537  -mat $whpTag3  -dir 1; 

element zeroLength 892 541 545  -mat $whpTag3  -dir 1; 
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element zeroLength 893 549 553  -mat $whpTag4  -dir 1; 

element zeroLength 894 557 561  -mat $whpTag4  -dir 1; 
element zeroLength 895 565 569  -mat $whpTag5  -dir 1; 

element zeroLength 896 573 577  -mat $whpTag5  -dir 1; 

element zeroLength 897 585 581  -mat $whpTag1  -dir 1; 
element zeroLength 898 593 589  -mat $whpTag1  -dir 1; 

element zeroLength 899 601 597  -mat $whpTag2  -dir 1; 

element zeroLength 900 609 605  -mat $whpTag2  -dir 1; 
element zeroLength 901 617 613  -mat $whpTag3  -dir 1; 

element zeroLength 902 625 621  -mat $whpTag3  -dir 1; 

element zeroLength 903 633 629  -mat $whpTag4  -dir 1; 
element zeroLength 904 641 637  -mat $whpTag4  -dir 1; 

element zeroLength 905 649 645  -mat $whpTag5  -dir 1; 

element zeroLength 906 657 653  -mat $whpTag5  -dir 1; 
 

# Lean on columns elements 

 

set AL1 [expr 8*0.0106/3]; 

set IL1 [expr 8*0.00011260/3]; 

 
set AL2 [expr 8*0.0091/3]; 

set IL2 [expr 8*0.00008091/3]; 

 
element elasticBeamColumn 907 661 662 $AL1    $E2 $IL1 $PDTrans; 

element elasticBeamColumn 908 662 663 $AL1 $E2 $IL1 $PDTrans; 

element elasticBeamColumn 909 663 664 $AL1 $E2 $IL1 $PDTrans; 
element elasticBeamColumn 910 664 665 $AL2 $E2 $IL2 $PDTrans; 

element elasticBeamColumn 911 665 666 $AL2 $E2 $IL2 $PDTrans; 
 

element elasticBeamColumn 912 667 668 $AL1    $E2 $IL1 $PDTrans; 

element elasticBeamColumn 913 668 669 $AL1 $E2 $IL1 $PDTrans; 
element elasticBeamColumn 914 669 670 $AL1 $E2 $IL1 $PDTrans; 

element elasticBeamColumn 915 670 671 $AL2 $E2 $IL2 $PDTrans; 

element elasticBeamColumn 916 671 672 $AL2 $E2 $IL2 $PDTrans; 

 

element elasticBeamColumn 917 673 674 $AL1    $E2 $IL1 $PDTrans; 

element elasticBeamColumn 918 674 675 $AL1 $E2 $IL1 $PDTrans; 
element elasticBeamColumn 919 675 676 $AL1 $E2 $IL1 $PDTrans; 

element elasticBeamColumn 920 676 677 $AL2 $E2 $IL2 $PDTrans; 

element elasticBeamColumn 921 677 678 $AL2 $E2 $IL2 $PDTrans; 
 

# Lignos elements 

 
element zeroLength 922 42 684  -mat $lignos1  -dir 6; 

element zeroLength 923 685 43  -mat $lignos1  -dir 6; 

element zeroLength 924 46 686  -mat $lignos1  -dir 6; 
element zeroLength 925 687 47  -mat $lignos1  -dir 6; 

element zeroLength 926 50 688  -mat $lignos1  -dir 6; 

element zeroLength 927 689 51  -mat $lignos1  -dir 6; 
element zeroLength 928 54 690  -mat $lignos2  -dir 6; 

element zeroLength 929 691 55  -mat $lignos2  -dir 6; 

element zeroLength 930 58 692  -mat $lignos2  -dir 6; 
element zeroLength 931 693 59  -mat $lignos2  -dir 6; 

element zeroLength 932 62 694  -mat $lignos2  -dir 6; 

element zeroLength 933 695 63  -mat $lignos2  -dir 6; 
element zeroLength 934 66 696  -mat $lignos3  -dir 6; 

element zeroLength 935 697 67  -mat $lignos3  -dir 6; 

element zeroLength 936 70 698  -mat $lignos3  -dir 6; 
element zeroLength 937 699 71  -mat $lignos3  -dir 6; 

element zeroLength 938 74 700  -mat $lignos3  -dir 6; 

element zeroLength 939 701 75  -mat $lignos3  -dir 6; 
element zeroLength 940 78 702  -mat $lignos4  -dir 6; 

element zeroLength 941 703 79  -mat $lignos4  -dir 6; 

element zeroLength 942 82 704  -mat $lignos4  -dir 6; 
element zeroLength 943 705 83  -mat $lignos4  -dir 6; 

element zeroLength 944 86 706  -mat $lignos4  -dir 6; 

element zeroLength 945 707 87  -mat $lignos4  -dir 6; 
element zeroLength 946 90 708  -mat $lignos5  -dir 6; 

element zeroLength 947 709 91  -mat $lignos5  -dir 6; 

element zeroLength 948 94 710  -mat $lignos5  -dir 6; 
element zeroLength 949 711 95  -mat $lignos5  -dir 6; 

element zeroLength 950 98 712  -mat $lignos5  -dir 6; 

element zeroLength 951 713 99  -mat $lignos5  -dir 6; 
  

# Recorder definition for the axial forces on the PT bars 
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recorder Element -file FStrand.out -ele 802 803 804 805 806 force; 
 

# Application of Vertical loads 

 
pattern Plain 1 Linear { 

load 161 0 -126.2 0; 

load 162 0 -67.20 0; 
load 163 0 -67.20 0; 

load 164 0 -126.2 0; 

load 165 0 -112.76 0; 
load 166 0 -53.76 0; 

load 167 0 -53.76 0; 

load 168 0 -112.76 0; 
load 169 0 -112.76 0; 

load 170 0 -53.76 0; 

load 171 0 -53.76 0; 

load 172 0 -112.76 0; 

load 173 0 -112.76 0; 

load 174 0 -53.76 0; 
load 175 0 -53.76 0; 

load 176 0 -112.76 0; 

load 177 0 -112.76 0; 
load 178 0 -53.76 0; 

load 179 0 -53.76 0; 

load 180 0 -112.76 0; 
 

load 42 0 [expr -14.75*(8-$dc1)/2] 0; 
load 43 0 [expr -14.75*(8-$dc1)/2] 0; 

load 46 0 [expr -14.75*(8-$dc1)/2] 0; 

load 47 0 [expr -14.75*(8-$dc1)/2] 0; 
load 50 0 [expr -14.75*(8-$dc1)/2] 0; 

load 51 0 [expr -14.75*(8-$dc1)/2] 0; 

     

load 54 0 [expr -14.75*(8-$dc1)/2] 0; 

load 55 0 [expr -14.75*(8-$dc1)/2] 0; 

load 58 0 [expr -14.75*(8-$dc1)/2] 0; 
load 59 0 [expr -14.75*(8-$dc1)/2] 0; 

load 62 0 [expr -14.75*(8-$dc1)/2] 0; 

load 63 0 [expr -14.75*(8-$dc1)/2] 0; 
     

load 66 0 [expr -14.75*(8-$dc1)/2] 0; 

load 67 0 [expr -14.75*(8-$dc1)/2] 0; 
load 70 0 [expr -14.75*(8-$dc1)/2] 0; 

load 71 0 [expr -14.75*(8-$dc1)/2] 0; 

load 74 0 [expr -14.75*(8-$dc1)/2] 0; 
load 75 0 [expr -14.75*(8-$dc1)/2] 0; 

     

load 78 0 [expr -14.75*(8-$dc2)/2] 0; 
load 79 0 [expr -14.75*(8-$dc2)/2] 0; 

load 82 0 [expr -14.75*(8-$dc2)/2] 0; 

load 83 0 [expr -14.75*(8-$dc2)/2] 0; 
load 86 0 [expr -14.75*(8-$dc2)/2] 0; 

load 87 0 [expr -14.75*(8-$dc2)/2] 0; 

     
load 90 0 [expr -14.75*(8-$dc2)/2] 0; 

load 91 0 [expr -14.75*(8-$dc2)/2] 0; 

load 94 0 [expr -14.75*(8-$dc2)/2] 0; 
load 95 0 [expr -14.75*(8-$dc2)/2] 0; 

load 98 0 [expr -14.75*(8-$dc2)/2] 0; 

load 99 0 [expr -14.75*(8-$dc2)/2] 0; 
 

load 662 0 [expr -1491.27/3] 0; 

load 663 0 [expr -1452.62/3] 0; 
load 664 0 [expr -1452.62/3] 0; 

load 665 0 [expr -1452.62/3] 0; 

load 666 0 [expr -1452.62/3] 0; 
load 668 0 [expr -1491.27/3] 0; 

load 669 0 [expr -1452.62/3] 0; 

load 670 0 [expr -1452.62/3] 0; 
load 671 0 [expr -1452.62/3] 0; 

load 672 0 [expr -1452.62/3] 0; 

load 674 0 [expr -1491.27/3] 0; 
load 675 0 [expr -1452.62/3] 0; 

load 676 0 [expr -1452.62/3] 0; 
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load 677 0 [expr -1452.62/3] 0; 

load 678 0 [expr -1452.62/3] 0; 
} 

 

constraints Transformation; 
numberer RCM; 

system BandGeneral; 

analysis Static; 
test NormDispIncr 1.0e-4 400 1; 

algorithm Newton; 

integrator LoadControl 1; analyze 1; 
loadConst -time 0.0; # hold gravity constant and restart time 

 

# Instert trusses simulating diaphragmatic action (after the application of vertical loads) 
 

element truss 957 41 662 4.269285714 $Diaph; 

element truss 958 42 662 4.490077551 $Diaph; 

element truss 959 43 662 5.338493878 $Diaph; 

element truss 960 44 662 5.559285714 $Diaph; 

element truss 961 45 668 4.269285714 $Diaph; 
element truss 962 46 668 4.490077551 $Diaph; 

element truss 963 47 668 5.338493878 $Diaph; 

element truss 964 48 668 5.559285714 $Diaph; 
element truss 965 49 674 4.269285714 $Diaph; 

element truss 966 50 674 4.490077551 $Diaph; 

element truss 967 51 674 5.338493878 $Diaph; 
element truss 968 52 674 5.559285714 $Diaph; 

element truss 969 53 663 4.997380952 $Diaph; 
element truss 970 54 663 5.297531973 $Diaph; 

element truss 971 55 663 6.207229932 $Diaph; 

element truss 972 56 663 6.507380952 $Diaph; 
element truss 973 57 669 4.997380952 $Diaph; 

element truss 974 58 669 5.297531973 $Diaph; 

element truss 975 59 669 6.207229932 $Diaph; 

element truss 976 60 669 6.507380952 $Diaph; 

element truss 977 61 675 4.997380952 $Diaph; 

element truss 978 62 675 5.297531973 $Diaph; 
element truss 979 63 675 6.207229932 $Diaph; 

element truss 980 64 675 6.507380952 $Diaph; 

element truss 981 65 664 4.269285714 $Diaph; 
element truss 982 66 664 4.499379592 $Diaph; 

element truss 983 67 664 5.329191837 $Diaph; 

element truss 984 68 664 5.559285714 $Diaph; 
element truss 985 69 670 4.269285714 $Diaph; 

element truss 986 70 670 4.499379592 $Diaph; 

element truss 987 71 670 5.329191837 $Diaph; 
element truss 988 72 670 5.559285714 $Diaph; 

element truss 989 73 676 4.269285714 $Diaph; 

element truss 990 74 676 4.499379592 $Diaph; 
element truss 991 75 676 5.329191837 $Diaph; 

element truss 992 76 676 5.559285714 $Diaph; 

element truss 993 77 665 3.677837838 $Diaph; 
element truss 994 78 665 3.840237838 $Diaph; 

element truss 995 79 665 4.635437838 $Diaph; 

element truss 996 80 665 4.797837838 $Diaph; 
element truss 997 81 671 3.677837838 $Diaph; 

element truss 998 82 671 3.840237838 $Diaph; 

element truss 999 83 671 4.635437838 $Diaph; 
element truss 1000 84 671 4.797837838 $Diaph; 

element truss 1001 85 677 3.677837838 $Diaph; 

element truss 1002 86 677 3.840237838 $Diaph; 
element truss 1003 87 677 4.635437838 $Diaph; 

element truss 1004 88 677 4.797837838 $Diaph; 

element truss 1005 89 666 3.677837838 $Diaph; 
element truss 1006 90 666 3.787416216 $Diaph; 

element truss 1007 91 666 4.688259459 $Diaph; 

element truss 1008 92 666 4.797837838 $Diaph; 
element truss 1009 93 672 3.677837838 $Diaph; 

element truss 1010 94 672 3.787416216 $Diaph; 

element truss 1011 95 672 4.688259459 $Diaph; 
element truss 1012 96 672 4.797837838 $Diaph; 

element truss 1013 97 678 3.677837838 $Diaph; 

element truss 1014 98 678 3.300317852 $Diaph; 
element truss 1015 99 678 4.126259329 $Diaph; 

element truss 1016 100 678 4.207288591 $Diaph; 
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# Recorder definition for floors diplacements  
 

recorder Node -file displ.out -time -node 188 189 190 191 192 -dof 1 disp; 

 
# Pushover loading  

 

pattern Plain 2 Linear { 
load 662  4.00 0 0; 

load 663  7.20 0 0; 

load 664  10.4 0 0; 
load 665  13.6 0 0; 

load 666  16.8 0 0; 

load 668  4.00 0 0; 
load 669  7.20 0 0; 

load 670  10.4 0 0; 

load 671  13.6 0 0; 

load 672  16.8 0 0; 

load 674  4.00 0 0; 

load 675  7.20 0 0; 
load 676  10.4 0 0; 

load 677  13.6 0 0; 

load 678  16.8 0 0; 
} 

 

constraints Transformation; 
numberer RCM; 

system BandGeneral; 
analysis Static; 

test NormDispIncr 1.0e-6 700 1; 

algorithm Newton -initial; 
 

integrator DisplacementControl 672 1 +0.0004; analyze 427; 
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Annex B. Matlab code for incremental dynamic analysis (IDA)  

 

%% IDA - Multiple ground motion analysis 

% Written by Angelos Tzimas & Nasos Dimopoulos 

  

clear all 

close all 

clc 

  

  

  

  

%% Ground Motion Characteristics 

  

     name1='DT_STEPS.txt';               % time step dt and numberr of steps of each 

ground motions 

     str109=sprintf('%s',name1); 

     

     x_dt_s=load(str109);  

      

     Sa_T=load ('v100mrf_sa_T1.txt');     % Sa at the fundamental period of each 

seismic excitation - Sa(Ti) in m/s2 

  

     fclose('all'); 

      

     clear name1 str109 

      

%% IDA - Loop through ground motions   

  

     SF=1; % Scale factor 

      

     Mult=[1 10 20 50 100 500 1000];      % Intervals of each time step 

    

      

for i=1:44                       % Quakes (= 91)  

     

    Sd=0;                       % Index that shows The factor that reduces the time step 

intervals 

     

    k101=0; 

     

    for z2=0.02:0.02:20         % Sa_target steps in g    

         

        k101=k101+1;    

         

        name2='Quake'; 

        FILE1=sprintf('%s%d.txt',name2,i);    

         

        dt=x_dt_s(i,1); 

        points=round(x_dt_s(i,2));       
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        SF=z2*9.81/Sa_T(i);                        % Scaling factor of the curent Sa_target = 

z2, in g 

         

        if Sd>0 

            Sd=Sd-1; 

        else 

            Sd=0; 

        end 

         

        for klp=1:length(Mult) 

             

            Sd=Sd+1; 

            incr=round(Mult(Sd)+0.00001);  

         

            [ok]=MotionD(incr,SF,points,dt,FILE1,i);    % Run OpenSees - Return ok 

variable, which indicates if the analysis was successful 

             

            if ok==0, break, end 

            if (ok~=0) & (Sd==length(Mult)), break, end 

             

        end 

  

        if ok<0 | ok>0 

                 

                check_Run1=1.0;             % Not successful 

                 

                IDR_max(k101,5)=0;          % Maximum IDR for various seismic 

intensities SF 

                Roof_Drift_max(k101,1)=0;   % Maximum roof IDR for various seismic 

intensities SF 

                R_Roof_Drift(k101,1)=0;     % Residual roof IDR for various seismic 

intensities SF 

                R_floor_IDR(k101,5)=0;      % Residual floor IDR for various seismic 

intensities SF 

                Accel(k101,5)=0;            % Maximum floor acceleration for various 

seismic intensities SF 

                Base_Shear(k101,1)=0;       % Base Shear (kN) for various seismic 

intensities SF 

                               

        else 

                 

                str1=sprintf('disp_%d.out',i); 

                fid1=fopen(str1,'r'); 

                n_lines=0; 

                 

                while 15 

                    tline = fgetl(fid1); 

                    if ~ischar(tline),   break,   end 
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                        n_lines=n_lines+1;              % Number of lines 

                end 

                 

                fclose(fid1); 

                clear tline str1 fid1 

  

                check_Run1=0.0; 

                 

                

[A1,A2,A3,A4,A5,A6]=Scan_Results_Last_Fast(dt,n_lines,Sd,i,check_Run1,incr); 

                     

                IDR_max(k101,:)=A1;          % Maximum IDR for various seismic 

intensities SF 

                Roof_Drift_max(k101,1)=A4;   % Maximum roof IDR for various seismic 

intensities SF 

                R_Roof_Drift(k101,1)=A3;     % Residual roof IDR for various seismic 

intensities SF 

                R_floor_IDR(k101,:)=A2;      % Residual floor IDR for various seismic 

intensities SF 

                Accel(k101,:)=A5;            % Maximum floor acceleration for various 

seismic intensities SF 

                Base_Shear(k101,1)=A6;       % Base Shear (kN) for various seismic 

intensities SF 

        end   

  

     

           

         

        kk=k101;                                

        SF_LINES(kk,1)=z2;                     % Sa_Target = z2, in g 

        SF_LINES(kk,2)=n_lines; 

        SF_LINES(kk,3)=Sd; 

         

        if kk<2 

            IDR11=max(IDR_max(1,:));                 % Maximum IDR of the 1st step 

            Slope_I=SF_LINES(1,1)/IDR11;             % Initial slope 

            IDR22(1,1)=IDR11; 

            Check_Slope(kk,1)=1; 

        else  

            IDR22(kk,1)=(max(IDR_max(kk,:)));                                           % Maximum 

IDR of the current step 

            Slope_C=(SF_LINES(kk,1)-SF_LINES((kk-1),1))/(IDR22(kk,1)-IDR22((kk-

1),1));  % Current slope 

            Check_Slope(kk,1)=Slope_C/Slope_I;                                          % Slope  

        end 

         

        if check_Run1==1.0, break, end 

        if IDR11>0.15 | IDR22(kk)>0.15, break, end 

        if Check_Slope(kk)<0.10 & Check_Slope(kk)>0, break, end 
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    end 

     

    xlswrite(sprintf('Quake%d.xls',i),SF_LINES,'Sa_Lines') 

    xlswrite(sprintf('Quake%d.xls',i),IDR_max,'IDR') 

    xlswrite(sprintf('Quake%d.xls',i),Roof_Drift_max,'Roof_Drift') 

     

    xlswrite(sprintf('Quake%d.xls',i),R_Roof_Drift,'R_Roof_Drift') 

    xlswrite(sprintf('Quake%d.xls',i),R_floor_IDR,'R_Floor_Drift') 

    xlswrite(sprintf('Quake%d.xls',i),Accel,'ABS_Accel') 

    xlswrite(sprintf('Quake%d.xls',i),Base_Shear,'Shear') 

    xlswrite(sprintf('Quake%d.xls',i),Check_Slope,'Slope_Ratio') 

     

    clear SF_LINES IDR_max Roof_Drift_max R_Roof_Drift R_floor_IDR Accel 

Local_d Base_Shear Check_Slope 

     

end 

  

  

    LINP_Anal_sec = fopen('Anal_sec.txt','r'); 

    %Anal_sec = fgets(LINP_Anal_sec) 

    Anal_sec = fscanf(LINP_Anal_sec,'%f',1); 

    fclose(LINP_Anal_sec) 

    delete('Anal_sec.txt'); 

    analisis_sec(i,1)=Anal_sec; 

     

    LINP_TIMEE = fopen('Timee.txt','r'); 

    Timee(i,1) = fscanf(LINP_TIMEE,'%f',1); 

    fclose(LINP_TIMEE) 

    delete('Timee.txt'); 

     

  

% save ('Check_Run.txt','check_Run1','-ascii'); 

  

  

  

     

 

 

 

 


