
 1

“User defined types and nested tables in object
relational databases”

Bernadette-Marie Byrne*
Department of Computing,

Oxford Brookes University, UK
bbyrne@brookes.ac.uk,

tel 01865484521

Mary Garvey,
School of Computing and IT,

University of Wolverhampton, UK
m.garvey@wlv.ac.uk

tel : 01902 321483

Track: Technical Issues in Information Systems

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Hertfordshire Research Archive

https://core.ac.uk/display/83960991?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:bbyrne@brookes.ac.uk
mailto:m.garvey@wlv.ac.uk

 2

Abstract

There has been much research and work into incorporating objects into
databases with a number of object databases being developed in the
1980s and 1990s. During the 1990s the concept of object relational
databases became popular, with object extensions to the relational
model. As a result, several relational databases have added such
extensions.

There has been little in the way of formal evaluation of object relational
extensions to commercial database systems. In this work an airline flight
logging system, a real-world database application, was taken and a
database developed using a regular relational database and again using
object relational extensions, allowing the evaluation of the relational
extensions.

Keywords:

Relational Databases, Object-Relational Databases, User-defined Types,
Nested tables.

Introduction

The relational model was first proposed by Codd (1970). The first Database
Management System (DBMS) based on his ideas was an IBM product
released in 1980. The Relational DBMS (RDBMS) grew in popularity despite
performance problems compared with the existing navigational databases of
the time and, over the last 25 years, has come to dominate the database
market. With the rise in popularity of object oriented programming in the late
1980s developers began to propose alternatives and extensions to RDBMS in
order to include support for objects. The two main proposals were for object
databases and object-relational (OR) databases; the latter adding object
support to the existing relational model. Initially, object databases were seen
as the best way forward and several commercial databases were produced
which are still in use today. However, the expected success of object
databases did not materialise and they are no longer seen as the best
solution for incorporating objects into databases.

There has since been much agreement among database experts that Object-
Relational databases should be the way forward, even if there is
disagreement on the form it should take. Carey & DeWitt (1996) predicted that
OR databases would soon become dominant. There has been, however, little
sign of the expected adoption of OR in the IT industry, although there have
been a number of small-scale DBMSs developed with OR features. One of
the advantages of the ORDBMS is that it is usually compatible with existing
relational databases and therefore the new technology is easy for users to
adopt without major investment and recoding of existing applications.

One of the first languages to incorporate many of the ideas of object-oriented
(OO) programming was SIMULA in the 1960s (Stefik & Bobrow, 1984), but it
was in the 1990s that OO programming became widespread. With the
increasing importance of the Internet to applications and the emergence of

 3

new web-oriented languages such as Java and the .NET framework, OO
programming has become the norm. One of the problems of object-oriented
(OO) applications is that of providing persistence of objects – objects need to
survive beyond the running of an application (Garvey, Jackson, & Roberts,
2002). Much work was done on developing “object-oriented databases”
(OODB) with three systems in particular being developed: Gemstone, Vbase
and Orion. In addition to the need for persistence of objects, Stonebraker et
al. (1990) assert that the relational model does not adequately support many
applications, especially non-business data processing applications which
include different types of media, such as image video and complex objects,
although many data processing systems are also not well supported. A new
model of database system was required, the so-called “third generation”
database system based on object-oriented concepts.

There has been an abundance of papers defining systems based on object-
oriented concepts during the 1980s such as Albano, Cardelli & Orsini (1985)
and Carey & DeWitt (1988). A consideration of the features of both object-
oriented systems and database management systems led to the definition of
the two leading object-oriented database manifestos. The first is often referred
to as the Atkinson manifesto, which comes from an object-oriented
programming language (OOPL) background and was one of the first attempts
at defining an object-oriented database (Atkinson et al., 1989). This outlined a
number of “mandatory” features of an object-oriented database system,
including:

 Support for complex objects

 Object Identity

 Encapsulation

 Support for types or classes

 Class or Type Hierarchies

 Overriding, Overloading and Late Binding

 Computational Completeness

 Extensibility

 Persistence

 Secondary Storage Management

 Concurrency

 Recovery

 Ad hoc query facility

A standard for OO database systems, called the Object Data Standard, was
produced in 1993 by the Object Database management Group (ODMG),
initially called ODMG-93 (Cattell et al., 1993), with later versions being ODMG
2.0 (Cattell et al., 1997) and 3.0 (Cattell et al., 2000). The standard included
Object Data Language (ODL), Object Query Language (OQL) and
programming interfaces for C++ and Java (Carey & DeWitt, 1996).

Michael Stonebraker and others came up with an alternative proposal for a
different kind of OODB based on the relational model, known as the “Third-
Generation Database System Manifesto” (Stonebraker et al., 1990). The type
of system proposed was initially known as an “extended relational” database
system, but is now known as an “object relational” (OR) database system.
The first object-relational DBMS was POSTGRES in the late 1980s and is

 4

described in Rowe and Stonebraker (1987), but a formal proposal for the
object relational database model was not produced until the 1990s
(Stonebraker & Moore, 1996), (Stonebraker, Brown, & Moore, 1999). This
proposal purports to be very different to Atkinson et al., yet it covers much of
the same ground. However, there are certain fundamental differences,
Stonebraker et al. (1990) believes that any third generation DBMS should
subsume second-generation systems. They believe that an application should
only (rather than optionally) access the database through a query language
and that procedural, programmatic access to data is not desirable. They
highlight the desirability of “location independence”, which is essentially
physical data independence. This is particularly important where pointers are
used: the pointers should point to a unique identifier (an object ID), which is
independent of physical location. They also suggest that SQL is a
“Reasonable candidate” for the new functions that they detail – they suggest
extending SQL for OODBMS, rather than developing a new language,
although this is partly for commercial reasons concerning the popularity of
SQL.

In summary, Stonebraker et al’s proposal takes the main features of Atkinson
et al but sees them as an extension of the relational model, with access to the
data exclusively through an extended version of SQL.

C J Date (2000) criticises current implementations of OR databases. He refers
to “Two Great Blunders” which many vendors of Object Relational Databases
have made. The first great blunder he describes as equating relations with
object classes, when in fact domains should be equated with object classes
and the second great blunder is mixing pointers with relations.

Implementation

The work described in this paper is based on a project that investigated object
relational features (Millichamp, 2004). This paper considers two of these
features, firstly User-Defined Types and secondly the use of Nested tables.
The use of subtypes and the ‘ref’ structure will be the subject of a further
paper. Figure 1 shows part of the entity relationship diagram for the Airline
system which was implemented firstly using a standard relational database
and again using some of the OR features.

User-Defined Types

A user-defined type (UDT) is a datatype used as an alternative to the DBMSs
built-in types such as varchar, number, date etc. In practice it consists of one
or more attributes, each of which can be of a built-in type, or another UDT.

 5

Figure 1: Airline System

 6

For example a ‘contact’ type was created with four attributes: tel1, tel2, fax
and mobile. Each of these attributes was of telephone type. The telephone
type consists of three attributes: int_code, local_code and number, each of
type varchar2, with a character datatype being chosen rather than an integer
to allow spaces and leading zeros in the telephone numbers. This creates a
structure illustrated in table 1 below.

Contact Tel1 Int_code

 Local_code

 Num

 Tel2 Int_code

 Local_code

 Num

 Fax Int_code

 Local_code

 Num

 Mobile Int_code

 Local_code

 Num

Table 1: Contact structure

The use of a UDT allows the construction of complex data structures. It also
allows object types to be used in different tables – the contact type for
example was used in four different tables in the completed system.

A type is created using the Create Type statement. There are different

naming conventions for types, but the most common is to add the suffix ‘_T’ to
the type name, such as ‘CONTACT_T’ for the contact type.

The EER diagram shows composite attributes for name, contact numbers and
address in the Employee and Airport entities, as shown below. These can
easily be mapped to UDTs and one UDT was created for each composite
attribute. The composite attributes are shown in Figure 2 below.

 7

Figure 2: Examples of a Composite Attribute

Additionally, a type was created for telephone numbers, with attributes for the
international code, local STD code and the number itself. This allows the user
to extract whichever part of the number they require and perhaps create a
custom format from a combination of codes and number.

The contact type has attributes of the PHONE_T type. It is possible to have
unlimited levels of nested types in a hierarchy.

The final types created were:

CREATE TYPE Name_t AS OBJECT (/* person’s name */
 lname VARCHAR(20),

fname VARCHAR(20),
initials VARCHAR(5))

/
CREATE TYPE Address_t AS OBJECT (/* postal address */

address1 VARCHAR(20),
address2 VARCHAR(20),
city VARCHAR(20),
postcode VARCHAR(10),

 8

country VARCHAR(20))
/
CREATE TYPE Phone_t AS OBJECT (/* phone numbers */
 init_code VARCHAR(5),

local_code VARCHAR(10),
num VARCHAR(10))

/
CREATE TYPE Contact_t AS OBJECT (/* contact phone numbers */

tel1 PHONE_T,
tel2 PHONE_T,
fax PHONE_T,
mobile PHONE_T)

/
The use of UDTs was one of the most successful of the new features. It
allows complex structures to be created, such as the contact type and reflects

the requirements of OO applications. The CREATE TYPE statement is used to
create the specification of a user defined type. To use the new type in a
database, it can either form the basis of a table, or the type can be used as if
it were a built-in datatype, for example, the following defines the AIRPORT
and EMPLOYEE tables:

CREATE TABLE Airport (
code NUMBER(4) PRIMARY KEY,
name VARCHAR(10),

 contact CONTACT_T,
address ADDRESS_T);

CREATE TABLE Employee (
nino NUMBER(4) PRIMARY KEY,

 name NAME_T,
 address ADDRESS_T,

contact CONTACT_T,
worksFor NUMBER(4) REFERENCES Airport(code));

By equating a UDT as an object class, it avoids Date’s first great blunder. It
provides a reusable structure that can simplify application development
whether OO is used or not and allows queries where the structure of the
object is reflected in the query; for example:-

SELECT E.Contact.Tel1.num FROM Employee e;

One of the biggest difficulties in using UDTs and row types is that there are
major difficulties in altering types. For example, a PERSON_T type may have
the attributes firstname, lastname, age, but it is subsequently decided that it
would be better to use the date of birth (DOB) rather than the age. Any tables
where are dependent on the PERSON_T type will be affected. However, it
was found that it was difficult to make changes to a type, once other objects,
such as another type, or table, made any reference to it. The only reliable way
to alter a type was to backup any dependent tables and then drop the tables
and the type. The new type and tables can then be created and the data
copied from the back up tables. This is not a simple thing to do and carries a

 9

real risk of losing data if not carefully managed. It is also extremely time-
consuming.

Queries with UDTs

Creating queries highlights some of the advantages of OR features. The
structure of an object is seen in the way it is referenced in a query. For
example, a fax number is referenced as t.contact.fax.num (where t is the table
alias). The use of it can be seen in this query where a UK format telephone
number is generated from the default international format:

SELECT e.name.fname || ' ' ||
e.name.lname AS "Contact",
'0' || a.contact.tel1.local_code || ' ' ||
a.contact.tel1.num AS "Telephone"

FROM Airport a, Employee e
WHERE code='AMM'

AND e.worksfor = a.code;

Contact Telephone

Fred Jones 0161 253 4400

The | | characters are used as concatenators, while column aliases are in
quotes.

Nested Tables

The flight table is central to the database, with relationships to several tables,
as can be seen in Figure 1. The flight instance is shown as a weak entity of
flight. A flight can take place for example at the same time and day every
week for a period of time. A flight instance is that flight on a particular day.
The flight instance weak entity was mapped to a nested table within the Flight
table; the aircraft instance entity was mapped to a nested table in the same
way.

The nested table construct allows a weak entity to be represented by a nested
table rather than an independent table. It effectively allows multiple instances
of an attribute (also known as ‘repeating groups) to be stored in a single
attribute. This can be illustrated as:

 10

FlightNo Scheduled
Arrival Time

Flight
Instance

B747 09.20 Reg Capacity Date

 GRYTW 371 09/02/06

 GYERT 367 10/02/06

 GIYERT 369 11/02/06

 GGYTT 362 12/02/06

A333 10.15 GKOOP 213 09/02/06

 GYERT 213 10/02/06

 GIYTH 211 11/02/06

The tables were created using a series of SQL statements. OR features only

work with object types, the FlightInstance_T type was created first, then

a “table type” based on this type was created, called FlightInstance_TAB,

which is used in the Flight table definition. Elements of a nested table are

stored separately, so a further table, instance_table, is created to store its

values, as seen below:

CREATE TYPE FlightInstance_T AS OBJECT (
Reg VARCHAR(10),
Capacity NUMBER(4),
Fdate DATE)

/
CREATE TYPE FlightInstance_Tab AS TABLE OF FlightInstance_T
/
CREATE TABLE Flight (

FlightNo VARCHAR(4),
ScheduledArriveTime VARCHAR(5),
FlightInstances FlightInstance_Tab)

NESTED TABLE flightInstances STORE AS instance_table;

Queries on nested tables

With queries on nested queries, the TABLE construct is used to un-nest a
nested table. This creates a temporary table for the matching results from the
nested table, which is then joined to the parent table and can be projected as
a normal table. For example:

SELECT F.FlightNo, F.ScheduledArriveTime, T.Reg, T.fDate
FROM Flight F, TABLE(flightInstances) T
WHERE F.FlightNo = 'B747';

It was found that is was not possible to drop a nested table, even though a
parent table may be dropped. For example it was possible to drop the flight
table with a drop table command but the software being used would not allow
a nested table to be dropped.

Drop table flight; /* (the parent table) */

Table dropped

 11

drop table instance_table;
 *
ERROR at line 1:
DROP of nested tables not supported

This is not a desirable situation. Any table or object may need to be dropped.
In particular, some changes to a table involve backing up the data, dropping
the table and recreating the table with the changes and copying the data back
in.

Nested tables represent what Codd describes as a non-simple domain and
which are also known as ‘’repeating groups”. It should be noted that Codd
does not say that non-simple domains cannot be allowed in the relational
model, but that “the possibility of eliminating non-simple domains appears
worth investigating” (Codd, 1979).

A nested table was used to store instances of a flight. A number of problems
were encountered. The set of flights embedded with the Flight Instance
nested table ideally should be referenced by the Aircraft_Instance table. Using
standard relational features, this could be provided by a FOREIGN KEY
constraint. Alternatively, a leading DBMS provider has an object-relational
datatype called a REF, which encapsulates references to row objects of a
specified object type. From a modeling perspective, REFs provide the ability
to capture an association between two row objects. Behind the scenes, the
REF is implemented by the use of object identifiers.

It was found that it is not possible to create a REF to a nested table, which
meant the intended structure of the flight instance nested table containing a
REF to the aircraft instance nested table was not possible. Instead a foreign
key was used. However, despite extensive research and experimentation, no
way was found to add foreign key constraints to a nested table, with an error
being returned stating that referential constraints are not allowed on nested
table columns!

The authors assume this is because the nested table in fact is embedded in
the “outer” table, such as FLIGHT and is not visible without reference to this
table.

This means that although the attribute aircraft in the flight instance nested
table acts as a foreign key, it is not constrained as such, a situation which is
far from satisfactory as the data can become inconsistent.

Conclusion

There was little wrong with the relational version of the database; it was
relatively straightforward to design and set up and the structure seemed to
support the requirements of the application. The EER diagram seen in figure 1
can be implemented using standard relations, using a mapping technique for
the weak entities, such as seen in Elmasri & Navathe (2000). However, the
OR features do appear to offer certain advantages, such as: the OO format of
columns, support of complex objects, the simplicity of REF types for joining
tables and the support for composite attributes; and this project set to
investigate the effectiveness of these object-relational features.

 12

Creating queries for the OR database proved to be challenging and time-
consuming. The queries use a more complex structure, particularly where un-
nesting tables is involved along with a hierarchy of joined nested and non-
nested tables and it takes time to come to an understanding of the syntax of
such queries. This may be less of a problem for experienced database
designers, but may cause problems for some application developers creating
queries to embed into their application.

The usual implementation of OR features uses Object IDs (OIDs) to identify
each tuple, a construct used, in particular, with nested tables. This suggests
the vendor, at least in part, identifies objects as relations, with tuples as
instances, thus committing Date’s first great blunder. However, some vendors
imply that in fact the OID relates to the user-defined type (i.e. domain). This
makes sense when it is considered that (for example) nested tables can only
be used in conjunction with object tables and object rows – a relevant relation
must be based on a UDT.

Date also refers to the “second great blunder”: mixing pointers with relations.
One of his examples of such a mistake is nested tables. Although the table
appears to be nested, it is actually a separate table, with pointers from the
parent table. The OID for each related tuple is used for the pointers.

Date explains that, while there is no problem with tuple or relationvalued
attributes, this only applies when the attribute is indeed a value. Since
pointers require addresses, they can, by their very nature, only point to
variables rather than values and in this case they point to tuple variables. The
relational model does not allow for tuple variables, only relation variables and
by introducing the concept of a tuple variable Date asserts that mixing
pointers and variables therefore “seriously undermines the conceptual
integrity of the relational model” (Date, 2000).

The OR database was extremely difficult to implement and took a length of
time out of proportion to the complexity of the requirements. While it
supported complex objects, its very complexity created problems. This was
not a complex application: while the EER diagram was not easy to get right, it
was nothing that any competent database designer would baulk at, yet when
implementing it as an OR database, many difficulties were encountered. This
certainly suggests that where very complicated systems are required, OR
database systems must be considered to capture the structure of the
database, but simpler systems may be better suited to the simpler relational
approach.

The project found that although the classic example of a weak entity could be
implemented with a nested table, this approach is not suitable when used with
a chain of weak entities (Byrne & Garvey, 2004). The inability to reference the
“inner table” makes the technique only suitable when the nested table does
not take part in any other relationship.

It has already been stated that the term “Object Relational” is used for
relational databases with object extensions. Date (2000), however, argues
that the term is a misnomer, as is even the term “extensions”. Some so-called
extensions, such as REF, are in fact orthogonal with the relational model. He
also argues that some “extensions” such as Abstract Data Types (ADT) are

 13

not extensions or object relational features, as they should be an integral part
of the relational model anyway. He criticizes SQL for its failure to implement
domains properly: the additional support for ADTs in SQL:1999 merely
improves SQL’s implementation of the relational model.

Despite following the recommendations of leading database experts, the OR
features still do not work well overall, despite the success and benefits of
certain features such as UDTs. Apart from the complexity of using the
features and the cumbersome SQL constructs, too many problems were
found. In particular in this paper we have mentioned the problems of
constraints in nested tables; the difficulty in Ref attributes pointing to nested
tables and the lack of relational inheritance in subtypes will be the topic of
subsequent papers. It is difficult to say whether the problems are caused by
the OR features compromising the integrity of the relational model or whether
it is poor implementation by the vendors. The OR features used do not
provide a satisfactory overall solution. Any developer should think carefully
before using such features if the database is to provide a robust basis for
storing and managing data.

References

Albano, A., Cardelli, L., & Orsini, R. (1985). GALILEO: A strongly-typed,
interactive conceptual language. ACM Transactions in Database
Systems, 10(2), 230-260.

Atkinson, M. P., Bancilhon, F., DeWitt, D. J., Dittrich, K. R., Maier, D., &
Zdonik, S. B. (1989). The Object-Oriented Database System Manifesto.
Paper presented at the Deductive and Object-Oriented Databases,
Kyoto, Japan.

Byrne, B., & Garvey, M. (2004, 5th-7th May). Weak Entities in Conceptual
Modeling. Paper presented at the 9th UKAIS, Glasgow, Scotland.

Carey, M. J., & DeWitt, D. J. (1988, June 1988). A Data Model and Query
Language for EXODUS. Paper presented at the ACM SIGMOD
International Conference on Management of Data, Chicago.

Carey, M. J., & DeWitt, D. J. (1996). Of Objects and Databases: A Decade of
Turmoil. Paper presented at the Proceedings of 22nd International
Conference on Very Large Databases, Mumbai (Bombay), India.

Cattell, R. G. G., Atwood, T., Duhl, J., Ferran, G., Loomis, M., & Wade, D.
(1993). The Object database standard, ODMG-93. Release 1.1. San
Francisco, Calif.: Kaufmann.

Cattell, R. G. G., Barry, D., Bartels, D., Berler, M., Eastman, J., Gamerman,
S., et al. (1997). The Object Database Standard: ODMG 2.0. CA:
Morgan Kaufmann.

Cattell, R. G. G., Barry, D., Berler, M., Eastman, J., Jordan, D., Russell, C., et
al. (2000). The Object Data Standard: ODMG 3.0. San Francisco, Calif:
Morgan Kaufmann.

Codd, E. F. (1970). A Relational Model for Large Shared Data Banks.
Communications of the ACM, 13(6), 377-387.

Codd, E. F. (1979). Extending the Database Relational Model to capture more
meaning. ACM Transactions on Database Systems, 4(4).

Date, C. J. (2000). An Introduction to Database Systems (Seventh ed.):
Addison-Wesley.

 14

Elmasri, R., & Navathe, S. (2000). Fundamentals of Database Systems (Third
ed.): Addison-Wesley.

Garvey, M., Jackson, M., & Roberts, M. (2002). Using Persistent Java to
Construct a GIS. Paper presented at the 4th International Conference
on Enterprise Information Systems, Ciudad Real, Spain.

Millichamp, A. J. (2004). Is there a future for object-relational databases? An
evaluation of an object-relational database developed using a major
commercial database management system. University of
Wolverhampton, Wolverhampton.

Rowe, L. A., & Stonebraker, M. (1987, September 1-4, 1987). The
POSTGRES Data Model. Paper presented at the 13th International
Conference on Very Large Data Bases (VLDB'87), Brighton, UK.

Stefik, M., & Bobrow, D. G. (1984). Object-Oriented Programming: Themes
and variations. AI Magazine, 6(4).

Stonebraker, M., Brown, P., & Moore, D. (1999). Object-relational DBMSs:
tracking the next great wave: Morgan Kaufmann.

Stonebraker, M., & Moore, D. (1996). Object-Relational DBMSs the next great
wave: Morgan Kaufmann.

Stonebraker, M., Rowe, L. A., Lindsay, B. G., Gray, J., Carey, M. J., Brodie,
M. L., et al. (1990, July 1990). Third-Generation Database System
Manifesto - The Committee for Advanced DBMS Function. Paper
presented at the Object-Oriented Databases: Analysis, Design &
Construction (DS-4), Windermere, UK.

