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Abstract 

The sheer number, continuous emergence, heterogeneity and wide chemical and structural 

diversity of New Psychoactive Substance (NPS) products are factors being exploited by illicit 

drug designers to obscure detection of these compounds. Despite the advances in analytical 

techniques currently used by forensic and toxicological scientists in order to enable the 

identification of NPS, the lack of a priori knowledge of sample content makes it very 

challenging to detect an ‘unknown’ substance. The work presented in this thesis serves as a 

proof-of-concept by combining similarity studies, Raman spectroscopy and chemometrics, 

underpinned by robust pre-processing methods for the identification of existing or newly 

emerging NPS. It demonstrates that the use of Raman spectroscopy, in conjunction with a 

‘representative’ NPS Raman database and chemometric techniques, has the potential for 

rapidly and non-destructively classifying NPS according to their chemical scaffolds. The work 

also demonstrates the potential of indicating the purity in formulations typical of those 

purchased by end users of the product i.e. ‘street-like’ mixtures.  

Five models were developed, and three of these provided an insight into the identification and 

classification of NPS depending on their purity. These are: the ‘NPS and non-NPS/benchtop’ 

model, the ‘NPS reference standards/handheld’ model and the ‘NPS and non-NPS/handheld’ 

model. In the ‘NPS and non-NPS/benchtop’ model (laser λex = 785 nm), NPS internet samples 

were projected onto a PCA model derived from a Raman database comprising ‘representative’ 

NPSs and cutting agent/ adulterant reference standards. This proved the most successful in 

suggesting the likely chemical scaffolds for NPS present in samples bought from the internet. 

In the ‘NPS reference standards/handheld’ model (laser λex = 1064 nm), NPS reference 

standards were projected onto a PCA model derived from a Raman database comprising 

‘representative’ NPSs. This was the most successful of the three models with respect to the 

accurate identification of pure NPS. This model suggested chemical scaffolds in 89% of 

samples compared to 76% obtained with the benchtop instrument, which generally had higher 

fluorescent backgrounds. In the ‘NPS and non-NPS/handheld’ model (laser λex = 1064 nm), 

NPS internet samples were projected onto a PCA model derived from a Raman database 

comprising ‘representative’ NPSs and cutting agent/ adulterant reference standards. This was 

the most successful in differentiating between NPS internet samples dependent on their purity.  

In all models, the main challenges for identification of NPS were spectra displaying high 

fluorescent backgrounds and low purity profiles.  
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The ‘first pass’ matching identification of NPS internet samples on a handheld platform was 

improved to ~50% using a laser source of 1064 nm because of a reduction in fluorescence at 

this wavelength. We outline limitations in using a handheld platform that may have added to 

problems with appropriate identification of NPS in complex mixtures. However, the developed 

models enabled the appropriate selection of Raman signals crucial for identification of NPS 

via data reduction, and the extraction of important patterns from noisy and/or corrupt data.  

The models constitute a significant contribution in this field with respect to suggesting the 

likely chemical scaffold of an ‘unknown’ molecule.  This insight may accelerate the screening 

of newly emerging NPS in complex matrices by assigning them to: a structurally similar known 

molecule (supercluster/ cluster); or a substance from the same EMCDDA/EDND class of 

known compounds. Critical challenges in instrumentation, chemometrics, and the complexity 

of samples have been identified and described. As a result, future work should focus on: 

optimising the pre-processing of Raman data collected with a handheld platform and a 1064 

nm laser λex; and optimising the ‘representative’ database by including other properties and 

descriptors of existing NPS.  
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1. Introduction 

1.1. Background 

New psychoactive substances (NPS) are ‘novel’ recreational drugs, which people use as 

intoxicants. Although there is not an internationally agreed definition [1, 2], the Advisory 

Council on the Misuse of Drugs (ACMD) has proposed the following for describing NPS: 

“psychoactive drugs, which are not prohibited by the United Nations Single Convention on 

Narcotic Drugs or by the Misuse of Drugs Act 1971, and which people in the UK are seeking 

for intoxicant use” [3]. The term ‘novel’ means that these substances not only include newly 

synthesised, invented or discovered psychoactive substances, but also existing molecules, 

which are being used recreationally in ‘novel’ ways [4, 5]. The Psychoactive Substances Act 

(PSA) (TSO, 2016), which came into effect in the UK on May 26, 2016 to control the use of 

psychoactive intoxicants uses a broader term i.e. “psychoactive substances’ and defines an NPS 

as a substance ‘(a) capable of producing a psychoactive effect in a person who consumes it, 

and (b) is not an exempted substance …” [6]. The PSA states it is illegal to supply, produce, 

possess with intention to supply or possess in legal custody (e.g. ‘adult prison or young offender 

institute’ [7]). 

NPS are also called by various other names. One such name, ‘legal highs’ is an inaccurate name 

marketed to deceive potential users about the ‘legal’ status of these substances and their ‘high’-

inducing effect. ‘Smart drugs’ is a term used to describe a subcategory of NPS comprising of 

over-the-counter drugs, dietary supplements and image enhancers mostly used by students and 

athletes. ‘Designer drugs’ is another nomenclature used, and is a term to describe a ‘new’ 

derivative arising from a minor chemical modification to existing drugs of abuse with proven 

psycho-pharmacological activity, which hence circumvent the law [2, 8]. ‘Research chemical’, 

‘bath salts’, ‘fertiliser’, ‘incense’, and ‘plant food’, are other terms used to bypass legislation 

intended to control the supply and distribution of these substances [2, 9, 10].  

In addition, NPS are given different names in different countries. For examples, piperazines 

were known as ‘party pills’ in New Zealand, cathinones were known as ‘bath salts’ in the US 

[2] and all ‘legal’ NPS were known as ‘kiken’ in Japan [11]. The majority of NPS are synthetic 

compounds but the category also includes some herbs, herbal extracts and seeds [12]. NPS are 

sold in a variety of formulations e.g. tablets, capsules, pellets and powders [12] and recently 

the NPS market has recently expanded to include diverted medicines (i.e. prescription, 

pharmacy only or over-the-counter medicines), illegally imported medicines, dietary 
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supplements, patents including failed patents and drug candidates published in scientific papers 

[13-16]. 

The emergence of NPS is not a new phenomenon. The first opioid analogues were identified 

in 1912 and were subsequently controlled via  the ‘Hague International Opium Convention’ 

[17]. The current wave of NPS were initially synthesised or used to evade international 

conventions and mimic the effects of traditional drugs of abuse such as ecstasy and cocaine 

[3]. The NPS market has proliferated significantly over recent years thought to be caused, in 

part,  by virtue of the books published by Dr Alexander Shulgin [18, 19] and open access to 

the internet [10, 20-23]. In collaboration with his wife Ann, Dr Shulgin or ‘Sasha’ the ‘ecstasy 

Godfather’ published the detailed chemical syntheses, and personal experiences of the effects 

of,  over 230 NPS, mostly from the phenethylamine and tryptamine classes [18, 24]. It is 

thought that these books have stimulated the global explosion of NPS [2]. In addition, access 

to NPS has changed dramatically over the past decade from face-to-face sales transactions, 

between a vendor and a buyer in illicit drug markets, to anonymous, often unmonitored discrete 

online transactions facilitated by vigorous marketing campaigns [20, 21, 23, 25]. 

Clandestine chemists are currently outstripping law enforcement and NPS research, with the 

number of newly occurring NPS being formally notified to the European Early Warning 

System (EWS) dramatically increasing over the years from 13 [26] to 628 recorded by the EU 

Information System and Database on New drugs (EDND) by January 2017 [27]. Most NPS 

have a short market life and the continuous emergence of new forms and analogues of these 

substances is showing no signs of abating.  

Over the past decade, the ban of any particular NPS or class of NPS has led to a rapid 

replacement in the market, which has been described as a ‘game of cat and mouse’. An example 

of this goes as far back as 1953, where there were numerous international attempts to control 

new morphine analogues emerging onto the market [28]. Based on the most recent report by 

the European Monitoring Centre on Drugs and drug Addiction (EMCDDA), approximately 

two new NPS per week were formally notified to the EWS in 2015 and over 560 NPS were 

being monitored [29].  

In contrast to the limited numbers and types of traditional drugs of abuse, NPS cover a broad 

chemical and pharmacological spectrum. To enable, and improve, their identification and 

classification, the EMCDDA has organised them into several categories [30]. This 
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classification system has evolved over time to reflect the prevalent European trends but has 

consistently showed that synthetic cannabinoids, synthetic cathinones and phenethylamines are 

the most popular classes of NPS since 2010 [29, 30].  

 

Figure 1. 1: The relative prevalence of new psychoactive substances in Europe over time 

(Figure reproduced with permission from the EMCDDA [9]). 

NPS have been classified in several ways based on the ultimate application. For example, a 

detailed classification system, which is of interest to psychiatry includes the categorisation of 

NPS as “synthetic cannabinoids, cathinone derivatives, psychedelic phenethylamines, novel 

stimulants, synthetic opioids, tryptamine derivatives, phencyclidine-like dissociatives, 

piperazines, GABA A/B receptor agonists, …prescribed medications, psychoactive 

plants/herbs, …performance and image enhancing drugs” [5].  

Another classification system, which can assist decision-making related to treatment in clinical 

settings includes the categorisation of NPS as four major classes: stimulants, depressants or 

dissociatives, hallucinogens and synthetic cannabinoids [31]. This classification has recently 

been expanded on by incorporating opioids, empathogens and psychedelics as new categories. 

It also includes example NPS membership to these classes based on their legal categorisation 

(Figure 1.2). 
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Figure 1. 2: The Drug Wheel. The outer ring shows “the controlled NPS under the Misuse of 

Drugs Act 1971 or The Human Medicines Regulations 2012”, whereas the inner ring shows 

“the controlled NPS under the Psychoactive Substances Act 2016 (PSA). *Temporary Class 

Drug Orders (TCDOs)” (Figure reproduced with permission from Dr M. Adley) [32]. 

The use of NPS is prevalent amongst clubbers, party goers and those attending music festivals, 

high-risk drug users e.g. those who inject heroin, abstinence treatment entrants, MSM (i.e. men 

who have sex with men), people who engage in group sex, and prisoners [33-38]. In addition 

to the wide prevalence and unsafe practices, the increased diversity of NPS, surge in the number 

and diversity of users and distributors, the increased availability, rapid speed of emergence, a 

lack of knowledge on the identity, pharmacology, toxicodynamics and toxicokinetics of the 

NPS  [39, 40], and variation in potency, formulations and routes of administration of these 

substances are posing significant public health concerns [2, 38, 41]. NPS abuse has been 

associated with unpredictable toxicities i.e. violence and aggression [42], sympathomimetic, 

cardiovascular and neurologic symptoms [43-47], major organ failure [48-50], psychosis [43, 

46, 51, 52], withdrawal symptoms [53], and fatalities [42, 54-61].  

At present, the dearth of pharmacological and toxicological knowledge on NPS increases the 

potential risks and harms to users and greatly impacts treatment decisions [62]. Furthermore, 
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the problem of NPS is severely underestimated due to social stigma, self-treatment and lack of 

awareness of users, which often lead to under-reporting and lack of knowledge of the real size 

of the problem [63]. Knowledge about NPS is often only captured if a user is being arrested or 

via anecdotes and national surveys [64, 65]. Users usually do not know the actual content in 

the NPS products they consumed unless a chemical analysis is performed [38]. Moreover, the 

net impact of NPS abuse on the national health services, crime rates and societal burden is still 

unknown. This is because NPS fall outside the drug monitoring systems by the public health 

agencies [66, 67] and are not easily detected using common prison, forensic and toxicology 

screening tests [68, 69]. Therefore, NPS became preferred among people subject to regular 

checks such as those working in the military and those under the criminal justice system during 

their probation period because, again, NPS are not detected using common detection kits [7, 

64, 70]. This makes the improved detection of NPS in the field (i.e. hospitals and emergency 

settings, music festivals, road-side, prisons, border control, etc.) key to optimise and accelerate 

treatment decisions, for public health purposes and to inform law enforcement bodies.  

Unlike pharmaceuticals, NPS are commonly produced in clandestine laboratories and hence, 

are not produced or controlled under ‘Good Manufacturing Practices’. With the reduced 

availability of drugs of abuse e.g. MDMA in the early 2000s, purity of these compounds 

declined and illicit drugs were ‘cut’ to maintain their weight and enhance dealers’ profits [71]. 

As a result, NPS supplemented the repertoire of illicit drugs as adulterants or add-ons. They 

have also been shown to be produced as, or incorporated into, mixtures to mimic the effect of 

popular illicit drugs [38, 72]. Compounds sold as pure substances often covertly contained 

mixtures of one or more active substances of varying purity [38, 73, 74]. For example, seized 

NPS in 2011/ 2012 have been shown to contain mixtures of up to eight different controlled or 

uncontrolled NPS or cutting agents [75]. In 2013, the UK ‘Forensic Early Warning System 

(FEWS)’ reported that 81 % of seized NPS were mixtures that incorporated more than one 

active NPS. Of those, 36, 35 and 1 % contained two, three and seven different active NPS, 

respectively [76]. This trend continued in 2014 with 91 % of seized NPS samples made up of 

mixtures [77]. Information is still lacking on NPS purity after the UK PSA 2016 came into 

effect. An extensive review of NPS mixtures particularly the cathinones and the adulterants 

and cutting agents incorporated in them or co-consumed with them has recently been conducted 

by Guirguis et al. [38]. 
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The heterogeneity of NPS products in terms of composition, concentrations and number of 

constituents is one of the tactics used by drug designers to evade detection and circumvent the 

law [78]. This added complexity makes the identification of NPS and the discrimination 

between NPS and excipients, using traditional chromatography or spectrometry techniques, 

limited to analysts with substantial expertise in the interpretation of spectral or 

chromatographic data.  

1.2. Chemical analysis of NPS 

Numerous laboratory-based techniques are recognised as validated analytical tools in forensics 

for the identification and quantification of NPS in a range of sample types such as blood, urine, 

aqueous solutions, oral fluid, hair, post-mortem matrices and solid samples [79-93]. These 

techniques include gas chromatography-mass spectrometry (GC-MS), high performance liquid 

chromatography (HPLC) and liquid chromatography-mass spectrometry (LC-MS).  

Gas chromatography-mass spectrometry has been shown to be the predominant chemical 

technique employed by European Union countries for the analysis of NPS mixtures [94]. 

Despite being a main confirmatory forensic technique, GC-MS is not available as a handheld 

device and it is not suitable for high-throughput screening [88]. It is destructive to the samples 

and involves sample pre-treatment [95], which may filter out the cutting agents in the mixtures, 

and, hence potentially tamper with a chain of evidence. If the amount of sample seized is 

sufficient, a subsample is often taken before any pre-treatment is carried out to combat 

disruption to the legal aspects of a seizure. Nevertheless, sub-sampling may not be 

representative due to unknown homogeneity in street samples [96]. Reference standards are 

often required for analysis using GC-MS. However, they may not be available, due to 

controlling legislation and prohibitive costs, causing unnecessary delays [2, 97]. Analysis using 

GC-MS may also misidentify thermally unstable NPSs [98].  

Unlike GC-MS, other lab-based techniques such as direct analysis in real time – mass 

spectrometry (DART-MS) has been developed as a rapid, selective, non-contact, high 

throughput screening tool for the characterisation of cathinone mixtures [86]. This technique 

does not require sample preparation and provides instantaneous results based on exact masses 

for samples in their solid form [99]. However, it may be challenging to differentiate between 

closely related NPS analogues with this technique alone. This is because of extensive 
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fragmentation and similar fragmentation patterns between positional isomers such as the 

flephedrone analogues 3-FMC, 4-FMC and 5-FMC [86].  

Over the past decade, in-field techniques became available for law enforcement and first 

responders for the screening and identification of NPS. These techniques have the advantage 

of transferring the lab to the field. Numerous handheld, portable, remote and disposable kits 

were developed for the detection of drugs of abuse and NPS [100, 101]. For example, standard 

presumptive tests such as the Marquis, Mandelin, Scott’s and Zimmerman colour tests [102] 

were applied to the identification of NPS analogues. Although promising, poor selectivity may 

sometimes require more than one test to be applied for confirmation of identity of the NPS in 

question [92, 103]. Electrochemistry with mercury dropping electrodes has been evaluated as 

another presumptive tool for the detection of mephedrone. However, mercury is a known 

harmful substance and, therefore the method was not encouraged [104]. Conversely, 

electrochemistry with boron-doped diamond or glassy carbon macro-electrodes was evaluated 

for the detection of cathinone analogues. Results showed that pH is a major step-limiting key 

player and, therefore a change in pH may impact the electrochemical selectivity [104]. Very 

recently a molecular recognition approach has shown promise for the positive identification of 

mephedrone alone and in mixtures adulterated with benzocaine, caffeine, lidocaine and 

paracetamol [105]. The main limitation of this sensor molecule is that ion salts of mephedrone 

may contribute to false positive results and, therefore mephedrone must be in its free base form. 

Conventional in-field immunoassay kits are also showing promise for the in-field detection of 

NPS [106, 107]. However, the time lag required to synthesise them i.e. following the 

emergence of an NPS, the long analysis time and poor cross-reactivity between closely related 

NPS, which either lead to false positive or false negative results of NPS new analogues is 

limiting their use in this field [108-111]. Recently, Randox marketed in-field immunoassay kits 

for the detection of synthetic cathinones. These kits achieved levels of detection of 0.18 and 

9.2 µgL-1. Ellefsen et al. independently validated these tests and demonstrated that false 

positive results were observed between closely related analogues [107]. 

Unlike the presumptive tests, portable devices have shown promise in the detection of NPS. 

Recently, a portable near-infrared (NIR) in conjunction with careful data pre-processing has 

successfully identified 8/11 NPS forensic samples [112]. Additionally, surface enhanced 

Raman spectroscopy (SERS), a novel approach, which was applied using a portable Raman 

device in conjunction with fractional factorial design and achieved a detection limit for 
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mephedrone of 1.6 µg mL-1. The method involved enhancing the Raman signal through the 

galvanisation of the pre-1992 British 2 pence coin with silver [113, 114]. Another SERS 

attempt successfully discriminated methcathinone from methamphetamine using a gold nano-

rod and a mini Raman instrument [115]. However, these proof-of-concept methods need to be 

applied to the vast array of prevalent NPS in order to be credible with respect to a wider 

application. With the exception of DART-MS and NIR, all the methods described above are 

destructive to the sample, require a relatively long analysis time, significant instrument 

expertise, which would preclude use by novice law enforcement and frontline healthcare 

professionals and the use of chemical reagents, which may be harmful to the operator and 

environment [101]. 

Vibrational spectroscopy, available in handheld and portable versions, including infrared (IR) 

and Raman spectroscopy,  have emerged as ‘first pass’ analytical techniques for the screening 

and identification of seized drugs of abuse, particularly, where a rapid in-field non-destructive, 

non-invasive identification is required [101, 116-118]. The Scientific Working Group for the 

Analysis of Seized Drugs (SWGDRUG) has classified both IR and Raman as techniques with 

a higher discriminatory power (i.e. category A) than colour tests and immunoassays (category 

C) [119]. Infrared has been established since the nineteenth century [120] and has always been 

a preferred forensic technique due its ability to perform rapid analysis in the solid-state with 

high selectivity and specificity [121-123]. It has also proven to be a reliable technique for the 

discrimination of NPS isomers [121, 122], in addition to its availability in handheld and 

portable versions, which are advantageous for in-field testing for first responders [124]. 

However, mid-IR and Raman are considered complementary techniques that can be employed 

together for the full determination of the vibrational modes of a molecule and, hence its 

molecular structure [125]. 

Raman spectroscopy offers a number of advantages over IR for the in-field detection of NPS 

such as non-contact through package analysis [124, 126, 127], low sensitivity to cutting agents 

[128, 129], water or moisture [116, 124] and physical properties [130], and the possibility of 

using a smaller sample size (e.g. 1 x 1 x 5 µm) due to high spatial resolution [116]. In contrast, 

placing the sample in contact with the diamond internal reflectance element (IRE) for IR may 

tamper with the chain of evidence [131]. Moreover, mid-IR spectrometers cannot characterise 

fingerprint groups absorbing in the low wavenumber range (i.e. less than 400 cm-1) [120]. For 

these reasons, Raman spectroscopy has been employed in research and forensic analysis [132, 
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133] for the characterisation of drugs of abuse such as 3,4-methylenedioxy-N-

methylamphetamine (MDMA), cocaine, heroin [134-137] and NPS [128, 138-140].  

Despite its low sensitivity to moisture and physical properties compared to IR, Raman 

spectroscopy has shown success in the identification of polymorphic, hydration and salt forms 

of samples, thus providing information on their physical state [141]. Various salts form 

different crystals motifs/ supramolecular structures, which are mainly due to the counter ion of 

the acid used and based on the conditions (e.g. polymorphic transitions, experimental 

conditions, etc.) and composition (e.g. presence of solvent molecules) [142]. Hydration states 

are often distinguishable via peak shifting, whereas, salt forms are often distinguishable via a 

change in signal intensity associated with the change in the sample surface position or via the 

presence/ absence of Raman features. For example, characteristic strong Raman bands 

attributed to the symmetric breathing of the pyrimidine ring in barbiturates and their salts were 

observed at ca. 629 ± 8 cm-1 for the free barbituric acids and at ca. 652 ± 4 cm-1 for the sodium 

salts, thus, enabling the discrimination between both forms [143]. In the same study, unlike the 

free acid form, a weak Raman band at ca. 1585 ± 15 cm-1 was present in the corresponding 

barbituric sodium salt form only. These effects could be the results of the distortion of the 

molecules in the crystal lattice and the potential change in site symmetry. Additionally, these 

effects could be the results of vibration coupling of more than two molecules [142]. In addition, 

drug substances may undergo polymorphic transitions between various forms. These forms 

often exist in various crystal states and molecular arrangement within the crystal lattice. Drug 

polymorphic forms exhibit different physicochemical properties such as particle morphology, 

bioavailability, solubility, dissolution etc. [144]. Therefore, in this thesis, the different salts and 

hydration forms were explicitly stated because specific particle morphologies/ polymorphism 

can exhibit a great impact on the library spectra used to identify unknown NPS.  

Our initial published work investigated the identification of NPS in products obtained over the 

internet, using Raman, NIR and Fourier transform - infrared (FTIR) handheld devices [128]. 

This study illustrated that handheld Raman outperformed both NIR and FTIR to give a greater 

discrimination between NPS and excipients i.e. cutting agents and adulterants in internet 

products. However, the study revealed that the use of on-board libraries and library matching 

in-built algorithms was limited for identifying NPS in NPS mixtures due to swamping by 

fluorescence signals; overlapping analyte-excipient bands, where the excipient bands occurred 
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at the same spectral region as the analyte; sample heterogeneity and variable Raman activity of 

constituents.  

Very recently, in-field analysis of selected NPS using Raman spectroscopy has gained 

regulatory acceptance in the UK [145] and has been encouraged to be used by law enforcement 

in the US [146]. In the UK, Trunarc Raman analyser (HazmatLINK Ltd, UK), Alpha IR and 

Mobile IR (Bruker UK Limited) were approved by the Home Office for the identification of 

methylmethcathinone and results achieved from these instruments can be used as evidence in 

court [145].  

Raman spectroscopy is a technique that uses inelastic scattering from a sample to produce a 

fingerprint and enable the identification and quantification of molecules based on their peak 

positions and relative peak intensities respectively [147, 148]. Raman spectroscopy simply 

involves the interaction between light (monochromatic laser source) and matter (the vibrating 

molecules of the sample), which result in the scattering of photons or particles of light. 

Scattering or other forms of interaction between light and matter such as absorption or emission 

of light depend on the molecule and its energy states [101] and the wavelength of the incident 

light [149]. In Raman spectroscopy, two types of scattering occur: Rayleigh (elastic) and 

Raman (inelastic) [125].   

Most of the scattered photons oscillate at the same frequency of the incident electromagnetic 

field of the laser source. This is termed Rayleigh scattering and involves no exchange of energy 

between the photon and molecule. In contrast, 1 in a million of the scattered photons exhibits 

a Raman shift with a frequency greater (stokes) or less (anti-stokes) than the frequency of the 

incident electromagnetic field of the laser source. This is termed the ‘Raman effect’ and 

involves an exchange of energy between the photon and molecule [117]. The Raman shift and 

the change in energy for inelastic Raman scattering is equivalent to the unique vibrational 

frequency of the molecule and, hence is more informative about the molecule [101, 120]. 

Figure 1.3 shows a simplified Jablonski diagram which explains the types of scattering and 

illustrates the transition of molecules between both the ground and first excited vibrational 

energy states and the virtual state (it is not a real energy state) [125].  
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Figure 1. 3: A simplified Jablonski diagram showing the types of scattering resulting from the 

interaction between light and matter. The stokes (left), Rayleigh (middle) and anti-stokes 

(right) scattering (Figure reproduced from Medicines Complete [150]).  

Raman scattering is associated with the polarisation of the electron clouds on the molecules of 

the sample and a transient induced dipole. During the normal mode of molecular vibrations, a 

band arises from Raman active groups because of a change in polarisability i.e. a distortion of 

the electron clouds [120]. In contrast, IR has a different selection rule, where bands arise as a 

result of absorbing energy and subsequent change in the dipole moment leading to molecular 

transitions between vibrational energy levels [125].  

In addition, recent studies have evaluated the use of Raman for the analysis of NPS products 

[113, 114, 132, 140, 151, 152]. Maheux and Copland used combined analytical techniques 

including Raman spectroscopy for the identification of cathinones in seized NPS samples 

[151]. The discrimination between cathinone regioisomers [152] and derivatives [132] has also 

been evaluated using benchtop Raman instruments employing a laser excitation wavelength 

(λex) of 785 nm. Bell et al. recently reported on the use of Raman spectroscopy for the 

identification of > 200 seized NPS products using an λex of 785 nm [140]. From these studies, 

it is clear that the accurate Raman analysis of NPS products is often challenged by intense 

fluorescent backgrounds resulting from impurities and/or cutting agents, which masks the 

weaker Raman signal from the NPS in the mixtures [128, 153, 154].  

Numerous approaches were investigated to reduce fluorescent backgrounds in Raman analysis 

of NPS. One approach is SERS, which enhances the NPS Raman signal while also reducing 

interference due to fluorescence [113, 114, 155, 156]. However, expertise and sample pre-

treatment is often needed. An alternative approach to reduce fluorescent backgrounds and, 

which requires no sample preparation is the use of a longer NIR λex (e.g. between 750 and 1000 

nm) [101]. This has been shown to avoid interference from fluorescence and improve 

identification of traditional drugs of abuse such as cocaine and amphetamine [154, 157]. At 
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present, a few studies have evaluated the use of Raman spectroscopy with a low energy long 

laser λex (e.g. 1064 nm) to reduce fluorescence in different sample types [117, 158, 159] and 

investigate the feasibility of improving the identification of drugs of abuse [160]. To our 

knowledge, this approach has only been evaluated in two recently published studies for a 

limited range of NPS samples [138, 161]. 

1.3. In-field detection of NPS using Raman instruments 

In-field detection using vibrational spectroscopy based on an instrument’s in-built algorithm 

has been investigated [128]. Despite the dearth of information regarding how proprietary 

algorithms actually function, published manufacturers’ information is presented here. In-built 

algorithms in handheld instruments based on vibrational spectroscopy are crucial as they 

produce ‘actionable results’ for first responders to arrest/ confiscate and/or treat NPS related 

overdose/ toxicity. In-built algorithms commonly involve mathematical or statistical 

calculations in conjunction with pre-processing techniques to measure the probability, 

correlation, consistence or closeness between spectra of the ‘unknown’ substances against 

reference spectra stored on-board the instrument. In-built algorithms enable spectral 

interpretation by non-experts i.e. screening (for example, does it contain mephedrone?) and 

identification (what is it?) [162].  

1.3.1. In-built algorithms in handheld Raman instruments 

Algorithms have been developed to enhance the detection of drugs of abuse with Raman 

spectroscopy using techniques such as discrete peak positions for library searching  and 

multiple-algorithm approaches to improve the probabilistic capability of drug identification 

[112, 137]. In our initial publication, we assessed the capabilities of a few in-built algorithms 

in handheld FTIR, NIR and Raman instruments with respect to accurate identification of NPS 

[128]. In the following Section, in-built algorithms in handheld Raman instruments employed 

in the work undertaken in this thesis are described. 

1.3.1.1. The p-value algorithm 

Using handheld Raman instruments such as the TruscanTM GP instrument (Thermo-Fisher 

Scientific Ltd), Raman responses are measured using the p-value (PVAL) algorithm, where a 

‘positive match’ (PVAL > 0.05) meant that the ‘unknown’ sample spectrum is consistent with 

the library spectrum (i.e. > 95 % confidence limit (CL)). A ‘no match found’ result (PVAL < 

0.001) means that the ‘unknown’ sample spectrum was not consistent with any library 
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reference spectrum. A ‘no positive match’ (0.001 < PVAL < 0.05) means that the ‘unknown’ 

sample spectrum was ‘fairly consistent’ with at least one of the library spectra. In such cases, 

the in-built algorithm is unable to unambiguously correlate the sample spectrum to library 

spectra but instead, highlights the most similar library spectrum, within the confidence interval 

described, as the most likely match. Inaccurate suggestions of sample identity may occur if 

substances in the library or sample mixtures have chemical structures closely related to 

compounds in the on-board spectral library (Figure 1.4). It is important to note that the PVAL 

does not measure the correlation coefficient between two spectra (sample and reference 

spectra), but instead it measures the dissimilarity between them against the uncertainty of the 

measurement [162]. 

 

Figure 1. 4: A screenshot of the ‘actionable’ results obtained with TruscanTM GP using the 

PVAL algorithm. Sample responses include ‘positive match’ (left), ‘no match found’ (middle) 

and ‘no positive match’ (right) (© 2015 Thermo-Fisher Scientific Inc. All rights reserved. All 

trademarks are the property of Thermo-Fisher Scientific Inc. and its subsidiaries). 

The PVAL algorithm is a probability-based correlation between the ‘unknown’ sample 

spectrum and the library reference spectra. It is calculated using the Bayes’ theorem: 

 

𝑷(𝑨|𝑩) = (𝑷(𝑩|𝑨)𝑷(𝑨))/𝑷(𝑩)   Equation 1 

         

Where, 

            P(A|B) = Conditional probability of A such that B exists 

            P(B|A) = Conditional probability of B such that A exists 

            P(A) = Marginal probability of A 

            P(B) = Marginal probability of B 

The in-built algorithm, involves an automatic interpolation of the x-axis of the spectrum and 

the calculation of the 1st and 2nd derivatives to the y-axis prior to PVAL analysis. Time to 

acquire a spectrum depends on the signal to noise ratio (S/N) of a sample. The S/N cut-off for 

test samples and library signatures is 5 and > 50 arbitrary units (AU) respectively. The PVAL 
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algorithm is often a preferred algorithm for the screening of known substances e.g. the 

screening of raw materials in the field of pharmaceuticals [163] because screening algorithms, 

such as PVAL, outperform identification algorithms e.g. % HQI (see Section 1.3.1.2) with 

respect to substance detection due to the ability to tailor the algorithm threshold according to 

substance [162]. 

1.3.1.2. The hit quality index algorithm 

The hit quality index (HQI) is an alternative to the p-value algorithm. In handheld Raman 

instruments such as FirstGuardTM (SciMed Ltd (Rigaku)), Raman responses are measured 

using the HQI (%) algorithm. HQI is a measure of the correlation between the measured 

spectrum of an unknown material against library reference spectra [164, 165]. The HQI is 

calculated using the following equation: 

 

HQI = 
(𝒍𝒊𝒃𝒓𝒂𝒓𝒚 .  𝒖𝒏𝒌𝒏𝒐𝒘𝒏)𝟐 ∗𝟏𝟎𝟎

(𝒍𝒊𝒃𝒓𝒂𝒓𝒚 .  𝒍𝒊𝒃𝒓𝒂𝒓𝒚)(𝒖𝒏𝒌𝒏𝒐𝒘𝒏 .  𝒖𝒏𝒌𝒏𝒐𝒘𝒏)
         Equation 2 

 

Where,  

           ‘library’ is the library or reference spectrum 

            and ‘unknown’ is the unknown spectrum of the sample 

An HQI of 100 % means that the correlation between the ‘unknown’ spectrum and the reference 

spectrum is absolute (i.e. 1). An HQI of 0 % means that the ‘unknown’ spectrum and the 

reference spectrum are orthogonal to each other [162]. The higher the % HQI, the more 

consistent the sample spectrum is with the corresponding on-board library spectrum. The HQI 

algorithm is suitable for the rapid identification of unknown materials as it is capable of 

searching a large number of spectra in a relatively short time. This method was designed by 

McCreery et al. for the identification of pharmaceuticals through USP vials [166]. A limitation 

of the % HQI in-built algorithm is that no threshold is set to determine positive correlations. 

Therefore, it does not confirm the quality of the identification nor provide the probability of 

the statistical consistency between the unknown and library spectra [164]. The resulting 

percentage may actually reflect the spectral contribution of different constituents, and hence be 

artefactual. Additionally, the % HQI may not be sensitive to changes in the composition of 

mixtures. Therefore, false positives or misidentification may occur. Another limitation of this 

correlation-based algorithm involves its inability to discriminate between analogous 

substances, which share common functional groups [162, 167]. 
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1.3.1.3. The wavelet correlation coefficient and mixture algorithms 

A few handheld Raman instruments such as the ProgenyTM (SciMed Ltd (Rigaku)) instrument 

record Raman responses using multiple in-built algorithms. For example, for the ProgenyTM 

instrument, Raman responses are measured using % HQI, wavelet correlation coefficient 

(WCC) and the ‘Rigaku mixtures algorithm’ (RMA). The % HQI or WCC algorithm are often 

selected for match-testing pure substances against pure reference spectra. Conversely, the 

RMA is preferred for match-testing mixtures against pure reference spectra because of its 

claimed ability to identify up to six constituents in mixtures. Using RMA, ProgenyTM is claimed 

to identify the constituents in mixtures and provide an estimation of the spectral contribution 

of each of the individual constituents. The higher the value of the match for WCC, % HQI (as 

described above) and RMA, the higher the correlation between the ‘unknown’ and the library 

spectra. 

The wavelet correlation coefficient (WCC) transform involves a pre-processing step, whereby 

Raman spectral background and noise (i.e. shot noise, dark-current noise and readout noise) 

interferences are de-emphasised and Raman signals are accentuated [168, 169]. Shot noise 

constitutes the “statistical variation in the number of photons” reaching the detector [170]. The 

dark noise constitutes the “statistical variation in the number of electrons” generated in the 

absence of the laser light, whereas, the readout noise is the electronic noise in the detector and 

it plays a key role in determining the limit of detection of the detector [170].  The wavelet 

transformation improves spectral classification by compressing the data through identifying 

‘wavelet functions’ or ‘wavelet coefficients’ that represent specific Raman peaks [168]. 

‘Wavelet coefficients’ are calculated through the analysis of the signal, then processed. 

Subsequently, the signal is re-constructed from the processed ‘wavelet coefficients’ [169]. The 

WCC algorithm identifies the component with high Raman activity in an unknown sample 

[171]. 

The ‘Rigaku mixtures algorithm’ (RMA) is a proprietary detection algorithm and hence, it is 

not fully understood how it is computed. This algorithm mainly identifies individual 

components in mixtures, where results are expressed as percentage correlation coefficient (CC) 

values [171]. The algorithm gives a higher weight to the spectral contribution rather than the 

actual concentration of constituents in a mixture, and so may be influenced unfavourably by 

strong Raman active components. 
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1.4. The challenge of mixture analysis using Raman spectroscopy 

To overcome the complexity of Raman analysis of drug mixtures, Raman and chemometric 

approaches were adopted. The International Chemometrics Society defined chemometrics as 

“the science of relating measurements made on a chemical system or process to the state of the 

system via application of mathematical or statistical methods” [172].  

1.4.1. Raman applications 

To improve the identification of constituents in complex mixtures, several Raman applications 

can be adopted. These include Raman micro-spectroscopy, enabling the identification of small 

masses (e.g. down to five pico-grams) [116, 173]; Fourier transform - Raman with beam 

diameters in the range of 100 - 1000 µm, enabling the examination of large surface areas [174]; 

transmission Raman spectroscopy, probing and quantifying the bulk content of pharmaceutical 

tablets or capsules [175], Raman mapping using grid measurements [176] and macro-Raman 

systems followed by micro-Raman measurements to give information on individual particles  

[177] and the identification of unique crystal habits using microcrystalline testing followed by 

Raman micro-spectroscopy [139]. Although promising, these applications are not rapid, are 

unsuitable for in-field analysis and require substantial scientific expertise to use.  

1.4.2. Chemometric applications 

In contrast to Raman-derived applications, chemometric approaches to the analysis of complex 

mixtures, such as multivariate data analysis (MVA) are used. Multivariate data analyses 

include methods that aim to separate and extract data structure from noise [172, 178]. For 

example, Raman spectral data include the Raman signal of interest and noise. The application 

of MVA for mixtures are favoured because they are rapid and practical for forensic applications 

such as the analysis of ink and paint [179, 180]. Multivariate data analysis demonstrated its 

suitability for the analysis of spectroscopic data owing to its multivariate nature and large 

number of highly correlated variables [179]. Furthermore, MVA has the advantage of 

extracting optimal information from the entire spectrum rather than individual peaks [181]. The 

use of MVA in conjunction with Raman spectroscopy was revisited by forensic scientists to 

enable the identification, classification and prediction of amounts of constituents in mixtures 

of illicit drugs [95, 120, 176, 182-185].  Coupling other vibrational techniques such as FTIR 

and NIR with chemometrics have also been evaluated for the identification and classification 

of drugs of abuse and NPS respectively [186, 187]. In the studies described above, chemometric 
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analysis involved pre-processing of spectral data, exploratory principal component analysis 

(PCA) followed by classification or prediction methods. 

In order to enhance the composition profiling of mixture components from Raman spectra, all 

factors that are not pertinent to the sample that could dominate the analysis should be removed 

through spectral pre-processing [120]. Raman spectra may contain noise and fluorescence 

interferences (Figure 1.5), which could be attributed to: 1) instrument artefacts such as noise 

(CCD (charged coupled device) noise, background noise), changes in laser power, fluctuations 

in spectrometer performance and temperature, changes in optics geometry; 2) analysis effects 

such as different powder opacity between measurements, variations in focal distance etc.; 3) 

sample effects such as vibrational frequency of scattering molecules, amount of scattering 

groups, presence of fluorescing species, homogeneity, etc. and 4) environmental effects (e.g. 

ambient light, cosmic rays etc.) [188]. Variations in baselines and absolute intensities and 

overlapping Raman bands [176, 184] have also restricted the use of absolute Raman signals in 

analysis and limited the use of Raman as a forensic tool [188].  

 

Figure 1. 5: Raman spectrum of an NPS branded product with no match found (laser excitation 

wavelength = 785 nm). Reproduced from Analytical Methods [128] with permission from the 

Royal Society of Chemistry. 

Statistical pre-processing of Raman spectral data became a preferred non-chemical technique 

to correct for these variations and is often applied prior to MVA  [95, 178]. Collinearity (i.e. 

assumption that the data points are interrelated) between the data points, variations in absolute 

intensities, noise and fluorescence have been shown to impact the accuracy of machine learning 

models [183]. Therefore, pre-processing is indispensable to achieve the optimal extraction of 

Raman data from noise interferences [176, 189], thus enabling the identification of target 

compounds in complex mixtures [184, 190].  

In general, for the application of MVA in a well-controlled dataset, the number of samples 

should be much larger than the number of variables. In such cases, the number of degrees of 
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freedom is small. However, this is not the case with Raman spectral data (i.e. > 500 variables 

or data points in typical handheld and > 3000 variables in typical benchtop Raman instruments). 

Therefore, feature selection or variable reduction techniques are often required prior to 

conducting MVA. Examples of feature selection techniques include the ‘genetic algorithm’ 

method [191] or increasing the weighting of significant spectral features of specific substances 

[192]. The latter method is more suitable for a small dataset including a limited number of 

samples or a homogeneous dataset with a narrow range of analytes. 

Following pre-processing and/ or feature selection/ variable reduction, exploratory PCA is 

usually conducted. PCA is known as “the mother of all methods in multivariate data analysis” 

and it forms the basis for classification of complex data matrices [178]. Exploratory PCA 

reduces the dimensionality of the dataset by transforming the original data matrix such that the 

largest variance between samples is explained by discrete orthogonal principal components 

(PCs) [120]. This concept is very useful in spectral data because the number of variables or 

data points is largely reduced, maximum information is extracted and influence of noise is 

reduced [193]. Figure 1.6 shows a descriptive schematic of data reduction by PCA. 

 

Figure 1. 6: An example of a two-dimensional plane, which best describes the data (Figure 

adapted from Camo Software AS, Oslo, Norway) [172]. 

The first PC represents the eigen vector with the highest eigen value (variance), whereas the 

second PC, which is orthogonal to PC1, has the second highest eigen value (Figure 1.6) [178, 

193]. Exploratory PCA is a useful unsupervised method, which can be used to visualize and 

find patterns, similarities and differences in multivariate data and identify outliers [178]. 
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Coupling of PCA with Raman spectroscopy has strengthened Raman analysis by enabling the 

exploration of the main structure of the data, identification of outliers [179], exploration of 

latent variables in complex Raman data [184] e.g. Raman spectral data of illicit drug mixtures 

[136, 154, 192] and resolution of spectral data to discriminate between different components 

in mixtures [95]. In these studies, Ryder et al. analysed simple binary mixtures incorporating 

one drug of abuse (i.e. cocaine, heroin or MDMA) and one cutting agent [192]. However, they 

could not design a universal model for the classification of all three drugs. They developed 

multiple models instead [192]. Subsequently, they developed baseline subtraction methods 

with the use of support vector machine (SVM) to improve the robustness of their methods [176, 

190]. Noonan et al. developed a universal PCA method for simulated quaternary mixtures, each 

incorporating a drug and three excipients [95]. In their study, spectra of closely-related 

substances were differentiated as a result of robust pre-processing [95]. 

The use of chemometrics has recently been employed in the determination of NPS classes in 

NPS seized samples by comparing the pre-processed NIR spectra to reference spectra using 

PCA [187]. PCA can also be employed to build calibration models and then test ‘unknown’ 

samples against pre-defined classes in a calibration set [184]. However, as mixtures increase 

in complexity (i.e. low concentration of NPS in the mixture, colourful constituents, excipients 

with greater Raman activity than the target analyte), the ability of MVA to separate the different 

components is reduced [184]. This was observed with cocaine mixtures [191], but  has been 

shown to improve by incorporation of spectral pre-processing [183, 192].  

Classification methods are usually applied using the calculated PCs. Classification methods 

include soft methods such as ‘Soft Independent Modelling of Class Analogy (SIMCA)’ and 

regression methods such as ‘principal component regression (PCR)’. SIMCA usually measures 

the ‘Mahalanobis distance’ from the ‘unknown’ sample and the model developed using the 

scores of the retained PCs and assign ‘unknown’ samples to pre-defined classes  [184, 194, 

195]. However, SIMCA has been shown to result in a high number of inaccurate classifications 

as compared to regression-based classification of complex mixtures [184]. This is because 

SIMCA performs best when sample classes are well defined, in such cases, the distance of 

‘unknown’ samples to the model is small and the leverage value is low owing to the low 

variance within individual classes. However, when samples are adulterated with excipients 

assigned to multiple classes, the misclassification rate increases [184]. Alternatively, PCR is 

used for the identification of an ‘unknown’ substance by assigning it to a pre-defined class 
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based on set threshold values [184]. PCR works best for simulated mixtures as prior knowledge 

of the mixture will allow the optimisation of these thresholds. Other regression methods such 

as ‘multiple linear regression (MLR)’ have shown to be limited in efficiently identifying the 

components in complex NPS data matrices [120]. 

Data reduction via PCA has also been shown to improve Machine learning (ML) models [183]. 

Machine learning comprises computer algorithms that are trained to recognise latent patterns 

in complex data [176]. ML techniques such as ‘support vector machines (SVM)’ and ‘artificial 

neural networks (ANN)’ have been shown to outperform MVA techniques such as PCR in their 

ability to identify patterns in corrupt data. Both SVM and ANN have been evaluated in the 

qualitative and quantitative Raman analysis of complex drug mixtures e.g. illicit drug mixtures 

[176, 191]. The simplest SVM method is a linear SVM used for binary classifications by 

increasing the margin, which may separate between two classes e.g. NPS or non-NPS [176]. 

In contrast, ANN is used for the prediction of non-linear translation between the input (layers 

of neurons) e.g. training set of Raman spectral data and the output resulting from each layer of 

neurons. The cumulative outputs from all layers represent the predicted outcome e.g. amounts 

of NPS in various mixtures. Training of the model may not be straight forward as the weight 

of neurons’ inputs, the number of hidden layers and the number of neuron in each hidden layer 

have to be adjusted for each dataset [191]. In the studies contained in this thesis, chemometric 

analysis involved pre-processing of spectral data, exploratory PCA followed by prediction via 

PCA projection methods. 

1.5. Facing the continuous flood of NPS emergence 

Previously unseen NPS continue to emerge at a rapid rate. This sheer number of NPS and the 

speed with which they are emerging hamper their accurate detection and classification. This 

issue is compounded, as challenges associated with obtaining commercially sold NPS reference 

standards (i.e. cost, time and licensing requirements) hinder the building of extended 

instrumental libraries, thus raising analytical and forensic obstacles [94]. As a result, newly 

emerging NPS are often undetected using library-based matching algorithms because of sample 

complexity, absence from libraries, limitations of in-built algorithms [128] or high selectivity 

of in-field techniques such as commercial immunoassays [104].  

If the spectral data for a compound is not stored in on-board libraries, then an expert 

interpretation of the spectral data is often required for the full or partial identification of that 
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compound. It is very challenging to fully elucidate the chemical structure of an unknown 

substance using spectral data such as IR, Raman or mass spectra, particularly if no reference 

standard is available for this substance. This is due to unknown correlations between structural 

and spectral information e.g. IR ‘structure-specific coupled vibrations’ [196, 197], which 

requires, a high structural similarity between the ‘unknown’ and library substance in order to 

identify the ‘unknown’ compound and give confidence to the match  (although false positive 

results may still occur [197]).  

Despite the fact that spectral similarity approaches are known to be ‘relative’ because they may 

incorporate other analogy principles such as complementarity and equivalence, they are 

essential in exploring relationships between spectral and structural information [197, 198]. 

As a result of the vast number of NPS and their continuous emergence, the ACMD has 

suggested that in an effort to gauge the potential effects of a never-before-seen substance, the 

psychoactivity of a new analogue could be translated or extrapolated from previous 

neurochemical knowledge on existing NPS [4]. Although not fully proven owing to the impact 

slight molecular changes can have on receptor binding affinities (and subsequently on 

psychoactive effect), structural similarity with existing NPS may assist in categorising 

according to the class of substance, and hence predicting potential pharmacological activity  

for newly emerging NPS. In fact, numerous methods have been used to measure structural 

similarity. These include computing the Tanimoto similarity index (TSI), and Euclidean 

distances between molecules and molecular vectors respectively [197, 199].  

In contrast, methods used to measure spectral similarity include in-built library-matching 

algorithms (as described above) such as the P-value, % HQI, WCC or simply correlation 

coefficients between spectra [199].  However, the increase in complexity of datasets makes 

interpretation of measures of similarity/ dissimilarity between ‘unknown’ and library 

substances challenging [199].  Seized street samples of NPS are often complex mixtures [75] 

and PCA has been shown to extract hidden relationships between spectral data and chemical 

structures for the classification of diverse chemical structures [200]. However, these studies 

postulated a positive and perhaps definitive correlations between both structural and spectral 

similarities [200, 201], which may not be possible for complex NPS mixtures.    

As previously mentioned, clandestine chemists have always been one step ahead of law 

enforcement, there has been an interest in developing predictive models that may enable law 
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enforcement agents to identify an unknown NPS using the wide chemical space of NPS 

identified to date. However, designing a ‘representative’ library or an extended database of 

NPS reference spectra is not an easy task and library design should be fit for purpose. Ideally, 

the library should contain a limited number of NPS that adequately represent all the NPS 

available in the entire NPS chemical space. For example, ‘primary screening libraries’ are 

commonly designed in drug discovery processes for the purpose of identifying lead compounds 

[202, 203]. 

Due to the analytical, instrumental, forensic and law enforcement challenges, initial work was 

developed by Zloh et al. [204] to investigate ‘principles of structural similarity in-silico’ of 478 

NPS recorded by the EMCDDA/EDND (up to January 2015).  Similarity methods coupled 

with chemical spectral data (e.g. MS and FTIR), pre-processing and chemometrics have been 

shown to group or classify highly similar or dissimilar substances, respectively [200, 202, 205]. 

An in-silico ‘hierarchical cluster analysis’ was conducted to select ‘representative’ NPS from 

the known 478 NPS, which have maximum diversity in chemical structure across the chemical 

space defined by the dataset. Clustering involved dividing the dataset into chemically diverse 

superclusters in which members have some similarities to each other but maximum 

dissimilarity to members belonging to different superclusters [199]. This was achieved using a 

TSI of 50 % and a minimum common substructure of nine atoms via the ChemAxon software 

(ChemAxon KFT, Hungary).  Fifty-three disparate NPS were selected to represent the 21 

superclusters identified. The ‘hierarchical clustering method’ and spectral pre-processing 

efficiency have been shown to influence the classification of chemically diverse substances 

[200, 202, 205]. 

Hitherto, the analytical, forensic, instrumental and sample complexity challenges for the 

identification of NPS and NPS in mixtures have been presented and discussed. The synthetic 

analogues of traditional drugs of abuse, NPS are proliferating on a global scale. The chemical 

complexity of NPS formulations/ mixtures and heterogeneity regarding their composition, 

concentrations, number and variable Raman activity of constituents, presence of unknown 

constituents, overlapping NPS-excipient bands, swamping by fluorescence signals and 

limitations of in-field detection tools hinder their identification and classification. In this thesis, 

it is hypothesised that the use of handheld Raman spectroscopy coupled with chemometrics 

may improve the in-field identification and classification of NPS products. 

 . 
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1.6. Aims of this project 

To develop Raman spectroscopic methods coupled with chemometric techniques and propose 

the likely identity of chemical scaffolds of newly emerging NPS with a means to improve the 

in-field identification and classification of NPS. 

Objectives: 

1. To evaluate the strengths, limitations and analytical challenges of handheld Raman 

spectroscopy using NPS-related substances and recommend a suitable handheld Raman 

instrument. 

2. To develop a pre-processing protocol and a variable reduction method for Raman 

spectral data. 

3. To build a chemically and structurally diverse spectral database using benchtop and 

handheld Raman spectroscopy.  

4. To build a PCA model for the ‘representative’ NPS Raman database and NPS-related 

substances (i.e. adulterants and cutting agents). 

5. Validate and challenge the developed models using NPS-related test samples.  
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2. Evaluation of three handheld Raman instruments for the 

identification of new psychoactive substances and related 

compounds 

2.1. Introduction  

This Chapter reports on a preliminary study to evaluate the performance of three handheld 

Raman instruments (i.e. TruscanTM GP (Thermo-Fisher Scientific Ltd), FirstGuardTM and 

ProgenyTM (SciMed Ltd - Rigaku)) for the identification of new psychoactive substances (NPS) 

in solid powder mixtures. This preliminary study was necessary to give an overview of 

available handheld Raman instruments, and subsequently recommend a Raman instrument for 

developing Raman and chemometric methods that may assist first responders in the accurate 

screening of NPS in the field.  

Initial published work has justified the use of handheld Raman spectroscopy over handheld 

infrared (IR) spectroscopy for the detection of NPS in internet products [12, 128]. It has also 

highlighted the analytical challenges encountered with the detection of NPS in solid mixtures. 

Very few studies have investigated the detection of NPS mixtures using handheld and portable 

Raman spectroscopy [128, 138, 206]. In fact, the study by Brewster et al. evaluates the use of 

a portable Raman instrument in the identification of NPS in NPS liquid mixtures [206]. 

This Chapter evaluates three handheld Raman instruments for the identification of pure 

substances, model binary mixtures, random ternary mixtures and NPS internet products in their 

solid form. In this respect, a qualitative analysis was performed in order to evaluate: 1) the 

ability of the in-built algorithm (i.e. p-values (PVAL), percentage hit quality index (% HQI), 

wavelet correlation coefficient (WCC) and ‘Rigaku mixtures algorithm (RMA))’ to accurately 

screen the analyte of interest. 2) mixture sensitivity i.e. the ability of the in-built algorithm to 

identify low amounts of analyte with various Raman scattering activity in powder mixtures; 

and 3) specificity i.e. the ability of the in-built algorithm to discriminate between substances 

with similar chemical structure or class [207].This work also evaluates the false positive and 

false negative rates using different mixtures of increasing complexity. This is because NPS are 

structurally similar to traditional drugs of abuse. Thus false positive results may lead to 

unlawful arrests, whereas false negative results may prevent the detection of a new NPS and, 

hence increase public health risks.   
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The aims of this study were to recommend a Raman instrument by evaluating the strengths and 

limitations of each instrument included in the study, and the effectiveness of both in-built 

algorithms and on-board libraries for the ‘first pass’ screening and identification of the drug 

constituent in solid mixtures. In addition, the challenges that may be encountered in NPS 

internet samples and the practical considerations for the in-field detection of NPS using 

handheld Raman spectroscopy were also evaluated. 

2.2. Experimental 

2.2.1. Materials 

Powder reference standards of two NPS, i.e. 2-aminoindane hydrochloride (2-AI) and 

dextromethorphan hydrobromide (DXM) were obtained from Sigma Aldrich (Dorset, UK).  

Powder reference standards of common [208, 209] adulterants, i.e. benzocaine (BEN), caffeine 

(anhydrous) (CAF), lidocaine hydrochloride (LID), paracetamol (PAR), phenacetin (PHE), 

procaine hydrochloride (PRO) and theophylline (THEO) were also purchased from Sigma 

Aldrich (Dorset, UK). Diltiazem hydrochloride (DIL) was obtained from Medicines Testing 

lab (UK). Powder reference standards of common [208, 209] cutting agents, i.e. calcium 

carbonate (CaCO3), creatine monohydrate (CRE), dextrose monohydrate (DEX), α-D-glucose 

anhydrous (GLU), magnesium stearate (MgS), microcrystalline cellulose (MCC), sucrose 

(SUC) and taurine (TAU) were purchased from Sigma Aldrich (Dorset, UK). Lactose (LAC) 

was obtained from Thermo-Fisher Scientific (Loughborough, UK), whereas talc (TAL) was 

obtained from BDH (UK). In this Chapter, reference standards were analysed in their pure form 

or in simulated mixtures. Justification for the selection of these substances is presented in 

Section 3.1 of this Chapter. In addition to the reference standards (Table 2.1 and Appendix A 

Table A2.1), six NPS products were purchased from the internet (Table 2.2). 
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Table 2. 1: Chemical structures of library signatures for NPS, adulterants and cutting agents. 
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Table 2. 2: NPS products purchased from the internet. 

Product No.1 Label claim (ingredients) Colour/ Form Supplier (website) 

P1 2-AI White powder www.benzo-fury.me.uk  

P2 Pink Champagnes (aminoindane, 

caffeine, cola vera, aminoacid 

complex) 

Brown powder in 

capsules 

www.herbalhights.co.uk  

P3 DXM White powder www.benzo_fury.me.uk  

P4 DXM White powder www.highstore.net  

P5 DXM White powder www.highstore.net  

P6 DXM White powder www.highstore.net  

1P is the product number 

2.2.1.1. Sample preparation 

Library signatures (ca. 100 mg) were analysed through clear glass vials (Kimble Chase vial 

screw thread with PTFE cap, China). Due to limitations in the amounts of DIL reference 

standard procured, library signatures were measured through the sample (ca. 2 mg) placed on 

an aluminium plate (HSA14521A - Weight dish alum 43 mm, Fisherbrand). NPS internet 

products were obtained in the form of either powders or capsules. Powders and capsules were 

emptied into glass vials for analysis. 

The powders were weighed using a Mettler Toledo balance capable of measurements from 0.01 

mg up to 220 g. The balance was enclosed in a safety cabinet (BIGNEAT F3-XIT). To ensure 

homogeneity of mixtures, the powders in vials were mixed using a VORTEX-GENIE2 

(Scientific industries, Inc.) for 30 sec., then tapped, shaken, then re-vortex mixed for 30 sec. 

immediately before each analysis.  

2.2.2. Instrumentation and Methods 

2.2.2.1. Handheld Raman instruments 

Three handheld Raman instruments TruscanTM GP (ThermoFisher Scientific Inc., Wilmington, 

MA), FirstGuardTM and ProgenyTM (SciMed (Scientific & Medical Products Ltd), Rigaku, 

USA) were evaluated for the identification of reference standards (i.e. two NPS, eight 

adulterants and ten cutting agents), NPS and selected adulterants in model mixtures (Tables 2.4 

and 2.5) and NPS internet mixtures (Table 2.2). Specifications of the three instruments are 

described in Table 2.3. 
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Table 2. 3: Specifications of handheld Raman instruments evaluated in this study 

Raman instruments 

Specifications 

TruscanTM GP   

(Thermo-Fisher 

Scientific) 

FirstGuardTM  

(Rigaku) 

ProgenyTM  

(Rigaku) 

Instrument image
1
 

 
 

 

Laser wavelength 

(nm) 

785 +/-0.5  1064  1064  

Laser output power 

(mW) 

250 +/-25 30 – 490 30 – 490 

Laser spot diameter 

(µm) 

25  20  20  

Spectral resolution 

(cm-1) 

8 - 10.5   15 - 18  8 - 11  

Spectral range (cm-1) 250 - 2875  200 - 2000  200 - 2500  

Numerical aperture  0.33 0.25 0.25 

Grating Transmission volume 

phase (VPG) 

Transmission volume 

phase (VPG) 

Transmission volume 

phase (VPG) 

Detector TE Cooled CCD TE Cooled InGaAs TE Cooled InGaAs 

Working distance 

(mm) 

18 20 20 

Calibration 

reference standard 

Polystyrene  Benzonitrile  Benzonitrile 

Weight (kg) 0.9  2.7  1.6  

Dimensions 

(LxWxH) (cm) 

20.8 x 10.7 x 4.3 12.2 x 31.1 x 31.4  29.9 x 8.1 x 7.4  

Library No standard library Standard library (266 

items) and user library  

Standard library (12290 

items) and user library 

Operation and 

analysis software 

Raman, 

WindowsXP/Vista/Win7 

Micro2020, 

WindowsXP/Vista/Win7 

RRT Progeny software 

version 0.001-26 140521 

Data analysis Eigen software Grams, Unscrambler Grams, Unscrambler 

Data export formats PDF, csv and txt SPC and csv PDF, .XML and .TXT 

Algorithms  p-value (PVAL) Percentage hit quality 

index (% HQI) 

Percentage wavelet 

correlation coefficient 

(WCC), HQI and ‘Rigaku 

mixtures algorithm’ 

Operating 

temperature (°C) 

-10 to +40 -10 to +30 -20 to +50 

Battery Rechargeable internal 

lithium ion battery (> 3 

hours operation) 

Switchable lithium ion 

battery (4 hours operation) 

Switchable lithium ion 

battery (4 - 5 hours 

operation) 

Other no adjustable probe tip  

 

Focus adjustable probe tip. 

a vial holder 

Focus adjustable probe tip, 

a vial holder, adjustable 

exposure time 5 ms to 30 

sec. 
1Instrument images were reproduced with courtesy of ThermoFisher Scientific Inc., Wilmington, MA and 

SciMed, Rigaku, USA. 

For TruscanTM GP, vials were held in close contact with the nozzle piece. In contrast, for 

FirstGuardTM, vials were placed in a vial holder and were shielded manually using a black 



 

50 

 

rubberised fabric (0.12 mm thick, ThorLabs, USA). For ProgenyTM, vials were placed in 

enclosed vial holders.  

The instruments were calibrated daily, immediately prior to analysis, (i.e. using a polystyrene 

rod standard for TruscanTM GP , or benzonitrile reference standard for both FirstGuardTM and 

ProgenyTM) in order to verify the performance of the instruments [210]. For both FirstGuardTM 

and ProgenyTM, library signatures were measured (scan time was ca. 1 min) after optimising 

the focal distance using CAF (a relatively strong Raman scatterer) [211]. Using TruscanTM GP, 

signature scan times ranged from 1 min. e.g. for CAF and up to 80 min. e.g. for TAL (a 

relatively poor Raman scatterer). The scan time was automatically adjusted to optimise the S/N 

ratio (> 50 AU).  

For the three instruments, reference standards were used as library signatures and test samples. 

For both TruscanTM GP and FirstGuardTM, library spectra were built for reference standards 

(i.e. 2-AI, BEN, CaCO3, CAF, CRE, DEX, DIL, DXM, GLU, LAC, LID, MCC, MgS, PAR, 

PHE, PRO, SUC, TAL, TAU and THEO) and binary mixtures (25:75, 50:50, and 75:25 for 2-

AI/CAF, DXM/CAF, LID/CAF, PRO/CAF and PHE/CAF). In contrast, for ProgenyTM, 

libraries were built for pure reference standards only. This is because the instrument is equipped 

with an in-built ‘Rigaku mixtures algorithm (RMA)’, claimed capable of matching mixtures to 

pure substances in the library [212].  

In order to evaluate the instruments’ in-built identification algorithms, model binary dilution 

mixtures containing various % m/m of mixture 1 (2-AI/CAF), 2 (DXM/CAF), 3 (LID/CAF), 4 

(PRO/CAF) and 5 (PHE/CAF) were prepared and analysed against pure and discrete mixtures 

in the library (see above). The model mixtures were prepared by adding different amounts of 

pure CAF powder to each of the drugs’ reference standards: 2-AI, DXM, LID, PRO and PHE 

to get variable percentages in the range of 5 - 95 % m/m (Table 2.4).  
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Table 2. 4: Composition in mg/mg of the binary model mixtures1 

Mixture 

number 

Mixture 

type 

Drug/CAF 

(mg/mg)  

Mixture 

number 

Mixture 

type 

Drug/CAF 

(mg/mg) 

1D1 2-AI/CAF 4.9/95.1  4D1 PRO/CAF 5.0/95.0 

1D2 2-AI/CAF 10.0/90.0  4D2 PRO/CAF 10.0/90.0 

1D3 2-AI/CAF 20.0/80.0  4D3 PRO/CAF 23.8/76.2 

1D4 2-AI/CAF 29.9/70.1  4D4 PRO/CAF 30.7/69.3 

1D5 2-AI/CAF 40.3/59.7  4D5 PRO/CAF 40.1/59.9 

1D6 2-AI/CAF 59.9/40.1  4D6 PRO/CAF 63.4/36.6 

1D7 2-AI/CAF 69.9/30.1  4D7 PRO/CAF 70.0/30.0 

1D8 2-AI/CAF 80.1/19.9  4D8 PRO/CAF 83.0/17.0 

1D9 2-AI/CAF 90.0/10.0  4D9 PRO/CAF 90.2/9.8 

1D10 2-AI/CAF 95.1/4.9  4D10 PRO/CAF 94.7/5.3 

2D1 DXM/CAF 5.5/94.5  5D1 PHE/CAF 5.0/95.0 

2D2 DXM/CAF 9.8/90.2  5D2 PHE/CAF 10.0/90.0 

2D3 DXM/CAF 20.0/80.0  5D3 PHE/CAF 20.0/80.0 

2D4 DXM/CAF 30.6/69.4  5D4 PHE/CAF 30.0/70.0 

2D5 DXM/CAF 39.9/60.1  5D5 PHE/CAF 40.0/60.0 

2D6 DXM/CAF 60.1/39.9  5D6 PHE/CAF 60.0/40.0 

2D7 DXM/CAF 70.0/30.0  5D7 PHE/CAF 70.0/30.0 

2D8 DXM/CAF 80.1/19.9  5D8 PHE/CAF 80.0/20.0 

2D9 DXM/CAF 89.8/10.2  5D9 PHE/CAF 90.0/10.0 

2D10 DXM/CAF 95.2/4.8 
 5D10 PHE/CAF 95.0/5.0 

3D1 LID/CAF 5.6/94.4     
3D2 LID/CAF 10.2/89.8     
3D3 LID/CAF 21.2/78.8     
3D4 LID/CAF 29.6/70.4     
3D5 LID/CAF 39.6/60.4     
3D6 LID/CAF 59.6/40.4     
3D7 LID/CAF 70.0/30.0     
3D8 LID/CAF 80.5/19.5     
3D9 LID/CAF 89.2/10.8     
3D10 LID/CAF 95.0/5.0     

1D = dilution number, 1D = mixture 1, 2D = mixture 2, 3D = mixture 3, 4D = mixture 4 and 5D = mixture 5 

The method was validated using six random ternary mixtures prepared with common and 

largely available adulterants and cutting agents (i.e. BEN, CAF, GLU, LAC, LID, MCC, MgS, 

PAR, PHE, PRO and TAL) (Table 2.5) [208, 209]. The mixtures were made by randomly 

mixing different amounts of cutting agents and adulterants such that each mixture contained 

one, two or three adulterants weighing > 25 % of the total mixture weight [136]. 
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Table 2. 5: Composition of random ternary mixtures 

Mixture 

number 

Constituent 

A 

Constituent 

B 

Constituent 

C 

Weight of 

constituent   

A (mg) 

Weight of 

constituent   

B (mg) 

Weight of 

constituent   

C (mg) 

1 PRO PAR MgS 45 31 24 

2 PAR BEN CAF 28 53 19 

3 BEN LAC MgS 35 51 14 

4 MCC TAL PAR 26 44 30 

5 BEN PRO MCC 25 32 43 

6 PAR BEN PRO 36 33 31 

The method was also validated using six NPS internet products (Table 2.2). Parameters and 

settings were not adjustable by the operator but were automatically optimised for TruscanTM 

GP. Conversely, using the FirstGuardTM and ProgenyTM instruments, parameters were 

adjustable and a few methods were developed. Using the FirstGuardTM, methods A, B or C 

were employed, whereas methods D and E were used with ProgenyTM as described in Table 

2.6. Using the FirstGuardTM, all samples were initially run using method A. Method B was 

used for samples, which displayed a poor S/N. Method C was used for samples, which were 

burnt from high exposure time and laser power (i.e. coloured samples and samples containing 

fluorescing impurities). Using ProgenyTM, all samples were initially run using method D. 

Method E was used for samples, which were burnt from high exposure time and laser power. 

Using both FirstGuardTM and ProgenyTM, the background noise was subtracted from each 

measurement.  

Table 2. 6: Methods used for Raman analysis using handheld Raman instruments 

(FirstGuardTM and ProgenyTM)1 

 Method name 

Parameters A  B  C  D E 

Exposure time (ms) 1000 5000 500 2000 2000/1000 

Averaging of spectra 2 2 2 10 10 

Laser power (mW) 300 490 200 490 300/ 200 

Baseline correction Yes Yes Yes Yes Yes 

Subtract dark background Yes Yes Yes Yes Yes 
1For TruscanTM GP, parameters were not adjustable by the operator but were automatically optimised using an in-

built proprietary method. 

A schematic of summary of experiments is summarised in Figure 2.1. 
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Figure 2. 1: Schematic outlining summary of experiments 

2.2.2.2. Confirmatory analysis of NPS internet products using GC-MS  

Gas chromatography-electron ionisation-mass spectrometry (GC-EI-MS) analysis was used to 

confirm the identity of compounds present in the purchased internet products (Table 2.2).  The 

method was adapted from Assi et al. [128]. The analysis was performed using a Varian 240-

MS ion trap MS equipped with a Varian 450-GC gas chromatography instrument and a Varian 

8400 auto-sampler from Agilent Technologies (Berkshire, UK). Samples were analysed using 

electron ionisation (EI) with a scan range from m/z 40 – m/z 1000. An Agilent Technologies 

column (30 m x 0.25 mm x 0.25 µm) coated with a 0.50 mm film of 50 % phenyl – 50 % 

methyl polysiloxane was used with helium gas as the mobile phase at a flow rate of 1 mL      

min-1. A CP-1177 injector was held at 275 oC and was used in split mode (10:1) for most 

samples, but in the splitless mode when low signals were observed. An injection volume of 1 
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µL was used for all samples. The column temperature was programmed as follows: 50 oC for 

2 min, ramped to 300 oC at 15 oC min-1, held for 5 min, then cooled to 50 oC; the total run time 

was 28.67 min. The mass spectra obtained were compared to the purchased reference standards 

and the following EI spectral libraries: NIST (Version 1.0.2.2), SWGDRUG MS (Version 2.1 

(2014)) and Cayman (Version 04292014).  

2.3. Results and discussion 

2.3.1. Substance selection 

A pragmatic approach was adopted for the selection of substances in this pilot study. When 

this study was conducted, ‘legal’ NPS, commercially available in large quantities were selected 

to enable the preparation of a variety of mixtures. Selected NPS and adulterants were members 

of different classes such as aminoindanes, anaesthetics, analgesics and methyl-xanthines. 

Substances selected to build the libraries and evaluate the performance of the instruments were 

all common active substances, adulterants or cutting agents found in NPS products, with 

various Raman scattering activity [38, 213].  

The NPS and adulterants selected were 2-AI, BEN, CAF, DIL, DXM, LID, PAR, PHE, PRO 

and THEO (Table 2.1). Prior to the UK blanket ban in 2016, both 2-AI and DXM were readily 

available for sale on the internet at low cost [6]. Aminoindanes were ‘legal’ analogues of 

amphetamine. Their popularity was linked to their pharmacological effects as potent serotonin-

releasing substances [84]. 2-aminoindane is one of the most popular aminoindanes [214]. In 

contrast, DXM is a non-opioid cough suppressant sold over-the-counter, which may induce 

hallucinations at high doses [215]. It is the d-isomer of the codeine analogue levorphanol. 

Dextromethorphan gained its popularity from its psychostimulant effect manifested by 

inhibiting the re-uptake of the neurotransmitter serotonin at therapeutic doses [216]. Caffeine, 

on the other hand, is one of the most common adulterants found in NPS products due to its 

stimulant effect [213]. Benzocaine, LID and PRO are used as local anaesthetics, together with 

the analgesic PHE, are routinely used to cut cocaine and NPS products [79, 213, 217, 218].  

In this study six products were purchased from the internet such that the claimed NPS on the 

label was either 2-AI or DXM, the NPSs studied in this Chapter.  
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2.3.2. Comparison of sample spectra to library signatures using the ‘first pass’ 

in-built identification algorithms 

In this Section, the performance of three handheld Raman instruments (i.e. TruscanTM GP, 

FirstGuardTM and ProgenyTM) was evaluated for the identification of pure substances, model 

binary mixtures, random ternary mixtures and NPS internet products in their solid form.  

2.3.2.1. TruscanTM GP (Thermo-Fisher Scientific) 

Using the TruscanTM GP instrument, Raman responses were measured using the p-value 

(PVAL) algorithm, where a ‘positive match’ (PVAL > 0.05) meant that the sample spectrum 

is consistent with the library spectrum (i.e. > 95 % CL). A ‘no match found’ (PVAL < 0.001) 

meant that the sample spectrum was not consistent with library spectra. A ‘no positive match’ 

(0.001 < PVAL < 0.05) meant that the sample spectrum was partially consistent with the library 

spectrum (see Chapter 1).  

2.3.2.1.1. Analysis of pure substances 

The accuracy and selectivity of the TruscanTM GP instrument were measured by testing 

reference standards against themselves in the library, a method known as ‘negative testing’ 

[219]. This included substances from a similar class and/ or structure such as [DEX, GLU, 

LAC, SUC]; [BEN, LID, PRO] and [THEO, CAF] (Table 2.1). ‘Negative testing’ is important 

to evaluate the specificity of the instrument and to verify the level of false-positives which may 

result [219]. In this Chapter, the top correlation was the match reported (Table 2.7).  

Using the TruscanTM GP instrument, analysing reference standards against themselves in the 

library resulted in the successful identification of 19/20 substances including those from a 

similar class and/ or structure. The PVAL showed the statistical consistence between sample 

and library spectra with PVAL greater than 0.05 (see blue boxes in Table 2.7). The higher the 

PVAL, the stronger the consistence of the sample spectrum to the corresponding library 

reference spectrum.
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Table 2. 7: Selectivity of TruscanTM GP1. Table showing the p-values between reference standards and themselves in the library.   

 
1
Single measurements were taken for testing reference standards against themselves in the library. The yellow box was a ‘no positive match’ response, whereas all the blue boxes represent positive 

correlations. 
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Substances identified included two NPS, eight adulterants and ten cutting agents. These 

substances were consistent with library spectra with PVAL ranging from 0.0845 – 0.6938. The 

wide range of PVAL, possibly indicates the difference between strong and weak Raman 

scatterers (Figure 2.2). 

 

 

Figure 2. 2: Normalised Raman spectra of reference standards of a) NPS and adulterants; and 

b) cutting agents (TruscanTM GP). 

The PVAL for NPS and adulterants ranged from 0.4121 – 0.6938, whereas the PVAL for 

cutting agents ranged from 0.0845 – 0.6595. In general, substances such as NPS and adulterants 

with unsaturated bonds and aromatic rings are known to induce a greater change in 

polarizability, and hence are generally strong Raman scatterers [125]. This explains the 

consistent PVAL results obtained for NPS and adulterants as opposed to most cutting agents.  

a) 

b) 
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Using the PVAL probabilistic algorithm, prominent Raman bands in spectra for NPS and 

adulterants has enabled the determination of the statistical consistence between the sample and 

library spectra. This was demonstrated through the analysis of TAL, where the instrument 

response was ‘no positive match’ with a poor PVAL of 0.0091. By examining Figure 2.2b, the 

Raman spectrum for TAL showed a raised baseline and no Raman bands, which resulted in 

negative identification of the substance. Talc is a known weak Raman scatterer which 

intrinsically exhibits high fluorescent background with a 785 nm laser λex, distorting the Raman 

features and masking the weaker Raman signal in mixtures [220, 221].  

Similarly for MgS, the Raman spectrum displayed very weak bands and the instrument 

responded with an accurate ‘positive match’ to MgS but with a poor PVAL of 0.0845 compared 

to other reference standards. An exception to this was the result obtained for MCC, where the 

spectrum displayed very weak Raman bands and the instrument responded with an accurate 

‘positive match’ to MCC and with a relatively high PVAL of 0.5422. In such a case, a high 

consistence between the sample and library spectrum could be due to a poor quality library 

spectrum. In other words, both library (Figure 2.2b) and sample spectra for MCC have poor 

S/N and, therefore it is not surprising that the instrument responded with a relatively high 

PVAL to indicate high consistence between both spectra. 

TruscanTM GP has shown to be highly selective and accurate with its ability to discriminate 

between substances belonging to the same class of materials and/ or with similar chemical 

structure. TruscanTM GP has correctly discriminated between the anaesthetics (i.e. BEN, LID 

and PRO) and the sugars (i.e. DEX, GLU, LAC and SUC) despite the great structural and 

spectral similarity between both BEN and PRO (Table 2.1 and Figure 2.2a) and DEX and GLU 

(Table 2.1 and Figure 2.2b) respectively.  Similarly, TruscanTM GP has correctly discriminated 

between CAF and THEO. Theophylline is one of CAF metabolites, where a methyl group at 

position 7 in the five-membered ring is replaced by a hydrogen atom during metabolism [222]. 

Hitherto, results obtained show the potential of TruscanTM GP in identifying NPS, adulterants 

and cutting agents reference standards when tested against themselves in the library. However, 

defined Raman features for a few cutting agents were difficult to obtain due to swamping by 

intense fluorescent background when using a laser of λex 785 nm. The next Section evaluates 

the TruscanTM GP instrument for the identification of a drug of interest in model binary 

mixtures. 
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2.3.2.1.2. Analysis of model binary dilution mixtures 

 

Following on from our initial published work, where library spectra were created using pure 

reference standards and 50:50 mixtures [128], in this study, we widened the scope of the library 

by adding 25:75 and 75:25 mixtures. In the initial study, adding 50:50 mixtures to the library 

has been shown to improve the accuracy of the ‘first pass’ matching algorithm [128]. In this 

Chapter, widening the scope of the library was performed to evaluate the ability of the 

instrument to identify individual components in simple mixtures, the impact of the Raman 

strength of the ‘second’ component in the mixture on the identification of the NPS or drug of 

interest, and the range within which the NPS or drug of interest is identified (Table 2.8). Target 

% m/m is quoted in the discussion instead of the actual masses in mg/mg to enable comparison 

between the different mixtures. The target % m/m was deviated from the actual masses by a 

maximum amount of less than 2 %. For the exact masses, see Table 2.4. 

All model binary mixtures positively correlated with the nearest mixture composition in the 

library except for LID/CAF. For example, in mixtures 1, 2, 4 and 5, 20/80 and 30/70 % m/m 

mixtures positively correlated with 25/75 % m/m library mixtures, 60/40 % m/m mixtures 

positively correlated with 50/50 % m/m library mixtures, and 70/30 and 80/20 % m/m mixtures 

positively correlated with 75/25 % m/m library mixtures. The LID powders were challenging 

during analysis and exhibited electrostatic interactions with electric charges on glass. Lidocaine 

spectra also exhibited raised baselines, which may have influenced the in-built decision tool 

(Figure 2.2a). Based on the Raman activity of the drug mixed with CAF, results varied at high 

concentrations (i.e. drug/ CAF 90/10 % m/m).  For example, for 2-AI/CAF and DXM/CAF 

model mixtures, at 90/10 % m/m concentrations, 2-AI and DXM only were identified 

respectively. In contrast, PRO/CAF and PHE/CAF mixtures, at 90/10 % m/m concentrations, 

75/25 % m/m of PRO/CAF and PHE/CAF were identified respectively. This could possibly be 

due to sample inhomogeneity, given that powders were not homogenised by grinding and 

homogeneity was not confirmed with wet laboratory techniques such as high performance 

liquid chromatography (HPLC). Samples were intentionally not ground to mimic street 

samples. 
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Table 2. 8: Comparison values of the five model mixtures using three handheld Raman instruments: Progeny™, FirstGuardTM
 and TruscanTM GP1

 

  
Truscan-GP (λex = 785 nm, 

PVAL2) 

FirstGuard™ (λex = 1064 nm, % 

HQI3) 

Progeny™ (λex = 1064 nm, % 

RMA4) 

Library 
Pure and mixtures            

(25:75; 50:50; 75:25) 

Pure and mixtures          

(25:75; 50:50; 75:25) 

Pure substances 

Code5 Test set 
Target  

% m/m6 

Library signature 

Xn/Ym
7 

PVAL 
Library signature 

Xn/Ym
7 

% HQI  
Library signature 

Xv/Yw
8 

RMA  

(% CC)9 

1D1 2AI/CAF 5/95 CAF 0.3266 LID25/CAF75 98.0 CAF 0.99 

1D2 2AI/CAF 10/90 CAF 0.3214 LID25/CAF75 96.9 CAF 0.99 

1D3 2AI/CAF 20/80 2AI25/CAF75 0.6316 2AI25/CAF75 95.0 2-AI36/CAF64 1.00 

1D4 2AI/CAF 30/70 2AI25/CAF75 0.5697 2AI50/CAF50 96.6 2-AI62/CAF38 0.99 

1D5 2AI/CAF 40/60 2AI50/CAF50 0.7290 2AI50/CAF50 92.9 2-AI37/CAF63 1.00 

1D6 2AI/CAF 60/40 2AI50/CAF50 0.2280 2AI50/CAF50 93.6 2-AI60/CAF40 1.00 

1D7 2AI/CAF 70/30 2AI75/CAF25 0.7360 2AI75/CAF25 93.4 2-AI46/CAF54 1.00 

1D8 2AI/CAF 80/20 2AI75/CAF25 0.3069 2AI75/CAF25 92.5 2-AI 0.99 

1D9 2AI/CAF 90/10 2AI 0.2710 2AI75/CAF25 90.7 2-AI 1.00 

1D10 2AI/CAF 95/5 2AI 0.2409 2AI75/CAF25 90.8 2-AI 1.00 

2D1 DXM/CAF 5/95 CAF 0.4399 CAF 96.6 CAF 1.00 

2D2 DXM/CAF 10/90 CAF 0.5378 LID25/CAF75 97.6 CAF 1.00 

2D3 DXM/CAF 20/80 DXM25/CAF75 0.5512 DXM50/CAF50 66.8 CAF 1.00 

2D4 DXM/CAF 30/70 DXM25/CAF75 0.1124 DXM50/CAF50 95.3 DXM45/CAF55 0.99 

2D5 DXM/CAF 40/60 DXM50/CAF50 0.3038 DXM50/CAF50 95.7 DXM73/CAF27 1.00 

2D6 DXM/CAF 60/40 DXM75/CAF25 0.1286 DXM50/CAF50 96.9 DXM33/CAF67 1.00 

2D7 DXM/CAF 70/30 DXM75/CAF25 0.6594 DXM 82.4 DXM56/CAF44 1.00 

2D8 DXM/CAF 80/20 DXM75/CAF25 0.1068 DXM 88.1 DXM26/CAF74 1.00 

2D9 DXM/CAF 90/10 DXM 0.0995 DXM 81.9 DXM 0.99 

2D10 DXM/CAF 95/5 DXM 0.4461 DXM 94.4 DXM 0.99 

3D1 LID/CAF 5/95 DXM25/CAF75 0.1857 CAF 95.5 CAF 0.99 

3D2 LID/CAF 10/90 CAF 0.125 CAF 92.1 CAF 1.00 
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3D3 LID/CAF 20/80 CAF 0.0789 CAF 90.4 LID15/CAF85 0.96 

3D4 LID/CAF 30/70 
No positive match to 

DXM25/CAF75 
0.0003 LID50/CAF50 92.6 LID19/CAF81 0.94 

3D5 LID/CAF 40/60 No match found - LID50/CAF50 84.0 LID38/CAF62 0.87 

3D6 LID/CAF 60/40 No match found - LID50/CAF50 75.2 LID25/CAF75 0.80 

3D7 LID/CAF 70/30 No match found - Not match found - LID65/CAF35 0.80 

3D8 LID/CAF  80/20 No match found - Not match found - LID81/CAF19 0.75 

3D9 LID/CAF 90/10 No match found - Not match found - LID86/CAF14 0.76 

3D10 LID/CAF 95/5 LID 0.3860 LID 90.5 LID 0.99 

4D1 PRO/CAF 5/95 CAF 0.5130 LID25/CAF75 97.1 CAF 1.00 

4D2 PRO/CAF 10/90 PRO25/CAF75 0.0801 LID50/CAF50 92.6 PRO58/CAF42 1.00 

4D3 PRO/CAF 20/80 PRO25/CAF75 0.480 PRO25/CAF75 96.7 PRO43/CAF57 1.00 

4D4 PRO/CAF 30/70 PRO50/CAF50 0.5013 PRO25/CAF75 96.1 PRO49/CAF51 1.00 

4D5 PRO/CAF 40/60 PRO50/CAF50 0.4977 PRO25/CAF75 94.1 PRO68/CAF32 1.00 

4D6 PRO/CAF 60/40 PRO50/CAF50 0.2852 PRO75/CAF25 99.2 PRO21/CAF79 1.00 

4D7 PRO/CAF 70/30 PRO75/CAF25 0.4336 PRO75/CAF25 99.0 PRO63/CAF37 1.00 

4D8 PRO/CAF 80/20 PRO75/CAF25 0.2289 PRO75/CAF25 98.2 PRO 1.00 

4D9 PRO/CAF 90/10 PRO75/CAF25 0.2213 PRO75/CAF25 99.0 PRO 1.00 

4D10 PRO/CAF 95/5 PRO75/CAF25 0.0801 PRO75/CAF25 98.5 PRO 1.00 

5D1 PHE/CAF 5/95 CAF 0.3403 CAF 72.0 CAF 1.00 

5D2 PHE/CAF 10/90 PHE25/CAF75 0.2329 PHE 97.4 PHE20/CAF80 1.00 

5D3 PHE/CAF 20/80 PHE25/CAF75 0.499 PHE25/CAF75 88.9 PHE26/CAF74 1.00 

5D4 PHE/CAF 30/70 PHE25/CAF75 0.5917 PHE25/CAF75 90.7 PHE47/CAF53 1.00 

5D5 PHE/CAF 40/60 PHE50/CAF50 0.5393 PHE25/CAF75 88.3 PHE55/CAF45 1.00 

5D6 PHE/CAF 60/40 PHE75/CAF25 0.7219 PHE75/CAF25 91.4 PHE42/CAF56 1.00 

5D7 PHE/CAF 70/30 PHE75/CAF25 0.6671 PHE 95.3 PHE53/CAF47 1.00 

5D8 PHE/CAF 80/20 PHE75/CAF25 0.5368 PHE 96.8 PHE26/CAF74 1.00 

5D9 PHE/CAF 90/10 PHE75/CAF25 0.2434 PHE 97.4 PHE 1.00 

5D10 PHE/CAF 95/5 PHE75/CAF25 0.1426 PHE 95.9 PHE 1.00 
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1Single measurements were taken for testing pure reference standards against themselves in the library. 
2PVAL: p-value. 
3HQI: Hit Quality Index. 
4RMA: ‘Rigaku mixtures algorithm’. 
5D: dilution number. 
6Target % m/m (mass/mass), refer to Table 2.4. 
7Xn/Ym: X and Y constitute both constituents in the mixtures. 'n' is the percentage mass of constituent X. 'm' is the 

percentage mass of constituent Y.  
8Xv/Yw: X and Y constitute both constituents in the mixtures. 'v' and 'w' do not constitute the % m/m but the 

spectral contribution of both constituents as calculated by the in-built algorithm ‘RMA’. 
9RMA results were reported as percentage correlation coefficient. 

Conversely, mixtures containing LID/CAF showed inconsistent results. LID was not identified 

at amounts < 95 %. LID/CAF mixtures positively correlated to CAF at CAF concentration > 

80 % m/m, possibly because CAF is a relatively stronger Raman scatterer than LID. In addition, 

inconsistent results were obtained from LID/CAF mixtures, possibly because of significant 

differences in the observed physical properties of both powders, which may have resulted in 

non-homogeneity. Particle shape and powder surface charge lead to observed powder 

segregation and electrostatic interactions with glass. No correlation was found for LID/CAF 

mixtures at concentrations ranging from 40/60 to 90/10 % m/m (Table 2.8).  

In our initial published work [128], binary mixtures of 2-AI, DXM and LID with CAF were 

tested against a spectral library built with pure reference standards and 50:50 binary mixtures 

using TruscanTM RM (λex = 785 nm), another handheld Raman instrument from Thermo-Fisher 

Scientific. In this study on mixtures, where the PVAL obtained was less than 0.05, mixture 

components were identified in discovery mode, where the sample spectrum was compared to 

all library spectra. In this initial work,  2-AI, DXM and LID were identified at amount ranges 

of 20.0 – 74.6, 20.0 – 80.1 and 20.0 – 89.7 % m/m respectively [128]. In this Chapter, testing 

model binary mixtures against spectral libraries built with pure reference standards and 25:75, 

50:50, 75:25 mixtures has shown a significant improvement in positive correlation results. The 

addition of a discrete number of equally spaced concentrations of binary mixtures to the library 

has improved the accuracy of correlations. In this respect, NPS constituents (i.e. 2-AI and 

DXM) in the model mixtures were identified in the range 20 – 95 % m/m. The adulterant 

constituents (LID, PRO and PHE) in model binary mixtures were identified in the range > 95 

% m/m, 10 – 95 % m/m and 10 – 95 % m/m respectively (Table 2.8). 

Based on the in-built algorithm, Raman activity of mixture components, mixture homogeneity, 

the amount of each constituent, the quality of the library and sample spectra and powder 

properties, TruscanTM GP identified either one or two components in model binary mixtures. 
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As NPS ‘street-like’ samples are made of complex mixtures [76], it is important to evaluate the 

feasibility of identifying the NPS in the mixture as well as the ‘other’ component(s) in the 

mixture and to develop an understanding on how the ‘other’ component(s) may hamper the 

identification of the target drug [221]. For instance, NPS or adulterant identification has been 

influenced with the Raman activity of the drug mixed with CAF relative to CAF and its 

composition in the mixture. In this respect, in both PRO/CAF and PHE/CAF, false negative 

results were obtained for the drug of interest (i.e. PRO and PHE respectively) with CAF only 

being identified at CAF concentration > 95 % m/m, whereas both components were identified 

in the range 20 – 80 % m/m. In LID/CAF mixtures, false negative results of both components 

in the mixtures occurred at LID concentrations 5 – 90 % m/m (Table 2.9).  

Table 2. 9: Identification of one or both constituents in model binary mixtures using TruscanTM 

GP  

Mixture 

type 

Drug/CAF mixture 

composition  

(% m/m) 

Drug only 

identified1  

(%) 

Drug/CAF mixture 

composition  

(% m/m) 

Drug and CAF 

identified2  

(%) 

2-AI/CAF >90 20 20-80 60 

DXM/CAF >90 20 20-80 60 

LID/CAF >95 10 0 0 

PRO/CAF -3 0 10-95 90 

PHE/CAF -3 0 10-95 90 

1is the number of mixtures (expressed as a %), where the drug mixed with CAF was solely identified. 2is the 

number of mixtures (expressed as a %), where both constituents in binary mixtures were identified (i.e. drug and 

CAF). 3means none of the constituents were identified in all mixtures.  

Based on the in-built algorithm, the TruscanTM GP instrument has not produced any false 

positive results except for LID/CAF mixtures, where LID/CAF mixtures correlated to 

DXM25/CAF75 mixtures with a ‘positive match’ and a ‘no positive match’ at LID 

concentration of 5 and 30 % m/m respectively. By examining the Raman spectra (Figure 2.3), 

it was observed that the library spectrum for DXM25/CAF75 mainly showed prominent peaks 

for CAF at 555, 1329, 1600 and 1699 cm-1, possibly attributed to C-N-CH3, C-N, C=C and 

C=N vibrations respectively. The sample Raman spectrum (3D4) showed an intense 

fluorescent background possibly attributed to glass in the region 1500 - 1200 cm-1, and the only 

Raman bands observed over the region 740 – 440 cm-1 are thought to be attributed to CAF. 

This explains why these mixtures correlated with false positive matches to DXM25/CAF75 

mixtures. 
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Figure 2. 3: Normalised Raman spectra for library spectra of DXM25/CAF75, CAF and DXM 

and the spectrum of the sample 3D4 composed of LID30/CAF70 (TruscanTM GP). 

In summary, the TruscanTM GP instrument (λex = 785 nm) has identified 95 % of pure 

substances when they were match-tested against themselves in the library, but fluorescence has 

clearly distorted the Raman features in the cutting agents spectra. Poor correlations were 

observed for poor Raman scatterers e.g. TAL and for mixtures, which exhibited fluorescent 

background e.g. LID/CAF mixtures. In model binary mixtures, the NPS constituents (i.e. 2-AI 

and DXM) were identified in the range 20 – 95 % m/m, whereas the adulterant constituents 

(LID, PRO and PHE) were identified in the range > 95 % m/m, 10 – 95 % m/m and 10 – 95 % 

m/m respectively. 

2.3.2.2. FirstGuardTM (Rigaku) 

Using the FirstGuardTM instrument, Raman responses were measured using the % HQI 

algorithm. An HQI of 100 % means that the correlation between the ‘unknown’ spectrum and 

the reference spectrum is absolute (i.e. 1). An HQI of 0 % means that the ‘unknown’ spectrum 

and the reference spectrum are orthogonal to each other (see Chapter 1). Positive correlations 

were assigned to a % HQI > a threshold of 85 %, as defaulted by the manufacturer.  

2.3.2.2.1. Analysis of pure substances 

In order to enable a direct comparison between the results obtained with TruscanTM GP and the 

results obtained with FirstGuardTM, all conditions must be the same. However, this is not the 

case. For example, peak relative intensities may change slightly by using a different laser λex 

(e.g. 1064 instead of 785 nm) [221]. In addition, the absolute intensity may decrease by 

increasing the laser λex. This is because Raman scattering is proportional to the fourth power 

of the frequency of the laser source [120]. Moreover, the quality of the spectral library may 

change, not only because of the change of the laser λex but also because the powder area being 



 

65 

 

irradiated is different, which may have a great impact on the correlation results for mixtures 

using the in-built % HQI algorithm. This was observed with the quality of the reference spectra 

for NPS, adulterants and cutting agents (Figure 2.4) as compared to Figure 2.2. 

 

 

Figure 2. 4: Normalised Raman spectra of reference standards of a) NPS and adulterants; and 

b) cutting agents (FirstGuardTM).  

As with the TruscanTM GP instrument, a similar analysis was performed with FirstGuardTM 

using the % HQI algorithm to evaluate the accuracy and selectivity of the instrument. The % 

HQI values describe the correlation between sample and library spectra. The higher the % HQI, 

the stronger the correlation with library reference spectra. The  HQI algorithm is highly 

dependent on the S/N in the sample spectrum  [212]. In this Section, the top match was the 

match reported. Using the in-built algorithm, 19/20 samples (i.e. two NPS, eight adulterants 

and nine cutting agents) were identified (Table 2.10). 

 

a) 

b) 
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Table 2. 10: Selectivity of FirstGuardTM1  

 

1Triplicate measurements were taken for testing pure reference standards against themselves in the library; *MgS correlated to bees wax with a % HQI of 90 ± 4; % HQI ± SD 

is presented in blue boxes. 
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The % HQI is presented ± standard deviation (SD) between triplicate measurements. Results 

showed that 2-AI had the lowest % HQI (71.7 ± 1.2), whereas BEN had the highest % HQI 

(99.2 ± 0.2). Both MCC and DIL had the largest SD between three replicate measurements. 

The library spectrum for MCC showed poor S/N with poorly defined Raman features, possibly 

because it is a poor Raman scatterer (Figure 2.4b). Conversely, the library spectrum for DIL 

showed adequate S/N (Figure 2.4a). However, Raman analysis was challenging because of the 

small sample size, the challenge to pack the sample, to present it to the instrument, to optimise 

the focal distance and place the sample at the focal point. In addition, the weight and geometry 

of the instrument made it very challenging to collect high quality spectra under the previously 

described conditions (Section 2.2.1.1.). 

A false positive correlation to bees wax was obtained for MgS. This was not surprising as bees 

wax has a similar chemical structure to MgS (see Table 2.1 for MgS chemical structure). Figure 

2.5 shows the spectrum obtained and the chemical structure for bees wax.  

 

Figure 2. 5: The Raman spectrum for the MgS reference sample match-tested against the 

library reference spectra. The chemical structure for bees wax is superimposed on the spectrum 

(FirstGuardTM). 

2.3.2.2.2. Analysis of model binary dilution mixtures 

Similar to Section 2.3.2.1.2., the model binary mixtures were match-tested against pure and 

discrete mixtures in the library (Table 2.8).  

Model binary mixtures were match-tested against all libraries (pure reference standards and 

25:75, 50:50, 75:25 mixtures).  The NPS constituents (2-AI and DXM) in the model mixtures 

were identified in the range 20 – 95 % m/m using the in-built algorithm in the FirstGuardTM 

instrument (i.e. % HQI). The adulterants constituents (LID, PRO and PHE) in the model binary 
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mixtures were identified in the range 30 – 60 % m/m and > 95 % m/m for LID, 20 – 95 % m/m 

for PRO, and 10 – 95 % m/m for PHE (Table 2.8).  

Based on the ‘first pass’ in-built algorithm, the FirstGuardTM instrument identified either one 

or two components in model binary mixtures. In this respect, the ‘drug’ in ‘Drug/CAF’ 

mixtures was identified in DXM/CAF, LID/CAF and PHE/CAF at concentrations of 70 - 90, 

> 95, and > 70 % m/m respectively. Both components were identified at different 

concentrations for all mixtures (Table 2.11).  

Table 2. 11: Identification of one or both components in model binary mixtures using the 

FirstGuardTM 

Mixture 

type 

Drug/CAF mixture 

composition  

(% m/m) 

Drug only 

identified1  

(%) 

Drug/CAF mixture 

composition  

(% m/m) 

Drug and CAF2  

(%) 

2-AI/CAF -3 0 20-95 8 

DXM/CAF 70-95 4 20-60 4 

LID/CAF >95 4 30-60 3 

PRO/CAF -3 0 20-95 8 

PHE/CAF >70 5 20-60 4 

1is the number of mixtures (expressed as a %), where the drug mixed with CAF was solely identified. 2is the 

number of mixtures (expressed as a %), where both constituents were identified (i.e. drug and CAF).3means none 

of the constituents were identified in all mixtures.  

Based on the in-built algorithm, the FirstGuardTM instrument generated a number of false 

positive results in all mixtures except for PHE/CAF mixtures. False positive results to 

LID/CAF mixtures in the library mainly occurred at drug concentrations of 10 % m/m or less 

in mixtures with CAF except for LID/CAF mixtures where false positive results occurred at 

drug concentrations of 30 – 60 % m/m. By examining the Raman spectra for these samples and 

comparing them to the library spectra, it was observed that CAF has again largely contributed 

to the composition of the library spectra and, hence resulted in false positives in mixtures with 

high CAF composition (Figure 2.6). Figure 2.6 shows selected examples, where samples 

falsely correlated with LID/CAF mixtures from the library. This demonstrated the complexity 

of building libraries with mixtures and the feasibility of identifying mixtures’ components. This 

also demonstrated the impact of different Raman activity, powder characteristics (i.e. powder 

surface charge and particle shape leading to observed powder segregation and electrostatic 

interactions with glass) and amounts of components in a mixture as well as mixture 

homogeneity. 
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Figure 2. 6: Normalised Raman spectra for the samples 1D2 and 4D2 and normalised Raman 

reference spectra for LID25 CAF75, LID50 CAF50 and CAF (FirstGuardTM). 

In summary, the FirstGuardTM has identified 95 % of pure substances when they were match-

tested against themselves in the library. However, the examination of the spectra clearly shows 

reduced fluorescence signals as compared to TruscanTM GP (laser λex = 785 nm), but it also 

shows the reduced S/N as a result of using a longer laser λex of 1064 nm. In model binary 

mixtures, the NPS constituents (i.e. 2-AI and DXM) were identified in the range 20 – 95 % 

m/m, whereas the adulterant constituents (LID, PRO and PHE) were identified in the range 30 

– 60 % m/m and > 95 % m/m for LID, 20 – 95 % m/m for PRO, and 10 – 95 % m/m for PHE 

respectively. The FirstGuardTM has generated a greater number of false positive results in all 

mixtures except for PHE/CAF mixtures, which is thought to be because of the individual 

contribution of drug constituents in library spectra.  

2.3.2.3. ProgenyTM (Rigaku) 

The in-built algorithm wavelet correlation coefficient (WCC) was employed to evaluate the 

accuracy and selectivity of the instrument by match-testing pure solid powders against pure 

substances in the library including similar class of materials and/ or structure such as [DEX, 

GLU, LAC, SUC]; [BEN, LID, PRO] and [THEO, CAF]. WCC is claimed to be the best search 

algorithm for noisy spectra compared to both PVAL and HQI [212]. The closer the WCC value 

to 1.00, the stronger the correlation with the library reference spectra. In this Section, only the 

top match was reported. The WCC values ± SD between triplicate measurements are shown in 

the blue boxes (Table 2.12). Results showed that 100 % of NPS, adulterants and cutting agents’ 

reference standards were differentiated from each other. 
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Table 2. 12: Selectivity of ProgenyTM 

 

 
1Triplicate measurements were taken for testing pure reference standards against themselves in the library. 
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Based on the in-built algorithm, ProgenyTM identified 20 pure substances (i.e. 2 NPS, 8 

adulterants and 10 cutting agents) with a WCC values ranging from 0.97 for SUC and TAL 

(relatively weak Raman scatterers) to 1.00 for all the remaining substances tested.  The WCC 

values between triplicate measurements were highly reproducible for the analysis of the 

reference standards and resulted in a maximum percentage relative standard deviation (RSD) 

of 1.4 x 10-16. The Raman spectra of the reference standards were also examined (Figure 2.7). 

 

 

Figure 2. 7: Normalised Raman spectra of reference standards of a) NPS and adulterants; and 

b) cutting agents (ProgenyTM).  

By comparing Figure 2.7b to Figure 2.4b, visual inspection of the spectra showed the 

ProgenyTM instrument, Raman features were better defined and this is possibly, owing to the 

software used and proprietary pre-processing performed by both instrument.  

In contrast to match-testing pure reference standards against the library, the in-built RMA is 

claimed capable of correlating the spectra of drugs mixtures to reference spectra in the library 

by comparing each mixture spectrum to all library signatures [212]. Therefore, using 

ProgenyTM, libraries were created with pure reference standards only and RMA.  Results were 

reported as percentage correlation coefficient (% CC). Results of match-testing binary mixtures 

against the library are reported as Xv/Yw, where X and Y are suggested constituents in the test 

a) 

b) 
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mixtures and ‘v’ and ‘w’ represent the suggested composition of each constituent in the test 

mixture. ‘v’ and ‘w’ do not represent the % m/m of both constituents. ‘v’ and ‘w’ did not follow 

a trend when the percentage mass of drug mixed with CAF changed (i.e. increased or 

decreased) in the mixtures. 

Results showed that using RMA, mixtures 1 (2-AI/CAF), 2 (DXM/CAF), 3 (LID/CAF), 4 

(PRO/CAF) and 5 (PHE/ CAF) were consistent with mixtures of both components in the library 

in the range of 20 - 70 % m/m for 2-AI, 30 – 80 % m/m for DXM, 20 – 90 % m/m for LID, 10 

- 70 % m/m for PRO, and 10 – 80 % m/m for PHE respectively. Above and below these ranges, 

only the component in higher amount in the mixture was detected as anticipated (Table 2.8).  

Using the ‘first pass’ in-built algorithm, ProgenyTM identified either one or two components in 

model binary mixtures. The ‘drug’ in ‘Drug/CAF’ mixtures and both components in the 

mixtures were identified at various concentrations (Table 2.13).  

Table 2. 13: Identification of one or both components in model binary mixtures using 

ProgenyTM 

Mixture 

type 

Drug/CAF mixture 

composition  

(% m/m) 

Drug only 

identified1  

(%) 

Drug/CAF mixture 

composition  

(% m/m) 

Drug and CAF 

identified2  

(%) 

2-AI/CAF >80 3 20-70 5 

DXM/CAF >90 2 30-80 5 

LID/CAF >95 1 30-90 7 

PRO/CAF >80 3 20-90 6 

PHE/CAF >70 2 10-80 7 

1is the number of mixtures (expressed as a %), where the drug mixed with CAF was solely identified.  
2is the number of mixtures (expressed as a %), where both constituents were identified (i.e. drug and CAF).  

In summary, ProgenyTM has identified 100 % of pure substances when they were match-tested 

against themselves in the library. Visual inspection of Raman spectra showed better definition 

of Raman features even for poor Raman scatterers as compared to the FirstGuardTM. In model 

binary mixtures, the NPS constituents (i.e. 2-AI and DXM) were identified in the range 20 – 

70 % m/m for 2-AI, 30 – 80 % m/m for DXM, 20 – 90 % m/m for LID, 10 - 70 % m/m for 

PRO, and 10 – 80 % m/m for PHE respectively. Based on the in-built algorithm, the ProgenyTM 

instrument has not generated any false positive results. In the next Section 2.3.2.4. and 2.3.2.5., 

the three instruments are challenged with random ternary mixtures and NPS internet samples. 
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2.3.2.4. Testing the complexity of random ternary mixtures  

In this Section, the aim of this analysis was to evaluate the feasibility of identifying one 

adulterant as a single reference or in a binary mixture using the instruments TruscanTM GP and 

FirstGuardTM. For the ProgenyTM instrument, the aim of the analysis was to evaluate the 

performance of the in-built algorithm ‘RMA’ in identifying all the adulterants in the mixtures. 

The mixtures were match-tested in triplicate against the libraries developed using the three 

handheld Raman instruments (Table 2.14).  

Using the in-built algorithm in TruscanTM GP (i.e. PVAL), triplicate measurements of random 

ternary mixtures yielded reproducible results in all six mixtures despite mixing the sample 

between measurements and irradiating the samples at different powder areas (Table 2.14). The 

analysis of 3/6 mixtures (i.e. mixtures 1, 5 and 6) resulted in false negatives, whereas the 

analysis of mixtures 2 – 4 resulted in the reproducible identification of a single adulterant as 

expected. In mixtures 2 – 4, the adulterant identified was the strongest Raman scatterer, which 

was in equal or in a greater amount than other adulterant(s) in the mixture. When the adulterant 

identified was mixed with cutting agents only, it was identified even if its amount was less than 

that of the cutting agents. In mixtures 1, 5 and 6, no adulterant was identified, possibly because 

the constituents had relatively similar Raman strength and amounts to each other in the mixture 

and this is one of the challenges faced in the analysis of mixtures. 

For the FirstGuardTM, one adulterant was identified in at least two out of the three 

measurements in all six mixtures. However, in mixtures 2 and 3, false positive correlations to 

p-hydroxycocaine and a false negative in mixture 4 occurred in one measurement. The 

adulterant identified was as a single reference or in a binary mixture. The amount of the 

adulterant identified in the mixtures did not reflect its true mass. The presence of mixtures in 

the library may lead to false positive results i.e. identifying a component that is not truly in the 

mixture. For example, for mixture 5, BEN50/CAF50 was identified in all three measurements, 

which means one true positive component (i.e. BEN), one false positive component (i.e. CAF) 

and one false negative component (i.e. PRO) (Table 2.14).  
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Table 2. 14: Identification of ternary mixtures using the in-built algorithm in TruscanTM GP, FirstGuardTM and ProgenyTM 

TruscanTM GP 

Mixture 

number 

Constituents in 

the mixtures 

% 

mg/mg/mg 
1st Measurement 2nd Measurement 3rd Measurement 

   Library signature PVAL Library signature PVAL Library signature PVAL 

1 PRO/PAR/MgS 45/31/23 No match found  No match found  No match found  

2 PAR/BEN/CAF 28/53/18 BEN 0.1084 BEN 0.1067 BEN 0.1077 

3 BEN/LAC/MgS 35/51/12 BEN 0.355 BEN 0.3362 BEN 0.3358 

4 MCC/TAL/PAR 26/44/30 PAR 0.0067 PAR 0.0058 PAR 0.0061 

5 BEN/PRO/MCC 25/32/43 No positive match to 

BEN 

0.0003 No positive match to 

BEN 

0.0003 No positive match to 

BEN 

0.0003 

6 PAR/BEN/PRO 36/33/31 No match found  No match found  No match found  

FirstGuardTM 
   Library signature % HQI Library signature % HQI Library signature % HQI 

1 PRO/PAR/MgS 45/31/23 PRO 84.1 PRO75/CAF25 83.7 PRO75/CAF25 82.3 

2 PAR/BEN/CAF 28/53/18 BEN 98.5 BEN50CAF50 93.3 p-hydroxycocaine 59.7 

3 BEN/LAC/MgS 35/51/12 BEN50CAF50 97 BEN 94.3 p-hydroxycocaine 62.6 

4 MCC/TAL/PAR 26/44/30 Unknown 
 

PAR 92.4 PAR 70.7 

5 BEN/PRO/MCC 25/32/43 BEN50CAF50 95.9 BEN50CAF50 92.6 BEN50CAF50 96.3 

6 PAR/BEN/PRO 36/33/31 BEN 91.2 BEN50CAF50 90.3 PRO 68.2 

ProgenyTM  
   Library signature % CC Library signature % CC Library signature % CC 

1 PRO/PAR/MgS 45/31/23 PRO 0.99 PRO 0.99 PRO 0.98 

2 PAR/BEN/CAF 28/53/18 BEN 0.99 BEN 0.99 BEN 0.99 

3 BEN/LAC/MgS 35/51/12 BEN 0.99 BEN 0.99 BEN 0.99 

4 MCC/TAL/PAR 26/44/30 MCC/TAL/PAR 0.99 MCC/TAL/PAR 0.99 MCC/TAL/PAR 0.99 

5 BEN/PRO/MCC 25/32/43 BEN/PRO 0.99 BEN/PRO 0.99 BEN/PRO 0.99 

6 PAR/BEN/PRO 36/33/31 BEN/PRO 0.99 BEN/PRO 0.99 BEN/PRO 0.99 



 

75 
 
 

For ProgenyTM, at least one adulterant was reproducibly identified for each measurement in all 

six mixtures (WCC > 0.98) with a maximum of two adulterants being identified per mixture 

(Table 2.14). Adulterants were identified in mixtures 3, 4 and 5 despite the presence of one or 

two cutting agents in the mixtures such as LAC, MCC, MgS and TAL. It was noted that PAR 

was not identified in ternary mixtures containing other adulterants, yielding false negatives in 

mixtures 1 and 6.  

In conclusion, using the TruscanTM GP and FirstGuardTM instruments, one adulterant was 

identified in 50 and 100 % of mixtures. Match-testing against mixtures in the library gave rise 

to false positives, possibly due to non-homogeneity of the mixtures. Using ProgenyTM, at least 

one adulterant was identified in 100 % of mixtures, two adulterants were identified in two out 

of four mixtures. With all instruments, the adulterant identified was the strongest Raman 

scatterer, which was in equal or greater amount that other adulterant(s) in the mixture. This 

finding corroborated with published literature on pharmaceutical materials [223]. When the 

adulterant identified was mixed with cutting agents only, it was identified even if its amount 

was less than that of the cutting agents.   

2.3.2.5. Testing the complexity of NPS internet products 

The three instruments were evaluated for their ability to identify the NPS and adulterants 

constituents in NPS products as characterised by GC-EI-MS qualitative analysis. The 

constituents identified, their major ion peaks (m/z) and retention time (min) are shown in Table 

2.15. 

Product 1 (i.e. P1) was labelled as 2-aminoindane (2-AI) but was confirmed  to contain CAF 

[224, 225]. P2 was labelled as ‘Pink Champagnes’, claimed to contain aminoindane, CAF, cola 

vera and amino acid complex. The GC-EI-MS analysis of P2 confirmed the presence of 2-AI 

[226] and CAF [224, 225]. The products P3 - P7 claimed to contain DXM, which was 

confirmed with the GC-EI-MS [227] except for P3, which was confirmed to contain CAF and 

methoxetamine (MXT) (Table 2.15). 
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Table 2. 15: Comparison of the ‘first pass’ matching analysis of NPS products using Raman TruscanTM GP, FirstGuardTM, ProgenyTM and 

corresponding GC-EI-MS results. 

Product 

No. 

Label claim TruscanTM GP FirstGuardTM ProgenyTM  GC-EI-MS 

  
Library  

signature 

PVAL Library 

signature 

% HQI Library 

signature  

RMA 

(% CC) 

Library 

signature 

Major ion 

peak (m/z)1 

Retention 

time (min) 

P1 2AI No match found - No match 

found 

- CAF 1.00 CAF 194 14.4 

P2 Pink 

Champagnes 

No match found - CAF 75.9 2AI/CAF 0.98 CAF 194 14.4 

        
2AI 133 9.8 

P3 DXM No positive 

match to CAF 

0.0018 CAF 80.0 CAF 0.96 CAF 194 14.4 

        
MXT 190 14.8 

P4 DXM DXM 0.1293 DXM 60.0 DXM/Starch 1.00 DXM 271 16.6 

P5 DXM DXM 0.1311 DXM 60.4 DXM/Starch 1.00 DXM 271 16.6 

P6 DXM DXM 0.1154 No match 

found 

- DXM/Starch 0.99 DXM 271 16.6 

1Corresponds to the major ion peaks for the main constituents in each NPS product. 
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Using the in-built algorithms (i.e. PVAL for TruscanTM GP, % HQI for FirstGuardTM and RMA 

for ProgenyTM), the three handheld Raman instruments provided different ‘actionable results’ 

for the NPS internet products. For TruscanTM GP, the NPS content was confirmed in 3/6 NPS 

internet products (i.e. P4 - P6). For FirstGuardTM, the NPS content was confirmed in 2/6 NPS 

internet products (i.e. P4 and P5). However, the adulterant content was confirmed in 2/6 

products (i.e. P2 and P3), yielding two false negatives for the NPS in the mixtures. This could 

possibly be because of a larger composition of the adulterant in the mixtures. For ProgenyTM, 

the NPS and adulterant content in all six mixtures were identified except one false negative in 

1/6 mixtures. Mixtures of DXM with starch were identified with ProgenyTM for P4 - P6. It is 

not surprising that starch has not been identified with GC-EI-MS as it is not readily soluble in 

methanol and has low volatility.  

In order to further explore these results, the products’ Raman spectra were examined. Figure 

2.8 is an example of a selected product (P2), where no correlation to an NPS was identified by 

TruscanTM GP, the adulterant only was identified with FirstGuardTM and both constituents (i.e. 

NPS and adulterant) were identified with ProgenyTM. The Raman spectra showed that for 

TruscanTM GP, an intense fluorescent background has completely masked the Raman signals 

and, hence no correlation was made to an NPS. Coloured species in NPS branded products are 

known to absorb monochromatic radiation, which may lead to fluorescence emission with a 

laser λex of 785 nm [117]. The effect of the laser λex on the identification of NPS is investigated 

in Chapter 3. For FirstGuardTM, it was difficult to distinguish Raman features for CAF from 

the spectrum due to poor S/N. For ProgenyTM, although the spectra showed a relatively 

adequate S/N and an accurate ‘first pass’ correlation to both 2-AI and CAF, prominent peaks 

were observed at ca. 222, 782, 863, and 1020 cm-1 and were consistent with 2-AI only. 

 

Figure 2. 8: Normalised Raman spectra for Pink Champagnes (P2) using TruscanTM GP, 

FirstGuardTM and ProgenyTM and the reference spectra for 2-AI and CAF (ProgenyTM). 
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The following Section summarises the performance of the three instruments in terms of the 

generation of ‘true judgments’ or ‘false judgments’ in Table 2.16 and summarises the overall 

results for the three instruments in Table 2.17. A ‘true judgment’ is explained as true positive 

and true negative results, whereas a ‘false judgment’ is explained as ‘false positive’ and ‘false 

negative’ results [131]. A ‘true positive’ result is a constituent that is truly included in the 

mixture. For example, 2-AI/CAF correlating to 2-AI/CAF constitutes two true positives. A 

‘true negative’ result is a constituent that is not included in the mixture. This type of 

information cannot be obtained using the in-built algorithms of the three instruments i.e. does 

it contain cocaine/ and the answer is ‘yes’ or no’ and, hence is not included in the Table. A 

‘false positive’ result is a constituent that was identified but in fact, it is not truly included in 

the mixture. For example, 2-AI/CAF correlating to DXM/CAF constitutes one false positive 

for DXM. A ‘false negative’ result is the number of constituents unidentified and/ or displayed 

as a ‘no match found’ or ‘unknown’. Ideally, a greater number of true positives and less 

numbers of true negatives, false positives and false negatives are preferred. 

In Table 2.16, a ‘no positive match to compound x’ result for TruscanTM GP is considered as a 

positive correlation to compound ‘x’. This is because it is still a suggestion made by the 

decision tool of the instrument, but the correlation did not exceed the threshold. The numbers 

presented in Table 2.16 are total numbers of NPS and adulterants identified in all types of 

mixtures investigated in this preliminary study. 

Table 2. 16: Summary of the performance of three handheld Raman instruments with respect 

to ‘true’ and ‘false’ judgment results. 

Handheld 

Raman 

Instrument 

Mixtures True judgements False judgements 

  True positives False positives False negatives 

TruscanTM GP 

Binary Mixture 

75 2 35 

FirstGuardTM 73 6 27 

ProgenyTM 80 0 20 

TruscanTM GP 

Ternary Mixture 

4 0 13 

FirstGuardTM 8 6 5 

ProgenyTM 8 0 5 

TruscanTM GP 

NPS products 

4 0 8 

FirstGuardTM 4 0 6 

ProgenyTM 7 0 1 
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In model binary mixtures, TruscanTM GP generated a greater number of false negatives as 

compared to the other instruments, whereas FirstGuardTM generated a greater number of false 

positives than the other instruments. In contrast, ProgenyTM generated a greater number of true 

positives and least number of false negatives. In addition, ProgenyTM did not generate any false 

positives. 

For ternary mixtures, TruscanTM GP generated a greater number of false negatives and least 

number of true positives compared to the other instruments. Again, FirstGuardTM generated the 

greatest number of false positives. In contrast, ProgenyTM generated a similar number of true 

positives as FirstGuardTM and least number of false negatives. In addition, ProgenyTM did not 

generate any false positives. 

For NPS products, all instruments did not generate any false positive results. Both TruscanTM 

GP and the FirstGuardTM generated true negative and false negative results for both NPS and 

adulterants. In contrast, ProgenyTM generated a greater number of true positives and least 

number of false negatives compared to the other instruments. In addition, ProgenyTM did not 

generate any false positives. It is remarkable that ProgenyTM was consistent with the gold 

standard GC-EI-MS results for NPS internet products except for P3, where MXT was not 

identified. ProgenyTM also proved its ability to identify cutting agents in P4, P5 and P6. 

However, further studies to confirm the cutting agents’ content in these products are outside 

the scope and purpose of this study.  

In summary, different algorithms have different advantages and disadvantages based on the 

application [164]. For example, setting a threshold to confirm screening/ identification may 

lead to false positive or negative results [162]. In contrast, not setting a threshold enables the 

identification of NPS present in low amounts in mixtures but may also lead to false positives. 

In-built algorithms may impact selectivity of the instrument if the NPS in the unknown sample 

is absent from the library or if an analogous NPS is present instead. In the latter case, analogous 

substances with high structural similarity display minor differences in their Raman fingerprints 

[152], which may lead to false positive results.  

Furthermore, some algorithms, such as the ‘hit quality index (HQI)’ has been shown to depict 

slope and offset as differences from library spectra [228] and may erroneously consider 

fluorescent background as a sample identifier [212]. The use of in-built algorithms for the 

screening of complex NPS mixtures is dependent on a number of factors such as the number 
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of constituents in the mixtures, diversity of Raman scattering activity of the constituents, 

percentage composition of the drug of interest in the mixture, the content and size of the library 

and the ability of in-built algorithms to identify mixture constituents with the least false 

positives and false negatives [118, 229]. A summary of the overall performance of three 

handheld Raman instruments for model binary mixtures, random ternary mixtures and NPS 

products purchased from the internet is shown in Table 2.17. 
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Table 2. 17: Summary of the handheld Raman instruments’ overall performance for model binary mixtures, random ternary mixtures and NPS 

internet products. 

Handheld 

Raman 

instrument 

Analysis of pure 

reference 

standards 

Analysis of model 

binary mixtures 

Range within which all 

constituents were identified 

in model binary mixtures 

Analysis of random 

ternary mixtures 

Analysis of NPS 

internet products 

TruscanTM GP 19/20 reference 

standards identified 

with a PVAL > 

0.0845 

Library correlations were 

found for all the mixtures 

with a PVAL > 0.0789 

Positives correlations were 

achieved within the following 

ranges:                                 

1D 20 - 95 % m/m                                   

2D 20 - 95 % m/m                                   

3D > 95 % m/m                                          

4D 10 - 95 % m/m                                        

5D 10 - 95 % m/m 

At least one adulterant was 

identified in 3/6 (50 %) 

mixtures. 

Positive library 

correlations to an NPS 

were found in 3/6 

products (i.e. P4 - P6). 

FirstGuardTM 19/20 reference 

standards identified 

with a % HQI > 

71.7 ± 1.2 

Library correlations were 

found for all the mixtures 

with a % HQI > 66.8 

Positives correlations were 

achieved within the following 

ranges:                                 

1D 20 - 95 % m/m                                         

2D 20 - 95 % m/m                                     

3D 30 - 60 and > 95 % m/m                                

4D 20 - 95 % m/m                                       

5D 10 - 95 % m/m 

At least one adulterant was 

identified twice in 6/6 (100 

%) mixtures and two 

adulterants were identified 

at least once in 1/4 (only 

four samples had more 

than one adulterant). 

Positive library 

correlations to an NPS 

were found in 2/6 

products (i.e. P4 and P5). 

In P2 and P3, the 

adulterant only was 

identified.  

ProgenyTM 20/20 reference 

standards identified 

with a % CC > 97.0 

± 0.4 x10-4 

Library correlations were 

found for all the mixtures 

with WCC values > 0.75 

Positives correlations were 

achieved within the following 

ranges:                                 

1D 20 - 95 % m/m                                         

2D 30 - 95 % m/m                                             

3D 20 - 95% m/m                                      

4D 10 - 95 % m/m                                     

5D 10 - 95 % m/m 

At least one adulterant was 

identified in 6/6 (100 %) 

mixtures in all 

measurements.  

Two adulterants were 

identified in 2/4 (only four 

samples had more than one 

adulterant).  

Cutting agents were 

correctly identified in 1/6 

mixtures. 

Positive library 

correlations to an NPS 

were found in 5/6 

products (P1, 2, 4-6). In 

P3, the adulterant only 

was identified. 
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2.4. Conclusions 

In this preliminary study, ProgenyTM operating with a 1064 nm laser source and multiple 

algorithms is the recommended instrument since it has demonstrated to be more suitable for 

the identification of NPS in ‘street-like’ NPS products. In this respect, ProgenyTM has shown 

better selectivity to the same class of material and/ or similar chemical structure than both 

TruscanTM GP and FirstGuardTM with a 100 % identification of pure substances. The ‘drug’ 

constituent in model binary mixtures was identified within a minimum range of 20 – 95 % m/m 

for TruscanTM GP and 20 – 95 % m/m for FirstGuardTM and 10 – 95 % m/m for ProgenyTM. In 

contrast to both TruscanTM GP and FirstGuardTM, using RMA, ProgenyTM did not generate any 

false positive correlations for model binary mixtures, random ternary mixtures and NPS 

internet products. The ProgenyTM instrument identified the NPS/ adulterant content in all NPS 

internet products in consistence with GC-EI-MS confirmatory analysis, except for one product, 

where only one constituent was identified.  

The presence of equally-spaced discrete binary mixtures (25/75, 50/50 and 75/25) in the library 

has improved the accuracy of positive correlations of model binary mixtures. However, it had 

a great impact on the qualitative identification using both TruscanTM GP and FirstGuardTM 

because of inhomogeneity of samples used in creating the spectral libraries and because the 

spectral libraries made of discrete mixtures did not reflect the true composition of the model 

mixtures. Conversely, ProgenyTM, using RMA and pure reference standards only in the library 

outperformed the other instruments in the identification of the drug(s) of interest.  

This pilot study has highlighted important factors that influence the identification of NPS 

mixtures using handheld Raman spectroscopy. First, instrument factors such as the laser λex 

(i.e. 785 versus 1064 nm), where an adequate Raman spectrum could not be obtained for a few 

cutting agents and NPS products using a high energy short laser λex of 785 nm. However, 

identification of constituents in NPS internet products was improved with a longer laser λex of 

1064 nm, possibly because of reduced fluorescence. The design and weight of the instruments 

influenced the stable samples presentation for analysis may have had a great impact on 

collecting Raman spectra on DIL placed on aluminium plate rather than in a glass vial. The 

content and quality of library spectra had an impact on the number of positive correlations 

using the instruments’ in-built algorithms. Fixed non-adjustable parameters by the operator and 

the use of proprietary methods may not be suitable for the identification of NPS mixtures and 
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may cause sample damage. Second, sample factors such as sample heterogeneity, colour, 

number of adulterants in a single mixture, Raman scattering activity of constituents in mixtures, 

presence of fluorescing impurities. Third, in-built algorithm factors such as the presence of a 

threshold for positive correlations and impact of poor S/N on correlation values and algorithm 

calculation.  

This study highlighted the strengths and limitations of each instrument in the identification of 

different NPS, adulterants and cutting agents routinely encountered in seized NPS street 

samples. This work illustrated that the effectiveness of both in-built algorithms and on-board 

libraries in improving the identification of solid model mixtures depends on the quality of the 

spectra. This study illustrated the issues that may be encountered in street samples such as the 

presence of multiple constituents, constituents with various Raman scattering activity and the 

presence of fluorescing excipients/ impurities such as cutting agents. Results revealed the 

practical considerations for the in-field detection of NPS using handheld Raman instruments 

such as the ease of presenting the sample to the instrument and the feasibility of obviating 

sample damage with the laser. 

Handheld Raman spectroscopy has shown promise as a non-contact non-destructive technique 

that could be employed for the identification of NPS mixtures with unknown composition in 

the field. However, in-built algorithms can lead to misidentification or failure of identification 

of NPS products based on instrument, algorithm, library and sample factors. Further work is 

needed to evaluate the precision of the instruments by means of measuring a greater number of 

replicates. Future work may include the evaluation of ‘first pass’ matching by altering the 

threshold of the % HQI algorithm. The next Chapter will evaluate the impact of the laser λex 

on the possibility of improving the identification of NPS in a wider range of NPS products. 
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3. Comparison of two handheld Raman Spectrometers 

employing 785 and 1064 nm laser sources for the 

identification of new psychoactive substances 

3.1. Introduction 

 
This Chapter evaluates two Raman laser excitation wavelengths (λex) 785 and 1064 nm for the 

identification of new psychoactive substances (NPS) purchased from the internet. This work is 

significant, as there remains a need for improved selective and rapid in-field detection of NPS 

by law enforcement and healthcare professionals.  

Due to the intrinsic nature of NPS samples in terms of the presence of impurities such as 

fluorescing chemicals and coloured ingredients, identification of NPS content can still be 

challenging using standard handheld Raman instruments (λex of 785 nm) (see Chapter 2 and 

Assi et al. [128]). Numerous methods were employed to reduce fluorescent background. For 

example, surface enhanced Raman spectroscopy (SERS) has shown promising improvement 

in enhancing the Raman signal while also reducing fluorescent background [113, 114]. 

However, invasive sample preparation is often needed. An alternative approach to reduce 

fluorescence and, which requires no sample preparation is the use of a longer λex (e.g. between 

750 and 1000 nm) [101]. This approach has been shown to evade interference from 

fluorescence and improve identification of traditional drugs of abuse such as cocaine and 

amphetamine [154, 157]. At present, a few studies have evaluated the use of Raman 

spectroscopy with a long λex (e.g. 1064 nm) to reduce fluorescence [117, 158, 159] and 

investigate the feasibility of improving the identification of drugs of abuse [160] and a limited 

range of NPS [138, 161]. Thus, there is still limited information on the use of Raman 

spectroscopy for the wide range of chemically diverse NPS products and the feasibility to 

improve NPS identification by using a longer λex (i.e. 1064 instead of 785 nm). 

Previous work has shown preliminary results for improved identification of NPS in model NPS 

mixtures and a limited range of NPS internet samples with the ProgenyTM instrument (λex = 

1064 nm) (see Chapter 2). However, with the FirstGuardTM instrument (λex = 1064 nm), there 

was a compromise between reduced fluorescent background and reduced S/N. Thus there was 

a need to further investigate the impact of a longer laser wavelength. The aim of this Chapter 

was to evaluate the feasibility of improving the identification of a wide range of NPS products 
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purchased from the internet using two handheld Raman instruments i.e. XantusTM-1 (λex = 785 

nm) and FirstGuardTM (λex = 1064 nm) (SciMed Ltd). The instruments were selected because 

they operate with the same software, settings and algorithms (i.e. % HQI) but differ with respect 

to the laser λex.  

3.2. Experimental 

3.2.1. Chemicals and Reagents 

The reference standards of eight NPS drugs, eight adulterants and twelve cutting agents were 

used for the study. The NPS reference standards 2-aminoindane (2-AI), 5,6-methylenedioxy-

2-aminoindane (5,6-MDAI), 1-benzofuran-5-ylpropan-2-amine (5-APB), 1-benzofuran-6-

ylpropan-2-amine (6-APB), 1-(thiophen-2-yl)-2methylamino propane (MPA), etizolam and 

methylphenidate (MPD) were purchased from LGC standards (Teddington, UK); 

dextromethorphan hydrobromide (DXM) was purchased from Sigma Aldrich (Dorset, UK) 

(Table 3.1).  

Table 3. 1: Chemical structures of NPS reference standards used in this Chapter 

2-AI 5,6-MDAI 5-APB 6-APB 

       

 

 
 

  

    

  

   

MPA Etizolam MPD DXM 

 

      

   

 

 

         

 

 

The adulterants benzocaine (BEN), caffeine (anhydrous) (CAF), lidocaine hydrochloride 

(LID), paracetamol (PAR), phenacetin (PHE) and theophylline (THEO) were purchased from 

Sigma Aldrich (Dorset, UK); diltiazem hydrochloride (DIL) was obtained from the Medicines 

Testing Lab (UK); and procaine hydrochloride (PRO) was obtained from British Drug Houses 

(London, UK). The cutting agents calcium carbonate (CaCO3),  creatine monohydrate (CRE), 

dextrose monohydrate (DEX), α-D-glucose anhydrous (GLU), lactose (LAC), L-tyrosine (L-

TYR), magnesium stearate (MgS), microcrystalline cellulose (MCC), niacinamide (NIA), 

sucrose (SUC), talc (TAL) and taurine (TAU) were purchased from Sigma Aldrich (Dorset, 
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UK). Sixty NPS products were purchased from the internet, under a Home Office licence. In 

order to ensure a wide chemical diversity, the products were selected according to their label 

claim, such that they represented most of the NPS classes as per the EMCDDA (European 

Monitoring centre for Drugs and Drug Addiction) classification [30]. In addition, a variety of 

formulations such as powders, capsules, pellets, tablets and seeds were purchased. Most of the 

products were ‘legal’ NPS at the time of purchase and, hence were widely available over the 

internet. A few NPS were under temporary class drugs orders (TCDOs) such as 5-APB, 6-APB 

and MPA and these were more challenging to obtain. Most of these NPS were associated with 

formal notifications to the EU Early Warning System (EWS) and high toxicity [214, 230-234]. 

Hence, they pose serious risks to public health. Additional details related to the 60 NPS are 

provided in Table 3.2.  

Table 3. 2: NPS product specifications 

Product 

No. 

Product 

name 

Label Claim Dosage 

Form 

Colour of 

the powder 

Purchase 

Date 

Website 

Code1 

Aminoindanes 

1 2-AI 2-aminoindane Powder Dark beige 28/01/2013 1 

2 2-AI 2,3-dehydro-1H-inden-2-amine Powder Beige 16/01/2013 2 

3 5-IAI 5-iodo-2-aminoindane Powder White 29/02/2012 3 

4 5-IAI 5-IAI Powder Beige 29/02/2012 3 

5 MDAI 5,6-methylenedioxy-2-

aminoindane 

Powder Dark white 14/02/2012 4 

6 MDAI 6,7-dihydro-5H-

cyclopenta[F][1,3]benzodioxol-

6-amine 

Powder Dirty white 28/01/2013 5 

7 MDAI 6,7-dihydro-5H-

cyclopenta[F][1,3]benzodioxol-

6-amine 

Powder Dirty white 28/01/2013 1 

8 MDAI 6,7-dihydro-5H-

cyclopenta[F][1,3]benzodioxol-

6-amine 

Powder Dirty white 28/01/2013 1 

9 MDAI 5,6-MDAI Powder Dirty white 16/01/2013 6 

10 MDAI MDAI Powder Beige 28/01/2013 7 

11 MDAI  None Tablets  Antique 

pink 

28/01/2013 7 

12 MDAI MDAI Powder Dirty white 16/01/2013 2 

Arylalkylamines 

13 APB  APB Tablets  Pink/ 

fuchsia 

28/01/2013 5 

14 5-APB 1-benzofuran-5-yl-propan-2-

amine 

Powder Beige 16/01/2013 6 

15 5-APB 5-(2-aminopropyl)benzofuran Powder Brown/ dark 

yellow 

28/01/2013 3 

16 5-APB 5-APB Powder Brown/ dark 

yellow 

28/01/2013 8 

17 5-APB 5-(2-aminopropyl)benzofuran Powder Reddish 

brown 

28/01/2013 2 

18 6-APB benzofuran-6-yl-propane-2-

amine 

Powder Beige 16/01/2013 6 

19 6-APB 6-(2-aminopropyl)benzofuran Powder Dirty white 16/01/2013 2 
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20 5-MAPB 5-MAPB (part missingfor label 

overlapping) benzofuran-5-yl)-

N-methylpropane-2-amine 

Tablets Salmon 

pink 

28/01/2013 5 

21 MPA 1-(thiophen-2-yl)-2-

methylaminopropamine 

Powder Dirty white 28/01/2013 7 

22 MPA N-methyl-1-(thiophen-2-

yl)propane-2-amine 

Powder Beige 16/01/2013 6 

23 MPA methiopropamine Powder Beige 28/01/2013 3 

24 MPA MPA Powder Dirty white 28/01/2013 8  

25 MPA methiopropamine; N-methyl-1-

(thiophen-2-yl)propan-2-amine 

Powder Dirty white 16/01/2013 2 

26 MPA MPA Powder Dirty white 28/01/2013 5 

Benzodiazepines  

27 Etizolam 6-(2-chlorophenyl)-4-ethyl-13-

methyl-3-thia-1,8,11,12-

teraazatricyclo[8.3.0.02,6]tridec

a-2(6),4,7,10,12-pentaene 

Tablets  White and 

turquoise 

coating 

28/01/2013 5 

28 Etizolam 6-(2-chlorophenyl)-4-ethyl-13-

methyl-3-thia-1,8,11,12-

teraazatricyclo[8.3.0.02,6]tridec

a-2(6),4,7,10,12-pentaene 

Tablets  White and 

turquoise 

coating 

16/01/2013 6 

29 Etizolam Etizolam Tablets  White and 

turquoise 

coating 

28/01/2013 3 

30 Etizolam Etizolam Tablets  White 

powder with 

pink coating 

16/01/2013 2  

31 Etizolam Etizolam Tablets  White 

powder with 

turquoise 

coating 

28/01/2013 5 

32 Etizolam Etizolam Pellets White 

powder with 

turquoise 

coating 

28/01/2013 8 

33 Pyrazolam  1-methyl[1,2,4]triazol-6-(2-

pyridinyl)-8-bromo-1,4-

benzodiazepine 

Pellets White and 

pale yellow  

28/01/2013 8 

34 Pyrazolam  1-methyl[1,2,4]triazol-6-(2-

pyridinyl)-8-bromo-1,4-

benzodiazepine 

Tablets  White and 

pale yellow 

28/01/2013 5 

35 Pyrazolam  1-methyl[1,2,4]triazol-6-(2-

pyridinyl)-8-bromo-1,4-

benzodiazepine 

Tablets  White and 

pale yellow 

28/01/2013 5 

Piperidines & Pyrrolidines 

36 Ethyl 

phenidate  

(RS)ethyl-2-phenyl-2-piperidin-

2-ylacetate 

Powder White 28/01/2013 5  

37 Ethyl 

phenidate  

(RS)ethyl-2-phenyl-2-piperidin-

2-ylacetate 

Powder Dirty white 28/01/2013 7 

38 Ethyl 

phenidate  

Ethylphenidate  Powder Dirty white 28/01/2013 3  

39 Ethyl 

phenidate  

Ethylphenidate  Powder Dirty white 28/01/2013 8  

40 Ethyl 

phenidate  

Ethylphenidate; ethyl-2-phenyl-

2-piperidin-2-ylacetate 

Powder Dirty white 16/01/2013 2 

41 Ethyl 

phenidate  

Ethylphenidate  Powder Dirty white 28/01/2013 3 

Plants & Extracts 

42 LSA 

Morning 

Glory Seeds 

None Seeds Cappuccino 

with black 

pieces from  

seed shells 

 

14/02/2014 9 

http://www.buckledbonzi.co.uk/
http://www.buyanychem.com/rearch-chemicals
http://www.rc-lab.co.uk/
http://www.benzo_fury.me.uk/
http://www.buckledbonzi.co.uk/
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Other 

43 DXM DXM; dextromethorphan; (+)-

3-methoxy-17-methyl-

(9α,13α,14α)-mor 

Powder Dirty white 28/01/2013 3 

44 DXM  DXM Powder White 28/01/2013 10 

45 DXM  DXM Powder Dirty white 28/01/2013 10 

46 DXM  DXM Powder Dirty white 28/01/2013 10 

47 DXM DXM Powder White 14/02/2012 11 

Branded products 

48 Blow Unknown Powder Dirty white 28/01/2013 9 

49 Blurberry Aminoindan, caffeine, cola 

vera, amino acid complex. 

Capsules     

content 

Brown 01/03/2012 9 

50 High beams  Ipomoea convolvulaceae, 

amino acid complex, cola vera, 

zingiber officinale, ginseng, 

caffeine. 

Capsules 

content 

Cinnamon 

brown 

14/02/2014 9 

51 Magic Beans Caffeine, cola vera, amino acid 

complex. 

Capsules 

content 

Beige 14/02/2014 9 

52 Pink 

Champagnes  

Aminoindan, caffeine, cola 

vera, amino acid complex. 

Capsules 

content 

Cinnamon 

brown 

14/02/2012 9 

53 Pink 

Champagnes  

Aminoindan, caffeine, cola 

vera, amino acid complex. 

Capsules 

content 

Cinnamon 

brown 

14/02/2012 9 

54 Pink 

Champagnes  

Aminoindan, caffeine, cola 

vera, amino acid complex. 

Capsules 

content 

Cinnamon 

brown 

14/02/2012 9 

55 Pink 

Champagnes  

Aminoindan, caffeine, cola 

vera, amino acid complex. 

Capsules 

content 

Cinnamon 

brown 

14/02/2012 9 

56 Pink 

Panthers 

1-(thiophen-2-yl)-2-methyl 

aminopropane, 5,6-

methylenedioxy-2-aminoindan 

Capsules 

content 

Dirty white 14/02/2014 12 

57 Punk plus  L-tyrosine, caffeine, 

gelatin,niacinamide, green tea 

extracts, salix alba, 

eleuterococcus senticosus, 

taurine, poveira cupono, colo 

vera, magnesium stearate 

Capsules 

content 

Light brown 14/02/2014 9  

58 Recovery  Ascorbic acid, niacinamide, 

ground rice powder, D-alpha, 

tocopheryl acetate, niacinamide, 

ferrous fumarate, retinyl 

acetate, calciun pantothenate, 

chromium chloride, folic acid, 

cyanocobalamin, 

cholecalciferol, pyridoxine HCl, 

thiamine concentrate, 

riboflavin, magnesium stearate 

Capsules 

content 

Beige 14/02/2014 9 

59 Route 56 Route 56 Pellets Dark pink 28/01/2013 3 

60 White Pearls  Ketones, caffeine, zingiber 

officinale, amino acid complex. 

Capsules 

content 

Pale yellow 14/02/2012 9  

1For the website details, see Appendix B Table A3.1. 

Powders and capsules were emptied into clear glass vials (Kimble Chase vial screw thread with 

PTFE cap, China) for Raman analysis, while the pellets and tablets were crushed using an agate 

mortar and pestle before transferring into glass vials. The glass vials were vortex-mixed before 

collection of each spectrum using a VORTEX-GENIE2 (Scientific industries, Inc., USA) 

mixed for 30 sec, shaken, then the process repeated. For GC-EI-MS analysis, solutions (1 mg 

mL-1) of each standard and product was prepared in HPLC grade methanol from Fisher 

http://www.herbalhighs.co.uk/
http://www.herbalhigh.co.uk/
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Scientific (Loughborough, UK) except for the benzodiazepine tablets, which were concentrated 

to ca. 45 mg mL-1 and filtered through 0.2 µm PTFE membrane filters (National Scientific 

Company, USA) prior to analysis.  

3.2.2. Instrumentations and methods 

Two handheld Raman instruments with different laser sources, XantusTM-1 and FirstGuardTM 

(SciMed Ltd, Rigaku, USA), were employed for the analysis of NPS products. Specifications 

of both instruments as shown in Table 3.3 are very similar. One of the main differences in 

specifications is the laser λex. 

Table 3. 3: Specifications of XantusTM-1 and FirstGuardTM handheld Raman instruments 

Raman Instrument Specifications XantusTM-1 FirstGuardTM 

Instrument image1 

 

 

Laser λex (nm) 785  1064  

Laser output power (mW) 30 - 490  30 - 490  

Laser spot diameter (µm) 200 100 

Spectral resolution (cm-1) 7 - 10  15 - 18  

Spectral range (cm-1) 200 - 2000  200 - 2000  

Numerical aperture 0.3 0.3 

Grating Transmission volume phase 

(VPG™) 

Transmission volume phase 

(VPG™) 

Detector TE Cooled CCD TE Cooled InGaAs 

Working distance (mm) 20 20 

Weight (kg) 2.2  2.7  

Dimensions (LxWxH) (cm) 12.5 x 23.3 x 8.5  12.2 x 31.1 x 31.4  

Library Standard library (266 items) and 

user library 

Standard library (266 items) and 

user library 

Operation and analysis software Micro2020, 

WindowsXP/Vista/Win7 

Micro2020, 

WindowsXP/Vista/Win7 

Data analysis Grams, Unscrambler Grams, Unscrambler 

Data export formats SPC and csv SPC and csv 

Algorithm Percentage hit quality index (% 

HQI) 

Percentage hit quality index (% 

HQI) 

Operating temperature (°C) -10 to +30 -10 to +30 

Battery Switchable lithium ion battery (4 

hours operation) 

Switchable lithium ion battery (4 

hours operation) 

Other no adjustable probe tip  Focus adjustable probe tip. 
1Instrument images reproduced with courtesy of SciMed, Rigaku, USA. 

Four methods were developed to collect the Raman spectra depending on the nature of the 

substance and included method A (1000 ms exposure time; 300 mW laser power; 2 

accumulations), method B (5000 ms exposure time; 490 mW laser power; 2 accumulations), 
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method C (500 ms exposure time; 200 mW laser power; 2 accumulations), and method D (1000 

ms exposure time; 100 mW - 1 mW laser power; 2 – 25 accumulations). All samples were 

initially run using method A, but method B was used for samples that displayed a poor Raman 

signal. Method C was used for samples that were burned from long exposure time and/or high 

laser power (i.e. coloured samples or samples containing fluorescing chemicals). Method D 

was developed in an attempt to collect Raman signals from challenging samples, which 

exhibited intense fluorescent background and/ or burned with method C. This was performed 

by adopting an iterative approach to reducing the laser power and increasing the number of 

accumulations. All methods used baseline correction, and the dark background was corrected 

for every 15 minutes. The instruments were calibrated each day immediately before analysis 

using a benzonitrile reference standard (Rigaku, US). Most reference standards and products 

were analysed directly through glass vials after optimisation of the vial holder attachment with 

respect to the focal point. For NPS standards that were limited in quantity, approximately 2 mg 

were placed on aluminium plates (HSA14521A - Weight dish alum 43 mm, Fisherbrand) and 

the signal was optimised using the adjustable probe tip. All substances were analysed in 

triplicate. Raman spectra of the reference substances (n = 28) were added to the on-board 

factory spectral library, which was composed of 260+ spectra of common chemical substances.  

For a ‘first pass’ identification, the spectra from the NPS products were automatically 

compared to the on-board reference library and reported as a percentage hit quality index (% 

HQI) correlation. The mean ± the standard deviation (SD) of the top hit was calculated from 

the triplicate measurements and reported. If the correlations between the triplicate analyses 

were inconsistent, this was reported instead of a mean value. The findings of the matching 

algorithms were evaluated by a comparison to the GC-MS results and also by comparing the 

spectra of the products to the reference spectra. Miss S. Girotto and Miss B. Berti, visiting 

Erasmus students, contributed to data collection under my supervision. 

3.2.3. Confirmatory analysis of NPS and related substances using gas chromatography – 

electron ionisation-mass spectrometry (GC-EI-MS) 

GC-MS analysis was used to confirm the identity of compounds present in the purchased 

internet products. The method was adapted from Kellett [235]. The analysis was performed 

using electron ionisation (EI) only. The mass spectra obtained were compared to the purchased 

reference standards and the following EI spectral libraries: NIST (Version 1.0.2.2), 
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SWGDRUG MS (Version 2.1 (2014)) and Cayman (Version 04292014). Miss S. Girotto, a 

visiting Erasmus student, contributed to data collection under my supervision. 

3.3. Results and Discussion 

3.3.1. Raman analysis of purchased reference standards 

Eight NPS, eight adulterants and 12 cutting agents were purchased as reference standards from 

the internet. A spectrum was collected for each substance and stored in the on-board library of 

both handheld instruments. Figure 3.1 shows the Raman spectra of NPS reference standards 

uploaded in the on-board library. 

 

Figure 3. 1: Raman spectra of NPS reference standards uploaded in on-board library 

(FirstGuardTM (1064 nm)). 

The examination of the reference spectra for NPS showed that the aminoindane analogues are 

distinguishable by characteristic Raman peaks at 713 and 1350 cm-1, possibly attributed to –

C=C– cis-di-substituted deformation vibrations and methoxy stretching vibration of the 

methylenedioxy moiety in 5,6-MDAI [138]. The chemical structures of the arylalkylamine 5-

APB and its positional isomer 6-APB are very similar as they only differ in the substitution 

position of the alkylamine on the 5- and 6- positions of the benzofuran group respectively. 

However, their Raman spectra can be distinguished from each other by a key discriminating 

peak at 1350 cm-1 for 6-APB. 

The spectrum for MPA, another arylalkylamine, has shown a prominent peak at 1438 cm-1. 

Similarly, the spectrum for etizolam showed a characteristic peak at 1496 cm-1. The piperidine 

MPD showed numerous characteristic peaks at 996, 1189, 1431, 1587 and 1723 cm-1. DXM 
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from the ‘other’ category also showed numerous characteristic peaks at 686, 853, 1245 and 

1439 cm-1. 

To test the accuracy and selectivity of each instrument, the standards were match-tested against 

the library spectra as test samples. Table 3.4 shows the % HQI results of both handheld Raman 

instruments. Characteristic Raman peaks were identified using a laser λex of 785 nm.  

Table 3. 4: Validation of NPS reference standards using two handheld Raman spectrometers 

(XantusTM-1 (785 nm) and FirstGuardTM (1064 nm)) and on board libraries. 

  
XantusTM-1 

  (785 nm) 

% HQI ± SD1 

FirstGuardTM 

  (1064 nm) 

% HQI ± SD 

Characteristic Raman peaks 

at λex 785 nm (cm-1) 

Aminoindanes 

2-AI  99.51 ± 0.02 72 ± 1 427, 496, 779, 855, 1021 

5,6-MDAI 93 ± 2 78 ± 2 715, 782, 855, 1351  

Arylalkylamines 

5-APB  97 ± 2 94.0 ± 0.2 763, 878, 1026, 1266, 1324, 1535 

6-APB  99.6 ± 0.2 74.3 ± 0.1 
756, 1026, 1527, 1621, 1258, 1310, 

1356 

MPA  90 ± 10 85 ± 1 
565, 610, 684, 743, 823, 850, 1068, 

1085, 1442 

Benzodiazepines 

Etizolam 97.9 ± 0.4 96 ± 3 437, 642, 1032, 1495 

Piperidines & Pyrrolidines 

MPD 99.0 ± 0.2 95 ± 2 999, 622, 1199, 1272, 1445, 1594 

Other 

DXM 99.93 ±  0.06 96 ± 1 686, 853, 1051, 1250, 1446  
1SD = standard deviation 

Using the 785 nm source, 27 out of 28 standards were consistent with their library signature 

with % HQI values ranging from 90 ± 10 to 100 %. Microcrystalline cellulose resulted in 

inconsistent correlations to LAC and amylose from potato. The spectra indicated that the 

mismatch was likely the result of a high fluorescent background with poorly defined Raman 

features seen for all three replicates. When using the longer 1064 nm wavelength, 27 out of 28 

standards correlated to their library signature. Of those, 23 standards were consistent with their 

library signature with % HQIs ranging from 90.0 ± 0.9 to 100.0 ± 0.1 %. Four samples 

correlated with % HQIs < 90 %. These were 2-AI, 5,6-MDAI, 6-APB and MPA with % HQI 

ranging from 72 ± 1 to 85 ± 1. The only mismatch for the 1064 nm instrument was for MgS. 

The MgS spectrum correlated to the signature of bees wax, a structurally similar compound, as 

the first hit (90 ± 4 % HQI), but correlated to MgS in all measurements as the second hit (80 ± 
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2 % HQI). In summary, both instruments showed selectivity for the majority of standards run 

as test samples, but fluorescence affected one sample using the 785 nm and poor Raman 

scatterers gave slightly reduced % HQIs (i.e. 70 – 90 %) for the 1064 nm. Slight reductions in 

% HQI for these particular standards were perhaps also a consequence of needing to run these 

standards on aluminium plates with a small sample size. Given the reliable performance of both 

instruments on known reference standards, the same protocols were applied to complex NPS 

internet samples. Although an optimisation protocol was followed, variations in the beamwidth 

and distance to the target substance can influence spectral quality and, hence affecting the 

measurement reproducibility and % HQI value during validation with pure and NPS products.    

3.3.2. Raman and GC-MS analysis of NPS internet products  

The effect of using different λex (i.e. 785 and 1064 nm) for the identification of NPS internet 

products was assessed. In this study, 60 NPS products were analysed using two handheld 

Raman instruments using a ‘first pass’ in-built matching algorithm and evaluation of Raman 

spectra. The NPS products analysed covered a wide range of categories according to the 

EMCDDA classification [30] (Table 3.2). GC-MS was employed to confirm the identity of 

volatile/ semi-volatile compounds present in the NPS products. 

3.3.2.1. Aminoindanes 

Twelve aminoindane samples, purchased from the internet, were analysed using both Raman 

instruments and GC-MS (Table 3.5). Internet products included three of the most popular 

aminoindane substances, 2-AI, 5-IAI and MDAI [214, 236]. Aminoindanes are amphetamine 

analogues [237] and have been shown to be potent serotonin-releasing substances [214]. The 

GC-MS results indicated that 11 out of the 12 products did contain an aminoindane, while only 

nine products contained the aminoindane reported on the label claim. Two aminoindane 

substances only (i.e. 2-AI and 5,6-MDAI) were identified [226]. The adulterants found 

included CAF and MPA [238]. Two samples, P4 and P10, showed peaks in the chromatogram 

that were not identified via the MS libraries. The GC-MS results were then used to compare 

with the Raman results. When using the standard 785 nm laser, only four of the NPS products 

(i.e. P6, 8, 9 and 12) correlated to an aminoindane substance using the in-built algorithm, even 

though most samples were confirmed to contain an aminoindane via GC-MS. These four 

products correlated to 5,6-MDAI, as confirmed by GC-MS, with % HQIs ranging from 60 ± 8 

to 84 ± 10. A high fluorescent background and low Raman signal were observed for P1, 2, 4, 

10 and 11. These products correlated to MPA at % HQIs ranging from 96.3 ± 0.8 to 97.0 ± 0.3, 
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but MPA was not confirmed using GC-MS except in P11. This was likely the result of the MPA 

standard spectrum (i.e. the spectral library signature) displaying a high fluorescent background 

(Figure 3.2). Consequently, the MPA signature correlated highly to NPS product spectra with 

similar backgrounds and little to no Raman bands, resulting in the false positives.  

 
Figure 3. 2: Raman spectra of MPA reference standard using a) XantusTM-1 (λex = 785 nm) 

and b) FirstGuardTM (λex = 1064 nm). 

For example, the Raman spectrum of P11 (Figure 3.3a) showed small peaks at ca. 714, 782 and 

864 cm-1, which match Raman bands for 5,6-MDAI, but due to the large fluorescent 

background, this sample correlated to MPA at 96.5 ± 0.2 %. As the Raman band for MPA at 

1438 cm-1 was not visible, this correlation was also likely a false positive. Products 5 and 7 

showed a few higher intensity Raman peaks on a fluorescent background but resulted in no 

correlations (‘no match’). This may have occurred as the HQI algorithm considers fluorescence 

signals as additional characteristics of the unknown sample [228]. Interestingly, whilst P3 was 

confirmed to contain both 5,6-MDAI and CAF, the spectra collected using the 785 nm source 

correlated to CAF (87 ± 2 % HQI) demonstrating the challenge of identifying NPS in a complex 

mixture adulterated with a relatively strong Raman scatterer.  

The 12 samples were then analysed using the 1064 nm source, where 9 of the 12 samples (P1, 

2, 5 - 9, 11 and 12) correlated to the NPS present in the sample with HQIs ranging from 60 ± 

6 to 91.3 ± 0.4 %. Again, P3 correlated to the adulterant CAF (80 ± 10 %), which was confirmed 

from the GC-MS analysis, while P4 correlated to benzyl alcohol (80 ± 2 %), which was not 

confirmed. Three samples (i.e. P3, 4, and 11) had mixtures of active ingredients indicated by 

GC-MS, where the highest Raman correlation presumably indicated the active ingredient either 

in highest concentration or with the strongest Raman signal(s). When using the 1064 nm 

instrument, fluorescence was significantly reduced for many of the products as shown for P11 
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which correlated to MDAI at 64 ± 2 % HQI (Figure 3.3b). This resulted in improved spectral 

definition and subsequent identification.  

    
 

        

Figure 3. 3: Raman spectra of P11 (MDAI), P23 (MPA), P27 (etizolam), P39 (EPD), P43 

(DXM) and P53 (Pink Champagnes) using 785 nm (a) and 1064 nm (b) excitation wavelengths. 

Product names represent the label claim and not the sample composition that is presented in 

Tables 3.5 – 3.7. The spectra were normalised to the maximum peak.  
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Table 3. 5: Results from the analysis of aminoindane and arylalkylamine internet products 

using two handheld Raman spectrometers (ex = 785 and 1064 nm) and GC-MS1 

Product       

No. 

Product   

  name 

Handheld Raman 

785 nm 

Handheld Raman 

1064 nm 

GC-MS 

 

    ID % HQI ID % HQI RT           

(min) 

Base 

Peak 

(m/z) 

MS ID 

Aminoindanes 

1 2-AI 

 

MPA3 96.6 ± 0.4 2-AI 80 ± 4 9.9             

12.6 

133               

160 

2-AI                                                      

5,6-MDAI 

2 2-AI MPA3 96.3 ± 0.8 2-AI 91.3 ± 0.4 9.8 133 2-AI                    

3 5-IAI CAF 87 ± 2 CAF 80 ± 10 12.6                     

14.4 

160                       

194  

5,6-MDAI                                                

CAF 

4 5-IAI MPA3 96.0 ± 0.7 Benzyl 

Alcohol 

80 ± 2 9.0                         

9.4                       

12.6                           

14.64      

58                          

133                                                       

160                            

86 

MPA                                                      

2-AI                                                     

5,6-MDAI                                                 

NC                       

5 MDAI No match 5,6-MDAI   60 ± 6 12.8 160 5,6-MDAI   

6 MDAI 5,6-MDAI 84 ± 10 5,6-MDAI   80.3 ± 0.2 12.8 160 5,6-MDAI   

7 MDAI No match 5,6-MDAI   80 ± 2 12.7 160 5,6-MDAI   

8 MDAI 5,6-MDAI 60 ± 8 5,6-MDAI   80.7 ± 0.1 12.8 160 5,6-MDAI   

9 MDAI 5,6-MDAI 75 ± 6 5,6-MDAI   80.1 ± 0.5 12.9 160 5,6-MDAI   

10 MDAI MPA3 97.0 ± 0.3 No match 

 

14.0                          

14.4                          

15.2                           

15.5 

192                            

191                            

206                            

177  

NC 

NC                       

NC             

NC 

11 MDAI  MPA3 96.5 ± 0.2 5,6-MDAI   64.0 ± 1.8 8.7                         

12.6 

58                         

160  

MPA                                                   

5,6-MDAI 

12 MDAI 5,6-MDAI 67 ± 4 5,6-MDAI   80 ± 2 12.8 160 5,6-MDAI   

Arylalkylamines 

13 APB  MPA3 95.2 ± 0.4 5-APB 80 ± 2 11.6            

16.4                        

44                

126                          

5-APB                                  

Pyrovalerone2                                         

14 5-APB MPA3 97.2 ± 0.6 5-APB 55.0 ± 0.6 11.6 44 5-APB 

15 5-APB MPA3 94 ± 1 5-APB 60 ± 1 11.4 44 5-APB  

16 5-APB MPA3 95.8 ± 0.7 No match 11.7 44 5-APB  

17 5-APB MPA3 95.1 ± 0.1 Data acquisition failed 11.8                          

12.3 

44                              

134 

5-APB                                                     

5-APDB2 

18 6-APB Inconsistent correlations MCC 77.4 ± 0.2 11.6 44 5-APB  

19 6-APB Inconsistent correlations 

 

6-APB 50 ± 3 11.4                          

11.7                       

12.9  

44                              

44                        

160 

5-APB                                                    

6-APB                                                 

5,6-MDAI 

20 5-MAPB Inconsistent correlations 5-APB 60 ± 4 12.1 58 5-MAPB2 

21 MPA MPA3 94 ± 2 MPA 82.9 ± 0.7 9.1                       

16.6 

58                              

271 

MPA                                                

DXM 

22 MPA MPA3 98.1 ± 0.2 MPA 60 ± 2 9.2 58 MPA 

23 MPA MPA3 97.2 ± 0.1 MPA 78.2 ± 0.8 8.8            

11.9                    

12.0                     

14.4                     

17.4 

58                               

58                               

44                               

194                             

110 

MPA                                                      

NC                                                         

6-APB                                                                                                                                                                                                                                

CAF                                                         

5-MeO-DALT2 

24 MPA MPA3 98.1 ± 0.2 MPA 81.2 ± 0.8 8.8 58 MPA 

25 MPA MPA3 96 ± 1 MPA 80 ± 2 8.7 58 MPA 

26 MPA MPA3 96 ± 3 MPA 80 ± 2 8.8 58 MPA  
1ID: identification; RT: retention time; NC: not confirmed. 
2Raman spectrum of substance not present in both Raman libraries. 
3Suspected false positive. 

By examining the product spectra and comparing them to reference spectra (Figure 3.4), P1 

showed Raman peaks, which were consistent with 2-AI (i.e. at 775, 844, 1020, 1205, and 1236 

cm-1) (Figure 3.4a). Although GC-MS analysis confirmed that both 2-AI and 5,6-MDAI were 
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present in this product. The product P11 was also confirmed to contain two NPS, MPA and 

5,6-MDAI. Most peaks were consistent with 5,6-MDAI (i.e. at 713 and 1355 cm-1). However, 

characteristic peaks for MPA were also visible at 1038 and 1433 cm-1 (Figure 3.4a). 

Interestingly, two products, P4 and P11, contained a combination of MDAI and MPA, which 

has been reported to have synergistic and/ or additive psychoactive effects [239].  

  

   

   

Figure 3. 4: Raman spectra of selected products and associated reference spectra from the 

aminoindane (a), arylalkylamine (b), benzodiazepine (c), piperidine & pyrrolidine (d), ‘other’ 

(e), and branded product (f) EMCDDA categories using a 1064 nm laser excitation wavelength. 

Product numbers and reference names are labelled on the spectra. The spectra were normalised 

to the maximum peak. 

In summary, the use of a lower energy wavelength (i.e. 1064 nm) reduced fluorescence, which 

improved the S/N and, subsequently the matching identification of the NPS for 5 of the 12 

aminoindane internet products, resulting in a total of 9 products with a correctly identified NPS. 

a) b) 

d) 

f) e) 

c) 
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3.3.2.2. Arylalkylamines 

Fourteen arylalkylamines samples, purchased from the internet, were analysed using both 

Raman instruments and GC-MS (Table 3.5). These included the aminopropylbenzofurans 

(APB) isomer/analogues 5-APB, 6-APB and 1-(Benzofuran-5-yl)-N-methylpropan-2-amine 

(5-MAPB). Methyl aminopropamine (MPA) products, reported to exert stimulant effects [239], 

were also investigated. The GC-MS results indicated that all 14 products contained an 

arylalkylamine, while 13 products contained the arylalkylamine reported on the label claim. 

The arylalkylamine substances identified via GC-MS were 5-APB [240], 6-APB [240], 5-

MAPB,  MPA [238] and 5-APDB (1-(2,3-dihydro-1-benzofuran-5-yl)propan-2-amine). Other 

adulterants found included pyrovalerone [241], MDAI [226], DXM [227], CAF [224, 225] and 

5-MeO-DALT (5-methoxy-N-N-diallyltryptamine) [219]. One sample, P23, showed one peak 

in the chromatogram that was not confirmed using MS. The GC-MS results were then used to 

compare with the Raman results.  

When using the standard 785 nm laser, most samples (i.e. P13 - P17 and P21 - P26) correlated 

to MPA (94 ± 2 to 98.1 ± 0.2 % HQI) while three (i.e. P18 - P20) resulted in inconsistent 

correlations. Upon investigation of the spectra (see Figure 3.3a for the spectrum of P23), all 

samples showed intense fluorescent background with little to no distinct Raman bands 

indicating false positive correlations to the MPA signature. Therefore, after visual inspection 

it was suggested that no true positive correlations to an arylalkylamine were found in any of 

the 14 products using the 785 nm source.  

The 14 products were then analysed using the 1064 nm source, where 10 products (i.e. P13 - 

15, 19, 21 - 26) correlated to the NPS present in the sample with HQIs ranging from 50 ± 3 to 

82.9 ± 0.7 %. Again, a reduction in fluorescence improved S/N in spectra and, thus matching 

identification of the NPS products. The spectra from the NPS products that correlated to MPA 

using an λex of 1064 nm showed a distinct peak around 1442 cm-1 with no fluorescence 

indicating true positive correlations (see Figure 3.3b for the spectrum of P23). Figure 3.4b 

compares the spectra for P23 (MPA) and P13 (5-APB) and their associated reference spectra. 

By comparing the products and reference spectra, MPA was identified by a unique strong 

dominant peak, as previously described. For P13, the Raman spectrum showed peaks at 758, 

1258, 1326, and 1530 cm-1, which were consistent with 5-APB; the spectrum correlated to 5-

APB with a % HQI of 80 ± 2. There was a correlation to MCC (77.4 ± 0.2 %) for P18 even 

though 5-APB was present in the sample. This suggests that the cutting agent concentration 



 

99 

 

may potentially be incorporated in the mixture in a higher proportion compared to the active 

ingredient [128].  

In the case of P20, a 60 ± 4 % correlation to 5-APB was found as no 5-MAPB signature was 

present in the Raman library. This demonstrates that a substance may be correlated to a similar 

structural analogue, which can assist with identifying suspect previously unseen NPS. Samples 

P16 and P17 resulted in ‘no match’ and failed data acquisition due to sample burning, even 

when using low power, as they were both of a dark colour [120].  

Five products (i.e. P13, 17, 19, 21, and 23) were shown by GC-MS to contain a mixture of 

active ingredients, where the highest Raman correlation indicated the active ingredient either 

found in highest concentration or with the strongest Raman signal (Figure 3.3). For example, 

P23 was shown to contain MPA, 6-APB, 5-MeO-DALT and CAF by GC-MS, yet correlated 

to MPA at 78.2 ± 0.8 % using the 1064 nm Raman instrument. Figure 3.3b presents the Raman 

spectrum for this sample clearly showing a Raman band at ca. 1438 cm-1 for MPA using the 

1064 nm source. The use of a lower energy laser wavelength reduced fluorescence from both 

the cutting agents incorporated in the mixture and coloured samples and, subsequently 

improved identification of the NPS ingredient for 11 of 14 arylalkylamines products.  

3.2.2.3. Benzodiazepines 

Nine benzodiazepine (BZD) samples, purchased from the internet, were analysed using both 

Raman instruments and GC-MS (Table 3.6). The products included two different BZDs, 

etizolam and pyrazolam. Benzodiazepines are pharmaceuticals, which exert depressant, 

anxiolytic, hypnotic and muscle relaxant effects. Due to the high level of excipients present in 

the tablet/ pellet formulations, it was necessary to remove the coating and increase the 

concentration of the analysis solution (ca. 45 mg mL-1) to enable detection of the NPS via GC-

MS. Both etizolam and pyrazolam were then identified in all nine samples (i.e. P27 – P35) 

using GC-MS. Etizolam was confirmed with a base peak of m/z 342 and a retention time of 23 

min, whereas pyrazolam was confirmed with a base peak of m/z 353 and a retention time of 

13.5 min.  

Both P30 and P32 also contained unclaimed cannabinoids, which included 1-naphthalenyl[1-

(4-penten-1-yl)-1H-indol-3-yl]-methanone (JWH-022), 1-naphthalenyl[1-(4-penten-1-yl)-1H-

indol-3-yl]-methanone (AM-2201) and 1-Naphthoyl indole. The combination of cannabinoids 

with BZDs could be intentional as synthetic cannabinoids, such as the receptor agonist AM-
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2201 (aka ‘Black Mamba’), have been reported to induce tonic-clonic seizures [242], while 

BZDs have known anti-convulsant effects. Interestingly, P30 and P32 also shared three active 

ingredients despite being purchased from different websites and having a different appearance, 

suggesting a similar supply chain.  

When using the standard 785 nm laser, no correlations to a BZD were found in any of the nine 

samples even those samples, which were confirmed to contain a BZD via GC-MS. Pyrazolam 

was not present in the Raman libraries but the products were included to investigate analogue 

selectivity. However, P30, P32 and P33 - P35 correlated to the cutting agents LAC (87 ± 5 to 

91 ± 5 %) and MCC (83 ± 3 to 87 ± 2 %) respectively. High fluorescent background occurred 

in four samples (i.e. P27 – P29 and P31), which again resulted in false positive correlations to 

MPA (96.9 ± 0.4 to 98.5 ± 0.7 %) as MPA’s characteristic peak at 1438 cm-1 was not visible in 

the spectra.  

Using the 1064 nm source, no correlations to a BZD resulted for any of the nine samples. 

However, P30, P32 and P33 - P35 correlated to the same cutting agents as found with the 785 

nm source with similar % HQIs. Due to reduced fluorescence, P27 – P29 correlated to MCC 

(70 ± 1 to 70 ± 9 %). For example, Figure 3.4c demonstrates this reduction in fluorescence and 

subsequent matching to MCC when comparing the two wavelength sources for P27. The 

subsequent identification of MCC is better illustrated in Figure 3.4c using P27 and P33 where 

the MCC signature is clearly visible when comparing it with an MCC reference (c.a., 397, 

1094, and 1355 cm-1). For P27, the strong signature peak of etizolam at 1496 cm-1 (Figure 3.1) 

is clearly not visible. As mentioned above both MCC and LAC do not readily dissolve in 

methanol and have low volatility; hence, it is often not detected with GC-MS analysis, but may 

still be present in the sample. Microcrystalline cellulose is a common diluent used in 

pharmaceutical tablets and LAC is commonly used in direct compression tableting applications 

and is also used as a tablet filler and binder. As most of the BZD products were in tablet or 

pellet forms, the presence of these excipients in high concentrations is likely. One sample P31 

correlated to a factory library signature labelled as phosphorus at 60 ± 3 %. 

Products 27, 28 and 29 were purchased from three different websites (Table 3.2); however, the 

three batches, all turquoise in colour, have been shown to contain MCC and etizolam using the 

1064 nm Raman spectrometer and GC-MS, respectively. This may indicate that despite being 

sold on different websites and compressed with different tablet dies, the powder mix could 

have originated from the same supplier. 
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Table 3. 6: Results from the analysis of benzodiazepine, piperidine & pyrrolidine, plants & 

extracts and ‘other’ internet products using two handheld Raman spectrometers (ex = 785 and 

1064 nm) and GC-MS1 

Product       

No. 

Product  

  name 

Handheld Raman 

785 nm 

Handheld Raman 

1064 nm 

GC-MS 

    ID % HQI ID % HQI RT            

(min) 

Base 

Peak 

(m/z) 

MS ID 

Benzodiazepines 

27 Etizolam MPA3 96.9 ± 0.4 MCC 70 ± 1 23.1 342 Etizolam 

28 Etizolam MPA3 97.49 ± 0.05 MCC 70 ± 4 23.2 342 Etizolam 

29 Etizolam MPA3 96.9 ± 0.7 MCC 70 ± 9 23.2 342 Etizolam 

30 Etizolam LAC 87 ± 5 LAC 80 ± 7 16.9                           

19.3                          

22.9                      

23.2 

339                        

359                            

270                             

342 

JWH-0222                                             

AM-22012                                                  

1-NI2,4                         

Etizolam 

31 Etizolam MPA3 98.5 ± 0.7 Phospho-

rous 

60 ± 3 23.1 342 Etizolam 

32 Etizolam LAC 91 ± 5 LAC 88.6 ± 2.3 16.7                           

21.8                     

22.9                     

23.2 

339                            

268                            

270                             

342 

JWH-0222                                                 

1-N-2-MI2,4                

1-NI2,4                      

Etizolam  

33 Pyrazolam  MCC 86 ± 2 MCC 80 ± 6 13.5 353 Pyrazolam2 

34 Pyrazolam  MCC 87 ± 2 MCC 90 ± 2 13.5 353 Pyrazolam2 

35 Pyrazolam  MCC 83 ± 3 MCC 81 ± 3 13.5 353 Pyrazolam2 

Piperidines & pyrrolidines 

36 Ethyl 

phenidate  

MPD 64 ± 4 MPD 76.6 ± 0.4 14.0 84 MPD 

37 Ethyl 

phenidate  

MPD 65 ± 2 MPD 76.8 ± 0.4 14.0 84 MPD 

38 Ethyl 

phenidate  

Inconsistent correlations 

 

No match 

 

19.4 359 AM-22012 

39 Ethyl 

phenidate  

Cetyl-

pyridinium 

chloride 

61 ± 20 MPD 80 ± 2 14.0 84 MPD 

40 Ethyl 

phenidate  

MPD 63 ± 5 MPD 76.6 ± 0.2 14.0 84 MPD 

41 Ethyl 

phenidate  

Inconsistent correlations 

 

No match 

 

19.4 359 AM-22012 

Plants & Extracts 

42 LSA 

Morning 

Glory Seeds 

MPA3 96 ± 2 No match 

 

No match 

 

 

‘Other’ 

43 DXM Talc 69 ± 3 CAF 80 ± 10 14.4                      

14.8 

194                        

190 

CAF                                                

MXE2 

44 DXM  Inconsistent correlations DXM 60 ± 9 16.6 271 DXM 

45 DXM  DXM 57 ± 1 DXM 64.0 ± 0.4 16.6 271 DXM 

46 DXM  DXM 59 ± 6 DXM 63.8 ± 0.4 16.6 271 DXM  

47 DXM DXM 84.1 ± 0.2 DXM 90 ± 4 16.6 271 DXM 
1ID: identification; RT: retention time; NC: not confirmed. 
2Raman spectrum of substance not present in both Raman libraries. 
3Suspected false positive. 
41-NI: 1-Naphthoyl indole; 1-N-2-MI: 1-Naphthoyl-2-methyl indole. 

In summary, no NPS ingredients were identified in the BZD products using the instruments 

matching algorithms and the visual examination of Raman spectra. The products were largely 

composed of excipients used for tablet and pellet manufacture (i.e. MCC and LAC), which was 

also observed in a recent study using a benchtop Raman spectrometer [140]. A comparison of 
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the spectra from the 785 and 1064 nm showed a reduction in fluorescence, which did improve 

identification of the cutting agents in six of the nine products. This indicates that for these 

BZDs and perhaps other NPS in tablet form, identification of the active ingredient can be 

challenging (i.e. resulting in false negatives), as the amount of active ingredient may 

significantly be lower relative to the excipients. The use of spectral subtraction is a possible 

tool for mixtures that may reduce these types of false negatives; it could be used to improve 

the identification of NPS with low content in the presence of larger amounts of cutting agents 

that results in a larger Raman signal than the NPS [140]. However, careful spectral pre-

processing should be made in order to prevent the loss of Raman bands. An alternative method 

is the use of ‘polynomial curve fitting’ [243]. Nevertheless, it largely depends on users’ 

expertise. 

3.3.2.4. Piperidines & pyrrolidines 

Six ethylphenidate (piperidine) samples, purchased from the internet, were analysed using both 

Raman instruments and GC-MS (Table 3.6). Ethylphenidate (EPD) is a synthetic analogue of 

MPD and was encountered in the UK and Europe for the first time in 2011 [75]. The GC-MS 

analysis confirmed the presence of MPD [13] in four products (i.e. P36, 37, 39 and 40) with a 

base peak indicating the piperidinium ion at m/z 84 and the tropylium ion at m/z 91. However, 

P38 and P41 correlated to unclaimed AM-2201 using GC-MS. Until recently, EPD was 

uncontrolled in the UK, perhaps a reason why the controlled substance MPD was substituted 

for EPD in these samples. These products are an example of how NPS may be marketed as 

‘legal’ products, where in fact they may contain a controlled drug. Thus, only MPD was added 

to the Raman libraries as EPD was not identified via GC-MS. Products 38 and 41 were 

purchased from the same website and shared a similar active adulterant (i.e. AM-2201). 

When using the standard 785 nm laser, P36, 37 and 40 correlated to MPD (63 ± 5 to 65 ± 2 %).  

Products 38 and 41 showed inconsistent Raman responses due to high fluorescent backgrounds. 

The Raman spectra of P39 correlated to cetylpyridinium chloride (61 ± 20 %), where very weak 

Raman signals were observed on top of a high fluorescent background (Figure 3.4a), again 

suggesting a false positive result.  

Using the 1064 nm source, four of the six samples (i.e. P36, 37, 39 and 40) correlated to MPD, 

the analogue of EPD, with a % HQI of 76.6 ± 0.2 to 80 ± 2. Figure 3.3b displays the Raman 

spectra of P39 showing distinct peaks at 784, 1029 and 1588 cm-1 which correspond to Raman 

bands for the MPD signature, not cetylpyridinium chloride. Figure 3.4d confirms this for P39 
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and P40 as an example. Products 38 and 41 resulted in ‘no match’ despite showing Raman 

bands at 511, 668, 775, 1012, 1370, 1516 and 1622 cm-1 as both Raman instruments did not 

have a library signature for AM-2201, but these peaks do correspond to AM-2201 reference 

spectra (see Chapter 5). 

In summary, the 785 nm source successfully identified the NPS ingredient in three products, 

while use of the 1064 nm source reduced fluorescence, improved algorithm matching and 

subsequent NPS identification for one of the three remaining products in addition to evidence 

for the presence of AM-2201 in two products. Interestingly, no products contained EPD, but 

four were adulterated with the schedule II substance MPD.  

3.3.2.5. Plants & Extracts 

LSA morning glory seeds (P42) were purchased from the internet and analysed using both 

Raman instruments and GC-MS. Morning glory seeds are known to be sacred seeds, originally 

used by some Mexican Indian tribes. They contain lysergic acid amide (LSA), which is the 

non-alkylated amide analogue of the schedule I controlled lysergic acid diethyl amide (LSD) 

[244]. As these samples were seeds, before analysis they were ground using an agate mortar 

and pestle. LSA morning glory seeds were characterised with the black shell and grey content. 

Using GC-MS, the content of the seeds was not identified as no chromatographic peaks were 

observed. When using the standard 785 nm laser, P42 correlated to MPA (96 ± 2 %) as seen 

with other products using the 785 nm laser. However, this is again a potential false positive 

result as the content was not confirmed using GC-MS. Using the 1064 nm source, no match 

was found and the sample was burned upon analysis using all methods. Seed samples such as 

these, which are dark in colour, are particularly problematic when analysing via Raman even 

with the 1064 nm wavelength. 

3.3.2.6. ‘Other’ 

Five DXM samples, purchased from the internet, were analysed using both Raman instruments 

and GC-MS (Table 3.6). In addition to its classification by the EMCDDA, DXM has also been 

classified as ‘other’ in the UNODC (2014) report [245]. DXM is a non-opioid anti-tussive drug. 

It is the d-isomer of the codeine analogue levorphanol, which  inhibits the re-uptake of 

serotonin at therapeutic doses [216]. The GC-MS analysis identified DXM [227] in four of the 

five products (i.e. P44 – P47).  
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However, the GC-MS analysis of P43 showed the presence of an unclaimed NPS i.e. 

methoxetamine (MXE) and CAF. This means product 43 contained two stimulants (i.e. CAF 

and MXE); stimulant cocktails such as P43 have been shown to cause cardiotoxic symptoms 

in previous studies [246].  

When using the standard 785 nm laser, correlations to DXM were found in three of the five 

samples (P45 – P47) with % HQIs ranging from 57 ± 1 to 84.1 ± 0.2 %. Product 43 correlated 

to TAL (69 ± 3 %) (Figure 3.3a) and P44 resulted in inconsistent correlations; these spectra 

displayed Raman signals on top of slightly fluorescent backgrounds.  

Using the 1064 nm source, four of the five samples (i.e. P44 - P47) correlated to the NPS on 

the label (DXM) with an HQI of 60 ± 9 to 90 ± 4 %, while P43 correlated to the unclaimed 

adulterant CAF at a % HQI of 80 ± 10 %. A reduction in fluorescence was most noticeable for 

P43 (Figure 3.3b), which correlated to the unclaimed adulterant CAF at a % HQI of 80 ± 10 

%. Figure 3.4e shows an example of two products’ spectra, P43 and P47, and their similarity 

to the highest correlation signature spectrum. The spectra for P43 and CAF are very similar 

with characteristic Raman peaks at 549, 1325, 1600 and 1690 cm-1 even though MXE was also 

identified using GC-MS; and the spectra for P47 and DXM are also very similar with 

characteristic peaks at 686, 852, 1242, and 1436 cm-1. 

In summary, the 785 nm source successfully identified the NPS ingredient in three products, 

while use of the 1064 nm source reduced fluorescence, improved NPS identification for one of 

the two remaining products using the matching algorithm and visual inspection of the spectra.  

3.3.2.7. Branded products 

Thirteen branded products were analysed using both Raman instruments and GC-MS (Table 

3.7). Internet products are often branded with names such as blast, bliss, bloom and blow [38, 

152]. Although these products are marketed with brand names, all branded products in this 

study did have a label claim stating ingredients except for P48 and P59. Six products (i.e. P49, 

P52 – P56) named an NPS on the label such as AI, 5,6-MDAI and MPA, nine products (i.e. 

P49 – 55, 57 and 60) named CAF on the label, and ten products (i.e. P49 – 55, 57, 58 and 60) 

named herbal extracts and dietary supplements on the label.  

The analysis using GC-MS identified seven different NPS substances. These were MPD in P48 

and P59 (base peak m/z 84, RT 14.1 min); 2-AI in P49 - P55 (base peak m/z 133, RT 9.4 min); 

MDAI in P56 (base peak m/z 160, RT 12.7 min); MPA in P56 and P59 (base peak m/z 59, RT 
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8.8 min); 6-APB in P59 (base peak m/z 44, RT 11.7 min); 5-MeO-DALT in P59 (base peak 

m/z 110, RT 17.3 min); and 5-APDB in P60 (base peak m/z 44, RT 12.3 min) (Table 3.7). 

Interestingly, both P23 labelled as MPA and P59 labelled as ‘Route 56’ were purchased from 

the same website and shared four active ingredients (i.e. MPA, 6-APB, CAF and 5-MeO-

DALT), again suggesting a similar supply chain.  

When using the standard 785 nm laser, correlations to a NPS substance were found in 8 out of 

13 samples, even though all but one sample was confirmed to contain an NPS via GC-MS. 

However, for seven of these products (i.e. P49 - 55 and 57 - 60) the spectra showed very high 

fluorescent backgrounds resulting in false positive correlations to MPA (92.5 ± 0.4 to 99.1 ± 

0.1 %) (see Figure 3.3a for the spectrum of P53). Products 57 - 60 also showed a high level of 

fluorescence using the 785 nm source and resulted in inconsistent correlations. The calculation 

of the HQI algorithm has been shown to be affected by background fluorescence in unknown 

spectra, depicting slope and offset as differences from library spectra [228]. Pink panthers 

(P56) correlated to 5,6-MDAI with a % HQI of 80 ± 7, whereas the product Blow (P48) 

correlated to BEN with a % HQI of 76 ± 10.  

Using the 1064 nm source, two additional NPS, MPA (80 ± 2 %) and delta 9-

tetrahydrocannabinol (THC) (59.3 ± 0.8 %), were identified in P56 and P60. The presence of 

MPA was confirmed using GC-MS, however THC could potentially be a false positive result, 

since THC was not identified by the MS libraries. The presence of the adulterants BEN (% 

HQI 90 ± 7) and CAF (% HQI 54.2 ± 0.2) was confirmed in P48 and P54 using GC-MS. 

Products 55, 57 and 59 correlated to phosphorous (70 ± 3 %), L-TYR (54.7 ± 0.7 %) and MCC 

(60 ± 6 %), respectively.  

Figure 3.4f shows the improved Raman spectra of P53 after using the 1064 nm source, where 

clear distinct Raman bands are visible. The improved Raman spectra still resulted in ‘no match’ 

using the algorithm, however characteristic Raman peaks for CAF (e.g. 549 and 1322 cm-1) 

and 2-AI (e.g. 775, 844, and 1030 cm-1) were clearly visible. The improved Raman spectra still 

resulted in ‘no match’, but further use of a ‘mixtures algorithm’ may improve identification. 

Jones et al. evaluated Raman spectra of NPS mixtures by subtracting the spectra of pure 

substances sequentially after identifying the substances using a Raman microscope [140].  

Interestingly, the product Pink Panthers (P56), which was confirmed to contain both 5,6-MDAI 

and MPA with GC-MS analysis correlated to 5,6-MDAI using the 785 nm source and to MPA 

using the 1064 nm source. This may be the result of mixture heterogeneity inherent to branded 
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products, despite considerable efforts to vortex mix. Figure 3.4f shows peaks in the Raman 

spectrum for P56 corresponding to MPA (i.e. 595, 677, 810, 1052, and 1436 cm-1). Peaks 

corresponding to 5,6-MDAI were not observed. 

In summary, the identification of branded NPS products was very challenging using both 

handheld Raman instruments resulting in many inconsistent correlations, ‘no match’ founds, 

and false positive matches to MPA. This was mainly due to high fluorescence signals using the 

785 nm, which was significantly reduced using the 1064 nm source, and the chemical 

complexity of the samples.  Since peaks were observed with the 1064 nm source and were 

consistent with NPS reference spectra, ‘mixtures algorithm’ or spectral subtraction would be 

alternative methods to improve the identification of samples such as NPS internet samples.  

Table 3. 7: Results from the analysis of branded internet products using two handheld Raman 

spectrometers (ex = 785 and 1064 nm) and GC-MS1 

Product       

No. 

Product  

  name 

Handheld Raman 

785 nm 

Handheld Raman 

1064 nm 

GC-MS 

 

    ID % HQI ID % HQI RT           

(min) 

Base 

Peak 

(m/z) 

MS ID 

Branded products 

48 Blow BEN 76 ± 10 BEN 90 ± 7 12.4                          

14.1 

120                            

84 

BEN                                                 

MPD   

49 Blurberry MPA3 99.1 ± 0.1 No match 

 

9.5                       

14.4 

133                           

194 

2-AI                                                       

CAF 

50 High beams  MPA3 97.7 ± 0.1 No match 

 

9.4                        

14.4 

133                           

194 

2-AI                                                       

CAF 

51 Magic Beans MPA3 92.5 ± 0.4 Inconsistent correlations 9.4                          

14.4 

133                           

194 

2-AI                                                       

CAF 

52 Pink 

Champagnes  

MPA3 98.0 ± 0.4 Inconsistent correlations 9.4                        

14.4 

133                           

194 

2-AI                                                       

CAF 

53 Pink 

Champagnes  

MPA3 98.4 ± 0.2 No match 9.2                         

14.4        

133                           

194 

2-AI                                                       

CAF 

54 Pink 

Champagnes  

MPA3 98.4 ± 0.1 CAF 54.2 ± 0.2 9.4                        

14.4 

133                           

194 

2-AI                                                       

CAF 

55 Pink 

Champagnes  

MPA3 98.3 ± 0.2 Phospho-

rous 

70 ± 3 9.3                       

14.5 

133                           

194 

2-AI                                                       

CAF 

56 Pink panthers 5,6-MDAI 80 ± 7 MPA 80 ± 2 8.9                        

12.7 

58                           

160 

MPA                                              

5,6-MDAI  

57 Punk plus  Inconsistent correlations L-TYR 54.7 ± 0.7 10.7                     

14.4 

106                          

194 

NIA                                                   

CAF  

58 Recovery  Inconsistent correlations Data acquisition failed 7.1 71 No match 

59 Route 56 Inconsistent correlations MCC 60 ± 6 8.8             

11.6              

14.0                

14.4                   

17.3 

58                            

44                            

84                         

194                         

110 

MPA                                                      

6-APB                                               

MPD                                                      

CAF                                                          

5-MeO-

DALT2 

60 White Pearls  Inconsistent correlations 

 

Delta 9-

THC 

59.3 ± 0.8 12.3                      

14.4 

44                          

194 

5-APDB2                                              

CAF  
1ID: identification; RT: retention time; NC: not confirmed. 
2Raman spectrum of substance not present in both Raman libraries. 
3Suspected false positive. 
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3.4. Conclusions 

In this Chapter, the use of handheld Raman spectroscopy showed promise for the in-field 

identification of NPS in a wide range of NPS internet samples. Results demonstrated that a 

1064 nm laser source significantly reduced background fluorescence of NPS products and 

subsequently improved identification using an in-built ‘first pass’ matching algorithm. In this 

study, handheld Raman spectroscopy with two laser excitation sources was used to identify 

NPS in internet products using a ‘first pass’ matching algorithm (% HQI) as well as visual 

inspection of Raman spectra.  

The matching algorithm approach successfully identified an NPS in 29 out of 60 (48 %) diverse 

and chemically complex internet products using a 1064 nm laser source. An overview of the 

results is presented in Table 3.8. An increase in the laser excitation wavelength from 785 to 

1064 nm improved positive NPS identification (i.e. from 11 to 29 substances). These 

improvements were mainly the result of reduced fluorescence, most likely originating from 

cutting agents and coloured constituents in the products. Correlations between the internet 

products with the NPS signatures, that were confirmed with GC-MS, ranged from 57.0 to 84.1 

% with RSDs < 10 % using the 785 nm source and from 60.0 to 91.3 % with RSDs < 7 % using 

the 1064 nm source. Thus, reduced % HQI thresholds may be required when monitoring NPS 

products in the field.  

A higher number of false positives and false negative were observed when using the 785 nm 

source, again resulting mainly from the fluorescent background produced by these samples. 

False negatives observed for both wavelength sources were also due to low NPS concentration, 

absence from the instrument’s library and/ or high chemical complexity of the product. For 

example, no NPS was identified and no etizolam Raman bands were observed for the etizolam 

tablets and pellets as they were largely composed of common excipients with a relatively low 

etizolam concentration. Chemically complex samples, such as some of the ‘branded products’, 

did not correlate to an NPS signature but did show marked improvement in the Raman spectra 

and characteristic Raman bands upon using the 1064 nm source. In these cases, spectral 

subtraction could be useful to further assist identification. Further work should focus on 

optimisation of instrument parameters, spectral pre-processing and investigation of ‘mixtures 

algorithms’ with improved NPS libraries. 
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Table 3. 8: A summary of the results obtained for NPS identification using the handheld 

Raman spectrometers (λex = 785 and 1064 nm)1 

Category ex 785 nm ex 1064 nm 

Identification of NPS 11 29 

Identification of adulterant 2 4 

Identification of cutting agent2 7 14 

Fluorescence 38 0 

Inconsistent correlation  10 2 

No match 2 7 

False positive for an NPS  28 1 

False negative for an NPS  46 28 
1Raman spectrometers were used with set parameters as stated in the method Section. 
2Cutting agents were not confirmed via GC-MS. 
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4. Development of a pre-processing protocol for Raman 

spectra of NPS-related powders 

4.1. Introduction 

This Chapter outlines a step-by-step protocol for the pre-processing of Raman spectra of 

mixtures containing adulterants and cutting agents commonly incorporated in mixtures of new 

psychoactive substances (NPS). Variations in Raman spectra resulting from instrument 

artefacts, sample, environment and/ or analysis effects are unavoidable, which may hamper the 

identification of NPS using Raman spectroscopy. Therefore, a need remains for a universal 

protocol for the pre-processing of Raman spectra of NPS-related substances that could assist 

in extracting the maximum chemical information from spectra and, subsequently improve the 

in-field detection of NPS by first-responders.  

For frontline emergency staff and law enforcement agents, detection of NPS using a ‘first pass’ 

library-matching algorithm is critical. However, in-built algorithms have been shown to be 

limited in their classifications of the NPS internet products due to sample complexity. 

Swamping by fluorescence signals, overlapping analyte-excipient bands, sample heterogeneity 

and variable Raman activity of constituents are potential challenges in NPS products (see 

Chapters 2 and 3 and Assi et al. [128]).  

Therefore, in this study, exploratory multivariate analysis (MVA) such as principal 

components analysis (PCA) was evaluated for the feasibility of classifying simple solid-form 

mixtures containing common adulterants and cutting agents. Coupling of PCA with Raman 

spectroscopy has been shown to strengthen Raman analysis by enabling the exploration of 

latent variables in complex Raman data [184] e.g. Raman spectral data of illicit drug mixtures 

[136, 154, 192]. However, pre-processing of Raman spectral data is a prerequisite to the 

application of PCA.  

In this Chapter, the aims are to develop a step-by-step protocol for the pre-processing of Raman 

spectral data for solid drug powders and evaluate the effect of pre-processing of Raman data 

on the classification of known pure substances and mixtures of known composition using PCA. 

Pre-processing of Raman spectra has been shown to improve the classification of drugs of 

abuse using MVA [95, 176, 184]. A few studies have addressed the challenges encountered in 

Raman analysis of NPS [138, 140]. In this Chapter, the optimal combined pre-processing 
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sequence was performed on a selected Raman dataset for the application of PCA. This work 

also investigated the feasibility of using PCA of pre-processed Raman data as a tool to explore 

substance identifiers, which may, in turn improve the classification of drug mixtures.  

4.2. Materials and Methods 

4.2.1. Reagents and chemicals 

In this initial work, a pre-processing method was developed using selected adulterants (i.e. 

benzocaine and caffeine) and cutting agents (i.e. creatine and lactose) that are commonly 

incorporated in NPS mixtures [208, 209]. Five reference standards were commercially obtained 

and were used for analysis as supplied (Table 4.1).  

Table 4. 1: Adulterants and cutting agents used in Raman and PCA analysis 

Materials 
Batch 

Number 
Supplier Abbreviations 

Benzocaine 100M0213V Sigma Aldrich, Dorset, UK BEN 

Benzocaine SLBB1067V Sigma Aldrich (Dorset, UK) BEN 

Caffeine (anhydrous) 1428211V Fluka Analytical, Sigma Aldrich, Dorset, UK CAF 

Creatine monohydrate SLBH1411V Sigma Aldrich, Dorset, UK CRE 

Lactose 893920 Fisher Scientific, Loughborough, UK LAC 
 

4.2.2. Sample preparation 

Samples were analysed in their pure powder forms (white powders) and simulated ternary 

mixtures (Tables 4.2 – 4.5). Pure reference samples (i.e. CAF and BEN) and ternary mixtures 

(CAF_CRE_LAC or CCL) were weighed, ground using an agar mortar and pestle, then placed 

on microscope glass slides (75 x 25 x 1 mm) wrapped with aluminium foil. The microscope 

stage was moved in the x, y and z positions, then the focal distance was re-adjusted between 

measurements. Samples were mixed on the microscope slides using a stainless steel micro 

spatula for one minute, tapped and flattened prior to Raman analysis. In this preliminary study, 

four datasets are discussed in Section 4.2.2.1. to 4.2.2.4. 

4.2.2.1. Calibration dataset (Set ‘1’) 

‘Set 1’ consists of the samples employed to develop the pre-processing method and to calculate 

the PCA model’s principal components (PCs) (Table 4.2).  
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Table 4. 2: Summary of samples included in the calibration dataset (Set ‘1’) 

Sample 

name 

No. of 

samples 

No. of analysis 

measurements/ sample 

Sample weight 

(mg) 

Sample labels Batch No. 

BEN 1 3 30 B1 to B3 100M0213V 

CAF 6 1 30 C1 to C6 1428211 

CCL 6 1 10:10:10 CCL1 to CCL6 1428211  

SLBH1411V  

893920  

4.2.2.2. New calibration dataset (Set ‘2’) 

Set ‘2’consists of the original calibration set (Set ‘1’) after the rejection of spectra with errors 

(i.e. B1) and ‘zapping’ of cosmic rays from C1 spectrum, which is described in Section 4.3.2.1. 

(Table 4.3). 

Table 4. 3: Summary of samples included in the new calibration dataset (Set ‘2’) 

Sample 

name 

No. of 

samples 

No. of analysis 

measurements/ sample 

Sample 

weight (mg) 

Sample labels Batch No. 

BEN 1 2 30 B2 and B3 100M0213V 

CAF 5 1 30 C2 to C6 1428211 

CCL 6 1 10:10:10 CCL1 to CCL6 1428211  

SLBH1411V  

893920  

 4.2.2.3. Validation dataset (Set ‘3’) 

Set ‘3’ includes a subset that was not employed to develop the pre-processing method or to 

calculate the model’s PCs (Table 4.4).  

Table 4. 4: Summary of samples included in the validation dataset (Set ‘3’) 

Sample 

name 

No. of 

samples 

No. of analysis 

measurements/ sample 

Sample weight 

(mg) 

Sample labels Batch No. 

BEN 1 3 30 B4 to B6 SLBB1067V  

BEN 1 3 30 B7 to B9 100M0213V 

CAF 3 1 30 C7 to C9 1428211 

 

4.2.2.4. Selected-bands calibration dataset (Set ‘4’) 

Set ‘4’ consists of selected-bands from the new calibration Set ‘2’. The data matrix contained 

the following bands of wavenumbers (cm-1): [2965-2975]; [2950-2960]; [1690-1705]; [1590-

1605]; [1320-1335]; [735-745] and [550-560]. This is described in details in Section 4.3.6. 

4.2.3. Raman Spectroscopy 

Spectra were acquired using a benchtop Renishaw inViaTM Raman microscope (Serial No. 

29U091) employing a laser with excitation wavelength (λex) of 785 nm and a 10 % laser output 
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power of ca. 20 mW (10.6 mW at sample using a x50 objective lens), a high sensitivity ultra-

low noise RenCam CCD detector, held in a vacuum of -70 oC, an ultra-high precision 

diffraction grating of 1200 lines/ mm. Parameters employed for both calibration of the Raman 

instrument and measurements of all samples were a 10 sec. exposure time, 1 accumulation, 10 

% laser power, x50 objective lens (spot radius = 638 nm). The instrument was calibrated 

regularly prior to analysis using a static silicon wafer reference. Calibration was carried out in 

order to ensure wavenumber accuracy and adjusting the wavenumber (cm-1) to 520 ± 0.6 cm-1. 

One spectrum was acquired for each pure reference standard or mixture over a spectral range 

of 3200 - 100 cm-1. Spectral data were exported as WiRE (Windows-based Raman 

Environment) version 3.4 (.wxd) files, which were converted to text file format (.txt), then 

saved as Microsoft Excel 2013 files (.xlsx), imported into the Unscrambler® X 10.3 software 

for pre-processing and chemometric analysis. 
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4.2.4. Pre-processing method  

In this study, the step-wise process employed for developing a pre-processing method for Raman spectra is summarised in Figure 4.1. 

 

Figure 4. 1: A flow chart outlining the initial step-wise pre-processing of Raman spectra  

1. Initial visual inspection of Raman spectra:

1.1 Visual observations of Raman spectra of samples using WiRE 3.4. 

1.2 Rejection of spectra with errors due to detector saturation, manual removal of cosmic rays 
(WiRE 3.4) and inspection of variations in absolute and relative intensities in Raman spectra

2. Import the final data matrix into the Unscrambler® X 10.3

2.1 Interpolation of spectra with different X-axes

2.2 Descriptive statistics 

2.3 Data pre-treatment using single as well as combination methods 

Inspection of line plots of replicate spectra after each pre-treatment is applied

3. Statistical Analysis and Principal Component Analysis (Unscrambler® X 10.3)

Comparison and assessment of the effect of step-wise pre-processing of spectral data 

3.1 Interpretation of the scores and loadings plots: could the samples be grouped? Identify 
peaks responsible for the separation between the samples

3.2 Test the presence and assessment of outliers at 95 % confidence limit (CL)

3.3 Validation of optimum pre-processing combination using new samples 
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4.2.5. Principal Components Analysis (PCA) (Unscrambler® X 10.3) 

PCA was performed using the Unscrambler® X 10.3 (CAMO PROCESS AS, Oslo, Norway) 

software. PCA was calculated using the NIPALS (Non-linear iterative projections by 

alternating least squares) algorithm because the Raman data matrix may contain missing values 

as well as large amount of variables (i.e. 3777 wavenumbers or data points) [172]. In this study, 

the plots generated by PCA models (i.e. explained variance, scores, loadings, influence and 

leverage plots (Figure 4.2)) were examined and compared based on their performance (e.g. 

correct classification, reduction of noise and redundant variables) and assessed in terms of the 

problem in question (i.e. efficient classification of known pure substances/ mixtures and the 

presence of outliers) [172]. Figure 4.2 shows an example of PCA plots for Raman spectra of 

adulterants and cutting agents. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

http://www.camo.com/products/download-trial.html
http://www.camo.com/products/download-trial.html
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Figure 4. 2: An example of PCA plots for Raman spectra of cutting agents and adulterants (Unscrambler® X 10.3): a) the explained variance plot, 

b) the 2D-scores plot, c) the loadings plot; d) the influence plot and e) the leverage plot (outliers are circled). 

http://www.camo.com/products/download-trial.html
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In general, the PCA explained variance plot (Figure 4.2a) describes both calibrated and full 

cross-validated variance. The former is the variance in the calibrated dataset as explained by 

the PCs and the latter iteratively takes a sample out of the calibration set and tests remaining 

samples against the calibration model. Close values between calibrated and validated variance, 

in the explained variance plot, indicates that the model is well explained by the PCs.  

In the two-dimensional (2D) scores plot for PC1/PC2 (Figure 4.2b), each score represents a 

spectrum. The scores plot profiles the differences between spectra according to their patterns 

along the PCs with respect to the variables (i.e. data points) with high loadings (i.e. contribution 

to the PC). The scores plot describes the relative significance of the PCs with respect to the 

variance they explain. PC1 explains the largest variance in the model, PC2 explains the second 

largest variance, etc. The Hotelling T2 ellipse in the scores plot represents the samples within 

a designated critical limit. In this study, the 95% confidence limit (CL) is employed as the 

statistical critical limit. The loadings plot (Figure 4.2c) describes the correlation between the 

variables (i.e. data points) and the PCs, such that it describes the important Raman peaks that 

explain the variance by a specified PC. The scores and loadings plots are often interpreted 

simultaneously such that the relationship between the samples and the loadings is dependent 

on the location of the scores (spectra) in the scores plot.  

The influence plot with Hotelling (T2) (Figure 4.2d) describes whether samples/ spectra fit the 

model, whether they are influential on the model or whether they could potentially be outliers. 

It compares the distance of the spectra from the mean along the PCs against critical limits using 

the F-test. The leverage plot (Figure 4.2e) confirms whether potential outliers previously 

identified in both scores (outside of the 95 % CL) and influence plots (high leverage/ Hotelling 

T2 and high F-residual limits) are true outliers [172]. 

4.3. Results and Discussion 

4.3.1. Selection of adulterants and cutting agents  

A review was conducted to select adulterants and cutting agents associated with NPS from the 

literature, forensic and government reports (2008 - 2014). NPS products including ‘NRG’ and 

‘bath salt’ products seized from ‘headshops’, purchased over the internet for research purposes 

or reported by the EMCDDA have been shown to contain BEN, CAF, CRE and LAC inter alia 

adulterants and cutting agents [73, 79, 132, 217, 247-253]. In this pilot study, BEN, CAF, CRE 

and LAC (Table 2.1 and Appendix C Figure A4.1) were selected because they are commonly 
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found in NPS products and because they have different Raman activities. For example, BEN 

is a very strong Raman scatterer, whereas LAC is a relatively weak Raman scatterer. A small 

number of samples was employed to enable the examination of the effects of the step-wise pre-

processing of Raman data on the classification of pure substances and mixtures. Our previous 

work has shown that CAF usually has the largest Raman contribution in the spectra of 

simulated binary and ternary mixtures (Assi et al. [128] and Chapter 2). Therefore CAF was 

selected as the ‘analyte’ in the mixtures to test its effect on the classification of pure CAF versus 

CAF mixtures (i.e. CCL mixtures). The Raman spectra of the high energy amorphous LAC 

have been reported to have broad peaks with some baseline offsets [254, 255]. Therefore LAC 

was selected as the cutting agent in this study for its potential challenging Raman spectra.  

4.3.2. Step-wise process employed for developing a pre-processing protocol for Raman 

spectra of NPS-related compounds 

4.3.2.1. Visual inspection of Raman spectra 
 

Initial visual inspection of Raman spectra was conducted to evaluate the extent by which 

instrument artefacts influence the quality of replicate spectra and to establish the necessity and 

types of possible pre-processing methods that would need to be undertaken (Figure 4.1). As 

discussed above, Raman spectra often show variations in baselines, absolute intensities and 

noise interferences that could be attributed to 1) instrument artefacts such as noise (CCD, 

background noise, etc.), changes in laser power and optics geometry, fluctuations in 

spectrometer performance and temperature; 2) analysis effects such as variations in powder 

opacity and focal distance etc.; 3) sample effects such as amount and vibrational frequency of 

Raman active molecules, presence of fluorescing impurities etc. and 4) environmental effects 

(e.g. ambient light, cosmic rays etc.) [188]. Therefore prior to analysis, pre-processing of 

Raman data is often indispensable to remove variations that are not pertinent to the samples 

and to isolate the Raman data from noise.  

Visual inspection of set ‘1’ showed baseline offsets (i.e. potential additive scatter effects), a 

significant variation in the overall peak absolute intensities and amplification of intensities over 

certain bands (i.e. potential multiplicative scatter effects (MSEs)). It also showed the regions 

with important chemical information. Spectra were examined individually and in groups to see 

whether there is a single spectrum issue or a sample trend (Figure 4.3). CAF (Figure 4.3a) and 

BEN replicate spectra showed variations in absolute intensities and variations in regions, where 

a cosmic ray was present (e.g. for C1) or where the detector was saturated (e.g. for B1). 
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Otherwise, all replicate spectra for pure substances were overlaid with most peaks present in 

all replicates. Overlaid spectra for CCL mixtures showed different visible peaks between CCL 

1, 2 and 6 against CCL 3 to 5 (Figure 4.3b).  

  

Figure 4. 3: a) Magnified six CAF raw spectra from set ‘1’: C1 (blue), C2 (red), C3 (green), 

C4 (light blue), C5 (maroon) and C6 (grey); b) Magnified raw spectra from Set ‘1’: C1 to C6 

(red), B1 to B3 (blue), CCL 1, 2 and 6 (green) and CCL 3 to 5 (purple) (Unscrambler® X 10.3). 

Visual examination of Raman spectra (set ‘1’) showed that some spectra featured cosmic rays 

(e.g. for C1 at 3116 cm-1) (Figure 4.4). Cosmic rays are known to skew analysis results and 

should be ‘zapped’ prior to the application of MVA [256]. In this study, cosmic rays were 

manually removed from C1 spectrum with the ‘zapping’ function using the software WiRE 3.4 

[116].  

 

 

Figure 4. 4: The Raman spectrum for C1 displaying a cosmic ray at ca. 3116 cm-1 (WiRE 3.4). 
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Visual examination of the spectra also showed that the detector was saturated at 860 and 1600 

cm-1 during the Raman measurement for B1 (set ‘1’) (Figure 4.5). This was expected since 

BEN is a very strong Raman scatterer. This was potentiated by using a laser power of 10 %. 

 

 

Figure 4. 5: A Section of the Raman spectrum for B1 (detector saturation at ca.1600 cm-1) 

(WiRE 3.4). 

Variation in absolute intensities was observed between replicate Raman spectra (Figure 4.3a). 

Therefore the signal to noise ratio (S/N) in all spectra (set ‘1’) was calculated. The signal is 

sample specific related to the molecular Raman activity [257]. This was observed in this dataset 

such that the S/N for a BEN sample (3113) was 33 times greater than that of a CCL mixture 

(93). Therefore in this Chapter, no S/N cut-off was designated since the smallest S/N was 93 

times greater than the noise. However, the effect of the wide range in S/N (93 – 3113) would 

be examined in the analysis. Heraud et al. [258] rejected spectra with maximum absolute signal 

less than 5,000 counts, whereas Ryder et al. [259] rejected spectra when absolute intensities 

was 70 % lower than average. The latter method was not fully explained in their publication. 

In this Chapter, the lowest maximum absolute signal was about 6,000 counts (S/N = 93).  

Variations in relative intensities between the highest two peaks in each spectrum were also 

investigated. Relative peak intensities ranged from 0.61 to 0.65 for CAF; from 0.58 to 0.75 for 

BEN and from 0.65 to 1.20 for CCL mixtures. Greater variations in peak relative intensities 

were observed for the mixtures as compared to pure substances. According to the British 

Pharmacopoeia, absolute and relative intensities are influenced by the ‘state of polarisation’ 

(i.e. orientation of oscillations of light waves) of the excitation laser, orientation and efficiency 

of the collecting optics, laser wavelength and laser power at both the source and the sample, 

focus on the sample, the working distance, the type of sample and its geometry, the packing 

density and opacity of powdered samples, inter- and intra-day variations and instrument and 
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analyst variations [260]. A day-to-day variation of ± 10 % in relative Raman band intensities 

is common [260]. Set ‘1’, including Set ‘2’ (Section 4.2.2.2.), were measured on the same day.  

Further investigations were conducted using exploratory PCA to determine whether the issues 

identified via visual inspection of Raman spectra i.e. baseline offsets, scatter effects, presence 

of cosmic rays, saturation of the detector and a wide range in S/N in Raman spectra could 

potentially skew the analysis. The plots generated by ‘PCA-1’ (set ‘1’) were examined. The 

explained variance plot (Figure 4.6a) showed that cross-validation was skewed with an 

abnormal drop along PC2 with a large difference between both calibrated and validated 

explained variance. This indicated that the model may not be representative for new samples. 

In this model, PC1 explained 77 and 57 % calibrated and validated variance respectively. The 

variance in the dataset was explained with three PCs.  

The scores and loadings plots (Figure 4.6b and 4.6c) showed that the variance in BEN samples 

(i.e. B2 and B3) was explained by both PC1 and PC2 with high positive scores and higher than 

average values for variables (i.e. data points) with positive interpretable loadings respectively. 

In the scores plot B1 falls outside the ellipse at 95% CL, whereas B3 is at the borders of the 

ellipse. Therefore, both samples could potentially be outliers and were further investigated. 

Positive correlation between CCL mixtures and pure CAF samples (both CCL and CAF 

grouped together), which indicated that these samples are not well described by the model as 

no variation/ separation was achieved. Linkage between CCL and CAF was expected since 

CCL mixtures contain CAF (a stronger Raman scatterer than both CRE and LAC). On the other 

hand, C1 was separated from remaining CAF samples and this could possibly be because it 

contained a cosmic ray (identified through visual inspection) and had greater S/N compared to 

remaining CAF and CCL samples (set ‘1’). C1 was delineated from B2 and B3. This is because 

they are different chemicals, which gives rise to different Raman spectra and that is why the 

algorithm is discriminating between them. The line loadings plot (Figure 4.6c) showed 

important spectral regions for PC1 which mainly correlate to BEN samples based on their 

positions in the scores plot (Figure 4.6b).  

To determine whether both B1 and B3 are true outliers, the influence and leverage plots were 

examined. The influence plot with T2-PC1 (Figure 4.6d) showed that B1 had high T2 and high 

F-residuals. B1 did not fit the model (far top right quadrant) and is likely a true outlier, whereas 

B3 had high T2 and high F-residuals but fits the model. Both samples are influential on the 

model. In contrast, C1 had high F-residuals but fits the model. The leverage plots (PC1 and 
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PC3) (Figures 4.6e and 4.6f) showed that B1 had the highest leverage, and, hence largely 

contribute to the variance in the model compared to average samples. Both B1 and C1 were 

identified as outliers. The difference between the first three PCs have been shown to be due to 

errors in the Raman spectra (i.e. saturation of the detector (PC1), intense samples 

(PC1/PC2/PC3) and sample featuring a cosmic ray (PC3).  

In summary, the plots generated by ‘PCA-1’ for set ‘1’ demonstrated that samples with spectral 

errors such as saturation of the detector are outliers that should be rejected because they do not 

fit the model but largely contribute to the variance. It also demonstrated that samples, which 

feature cosmic rays are potentially outliers; however, they fit the model and, hence could be 

retained. The effect of ‘zapping’ (i.e. removing) cosmic rays was investigated. The wide-range 

S/N influence the model and samples with very high S/N largely contribute to the variance, 

despite fitting the model (S/N = 3113 for B3), and, hence normalisation methods of spectra are 

assessed. Baseline offsets and scatter effects in set ‘1’ potentially caused insignificant variance 

in the model, possibly because spectra of reference standards were collected with a high 

performance benchtop Raman instrument. However, their effect was further investigated in this 

Chapter.  
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Figure 4. 6: ‘PCA-1’ plots derived from the unprocessed Raman spectra for set ‘1’ 

(Unscrambler® X 10.3). a) the explained variance plot, b) the 2D-scores plot for PC1/PC2, c) 

the loadings plot; d) the influence plot; e) the leverage plot (PC1) and f) the leverage plot (PC3) 

(outliers are circled). 

Cosmic rays were ‘zapped’ from C1 spectrum using the software WiRE 3.4 and the spectrum 

was retained for analysis. In contrast, B1 spectrum, which featured detector saturation was 

discarded from the dataset. The new dataset is named Set ‘2’. ‘PCA-2’ was then generated from 
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Set ‘2’ to test the effects of ‘zapping’ cosmic rays and discarding spectra with errors on the 

model performance. 

In ‘PCA-2’, the explained variance plot (Figure 4.7a) showed that cross-validation has 

improved. This was observed with the closeness between the values of both calibrated and 

validated explained variance, such that one PC explained 84 and 81 % calibrated and validated 

variance respectively and two PCs explained 99.8 and 97 % cumulative calibrated and 

validated variance respectively. In ‘PCA-2’, the largest variance between the spectra was 

explained with reduced number of PCs (two PCs) and increased percentage of explained 

variance. This equally means reduced percentage of residual variance or errors in modelling.  

The 2D-scores plot for PC1/PC2 (Figure 4.7b) showed that all spectra lie in the ellipse at 95 % 

CL. BEN spectra (i.e. B2 and B3) are both explained by PC1 with high positive scores and 

higher than average values for variables with positive loadings (Figure 4.7c). Both B2 and B3 

largely contribute to the variance in the model possibly because of their high S/N compared to 

remaining samples in the dataset (Set ‘2’). Both CCL mixtures and pure CAF samples showed 

a slight separation. CCL mixtures positively correlated with CAF samples. C1 is still separated 

from the remaining CAF samples, potentially because of its high S/N as compared to the 

remaining CAF samples. C1 has high positive score for PC2. In the loadings plot (Figure 4.7c), 

large loadings, accounting for BEN samples, and, ideally should be used for the interpretation 

of the model. Yet, this is not desired as BEN samples have the greatest S/N in the dataset and, 

hence may be dominating the model, which may not be a true explanation of the variance in 

the dataset. Therefore normalisation of spectra is required.  
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Figure 4. 7: ‘PCA-2’ plots of the Raman spectra for Set ‘2’ (Unscrambler® X 10.3): a) the 

explained variance plot, b) the scores plot and c) the line loadings plot. 

Results for both ‘PCA-1’ and ‘PCA-2’ have demonstrated the effect of instrumental, 

experimental and environmental artefacts on PCA performance in terms of substance 

classification, noise reduction and presence of outliers. Results have also highlighted the 

importance of both initial visual inspection of Raman spectra and the application of PCA for 

the initial assessment of the quality of Raman spectra prior to analysis. In conclusion, it is 

recommended to reject Raman spectra featuring detector saturation and to ‘zap’ cosmic rays, 

whilst retaining these spectra. It is also advised to normalise spectral data because a wide-range 

in S/N largely contribute to the variance in the model, which may not be a true explanation of 

the variance that is based on samples’ properties.  

4.3.2.2. Importing the final dataset (Set ‘2’) into the Unscrambler® X 10.3 

Following the initial visual inspection of Raman spectra and the application of PCA for the 

initial assessment of the quality of spectra, the final dataset was imported into the 

Unscrambler® X 10.3 as Excel 2010 files (Microsoft) (Figure 4.1). Using the Unscrambler® 
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X 10.3, individual datasets ought to have the same X-axis to enable the comparison between 

different spectra. Although not visually observed, Raman spectra measured on different days 

had slightly misaligned data points due to different starting wavenumbers (cm-1) i.e. 3200.95 

cm-1 (Set ‘3’) and 3201.03 cm-1 (sets ‘1’ and ‘2’), a difference of 0.08 cm-1. However, the total 

number of data points remains the same (i.e. 3777 data points). Therefore interpolation of 

spectra was essential before combining spectra into one analysis set for processing using the 

Unscrambler® X 10.3. Descriptive statistics were also performed, after the data was imported 

into the Unscrambler ® X 10.3, to evaluate scatter effects in Raman spectra. 

4.3.2.3. Interpolation of Raman spectra 

Interpolation of Raman spectra was undertaken using the Unscrambler® X 10.3. Six pure CAF 

samples (C1 to C6 from Set ‘2’) were employed to test the impact of interpolation on Raman 

spectra. Spectra were interpolated from 3201.03 - 100.55 cm-1 to 3200.95 - 100.41 cm-1. Upon 

visual inspection, the effect of interpolation could not be visually observed because interpolated 

and non-interpolated spectra were fully overlaid (Figure 4.8). Therefore a correlation matrix 

Table (not shown) was calculated using Excel 2010 (Microsoft). Results demonstrated that 

there was a positive correlation between interpolated and non-interpolated CAF and between 

all CAF spectra themselves (R2 = 0.9928 - 0.9999). A high positive correlation demonstrated 

that there was no significant difference between interpolated and non-interpolated spectra. In 

this study, spectra were only be interpolated when both sets ‘2’ and ‘3’ were combined for pre-

processing method validation in Section 4.3.5.1. 

 

Figure 4. 8: Six raw (RD) and six interpolated (Int) CAF Raman spectra (Unscrambler® X 

10.3). 
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4.3.3. Descriptive statistics (Unscrambler® X 10.3) 

In general, after importing any dataset into the Unscrambler® X 10.3, an overview of Raman 

spectra could alternatively be achieved using numerous descriptive statistical methods such as 

multiple scatter plots, mean and standard deviation plots. In this Section, descriptive statistics 

were performed to investigate the presence of possible scatter effects in Set ‘2’, initially 

identified through visual inspection of Raman spectra (Section 4.3.2.1.). 

4.3.3.4. Investigation of the presence of scatter effects in Raman spectra 

Descriptive statistics were employed to establish the presence and type of scatter effects (i.e. 

multiplicative and/ or additive). The presence of scatter effects are common in Raman spectra 

and may result from instrument artefacts such as fixed pattern noise inducing a change in 

photon response by the detector [261]. The scatter effects testing algorithm (Unscrambler® X 

10.3) compares individual spectra to a mean spectrum, which is automatically selected from 

the dataset. Figure 4.9 represents a 2-D scatter plot for six CAF spectra (Set ‘2’) (labelled 

‘ALL’ on the Y-axis) plotted against the mean spectrum (X-axis). The software’s algorithm 

regresses the spectra (represented by row vectors) against the offset and slope of the mean 

spectrum, hence correcting the spectra to the ‘same scatter level’ as the mean spectrum [172, 

178]. Results showed that there is a difference in slope, thus MSEs were confirmed 

(amplification of some peak intensities). MSEs were also confirmed for CCL and BEN spectra 

(Figures not shown). Therefore spectral pre-processing is required to remove MSEs prior to 

MVA. 

1(Series 0: C1; series 1: C2; series 2: C3; series 3: C4; series 4: C5; and series 5: C6)  

Figure 4. 9: A plot showing multiplicative scatter effects (MSEs) for six CAF spectra (Set ‘2’) 

(Unscrambler® X 10.3)1. 
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4.3.4. Pre-processing of Raman spectra using the Unscrambler® X 10.3 

This Section provides a detailed description of the modus operandi of various spectral pre-

processing techniques. Hitherto, it has been established that instrument, sample, analysis and 

environment artefacts (i.e. saturation of the detector, baselines offsets, multiplicative scatter 

effects (MSEs), variable S/N and cosmic rays) have contributed to the Raman signals in the 

measured spectra. It is concluded that spectra with detector saturation should be discarded, 

whereas spectra featuring cosmic rays could be retained after being ‘zapped’. The final dataset 

(Set ‘2’), imported into the Unscrambler® X 10.3, was not interpolated because all the samples 

had the same x-axis. Imported spectra were pre-processed to reduce baselines offsets, MSEs 

and variations in absolute intensities (Figure 4.1). Removal of these interferences has been 

shown to help in extracting the Raman signal of samples and in quantifying the different 

constituents [262] (e.g. amount of scattering species or constituents in mixtures). Over pre-

processing may, however, lead to over-fitting the data to chemometric models (e.g. PCA) 

which could be misleading [172]. In several studies a maximum of three pre-processing 

methods were applied to Raman data in order to prevent over-fitting the model to the data [132, 

148, 172, 176, 184, 258, 263]. However, some datasets may require more than three pre-

processing methods [95]. Pre-processing may remove important chemical information through 

data reduction e.g. with the use of PCA, multiplicative scatter correction (MSC) or other pre-

processing methods [172].  

In this study, selected pre-processing methods were evaluated for their applicability to PCA 

(Figure 4.10). Smoothing methods were studied as they have been shown to improve the 

performance of chemometric models [182]. Baseline correction, normalisation and 

multiplicative scatter correction pre-processing methods were evaluated because baseline 

offsets, variable absolute intensities and MSEs were initially identified through visual 

inspection and descriptive statistics (Set ‘1’, including Set ‘2’ (Section 4.2.2.2.)). The order in 

which combined pre-processing methods should be applied was also evaluated. The effects of 

each pre-processing method was examined using pure substances, then evaluated using 

mixtures. 
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Figure 4. 10: Summary of pre-processing methods investigated. 

4.3.4.1. Smoothing 

Smoothing using the Savitzky Golay (SG) algorithm (Unscrambler® X 10.3) is a common pre-

processing method employed to reduce/ filter high frequency noise in spectral data by fitting a 

polynomial to a segment of data points. Larger segments and lower polynomial orders lead to 

more smoothing being generated. The spectra for two pure CAF (C1 and C2) were employed 

to enable the visualisation of the effect of smoothing on the spectra. Four different sets of 

parameters were evaluated starting from default parameters, then working up (Table 4.5).  

Table 4. 5: Smoothing parameters. 

Method number Polynomial Order Size of smoothing segment Abbreviations 

1 0 3 SG_0_3 

2 1 3 SG_1_3 

3 1 5 SG_1_5 

4 2 3 SG_2_3 

Small segment sizes were selected in order to ensure the preservation of small Raman peaks 

[95]. Pre-processed spectra were visually compared to the raw spectra (RD). The effect of each 

smoothing method for both C1 and C2 could not visually be observed and, hence smoothed 

spectra could not be distinguished from non-smoothed spectra (Figure 4.11). 
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Figure 4. 11: Summary of various smoothing of two CAF spectra (C1 and C2 from Set ‘2’). 

Spectra were smoothed using the SG algorithm (Unscrambler® X 10.3) using the parameters 

summarised in Table 4.5.  

The S/N of smoothed spectra was then compared to that of the raw spectra (Set ‘2’). Despite 

the lack of visual analysis of the Raman spectra, results in Table 4.6 demonstrated that the S/N 

ratios have almost doubled with both smoothing methods 2 and 3 for C1, and have more than 

doubled using smoothing methods 1, 2 and 3 for C2. This could be due to a reduction in noise 

as compared to raw spectra. Noise levels were not reduced using smoothing method 4. 

Table 4. 6: Summary of the S/N for all smoothing methods for both C1 and C2 (WiRE 3.4). 

Smoothing parameters Signal (A.U.) Noise (A.U.) S/N 

C1_Raw spectrum 118345 70 1691 

C1_SG_0_3 116412 55 2117 

C1_SG_1_3 116412 36 3234 

C1_SG_1_5 112522 36 3126 

C1_SG_2_3 118145 90 1313 

C2_Raw spectrum 33536 74 453 

C2_SG_0_3 32700 26 1258 

C2_SG_1_3 33800 32 1025 

C2_SG_1_5 33300 20 1665 

C2_SG_2_3 33250 80 416 

Each smoothing method was then evaluated using Set ‘2’. For each smoothing method, a PCA 

was generated and compared to ‘PCA-2’ (Figure 4.7). The PCA generated for each smoothing 

method (Figure 4.12) was almost identical to that of the raw spectra (Set ‘2’) demonstrating 
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that the effect of the above smoothing parameters was insignificant with respect to the  

classification of the tested substances using PCA. In this study, smoothing (SG) with a 

polynomial order of 1 and segments of 3 and 5 smoothing points were considered and evaluated 

in the final combined pre-processing methods because both methods consistently reduced noise 

and enhanced the S/N for both C1 and C2.  
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Figure 4. 12: Summary of PCA results for smoothed Set ‘2’ Raman spectra (Unscrambler® X 10.3). Method 1: a) 2D-scores and b) line loading 

plots. Method 2: c) 2D-scores and d) line loading plots. Method 3: e) 2D-scores and f) line loading plot. Method 4: g) 2D-scores and h) line loading 

plots. 
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4.3.4.2.Correction of baseline offsets 

Baseline offsets are common instrumental artefacts, which could be corrected or reduced using 

various pre-processing methods and are often corrected prior to spectral normalisation [261]. 

In this study, baseline offsets were initially identified through visual examination of the Raman 

spectra (Set ‘1’, including Set ‘2’) (Figure 4.3). In this Section, two pure CAF spectra (C1 and 

C2 from Set ‘2’) were employed to enable the visualisation of the effect of baseline correction 

methods (i.e. baseline offset, linear baseline and derivatives) (Figure 4.10). Then the methods 

investigated were used to pre-process Set ‘2’. A PCA was then generated for each method and 

compared to that of the raw spectra (‘PCA-2’, Figure 4.7).  

4.3.4.2.1. The baseline offset method  

The baseline offset correction algorithm corrects the dataset by subtracting the minimum 

absolute intensity value from all intensity values across the spectrum [229]. The line plots for 

pre-processed CAF spectra (C1 and C2 from Set ‘2’) using the baseline offset method have 

shown that there was no significant improvement in reducing the offset observed over the 

region 1850 - 100 cm-1 (Figure 4.13a). The latter region has been shown to include more 

information on functional group frequencies and the molecular fingerprint, hence more 

informative about CAF. The high wavenumber end of the spectra has not shown a significant 

change from the raw spectra (Figure 4.13b). A PCA was generated from the pre-processed 

spectra for Set ‘2’ and compared to that of the raw spectra to test the impact of this baseline 

offset method (Figures 4.14a and 4.14b). The PCA showed no change to the model or 

improvement to the samples’ classification after the removal of the baseline offsets from the 

Raman spectra as compared to PCA-2 for unprocessed Set ‘2’ (Section 4.3.2.1 and Figures 4.7a 

to 4.7c). In conclusion, the baseline offset correction method did not improve the PCA sample 

classification but transformed the values in the data matrix to values with positive signs. The 

significance of a single sign in the data matrix is further investigated with respect to combined 

pre-processing methods (see Section 4.3.5.).  

4.3.4.2.2. Linear baseline method  

Linear baseline correction method is an alternative baseline correction method which involves 

designing a new baseline for the entire dataset between two selected wavenumbers. The 

selected wavenumbers become zeroed and the remaining data points are transformed or pre-
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processed (interpolated or extrapolated) accordingly [172]. One disadvantage of this method is 

that it assumes that the offset is the same between all samples. 

Linear baseline correction between the wavenumbers 1800 and 250 cm-1 (region of chemical 

information for CAF spectra) (Appendix C Figure A4.2) for both C1 and C2 (Set ‘2’) has 

slightly reduced the offset over the region 1800 - 250 cm-1 (Figure 4.13c). However, a drop of 

the baseline below zero was observed over the uncorrected region 3201 - 1800 cm-1 (Figure 

4.13d).  Set ‘2’ was then pre-processed using the linear baseline correction method over the 

range 1800 - 250 cm-1. The PCA results showed that substance classification has not improved 

as compared to the raw spectra (Figures 4.14c and 4.14d). A slight change to the explained 

variance occurred such that PC1 explained 82 % calibrated variance down from 84 % (PCA-2, 

Section 4.3.2.1 and Figures 4.7a to 4.7c) and PC2 explained 17 % calibrated variance up from 

15 %. The overall explained variance remained unchanged.  

Linear baseline correction over the region 3000 - 250 cm-1 (across most of the spectral range) 

(Figure 4.1) has resulted in the drop of the baseline over the region 3201 - 1800 cm-1 below 

zero but has significantly reduced the offset over the region 1800 - 100 cm-1 (Figures 4.12e and 

4.12f). Set ‘2’ was then pre-processed using the linear baseline correction method over the 

range 3000 - 250 cm-1. A PCA was then generated and compared to that of the raw spectra (Set 

‘2’) to test the effect of this pre-processing method (Figures 4.14e and 4.14f).  The PCA results 

were very similar to that of the raw spectra, with a slight reduction in the percentage of 

explained calibrated and validated variance (83 and 80 % for PC1, and 16 and 16 % for PC2 

respectively) and increased residuals for some samples (e.g. B2) in the influence plot (not 

shown). In conclusion, the linear baseline offset correction method has not improved the PCA 

sample classification. Corrected regions showed slight improvement in the line plots at the 

expense of the uncorrected regions and, therefore the linear baseline correction method was 

not considered in the final combined pre-processing methods. 

4.3.4.3.Derivatives  
 

Unlike smoothing, derivatives filter low-frequency baselines and enhance high-frequency 

signals [264]. As the band width increases (low-frequency) the derivative value increases and 

the peak maxima decreases and vice versa [265]. Pre-processing using derivatives is dependent 

on both the frequency and the collinearity between the data points [264]. Derivatives measure 

the slope of spectral peaks by estimating the differences between discrete adjacent points [265] 

and, hence correct for baseline offsets and resolve overlapping peaks. In this study, the first 
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and second derivatives were calculated using the SG algorithm to evaluate if they would correct 

for baseline offsets and improve the classification of samples via PCA. 

4.3.4.3.1. The first derivative  
 

The first derivative measures the slopes of the curve at every data point. Therefore it would 

theoretically reduce offsets without affecting slopes and correct for fluorescence variation [192, 

266]. Since the difference between additive baseline offsets is a constant and since the 

derivative of a constant is zero, the spectral mean becomes zero and the spectra become 

replaced with the slopes of the curves. The original peaks maxima also become zeroed since 

there is no change in the slope [172]. In this Section, two CAF spectra (C1 and C2 from Set 

‘2’) were employed for the calculation of the first derivative to enable the visualisation of the 

pre-processed spectra. The first derivative was calculated using the SG algorithm with a 

polynomial order of 2 and a smoothing segment of 3 points (default parameters) (Figure 4.13g). 

The visual inspection of the first derivative line plots showed a better resolution of the major 

peaks but with observed loss of chemical information (absence of small Raman peaks after the 

pre-processing was conducted). 

Set ‘2’ was then pre-processed using the first derivative (SG) using default parameters (a 

polynomial order of 2 and a segment size of three points). A PCA was then generated and 

compared to that of the raw data (i.e. PCA-2, Section 4.3.2.1.). The PCA showed a slight 

improvement from that of the raw spectra with two PCs explaining 99 % of the variance. The 

PCA scores plot (Figure 4.14g) showed that both CCL mixtures and pure CAF samples are not 

well described by the model. Despite positive correlations between them, they have shown 

slight ungrouping. C1 was still separated from remaining CAF spectra. The loadings plot 

(Figure 4.14h) showed important variables for PC1 (peaks at ca. 860, 1170, 1279, 1574, 1603 

and 1679 cm-1 (positive loadings), 643, 863, 1149, 1285, 1608, 1686 and 1579 cm-1 (negative 

loadings). The peaks at ca. 643, 1170, 1279, 1285, 1603 and 1608 cm-1 are all consistent with 

CAF, whereas  860, 863 and 1149 cm-1 are consistent with LAC and 1574, 1579, 1679 and 

1686 cm-1 were consistent with BEN (Appendix C Figures A4.1 – A4.4). The application of 

the first derivative alone has been shown to slightly improve classification models such as soft 

independent modelling of class analogy (SIMCA) [184] and to produce satisfactory PCA 

clusters [95]. This demonstrated that pre-processing is sample and application specific. 
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4.3.4.3.2. The second derivative  
 

The second derivative measures the derivative of the first derivative, hence filtering additive 

baselines as well as ‘linear tilts’ [264]. The second derivative accentuates high frequency 

signals leading to simultaneous increase in noise [264]. However, the filter segment size could 

be enlarged to reduce noise [265]. Furthermore, the second derivative helps in resolving and 

sharpening neighbouring peaks and in reducing fluorescence effects [116]. It has been shown 

to improve quantitative analysis [172] and enhance robustness of measurements against 

fluorescence or container variation [192, 266]. In this Section, two CAF spectra (C1 and C2 

from Set ‘2’) were employed in the calculation of the second derivative to enable the 

visualisation of the pre-processed spectra.  

The second derivative was calculated using the SG algorithm with a polynomial order of 2 and 

a smoothing segment of 3 points (default parameters). The visual inspection of the second 

derivative line plots was difficult to interpret due to the large number of variables. Therefore 

the second derivative of bands (about 100 cm-1 range) was performed. By examining the pre-

processed CAF spectra, regions with chemical information were: [813-714], [713-613], [612-

509] and [508-403] cm-1. In contrast, regions, which showed loss of information (disappearance 

of peaks) included: [1722-1639], [1638-1553], [1377-1288], [1287-1197], [1196-1104], [1103-

1109], [1108-913] and [402-296] cm-1. Figure 4.13h showed relative loss of chemical 

information. The performance of the second derivative was not improved by increasing the size 

of the segment up to nine points (estimated width at half the height of the maximum CAF peak 

at 555 cm-1). 

Set ‘2’ was then pre-processed using the second derivative (SG). A PCA was then generated 

and compared to that of the raw data (i.e. PCA-2, Section 4.3.2.1) (Figures 4.14i and 4.14j). 

The PCA showed reduced explained variance, reduced cross-validated variance, loss of 

orthogonality and clustering of the variables around the mean in the 2-D scatter loadings plot 

(not shown), which corroborated with published literature [95]. As previously stated, the 

second derivative measures the changes in the slope of the curve. Consequently, the loss of 

large amount of chemical information may have resulted in the loss of orthogonality. 
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Figure 4. 13: Summary of baseline correction methods (Unscrambler® X 10.3). Baseline offset method: a) low wavenumber end and b) high 

wavenumber end. Linear baseline method between the wavenumbers 1800-250 cm-1: a) low wavenumber end and d) high wavenumber end. Linear 

baseline method between the wavenumbers 3000-250 cm-1: a) low wavenumber end and f) high wavenumber end. g) The first derivative of two 

CAF raw spectra (Raw spectra for C1 (green) and C2 (light blue), and first derivative for C1 (blue) and C2 (red)). h) The second derivative of a 

100 cm-1 band (1722-1622 cm-1) from two CAF raw spectra (Set ‘2’) (Raw spectra for C1 (green) and C2 (light blue) and second derivative for 

C1 (blue) and C2 (red)).

http://www.camo.com/products/download-trial.html
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Figure 4. 14: Summary of PCA results for baseline correction methods (Set ‘2’) (Unscrambler® X 10.3). Baseline offset method: a) 2D-scores 

and b) line loading plots. Linear baseline (1800-250 cm-1) c) 2D-scores and d) line loading plots. Linear baseline (3000-250 cm-1) e) 2D-scores 

and f) line loadings plot. First derivative g) 2D-scores and h) line loading plots. Second derivative i) 2D-scores and j) line loading plots. 

 

http://www.camo.com/products/download-trial.html
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In conclusion, the baseline offset method has not improved substance classification using PCA 

in this dataset. However, the effect of baseline offset correction is further investigated with 

combined pre-processing methods (see Section 4.3.5.). The linear baseline correction slightly 

reduced the baseline offset over particular spectral regions based on the selected wavenumber 

range. However, it increased the baseline offset over remaining regions. Using the linear 

baseline method, the PCA model did not improve as compared to the raw data, and, therefore 

in this study the linear baseline correction method is not recommended. For this dataset, the 

first derivative of the Raman spectra for Set ‘2’ showed better PCA classification results than 

the second derivative. The first derivative was able to explain a greater percentage of both 

calibrated and validated variances than the second derivative. Derivatives have been shown to 

increase noise in PCA and partial least squares (PLS) models [182]. Unlike the first derivative 

in this study, the second derivative only has been shown to increase the noise in the PCA model. 

This was demonstrated by the reduced percentage of explained calibrated and validated 

variance, the skewness of the explained validated variance and the increased percentage of 

calibrated (7 % up from 0.6 %) variance explained by the later PCs (noise).  The effect of both 

the first and second derivatives is further investigated in combined pre-processing methods 

(see Section 4.3.5.). 

4.3.4.4.Normalisation methods  
 

Variation in absolute intensities is common in Raman spectra [184]. In this study, variations in 

absolute intensities and wide-range S/N were initially identified and have been shown to impact 

sample classification using PCA (PCA-2 Section 4.3.2.1). Therefore normalisation of the 

spectra in this dataset was recommended because it scales the spectral data and ensures an even 

distribution of the variance between samples. In other words, normalisation enhances the 

variance between samples by correcting for interfering scaling variations. Normalisation 

methods evaluated in this study include area, peak, maximum, unit vector, range and mean 

normalisation (Figure 4.10).  

Six CAF samples (C1 to C6 from Set ‘2’) were employed to enable the visualisation of the 

effect of normalisation methods on Raman spectra. Subsequently, for each normalisation 

method, a PCA was generated for C1 to C6 to investigate their effects on reducing the 

separation between replicate samples as compared to the PCA for raw spectra (C1 to C6, 

Section 4.3.4.4.1. below). Finally, one normalisation method was selected and employed to 

normalise Set ‘2’ to evaluate its effect on the entire dataset. 
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4.3.4.4.1. PCA of the raw spectra of six pure CAF samples  
 

The line plots for the CAF raw spectra displayed variable absolute intensities, which is common 

in Raman spectroscopy (Figure 4.16a). The PCA results for C1 to C6 (Set ‘2’) showed that all 

spectra were distinguished/ separated from their raw Raman data (i.e. CAF spectra did not form 

a cluster). The scores plot (Figure 4.17a) explained about 100 % of the variance in the data, 

where one PC explained 99.89 % calibrated variance and 99.50 % validated variance. Since all 

spectra were for pure CAF, the main variance between the spectra was due to instrumental 

artefacts (i.e. differences in absolute intensity, S/N and/ or slight differences in peak shifting). 

In the scores plot, C1 (upper right quadrant) was well explained by PC1. C1 had a long distance 

from the mean along PC1 (ca. 312000) and largely contributed to the variance in the PCA 

model, potentially due to its highest S/N among the six CAF spectra. Based on their position 

in the scores plot, C1 has been shown to be located in the opposite quadrant to C6. This could 

be because C1 had the highest S/N, whereas C6 had the lowest S/N among the six spectra, 

which explain the wide separation. The variance in C2, C3 and C6 (upper left quadrant) are 

explained by PC2. They are not well described since the difference in S/N (453, 549 and 442 

respectively) and in peak shifting are insignificant.  Both C2 and C6 are positively correlated. 

Both samples have been shown to have the smallest S/N ratio in the dataset.  

The scores plot showed that all CAF samples lie in the model with 95 % CL. The loadings plot 

(Figure 4.17b) showed that C1 had high positive scores and high values for variables with 

positive loadings. In conclusion, most of the variance in the PCA model for pure CAF was 

explained by the spectrum with the highest S/N. Correlations between samples were influenced 

by their S/N. These results demonstrated that normalisation was essential to scale the raw 

spectra.  

In this study, six types of normalisation methods (area, peak, maximum, unit vector, range and 

mean normalisation) were evaluated and compared (Figure 4.10). 

4.3.4.4.2. Area normalisation  
 

Area normalisation sums up the area under the curve to a constant, which is the same for all 

spectra [172]. In other words, area normalisation makes the area under all six spectra equal. 

This algorithm transforms the data matrix such that all the values in the data matrix become 

positive. The line plots for the CAF area normalised spectra (C1 to C6 from Set ‘2’) are shown 
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in Figure 4.16b). Magnified peaks (not shown) displayed overall absolute intensities in the 

descending order of the S/N of the CAF spectra (C1> C5 > C4> C2 and C3> C6).  

The PCA scores plot (Figure 4.17c) explained about 91 % of the variance in the data, where 

one PC explained 83.42 % calibrated variance and 72.45 % validated variance. The explained 

calibrated variance for PC1 was reduced from 99.89 % (raw spectra, Section 4.3.4.4.1) to 83.42 

%, possibly due to reduced variation in the area under the curve among normalised replicate 

spectra.  Compared to Figure 4.17a, it was observed that the coordinates of the scores plot were 

reduced, showing that area normalisation reduced the distance between the samples (distance 

between C1 and C6 is 0.0057 scores along PC1). Reduction in the distance between samples 

illustrates the improvement achieved by area normalisation in grouping replicate spectra of a 

pure substance. The scores plot showed that the variance in both C1 and C6 (highest and lowest 

S/N) is explained by PC1, whereas the variance in C5 (second highest S/N) is explained by 

PC2 (minimal variance explained (8 %)). C1 is widely separated from C6 due to extreme 

overall absolute intensities in both spectra. Both C2 and C3 are positively correlated, with low 

impact on the model.  

The scores plot showed that all CAF samples lie in the model with 95 % CL. The loadings plot 

(Figure 4.17d) showed important spectral variables ((peaks at ca. 554, 1331, 739, 1604 and 

1694 cm-1 (positive loading for C1)) along PC1 and ((peaks at ca. 552 cm-1 (positive loading 

for C1), 1328, 1703 and 2961 cm-1 (negative loadings for C6)) along PC2, which correlate to 

C1 and C6 respectively based on their positions in the scores plot. In the loadings plot, for all 

the variables, which have positive loadings for PC1, C1 had higher than average values for 

these variables. Despite area normalisation, C1 is relatively dominating the model showing that 

the effect of this algorithm on the large variation in S/N was not very significant. 

In conclusion, the separation between replicate CAF Raman spectra was reduced by area 

normalisation, despite being influenced by wide-range S/N. Area normalisation has produced 

the smallest variance between replicate CAF spectra across PC1 as compared to other 

normalisation methods as described below. 

4.3.4.4.3. Unit vector normalisation 
 

Unit vector normalisation involves transforming the spectra to vectors of length 1 or unity. The 

line plots for the CAF unit vector normalised spectra (C1 to C6 from Set ‘2’) are shown in 
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Figure 4.16c. Magnified peaks (not shown) displayed variable overall absolute intensities 

between spectra but not in a specific order.  

The scores plot (Figure 4.17e) explained about 86 % of the variance in the data, where one PC 

explained 74 % calibrated variance and 57 % validated variance. The large difference between 

both calibrated and validated variance showed that the model would not be valid for new 

samples. The variance in the model was explained with four PCs. Compared to Figure 4.17a, 

it was observed that the coordinates of the scores plot were reduced (distance between C1 and 

C6 is 0.11 scores along PC1). In other words, the distance between the spectra was reduced 

and the variance between the samples was reduced. The scores plot showed that the variance 

in both C1 and C5 was well explained by PC1. C1 had a slightly longer distance from the mean 

and a higher score (i.e. 0.06 scores) along PC1 than C5 (i.e. 0.05 scores). Despite unit vector 

normalisation of the Raman data, the locations of both C1 and C6 in the scores plot 

demonstrates that C1 was still widely separated from C6 due to differences in overall absolute 

intensities in both spectra. The variance in C2, C3, C4 and C6 was explained by PC2 (12 %). 

Both C2 and C3 were positively correlated, with a low impact on the model.  

The scores plot showed that all CAF samples lie in the model with 95 % CL. The loadings plot 

(Figure 4.17f), showed the important variables for PC1 (peaks at ca. 554, 741, 1330, 1599 and 

1696 cm-1), which correlate to C1 and C5 based on their positions in the scores plot. The 

loadings plot also showed the important variables for PC2 (peaks at ca. 552.3 cm-1 (positive 

loadings for C2 and C3), 1328, 1399 and 2956 cm-1 (negative loadings for C4 and C6). C1 has 

high positive scores, hence has high values for variables with positive loadings. In the loadings 

plot, for all the variables, which have positive loadings, C1 and C5 had higher than average 

values for these variables. In conclusion, the variance between replicate CAF Raman spectra 

was reduced by unit vector normalisation, despite being influenced by wide-range S/N. The 

unit vector normalised model was not valid for cross-validated samples. 

4.3.4.4.4. Mean Normalisation 
 

Unlike area and unit vector methods, where normalisation algorithms were applied to the entire 

dataset, mean normalisation normalises individual spectra by dividing all intensities in the 

spectrum by the average of intensities, thus profiling the relative intensities around 1 [172]. 

The line plots of the mean normalised spectra for C1 to C6 (Set ‘2’) are shown in Figure 4.16d. 
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Magnified peaks (not shown) displayed absolute intensities in the descending order of the S/N 

of the CAF spectra (C1> C5> C4> C3 and C2> C6). 

The scores plot (Figure 4.17g) explained about 91 % of the variance in the data, where one PC 

explained 83 % calibrated variance and 72 % validated variance. These results were similar to 

area normalisation of CAF spectra (Section 4.3.4.4.2). The model was explained by three PCs 

before plateauing. Compared to Figure 4.17a, it was observed that the coordinates of the scores 

plot were reduced by mean normalisation, showing that mean normalisation reduced the 

distance between the samples (distance between C1 and C6 is 22 scores along PC1). C1 has a 

longer distance from the mean along PC1 and a higher score (12 scores) than C6 (-10 scores). 

The scores plot showed that the variance in both C1 and C6 was explained by PC1. With mean 

normalisation of the Raman data, the locations of both C1 and C6 demonstrates that C1 is 

negatively correlated to C6 and is separated from C6 by the longest distance along PC1 among 

all normalisation methods. This is probably due to differences in intensities in both spectra. C3 

and C5 are explained by PC2. Both C2 and C3 are positively correlated.  

The scores plot showed that all CAF samples lie in the model with 95 % CL. The loadings plot 

(Figure 4.17h), showed the important spectral variables for PC1 (peaks at ca. 554, 742, 1329 

and 1597 cm-1), which correlate to C1 based on its position in the scores plot. The loadings plot 

also showed the important variables for PC2 (peaks at ca. 552 cm-1 (positive loadings for C3), 

1328, 1700 and 2969 cm-1 (negative loadings for C5). C1 has high positive scores, hence has 

high values for variables with positive loadings. In the loadings plot for all the variables which 

have positive loadings for PC1, C1 has higher than average values for these variables. In 

conclusion, the variance between replicate CAF Raman spectra was reduced by mean 

normalisation, despite being influenced by wide-range S/N. However, mean normalisation has 

produced the largest variance between replicate CAF spectra across PC1 in comparison to other 

normalisation methods. 

4.3.4.4.5. Maximum Normalisation 
 

Similar to mean and range normalisation, the maximum normalisation algorithm pre-processes 

individual spectra by normalising the Raman response to a chosen peak (the maximum peak) 

at a fixed Raman position and laser wavelength. The peak remained unchanged in all spectra. 

This is performed by dividing each spectrum by the maximum absolute value in the spectrum. 

The maximum peak in all spectra becomes equivalent to 1 or unity and, hence was not included 
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in the PCA model. In this dataset (C1 to C6 from Set ‘2’), the maximum peak was at 554.4   

cm-1 for all spectra except for C5, where the maximum peak was at 555.4 cm-1. This difference 

in peak position is insignificant in comparison to band widths for major peaks. For example, 

the data points 554.0 cm-1 and 555.0 cm-1 in a CAF spectrum are estimated to be very close at 

the top of the peak since the band width is about 60 cm-1 (Figure 4.15).  

 

Figure 4. 15:  A CAF peak at 554 cm-1 (WiRE 3.4) 

Changes in peak positions could possibly be due to changes in sample morphology resulting 

from mixing and grinding of the powders [135, 136]. Crystallinity of powders, lattice stress 

factors, bond contracting or interactions between mixture constituents may also induce band 

shifting [267].  

The line plots of the maximum normalised spectra are shown in Figure 4.16d. Magnified peaks 

(not shown) displayed variable absolute intensities between spectra, but not in a specific order. 

Different slopes were observed between peaks in the regions 1492 - 1323 cm-1 and 300 - 100 

cm-1. This could be due to multiplicative scatter effects. The PCA results of the maximum peak 

normalised data showed that the variance between the samples was reduced.  

The scores plot (Figure 4.17i) explained about 88 % of the variance in the data, where one PC 

explained 75 % calibrated variance and 61 % validated variance. The model was explained by 

three PCs before plateauing. Compared to Figure 4.17a, it was observed that the coordinates of 

the scores plot were reduced by maximum normalisation, showing that maximum 

normalisation reduced the distance between the samples (distance between C1 and C6 is 0.69 

scores along PC1). The scores plot showed that the variance in both C1 and C6 was explained 

by PC1. C1 has a slightly longer distance from the mean along PC1 (scores of -0.37 scores) 

than C6 (0.33 scores). With maximum normalisation of the Raman data, the locations of both 

C1 and C6 demonstrates that C1 is widely separated from C6. C5 is explained by PC2. Both 

C2 and C3 are positively correlated.  
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The scores plot showed that all CAF samples lie in the model with 95 % CL. The loadings plot 

(Figure 4.17j) showed the important spectral variables for PC1 (peaks at 162.1 cm-1 (positive 

loadings for C6), 557, 1330, 1600 and 1701 cm-1 (negative loadings for C1)). The loadings plot 

also showed the important variables for PC2 (peaks at 560, 1331, 1600 and 1701 cm-1 (positive 

loadings for C5). C1 has high negative scores, hence has high values for variables with negative 

loadings. In the loadings plot for all the variables which have negative loadings, C1 has higher 

than average values for these variables. In conclusion, the variance between replicate CAF 

Raman spectra was reduced by maximum normalisation, despite being influenced by wide-

range S/N. 

4.3.4.4.6. Range normalisation 
 

Similar to mean normalisation, the range normalisation algorithm pre-processes individual 

spectra. Range normalisation normalises spectra by dividing all intensities in individual spectra 

by the range of intensities i.e. maximum value minus minimum value [172]. The line plots of 

the range normalised CAF spectra (C1 to C6 from Set ‘2’) are shown in Figure 4.16f. Slopes 

were observed over the ranges 1492 - 1323 cm-1 and 300 - 100 cm-1. This could be due to 

multiplicative scatter effects. The absolute intensity values at the maximum peak (at 554.4 cm-

1) in all CAF spectra ranged from 0.9986 to 1.000. C5 again was an exception, where the 

maximum range normalised intensity value (0.9995) was at 555.4 cm-1 (see Section 4.3.4.4.5.). 

Magnified peaks (not shown) displayed differences in intensities among remaining peaks. The 

PCA results of the range normalised data was very similar to that of maximum normalisation, 

and hence, are not discussed in details (Figures 4.17k and 4.17l). The PCA results demonstrated 

that the difference in peak position for C5 was insignificant. 

4.3.4.4.7. Peak normalisation (peak no. 3357 at 554.4 cm-1) 

Similar to area and unit vector normalisation, the peak normalisation algorithm normalises the 

entire dataset according to one reference peak (a single wavenumber), which must be present 

in all spectra [172]. Peak normalisation sets the maximum response or absolute intensity of the 

highest peak to 1 [172, 229]. CAF spectra (C1 to C6 from Set ‘2’) were peak normalised to the 

peak no. 3357 at 554.4 cm-1. After the application of peak normalisation to C1 to C6 (Set ‘2’), 

slopes were observed over the ranges 1492 - 1323 cm-1 and 300 - 100 cm-1, which could be due 

to multiplicative scatter effects. The absolute intensity values at the selected peak (at 554.4 cm-

1) in all CAF spectra became 1. Therefore, this column was excluded from the PCA analysis 

as it contained a constant number (i.e. no variance). The line plots of the peak normalised CAF 
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spectra are shown in Figure 4.16g. Magnified peaks (not shown) showed differences in 

intensities among remaining peaks. The PCA results for the peak normalised data was very 

similar to that of both the maximum and range normalisation because the same peak was 

employed for this pre-processing. Therefore, the PCA results of the peak normalised spectra is 

not discussed in details (Figures 4.17m and 4.17n). 
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Figure 4. 16: Line plots of normalised and non-normalised CAF spectra (C1 to C6 from Set ‘2’) (Unscrambler® X 10.3). a) Raw spectra, b) Area 

normalisation, c) Unit vector normalisation, d) Mean normalisation, e) Maximum normalisation, f) Range normalisation and g) Peak normalisation. 

In all Figures: C1: blue; C2: red; C3: green; C4: light blue; C5: maroon; and C6: grey. 

 

http://www.camo.com/products/download-trial.html
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Figure 4. 17:  PCA scores and loading plots summarising the normalisation types of six CAF Raman spectra (C1 to C6 from Set ‘2’) in comparison 

with raw spectra (Unscrambler® X 10.3). (a - b) raw spectra; (c - d) area normalisation; (e - f) unit vector normalisation; (g – h) mean normalisation; 

(i - j) maximum normalisation; (k - l) range normalisation; (m - n) peak normalisation. 

http://www.camo.com/products/download-trial.html
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In summary, both area and mean normalisation explained greater calibrated and validated 

variance. The difference between both values was insignificant in comparison to other 

normalisation methods. Of all normalisation methods, area normalisation has induced 

clustering between like substances (replicate CAF spectra), whereas mean normalisation 

produced the greatest separation between the samples. In contrast, the model produced by unit 

vector normalisation has been shown to be invalid for new samples due to the large difference 

between both calibrated and validated variance. Range, maximum and peak normalisation 

produced similar PCA results since all samples consisted of pure CAF, hence the maximum 

peak was the same peak employed in range, maximum and peak normalisation. In all the 

normalisation methods discussed, the influence plot (not shown) with T2 (PC1) illustrated that 

all CAF samples fit in the model. The leverage plot (PC1) (not shown) illustrated that both C1 

and C6 have a higher leverage than remaining CAF samples, hence have a strong influence on 

the model than remaining samples. 

In conclusion, mean normalisation was found to outperform other normalisation methods for 

varied datasets (e.g. Set ‘2’) because it normalised individual spectra and produced the largest 

separation between the samples. In contrast, area normalisation was found to outperform other 

normalisation methods for replicate samples because it normalises the entire dataset to a 

constant and reduced the separation between replicate samples. Mean and area normalisation 

are differentiated with a constant multiplicative factor for the scores plot coordinates [172]. 

Therefore the spectra for Set ‘2’ were mean normalised and a PCA was generated to evaluate 

if it would improve the PCA classification of a varied dataset that include replicate spectra (e.g. 

CAF, BEN and CCL spectra). 

Set ‘2’ was mean normalised, then the line plots were visually inspected and compared to that 

of the raw spectra (Figure 4.18a). They showed that replicate spectra for both CAF and BEN 

were fully overlaid. However, the CCL spectra were noisy and not fully overlaid, which is 

expected for mixtures (Figure 4.18b). The PCA scores plot (Figure 4.18c) explained 98 % of 

the variance in the data, where one PC explained 79 % and 71 % calibrated and validated 

variance respectively. The model was explained by two PCs before plateauing. All samples 

lied in the ellipse at 95 % CL. BEN samples were not dominating the model as previously 

demonstrated (PCA-2, Section 2.2.1). The scores plot showed that the spectra for Set ‘2’ were 

separated into three groupings: (1) CAF and CCL 1, 2 and 6; (2) B2 and B3; (3) CCL 3-5. 
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Upon magnifying the scores plot, it could be seen that CAF samples were also separated from 

CCL mixtures 1, 2 and 6. The scores plot showed that the variance in CAF samples and CCL 

3 to 5 mixtures (spectra with higher CAF composition) were explained by PC2. These samples 

have high positive scores and high values for variables with positive loadings. The variance in 

both B2 and B3 was explained by PC1. CCL mixtures 3-5 were separated from CCL mixtures 

1, 2 and 6 as well as CAF samples. This is explained by the fact that the former mixtures have 

more prominent peaks for CRE and LAC rather than CAF. The loadings plot (Figure 4.18d) 

showed the important spectral regions for PC1, which mainly correlated to CAF samples. In 

the loadings plot (PC1), both B2 and B3 have higher than average values for all the variables 

which have positive loadings. 

           

 

 

 

 

 

 

 

 

Figure 4. 18: Mean normalisation of Set ‘2’ (Unscrambler® X 10.3). a) line plots of three 

groupings (CCL (blue), CAF (red) and (BEN (green)) for raw Raman spectra (Set ‘2’); b) line 

plots of three groupings (CCL (blue), CAF (red) and (BEN (green)) for mean normalised 

Raman spectra (Set ‘2’); c) The PCA 2D-scores and d) the line loading plots. 
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In this pilot study, mean normalisation was considered in the final combination set of pre-

processing methods (Section 4.3.5.) because it explained greater calibrated and validated 

variance, produced greater separation between groupings and maintained positive correlations 

between replicate spectra in the PCA model. Close calibration (79 %) and cross-validation (71 

%) values showed that the model could be applied to unknown samples. 

4.3.4.5.Scatter effects 

Descriptive analysis has demonstrated that the spectra exhibit multiplicative scatter effects 

(MSEs) (Figure 4.9), which could be corrected using standard normal variate (SNV), multiple 

scatter correction (MSC), normalisation or derivatives [172]. In contrast, spectra with additive 

scatter effects may benefit from other transformations/ pre-processing such as baseline 

correction, derivatives, SNV or MSC [172]. In this Section SNV and MSC were investigated 

for the correction of MSEs. 

4.3.4.5.1. Standard Normal Variate (SNV)  

SNV corrects for both multiplicative effects which induces fluctuations in absolute intensities, 

and additive effects, which induces baseline offsets. This is performed by subtracting the 

average of the spectrum from the data matrix (i.e. making it ‘zero-mean’) and dividing the 

result by the standard deviation (i.e. making it a ‘unit variance’). In other words, it is a centering 

and scaling pre-processing tool [263]. Following the application of SNV, pre-processing to 

both C1 to C6 (Set ‘2’), the visual inspection of CAF spectra before and after pre-processing 

showed that multiplicative scatter was reduced over the range 1692 - 1377 cm-1 and 420 - 100 

cm-1 (Figure 4.19). However, the baseline between these two regions dropped below zero. The 

effect shown on the latter ranges may not be a reduction in MSEs but a normalisation effect 

resulting from the scaling properties of SNV. 
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Figure 4. 19: Raman spectra for C1 to C6 (Set ‘2’) before and after pre-processing using SNV 

(Unscrambler® X 10.3). In both Figures: C1: blue; C2: red; C3: green; C4: light blue; C5: 

maroon; and C6: grey. 

Set ‘2’ was then pre-processed using SNV. A PCA was generated and compared to that of the 

raw spectra (PCA-2, Section 4.3.2.1) to evaluate the effect of this pre-processing method. The 

PCA scores plot (Figure 4.20) showed an improved separation between four groupings: (1) 

CCL 3 to 5; (2) CCL 1, 2 and 6; (3) C1 to C6; and (4) B2 and B3 as compared to the raw 

spectra. However, it showed great similarity to the PCA produced by mean normalisation 

(Figure 4.18). CAF peaks dominated the spectra for grouping 2 and, hence both groupings 2 

and 3 were positively correlated. Mixtures CCL 3 to 5 featured peaks for CAF as well as for 

CRE and LAC, and, hence were grouped together but not in a tight cluster.  

The three-PC model explained 99 % of cumulative calibrated variance and 97 % of cumulative 

cross-validated variance. The variance in grouping 4 was explained by PC1, whereas the 

variance in grouping 1 was explained by PC2. Both groupings 2 and 3 have not contributed 

significantly to explaining the variance by PC1 or PC2. Results have demonstrated that SNV 

improved substance separation using PCA possibly by correcting for MSEs or by its scaling 

effect. Despite that, SNV transformation did not improve the percentage for both calibrated 

and validated variance compared to that of the raw spectra (Set ‘2’). The loadings and scores 

plots showed improved PCA classification and identification of important chemical 

information. Therefore, SVN would be considered in the final combination set of pre-

processing methods. 
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Figure 4. 20: SNV of Set ‘2’. a) 2D-scores and b) line loading plots (Unscrambler® X 10.3). 

4.3.4.5.2. Multiple scatter correction (MSC) 

MSC corrects for both additive and multiplicative scatter effects. The scatter is usually 

modelled against a reference spectrum that is calculated from the mean sample [116]. MSC 

uses a linear regression (with two correlation coefficients: the slope and the intercept) to bring 

all samples as close to the reference spectrum. MSC may remove important chemical 

information as regression is based on a reference sample [172] that is automatically selected 

by the Unscrambler® X 10.3 software from the dataset. Therefore it is preferred to use MSC 

with replicate spectra rather than varied datasets. The inspection of the line plots of the MSC 

corrected plots for C1 to C6 from Set ‘2’ showed that slopes were reduced as compared to raw 

spectra. The visual inspection of CAF spectra before and after pre-processing showed that 

multiplicative scatter was reduced over the range 1692 - 1377 cm-1 and 420 - 100 cm-1 (Figure 

4.21). The line plots have shown better baseline offset correction in comparison to the pre-

processing using SNV to the same spectra. 
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Figure 4. 21: Six CAF spectra before and after pre-processing with MSC (Unscrambler® X 

10.3). In both Figures: C1: blue; C2: red; C3: green; C4: light blue; C5: maroon; and C6: grey. 

 

Following the application of MSC, a PCA for Set ‘2’ was generated and compared to that of 

the raw data (Figure 4.22). The PCA model results showed that MSC has induced a greater 

separation between like samples.  This was illustrated with the 10,000 fold increase in the 

coordinates of the scores plot as compared to SNV scores plot (Figure 4.20a). This could be 

explained by the fact that MSC is not a suitable algorithm for varied datasets since the mean 

spectrum is not representative for all samples and may be different from the true mean spectrum 

(i.e. the mean spectrum of CAF would not be representative to BEN samples). Therefore MSC 

was not considered in the final combined pre-processing methods. 

 

 

 

 

 

 

 

 

 

 

Figure 4. 22: MSC of Set ‘2’. a) 2D-scores and b) line loading plots (Unscrambler® X 10.3). 
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4.3.5. Combined pre-processing methods 

Combined preprocessing methods are commonly undertaken prior to the generation of PCA 

models for Raman spectra of drug mixtures [154, 184]. In this Section, spectra were examined 

for regions with baseline offsets, scatter effects and noise after the application of each 

combined pre-processing method [95]. The effect of combined pre-processing sequences was 

evaluated if it produces tight clusters of replicate spectra and maximum separation between 

different samples in the PCA scores plots. The percentage of explained calibrated and validated 

variance for each model and the closeness between their values was also evaluated. 

Furthermore, the order in which combined pre-processing methods is used will be assessed.  

From the results obtained thus far, it has been established that selected pre-processing was 

further investigated in combined protocols to correct for noise, baseline offsets, multiplicative 

scatter effects and variable absolute intensities. These include: smoothing with polynomial 

order of 1 and smoothing segments of 3 and 5 respectively, baseline offset correction method, 

first and second derivatives, standard normal variate and mean normalisation.  

Optimum performance for both mean and maximum normalisation algorithms is achieved 

when the values in the data matrix have the same sign, according to the Unscrambler® X 10.3 

(2015) software guide (Camo, Norway) [268]. Therefore mean normalisation was preceded by 

baseline offset as the latter transforms the values in the data matrix into values with positive 

sign. For this reason, combinations including derivatives instead of baseline offsets correction 

method would include range normalisation as an alternative to mean normalisation because the 

data matrix would include values with both positive and negative signs. In addition, range 

normalisation is an algorithm that is calculated from individual spectra rather than the entire 

dataset at once. For these reasons, range normalisation is preferred over area normalisation 

when calculating the first or the second derivatives. Spectra for pure CAF (C1 to C6 from Set 

‘2’) were examined for regions with noise, baseline offsets, scatter effects and variable peak 

intensities after the application of each pre-processing sequence. A PCA was then generated 

for each method to evaluate substance classification and reduced noise. 
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Pre-processing sequences investigated are summarized below:  

 

Method 1: Raw data           Smoothing (1-3)           SNV         Baseline offset           Mean 

normalisation           PCA 

Method 2: Raw data           Smoothing (1-5)           SNV            Baseline offset           Mean  

normalisation           PCA  

Method 3: Raw data            SNV           Baseline offset           Mean normalization           PCA 

Method 4: Raw data            SNV           Baseline offset           PCA 

Method 5: Raw data            Baseline offset           Mean normalization           PCA 

Method 6: Raw data          SNV         First derivative          Range normalization           PCA 

Method 7: Raw data          SNV          Second derivative           Range normalization          PCA 

 

Compared to the line plots for CAF raw spectra (Figure 4.3a), methods 1-3 and 5 (Figures 23b-

d and 23f),  gave similar line plots showing overlaid scaled replicate spectra with slightly 

improved baseline correction and a reduction in MSEs. Method 2 outperformed methods 1, 3 

and 5 in reducing the noise. The line plots for methods 1-3 and 5 demonstrated the dominant 

effect of both baseline offset correction and mean normalisation over smoothing and SNV. In 

contrast, method 4 showed slight amplified intensities over the regions 1692 - 1377 cm-1 and 

420 - 100 cm-1, demonstrating the importance of normalisation. Method 6 illustrated the 

resolution of major peaks but with potential loss of chemical information (absence of peaks 

after the pre-processing sequence was conducted). Finally, method 7 clearly resolved few 

major peaks but has been shown to increase the noise in the spectra.  
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Figure 4. 23: Line plots of combined pre-processing methods using six CAF spectra (C1 to C6 from Set ‘2’) (Unscrambler® X 10.3). a) Raw 

spectra; b) Method 1; c) Method 2; d) Method 3; e) Method 4; f) Method 5; g) Method 6; and h) Method 7. In all Figures: C1: blue; C2: red; C3: 

green; C4: light blue; C5: maroon; and C6: grey. 
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Despite the fact that spectra showed improved flat baselines and less multiplicative scatter as 

compared to the raw spectra, visual inspection cannot give an accurate judgement on the pre-

processing performed. A PCA was generated for each pre-processing sequence for Set ‘2’ to 

investigate the effect of each sequence on the PCA performance. 

Methods 1-3 and 5 gave similar PCA results with 79 % and 19 % of the calibrated variance 

explained by PC1 and PC2 respectively. The raw data for both scores and explained variance 

plots was very similar for all four methods. This confirmed that the effect of both baseline 

offset correction and mean normalisation was more significant than both smoothing and SNV. 

The scores plots for these four methods illustrated the classification of Set ‘2’ into four 

groupings: 1) BEN; 2) unclustered grouping for CCL3 to 5; 3) C1-C6; and 4) CCL1, 2 and 6 

(Figures 4.24b-d and 4.24f). Groupings 3 and 4 were positively correlated groupings. This is 

because the Raman spectra in grouping 4 include more prominent CAF peaks than that of LAC 

and CRE. Smoothing was not a prerequisite in the analysis because the S/N ratio was adequate 

prior to the application of smoothing transformations. Smoothing has been shown to be more 

suitable to use in classification studies (i.e. SIMCA etc.) [262]. The scores (Figures 4.24b-d 

and f) and loadings plots (not shown) illustrated that the variance in BEN samples (i.e. B2 and 

B3) was explained by PC1, whereas the variance in CCL 3 to 5 was explained by PC2. In these 

four methods, the samples lied in the ellipse at 95 % CL. 

The PCA scores plot for method 4 showed that the samples were similarly grouped into four 

groupings 1) BEN; 2) unclustered grouping for CCL3 to 5; 3) C1-C6; and 4) CCL1, 2 and 6 

(Figure 4.24e). The explained variance plot showed that 68 and 28 % of the calibrated variance 

was explained by PC1 and PC2 respectively. A large difference between the explained 

calibrated (68 %) and validated (49 %) variance showed that the model was not valid and may 

not be applied to new samples. This model emphasised the importance of normalisation for this 

dataset. 

The PCA scores plot for method 6 showed a cluster forming between pure CAF (C1-C6) and 

the mixtures CCL1, 2 and 6 and a reduction in the distance between the scores (Figure 4.24g). 

This was demonstrated by the reduced variance and loss of orthogonality between the variables 

in the 2-D loadings plot (Figure 4.24h). The explained variance plot showed that 68 and 25 % 

of the calibrated variance was explained by PC1 and PC2 respectively. The variance in BEN 

samples (i.e. B2 and B3) and CCL 3-5 was explained by PC1 and PC2 respectively. A large 
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difference between the explained calibrated (68 %) and validated (56 %) variance showed that 

the model was not valid and may not be applied to new samples.  

The PCA scores plot for method 7 showed loss of the groupings (Figure 4.24i). This method 

was unable to classify the samples according to their properties.  This was demonstrated by the 

reduced coordinates in the scores plot, reduced variance and clustering of the variables around 

the mean in the 2D-loadings plot (Figure 4.24j). The explained variance plot showed that only 

26 and 20 % of the calibrated variance was explained by PC1 and PC2 respectively. The largest 

difference between the explained calibrated (25.77 %) and validated (0.97 %) variance was 

observed by applying this method which demonstrates that the model was not valid and may 

not be applied to new samples. The farther the validation values from the calibration values, 

the more inaccurate the explanations of the variance by the PCs become [148].  

In summary, the optimum pre-processing method for this dataset (Set ‘2’) was method ‘5’ 

(baseline offset correction, followed by mean normalisation of Raman spectra). The 

combination of both baseline correction and normalisation in combination with other pre-

processing methods corroborates with the research carried out on pharmaceuticals [148, 182, 

269] and paint [179]. Pre-processing using baseline offset correction followed by normalization 

corroborates with the research undertaken by Afseth et al. [261] for biological samples. 
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Figure 4. 24: Summary of PCA results for the combined pre-processing methods (Unscrambler® X 10.3). a) the scores plot for the raw spectra 

(Set ‘2’); b) the scores plot for method 1; c) the scores plot for method 2; d) the scores plot for method 3; e) the scores plot for method 4; f) the 

scores plot for method 5; g) the scores plot for method 6; h) the loadings plot for method 6; i) the scores plot for method 7; j) the loadings plot for 

method 7.  
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In summary, the best classification for Set ‘2’ was achieved with pre-processing combination 

methods 1, 2, 3 and 5 with total explained variance of 98 % for PC1/PC2. However, method 

‘5’ is considered the optimum method to avoid over-pre-processing since smoothing and SNV 

had insignificant effects in these sequences for this dataset. Therefore the robustness of method 

‘5’ was tested using validation Set ‘3’. 

4.3.5.1.Method validation 

Validation of the optimised pre-processing approaches was assessed using an independent 

subset of samples (i.e. Set ‘3’) in order to ensure that the model was not over-fitted to the data 

[172, 270]. The line plots for Set ‘3’ (not shown) were inspected using the process described 

in Figure 4.1. Cosmic rays were zapped from C7, C8 and B8 using WiRE 3.4. BEN 4, 7 and 9 

were discarded from the analysis because the detector was saturated during the measurements 

of these spectra. The line plots showed variations in absolute intensities between replicate 

spectra and baseline offsets. Both datasets ‘2’ and ‘3’were interpolated from 3201.03 - 100.55 

cm-1 to 3200.95 - 100.41 cm-1 because of different x-axes. Subsequently, both datasets were 

imported into the Unscrambler® X 10.3. Descriptive statistics (not shown) showed MSEs in 

both CAF and BEN test sample groups. It was noted that the spectra in Set ‘3’ showed 

instrumental, sample, analysis and environmental interferences similar to set ‘1’. This is 

because these artefacts are generally common in Raman spectra [188]. In addition, these 

samples (i.e. Set ‘3’) were measured using the same Raman instrument and reference standard 

batch (for CAF only). However, the significance of these interferences and the quality of the 

raw spectra for Set ‘3’ were different from that of set ‘1’. 

Method ‘5’ was employed to pre-process both calibration (Set ‘2’) and validation (Set ‘3’) sets, 

then a PCA was generated to evaluate whether the developed model (i.e. method ‘5’) will 

efficiently classify Set ‘3’. A two-PC model explained 98 and 97 % of the cumulative 

calibration and validation variance respectively. The 3D-scores plot (Figure 4.25) showed that 

the dataset was split into three major groupings: 1) BEN validation samples (Set ‘3’) clustered 

with calibration samples (Set ‘2’); 2) CAF validation samples (Set ‘3’) clustered between both 

calibration CAF and CCL 1, 2 and 6 samples (Set ‘2’); 3) CCL 3-5 (Set ‘2’). As described 

above, the spectra of CCL 1, 2 and 6 samples included high composition of CAF peaks, and, 

hence had positive correlations with CAF samples. Little variance was explained by this group 

i.e. the mixtures CCL 1, 2 and 6 and the CAF samples.  
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With reference to the scores plot, the loadings plot (not shown) again illustrated that BEN 

calibration and validation samples had higher than average values for the positive loadings 

(PC1). In contrast, CCL 3-5 samples had higher than average values for the negative loadings 

(PC2). All samples lied in the model with 95 % CL except CCL4. This sample was further 

investigated using the influence and leverage plots (not shown), both of which showed that this 

sample fits in the model, and, hence is not an outlier. However, it has a high leverage for PC2 

and, hence is influencing the model for the explained variance by PC2 (11 %). This is shown 

by its increased distance from the mean in the scores plot as compared to both CCL 3 and CCL 

5. It is not fully understood why CCL4 had a high leverage. CCL had the second lowest S/N in 

the dataset. Unlike CCL 4 and CCL 5, the Raman spectral analysis of CCL 4 showed a high 

composition of prominent band for CRE (e.g. torsion vibration ρt (CH3) 740 cm-1; (wagging 

vibration ρw(R-NH2) 830 cm-1); (asymmetric stretching vibration νas(CN) and/ or stretching 

vibration ν(R-NH2)) 1052 cm-1; (symmetric stretching vibration νs(COOH), vibration ν(CN), 

and/ or deformation δ (CN)) 1397 cm-1; and deformation δ(CH2) 1424 cm-1) [271]. The PCA 

scores plot did not show any discrimination between both BEN batches (i.e. from datasets ‘2’ 

and ‘3’). The overlap between some CCL mixtures and CAF samples showed the limitations 

of MVA as a sole tool for the classification of complex mixtures. 

http://en.wikipedia.org/wiki/Nu_%28letter%29
http://en.wikipedia.org/wiki/Nu_%28letter%29
http://en.wikipedia.org/wiki/Nu_%28letter%29
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Figure 4. 25: The 3D-scores plot for the validation samples Set ‘3’ following their pre-

processing using method ‘5’ (Unscrambler® X 10.3). 

In summary, method ‘5’ has correctly classified the validation samples (Set ‘3’) with a two-PC 

model involving a small percentage of residuals (approximately 2 %). However, more 

improvement was needed to optimise this method. Therefore a variables’ reduction method 

was developed to remove/ reduce redundant variables and investigate the robustness of this 

method in classifying this dataset. 

4.3.6. Variables’ reduction 

To reduce the size of the data matrix and refine substance classification using the developed 

pre-processing model, the variables (i.e. data points or wavenumbers) identified by the loading 

plots throughout this Chapter were further investigated (Table 4.7).  
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Table 4. 7:  Important peaks for BEN, CAF, CRE and LAC (‘partial identifiers’) identified by 

PCA loading plots. 

Substances Peaks identified (cm-1) 

BEN 1574, 1679, 1686, 1579 

CAF 162, 552, 554, 557, 560, 643, 739, 741, 

1170, 1279, 1285, 1328, 1330, 1331, 1399, 

1599, 1600, 1603, 1604, 1608, 1694, 1696, 

1701, 1703, 2956, 2961,  

CRE 740, 830, 1052, 1397, 1424 

LAC 860, 863, 1149,  
 

The data matrix (3777 variables per sample) was reduced to seven bands (width 10-15 cm-1) 

containing the identified variables: [2965-2975]; [2950-2960]; [1690-1705]; [1590-1605]; 

[1320-1335]; [735-745] and [550-560] cm-1. This new data matrix is named set ‘4’. Bands were 

selected rather than peaks to compensate for the slight peak shifts between various pre-

processing studies. Method ‘5’ was then employed to pre-process to the new dataset (i.e. set 

‘4’) and a PCA was generated to investigate the impact of this method on substance 

classification.  

A two-PC model explained 98.2 and 97.7 % of the cumulative calibrated and validated 

variance, respectively. The 2D-scores plot (Figure 4.13) showed that the dataset was split into 

two major groupings: BEN-based and CAF-based samples. The scores plot showed the first 

separation between both CAF samples and CCL mixtures and an improved clustering of the 

pure substances (i.e. CAF and BEN). PC1 explained 75 % of the variance for BEN samples 

(strongest Raman scatterer in the dataset), whereas PC2 explained 23 % of the variance for 

both CAF samples and CCL mixtures (i.e. CCL 3 and CCL 5). All samples have been shown 

to lie in the model with 95 % CL. The difference between unprocessed and processed dataset 

‘4’ is shown in Figures 4.26a and 4.26b respectively. 
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Figure 4. 26: a) The scores plot of the selected-bands spectral data prior to pre-processing, and 

b) following processing using method ‘5’ (Unscrambler® X 10.3). 

The identification of drug constituents in mixtures is commonly achieved by the minimum 

number of peaks that could be matched to a library or compared to a reference standard [136]. 

In general, there are no rules to characterise the minimal number of peaks to detect particular 

substances [267]. In this pilot study, using a simple combined pre-processing sequence (i.e. 

baseline offset correction method followed by mean normalisation), it was demonstrated that 

a 

b 
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Processed 
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PCA could be employed to identify and classify drug mixtures using a discrete number of 

Raman bands/ substance identifiers. 

In summary, Raman spectral step-wise pre-processing was carried out to improve the 

classification of selected pure substances and mixtures of known composition (Figure 4.27). 

Smoothing methods did not significantly improve the model. This could be because the S/N 

ratio in all samples was relatively high. The baseline offset method did not improve the model 

if it was employed as a single pre-processing method. However, it improved the model when 

it was used in combination pre-processing methods. The linear baseline correction slightly 

reduced the baseline offset over particular spectral regions at the expense of remaining spectral 

regions, based on the selected wavenumber range. Using the linear baseline method, the PCA 

model was not improved as compared to that of the raw data, and, therefore in this study it was 

not recommended. For this dataset, the first derivative of the Raman spectra showed better 

PCA classification results than the second derivative. In contrast, the second derivative has 

been shown to increase the noise in the PCA model and resulted in the loss of chemical 

information. Pre-processing using the second derivative in combination with other pre-

processing methods produced the worst results in terms of sample classification as well as 

explained and validated variance.  

With respect to normalisation, both area and mean normalisation explained greater calibrated 

and validated variance for Raman spectra. The closeness between both values was greater than 

with other normalisation methods. Of all normalisation methods, area normalisation has 

induced clustering between replicate spectra, whereas mean normalisation produced the 

greatest separation between them. In contrast, the model produced by unit vector normalisation 

has been shown to be invalid to new samples due to the large variation between both calibrated 

and validated variance. Range, maximum and peak normalisation have produced similar PCA 

results for pure CAF. To reduce the scatter effects, SNV as a single pre-processing method 

improved sample classification by reducing multiplicative scatter effects and scaling 

variations.  
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Figure 4. 27: A flow chart showing a protocol for the pre-processing of Raman spectra1. 
1SG: Savitzky Golay 

1D: First derivative 

2D: Second derivative 

SNV: Standard normal variate 

PCA: Principal components analysis 

Y and N are ‘yes’ and ‘no’ respectively 
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4.4. Conclusions 

In this Chapter, a pre-processing protocol was developed for Raman spectra of NPS-related 

substances. The optimal combined pre-processing method included a two-step process. This 

involved the sequential pre-processing using baseline offset correction followed by mean 

normalisation. The optimal combined pre-processing sequence was successfully applied to a 

selected Raman dataset for the application of PCA. However, this protocol may not be the 

optimum option for different datasets or chemometric applications. The developed method 

included the visual inspection of Raman spectra, rejection of spectra with errors, removal of 

cosmic spikes, interpolation of the x-axes if required, examination and evaluation of spectra 

using descriptive statistics and the Unscrambler® software or a relevant software, and, finally, 

the comparison and assessment of the effect of step-wise pre-processing on Raman spectral 

data using exploratory PCA. This protocol is recommended for the pre-processing of Raman 

spectral data of NPS-related substances prior to conducting prediction and classification studies 

using MVA techniques. 

In this study, it was demonstrated that PCA of pre-processed Raman data could be employed 

as a pre-screening tool to identify substance peak identifiers, which may, in turn assist in 

optimising the classification of drug mixtures using a discrete number of Raman bands. 

Spectral pre-processing made it possible to explore and visualise the important differences in 

the dataset. In this study, unprocessed spectra were mainly separated due to variations in the 

S/N ratios. Processed spectra have explored the main variations in the dataset due to chemical 

differences between strong Raman scatterers and heterogeneous mixtures. 

Further work should focus on the application of the chemometric protocol on NPS-containing 

mixtures and larger datasets. 
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5. Classification of NPS reference standards using Raman 

spectroscopy and chemometric approaches 

5.1. Introduction 

This Chapter contains the first study to evaluate the building of a ‘representative’ NPS Raman 

database that could be employed for the projection and classification of ‘unknown’ previously-

seen and previously unseen NPS. This study evaluates a model developed with 53 new 

psychoactive substance (NPS) reference standards, as ‘representatives’ of 478 NPS, for the 

identification and classification of 21 test NPS reference standards.  

The Raman database was developed based on a study implemented by Zloh et al. [204] in 

which a hierarchical clustering analysis method combined with chemical similarity indices (i.e. 

Tanimoto similarity index (TSI)) was employed and a ‘representative’ NPS subset was 

suggested [204]. Hierarchical clustering analysis is a classical data mining technique, which 

combines similar molecules into groups or clusters and identifies their ‘medoids’ [272]. A 

‘medoid’ is a molecule with the highest average similarity to members of the same cluster 

[204]. Initially, a dataset of 478 NPS, recorded by the EDND (European information system 

and database on new drugs) [273], was clustered into 21 superclusters, which were, in turn 

subdivided into 79 clusters via a minimum common substructure (MCS) approach [204]. 

‘Representative’ NPSs or ‘medoids’ were combined from clusters to form the ‘representative’ 

database, which represents the chemical space of the original set of 478 NPS. ‘Representative’ 

NPS were a limited subset, yet retained the maximum chemical and structural diversity of the 

initial 478 NPS [204]. 

Since structurally similar compounds are known to have similar physicochemical properties 

and to exhibit similar spectral features [274], it was postulated that unknown newly emergent 

NPS, which are structurally similar to ‘representative’ NPSs or ‘medoids’ may exhibit similar 

structural features and can thus be identified or classified. Therefore based on the above work, 

‘representative’ NPS were obtained and evaluated for the identification of ‘unknown’ NPS 

using Raman spectroscopy coupled with chemometrics. ‘Representative’ NPS used in this 

Chapter represented superclusters 1 – 13. ‘Representative’ NPS from superclusters 14 – 21 

containing single molecules (i.e. singletons) were excluded due to the lack of other NPS with 

similar structures when this study was conducted. Finally obtained ‘representative’ NPS were 

subject to commercial availability, cost and popularity in the NPS research field [204].  
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This work is significant, as there are limited or no ‘representative’ (as defined above) libraries 

available for newly emerging NPS and there is a great need for the rapid detection of these 

drugs by law enforcement and front-line staff in emergency settings. The ever-increasing 

number of NPS, the speed by which they are emerging and the lack of reference standards pose 

a challenge to their detection. In addition, newly emerging NPS may be undetected using 

library-based correlation algorithms because of absence from reference libraries and/or 

limitations of in-built algorithms (see Chapter 3). Interpretation of spectral data for the purpose 

of structure elucidation requires expertise and may not be feasible if the structure is unknown 

or due to unknown correlations between structural and spectral information. Therefore 

developing a chemically diverse ‘representative’ spectral database is significant as it may 

enable the identification of analogous NPS or near-neighbours to NPS that may emerge in the 

future.  

This Chapter describes building a library of selected chemically diverse NPS reference 

standards using benchtop Raman spectroscopy. Subsequently, chemometric models were 

developed following spectral pre-processing, as investigated in Chapter 4, using both 

exploratory and projection principal component analysis (PCA) models for the identification 

of unknown NPS against ‘representative’ libraries. To our knowledge, structural similarity 

studies coupled with Raman spectroscopy, spectroscopic data pre-processing and 

chemometrics have not been conducted to date for the classification of NPS. The aim is to 

investigate whether the clustering technique implemented by Zloh et al. [204], the spectral pre-

processing method and the use of PCA can be applied for the classification of unknown NPS 

reference samples, and whether the developed PCA models can categorise the chemical 

scaffolds of unknown NPS. This study evaluates the complexity associated with NPS with 

respect to structural and chemical diversity and provides a proof-of-concept for the 

identification of ‘unknown’ NPS. 

5.2. Experimental 

5.2.1. Materials 

Seventy-four NPS reference standards were commercially obtained from both Chiron AS 

(Trondhein, Norway) and LGC Group (Teddington, UK). Certificates of analysis of NPS 

claimed purity of > 98 % for all NPS and were used for analysis as supplied. Full 

characterisation of impurities in supplied NPS reference standards was not performed and is 

beyond the scope of this work. In this work, the 74 NPS were split into two groups: 53 acting 
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as a training set (i.e. calibration set) and 21 as a ‘query’ set (i.e. validation set). Initially, 79 

‘representative’ NPS were suggested by Zloh et al. [204]. Only 53 were purchased following 

the exclusion of singletons and based on availability, cost and popularity in NPS research. The 

21 ‘query’ molecules were subdivided into two groups: 17 from the original dataset of 478 

NPS provided by the EDND (i.e. previously seen) [204] that were not used to train the model 

subsequently referred to as ‘test’ molecules, and four, that were not present in the dataset of 

478 NPS from the EDND (i.e. previously unseen) referred to as ‘out-of-model (OOM)’ samples 

(Table 5.1). In order to assist result interpretation, further similarity studies were conducted by 

Zloh et al. [204] to suggest supercluster/ cluster membership of ‘query’ samples against the 

clustering model initially developed from 478 NPS (Table 5.1). 

5.2.2. Sample preparation 

Between 3 - 5 mg of each powdered NPS reference standard were weighed, tapped and 

flattened on aluminium plates (HSA14521A - Weight dish alum 43 mm, Fisherbrand) for 

Raman analysis. Two NPS ‘test’ samples (i.e. JWH-018 and MN-18) were obtained as oils 

(Table 5.1). Oil samples (approximately 10 mg) were recovered by flushing out the containers 

with approximately 1 mL of acetone to obtain a solution for analysis. The process was repeated 

and recovered solutions were emptied and aggregated on aluminium plates to form a thin film.  
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Table 5. 1: NPS reference standards used in this study (training, test and out-of-model (‘OOM’) NPS reference standards). 

 
 Training set 

Reference Standard Sample form Supercluster Cluster Class Similarity to cluster medoid (%) Claimed purity Batch Number 

5-MeO-DALT Powder 1 1.03 Tryptamines N/A (2 representatives)2 99.5 15751 

5-MeO-MiPT Powder 1 1.04 Tryptamines 100 (medoid) 99.5 15737 

4-HO-DET Powder 1 1.06 Tryptamines 100 (medoid) 99.5 15727 

FDU-PB-22 Powder 1 1.08 Synthetic Cannabinoids N/A (2 representatives)2 >99.0 15600 

NM-2201 Powder 1 1.09 Synthetic Cannabinoids N/A (2 representatives)2 98.5 15706 

4-MeO-alpha-PVP Powder 2 2.01 Cathinones N/A (2 representatives)2 99.5 15733 

25H-NBOMe Powder 2 2.05 Phenethylamines 100 (medoid) 99.5 15731 

N-Me-2C-B Powder 2 2.06 Phenethylamines 100 (medoid) 99.5 15661 

STP (DOM) Powder 2 2.08 Phenethylamines 100 (medoid) 99.4 15662 

AB-FUBINACA Powder 3 3.01 Synthetic Cannabinoids N/A (2 representatives)2 99.5 14188 

AB-PINACA Powder 3 3.02 Synthetic Cannabinoids N/A (2 representatives)2 >99.5 14186 

THJ-018 (JWH-018 indazole analogue) Powder 3 3.04 Synthetic Cannabinoids N/A (2 representatives)2 98.0 14686 

SDB-006 Powder 3 3.06 Synthetic Cannabinoids N/A (2 representatives)2 >99.5 15599 

AM-679 Powder 3 3.07 Synthetic Cannabinoids 100 (medoid) 99.5 15728 

DPT Powder 3 3.08 Tryptamines 98 99.5 15942 

AM-2201 Powder 4 4.02 Synthetic Cannabinoids 97 98.2±0.5 N/A 

JWH-122 Powder 4 4.02 Synthetic Cannabinoids 99 99.5±0.5 11375 

UR-144 Powder 4 4.03 Synthetic Cannabinoids 100 (medoid) 99.5 12511 

JWH-073 Powder 4 4.04 Synthetic Cannabinoids 100 (medoid) 99.0 9296 

5F-APICA Powder 4 4.05 Synthetic Cannabinoids 86 99.2 13651 

Methoxetamine (MXT) Powder 5 5.01 Arylcyclohexylamines N/A (2 representatives)2 99.2 14872 

Ketamine Powder 5 5.02 Arylcyclohexylamines N/A (2 representatives)2 99.5 13562 

4F-α-PVP Powder 5 5.03 Cathinones 100 (medoid) 99.5 15273 

4-Me-N-ethylnorpentedrone Powder 5 5.04 Cathinones 100 (medoid) 99.5 15729 

Phenazepam Powder 5 5.05 Benzodiazepines N/A (2 representatives)2 99.3 4097 

Flubromazepam Powder 5 5.06 Benzodiazepines N/A (2 representatives)2 99.5 14560 
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Afloqualone Powder 5 5.07 Quinazolines N/A (2 representatives)2 99.5 15810 

Mebroqualone Powder 5 5.08 Quinazolines N/A (2 representatives)2 98.6 15652 

3-MeO-PCE Powder 5 5.09 Arylcyclohexylamines N/A (2 representatives)2 N/A 14477 

DL-4662 Powder 5 5.10 Cathinones N/A (2 representatives)2 99.5 15730 

5F-APINACA Powder 5 5.11 Synthetic Cannabinoids 83 99.5 13652 

JWH-015 Powder 5 5.12 Synthetic Cannabinoids 100 (medoid) 99.5 13618 

4-MeO-PCP Powder 5 5.13 Arylcyclohexylamines 100 (medoid) 99.4 14717 

α-PVP Powder 5 5.14 Cathinones 76 99.5 15373 

2-AI Powder 5 5.15 Aminoindanes N/A (2 representatives)2 98.0 13108AH 

N-Me-2-AI Powder 5 5.16 Aminoindanes N/A (2 representatives)2 >99.6 15127 

Dimethocaine Powder 5 5.17 Anaesthetics N/A (2 representatives)2 >99.5 15597 

Mephedrone (4-MMC) Powder 5 5.18 Cathinones 92 98.0 051M4701V 

N-PB-22 (PB-22 indazole analogue) Powder 6 6.01 Synthetic Cannabinoids N/A (2 representatives)2 98.9 15622 

PB-22 Powder 6 6.02 Synthetic Cannabinoids N/A (2 representatives)2 99.5 13648 

4-acetylpsilocin fumarate (4-AcO-DMT) Powder 6 6.03 Tryptamines N/A (2 representatives)2 98.6 11288 

2-MAPB Powder 7 7.01 Arylalkylamines N/A (2 representatives)2 >99.5 15598 

5-EAPB Powder 7 7.02 Arylalkylamines N/A (2 representatives)2 98.8 15563 

6-MAPB Powder 7 7.03 Arylalkylamines N/A (2 representatives)2 99.5 15601 

N-ethyl-amphetamine Powder 7 7.04 Phenethylamines 100 (medoid) 99.5 15569 

Etizolam Powder 8 8.01 Benzodiazepines N/A (2 representatives)2 N/A 16225 

Flubromazolam Powder 8 8.02 Benzodiazepines N/A (2 representatives)2 99.5 14821 

α-PBT Powder 9 9.01 Cathinones 95 >99.5 15596 

MPA Powder 9 9.02 Arylalkylamines N/A (2 representatives)2 N/A 6985 

GHB Powder 10 10.01 γ-hydroxybutyrate N/A (2 representatives)2 98.1 13762 

Methylone Powder 11 11.00 Cathinones 100 (medoid) 99.5 15590 

trans-CP 47,497-C8 Powder 12 12.00 Synthetic Cannabinoids 100 (medoid) 99.5 15949 

Zopiclone Powder 13 13.00 Others 19 99.5 11179 

 Test 

βk-2C-B Powder 2 2.06 Cathinones 78   

5-APB Powder 2 2.08 Alkylarylamines 35   
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6-APB Powder 2 2.08 Alkylarylamines 34   

MN-18 Oil 3 3.03 Synthetic Cannabinoids N/A (2 representatives)2   

JWH-018 Oil 4 4.02 Synthetic Cannabinoids 100 (medoid)   

Adrafinil Powder 5 5.14 Others 22   

Ethylphenidate (EPD) Powder 5 5.14 Piperidine 36   

Phenibut Powder 5 5.14 Others 44   

5-IAI Powder 5 5.15 Aminoindanes N/A (2 representatives)2   

Flephedrone (4-FMC)1 Powder 5 5.18 Cathinones 68   

Mephedrone (4-MMC)1 Powder 5 5.18 Cathinones 92   

Mexedrone Powder 5 5.18 Cathinones Not present   

5F-PB-22 Powder 6 6.02 Synthetic Cannabinoids N/A (2 representatives)2   

Pyrazolam Powder 8 8.02 Benzodiazepines N/A (2 representatives)2   

5,6-MDAI Powder 11 11.00 Aminoindanes 75   

BB-22 Powder 12 12.00 Synthetic Cannabinoids 21   

Dextromethorphan HBr (DXM) Powder 12 12.00 Others 37   

 Out-of-model (‘OOM’) 

Methylphenidate (MPD) Powder 2 2.30 Piperidine 46   

  5 5.40     

  5 5.13     

  5 5.14     

S-Cathinone Powder 5 5.18 Cathinones 83   

Methamphetamine Powder 7 7.40 Phenethylamines 91   

MDMA Powder 11 11.00 Phenethylamines 81     

1Both flephedrone and mephedrone ‘test’ samples were synthesised in-house by both Dr J. Ward and Dr K.E. Kellett.  
2Clusters containing 2 representative NPS is a cluster that did not contain a medoid and one of both representatives was selected based on availability, cost and level of interest in NPS research 
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5.2.3. Raman spectroscopy 

Spectra were acquired using a benchtop Renishaw inViaTM Raman microscope (Serial No. 

29U091) employing a laser with excitation wavelength (λex) of 785 nm and a 5 % laser output 

power of 10.6 mW (5.8 mW at sample using a x20 objective lens), a high sensitivity ultra-low 

noise RenCam CCD detector, held in a vacuum of -70 oC, an ultra-high precision diffraction 

grating of 1200 lines/ mm. Parameters employed for both calibration of the Raman instrument 

and measurements of all samples were a 10 sec. exposure time, 1 accumulation, 5 % laser 

power, x20 objective lens (spot radius = 1.2 µm). The instrument was calibrated regularly prior 

to analysis using a static silicon wafer reference. Calibration was carried out in order to ensure 

wavenumber accuracy and adjusting the wavenumber to 520 ± 0.6 cm-1. Ten spectra were 

acquired for each NPS reference standard, at ten random spots denoted in this Chapter as R1 

to R10, over a spectral range of 3200 - 100 cm-1. In order to optimise the signal and acquire 

spectra with adequate signal to noise (S/N), the signal for each replicate measurement was 

evaluated by focussing the laser on different sample regions i.e. bright, dull or dark regions, 

yet this procedure was sample-dependent. For example, bright spots may worsen the signal in 

samples exhibiting an intense fluorescent background but may give a better S/N in poor Raman 

scatterers. Spectral data were exported as WiRE (Windows-based Raman Environment) 

version 3.4 (.wxd) files which were converted to text file format (.txt), then saved as Microsoft 

Excel 2013 files (.xlsx), imported into Origin Pro 2016 software (OriginLab, USA) for data 

pre-processing, then finally imported as Excel (.xlsx) files into the  Unscrambler® X10.4 

software for chemometric analysis. Raman data was collected in collaboration with Drs E. 

Samaras and J. Calvo-Castro. 

5.2.4. Raman spectral pre-processing 

The pre-processing of raw spectral data by means of chemometrics has been shown to impact 

the classification of chemically diverse compounds [275]. Raman spectral pre-processing was 

carried out using WiRE 3.4 (Renishaw, UK), Microsoft Excel 2013 and Origin Pro 2016 

(OriginLab, USA) softwares. Cosmic rays were zapped using WiRE 3.4. Raman spectra, saved 

as Excel (.xlsx) files, were then inspected for anomalies using both overlaid and stacked line 

plots of the raw data as well as spectral correlation coefficients. Anomalies were evaluated 

using PCA (Unscrambler® x 10.4) to test their impact on sample classification and whether 

they represent true outliers, being removed from the analysis if this was found to be the case. 

The Raman spectral region below 250 cm-1 was truncated. Raman spectra were then imported 
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into Origin Pro 2016 software for initial pre-processing (i.e. smoothing and baseline 

subtraction). Smoothing was performed using the Savitzky Golay (SG) algorithm, 4th 

polynomial order and a smoothing window of 21 data points. Spectral baselines were 

subtracted using the 2nd derivative, adjacent-averaging smoothing with a window size of 3 

points, a threshold of 0.05 and 200 points to find the baseline anchor points and point 

interpolation. Pre-processed data were then exported back to Microsoft Excel (2013) to remove 

negative data points (negative data points were zeroed using the ‘IF’ function). Individual 

spectra were then maximum normalised. Spectra were finally re-inspected following pre-

processing using line plots and the calculation of correlation coefficients between spectra. A 

summary of combined pre-processing steps used in the analysis is shown in Figure 5.1. 

 

 

Figure 5. 1: A schematic outlining combined pre-processing steps of spectral Raman data for 

NPS reference standards. 

 

5.2.5. Principal component analysis (PCA) 

PCA was performed using the Unscrambler® X 10.4 software (CAMO PROCESS AS, Oslo, 

Norway) using the NIPALS (Non-linear iterative projections by alternating least squares) 

algorithm. PCA parameters were a maximum of 20 principal components (PCs) to calculate 

the PCA, outlier identification and mean centring of the data, conducting uncertainty tests, 

using the full validation method with 1000 iterations to allow the calculation of a greater 

number of PCs (> 3). 

5.2.6. Prediction via PCA projection 

Following the generation of a PCA model from the training samples (53 NPS x 10 

measurements), prediction of the chemical scaffolds of ‘query’ samples was performed by 

projecting developed PCA models to latent space over the spectral range 1750 – 1300 cm-1. 

The dataset for the training samples consisted of 530 rows and 522 variables, whereas the 

dataset for the ‘query’ samples consisted of 210 rows and 522 variables. PCA Projection was 

generated using the Unscrambler® X 10.4 software for three PCs. Similarity between ‘query’ 

(i.e. 17 ‘test’ and 4 ‘OOM’ pure NPS) and library substances (i.e. 53 training pure NPS) was 

evaluated using a) PCA projection plots; b) correlation coefficients (i.e. r2 values) between 

overlapping spectra over the spectral range 1750 - 1300 cm-1; c) structural similarity data 
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obtained from Zloh et al. [204] (i.e. TSI values); d) common substructures between 

‘representative’ and ‘query’ NPS; e) Raman spectra; f) line loading plots.  Three-dimensional 

(3D) plots represented in this Chapter were drawn using Origin Pro 2016 (USA). 

Summary of the design of experiments is illustrated in Figure 5.2. 

 

Figure 5. 2: A schematic describing summary of experiments. It includes a summary of both 

training and ‘query’ sets (i.e. test and ‘OOM’ sets), combined pre-processing steps and details 

of projection PCA studies. 

 

5.3. Results and Discussion 

5.3.1. Method development of Raman analysis and chemometrics 

5.3.1.1. Raman analysis method development 

A ‘representative’ NPS database was generated using benchtop Raman spectroscopy. Raman 

instrumental parameters (i.e. laser power, objective lens, exposure time and number of 

accumulations) employed were changed from Chapter 4. It was important to ensure that the 

spectra of the ‘representative’ NPS Raman library are of high quality and to preserve sample 

integrity by preventing its degradation or burning. Taking this into account, a lower laser power 

5 % (5.8 mW at sample) was initially used to prevent inadvertent sample burning. Laser power 

was reduced to 0.5 or 1 % if saturation of the detector occurred and also in samples with high 

fluorescent backgrounds. In contrast, laser power was increased to 10 % (10.6 mW at sample) 

in samples with very poor S/N. In an attempt to capture less variability due to physicochemical 

properties between replicate measurements, the objective lens x20 (spot radius = 1.2 µm) was 

employed instead of the x50 lens, known for its high spatial resolution (spot radius = 638 nm). 
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Exposure time was 10 sec. as defaulted by the instrument (lowest). Therefore it was not feasible 

to reduce exposure time with samples that saturated the detector or exhibited a high fluorescent 

background. Number of accumulations was 1 (default) to reduce analysis time since more than 

10 spectra were collected for most samples. Number of accumulations was increased to 5 for 

samples with poor S/N. 

5.3.2. Pre-processing method development 

Spectra of the 53 training NPS were acquired using a benchtop Raman instrument (10 

measurements/ NPS). Raw spectral data are often pre-processed before they are deemed useful 

for conducting multivariate data analysis. As stated in Chapter 4, initial inspection of Raman 

spectra was conducted to evaluate the extent to which instrument artefacts influence the quality 

of replicate spectra and to establish the necessity and types of possible pre-processing methods 

that would need to be undertaken. Using exploratory PCA and visual inspection of Raman spectra, 

several issues were identified. These included: 1) cosmic rays; 2) large number of variables; 3) 

shot/ residual noise; 4) fluorescent background; 5) data points with positive and negative signs; 

6) variable absolute Raman intensities. Therefore pre-processing methods including cosmic ray 

removal, truncation, smoothing, baseline subtraction, zeroing of negative data points and 

normalisation were suggested for investigation. Pre-processing methods were developed using 

single spectra of 53 NPS reference standards, assessed using PCA, then applied to the full data 

matrix of 530 reference spectra. The Section below describes the systematic method 

development for Raman analysis, pre-processing of spectral data and variable reduction 

techniques, the purpose of which was to improve the S/N, extract data from analysis artefacts 

and increase the PCA percentage explained variance, while maintaining the model robustness.  

5.3.2.1.Cosmic ray removal 

Cosmic rays were removed using the ‘zapping’ function using WiRE 3.4 as explained in 

Chapter 4. 

5.3.2.2.Truncation  

The first step undertaken in data pre-processing was truncating the spectral region below 250 

cm-1, a cut-off that is commonly adopted by analysts [193]. The truncated region is related to 

lattice vibrations in crystals and longitudinal acoustic modes, which can be used to determine 

the length of straight chain systems (outside the scope of this study) [276]. In this region, 

Raman modes with low frequencies may also be related to metal-ligand bonds which are not 
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of interest in this work. In general, this cut-off is important to avoid instrument-related features 

arising from the holographic notch filters [193]. The in-house Renishaw inViaTM Raman 

microscope is equipped with an edge filter, which did not efficiently block the high intensity 

Rayleigh scattering near the laser line in the low frequency range (ca. < 400 cm-1). Intense 

Rayleigh scattering may cause interferences with Raman bands of interest and may affect the 

reliability of data pre-processing e.g. for normalisation. Subsequently, pre-processing of all 

datasets analysed in this Chapter was performed using the spectral range 3200 – 250 cm-1.  

5.3.2.3.Smoothing  

Smoothing using the SG algorithm is a common pre-processing method employed to reduce/ 

filter high frequency noise in spectral data by fitting a polynomial to a segment of data points 

[172]. Larger segments and lower polynomial orders lead to more smoothing being generated. 

In this dataset, following smoothing, the cumulative calibrated explained variance for the first 

three PCs decreased by 2%. In other words, explained calibrated variance was reduced from 

12, 9 and 7 % to 12, 8 and 6 % respectively for PC1/PC2/PC3 for non-smoothed and smoothed 

averaged spectra. This was expected due to reduced explained variance related to shot/ residual 

noise. The impact of smoothing average spectra on supercluster classification (Figure 5.3) and 

on model robustness was minimal (closer calibration and validation values in smoothed spectra 

(58 and 31.5 respectively) as compared to non-smoothed spectra (59.8 and 31 respectively) for 

PC1/PC2/PC3). However, it was postulated that since smoothing acts as a low pass filter it may 

remove high frequency noise through combined pre-processing, which may have a greater 

impact on the classification of the more complex dataset of 530 spectra. In this respect, 

smoothing was performed using the Savitzky Golay (SG) algorithm as in Chapter 4 but with a 

higher polynomial order and a larger smoothing window (i.e. 4th polynomial order and a 

smoothing window of 21 data points) (Origin Pro 2016). 
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Figure 5. 3: 3D-PCA scores plots of average a) non-smoothed and b) smoothed average spectra 

of 53 NPS reference standards over the spectral range 3200 – 250 cm-1. Average spectra were 

sample-grouped based on their supercluster membership [204] (Table 5.1). 

5.3.2.4.Baseline subtraction 

The majority of NPS reference standards analysed in this work were claimed to have purity > 

98 %. Nevertheless, Raman analysis resulted in a wide range of S/N and spectra with steep 

baselines and raised fluorescent background (Figure 5.4), which may have been the result of 

minor impurities using the 785 nm laser wavelength.  Conversely, minor baseline offsets may 

have resulted from instrument artefacts. In contrast to the method developed in Chapter 4, using 

the Unscrambler® X 10.3 software, the baseline offset method has produced insignificant 

difference to NPS classification (PCA results not shown) of the full dataset (530 spectra). In 

this dataset, baseline subtraction was important to prevent misclassification of unknown NPS 

due to major baseline offsets. Using the Origin Pro 2016 software, different parameters were 

investigated in order to develop a consistent method for various NPS samples. A user-defined 

method was developed using 200 points to find the baseline anchor points.  Remaining 

parameters were used as defaulted by the software. The number of points was increased from 

the default of 8 points to provide a larger window that allows the software to customise a greater 

number of anchor points to pull the baseline down to zero. Optimum points have not exceeded 

50 points in the calculation of baseline subtraction of the 530 NPS reference spectra. However, 

this method has produced negative data points (Figure 5.4f), which may impact the reliability 

of spectral normalisation and consequent ‘query’ NPS classification. For this reason, smoothed 

baseline subtracted spectra were exported back to Microsoft Excel (2013) to zero negative data 

points. 
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Figure 5. 4: Raman spectra of selected NPS reference standards (spectral range 3200 – 250 

cm-1). The line plots show different grades of baseline offsets in Figures 5.4a, c and e. Spectra 

were pre-processed using smoothing and baseline subtraction in Figures 5.4b, d and f 

respectively (Origin Pro 2016). 

5.3.2.5.Normalisation 

Absolute intensity can provide useful information about the Raman strength of different NPS. 

However, variation in absolute intensities is known to be common in Raman spectra [37], 

which may impact analysis. In this study, variations in absolute intensities and a wide S/N 

range were initially identified and have been shown to impact grouping of replicate spectra 

and, hence sample classification using PCA (see Chapter 4). Therefore normalisation of spectra 

was recommended because it enhances the variance between samples by correcting for 

interfering scaling variations. Mean normalisation was the normalisation type of choice for the 

dataset analysed in Chapter 4. Due to the high chemical diversity between substances 

investigated in this Chapter normalisation types (i.e. mean, maximum and range 

normalisation), which normalise individual spectra rather than the whole dataset were 

investigated using the Unscrambler® X 10.3 software (plots not shown).  

Grade 1 

Grade 2 

 Grade 3 
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Although different algorithms were used to calculate the three types of normalisation, relative 

intensities were retained in the three types of normalised spectra. Although a greater percentage 

variance was explained by mean normalisation (96.2 %) of average spectra of 53 NPS in 

comparison with both range and maximum normalisation (90.3 %) for the first three PCs, 70 

% of the validated variance was explained by range and maximum normalisation as opposed 

to 54.6 % by mean normalisation. This demonstrated that the use of range or maximum 

normalisation is more robust in this dataset as it is likely to perform better with unknown 

samples. Since maximum normalisation is commonly used [176, 184], it was carried forward 

and was calculated for the entire datasets using Microsoft Excel (2013).  

5.3.2.6. Variable reduction and determination of the size of the data matrix 

A high number of variables has been shown to increase the risk of degrading the accuracy of 

the PCA model [183]. The variable reduction approach employed in Chapter 4 was not suitable 

for this study because of the large size of the dataset. In this work, variable reduction techniques 

were investigated through two methods: truncation of the spectral range and the computation 

of ‘bins’ (see below). The first method aimed at reducing the variable number from 3777 (3200 

– 100 cm-1). Initially, spectra were truncated below 250 cm-1 (Section 5.3.2.2.), which reduced 

the number of variables to 3642.  In order to reduce the number of variables further, the 

optimum spectral range containing essential spectral features was selected. This was assessed 

using exploratory PCA plots: 1) Explained variance plots to ensure optimisation of model 

robustness; 2) Scores plots to assess classification of NPS superclusters, the percentage of 

explained variance by the first three PCs, and the presence of outliers at 95 % confidence limit 

(CL); 3) Loading plots to investigate the main variables, which have high loadings. Raman 

spectral ranges used with pure and street NPS samples varied in the literature and were 

dependent on the NPS investigated [68, 113, 114, 120, 132, 152, 277]. In this Chapter spectral 

ranges investigated were 3200 – 250, 1750 – 250, 1750 – 1000 and 1750 – 1300 cm-1. The 

Section below describes the evaluation of results obtained using the latter spectral ranges. 

1) Explained variance plots: As explained in Chapter 4, closeness between the values of 

calibrated and the validated explained variance is indicative of method robustness, 

reliability and applicability to ‘unknown’ samples (i.e. not included in the original model). 

The spectral range 1750 – 1300 cm-1, of pre-processed (cosmic rays removed, truncated, 

smoothed, baseline subtracted, negative data points zeroed and maximum normalised) 

single spectra of 53 NPS reference standards, has generated closer values between 
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cumulative calibrated and validated explained variance for 20 PCs (91 and 64 % 

respectively) and, hence is indicative of method robustness as compared to remaining 

suggested spectral ranges (Figure 5.5).  

 

Figure 5. 5:  PCA explained variance plots over the investigated spectral ranges. 

The region 1750 – 1300 cm-1 is important for organic compounds as it includes vibrations such 

as carbonyl stretches υ(C=O) at 1750 - 1680 cm-1 (medium to weak) as in cathinones; olefinic 

groups υ(C=C) at 1750 - 1500 cm-1 (strong); amine NH deformation vibrations for amines, 

amine salts and amide substances at 1660 – 1500 cm-1 (weak); aromatic and heteroaromatic 

rings at 1620 – 1420 cm-1 (medium to weak); methyl and methylene deformation vibrations at 

1500 – 1300 (weak to medium) such as δ(CH3) at 1380 cm-1 (medium); δ(CH2) and δ(CH3) 

asym at 1470 - 1400 cm-1 (medium); and υ(CC) related to aromatic ring chain vibrations at 

1580 and 1600 cm-1 (strong), 1450 and 1500 cm-1 (medium) [125]. These functional groups are 

very common in NPS as identified by their chemical structures and, hence this region is of 

utmost importance in identifying and classifying NPS.  Explained variance plots of non-pre-

processed spectra plateaued after 1 PC and, therefore did not reflect the difference between 

explained variance plots of selected spectral ranges. 

2) Loading plots:  The PCA loading plots of non-pre-processed single spectra of 53 NPS 

reference standards, showed that variables with high loadings (Figures 5.6a, b and c) were 

those associated with noise (spectral range 3200 – 1750 cm-1). Figure 5.6b is the correlation 
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loading plot, where the outer and inner ellipses indicate 100 and 50 % explained variance 

respectively. Variables with high loading are closer to the outer ellipse (Figure 5.6c) 

(explained variance by PC1 = 94 %).  

 

Figure 5. 6:  PCA a) line loading plot, b) correlation loading plot and c) zoomed-in correlation 

loading plot over the spectral range 3200 – 250 cm-1. 

Weak Raman bands were observed in the range 3000 – 2800 cm-1 for a few NPS (Figure 5.4a). 

This region is commonly associated with strong Raman υ(C−Η) stretching vibrations in 

aliphatic chains [125, 278]. PCA analysis showed that these bands do not have high loadings 

nor improve the percentage explained variance by PCA (plots not shown). Furthermore, most 

Raman spectral features in overlaid single spectra of 53 NPS reference standards were spread 

across the range 1750 – 250 cm-1 (plot not shown). Therefore the spectral range 3200 – 1750 

cm-1 was also truncated (Figure 5.6a).  

3) Scores plots: The PCA scores plots of the selected spectral ranges investigated for pre-

processed single spectra of 53 NPS reference standards, have shown greater explained 

variance by the first three PCs over 1750 – 1300 cm-1.  

Therefore the scores plots of 10 replicate spectra for all 53 spectra were inspected. Results 

showed that the explained variance for both spectral ranges 3200 – 250 and 1750 – 250 cm-1 

remained unchanged with calibrated explained variance of 11, 9 and 6 % for PC1/PC2/PC3 
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respectively. A PCA was then performed on a smaller spectral range (1750 – 1000 cm-1), which 

contained prominent spectral features and also, which included a reduced number of variables. 

The calibrated explained variance has slightly increased to 13, 10 and 8 % for PC1/PC2/PC3 

respectively. Reducing the number of variables further to 522 over the spectral range 1750 – 

1300 cm-1 resulted in a greater calibrated explained variance of 16, 12 and 9 % for 

PC1/PC2/PC3 respectively (Figure 5.7). The scores plot showed a better grouping of replicate 

spectra and an improved classification between different samples over the spectral range 1750 

– 1300 cm-1.  

 

 

Figure 5. 7: PCA scores plots of 10 replicate spectra of 53 NPS reference standards over the 

spectral ranges a) 3200 – 250; b) 1750 – 250; c) 1750 – 1000; d) 1750 – 1300 cm-1. Replicate 

spectra were sample-grouped based on their supercluster membership [204]. 

The second variable reduction method aimed at reducing the number of variables by means of 

‘bins’. ‘Binning’ of spectral data is a known data reduction technique used in different types 

of spectroscopies such as NMR and has been applied to various data matrices including 

biological samples [279]. A bin is a value given to small spectral ranges of just a few 

wavenumbers (i.e. variables). In this respect, two methods were investigated: 1) area under the 
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curve (AUC) and 2) sum of intensities of given bins.  Bin sizes were also investigated. For 

example, a bin size of 300 cm-1 would result in 10 bins (spectral range (i.e. 3000 cm-1)/ bin size 

(i.e. 300 cm-1)). Reducing the initial number of variables from 3642 to 10 risks reducing the 

explained variance and generating an imbalanced data matrix. Therefore the maximum number 

of bins that could practically be generated (i.e. 300 and 600 bins) was investigated, which 

represent spectral ranges 3200 – 250 and 1750 - 250 cm-1 respectively. 

For this purpose, calculating bins of average spectra was performed as a test prior to a wider 

application on the entire dataset (i.e. 530 spectra). For the first method (i.e. AUC), the spectra 

were exported from WiRE 3.4 to Microsoft Excel 2013 for maximum normalisation of 

individual spectra, then re-exported back to WiRE 3.4 to calculate AUC based on peak centres. 

AUC values were then exported back to Microsoft Excel 2013 where bin values (sum of AUC 

in 5 cm-1 ranges) were calculated using the ‘IF’ function, again based on peak centres.  

Due to the small bin size, slight peak shifting between spectra of the same reference NPS 

resulted in bin values of zero, which was not true as these bins have values > zero if method 2 

was applied (i.e. sum of intensities). Furthermore, AUC estimates areas, where there are no 

counts (i.e. exceeding the instruments’ resolution), which may not be accurate. This limitation 

was due to the default WiRE 3.4 algorithm used to calculate AUC based on peak centres. 

Subsequently, the second method, sum of intensities of peaks within individual bins was 

calculated from maximum normalised spectra using the ‘IF’ function (Microsoft Excel 2013). 

Results were maximum normalised again, then carried forward for PCA analysis. Figure 5.8 

shows the scores plots of 600 and 300 bins using the ‘sum of intensities’ method. Explained 

variance for both plots was 12, 9 and 6 % for PC1/PC2/PC3 respectively. 
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Figure 5. 8: PCA scores plots of average spectra of 53 NPS reference standards for a) 600 bins, 

b) 300 bins over the spectral ranges 3200 – 250 and 1750 - 250 cm-1 respectively. Average 

spectra were sample-grouped based on their supercluster membership [204]. 

Binning using 600 bins was applied to the entire dataset (i.e. 530 spectra) and resulted in 

reduced explained variance and worsening of model robustness as compared to average spectra 

of 53 NPS reference standards (plots not shown).  

In summary, the first variable reduction method aimed at reducing the variable number from 

3777 (3200 – 100 cm-1) to 522 (1750 – 1300 cm-1) data points/ spectrum. This method 

generated more robust PCA models and improved classification of NPS spectra as 

demonstrated by scores and explained variance plots.  In contrast, the second method involving 

the use of bins reduced the explained variance and model robustness and, hence were not used 

in this thesis. 

The size of the data matrix was also investigated through the use of average (average of 10 

replicate spectra), single, three, five or ten spectra. Results were assessed using PCA over the 

spectral range 1750 - 1300 cm-1. Figure 5.9 showed that the calibrated explained variance for 

PC1/PC2/PC3 of single, 3, 5 and 10 spectra improved with the increase in the number of 

replicate spectra. The disadvantage of using average spectra (Figure 5.3b) in the analysis of a 

highly diverse dataset was that average spectra may mask variations between the 10 replicate 

spectra. It was important to capture this variation to enable developed models to be reliable in 

the field. Furthermore, the use of a single spectrum (average or single) did not given a clear 

insight on overlap between samples or sample superclusters/ clusters. The use of 10 replicate 

spectra generated the highest explained variance in the model, demonstrating model robustness 
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(explained variance plot not shown) and provided a better insight into sample projected location 

on the calculated PCs in the chemical space of selected NPS. 

 

 

Figure 5. 9: PCA scores plots of a) 1 single spectrum, b) 3 replicate spectra, c) 5 replicate 

spectra and d) 10 replicate spectra of 53 NPS reference standards over the spectral range 1750 

- 1300 cm-1. Spectra were sample-grouped based on their supercluster membership [204]. 

Hitherto, spectral data were investigated for anomalies using line plots and preliminary 

correlation coefficient tables between spectra (Microsoft Excel 2013). Cosmic rays were 

manually ‘zapped’ using WiRE 3.4. Spectral data were then truncated below 250 cm-1 and the 

final spectral range used was 1750 to 1300 cm-1. Truncation was followed by combined pre-

processing including smoothing using the SG algorithm, 4th polynomial order and a smoothing 

window of 21 data points, followed by baseline subtraction using the 2nd derivative, adjacent-

averaging smoothing with a window size of 3 points, a threshold of 0.05 and 200 points (Origin 

Pro 2016). The latter step was followed by transforming the dataset with values with positive 

signs (by zeroing the negative data points) and maximum normalisation (Microsoft Excel 

2013).  
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5.3.3. Raman and chemometric analysis  

5.3.3.1.Overview of PCA classifications 

Prior to conducting projection studies, an overview of the dataset was performed using an 

exploratory PCA of pre-processed NPS Raman spectra (53 NPS x 10 measurements) over the 

spectral range 1750 – 1300 cm-1. The cumulative calibrated and validated explained variance 

for 20 PCs was 89.9 and 88.1 % respectively. The first three PCs explained approximately 37 

% of the total explained variance, (16/12/9 % for PC1/PC2/PC3). Despite the fact that the 

dataset includes chemically and structurally diverse NPS, the total percentage variance 

explained by the first three PCs is very low. This could possibly be because the samples contain 

Raman active functional groups, which exhibit similar Raman bands over the relatively short 

spectral region 1750 – 1300 cm-1. In such a case, the inclusion of a large number of PCs risks 

incorporating explained variance due to residual noise. Therefore the first three PCs only were 

considered for analysis (Figure 5.10).  

 

Figure 5. 10: PCA two-dimensional (2D)-score plots for 530 NPS reference spectra over the 

spectral range 1750 - 1300 cm-1, specifically 2D-scores plot for a) PC1/PC2 and b) PC1/PC3. 

The scores for 4-HO-DET, GHB and MPA are marked on Figure 5.10a. 

The 2D-score plots outline the classification of ‘representative’ NPS reference standards based 

on superclusters (Figure 5.10 and Table 5.1). The plots showed that replicate spectra of 

individual NPS grouped together, yet were discriminated from different NPS, demonstrating 

the efficiency of the pre-processing method as compared to raw unprocessed data. For example, 

replicate spectra of both MPA (light green – supercluster 9) and GHB (turquoise – supercluster 
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10) grouped together, yet both MPA and GHB were clearly discriminated from each other 

(Figure 5.10a). 

Exceptions to this observation included pre-processed spectra of NPS that displayed intense 

fluorescent background, such as 4-HO-DET (dark blue – supercluster 1) (Figure 5.10a). 

Despite the high chemical diversity between NPS in this dataset, there is a degree of delineation 

between superclusters. The 2D-score plot for PC1/PC2 showed that members of superclusters 

2, 5 (except 5F-APICA), 8 and 11 were dispersed over the upper and lower left quadrants, 

whereas superclusters 1, 3 (except AM-679), 4, 6, 9, 10 and 13 were dispersed over the upper 

and lower right quadrants. The plots showed the scatter of superclusters over more than one 

quadrant, yet NPS belonging to individual EMCDDA/EDND classes occupied distinct regions 

of the plots, usually in a single quadrant. It is important to note that some classes such as 

quinazolines and anaesthetics are classified as ‘other’ according to the EMCDDA/EDND 

classification. However, in this work, they were labelled by their pharmacological or chemical 

class to enable analysis and interpretation of results. 

 It was evident that the scores plot displayed grouping of NPS according to their classes. The 

upper and lower left quadrants contained cannabinoids, tryptamines, γ-hydroxybutyrate and 

‘other’ categories of NPS. In contrast, the upper and lower right quadrants contained the 

cathinones, phenethylamines, arylalkylamines, benzodiazepines, arylcyclohexamines, 

quinazolines, aminoindanes and anaesthetics. This illustrates the potential efficiency and 

discriminatory power of the developed model in classifying NPS based on structural diversity.  

The only exception to this division (see above) was NPS members of supercluster 9, which 

were found in the right quadrants but contained NPS from two different EMCDDA/EDND 

classes; an arylalkylamine (i.e. MPA) and a cathinone (i.e. α-PBT). These two NPSs are 

different from other compounds belonging to their EMCDDA/EDND classifications but 

structurally similar to one another in that both incorporate thiofuran moieties. This may be the 

reason they group together and not according to their EMCDDA/EDND classifications. Figure 

5.11 illustrates this finding and shows the structural similarity between α-PBT and MPA. It 

also showed the difference in structure between α-PBT and another cathinone α-PVP. 
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              α-PVP            α-PBT                MPA    

Figure 5. 11: The chemical structures of α-PVP, α-PBT and MPA. The molecular structure for 

α-PVP is represented as an example of a cathinone analogue with a typical βk-aromatic group. 

AM-679 (cluster 3.07) did not cluster with members of supercluster 3 as expected, possibly 

because the structural similarity with other cannabinoid members of supercluster 3 was 

relatively poor (TSI values ranging from 29 to 57 %) [204]. The 3D-scores plot (Figure 5.12) 

shows the classification of NPS based on superclusters, with the largest percentage variance in 

the dataset explained by PC1 (16 %). Interestingly, the ‘Origin projections’ of supercluster 5 

(pink) illustrated a greater explained variance along the planes PC1/PC3 and PC2/PC3. This is 

possibly because supercluster 5 is the largest supercluster in the dataset containing 18 

chemically diverse NPS cluster representatives. ‘Origin projections’ (Origin Pro 2016) 

represent a different function from ‘PCA projections’ (the Unscrambler® X 10.4). This 

function plots selected scores on the three planes (PC1/PC2/PC3) to allow the visualisation and 

confirm closeness of scores to each other on 2D-planes. 

 

Figure 5. 12: 3D-scores plot of 530 reference spectra. Projections of supercluster 5 are 

illustrated in pink simultaneously along the three planes PC1/PC2/PC3 (Origin Pro 2016).  

5.3.3.2.Prediction of ‘query’ NPS (‘test’ and ‘OOM’) reference standards via PCA 

projection (NPS reference standards model) 

In this Section, ‘query’ spectra (i.e. ‘test’ and ‘OOM’ spectra) were projected on the PCA 

model developed with 53 training NPS (530 NPS reference spectra). This model is termed the 

‘NPS reference standards/benchtop’ model. Zloh et al. [204] have calculated similarity 

Supercluster 1 
Supercluster 2 
Supercluster 3 
Supercluster 4 
Supercluster 5 
Supercluster 6 
Supercluster 7 
Supercluster 8 
Supercluster 9 
Supercluster 10 
Supercluster 11 
Supercluster 12 
Supercluster 13 
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coefficients (TSI values) between ‘query’ samples and anticipated cluster assignments for these 

samples (Table 5.1). In this Chapter similarity between ‘query’ (i.e. 17 ‘test’ and 4 ‘OOM’ pure 

NPS) and library substances (i.e. 53 training pure NPS) was evaluated using PCA projection 

plots (Figure 5.13), correlation coefficients between spectra over the spectral range 1750 - 1300 

cm-1 (i.e. r2 values), structural similarity data (i.e. TSI values) if previously calculated by Zloh 

et al. via hierarchical clustering analysis [204], common substructures, Raman spectra and line 

loading plots.  

 

Figure 5. 13: PCA projection plot illustrating training, ‘test’ and ‘OOM’ sets. ‘Query’ spectra 

(i.e. ‘test’ and ‘OOM’ spectra) are projected on the PCA model developed with 53 training 

NPS (530 NPS reference spectra).  

Table 5.2 showed close calibration and validation values for the training set. This demonstrated 

the success of the ‘full’ validation method employed, where each sample from the training set 

was tested against remaining samples as an ‘unknown’. The Table also showed the projection 

values of the ‘query’ samples, which are close to the training values for three PCs, 

demonstrating the applicability of the model to unknown samples (i.e. not part of the original 

model generated from the training samples). This illustrated the optimum performance of the 

developed method, its applicability to unknown NPS and the potential assignment/ 

classification/ correlations of newly emerging NPS with their near-neighbours. 

Table 5. 2: PCA projection results for 21 unknown pure NPS against the PCA model developed 

using 53 pure NPS 

 PC-0 PC-1 PC-2 PC-3 

Calibration (training) 0.022 0.018 0.016 0.014 

Validation (training) 0.022 0.019 0.016 0.014 

Projection (test and ‘OOM’) 0.020 0.017 0.015 0.013 

Training set 

Test set 

Out-of-Model set  

(‘OOM’) 
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All training and projected samples were included in the Hotelling T2 ellipse at 95 % CL, except 

a few replicate spectra for 4HO-DET, DL-4662 and afloqualone (ellipse not shown in Figure 

5.13). However, the examination of these spectra using the influence plot (plot not shown) 

demonstrated that they are not true outliers (i.e. not associated with high F-residuals and 

Hotelling T2 values (see Chapter 4)), hence are described by the calibration model. 

Because of the large size of the dataset used in this study, it was challenging to visualise and 

confirm overlap between ‘query’ and training NPS on the PCA projection scores plots. 

Therefore in order to evaluate the performance of the PCA projection model, the spectral 

correlation between ‘query’ samples and superclusters/ clusters/ EMCDDA-EDND classes and 

position in 3D-PCA projection scores plots was evaluated for each supercluster and for clusters 

within each supercluster. This was performed by retaining the position of each supercluster 

from the PCA projection plots. Tanimoto similarity indices (TSI) values were calculated for 

‘query’ samples against the original clustering model to anticipate supercluster membership of 

query NPS [204]. In this respect, the projection of ‘query’ samples, which were anticipated to 

correlate with supercluster 2 for example, were evaluated against the training members of 

supercluster 2, while retaining their position in the PCA projection plots. In this study, there 

were no ‘query’ samples to challenge superclusters 1, 9, 10 and 13 and, therefore these 

superclusters will not be discussed further in the following Section.  

Supercluster 2 

Supercluster 2 is composed of four training samples including a cathinone (4-MeO-α-PVP) and 

three phenethylamines (25H-NBOMe, N-Me-2C-B and STP). Both N-Me-2C-B and STP were 

medoids in clusters 2.06 and 2.08 respectively within supercluster 2. This supercluster was 

challenged with three test samples i.e. two arylalkylamines (i.e. 5-APB and 6-APB) and one 

phenethylamine (i.e. βk-2C-B) and one ‘OOM’ sample i.e. the piperidine MPD. STP (training) 

and both 5-APB and 6-APB (test) are members of cluster 2.08. In contrast, both N-Me-2C-B 

(training) and βk-2C-B (test) are members of cluster 2.06 (Figure 5.14a). Common 

substructures between ‘representative’ NPS in supercluster 2 are presented in Figure 5.14d. 
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Figure 5. 14: a) NPS training members of supercluster 2 with the relevant test and ‘OOM’ samples, cluster membership, TSI and r2 values and 

chemical structures; b) PCA projection plots (Origin Pro 2016); c) PCA projection plot (Unscrambler® X 10.4); d) common substructures; e) 

Raman spectra and PC line loading plots for PC1/PC2/PC3.   
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The PCA projection scores plots (Figures 5.14b and 5.14c) showed that the test samples were 

in close proximity to the training samples. Both βk-2C-B and N-Me-2C-B were in close 

proximity along PC1/PC2 as expected, being both 2C compounds as named by Alexander and 

Anna Shulgin [18]. This is also because both are members of cluster 2.06 with TSI value of 78 

%. However, βk-2C-B clustered closer to 4-MeO-α-PVP along PC1/PC2/PC3. This was not 

surprising as both share a cathinone substructure (i.e. acetophenone) [280]. This was confirmed 

via line plots, which showed that both βk-2C-B and 4-MeO-α-PVP share a Raman band at ca. 

1600 cm-1, potentially attributed to υ(CC) aromatic ring quadrant stretching vibrations. This 

band correlated with a high negative loading along PC1. Both NPS also exhibit a Raman band 

at ca. 1670 cm-1, potentially attributed to olefinic (C=C) stretching vibrations (Figure 5.14e).  

βk-2C-B was also close to 25H-NBOMe (cluster 2.05) along PC1/PC2, possibly because both 

share an anisole group. Again, this was confirmed via line plots, which showed that both NPS 

have a Raman band at ca. 1605 cm-1, potentially attributed to υ(CC) aromatic ring quadrant 

stretching vibrations, which was associated with a high negative loading along PC1. For STP 

and both 5-APB and 6-APB, members of cluster 2.08 with a common 1-phenyl-propan-2-

amine substructure (Figure 5.14d), a poor structural similarity was observed (TSI = 35 and 34 

% respectively). In addition to poor spectral similarity over 1750 – 1300 cm-1 and lack of 

correlations to variables with high loadings, they were in close proximity on the projection 

scores plots along PC1/PC2/PC3. This could be due to a shared band at ca. 1620 cm-1, 

potentially attributed to NH2 bending vibrations (Figure 5.14e) [281]. It was noted that training 

and test phenethylamines (see above) grouped with 4-MeO-α-PVP (cathinone) - all share a 

common 2-phenylethan-1-amine substructure (Figure 5.14d). This could be because 4-MeO-

α-PVP, 25H-NBOMe, βk-2C-B, N-Me-2C-B and STP share Raman bands at ca. 1601, 1609, 

1605, 1611 and 1615 cm-1, which correlated with high negative loadings along PC1 (Figure 

5.14e). 

Supercluster 2 was also challenged with MPD, an ‘OOM’ NPS sample, which was not included 

in the initial clustering analysis of 478 NPS molecules. MPD was tested against the clustering 

model developed by Zloh et al. [204] and was assigned to supercluster 2 with a 46 % similarity 

to the medoid of cluster 2.03 [204]. Therefore the similarity between MPD and supercluster 2 

in general and cluster 2.03 in particular was evaluated. MPD clustered tightly with STP 

(medoid of cluster 2.08) along PC1/PC2/PC3 as well as with N-Me-2C-B (cluster 2.06) (Figure 

5.14b). This is potentially because all three NPS exhibited a deformation Raman band at ca. 
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1443 cm-1, which correlated with weak positive loading along PC1 and negative loading along 

PC2 (Figure 14e). Although no training samples were included from cluster 2.03, MPD 

(‘OOM’) grouped well with members of the parent supercluster, which were in close proximity 

on the scores plot, due to shared structural features that exhibited Raman active bands in the 

range 1750 – 1300 cm-1 and/ or correlated to important variables in the loadings plots, thus 

creating a unique pattern that discriminates them from other NPS. 

Based on the interpretation provided above, it was concluded that ‘test’ and ‘OOM’ samples in 

supercluster 2 were consistent with training samples of supercluster 2, demonstrating the great 

potential and degree of specificity of the developed model. Both 5-APB and 6-APB were in 

close proximity to the training sample STP - member of the same cluster (2.08). βk-2C-B 

grouped well with members of the parent supercluster, whereas the phenethylamines (training 

and test) grouped well together as well as with the cathinone training sample 4-MeO-α-PVP 

due to their structural similarities.  

Supercluster 3 

Supercluster 3 is composed of five synthetic cannabinoids (AB-FUBINACA, AB-PINACA, 

THJ-018, SDB-006 and AM-679) and one tryptamine (DPT). AM-679 was the medoid in 

clusters 3.07. This supercluster was challenged with one test sample MN-18, a synthetic 

cannabinoid with proposed structural similarity to cluster 3.03, a cluster with two 

representative NPS [204]. None of the training samples is a member of cluster 3.03, which 

represents a new challenge to the PCA model (Figure 5.15a).  

The Origin projection plot showed that training and test NPS are relatively close in proximity 

along PC1/PC2/PC3, except for SDB-006, which was delineated along PC1/PC2 and PC2/PC3 

(Figure 5.15b). This could possibly be because this supercluster has a larger number of training 

NPS samples than previously discussed supercluster 2 and or because it contained a larger 

number of synthetic cannabinoids, which are known to be very chemically and structurally 

diverse [282]. 
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Figure 5. 15: a) NPS members of supercluster 3 with relevant test sample, cluster membership, TSI and r2 values and chemical structures; b) PCA 

projection plots (Origin Pro 2016); c) PCA projection plot (Unscrambler® X 10.4); d) common substructures; e) Raman spectra and PC line 

loading plots.  
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The projection plot showed that MN-18 spectra were in close proximity to both DPT and AB-

PINACA. MN-18 has a larger common substructure with AB-PINACA (TSI = 72 %) than with 

DPT (i.e. 1-ethyl-1H-indazole-3-carbaldehyde compared to 1H-indole) (Figure 5.15b). Both 

MN-18 and AB-PINACA exhibit a Raman band at ca. 1578 cm-1, potentially attributed to a 

quadrant stretch and corresponding to a moderate positive loading along PC1/PC2. The next 

NPS in proximity to MN-18 was AB-FUBINACA (cluster 3.01; TSI = 59 %; r2 = 21 %) along 

PC1/PC2/PC3, despite poor spectral correlation over the range 1750 – 1300 cm-1. The farthest 

from MN-18 was SDB-006 (cluster 3.06; TSI = 40 %; r2 = -11 %). This was possibly due to 

the Raman band in SDB-006 at ca. 1610 cm-1, which correlated to a high negative loading 

leading to its separation from remaining training samples.  

It was noted that the structural similarity between MN-18 and cannabinoid training samples 

was lowest with AM-679 (TSI = 31 %). Structural similarity between AM-679 and remaining 

training cannabinoids samples was also relatively poor i.e. 29, 29, 43 and 57 % with AB-

FUBINACA, AB-PINACA, THJ-018 and SDB-006 respectively. The line plots showed that 

training cannabinoids, except AM-679, share a peak at ca. 1580 cm-1 corresponding to 

moderate positive loadings along PC1/PC2. This may explain why AM-679 was the only NPS 

from supercluster 3, which was located in the left quadrant of the PCA scores plot for all the 

training set 53 NPS as opposed to remaining cannabinoids (see Figure 5.10 and Section 

5.3.3.1). 

Based on the interpretation provided above, the MN-18 test sample correlated with training 

samples (i.e. synthetic cannabinoids) of supercluster 3, but slightly delineated from SDB-006 

because of a unique Raman band with high loading. This was expected as MN-18 is also a 

synthetic cannabinoid. Despite the fact that none of the training samples were members of 

cluster 3.03, the MN-18 test sample grouped closely with the NPS (AB-PINACA) to which it 

had the highest structural similarity (TSI = 72 %) due to shared Raman bands with moderate 

loading over the range 1750 – 1300 cm-1.  

Supercluster 4 

Supercluster 4 is composed of five synthetic cannabinoids (AM-2201, JWH-122, UR-144, 

JWH-073 and 5F-APICA), which grouped together across PC1/PC2/PC3, as expected. This 

supercluster was challenged with one test sample JWH-018 (a synthetic cannabinoid) which is 

a member of cluster 4.02 (Figure 5.16a).
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Figure 5. 16:  a) NPS training members of supercluster 4 with the relevant test sample, cluster membership, TSI and r2 values and chemical 

structures; b) PCA projection plots (Origin Pro 2016); c) PCA projection plot (Unscrambler® X 10.4); d) common substructures; e) Raman spectra 

and PC line loading plots for PC1/PC2/PC3.  
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Both training samples AM-2201 and JWH-122 were members of cluster 4.02, with a common 

substructure 1-(1-pentyl-1H-indol-3-yl)ethan-1-one (Figure 5.16d). The Raman analysis of 

JWH-018 (an oil sample) was very challenging and this may explain why the 10 replicates are 

not tightly grouped on the scores plot. The projection scores plots showed that JWH-018 

grouped with all training samples, but it was closer to 5F-APICA (TSI = 56 %; r2 = 43 %) and 

most delineated from AM-2201 (r2 = 78 %). 

The line plots showed a moderate Raman band at ca. 1373, 1376, 1369 and 1379 cm-1 for JWH-

018, JWH-073, JWH-122 and AM-2201 respectively (Figure 5.16e). This peak, potentially 

attributed to CH2 or CH3 on hydrocarbons, was shifted to a higher frequency in AM-2201 due 

to adjacent electronegative fluorine atom. This shift could be the reason why both JWH-018 

and AM-2201 were delineated on the scores plot. 

Based on the above interpretation, the cannabinoid JWH-018 test sample was correlated with 

all training samples (synthetic cannabinoids) of supercluster 4, as expected. The nature of the 

sample (i.e. oil) may have resulted in a poorer correlation of the test sample with cluster 4.02. 

Supercluster 5 

Supercluster 5 is composed of 18 training NPS reference standards, where each sample is a 

representative of a different cluster (5.01 – 5.18). Supercluster 5 is the largest in this study 

because members of this supercluster share common substructures, which can be simple 

moieties such as benzene rings. Therefore it was important to include a large number of 

‘representative’ NPS of the wider chemical diversity between clusters. Supercluster 5 is 

composed of four arylcyclohexamines (3-MeO-PCE, 4-MeO-PCP, ketamine and 

methoxetamine), five cathinones (4F-α-PVP, 4-Me-N-ethylnorpentedrone, α-PVP, DL-4662 

and mephedrone), two benzodiazepines (flubromazepam  and phenazepam), two quinazolines 

(afloqualone and mebroqualone), two synthetic cannabinoids (5F-APINACA and JWH-015), 

two aminoindanes (2-AI and N-Me-2-AI) and one anaesthetic (dimethocaine) (Figure 5.17).  

Four of these NPS i.e. 4F-α-PVP, 4-Me-N-ethylnorpentedrone, 4-MeO-PCP and JWH-015 

were medoids of clusters 5.03, 5.04, 5.13 and 5.12 respectively (Figure 5.17 and Table 5.1). 

The PCA projection scores plot showed specific trends (Figures 5.17, 5.18a and 5.18b). For 

example, the aminoindanes training samples grouped together, as did the arylcyclohexamines, 

benzodiazepines, cannabinoids and cathinones (except DL-4662). The anaesthetic 

dimethocaine grouped with the cathinones, the group ‘other’ (i.e. zopiclone) grouped with 
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cannabinoids and the quinazolines were delineated along PC3, but closer to each other along 

PC1/PC2.  These observations were further investigated. 

 

Figure 5. 17: NPS training members of supercluster 5 with the relevant test and ‘OOM’ 

samples, cluster membership, TSI and r2 values. 
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Figure 5. 18:  Plots representing the analysis relevant to supercluster 5. a) PCA projection plots (Training samples (red) versus individual test and 

‘OOM’ samples; b) training, test and ‘OOM’ samples classified as per EMCDDA/EDND classification; c) common substructures; d-h) selected 

Raman spectra and PC line loading plots. 
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In depth analysis showed that DL-4662 did not group well with the cathinones, possibly 

because DL-4662 spectra exhibit two Raman bands with high negative loadings at ca.1600 and 

1605 cm-1. Each cathinone in supercluster 5 had one peak or the other. DL-4662 was the only 

cathinone, which had both peaks and, hence is different from the others in this region. It was 

noted that DL-4662 was most structurally similar to 4F-α-PVP, 4-Me-N-ethylnorpentedrone, 

α-PVP and mephedrone (TSI = 49, 56, 54 and 45 % respectively) (Figure 5.18d).  

The anaesthetic dimethocaine grouped with the cathinones along PC1/PC2/PC3, possibly 

because they shared moderate Raman bands at 1605, 1609 and 1596 cm-1 for dimethocaine, 4-

Me-N-ethylnorpentedrone and mephedrone respectively, which were associated with high 

negative loadings along PC1 (Figure 5.18e). Dimethocaine also shared a Raman band with 

mephedrone at 1688 cm-1, potentially attributed to C=O stretches. Although carbonyl stretches 

usually occurs above 1770 cm-1, conjugation may lower its frequencies. In which case it occurs 

at 1688 cm-1 due to its conjugation to aromatic rings [283, 284]. It was noted that dimethocaine 

was structurally dissimilar to 4F-α-PVP, 4-Me-N-ethylnorpentedrone, DL-4662, α-PVP and 

mephedrone with TSI values of 22, 23, 22, 23 and 25 % respectively. However, spectral 

similarity (r2) between dimethocaine and both 4-Me-N-ethylnorpentedrone and mephedrone 

over the range 1750 – 1300 cm-1 was 76 and 90 % respectively, possibly accounting for its 

position on the scores plot. In contrast to superclusters 1 – 3, where r2 values between spectra 

over the designated range were relatively poor (i.e. -11 – 70 %), NPS in superclusters 4 and 5 

showed closeness between scores, where r2 was approximately > 75 %.  

Interestingly, mebroqualone (cluster 5.07) and afloqualone (cluster 5.08) shared a common 

substructure ‘2-methyl-3-phenylquinazolin-4(3H)-one’ (Figure 5.18c), yet a poor r2 value (i.e. 

15 %) in the region 1750 – 1300 cm-1. On the PCA projection plot, both were separated along 

PC1/PC3 and PC2/PC3, but were closer to each other along PC1/PC2 (largest explained 

variance), as expected because of their structural similarity. In fact, this is explained via line 

plots, which showed that afloqualone exhibited Raman bands at ca. 1676, 1569 and 1360 cm-1 

with corresponding high positive loadings along PC3, supporting their separation across PC3 

(Figure 5.18f).  

Surprisingly, the PCA scores plot showed that zopiclone was in close proximity to THJ-018 (a 

JWH-018 indazole analogue (cluster 3.04)) and PB-22 (a JWH-018 quinoline carboxylate 

analogue (cluster 6.02)) along PC1/PC2/PC3, with structural similarity of only 24 and 25 % 
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respectively. This is because the three NPS showed shared Raman bands over the spectral range 

1750 – 1300 cm-1 (Figure 5.19). Medium vibrational frequency shifts δ(CH3) were observed 

in all three spectra at 1374, 1365 and 1373 cm-1 for zopiclone, PB-22 and THJ-018 respectively 

[125]. When alkane groups have identical substituents, then the CH2 ‘scissors’ deformation 

and CH3 out-of-phase deformation are found in the same frequency region 1480 – 1430 cm-1 

[125]. When the CH2 and CH3  are on hydrocarbons, this band is near the 1460 cm-1 as is the 

case with both THJ-018 and PB-22, where weak doublet Raman bands with similar relative 

intensities, were observed at 1459 and 1469 cm-1 for PB-22 and at 1460 and 1473 cm-1 for THJ-

018.When the CH2 is near an unsaturated group (piperazine), this band is near the 1450 cm-1 as 

is the case with zopiclone, where weak doublet Raman bands, with similar relative intensities  

are observed at 1444 and 1466 cm-1. Moderate and weak stretching bands for pyrazine and 

pyridine were observed at 1581 and 1576 cm-1 for zopiclone and PB-22 respectively. A 

moderate aromatic ring quadrant stretch vibrations (rings in both naphtoyl and indazole groups) 

is observed in the same region at 1579 cm-1.  It is interesting to note that zopiclone is a 

bioisostere of both THJ-018 and PB-22. 

 

Figure 5. 19: The Raman spectra of zopiclone, THJ-018 and PB-22 and their chemical 

structures. 

Supercluster 5 was challenged with seven test samples (adrafinil, EPD, phenibut, 5-IAI, 4-

FMC, 4-MMC and mexedrone) and four ‘OOM’ samples (S-cathinone, MDMA, 

methamphetamine and MPD). Similarity studies performed by Zloh et al. [204] for the test 

samples against the clustering model suggested the assignment of adrafinil, EPD and phenibut 

to cluster 5.14; 5-IAI to cluster 5.15; and flephedrone, mephedrone#2 and mexedrone to cluster 

5.18 (Figure 5.17) [204]. Similarity studies performed by Zloh et al. [204] for the ‘OOM’ 
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samples against the clustering model suggested the assignment of S-cathinone to clusters 5.04 

and 5.18; MDMA to cluster 5.10; methamphetamine to cluster 5.15 and MPD to clusters 5.04, 

5.13 and 5.14 (Figure 5.17) [204]. In the Section below, the grouping/ classification of training, 

test and ‘OOM’ samples of the same cluster was examined first.  

For cluster 5.04, the projection scores plot showed that training and ‘OOM’ samples (i.e. 4-

Me-N-ethylnorpentedrone, S-cathinone and MPD) grouped together along PC1/PC2. Despite 

relatively poor spectral correlation coefficients over the spectral region 1750 – 1300 cm-1 (i.e. 

r2 = 6 – 27 %), all compounds had a common ‘benzaldehyde’ substructure and shared Raman 

bands at 1610, 1596 and 1605 cm-1, associated with high negative loadings along PC1 (line 

plots not shown). This may account for their proximity and their delineation from other NPS 

on the scores plot along PC1 (Figure 5.18a).    

In contrast, cluster 5.10 training and ‘OOM’ samples (i.e. DL-4662 and MDMA respectively) 

did not group together, despite a relatively large TSI value (61 %) and common membership 

to cluster 5.10. A high TSI value does not necessarily reflect common Raman features along 

the designated spectral range as explained above. Both DL-4662 and MDMA were in close 

proximity along PC1/PC2 and delineated along PC1/PC3. This is because DL-4662 exhibited 

Raman bands at ca. 1676, 1598 and 1360 cm-1 associated with positive loadings along PC3, 

leading to their delineation across PC3 (line plots not shown). In general, MDMA was in close 

proximity to aminoindanes training and test samples (2-AI (cluster 5.15), N-Me-2-AI (cluster 

5.16) and 5-IAI (cluster 5.15)) and ketamine (cluster 5.02).  This was confirmed via line plots, 

which showed that all spectra have a weak to moderate doublet at ca. 1440 – 1460 cm-1, with 

varied relative intensities possibly attributed to semi-circle stretches of aromatic rings (Figure 

5.18g).  

The projection scores plot also showed that MPD grouped tightly with arylcyclohexamines (3-

MeO-PCE, 4-MeO-PCP, ketamine and methoxetamine) along PC1/PC2/PC3, except for 4-

MeO-PCP. The structural similarity between 4-MeO-PCP and 3-MeO-PCE, ketamine and 

methoxetamine was 67, 45 and 59 % respectively. This is possibly because all compounds 

except for 4-MeO-PCP exhibited Raman bands at ca. 1600 or 1605 cm-1, both of which are 

associated with high negative loadings across PC1 (Figure 5.18h).  

The same analysis methodology was employed to test the selectivity of the PCA projection 

results in identifying/ classifying the test and ‘OOM’ samples for clusters 5.14, 5.15 and 5.18. 
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Results showed that cluster 5.14 training and test samples (i.e. α-PVP, Adrafinil, EPD, and 

phenibut) and cluster 5.15 training, test and ‘OOM’ samples (i.e. 2-AI, 5-IAI and 

methamphetamine) each grouped together, whereas cluster 5.18 training, test and ‘OOM’ 

samples were in close proximity across PC1/PC2/PC3. Results also showed that MPD grouped 

well with cathinones. All findings were confirmed by examining and evaluating the PCA 

projection plots, correlation coefficients between spectra over the spectral range 1750-1300 

cm-1 (i.e. r2 values), structural similarity data (i.e. TSI values) if available in Zloh et al. [204], 

common substructures, Raman spectra and line loading plots. 

Based on the interpretation above, PCA projection plots showed that ‘test’ and ‘OOM’ samples 

used to challenge supercluster 5 correlated with training members of supercluster 5. In fact, 

‘test’ and ‘OOM’ samples, members of clusters 5.04, 5.13, 5.14, 5.15 and 5.18 were consistent 

with members of these clusters, with the exception of cluster 5.10, where the ‘OOM’ sample 

MDMA correlated with the parent supercluster instead. As stated above, similarity of ‘query’ 

samples to members of the parent supercluster in this study was mainly linked to spectral 

features over the spectral range 1750 – 1300 cm-1 associated with important variables with high 

loadings, demonstrating the significance of this spectral range in enhancing the variance 

between NPS, yet improving their classification to ‘representative’ NPS and, hence 

superclusters/ clusters. 

Supercluster 6 

Supercluster 6 is composed of two synthetic cannabinoids (N-PB-22 and PB-22) and one 

tryptamine (4-acetylpsilocin fumarate (4-AcO-DMT)). Supercluster 6 was challenged with one 

test sample 5F-PB-22 (a synthetic cannaboinoid) (Figure 5.20a). Both training and test samples 

(i.e. PB-22 and 5F-PB-22 respectively) are members of cluster 6.02, sharing a common ‘phenyl 

acetate (quinolin-8-ylacetate)’ substructure (Figure 5.20d). As expected, the projection scores 

plot showed that both PB-22 and 5F-PB-22 grouped tightly together along PC1/PC2/PC3 (r2 = 

89 %). This was confirmed via examination of line plots, which showed that 5F-PB-22 and 

PB-22 shared a number of peaks including peaks at ca. 1715 and 1746 cm-1. The latter peak, 

possibly attributed to C=O, was shifted to the higher end of the carbonyl region due to its 

conjugation to 1H-indazole rather than 1H-indole as is the case for both PB-22 and 5F-PB-22 

[283, 284].  

Both 5F-PB-22 and PB-22 shared a triplet at ca. 1347, 1367 and 1383 cm-1, possibly attributed 

to the aliphatic chain vibrations. The aliphatic chain in both NPS is attached to 1H-indole as 
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opposed to 1H-indazole, as in the case of N-PB-22. This triplet was associated with a positive 

medium loading along PC1. Furthermore, the cannabinoids 5F-PB-22, PB-22 and N-PB-22 

also were in close proximity to each other on the PCA projection plot. This is potentially 

because they shared common peaks at ca. 1580 and 1430 cm-1, associated with a medium 

positive loadings along PC1/PC2 (Figure 5.20e).  

Results showed that 4-AcO-DMT was delineated from PB-22 and 5F-PB-22 along PC1/PC2 

and PC2/PC3 but was closer (but still delineated) along PC1/PC3 (Figure 5.20c). This could 

be due to a peak (strong) at ca. 1551 cm-1 exhibited by 4-AcO-DMT, but absent in both PB-22 

and 5F-PB-22 and possibly attributed to an NH deformation band. However, these are usually 

weak Raman bands, which occur between 1660 and 1500 cm-1 [125]. 4-AcO-DMT incorporates 

a 1H-indole group, which is not attached to an aliphatic chain as in the case of both PB-22 and 

5F-PB-22. 4-AcO-DMT is the only NPS in supercluster 5, among training and test samples, 

which does not have a quinolone group (results in a similar ring stretching between 1660 and 

1500 cm-1). Therefore this should not be confused with this peak as this group is not present in 

this molecule. The peak at 1551 cm-1 correlated with a medium positive loading along PC1 and 

negative loading along PC2. This may be why it is delineated from both PB-22 and 5F-PB-22.  
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Figure 5. 20: a) NPS training members of supercluster 6 with the relevant test sample, cluster membership, TSI and r2 values and chemical 

structures; b) PCA projection plots (Origin Pro 2016); c) PCA projection plot (Unscrambler® X10.4); d) common substructures; e) Raman spectra 

and PC line loading plots for PC1/PC2/PC3.  
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Furthermore, another peak unique to 4-AcO-DMT is at ca. 1444 cm-1 (medium), associated 

with positive loadings along PC1 and high negative loadings along PC2, again highlighting 

why 4-AcO-DMT is delineated from both PB-22 and 5F-PB-22 along PC1 and PC2. As 

described above, both 5F-PB-22 and PB-22 share a band at ca. 1367 cm-1, absent in 4-AcO-

DMT and associated with a positive loading along PC3. These findings explained the 

discrimination between both 5F-PB-22 and PB-22 and 4-AcO-DMT along the three PCs.  

Supercluster 7 

Supercluster 7 is composed of three arylalkylamines (2-MAPB, 5-EAPB and 6-MAPB) and 

one phenethylamine (N-ethylamphetamine). Supercluster 7 was challenged with one ‘OOM’ 

sample methamphetamine (a phenethylamine), which is a member of cluster 7.04 (Figure 

5.21a). The training sample N-ethylamphetamine is also a member of cluster 7.04 and they 

both shared a common substructure ‘butan-2-amine’ (Figure 5.21d).  

The projection scores plot showed that the ‘OOM’ sample methamphetamine grouped tightly 

with N-ethylamphatmine, 5-EAPB and was in close proximity with 6-MAPB. 2-MAPB was 

delineated from remaining NPS, which grouped together. These findings were confirmed along 

PC1/PC2/PC3 (Figure 5.13).  

The ‘OOM’ sample methamphetamine grouped tightly with N-ethylamphatmine as expected. 

This is possibly because both NPSs are phenethylamines members of the same cluster with a 

common butan-2-amine substructure (Figure 5.21c).  Both substances also shared numerous 

common peaks and this may explain why they grouped tightly on the projection scores plot. 

The first one is a strong peak at ca. 1605 cm-1, correlated with high positive loadings along 

PC1 and possibly attributed to aromatic quadrant stretch vibrations. Another moderate peak 

shifted at ca. 1585 cm-1, potentially attributed to aromatic quadrant stretch vibrations. The 

Raman effect for aromatics has been shown to exhibit bands at ca. 1620 – 1565 cm-1 regardless 

of the symmetry or the position of substitution on the ring, as opposed to IR [283, 284].  Finally, 

a peak at ca. 1430 cm-1 (weak), associated with a weak positive loading along PC1. 
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Figure 5. 21: a) NPS training members of supercluster 7 with the relevant ‘OOM’ sample, cluster membership numbers and r2 values and chemical 

structures; b) PCA projection plot (Unscrambler® X10.4); c) common substructures; d) Raman spectra and PC line loading plots, PCA projection 

plot for PC1/PC2/PC3. 

 

 



 

210 

 

By examining the chemical structures (Figure 5.21a), 2-MAPB is the only compound in the 

group with an aliphatic chain attached to a furan group: the other compounds have the aliphatic 

chain attached to a benzene ring in the benzofuran group. However, the lack of correlation to 

important variables with high loadings across the range 1750 – 1300 cm-1 failed to explain why 

2-MAPB is delineated from remaining NPS on the PCA projection plot. In contrast, the 

structural similarity between N-ethylamphatmine and the arylalkylamines in the training set 

was 30, 41 and 47 % with 2-MAPB, 5-EAPB and 6-MAPB respectively. 6-MAPB was in close 

proximity to N-ethylamphetamine on the projection scores plot, possibly because they share a 

peak at ca. 1360 cm-1 (weak), possibly attributed to CH3 in-phase (‘umbrella’) deformation that 

is dependent on the electronegativity of the adjacent atom.  CH3 was 1 carbon away from N 

with N-ethylamphetamine, whereas it was conjugated directly to N with 6-MAPB. Usually, the 

more electronegative the atom, the higher the frequency with a range (1470 – 1250 cm-1), which 

was not the case here (Figure 5.21d). 

Supercluster 8 

Supercluster 8 is composed of two benzodiazepines (flubromazolam and etizolam). 

Supercluster 8 was challenged with one test sample pyrazolam (a benzodiazepine), which is a 

member of cluster 8.02. The training sample flubromazolam is also a member of cluster 8.02 

(Figure 5.22a). All training and test samples shared a common substructure ‘3,7-dimethyl-9H-

[1,2,4]triazolo[4,3-a][1,4]diazepine’ (Figure 5.22d). Most benzodiazepines include a 7-

membered ring, an additional benzene ring and an electron attracting group at position 7 of the 

fused heterocyclic rings to ensure biological activity. Benzodiazepines are sub-categorised 

according to the functional group attached to the 7-membered ring, which may include keto, 

hydroxyl, imidazo or triazolo groups.  The three NPS (training and test) in this supercluster 

have a triazolo group as the functional group.  

The PCA projection scores plot showed that etizolam was delineated from both pyrazolam (test 

sample) and flubromazolam not only because the latter two NPS belong to the same cluster 

(8.02) but also possibly because etizolam does not have the additional benzene ring or an 

electron attracting group at position 7 on the fused heterocycle. Etizolam was closer to both 

pyrazolam and flubromazolam along PC1/PC2. In contrast, both pyrazolam and 

flubromazolam were in close proximity along PC1/PC2 and PC1/PC3 but they were delineated 

along PC2/PC3 (Figure 5.22b). These findings were confirmed by examination of the line plots 

(Figure 5.22e).  
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Figure 5. 22: a) NPS training members of supercluster 8 with the relevant test sample, cluster membership, TSI and r2 values and chemical 

structures; b) PCA projection plots (Origin Pro 2016); c) PCA projection plot (Unscrambler® X 10.4) (Pyrazolam scores are behind flubromazolam 

scores); d) common substructure; e) Raman spectra and PC line loading plots for PC1/PC2/PC3.  
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The Raman spectra showed that both flubromazolam and pyrazolam shared a strong peak at 

ca. 1600 cm-1 (absent in etizolam) with high negative loadings along PC1 and medium positive 

loadings along PC3. They also shared a peak (weak) at ca. 1572 cm-1 (absent in etizolam) 

associated with a weak positive loading along PC2. In contrast, flubromazolam (strong), 

pyrazolam (strong) and etizolam (very weak) shared a peak at ca. 1444 cm-1, which was 

associated with weak positive loadings along PC1 and strong negative loadings along PC2. 

Supercluster 11 

Supercluster 11 is composed of one training cathinone sample (methylone (medoid)) because 

it comprises only one cluster and was challenged with one test sample 5,6-MDAI (an 

aminoindane) and one ‘OOM’ sample MDMA (a phenethylamine), suggested to be members 

of the same supercluster (Figure 5.23a and Table 5.1) [204]. Supercluster 11 comprises one 

cluster, where the common substructure for all members is ‘benzo[d][1,3]dioxol’ (Figure 

5.23d). Testing the PCA model for supercluster 11 with only one training NPS sample 

represented a new challenge to the projection model. The PCA projection plot showed that both 

5,6-MDAI and MDMA are grouped together but methylone is slightly delineated from them 

along PC1/PC2 and PC1/PC3. They were closer together along PC2/PC3 (Figures 5.23b and 

5.23c).  

The Raman spectra showed that all three NPS shared a peak at ca. 1446 cm-1, correlated with 

a weak peak with positive loading along PC1 and a strong peak with negative loadings along 

PC2. In addition, this peak had different intensities (normalised), where it was strong for 

MDMA, moderate and slightly shifted to 1449 cm-1 for methylone and weak broad for 5,6-

MDAI. This explained why the three NPS were in close proximity along PC2/PC3, yet 

delineated along PC1/PC2 and PC1/PC3 (Figure 5.23e). Methylone also exhibited a strong 

peak at ca. 1679 cm-1, which is correlated with a moderate negative loading along PC1. This 

explained why it was delineated from both 5,6-MDAI and MDMA along PC1.  
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Figure 5. 23: a) NPS training members of supercluster 11 with the relevant test sample, cluster membership, TSI and r2 values and chemical 

structures; b) PCA projection plots (Origin Pro 2016); c) PCA projection plot (Unscrambler® X 10.4); d) common substructure; e) Raman spectra 

and PC line loading plots for PC1/PC2/PC3.  
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In conclusion, both test and ‘OOM’ samples were grouped together but the training sample 

was marginally delineated from them along PC1/PC2 and PC1/PC3, yet in close proximity 

along PC2/PC3. A relatively poor correlation of the test sample was observed, in this Section 

due to numerous reasons. Firstly, the raw spectra of the test sample (i.e. 5,6-MDAI) exhibited 

high fluorescent background, resulting in poor correlation coefficient values across the full 

spectral range 3200 – 250 cm-1 (i.e. an average r2 between replicate spectra of 74 %), leading 

to a relatively poor classification. Harkai and Putz [161] highlighted that the pre-processing of 

spectra displaying intense fluorescence signals risks precluding the weaker Raman signals, 

which, in turn hinders the identification of the ‘unknown’ sample, and this could be the reason 

5,6-MDAI did not group with the training sample methylone. Similarity values (TSI) between 

MDMA and both 5,6-MDAI and methylone were not initially calculated by Zloh et al. [204], 

since MDMA was not included in the initial clustering model. If MDMA had higher TSI values 

for 5,6-MDAI as opposed to methylone, this could be a reason why both MDMA and 5,6-

MDAI were in close proximity to each other than with methylone on the projection PCA scores 

plot. This demonstrates the challenge of classifying and identifying a previously unknown NPS 

such as MDMA, despite its relative high similarity with the medoid of supercluster 11 (i.e. 81 

%). Training only one sample from supercluster 11 is a limitation of this dataset.  

Supercluster 12 

Supercluster 12 includes one training synthetic cannabinoid sample (C8-CP 47,497) and was 

challenged with two test samples BB-22 (a cannabinoid) and DXM (an NPS classified as 

‘other’), which were suggested to be members of supercluster 12 (Figure 5.24a). Supercluster 

12 is made of one cluster, where the common substructure for all members is ‘cyclohexane’ 

(Figure 5.24d). 
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Figure 5. 24: a) NPS training members of supercluster 12 with the relevant test samples, cluster membership, TSI and r2 values and chemical 

structures; b) PCA projection plots (Origin Pro 2016); c) PCA projection plot (Unscrambler® X 10.4); d) common substructure; e) Raman spectra 

and PC line loading plots for PC1/PC2/PC3.  
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The projection PCA scores plot showed that both C8-CP 47,497 and DXM grouped together 

along PC1/PC2/PC3 (r2 = 42 %) (Figures 5.24b and 5.24c), possibly because they shared 

common Raman bands at ca. 1) 1623 cm-1 (weak); a doublet at ca. 2) 1474 and 3) 1462 cm-1 

(weak); and 4) 1443 cm-1 (strong) for C8-CP 47,497 and at ca. 1) 1616 cm-1 (strong); a doublet 

at ca. 2) 1466 and 3) 1453 cm-1 (moderate); and 4) 1434 cm-1 (weak) for DXM. These peaks 

were shifted towards the higher frequency shift range in C8-CP 47,497 as compared to DXM, 

possibly due to the presence of two hydroxyl groups (increased electronegativity) in C8-CP 

47,497 (Figure 5.24e).  

In contrast, BB-22 was delineated from both C8-CP 47,497 and DXM along PC1/PC2/PC3. 

This is possibly because over the spectral range 1750 – 1300 cm-1, BB-22 exhibited Raman 

bands at ca. 1731 (strong) and 1538 (moderate) cm-1 (both absent in C8-CP 47,497 and DXM 

spectra) but these were not associated with important variables along the loading plots. Hence, 

the delineation was not fully understood. However, in Figure 5.10a, C8-CP 47,497 was the 

only cannabinoid that did not group with remaining cannabinoids in the right quadrants of the 

PCA scores plots. The validation results of the ‘hierarchical clustering’ model by Zloh et al. 

suggested that both DXM and BB-22 are 37 and 21 % structurally similar to the medoid (i.e., 

C8-CP 47,497). Therefore, this may suggest why both DXM and BB-22 were closer to each 

other than with the training sample C8-CP 47,497 [204]. In contrast to most cannabinoids, 

which contain aromatic rings and heteroatoms, C8-CP 47,497 contains a cyclohexane ring and 

hydroxyl groups, whereas BB-22 contains conjugated rings, heteroatoms and ester and 

carboxyl groups, and this could be another reason why the test samples did not group with the 

training sample (Figure 5.24a). 

5.4. Conclusions 

Preliminary PCA projection results demonstrated that the combined use of similarity studies, 

Raman spectroscopy and chemometrics has the potential of successfully suggesting the 

chemical scaffolds of ‘unknown’ NPS. The optimum performance of the developed ‘NPS 

reference standards/benchtop’ model was achieved following robust pre-processing methods. 

In this study, the feasibility of suggesting the chemical scaffolds of ‘query’ NPS to their near-

neighbours from ‘representative’ NPS Raman libraries was achieved with a 76 and 75 % 

success rate for test and ‘OOM’ NPS reference standards respectively. However, suggesting 
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the chemical scaffolds of ‘OOM’ samples was more challenging, possibly because they exhibit 

structural similarity to multiple superclusters/ clusters.   

Exploratory PCA showed that thirteen superclusters were classified over right (stimulants and 

depressants) and left (hallucinogens and cannabinoids) quadrants of the PCA scores plot and 

comprised NPS reference samples from distinct EMCDDA/EDND classes. Thirteen 

superclusters were also classified such that replicate NPS spectra grouped together, yet they 

were delineated from other NPS.   

Results showed that 76 % (n = 13/17) of the ‘test’ samples correlated with their anticipated 

cluster. Two test samples (i.e. βk-2C-B and MN-18) correlated with parent superclusters 

instead. However, for MN-18, there were no training samples from the same cluster (i.e. 3.03). 

Both 5,6-MDAI and BB-22 were not successfully aligned with the expected cluster or 

supercluster. The raw spectra of 5,6-MDAI exhibited intense fluorescent background, which 

may have hindered the accurate correlations of this substance with pre-processed spectra of 

training samples members of supercluster 11. In contrast, the test sample BB-22 was very 

structurally different from the single training sample C8-CP 47,497 in supercluster 12.  

Similarity studies conducted by Zloh et al. [204] against initial clustering model have suggested 

the possible assignment of the ‘OOM’ samples to numerous superclusters/ clusters. Results 

showed that 75 % (n = 3/4) of the ‘OOM’ samples correlated with suggested clusters and class. 

S-cathinone successfully grouped with cluster 5.18 (cathinones), whereas methamphetamine 

successfully consistent with clusters 5.15 (2-AI, an aminoindane and a modified 

phenethylamine) and 7.04 (the phenethylamine N-ethylamphetamine). It was also consistent 

with members of the parent supercluster i.e. N-Me-2-AI, an aminoindane analogue, member of 

cluster 5.16 and ketamine, member of cluster 5.02. In addition, the piperidine MPD 

successfully correlated with the piperidine analogue EPD member of cluster 5.14. MPD also 

correlated with the arylcyclohexamines members of the parent supercluster (clusters 5.01, 5.02 

and 5.09) expect with 4-MeO-PCP (cluster 5.13). In contrast, inaccurate correlations were 

observed with MDMA, which was not consistent with clusters 5.10 or 11.0 or specific members 

of the parent superclusters. This preliminary work has shown that NPS were delineated or 

grouped together based on common Raman active bands over the designated spectral range, 

which may have been associated with significant loadings. 
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Further work should focus on larger number of training samples representing individual 

clusters. Future work should include larger number of ‘test’ and ‘OOM’ samples in general and 

particularly to challenge major superclusters such as supercluster 5. More work is needed to 

evaluate the model’s robustness by challenging the superclusters with NPS, which have 

relatively poor similarity to cluster medoids (as opposed to the work performed in this Chapter), 

non-NPS samples and NPS complex mixtures. 
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6. Classification of NPS internet samples using NPS, adulterants 

and cutting agents reference standards via Raman spectroscopy 

and chemometric approaches – a proof-of-concept 

6.1. Introduction 

This Chapter evaluates the use of a Raman database of ‘53 representative’ new psychoactive 

substances (NPS) reference standards (see Chapter 5 and Zloh et al. [204]) and 22 cutting 

agents/ adulterants for the identification of 25 NPS products purchased from the internet.  In 

this Chapter spectra for cutting agents/ adulterants were added to the training set to build 

complexity to the PCA model and evaluate the feasibility of categorising the chemical scaffolds 

of NPS in ‘street-like’ samples using the new ‘NPS and non-NPS model’.  

Using handheld Raman instruments, in-field identification of NPS is often dependent on prior 

knowledge of the ‘query’ NPS, efficiency of in-built algorithms and availability of reference 

spectra in in-built libraries [12, 128]. The latter is usually dependent on the availability of 

reference standards. However, this is not always possible because updated libraries and 

synthesis of reference standards are always lagging behind the continuous emergence of NPS. 

In addition, the heterogeneity of NPS products in terms of composition, concentrations, number 

of constituents and the presence of unknown constituents or impurities, which may emit 

fluorescence signals may constitute other tactics used by drug designers to hinder identification 

[12, 78, 140].  

The use of Raman spectroscopy with a long laser excitation wavelength (λex) (i.e. 1064 instead 

of 785 nm) for improving the identification of NPS internet products has been investigated [12, 

161]. In Chapter 3, results showed improved identification of NPS by 30 % due to reduced 

fluorescence. However, limitations of in-built libraries, algorithms and products’ complexity 

hindered the identification of 31/60 NPS products. Chemometric methods were developed and 

have been shown to improve classification of simple mixtures (Chapter 4). Chemometric 

methods were then developed using a chemically diverse ‘representative’ spectral NPS 

database (Chapter 5) and has successfully suggested the chemical scaffolds of 76 and 75 % test 

and ‘out-of-model’ NPS reference standards.  

In this Chapter a ‘new’ PCA model is generated from the ‘representative’ NPS Raman 

database, previously generated in Chapter 5, as well as cutting agents/ adulterants commonly 
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incorporated in seized NPS samples. The feasibility of discriminating between NPS and non-

NPS substances i.e. cutting agents/ adulterants using the ‘new’ PCA model is evaluated. 

Method validation is carried out to evaluate the classification of NPS internet products (‘query’ 

samples) by projecting the Raman spectra of the internet products onto the ‘new’ PCA model 

(training samples). Internet samples were selected such that claimed NPS on the label or class 

analogues are included in the training set, selected NPS are of sufficient diversity representing 

various NPS superclusters and chemical classes (Chapter 5) and characterised with a wide 

range of HPLC purity profiles  

This study evaluates the effect of Raman spectral data pre-processing (Chapters 4 and 5) on 

the classification and/ or assignment to previously described superclusters/ clusters (Chapter 

5) of known pure substances and suggestion of chemical scaffolds of NPS contained in 

mixtures of unknown composition using PCA. This work is novel and significant because it 

investigates the feasibility of improving the identification of ‘unknown’ NPS products from 

Raman spectral libraries containing the ‘representative’ NPS Raman database, common cutting 

agents/ adulterants and chemometric methods.   

6.2. Materials and Methods 

6.2.1. Reagents and chemicals 
 

In this Chapter, an initial PCA model is developed using 53 NPS (see Chapter 5), eight 

adulterants (i.e. benzocaine (BEN), caffeine (anhydrous) (CAF), diltiazem hydrochloride 

(DIL), lidocaine hydrochloride (LID), paracetamol (PAR), phenacetin (PHE), procaine 

hydrochloride (PRO) and theophylline (THEO)) and 14 cutting agents (i.e. α-lactose 

monohydrate (LAC), α-D-glucose anhydrous (GLU), calcium carbonate (CaCO3), creatine 

monohydrate (CRE), dextrose monohydrate (DEX), d-mannitol (MAN), L(+)-glutamic acid 

monosodium salt monohydrate (GLUT), L-tyrosine (L-TYR), maize starch (STA), 

microcrystalline cellulose (MCC), niacinamide (NIA), sucrose (SUC), talc (TAL) and taurine 

(TAU)) (Appendix A Table 2.1 and Appendix D Tables A6.1). In contrast to Chapters 2 – 4, a 

greater variety of cutting agents (e.g. MAN, GLUT and NIA) were included in this study based 

on the most recent seizures’ reports in the UK and NPS literature [38, 213]. In this study 25 

NPS products were purchased from the internet for method validation (Table 6.1). 
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Table 6. 1: NPS products purchased from the internet. 

Product No.  Sample name Supplier (website) Supercluster no.1 Cluster no.1 

P1 2-AI Smokeys Chemsite 5 5.15 

P2 2-AI Smokeys Chemsite 5 5.15 

P3 AB-FUBINACA EU Chemicals 3 3.01 

P4 AB-PINACA EU Chemicals 3 3.02 

P5 AB-PINACA EU Chemicals 3 3.02 

P6 Etizolam rc-lab 8 8.01 

P7 Etizolam benzo_fury.me 8 8.01 

P8 Etizolam chemicalwire 8 8.01 

P9 Etizolam rc-lab 8 8.01 

P10 Flubromazepam Buckledbonzi 5 5.06 

P11 Flubromazepam Buckledbonzi 5 5.06 

P12 Flubromazepam High Store 5 5.06 

P13 Flubromazepam EU Chemicals 5 5.06 

P14 Flubromazepam Chemical Powder Shop 5 5.06 

P15 Flubromazepam RCNet Chemicals 5 5.06 

P16 MDAI EU Chemicals 11* N/A2 

P17 MDAI EU Chemicals 11* N/A2 

P18 MPA buyanychem.com/rearch-chemicals 9 9.02 

P19 MPA benzo_fury.me 9 9.02 

P20 N-Me-2-AI Chemical Powder Shop 5 5.16 

P21 Pink Champagnes Herbal High N/A3 N/A3 

P22 Pink Champagnes Herbal High N/A3 N/A3 

P23 Pink Champagnes Herbal High N/A3 N/A3 

P24 Magic beans Herbal High N/A4 N/A4 

P25 THJ-018 Buckledbonzi 3 3.04 
1is the supercluster and cluster membership of claimed NPS on product labels (see Chapter 5); *Test sample, not 

used in generating the initial clustering model developed by Zloh et al. [204] (see Chapter 5); 2Supercluster 11 is 

composed of one cluster only; 3‘Aminoindane’ is quoted on the label. No particular aminoindane analogue is specified in 

P21 – P23; 4Claimed ingredients on the label do not include an NPS. 

6.2.2. Methods 

In this Section, details of the Raman analysis of the new training samples (i.e. cutting agents 

and adulterants) and ‘query’ samples (i.e. NPS internet products) is presented. The composition 

of internet samples was investigated using three analytical techniques. Qualitative analysis was 

carried out using: 1) library-based correlations with handheld Raman spectroscopy and 2) 

confirmatory gas chromatography – mass spectrometry (GC-MS). Quantitative analysis was 

undertaken using high performance liquid chromatography (HPLC). A full characterisation of 

NPS products was not performed and is beyond the scope of this work. 

6.2.2.1. Raman analysis 

6.2.2.1.1. Sample preparation 

Approximately 3 - 5 mg of each cutting agent and adulterant reference standard and NPS 

internet product were weighed, in powder form, tapped and flattened on aluminium plates for 

benchtop Raman analysis. To ensure homogeneity of NPS internet product, a Vortex Genie 2 

(Scientific Industries, Inc.) was employed for two minutes prior to sampling. 
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6.2.2.1.2. Analysis of cutting agents, adulterants and NPS internet products using 

benchtop Raman Spectroscopy 

Spectra for training and ‘query’ samples i.e. cutting agents, adulterants and NPS internet 

products were acquired using a benchtop Renishaw inViaTM Raman microscope (see Chapter 

5 for full method details). Benchtop Raman spectra for both internet samples P12 and P24 

could not be obtained with a laser excitation wavelength (λex) of 785 nm due to intense 

fluorescent background. In this respect, the laser power was reduced to 1.0 and 0.5 % (2.2 and 

1.1 mW respectively) in an attempt to reduce fluorescence and acquire spectra but was deemed 

unsuccessful. 

6.2.2.2. Qualitative analysis of NPS internet products using handheld Raman 

Spectroscopy  

Two handheld Raman instruments, ProgenyTM and FirstGuardTM (SciMed Ltd, Rigaku, USA) 

with laser λex of 1064 nm, were employed for the identification of NPS content in internet 

products using in-built algorithms. Specifications of both instruments are shown in Table 2.3. 

The NPS internet products were first analysed using the ProgenyTM instrument. Four methods 

were used to collect Raman spectra based on the substances’ nature: method A (2000 ms 

exposure time; 490 mW laser power; 10 averages), method B (2000 ms exposure time; 200 

mW laser power; 10 averages), method C (2000 ms exposure time; 100 mW laser power; 10 

averages); method D (2000 - 5 ms exposure time; 50 mW - 1 mW laser power; 10 averages).  

All samples were initially analysed using method A, but methods B and C were employed for 

samples that were burned or were prone to burning from high laser power (i.e. coloured 

samples). Method D was developed in an attempt to collect Raman signals from challenging 

samples, which exhibited intense fluorescent background and/or burned with method C by 

adopting an iterative approach to reducing both the laser power and exposure time. All methods 

used an in-built baseline correction function for each measurement. The instrument was 

calibrated each day immediately before analysis using a benzonitrile reference standard. All 

samples were analysed directly through glass vials after optimisation of the vial holder 

attachment with respect to the focal point. The spectra from the cutting agents and adulterants 

were uploaded into on-board libraries. NPS products were automatically compared to the on-

board reference library and reported a percentage correlation using the in-built ‘Rigaku 

mixtures algorithm (RMA)’. The mean ± the standard deviation of the highest hit was 

calculated from the triplicate measurements and reported (Table 6.2).  
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Table 6. 2: Summary of qualitative and quantitative analysis of NPS internet products using handheld Raman spectroscopy, GC-MS and HPLC 

Product 

No. 
Sample name Formulation 

Qualitative Analysis Quantitative Analysis 

Handheld Raman Analysis (λex = 1064 nm) GC-MS Analysis HPLC Analysis 

Raman ID1 Algorithm Valid hit (%) MS ID1 Base peak 

(m/z) 

RT2 Average purity 

(%) 

% RSD3 

P1 2-AI Powder 2-AI RMA4 97.2 ± 0.4 2-AI  133 6.3 98 ± 5 5 

P2 2-AI Powder 2-AI RMA 97.0 ± 0.0 2-AI  133 6.3 91 ± 4 4 

P3 AB-FUBINACA Powder Inconsistent correlations 

AB-

FUBINACA  109 14.7 77 ± 3 4 

P4 AB-PINACA Powder AB-PINACA RMA 86 ± 3 AB-PINACA  215 12.4 49 ± 4 8 

P5 AB-PINACA Powder AB-PINACA RMA 91 ± 3 AB-PINACA  215 12.4 54 ± 2 4 

P6 Etizolam Tablets Data acquisition failed Etizolam  342 23.1 0.85 ± 0.04 4.71 

P7 Etizolam Tablets MCC RMA 86 ± 4 Etizolam  342 23.2 0.66 ± 0.03 4.55 

P8 Etizolam Tablets MCC RMA 92 ± 3 Etizolam  342 23.2 0.66 ± 0.03 4.55 

P9 Etizolam Tablets MCC RMA 88 ± 2 Etizolam  342 23.1 0.68 ± 0.03 4.41 

P10 Flubromazepam Powder Flubromazepam RMA 97.2 ± 0.4 Flubromazepam  305 13.2 95 ± 2 2 

P11 Flubromazepam Pellets Inconsistent correlations Flubromazepam  305 13.1 6.1 ± 0.2 3.3 

P12 Flubromazepam Pellets Data acquisition failed Flubromazepam  305 13.1 3.9 ± 0.1 2.6 

P13 Flubromazepam Pellets MCC RMA 77 ± 4 Flubromazepam  305 13.1 6.6 ± 0.3 4.5 

P14 Flubromazepam Pellets Inconsistent correlations Flubromazepam  305 13.1 7.8 ± 0.2 2.6 

P15 Flubromazepam Pellets MCC RMA 86 ± 4 Flubromazepam  305 13.1 2.4 ± 0.1 4.2 

P16 MDAI Powder 5-IAI RMA 85 ± 0 5,6-MDAI  160 8.5 95 ± 2 2 

P17 MDAI Powder 5,6-MDAI RMA 82 ± 1 5,6-MDAI  160 8.5 98.0 ± 0.1 0.1 

P18 MPA Powder MPA RMA 98.6 ± 0.8 MPA  58 8.7 107 ± 1 1 

P19 MPA Powder MPA RMA 99 ± 0 MPA 

6-APB 

CAF  

5-MeO-DALT 

58 

44 

194 

110 

8.8 

12.0 

14.4 

17.4 

93.8 ± 0.8 0.9 

P20 N-Me-2-AI Powder N-Me-2-AI RMA 83 ± 5 N-Me-2-AI  147 6.0 100.1 ± 0.5 0.5 

P21 Pink Champagnes Powder No correlations 2-AI/CAF 133, 194 9.2, 14.4 15.0 ± 0.1 0.7 

P22 Pink Champagnes Powder CAF HQI5 54.2 ± 0.2 2-AI/CAF 133, 194 9.4, 14.4 14.6 ± 0.1 0.7 

P23 Pink Champagnes Powder Phosphorous HQI 70 ± 3 2-AI/CAF 133, 194 9.3, 14.5 14.0 ± 0.1 0.7 

P24 Magic beans Powder Inconsistent correlations 2-AI/CAF 133, 194 9.4, 14.4 15.8 ± 0.1 0.6 

P25 THJ-018 Powder THJ-018 RM 97.4 ± 0.8 THJ-018  127 14.2 100.7 ± 0.6 0.6 
1 ID: identification, 2RT: retention time, 3RSD: relative standard deviation, 4RMA: Rigaku mixtures algorithm (ProgenyTM), 5HQI: hit quality index (FirstGuardTM).  Miss V. 

Guarino, a visiting Erasmus student, has contributed to the GC-MS analysis and has conducted the HPLC analysis under my supervision.
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If the correlations between triplicate analyses were inconsistent, it was reported as ‘inconsistent 

correlations’ instead of a mean value. Using the ProgenyTM instrument, no data were obtained 

for P21 – P24. Therefore the FirstGuardTM % ‘hit quality index (HQI)’ correlations, 

documented in Chapter 3 for products P53 – P55 and P51, were reported instead (Tables 3.7 

and 6.2) for comparison.  

6.2.2.3. Qualitative analysis of NPS internet products using gas chromatography - mass 

spectrometry  

Gas chromatography – Mass spectrometry (GC-MS) analysis was used to confirm the identity 

of the NPS claimed on the label of the purchased internet products. The method was adapted 

from [236]. The mass spectra obtained were compared to purchased reference standards and 

EI spectral libraries: NIST (v. 1.0.2.2), SWGDRUG MS (v. 2.1 (2015)) and Cayman (v. 

04292014). GC-MS experiments were conducted under my supervision by a visiting Erasmus 

student, Miss V. Guarino (Appendix D Table A6.2). 

6.2.2.4. Quantitative analysis of NPS internet products using high performance liquid 

chromatography  

High performance liquid chromatography (HPLC) analysis was employed to identify and 

quantify the NPS claimed on the label of the purchased internet products. Analysis was 

performed with a reverse phase HPLC equipped with an integrated HPLC system Liquid 

Chromatograph (USA), fitted with an in-line degasser, auto-injector and a SPD-M20A photo 

diode array detector (USA). The stationary phase (UltraCore 5 SuperC18, 150 mm × 4.6 mm 

i.d. 5 µm particle size) was obtained from Advanced Chromatography Technologies Limited 

(Scotland). The column was fitted with a guard cartridge (ACE) and maintained at 25 oC. Data 

analysis was carried out using Lab Solution for LC (v. 5.54 SP2) software (USA). The flow 

rate was 1.0 - 1.5 mL min-1 with an injection volume of 5 - 15 µL (Appendix D Table A6.3). 

Three replicate injections of each calibration standard were performed.  

Prior to HPLC analysis, screening of maximum UV-visible (UV-VIS) absorption of NPS 

internet samples was investigated by absorption spectroscopy using an Agilent Technologies 

spectrophotometer (Cary 100 UV-Vis), equipped with cuvette holders, over the range 800 – 

200 nm. NPS sample solutions in 50:50 methanol:deionised water (DW) or acetonitrile (ACN) 

(HPLC grade, Sigma Aldrich, UK) were illuminated in a quartz cuvette by a 350 W tungsten-

halogen visible source with quartz window, deuterium arc UV source. The blank reference 

was 50:50 methanol:DW or ACN. The UV profiles of samples were compared to the spectra 
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collected from the blank. All spectra were recorded with a bandwidth of 0.2 – 4.0 nm, 0.1 nm 

steps, motor-driven with a response time of 0.1 s and a scan speed of 600.000 nm min-1 at 

20°C. Data were processed using the software Cary WinUV (v. 4.20 (468)). Both HPLC and 

UV-VIS experiments were conducted under my supervision by a visiting Erasmus student, 

Miss V. Guarino. 

6.2.2.4.1. Preparation of the aqueous buffer, mobile phases and calibration standards 

for HPLC analysis 

Ultrapure DW was used and the pH of the solution was adjusted to pH 2.0 ± 0.1 by dropwise 

addition of orthophosphoric acid (HPLC electrochemical grade, Sigma Aldrich, UK) (Hanna 

Instruments Ltd, PH 209 PH Meter, Bedfordshire, UK). Mobile phases were prepared by 

separately mixing the aqueous buffer and ACN in various proportions, specific to each NPS 

sample (Appendix D Table A6.3). Prior to use, mobile phases were vacuum filtered through 

Whatman 0.22 µm pore nylon membranes (Fisher Scientific, UK) and degassed in an ultrasonic 

bath for 10 min at 25 ◦C. For the calibration standards, ca. 2 mg of each NPS reference standard 

were weighed accurately into a 25 mL glass volumetric flask and diluted to volume with mobile 

phase to give a solution containing 80 µg mL-1 of NPS. This solution was further diluted with 

mobile phase to give calibration standards containing 57, 39, 26, 17 and 11 µg mL-1 of NPS.  

6.2.2.4.2. NPS internet sample preparation for HPLC analysis 

Approximately 8 mg of each NPS internet sample were weighed accurately into a 100 mL glass 

volumetric flask and diluted to volume with 50:50 methanol:DW or ACN to give a solution 

containing about 80 µg mL-1 of NPS. Solutions were then vortex-mixed (Vortex Genie 2 - 

Scientific Industries, Inc.) for two min. and ultrasonicated (Ultrasound - Fisherbrand FB15055, 

Belgium) for five min. Solutions were then re-diluted to give solutions containing a final 

concentration of ca. 40 – 80 µg mL-1 of NPS (Appendix D Table A6.3).  

6.2.2.5. Raman spectral pre-processing 

Methods developed in Chapter 5 were applied and investigated in this Chapter as a proof-of-

concept (see Chapter 5 Sections 5.2.4. and 5.3.2. for full method details). 

6.2.2.5.1. Principal Components Analysis (Unscrambler® X 10.4) 

The PCA parameters employed in developing the initial PCA model in Chapter 5 are applied 

to datasets analysed in this Chapter (see Chapter 5 Section 5.2.5. for full method details).  

http://www.camo.com/products/download-trial.html
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A schematic outlining the Raman/ chemometrics experimental protocol is described in Figure 

6.1. 

 

Figure 6. 1: Raman/ chemometrics experimental protocol. Schematic outlining the details of 

the training and ‘query’ sets, steps of combined spectral pre-processing and chemometrics. 

 

6.3. Results and Discussion 

6.3.1. Selection of cutting agents/ adulterants and NPS internet products 

Fourteen cutting agents and eight adulterants were selected such that the majority of these 

substances were commonly reported in seized NPS street samples or included as a result of 

being detected during direct in-house internet sample analysis evaluated in this Chapter. The 

‘new’ training sample subset (i.e. cutting agents and adulterants) includes pharmaceutically 

active substances and excipients to ensure a wide chemical diversity in the training set and to 

evaluate whether they hinder the identification of NPS through PCA analysis. A review of the 

literature, forensic and government reports (2009 - 2015) was conducted on Google Scholar 

and Scopus to identify cutting agents/ adulterants incorporated in NPS mixtures [38]. Words 

and phrases used in the search included ‘analysis of new/ novel psychoactive substances’, ‘new 

psychoactive substance mixtures’, ‘new psychoactive substance cutting agents’ and ‘new 

psychoactive substance adulterants’.  

Results of the search revealed that seized NPS products, purchased over the internet for 

research purposes or documented in government reports were found to contain BEN, CAF, 

CRE, GLU, LID, PHE, PRO, SUC inter alia cutting agents and adulterants [73, 79, 121, 132, 

217, 247-253]. Forensic reports described common cutting agents identified in UK seizures to 

include bulking agents such as CRE, GLU, GLUT, LAC, MAN, SUC and TAU. Other cutting 

agents and adulterants such as LAC, L-TYR, MCC and NIA were selected in this study because 
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they were identified through GC-MS and handheld Raman analysis of NPS internet products 

(Chapter 3 and Table 6.2). In 2014, adulterants over which law enforcement have gained power 

to seize if they suspected that they were used for cutting NPS include BEN, LID and PHE 

[218]. Both CRE and GLUT have been shown to be the most popular cutting agents found in 

NPS seizures in the UK from 2013 – 2016 [38, 208, 209, 213, 285]. 

In general, in a similar manner to illicit drugs [286], NPS products may be cut with bulking 

agents and fillers which may be purposely added. Adulterants such as BEN, CAF, LID and 

PRO are co-added to NPS because they may mimic, enhance and potentiate the effects of 

controlled drugs of abuse [247]. LID is a local anaesthetic and may be incorporated in NPS 

mixtures for its numbing effect, whereas BEN and PRO have been used as adulterants for their 

cocaine-like effect [247]. Both GLUT and TAU are known food supplements, whereas both 

GLU and SUC give a sweet taste. Excipients which may be co-added to NPS to counteract 

their side-effects include CaCO3, DIL, PAR, PHE and THEO [247, 287]. For example, CaCO3 

may counteract stomach acidity [287], DIL may counteract tachycardia and THEO is used for 

its bronchodilating activity, hence facilitating the smoking of NPS. Benzodiazepines were 

found to be co-ingested with the stimulant MDPV to counteract its excitatory effect [59]. 

Furthermore, excipients may have common chemical substructures (e.g. NIA and cathinone 

(Appendix D Table A6.1 and Figure 5.17)) to target drugs in order to add to the complexity of 

the mixture and hinder identification (e.g. BEN, a very strong Raman scatterer, may mask NPS 

Raman signals) [12, 95, 135, 192].  

6.3.2. Overview of classifications of new datasets using PCA  

In this Section, an overview of three datasets is performed using exploratory PCA: Dataset 1: 

pre-processed Raman spectra of 22 cutting agents/ adulterants, Dataset 2: 25 NPS internet 

products, Dataset 3: pre-processed Raman spectra of ‘53 representative’ NPS and 22 cutting 

agents/ adulterants. Dataset 3 is the ‘new’ PCA model ‘NPS and non-NPS/benchtop’ model 

against which pre-processed Raman spectra of 23 NPS ‘query’ samples are projected using 

PCA projection (Unscrambler® X 10.4). For the first two datasets, grouping, overlap, 

correlations, delineation or outliers between scores are evaluated using PCA scores plots, 

common chemical substructures, shared Raman bands across the range 1750 – 1300 cm-1 and/ 

or association with variables with high loadings and PCA scoresplot ellipse at 95 % CL. In 

addition to this, the third dataset is evaluated using PCA projection scores plots.  
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6.3.2.1. Overview of the classification of cutting agents/ adulterants (Dataset 1) 

Prior to undertaking a PCA analysis, initial inspection of Raman spectra was conducted 

(Chapter 5 and Figure 6.2). Pearson’s correlation coefficient (r2) between replicate raw spectra 

of each cutting agent/ adulterant was > 90 %, except for GLU, MCC and LID, where r2 was 

80, 83 and 75 % respectively. For MCC, raw spectra exhibited a high fluorescent background 

with poor Raman signal relative to noise. Unlike raw data, pre-processed MCC spectra resulted 

in noisy spectra with flat baselines. Harkai and Putz emphasised that intense fluorescence may 

hamper the identification of NPS even after the pre-processing of spectra [161]. For both GLU 

and LID, initial raw spectra exhibited good S/N and relatively flat baselines. However, the 

instrument’s artefacts resulting in variable relative intensities between replicate spectra may 

have resulted in reduced r2 values. The line plots were also inspected to ensure the suitability 

of the spectral range 1750 – 1300 cm-1 used in the initial model (Chapter 5).  

By examining the Raman spectra, Raman bands for most cutting agents were spread along the 

spectral ranges 2990 – 2890 and 1500 – 250 cm-1 (Figure 6.2a), whereas Raman bands for most 

adulterants were spread along the spectral range 1700 – 250 cm-1 (Figure 6.2b). By including 

the Raman bands over the spectral range 2990 – 2890 cm-1, insignificant changes to the 

classification of cutting agents and adulterants occurred using exploratory PCA, specifically to 

the PCA scores and explained variance plots. Hence the spectral range 1750 – 1300 cm-1 was 

used for consistency. 
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Figure 6. 2: Pre-processed average Raman spectra of a) 14 cutting agents and b) eight 

adulterants over the spectral range 3200 – 250 cm-1. 

To obtain an overview of dataset 1, an exploratory PCA was performed using 10 pre-processed 

spectra for each substance over the spectral range 1750 – 1300 cm-1. The dataset consisted of 

220 rows and 522 variables. Samples were categorised based on their chemical classes as amino 
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acids (CRE, GLUT, L-TYR and TAU), anaesthetics (BEN, LID and PRO), carbohydrates 

(MCC and STA), food supplements (NIA), inorganic substances (CaCO3), minerals (TAL), 

pharmaceuticals (DIL, PAR, PHE and THEO), stimulants (CAF) and sugars (LAC, GLU, 

DEX, MAN and SUC). The proposed categorisation in this work is used as an example of 

numerous possible categorisations which could be applied.  

The first three PCs explained approximately 59 % of the total explained variance, (24/19/16 % 

for PC1/PC2/PC3) (Figure 6.3a). By examining the 2D-scores plots, PC1/PC2 showed that the 

explained variance is mainly due to PAR/PHE, then to a lesser extent due to BEN/PRO, all of 

which are very strong Raman scatterers compared to remaining cutting agents/ adulterants 

(Figure 6.3b). This was confirmed through the scores and loadings bi-plot (plot not shown), 

where the variables explaining greater than 50 % of the total variance was associated with 

functional groups present in these substances. The line loadings plot also confirmed these 

findings as the peaks with high loadings were associated with these substances. Examples of 

these variables include 1685, 1608, 1580 and 1314 cm-1 for BEN; 1697 and 1609 cm-1 for PRO; 

1652, 1623, 1614, 1374 and 1328 cm-1 for PAR; and 1663, 1620, 1605, 1372, 1330 and 1310 

cm-1 for PHE. Bands in these regions are typically due to carbonyl-containing compounds such 

as amide groups (below 1700 cm-1), amine groups (1660 – 1500 cm-1), quadrant stretches (1620 

– 1420 cm-1) and methyl deformation vibrations (1500 – 1250 cm-1).  

The 2D-scores plots, PC1/PC2 showed that carbohydrates and sugars grouped together in the 

lower left quadrant, which was expected as carbohydrates contain one or more units of sugars. 

Replicates of the analgesics PAR and PHE were scattered in the lower right quadrant, despite 

the fact that the r2 between replicate spectra for both PAR and PHE was > 90 %. However, they 

were in close proximity to each other, possibly because they share a common substructure (N-

(4-(λ1-oxidanyl)phenyl)acetamide) (Figure 6.3d) and Raman active functional groups (see 

above) over the region 1750 – 1300 cm-1. This was confirmed via line plots (Figure 6.3e) 

showing that PAR and PHE share common doublets: one with different relative intensities at 

ca. 1623 and 1614 cm-1 for PAR and at ca. 1620 and 1605 cm-1 for PHE; and another at ca. 

1374 and 1328 cm-1 for PAR and at ca. 1372 and 1330 cm-1 for PHE. Furthermore, both BEN 

and PRO clustered close to DIL. DIL shares a peak with BEN at ca. 1685 cm-1 and with both 

BEN and PRO at ca. 1610 cm-1, possibly due to carbonyl stretching and amine deformation 

vibrations respectively. 
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In contrast to pharmaceuticals and anaesthetics, GLUT is an alkyl chain conjugated with 

carboxylic acids on both ends (Appendix D Table A6.1). The variance along PC3 (Figure 6.3c), 

was mainly explained by GLUT, where two Raman bands at ca. 1436 and 1404 cm-1 (Figure 

6.2a) were associated with two peaks with medium loading along PC3, which may be attributed 

to CH3 in-phase deformation. The band at higher frequency is likely to be adjacent to the most 

electronegative atom e.g. oxygen in this molecule. 
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Figure 6. 3: a) Three-dimensional (3D)-scores plot of 22 cutting agent/ adulterant reference spectra; b) Two-dimensional (2D)-scores plots for 

PC1/PC2; c) 2D-scores plots for PC1/PC3; d) Common substructure between PAR and PHE; d) Pre-processed Raman spectra of BEN, PRO, PAR, 

PHE, DIL, dimethocaine and the line loading plots for PC1/PC2/PC3.  



 

233 

 

6.3.2.2. Overview of the classification of test 23 NPS internet products (Dataset 2) 

Twenty-five NPS products were purchased from 11 websites. They consisted of aminoindanes 

(i.e. P1, 2, 16, 17 and 20), arylalkylamines (i.e. P18 and P19), benzodiazepines (i.e. P6 – P18), 

branded products (i.e. P21 – P24) and synthetic cannabinoids (i.e. P3 – P5 and P25). Claimed 

NPS in these products were members of previously described superclusters (Chapter 5 and 

Table 6.2). The r2 values between raw replicate spectra of each product was > 90 %. This 

showed that r2 values can be relatively high between replicate spectra equally exhibiting high 

fluorescent backgrounds, as was the case with numerous internet samples. To obtain an 

overview of the classification of 25 NPS internet products, an exploratory PCA was performed 

using pre-processed 10 replicate spectra for each product over the spectral range 1750 – 1300 

cm-1. The data matrix consisted of 230 rows and 522 variables. Both P12 and P24 were not 

included in the PCA analysis as no Raman spectra were obtained due to high fluorescent 

backgrounds with a 785 nm λex.  

The calibrated cumulative explained variance of the model was 70 % (35/22/13 % for 

PC1/PC2/PC3) (Figure 6.4a). The 2D-scores plot (Figure 6.4b) showed that a few spectra (i.e. 

P13 R2 and R5; P14 R2, R5 and R7; and P15 R3) fall outside the ellipse at 95 % CL. These 

spectra were investigated further and have been shown to be for flubromazepam pellets with 

very poor S/N. Quantitative analysis using HPLC has shown that the purity of these samples 

was 2.4 ± 0.1 to 7.8 ± 0.2 %. The influence plots for PC1/PC2 (Figure 6.4c) showed that only 

P13 R5 and P15 R3 are outside of the model with high F-residuals Hotelling T2, confirming 

the impact of poor S/N in these spectra. The PCA of 25 NPS internet products was re-calculated 

after removing these two spectra. The generated PCA showed insignificant changes to sample 

classification on PCA scores and total explained variance plots by the first three PCs (plots not 

shown). Therefore these spectra were not rejected from the analysis but were re-visited in the 

PCA projection analysis.  
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1One legend is used for Figure 6.4a, 6.4b and 6.4c 

Figure 6. 4: a) 3D-scores plot of 23 NPS internet samples; b) 2D-scores plots for PC1/PC2 with an ellipse at 95 % CL; c) 2D-influence plot for 

PC1/PC2; d) pre-processed replicate Raman spectra for P191. 
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Claimed aminoindanes (i.e. P1, 2, 16, 17, 20-23) were grouped together in the upper right 

quadrant of the 2D-scores plot for PC1/PC2, suggesting that the products were relatively pure. 

P1 and P2 were two 2-AI powders purchased from the same website and both have been shown 

to contain 2-AI using GC-MS [226], HPLC and handheld Raman. P1 and P2 were grouped 

together with P20 (N-Me-2-AI, a class analogue of 2-AI). The latter was purchased from a 

different website and has been shown to contain N-Me-2-AI using GC-MS [288], HPLC and 

handheld Raman. P16 and P17, labelled as MDAI and purchased from the same website, 

grouped together. Both have also been shown to contain 5,6-MDAI using both GC-MS and 

HPLC, but, as for P16, handheld Raman analysis results were inconsistent but correlated 

mostly to another aminoindane i.e. 5-IAI (% RMA = 85 ± 0) (Table 6.2). 

Claimed arlyalkylamines (P18 and P19) grouped together in the upper right quadrant of the 

2D-scores plot for PC1/PC2, except replicate spectra P19 R3 - R5. P18 and P19 were purchased 

from different websites but have both been shown to contain MPA (Table 6.2). GC-MS 

analysis for P19 showed that this sample was also adulterated with 6-APB [240], CAF [224, 

225] and 5-MeO-DALT [219]. In fact, the inspection of replicate spectra for P19 shows that 

spectra R3 - R5 exhibited Raman bands at ca. 1652, 1552 and 1360 cm-1 that are absent from 

remaining replicate spectra (Table 6.2 and Figure 6.4d). This demonstrated the importance of 

taking Raman measurements at multiple powder areas in complex NPS street mixtures because 

it may assist in identifying multiple constituents. 

Claimed benzodiazepines (etizolam P6 – P9 and flubromazepam P10, 11, 13 – 15) were 

obtained as coloured tablets and pellets respectively except for P10, which was a white powder. 

Etizolam tablets were purchased from three websites, whereas flubromazepam products were 

purchased from five different websites. For P12, fluorescent background was more intense than 

the Raman peaks. Hence no signal was obtained for P12 and, therefore was excluded from the 

PCA analysis. Replicate spectra of P6 – P10 grouped together, whereas replicate spectra of P11 

– P15 were scattered on the PCA 2D-scores plot (PC1/PC2), possibly due to poor S/N in pre-

processed spectra but also showing that they may potentially have different compositions of 

various components (Figure 6.4a and 6.4b). The etizolam products (P6 – P9) grouped in the 

upper right quadrant of the 2D-scores plot (PC1/PC2). The GC-MS analysis of P6 – P9 showed 

that they all contained etizolam [289] but the HPLC analysis showed very low etizolam content 

in these products (0.66 ± 0.03 to 0.85 ± 0.04 %). Library correlations using handheld Raman 

(λex =1064 nm) identified MCC as the top hit in P7 – P9 (% RMA = 86 ± 4 to 92 ± 3 %) (Table 
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6.2). Handheld Raman (λex =1064 nm) data acquisition for P6 failed due to high fluorescent 

background potentially resulting from dark coloured tablet coating (dark turquoise). Replicate 

spectra for P10 grouped in the lower right quadrant of the PCA 2D-scores plot (PC1/PC2) and 

were confirmed to contain flubromazepam using GC-MS [290], HPLC and handheld Raman. 

Flubromazepam-containing pellets (P11, P13 – P15) claimed to contain 8 mg/ pellet. GC-MS 

analysis confirmed that they all contained flubromazepam, with HPLC purity ranging from 2.4 

± 0.1 to 7.8 ± 0.2 %. Raman analysis for P11 and P14 gave inconsistent results. However, 

handheld Raman analysis (λex =1064 nm) for P13 and P15 correlated to MCC (% RMA = 77 ± 

4 to 86 ± 4) (Table 6.2).  

Branded products (P21 – P24) were obtained as capsules-containing maroon powders which 

were emptied in glass vials for analysis. The benchtop Raman analysis (λex =785 nm) of these 

powders resulted in spectra with a high fluorescent background. For P24, fluorescent 

background was more intense than the Raman peaks and hence no signal was obtained. 

Consequently, P24 replicates were excluded from the PCA analysis. Replicate spectra for P21 

- P23 were scattered on the PCA 2D-scores plot, possibly due to poor S/N in pre-processed 

spectra but also due to their relative levels of impurity. GC-MS analysis confirmed the presence 

of 2-AI and CAF in these samples. Using HPLC, the purity of 2-AI in these products ranged 

from 14.0 ± 0.1 to 15.0 ± 0.1 %. Handheld Raman analysis (λex =1064 nm) resulted in no 

correlation for P21, correlated to CAF for P22 and to phosphorous for P23 (see Chapter 3 and 

Table 6.2). 

Claimed synthetic cannabinoids (P3 - P5 and P25) grouped in the upper left quadrant of the 

2D-scores plot for PC1/PC2. P3 (AB-FUBINACA) replicate spectra were confirmed to contain 

AB-FUBINACA using both GC-MS [39] and HPLC. Raman analysis gave inconsistent 

correlations to other analogues of synthetic cannabinoids 5F-APINACA and AB-PINACA. 

Both P4 and P5 (AB-PINACA) replicate spectra have been confirmed to contain AB-PINACA 

using GC-MS [291], HPLC and handheld Raman. P25 (THJ-018) replicate spectra have been 

confirmed to contain THJ-0.18 using GC-MS [37], HPLC and handheld Raman.  

6.3.2.3. Overview of the classification of 53 NPS reference standards and 22 cutting 

agents/ adulterants (Dataset 3) 

To obtain an overview of the classification of NPS (i.e. 53 NPS reference standards) versus 

non-NPS substances (i.e. 22 cutting agents/ adulterants), an exploratory PCA was performed 

using pre-processed 10 replicate Raman spectra for each substance. The data matrix consisted 
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of 750 rows and 522 variables. The calibrated cumulative explained variance of 36 % for the 

first three PCs was 16/11/9 % for PC1/PC2/PC3 (Figure 6.5a). Classification of the 53 NPS 

spectra on the 2D-scores plot according to superclusters and EMCDDA/EDND classifications 

followed similar trends as observed in Chapter 5 Section 5.3.3.1. (Figures 5.10, 6.5b and 6.5c). 

Possible overlap/ correlations between 13 NPS previously described superclusters representing 

the NPS chemical space of 478 NPS (Chapter 5) and cutting agents/ adulterants’ proposed 

categories were evaluated along computed PC1/PC2/PC3. To achieve this, average Raman 

reference spectra (i.e. average of 10 spectra/ substance) over the range 1750 – 1300 cm-1 

(Figures 6.6a-6.6e), common substructures and r2 values (Tables not shown) between 

overlapping spectra were examined.  

On the PCA scores plot (Figure 6.5a), overlap between the scores representing the Raman 

spectra for NPS and active adulterants such as anaesthetics, pharmaceuticals, stimulants and 

food supplements is expected because they share common substructures and functional groups 

such as aromatic rings and carbonyl groups. In addition, some adulterants may belong to the 

same class as library NPS such as benzocaine (adulterant) and dimethocaine (training NPS 

sample), both of which are anaesthetics. Overlap between NPS and cutting agents is expected 

to a lesser extent because of greater structural dissimilarity with NPS. However, unlike internet 

samples, where Raman signals from cutting agents may mask that of NPS in mixtures [12] 

(Chapter 3), in this PCA model, the positions of pure cutting agents, on computed PCs, are 

compared to pure NPS. Therefore this masking effect is not relevant, unless it is intrinsic to 

specific substances. An in-depth analysis was conducted to compare each NPS supercluster 

(Chapter 5) to each cutting agent/ adulterant class to investigate possible overlap (Table 6.3). 

Only the significant trends identified are discussed in this Chapter.  

From supercluster 2, both N-Me-2C-B (cluster 2.06) and STP (cluster 2.08) overlapped with a 

few LID spectra along PC1/PC2. This is  possibly because of common Raman bands for all 

three substances at ca. 1455 cm-1 (weak to strong), associated with weak positive loadings 

along PC2 (Figure 6.6a). Another Raman band at ca. 1378 cm-1 (weak to medium) was 

observed for STP and LID and associated with weak positive loadings (PC1).  

Moreover, 25H-NBOMe (cluster 2.05) overlapped with the strong Raman scatterer BEN along 

PC1/PC2. Common Raman bands were observed at ca. 1607 and 1605 cm-1 (strong) for 25H-

NBOMe and BEN respectively (Figure 6.6b). This band was associated with a high negative 

loading along PC1. Pearson’s correlation coefficient between spectra for 25H-NBOMe and 
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BEN over 1750 – 1300 cm-1 was 69 %, which indicates possible overlap with an NPS 

containing-BEN would be unsurprising. This is because this band is likely to be present in other 

NPSs as well. 

 

Figure 6. 5: The NPS and non-NPS model. a) 3D-scores plot of 53 NPS and 22 cutting agent/ 

adulterant reference spectra; b) 2D-scores plots for 13 NPS superclusters and cutting agent/ 

adulterant classes (PC1/PC2); c) 2D-scores plots for 13 NPS superclusters and cutting agent/ 

adulterant classes (PC1/PC3). 
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Figure 6. 6: Pre-processed Raman spectra for: a) 4-MeO-PCP, MXT, N-Me-2C-B and STP; b) BEN, PRO, dimethocaine, 4-MeO-α-PVP and 

25H-NBOMe; c) N-Me-2C-B, DIL and mebroqualone); d) 4-AcO-DMT, AB-FUBINACA and GLUT; e) MXT, N-ethylamphetamine, CAF and 

NIA and line loading plots (PC1/PC2/PC3).
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Table 6. 3: Analysis of potential overlap between reference spectra for 53 NPS and 22 cutting agent/ adulterants along the PCA scores plot 

 Overlap along PCA scores plot  
Supercluster 

No. 
NPS  

 Cutting agent/ 

adulterant(s) 

Principal 

components (PCs) 

Approximate wavenumber of common 

Raman bands (cm-1) 

Loadings (Retrieved from PCA 

loading plots) 

2 N-Me-2C-B and STP LID PC1/PC2 1455 (weak to strong) Weak positive loadings along PC2 

STP LID PC1/PC2 1378 (weak to medium) Weak positive loadings along PC1 

25H-NBOMe BEN PC1/PC2 1607 (strong) for 25H-NBOMe and 1605 

(strong) for BEN 

High negative loadings along PC1 

4-MeO-α-PVP  BEN and PRO PC1/PC3 1599 (strong) for 4-MeO-α-PVP, 1608 (strong) 

for BEN and 1609 (strong) for PRO 

N/A 

N-Me-2C-B  DIL PC1/PC2 1612 and 1586 (medium to strong) and 1456 

(weak) for N-Me-2C-B; 1610 and 1590 (strong 

to weak) and 1453 (weak) for DIL  

N/A 

3 AB-FUBINACA GLUT PC1/PC2 1445 (weak) and 1407 (strong) for AB-

FUBINACA; 1439 (weak) and 1406 (strong) for 

GLUT 

N/A 

5 Mebroqualone DIL PC1/PC2 1690 (weak to medium) Weak positive loadings along PC1 

Medium positive loadings along 

PC2/PC3 

1608 (strong to medium) High positive loadings along 

PC1/PC2/PC3 

1582 and 1570 for mebroqualone and 1585 and 

1575 for DIL 

N/A 

MXT LID PC1/PC2 1598 (strong)  N/A 

4-MeO-PCP and 

MXT 

LID PC1/PC2 1455 for LID, 1448 for 4-MeO-PCP and 1452 

for MXT (strong)  

N/A 

MXT CAF PC1/PC2 1605 (strong)  High negative loadings along PC1 

Dimethocaine BEN  PC1/PC3 1689 (strong)  Weak positive loadings along PC1  

Dimethocaine BEN and PRO PC1/PC2/PC3 1607 (strong)  High positive loadings along 

PC1/PC2/PC3 

6 4-AcO-DMT  GLUT PC1/PC2 1443 and 1439 (weak)  N/A 

7 N-ethylamphetamine  CAF and NIA  PC1/PC2 1605 (strong) High negative loadings along PC1 

1589 (strong) for N-ethylamphetamine; 1583 

(weak) for NIA 

N/A 
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The NPS 4-MeO-α-PVP (cluster 2.01) overlapped with both BEN and PRO along PC1/PC3, 

possibly due to common Raman bands at ca. 1599, 1608 and 1609 cm-1 (strong) for 4-MeO-α-

PVP, BEN and PRO respectively (Figure 6.6b). As indicated earlier, the full structure of BEN 

is a substructure of PRO. However, the r2 value of the spectra between 4-MeO-α-PVP and both 

BEN and PRO surprisingly showed correlation was greater for BEN (38 %) than for PRO (10 

%) over 1750 – 1300 cm-1, thus showing the limitation of the selected spectral range in this 

model. Relatively high r2 values have previously been shown to indicate overlap on the scores 

plot between substances with strong Raman activity exhibiting Raman bands associated with 

high loadings across the range 1750 – 1300 cm-1. Furthermore, N-Me-2C-B overlapped with 

DIL (r2 = 33 %) along PC1/PC2, possibly due to shared Raman bands at ca. 1612 cm-1 

(medium), 1586 cm-1 (strong) and 1456 cm-1 (weak) for N-Me-2C-B and at ca. 1610 cm-1 

(strong), 1590 cm-1 (weak) and 1453 cm-1 (weak) for DIL (Figure 6.6c). Different relative 

intensities was not associated with high loadings, hence have not contributed to the explained 

variance (Table 6.3).  

From supercluster 3, AB-FUBINACA (cluster 3.01) overlapped with GLUT along PC1/PC2, 

possibly due to common Raman bands at ca. 1445 and 1439 cm-1 (weak) for AB-FUBINACA 

and GLUT respectively (Figure 6.6d). These bands are potentially attributed to CH2 vibrations 

near unsaturated groups. Two equal intensities Raman bands (strong) at ca. 1407 and 1406    

cm-1 were also observed for AB-FUBINACA and GLUT respectively. These bands are 

potentially attributed to CH2 vibrations but also to C-F stretches for AB-FUBINACA (Table 

6.3).  

From supercluster 5, an overlap was observed between mebroqualone (cluster 5.08) and DIL 

along PC1/PC2 (r2 = 35 %). The line plots showed shared Raman bands at ca. 1690 cm-1 (weak 

to medium) potentially attributed to carbonyl stretching (Figure 6.6c). This band was associated 

with weak positive loadings along PC1 and medium positive loadings along PC2/PC3 and, 

hence contributed to explained variance and indicated delineation from other training samples 

along PC1/PC2/PC3. Another common Raman band between the two substances was observed 

at ca. 1608 cm-1 (strong to medium), potentially attributed to quadrant stretches. This band was 

associated with high positive loadings along PC1/PC2/PC3. A doublet observed at ca. 1582 

and 1570 cm-1 for mebroqualone and at ca. 1585 and 1575 cm-1 for DIL, was potentially 

attributed to quadrant stretches. The latter doublets exhibited different relative intensities, 

without any significant contribution to the explained variance (Table 6.3).  
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Additionally, an overlap was observed between both 4-MeO-PCP (cluster 5.13) and MXT 

(cluster 5.01) and LID along PC1/PC2 (r2 = 23 and 50 % respectively), possibly due to Raman 

bands at ca. 1598 cm-1 (strong) for both LID and MXT and at ca. 1455, 1448 and 1452 cm-1 

(strong) for LID, 4-MeO-PCP and MXT respectively (Figure 6.6a). The latter bands were not 

associated with important variables as identified by the loading plots, and, hence have not 

significantly contributed to the explained variance along PC1/PC2/PC3. An overlap between 

MXT and CAF was observed along PC1/PC2 (r2 = 16 %), possibly due to a common Raman 

band at ca. 1605 cm-1 (strong) (Figure 6.6e). This band was associated with high negative 

loadings along PC1 (Table 6.3).  

An overlap was observed between dimethocaine (supercluster 5) and both BEN and PRO along 

PC1/PC3 (r2 = 91 and 65 % respectively) (Figure 6.6b). High r2 values are possibly due to 

common substructures over 1750 – 1300 cm-1 and indicates likely overlap with NPS 

containing-BEN and PRO (two strong Raman scatterers). The line plots for the three 

anaesthetics showed Raman bands at ca. 1689 cm-1 (strong) for both dimethocaine and BEN 

potentially attributed to carbonyl stretching. This band was associated with a weak positive 

loading along PC1. The line plots also showed a Raman band at ca. 1607 cm-1 (strong) for the 

three substances potentially attributed to quadrant stretching. This band was associated with 

high positive loading along PC1/PC2/PC3 (Table 6.3).  

From supercluster 6, an overlap was observed between 4-AcO-DMT (cluster 6.03) and GLUT 

(r2 = 32 %) along PC1/PC2, possibly due to common Raman bands at ca. 1443 and 1439 cm-1 

(weak) for 4-AcO-DMT and GLUT respectively (Figure 6.6d). These bands are potentially 

attributed to CH2 vibrations near unsaturated groups. Finally, from supercluster 7, an overlap 

was observed between N-ethylamphetamine (cluster 7.04) and both CAF and NIA along 

PC1/PC2 (r2 = 20 and 26 % respectively). The line plots (Figure 6.6e) showed Raman bands at 

ca. 1605 cm-1 (strong) for all three substances. These bands are potentially attributed to 

quadrant stretches and were associated with a high negative loading along PC1. Other bands 

that may also be attributed to quadrant stretches were observed at ca. 1589 cm-1 (strong) and 

1583 cm-1 (weak) in N-ethylamphetamine and NIA spectra respectively (Table 6.3).  

In conclusion, based on the interpretation above, an overlap between NPS and non-NPS 

reference spectra was observed on the PCA scores plot. The substances, which overlapped with 

NPS included the anaesthetics (i.e. BEN, LID and PRO), pharmaceuticals (i.e. DIL), stimulants 

(i.e. CAF), food supplements (i.e. NIA) and amino acids (i.e. GLUT). The correlation 
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coefficient r2 values between overlapping spectra was > 20 % over the spectral region 1750 – 

1300 cm-1. The NPS, which overlapped with cutting agents/ adulterants were mainly members 

of superclusters 2, 3, 5, 6 and 7. Overlapping substances shared common strong Raman active 

bands potentially attributed to quadrant and semi-circle stretches as well as CH2 and CH3 

deformation vibrations over the designated spectral range. A greater overlap was observed 

between training NPS and adulterants, which are members of the same chemical class. This 

model may be employed as a tool to suggest further investigation of seized samples containing 

the cutting agents/ adulterants that have been shown to overlap with NPS. 

6.3.3. Prediction of test NPS internet samples using PCA projection (Unscrambler X 

10.4) 

Following the generation of the ‘NPS and non-NPS/benchtop’ PCA model from the training 

samples (i.e. ‘53 representative’ NPS, 14 cutting agent and eight adulterant reference standards 

x 10 measurements (dataset 3)), prediction of the chemical scaffolds of claimed NPS in ‘query’ 

samples was performed by projecting developed PCA models to latent space over the spectral 

range 1750 – 1300 cm-1.  

The combined analysis of 25 NPS internet products (Table 6.2) showed that they contained a 

number of claimed and unclaimed NPSs (2-AI, 5-MeO-DALT, 5,6-MDAI, 6-APB, AB-

FUBINACA, AB-PINACA, etizolam, flubromazepam, MPA, N-Me-2AI and THJ-018). 

Analysis also showed that a few samples were adulterated with CAF (i.e. P21 – P24) and a few 

may contain cutting agents such as MCC (i.e. P7 - 9, 13 and 15). Prior knowledge of NPS 

content in the products through multi-chemical analysis assisted interpretation of results. 

Confirmation of similarity/ overlap/ closeness/ correlation between ‘query’ (i.e. 23 NPS 

internet products) and training substances is evaluated using numerous methods including PCA 

projection plots (Figure 6.7a), correlation coefficients between overlapping spectra over the 

spectral range 1750 - 1300 cm-1 (i.e. r2 values), common substructures between training and 

test samples (Chapter 5 and Appendix D Table A6.1), Raman spectra and line loading plots.  

In this dataset, the aim of the analysis was to evaluate the ability to identify the claimed NPS 

contained in NPS internet products particularly those that are highly adulterated. The PCA 

projection 2D-scores plot for PC1/PC2 was examined (Figure 6.6b). Analysis is presented such 

that NPS internet products are grouped into three categories with increasing complexity: 1) a 

group for pure products, where purity and identification were confirmed using HPLC and GC-
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MS respectively 2) a group, where the NPS content in the sample was not included in the 

training set and 3) a group for complex brands and formulations (i.e. tablets and pellets).  

PCA projection of 23 NPS internet samples (20/9/16 % for PC1/PC2/PC3) onto the PCA ‘NPS 

and non-NPS/benchtop’ model (16/11/9 % for PC1/PC2/PC3) developed from training samples 

showed close projection values for PC1/PC2, slightly lower values for PC3 (Figure 6.7a and 

Table 6.4). This showed that the model has performed well in identifying the ‘query’ 

compounds along PC1/PC2. The residual variance plot showed how well the ‘query’ samples 

are described by the calculated PCs of the original model (Figure 6.7c). The projection line 

(green) plummeted to zero indicating a good description of the projected samples. 

 
Figure 6. 7: a) 3D-PCA projection scores plot; b) 2D-PCA projection scores plot. a and b are 

pre-processed Raman spectra of 23 NPS internet products projected onto a PCA model 

generated from training samples (’53 representative’ NPS and 22 cutting agents/ adulterants 

reference standards). The first and second percentage values represent the percentage explained 

variance by PC1/PC2/PC3 for initial and projected samples respectively; c) PCA projection 

residual variance plot. This plot shows the calibration and validation plots of the training 

samples (blue and red respectively) and the projection plot of the projected ‘query’ samples; d) 

Common substructure between 2-AI and N-Me-2-AI ((2,3-dihydro-1H-inden-2-yl)-l2-azane). 
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PCA projection results showed close calibration and validation values for the first three PCs as 

described in Table 6.4.  

Table 6. 4: PCA projection analysis results 

  PC-0 PC-1 PC-2 PC-3 

Calibration (training) 0.019 0.016 0.014 0.012 

Validation (training) 0.019 0.016 0.014 0.013 

Projection (test) 0.022 0.017 0.015 0.012 

All training and projected samples were included in the Hotelling T2 ellipse at 95 % CL, except 

a few replicate spectra for 5-MeO-MiPT and 4HO-DET reference standards and the NPS 

internet spectra P13 R5, P15 R3 and P21 R6 (ellipse not shown in Figure 6.7b). However, the 

examination of these spectra using the influence plot (plot not shown) demonstrated that they 

are not true outliers except for P13 R5, P15 R3 and P21 R6, which were associated with high 

F-residuals and Hotelling T2 values (see Chapter 4), hence were rejected by the projection 

model because they were not well described by the calibration model. 

The first group of the NPS internet products in this analysis includes the relatively pure NPS 

products P1-5, 10, 18-20 and 25 (see Section 6.3.2.2.). By examining the PCA 2D-scores plot, 

replicate Raman spectra for both P1 and P2, labelled as 2-AI and confirmed to contain 2-AI, 

have been shown to group together in the upper left quadrant with 2-AI and N-Me-2-AI 

reference standards as expected. Both 2-AI and N-Me-2-AI are aminoindanes with (2,3-

dihydro-1H-inden-2-yl)-l2-azane as a common substructure (Figure 6.7d). Replicate Raman 

spectra for P1 and P2 were also in close proximity to P21 and P22, confirmed to contain 2-AI 

(Table 6.2). Similarly, replicate Raman spectra for both P4 and P5 labelled as AB-PINACA 

and confirmed to contain AB-PINACA (Table 6.2), grouped together in the upper right 

quadrant with AB-PINACA reference standards. Both products were easily classified, despite 

being of relatively medium purity as shown through HPLC analysis (ca. 50 %). Pearson’s 

correlation coefficient suggested high spectral similarity between both 2-AI and AB-PINACA 

reference spectra and replicate spectra for P1 - P2 and P4 - P5 respectively over the spectral 

range 1750 – 1300 cm-1, with r2 values > 90 % except for P2 R7 (r2 = 84 %). However, in 

internet mixtures, in contrast to NPS reference standards, r2 values correlate to specific 

measurements (powder areas) and may not be representative if the original batch was not 

homogeneous. 
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Similarly, replicate Raman spectra for P10 labelled as flubromazepam and confirmed to contain 

flubromazepam (Table 6.2) grouped together in the lower left quadrant with flubromazepam 

reference standards and with P11, P13 and P14, known to contain flubromazepam (Table 6.2). 

Again, r2 values between flubromazepam reference spectrum and replicate spectra for P10 was 

> 90 %, suggesting the presence of flubromazepam in this product.  

Examination of the average Raman reference spectra plots (not shown) for 2-AI, AB-PINACA 

and flubromazepam plots against all ten replicate spectra for P1, P2, P4, P5 and P10 

respectively showed that replicate spectra were very similar to each other and to reference 

spectra. However, P2 R5 (green spectrum) exhibited Raman bands at ca. 1644 and 1374 cm-1, 

which were absent from the average reference spectrum for 2-AI (Figure 6.8). This is not 

unexpected as these samples may contain low amounts of unclaimed ingredients. A full 

characterisation analysis was not performed on these products. 

  

Figure 6. 8: Overlaid line plots for 2-AI reference standard and replicate spectra for P2. Raman 

peaks at ca. 1644 and 1374 cm-1 are present in P2 R5 (green) but absent in remaining replicate 

spectra for P2. 

Replicate Raman spectra for both P18 and P19, labelled as MPA and confirmed to contain 

MPA, grouped together in the lower left quadrant with MPA reference standards. However, 

P18 R6 and R10 were close to P17 R1 and R10 respectively. P17 is known to contain 5,6-

MDAI (r2 > 80 %) (Table 6.2). The line plots (Figure 6.9a) for P18 R6 and R10, and P17 R1 

and R10 showed that there were no common Raman bands between P18 and both the product 

and reference standard 5,6-MDAI, except a very weak band at 1316 cm-1, which did not confirm 

the presence of 5,6-MDAI in P18 (r2 = 30 - 40 %). However, this could simply be because the 
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correlation r2 values between average spectra of both reference arylalkylamines 5,6-MDAI and 

MPA is 40 %. Projection plot (Origin Pro 2016) (Figure 6.9b) confirmed the grouping between 

the MPA reference spectrum and both P18 R6 and R10 and confirmed the delineation of both 

P17 spectra (i.e. R1 and R10) along PC1/PC2/ PC3. 

 
Figure 6. 9: a) Stacked line plots for average Raman reference spectra for the arylalkylamines 

5,6-MDAI, 5-EAPB HCl and MPA, and NPS internet spectra P17 R1 and R10, and P18 R6 

and R10; b) 3D-PCA projection scores plot showing the latter reference spectra and samples 

projected onto the three planes PC1/PC2/PC3 (Origin Pro 2016). 

For P19, r2 values between the product’s spectra and MPA reference spectrum were greater 

than 99 %, except for P19 R3 - R5, where, r2 values were 88, 71 and 83 % respectively. All 

three replicate spectra showed high spectral correlation coefficient (i.e. > 67 %) with the 

tryptamines 5-MeO-DALT and 5-MeO-MiPT.  GC-MS analysis of P19 confirmed that this 

product was adulterated with 6-APB, CAF and 5-MeO-DALT. 6-APB was not included in the 

training set and, therefore no spectra for 6-APB were included in the initial PCA model. Unlike 

all replicate spectra for P19, which overlapped with MPA reference spectra, R3 - R5 were in 

close proximity to the tryptamines 4-HO-DET, 5-MeO-DALT, DPT and 5-MeO-MiPT. They 

were closer to the latter two NPS (Figure 6.10a). The line plots (Figure 6.10b) confirmed that 

P19 R3 - R5 share common peaks with 5-MeO-DALT at 1652, 1551 cm-1 and a doublet at ca. 

1357 and 1367 cm-1, which is clearly observed in P19 R4 but is exhibited as a broad band in 

both P19 R3 and R5. Figure 6.10a shows that P19 R4 is closer to 5-MeO-MiPT and DPT rather 

than 5-MeO-DALT, which was confirmed using the projection plot (Figure 6.10c), and so their 

relative proximities are understandable. Figure 6.10 showed that the Raman band at ca. 1550 
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cm-1 is exhibited by all the tryptamines, with slight shifts between them, which, in turn 

explained why P19 R3 - R5 were non selectively in close proximity with the tryptamines. The 

line plots showed that all replicate spectra shared a common strong Raman band with MPA at 

ca. 1445 cm-1, hence suggesting the presence of MPA as expected. It was noted that the spectral 

range 1750 – 1300 cm-1 used in this analysis do not confirm the presence of 6-APB or CAF. 

 

Figure 6. 10: a) The 2D-PCA projection of 23 internet products onto the PCA model generated 

from the training samples (53 NPS reference standards and 22 cutting agents/ adulterants) 

(Unscrambler® X10.4). P19 R3, R4 and R5 and the reference tryptamines 4-HO-DET, 5-MeO-

DALT, 5-MeO-MiPT and DPT are highlighted with an ellipse; b) Line plots for replicate 

spectra of P19; c) 3D-PCA projection plot of average reference spectra of tryptamines (i.e. 4-

HO-DET, 5-MeO-DALT, 5-MeO-MiPT and DPT) and MPA, and P19 R3 – R5 (Origin Pro 

2016). 

Replicate Raman spectra for P20, labelled and confirmed as containing N-Me-2-AI , were 

scattered in the left quadrants of PCA projection scores plot, close to 2-AI reference standard 

and both P1 and 2 (confirmed to contain 2-AI) (Figure 6.7b). However, P20 R3 and R4 were 

the only spectra, which were in close proximity to N-Me-2-AI reference standard. Remaining 

replicate spectra were closer to 2-AI reference standard, 3-MeO-PCE, ketamine, LID and STP. 

Replicate spectra for P20 and N-Me-2-AI average reference spectrum (Figure 6.11a) have been 

shown to share two doublets: 1) at ca. 1613 and 1591 cm-1 and 2) 1456 and 1438 cm-1 (r2 > 87 
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%). Common bands at ca. 1613, 1456 and 1438 cm-1 were also observed in P20 and 2-AI 

average spectrum (r2 > 63 %). Despite the fact that no common bands were observed with 3-

MeO-PCE, ketamine, LID and STP, the projection plot displayed closeness between them, with 

the exception of few LID spectra (Figure 6.11b). 

 

Figure 6. 11: a) Line plots for average reference spectra of 2-AI, 3-MeO-PCE, ketamine, N-

Me-2-AI, STP and LID, and replicate spectra of the product P20; b) 3D-PCA projection plot 

of the latter average reference spectra and samples (Origin Pro 2016). 

Finally, replicate Raman spectra for P25, labelled and confirmed to contain THJ-018 using GC-

MS, HPLC and Raman spectroscopy, grouped together in the upper right quadrant with THJ-

018, as expected, and zopiclone reference standards. Clustering of zopiclone with synthetic 

cannabinoids was previously addressed in Chapter 5 Section 5.3.3.1. 

In contrast to the previous samples, which readily grouped with the NPS reference standard 

that correspond to the main NPS identified in the mixture (Table 6.2), the product P3, labelled 

and confirmed to contain AB-FUBINACA using GC-MS and HPLC, yielded inconsistent 

correlations inter alia to other synthetic cannabinoid analogues such as 5F-APINACA and AB-

PINACA using handheld Raman spectroscopy. Replicate Raman spectra for AB-FUBINACA 

were scattered between the upper and lower right quadrants of the 2D-PCA projection scores 

plot, located between both AB-PINACA and N-PB-22 on one side and AB-FUBINACA on the 

other side. They were closer to the former than the latter. They were very close to both P4 and 

P5, which were both known to contain AB-PINACA. The line plots showed that all ten 
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replicates shared common bands with AB-FUBINACA reference standard i.e. at ca. 1670, 

1646, 1580, 1498, 1481, 1410, 1361 and 1320 cm-1 (r2 > 64 %) (Figures 6.12a and 6.12b). AB-

PINACA also exhibited these bands except the band at ca. 1670 cm-1 (r2 > 60 %), whereas N-

PB-22 exhibited bands at ca. 1580 and 1481 cm-1 only (r2 > 33 %). The overlaid spectra of the 

AB-PINACA and AB-FUBINACA reference standards and the replicate spectra for P4 and P5 

(Figure 6.12) showed that this could be because of a band at ca. 1666 cm-1 that is present in the 

spectrum for AB-FUBINACA but absent in the products’ spectra. In addition, this could also 

be due to two shifted bands at ca. 1643 and 1476 cm-1. Surprisingly, the Raman spectra clearly 

showed a greater similarity between the products’ spectra and AP-PINACA, as opposed to AB-

FUBINACA. This result, which appears to contradict the confirmatory analysis, could simply 

be because of sample heterogeneity. This example illustrated the complexity of NPS products. 

 

Figure 6. 12: Line plots for average reference spectra of AB-PINACA (red), AB-FUBINACA 

(light green) and replicate spectra for a) P4; b) P5. 

The analysis of the second group of NPS internet products addressed the ability of the PCA 

model to identify ‘unknown’ samples, for which there is no reference substance in the training 

set. In this respect, replicate Raman spectra for both P16 and 17 were analysed. The latter 

products were labelled and confirmed to contain 5,6-MDAI using both GC-MS and HPLC. 

However, using handheld Raman spectroscopy, 5-IAI (an aminoindane class analogue) was 

identified as the main component in both products. Both 5,6-MDAI and 5-IAI were not 

included in the PCA model training set and, therefore no spectra for either standards were 

included in the initial PCA model. The NPS with greatest structural similarity to 5,6-MDAI is 

the medoid methylone (Chapter 5, supercluster 11). However, P16 and 17 did not group with 

methylone, as may be expected, possibly because of unknown impurities in these products and 

possibly due to poor S/N in the 5,6-MDAI reference spectra.  
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Both P16 and 17 grouped together near the centre of the scores plot, in close proximity to SDB-

006, C8 CP 47-497 and 5-EAPB. In the initial PCA projection, where, 21 test pure NPS were 

projected onto a PCA model of 53 pure NPS (Chapter 5 Section 5.3.3.2.), 5,6-MDAI was also 

projected in close proximity to both 5-EAPB and C8-CP, 47-497. The line plots (Figure 6.13a) 

showed that replicate spectra for P16 and P17 were very similar, all exhibiting Raman bands 

at ca. 1624 and 1358 cm-1 (r2 > 78 %), consistent with 5,6-MDAI, a doublet at ca. 1333 and 

1316 cm-1 consistent with C8 CP 47-497 (r2 > 8 %) and a band at 1620 cm-1 consistent with 5-

EAPB (r2 > -0.8 %). These findings were confirmed using the projection plot, where these 

samples grouped together along PC1/PC2/PC3 except SDB-006 (dark blue) (Figure 6.13b). As 

described earlier, these results show that r2 values do not necessarily reflect grouping or 

delineation on the scores plot because not all of the variance is explained or accounted for in 

the projections, whereas it is in the calculation of r2 values. 

 

Figure 6. 13: a) Line plots for average reference spectra of 5-EAPB, 5,6-MDAI, C8 CP 47-

497and SDB-006, and replicate spectra of P16; b) 3D-PCA projection plot of average reference 

spectra of 5-EAPB, 5,6-MDAI, C8 CP 47-497and SDB-006, and replicate spectra of both P16 

and P17 (Origin Pro 2016).  

The analysis of the third group of the NPS internet products evaluates the ability of the model 

to identify complex mixtures e.g. branded products, formulations and products, which 

exhibited very low purity with HPLC analysis. In this respect, P6-9, 11-15, 21-23 are discussed. 

Products 6 – 9 are etizolam tablets the replicates of which have mostly scattered in the upper 

left quadrant. Raw spectra exhibited very poor S/N and intense fluorescent background in all 
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replicate spectra, which, in turn resulted in pre-processed spectra with poorly pronounced 

Raman bands as described by Harkai and Putz [161] and relatively poor average r2 values 

between replicate spectra. For P6, r2 was > 95 %, except for R2, where r2 was > 25 %.  However, 

for P7 - P9, average r2 was > 71, 80 and 33 % respectively. Poor quality of spectra, even after 

pre-processing may hamper identification of these substances. This was observed with P7, 

which was in close proximity to CRE, MAN, TAL, TAU, L-TYR, NM-2201 and UR-144; P8 

was in close proximity to SUC, JWH-015 and JWH-073 and P9 was in close proximity to TAU, 

JWH-015, JWH-122, SDB-006 and P21R7. These substances may not be false positives as a 

full characterisation of internet NPS products was not performed. 

Despite the fact that P6 - P9 were confirmed to contain etizolam using both GC-MS and HPLC, 

using PCA projection, a high correlation coefficient was only observed between the etizolam 

average reference spectrum and replicates P6 R1, R3 - R10 (r2 > 87 %) and P9 R1, R2 and R4 

(r2 > 23 %) (Figure 6.14a). P7 shared common Raman bands with NM-2201 ca. 1383 and 1340 

cm-1 with most replicates, explaining why grouping between P7 and NM-2201 occurred. 

Despite the fact that MCC was identified as the top hit in P7 – P9 using handheld Raman 

spectroscopy, a high correlation coefficient between spectra of P8 and MCC (r2 > 68 - 96 %) 

was only observed (Figure 6.14b). P8 also grouped in close proximity to JWH-015 and JWH-

073 possibly because they exhibited common bands at ca. 1383 and 1340 cm-1 across all ten 

replicates. It is not unexpected that etizolam was not identified in P7 – P9: firstly, because its 

purity with HPLC was < 1 %. Secondly, because of the presence of unknown fillers and 

impurities in the tablets, which contributed to the poor signal obtained with a 785 nm λex. 

Thirdly because of the limitation of the pre-processing method used such as the limited spectral 

range. Fourthly because of the quality of the library spectra, where the purity of NPS reference 

standards was > 98 % with a 2 % of unidentified impurities; and finally due to the intrinsic 

nature of cutting agents in hindering the identification of low amounts NPS. 
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Figure 6. 14: Pre-processed average Raman spectra for: a) 3-MeO-PCE, 4-MeO-PCP, MXT, 

etizolam, 2-AI, CAF, LID, THEO, MCC and P6; b) JWH-015, JWH-073, SUC, etizolam, MCC 

and replicate spectra of P8. 

Products 11-15 were all coloured pellets containing flubromazepam, where the colour was 

incorporated within the pellets’ content rather than merely being used as a coating. These 

products were revealed to be impure via HPLC analysis with average percentage purity ranging 

from 2.4 ± 0.1 to 7.8 ± 0.2. The line plots of P11 replicate spectra (Figure 6.15a) showed that 

R1 – R4 and R9 – R10 exhibited Raman bands similar to the flubromazepam reference 

spectrum (r2 > 95 %). Replicate spectrum P11 R8 showed partial similarity to the 

flubromazepam reference spectrum (r2 > 69 %) but replicate spectra P11 R5 – R7 were very 

different with r2 values < 43 %. By examining the 2D and 3D-PCA projection scores plots, P11 

R1 – R4 grouped in the lower left quadrant in close proximity to flubromazepam reference 

standard, whereas P11 R8, R9 and R10 grouped next to P13 and P14, other flubromazepam 

products of the same colour (intense green) purchased from different websites, possibly 

indicating a similar supply chain (Figures 6.7b and 6.15b).  

Replicate spectra for P13 exhibited intense fluorescent backgrounds, very poor S/N and a wide 

range of correlation coefficients between replicate spectra (27 - 99 %). P13 R1 – R4, R6 and 

R8 – R10 shared common Raman bands with the flubromazepam reference spectrum (r2 = 47 

– 93 %). However, only P13 R1 grouped alongside the flubromazepam reference spectrum in 

the PCA model, P13 R2 – R4, R6, R9 and R10, were scattered and delineated from other NPS. 

This was expected because of poor S/N in these spectra. P13 R8 grouped near P11 and P14 

was confirmed to contain flubromazepam. Poor correlation coefficient were observed between 

P13 R2 – R4, R6, R9 and R10 Raman spectra (not shown) and the flubromazepam standard. 

This was shown via r2 values and the nearest substances on the projection plot were 5-EAPB, 

DIL and MPA. P13 R5 was in close proximity to 4-HO-DET (r2 = 48 %). This is potentially a 
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misclassification as both spectra exhibited high fluorescent backgrounds in raw spectra and 

very poor S/N in pre-processed spectra. Subtraction of fluorescent backgrounds is usually a 

common approach to overcome this problem despite the fact that it does not remove the shot 

noise from the spectra [101].  Subtraction of fluorescent backgrounds has also been shown to 

increase the risk of subtracting weak Raman peaks, which may be useful in identifying an 

‘unknown’ substance [243]. In addition, the diversity of excipients and impurities in NPS may 

impact the performance of the chemometric model for the identification of the ‘analyte’ of 

interest in the mixture. This was previously described by Mainali & Seelenbinder for the 

identification of illicit drugs using vibrational spectroscopy and a universal chemometric model 

in the presence of multiple adulterants [118].  
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Figure 6. 15: a) Pre-processed average Raman spectra for CRE, MAN, TAL, TAU, AM-2201, 5F-APINACA, flubromazepam and replicate 

spectra of P11; b) 3D-PCA projection scores plot for CRE, MAN, TAL, TAU, AM-2201, 5F-APINACA, flubromazepam and replicate spectra of 

P11; c) Pre-processed Raman spectra for 5-EAPB, MPA, 4HO-DET, DIL, etizolam, flubromazepam and replicate spectra of P13; 3D-PCA 

projection scores plot for: d) 5-EAPB, MPA, 4HO-DET, DIL, etizolam, flubromazepam; and e) 25H-NBOMe, DL-4662,  flubromazepam, replicate 

spectra of both P14 and P21. 
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Examination of the Raman spectra for P13 and potential overlapping NPS standards (Figure 

6.15c) and 3D-projection scores plot (Figure 6.15d) showed that poor Raman signal and 

fluorescent backgrounds hindered the identification of NPS content in coloured pellets. In 

similar cases, spectra should be examined first prior to suggesting chemical scaffolds of content 

using PCA projection plots. 

Replicate spectra of P14 exhibited raised baselines with visible sharp peaks. Pearsons’ 

correlation coefficients between replicate spectra varied from 47 to 97 %. The line plots of P14 

replicate spectra R1 - R10 (plots not shown) showed that R1, R2, R4, R5, R7 and R9 exhibited 

Raman bands similar to the flubromazepam reference spectrum (r2 = 85 – 99 %).  By examining 

the 2D and 3D-PCA projection scores plot, P14 R1, R2, R4, R5, R7 and R9 grouped in the 

lower left quadrant in proximity to the flubromazepam reference standard (Figures 6.7b and 

6.15e). However, most replicate spectra grouped with other NPS and were evaluated 

individually. 

Both P14 R5 and R9 were closer to DL-4662 and 25H-NBOMe respectively than the 

fubromazepam standard. By examining the line plots, no common Raman bands were 

observed, despite that r2 between 25H-NBOMe and P14 R1 – R10 being between 43 - 54 %, 

demonstrating the negative impact of raised baselines. Furthermore, both P14 R6 and R10 

grouped with P11, another flubromazepam product. The latter spectra possibly have similar 

adulteration to P11 (unknown Raman bands not clearly identifiable from line plots – not 

shown). Pearsons’ correlation coefficients between both P14 R6 and R10 and flubromazepam 

reference spectrum is 60 and 70 % respectively. The same applies to P14 R3 grouping close to 

P11 and P13. Both were confirmed to contain flubromazepam (r2 = 92 %). P14 R8 clustered 

near P21 R3 (confirmed to contain CAF) and the CAF reference standard. Pearsons’ correlation 

coefficients between both P14 R8 and flubromazepam and CAF reference spectra was 87 and 

38 % respectively. No shared Raman bands were observed to confirm if this sample contained 

CAF. The projection plot (Figure 6.15e) showing the different positions of P14 replicate spectra 

on the PCA projection plot with respect to flubromazepam as well as the proximities of a few 

P14 replicate spectra with other NPS such as 25H-NBOMe, DL-4662 and the product P21 

demonstrated the complexity of these samples and the limitation of PCA projection to fully 

identify and classify NPS street-like samples. 
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Replicate spectra of P15 (pink pellets) exhibited high fluorescent backgrounds with very poor 

S/N in all replicate spectra except for R2, R7 and R9, where defined Raman features were 

observed. There was no Raman bands observed in P15 R1, R3 and R6. This is an example of 

a product, where a few replicate spectra displayed Raman signals whilst others did not due to 

intense fluorescence possibly resulting from impurities. Therefore the latter spectra were not 

discarded because sharp Raman peaks were observed on top of the fluorescent background. 

Pearsons’ correlation coefficients between pre-processed replicate spectra reflected this 

difference with a wide correlation range from -18 to 98 %. The Raman spectra and 3D-PCA 

projection scores plot of P15 replicate spectra R1 - R10 (Figure 6.16a) showed that only R5 

displayed defined Raman bands similar to the flubromazepam reference spectrum (r2 = 59 %). 

By examining the 2D-PCA projection scores plot, R5 grouped in close proximity to P14 

(confirmed to contain flubromezepam) and flubromazepam reference standard (Figure 6.6b). 

P15 R2, R7 and R9 grouped in the lower right quadrant in proximity to the tryptamines and in 

particular to the DPT reference standard. By comparing the line plots of P15 R2, R7 and R9 

and the DTP reference spectrum (Figure 6.16a) (r2 = 48 - 53 %), it was observed that they 

shared common peaks at ca. 1623, 1452, 1365 and 1341 cm-1, explaining their relative 

proximities on the scores plot. Remaining spectra were close to other NPS reference standards 

such as UR-144. The 3D-projection scores plot showed that only one spectrum was in close 

proximity to UR-144 (Figure 16b). This is most likely a false positive due to the very poor S/N 

in these spectra. 

 

Figure 6. 16: a) Line plots for average reference spectra of 4-HO-DET, 4-AcO-DMT, 5-MeO-

DALT, DPT, UR-144, flubromazepam and replicate spectra of P15; b) 3D-PCA projection plot 
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of HO-DET, 4-AcO-DMT, 5-MeO-DALT, DPT, UR-144, flubromazepam and replicate 

spectra of P15. 

Replicate spectra of P21 (brown powders) exhibited high fluorescent background with very 

poor S/N between replicate spectra (r2 = 6 to 96 %). P21 R1 - R3 and R5 were the only replicate 

spectra which showed distinct peaks. Overlap between replicate spectra of P21 with NPS 

reference standards and products (i.e. 2-AI, CAF, 5-MeO-DALT, MXT, LID and P6) was 

carefully analysed due to the poor quality of pre-processed spectra (Figure 6.17a).  

The r2 values between the 2-AI average reference spectrum and all replicates was greatest for 

both R1 and R2 (r2 > 95 %), confirming their proximities on the PCA projection plot. In 

contrast, R2 – R6, R9 and R10 overlapped with CAF reference spectra with a wide range of r2 

values (i.e. 20 to 91 %), which suggested that because CAF is a relatively strong Raman 

scatterer, smaller values of r2 may be indicative of its presence in the sample. It may also 

indicate that CAF may hinder low amounts of NPS in internet samples. CAF was confirmed in 

this product using GC-MS. Despite the fact that no common Raman bands were observed 

between P21 and 5-MeO-DALT, MXT, LID or etizolam average reference spectra, they clearly 

overlapped on the PCA project plot. 

In contrast, spectra with relatively better quality were collected for P22. Distinct Raman bands 

were defined in all replicate spectra and were consistent with 2-AI (r2 = 72 - 98 %), N-Me-2-

AI (r2 = 33 - 62 %) and CAF (r2 = -1 - 43 %) average reference spectra (Figure 6.17b). By 

inspecting the 2D-PCA projection scores plot (Figure 6.7b), replicate spectra were in close 

proximity to 2-AI, N-Me-2-AI, CAF and N-ethylamphetamine reference spectra. However, the 

line plots showed that there was no common bands between N- ethylamphetamine and these 

substances over the range 1750 - 1300 cm-1 (Figure 6.17b). Similarly for P23, replicate spectra 

displayed defined Raman peaks, which were consistent with CAF (r2 = 95 - 99 % for P23 R2 

to R10) and 2-AI (r2 = 64 % for P23 R1 only) (Figure 6.17c). Again, no common Raman bands 

were observed between P23 and ketamine, etizolam, PAR and THEO average reference spectra 

and, hence overlap with these spectra was not explained. 
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Figure 6. 17: Line plots for average reference spectra of: a) 2-AI, 5-MeO-DALT, CAF, 

etizolam, LID and MXT and replicate spectra of P21; b) 2-AI, N-Me-2-AI, N-

ethylamphetamine, CAF and replicate spectra of P22; c) 2-AI, CAF, etizolam, ketamine, PAR, 

THEO and replicate spectra of P23. 

6.4. Conclusions 

In this Chapter, the feasibility of suggesting the chemical scaffolds of NPS in NPS internet 

products was evaluated using the ‘NPS and non-NPS model/benchtop’ model, which consisted 

of the ‘NPS representative’ database and common excipients. Using this model, ‘query’ 

samples were well described by the calculated PCs of the calibration model and indicated a 

good description of the projected ‘query’ sample. Results demonstrated the great potential of 

the chemometric model and the ‘NPS representative’ database in classifying complex mixtures 

of NPS. 

Results showed that identification of NPS in these products was influenced by the purity of the 

products and the quality of the spectra. Relatively pure products, grouped well with relevant 

NPS reference spectra, as expected. NPS products, where the claimed NPS content was not 
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included in the training set overlapped with class analogues. In complex branded and 

formulated products, PCA projection was limited in confirming the content of the mixtures, 

possibly due to high F-residuals and Hotelling T2 values, poor S/N in pre-processed spectra, 

fluorescing impurities and number of constituents in the mixtures.  

In addition, the overview of the new datasets (Sections 6.3.2.1. to 6.3.2.3.) gave an insight into 

the potential impact of the signals resulting from impurities and common excipients on the 

performance of the model. The first PCA model generated from the excipients’ dataset showed 

that the variance was mainly explained by adulterants with strong Raman scattering activity. It 

also showed that adulterants and cutting agents were grouped according to their assigned 

chemical classes.  

The second PCA model generated from NPS internet products explained a greater calibrated 

cumulative variance (i.e. 70 % for PC1/PC2/PC3) as compared to the pure substances, in 

Chapter 5, reflecting the complexity of the samples and the variance between replicate spectra 

of individual samples. This PCA also reflected the purity of the internet samples, such that 

replicate spectra of samples with greater purity grouped together, whereas replicate spectra of 

samples with lower purity (branded products and pellet formulations) were scattered on the 

PCA scores plot.  

The PCA analysis of the third dataset for 53 NPS reference standards and 22 cutting agents/ 

adulterants) illustrated the potential overlap between NPS and non-NPS substances, which 

included the anaesthetics (i.e. BEN, LID and PRO), pharmaceuticals (i.e. DIL), stimulants (i.e. 

CAF), food supplements (i.e. NIA) and amino acids (i.e. GLUT) and NPS members of 

superclusters 2, 3, 5, 6 and 7. This overlap may be employed as a tool to suggest further 

investigation of samples containing these cutting agents/ adulterants. A greater overlap 

occurred between training NPS and adulterants, which were members of the same chemical 

class, such as anaesthetics.  

Future work should focus on testing a wider variety of ‘query’ NPS to evaluate the suggested 

overlap between NPS representing all previously described superclusters and non-NPS 

substances. Future work should also focus on refining the pre-processing methods and evaluate 

the proof-of-concept method using handheld Raman spectroscopy. 
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7. Classification of NPS internet samples using handheld 

Raman spectroscopy, a 1064 nm laser source and 

chemometric approaches – a proof-of-concept 

7.1. Introduction 

This Chapter contains the first report to evaluate the use of a handheld Raman instrument, 

equipped with a laser excitation wavelength (λex) of 1064 nm and a spectral database of ‘53 

representative’ new psychoactive substances (NPS) reference standards and 22 cutting agents/ 

adulterants for the identification of 21 NPS reference standards and 25 NPS products purchased 

from the internet (see Chapters 5 and 6 and Zloh et al. [204]). Chapters 5 and 6 have 

demonstrated the feasibility of using principal component analysis (PCA) in conjunction with 

Raman spectral data for the identification of NPS. However, these proof-of concept studies 

were initially undertaken with a benchtop Raman instrument, providing a great performance 

owing to its high resolution and signal to noise, excellent optics and confocal microscope. In 

order to investigate the in-field applications of the developed models, the use of handheld 

Raman spectroscopy was evaluated. Chapters 2 and 3 demonstrated that using handheld Raman 

spectroscopy equipped with a longer λex (i.e. 1064 instead of 785 nm) and a mixtures algorithm 

improved the identification of NPS in NPS ‘street-like’ mixtures and reduced false positive and 

false negative rates. Therefore, in this Chapter, the chemometric models developed in Chapters 

5 and 6 were applied using a handheld Raman ‘ProgenyTM’ instrument to evaluate the 

feasibility of classifying NPS in NPS internet mixtures by suggesting their chemical scaffolds 

and/ or correlating them with their near neighbours. 

With handheld Raman spectroscopy, in-field identification of NPS is often dependent on the 

accuracy and effectiveness of the in-built algorithms and/ or availability of reference spectra in 

in-built libraries, where the latter is dependent on the availability of appropriate reference 

standards. However, this is usually problematic because updated libraries and synthesis of 

reference standards often lag behind the continuous emergence of NPS. In addition, the 

heterogeneity of NPS products [12, 78, 140], the diversity of the incorporated excipients and 

impurities and the presence of fluorescing impurities hinder the identification of NPS when 

using a standard 785 nm laser λex (see Chapters 2 - 6) [12, 161]. Therefore, this work is novel 

and significant because it investigates the feasibility of improving the identification of 

‘unknown’ NPS, in their pure form or in ‘street-like’ mixtures, by combining the use of a longer 
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λex (i.e. 1064 nm) and chemometrics with Raman spectral libraries containing the 

‘representative’ NPS Raman database, common cutting agents/ adulterants (Chapter 6).  

In this study, the application of the proof-of-concept studies (Chapters 5 and 6) lies in the 

accurate classification, or otherwise, of an independent test set (i.e. NPS reference standards 

and internet samples) using handheld Raman spectroscopy equipped with a 1064 nm laser λex 

against known NPS reference spectra including the spectra of the ‘53 representative’ NPS 

previously discussed in Chapter 5. To achieve this, a PCA model is generated from pre-

processed Raman spectra (Unscrambler® X 10.4). The training set used in generating the PCA 

model contained the ‘representative’, structurally and chemically diverse NPS Raman 

database, as well as cutting agents/ adulterants commonly incorporated in seized NPS samples 

(Chapter 6).  

The two-fold aim of this study is to evaluate the classification of ‘query’ NPS firstly by 

projecting the Raman spectra of both NPS reference standards and internet products onto the 

PCA model generated from Raman reference spectra of NPS alone and secondly by projecting 

onto a PCA model derived from the Raman spectra of NPS and cutting agents/ adulterants. 

Hence this study evaluates the effect of using a longer λex (i.e. 1064 nm) on a handheld platform 

in conjunction with Raman spectral data pre-processing using the Unscrambler® software on 

the classification and/ or assignment to the previously described EMCDDA/EDND classes or 

superclusters/ clusters (Chapter 5) of known pure substances and NPS contained in mixtures 

of unknown composition using PCA projection. 

7.2. Materials and Methods 

7.2.1. Reagents and chemicals 
 

Seventy-four NPS reference standards were commercially obtained from both Chiron AS 

(Trondhein, Norway) and LGC Group (Teddington, UK) (see Chapter 5). In this work, the 74 

NPS were split into two groups: 53 acting as a training set and 21 as a test set. The 21 test set 

molecules were subdivided into two groups: 17 from the original dataset of 478 NPS provided 

by the EMCDDA/EDND [204, 273] that were not used to train the model subsequently referred 

to as ‘test’ or ‘query’ molecules, and four, that were not present in the dataset of 478 NPS from 

the EMCDDA/EDND referred to as ‘out-of-model (OOM)’ samples (see Chapter 5 Table 5.1). 

The Raman spectra of the eight adulterants and fourteen cutting agents previously purchased 

(see Chapter 6 Section 6.2.1 and Chapter 2 Table 2.1 for full details) were used in this Chapter 
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as additional training samples in the generation of the PCA model. Twenty-five NPS products 

were purchased from the internet (Table 6.1) to evaluate the ability of the PCA model, 

generated using a handheld platform with a 1064 nm laser λex, to project the Raman spectra of 

these products and correctly classify the NPS contained therein. 

7.2.2. Raman analysis 

7.2.2.1. Sample preparation 

For building the library, due to limitation in the amount of sample procured, ca. 3 - 5 mg of 

each NPS reference standard were weighed, in a powder form, tapped and flattened on 

aluminium plates (HSA14521A - Weight dish alum 43 mm, Fisherbrand), covered with glass 

microscope cover slips (22 x 22 x 0.13/ 0.17 mm) and sellotaped for handheld Raman analysis 

(Figure 7.1).  

 

Figure 7. 1: Sample preparation prior to handheld Raman analysis (ProgenyTM, Rigaku, USA). 

a) Sample placed between aluminium plate and cover slip; b) Attaching aluminium plate to 

cover slip with removable sellotape; c) Final format for sample presentation to the handheld 

instrument for Raman analysis. 

As described in Chapter 5, two NPS ‘test’ samples (i.e. JWH-018 and MN-18) were obtained 

as oils. Oil samples (ca. 10 mg) were recovered onto aluminium plates by flushing out the 

containers with approximately 1 mL of acetone to obtain a solution for analysis. These samples 

were not suitable for handheld analysis due to insufficient amounts/ concentrations of sample 

presented to the handheld Raman instrument and, therefore were not included in the subsequent 

PCA.  

Powders of cutting agent and adulterant reference standards were placed into clear glass vials 

(Kimble Chase vial screw thread with PTFE cap, China) for Raman analysis. These spectral 

data were also added to the training sample set. NPS internet products were obtained in the 

form of either powders, capsules or tablets. Powders and capsules were emptied into glass vials 

in the same manner as for cutting agents and adulterants prior to Raman analysis. Tablets were 

crushed using an agate mortar and pestle before the resultant powders were transferred into 
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glass vials as above. Vials were vortex-mixed (30 sec.) and shaken before collection of each 

replicate spectrum using a VORTEX-GENIE2 (Scientific industries, Inc., USA).  

7.2.2.2. Analysis of NPS reference standards and internet products using handheld 

Raman Spectroscopy  

A handheld ProgenyTM Raman instrument (Rigaku, USA) with laser λex of 1064 nm, was used 

to obtain Raman spectra of the internet products. These spectra were used alongside PCA in an 

attempt to identify the NPS present in the products via projection onto the ‘pure NPS’ and ‘pure 

NPS plus cutting agents/ adulterants’ PCA models. Instrument specifications are shown in 

Chapter 2 Table 2.3. Four methods were used to collect Raman spectra based on the nature of 

the substance being investigated: Method A (2000 ms exposure time; 490 mW laser power; 10 

averages), Method B (2000 ms exposure time; 200 mW laser power; 10 averages), Method C 

(2000 ms exposure time; 100 mW laser power; 10 averages); Method D (2000 - 5 ms exposure 

time; 50 mW - 1 mW laser power; 10 averages). All NPS reference standards were analysed 

using method A. 

Initially, Method A was used as a default to obtain spectra for all of the internet samples. 

However, for samples that were burned using Method A or thought to be prone to burning from 

high laser power (i.e. coloured samples), Methods B and C were used. Method D was 

developed by iteratively reducing laser power and exposure time in order to collect Raman 

signals from challenging samples that caused saturation of the detector and/or burned with 

Method C. Irrespective of the method used, the instrument was calibrated each day immediately 

before analysis using a benzonitrile reference standard (Rigaku, USA). All samples were 

analysed directly through glass vials after optimisation of the vial holder attachment with 

respect to the focal point.  

Ten replicate spectra were measured for the training (NPS and cutting agents/ adulterants 

reference standards), test and ‘OOM’ NPS reference samples. Five replicate spectra were 

measured for the NPS test internet samples. No spectral data was collected for NPS internet 

samples P6, 12 and 21 – 24 due to saturation of the detector and sample burning/ degradation. 

Using alternative Methods B – D did not generate any useful Raman data due to poor S/N and, 

therefore samples P6, 12 and 21 – 24 were not included into the subsequent PCA. 
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7.2.2.3. Raman spectral pre-processing 

In Chapters 4 and 5, pre-processing methods were developed based on high resolution spectral 

data generated using a benchtop Raman instrument with a 785 nm laser λex. In this Chapter 

Raman spectra obtained with a 1064 nm laser λex were as comparatively poor resolution. This 

is due, in part, to the use of a less sensitive InGaAs detector and space restriction, where a 

holographic volume phase grating (VPG) replaced the moving grating of the benchtop 

instrument, leading to a shorter spectral range of 2355 cm-1 (3100 cm-1 for the benchtop) and 

reduced number of data points of 512 (3777 for the benchtop). In addition, the Renishaw laser 

spot size was 1.2 µm, whereas for the ProgenyTM, it was 20 µm. This difference shows that the 

Renishaw provided a very high spatial resolution even with a x20 objective lense and possibly 

no more than a single particle was detected at any time, whereas, using the ProgenyTM, Raman 

scattering was collected from a greater powder surface area. In light of these differences, 

suggested pre-processing method were modified (see method development in Section 7.3.1 of 

this Chapter). In this Chapter, pre-processing methods include spectral truncation of data points 

over 1700 - 2500 cm-1, followed by baseline offset and maximum normalisation (previously 

evaluated in Chapter 4) (Unscrambler® X 10.4).  

7.2.2.4. Principal Components Analysis (Unscrambler® X 10.4) 

The PCA parameters employed in developing the initial PCA model in Chapter 5 are applied 

to datasets analysed in this Chapter (See Chapter 5 Section 5.2.5 for full method details).  

7.2.3. Prediction via PCA projection 

Prediction of the chemical scaffolds of ‘query’ samples was performed by projecting developed 

PCA models to latent space over the spectral range 1700 – 145 cm-1. PCA Projection was 

generated using the Unscrambler® X 10.4 software (CAMO PROCESS AS, Oslo, Norway) 

for three PCs. A schematic outline of the Raman/ chemometrics experimental protocol is 

described in Figure 7.2. 

http://www.camo.com/products/download-trial.html
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1‘Query’ samples constitute the overall number of samples investigated. ‘Test’ samples are part of the ‘query’ 

samples but they constitute the actual number of samples taken into analysis and projected against the PCA 

models. The difference constitutes the samples, which did not yield analysable Raman spectra. 

Figure 7. 2: Raman and chemometrics experimental protocol:  a) three test sets including 

Raman spectra for 15 NPS ‘test’ reference standards, 4 ‘OOM’ reference standards and 19 NPS 

internet samples projected onto PCA1 derived from ‘53 representative’ NPS reference 

standards; b) one test set including Raman spectra for 19 NPS internet samples projected onto 

PCA2 derived from ‘53 representative’ NPS plus 22 cutting agent/ adulterant reference 

standards1. 

7.3. Results and Discussion 

7.3.1. Handheld Raman method development 

As discussed in Chapters 4 and 5, initial inspection of Raman spectra was conducted to evaluate 

the extent to which artefacts of the instrument influence the quality of replicate spectra and to 

a) 

b) 
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establish the necessity for and nature of the pre-processing methods that would need to be used 

in the analysis of the data.  

Using exploratory PCA and visual inspection of Raman spectra, several issues were identified. 

These included: 1) lower number of variables than data collected from the benchtop instrument, 

2) poor S/N, 3) shot/ residual noise, 4) values in the dataset with positive and negative signs 

and 5) variable absolute Raman intensities.  

In general, for the application of MVA in a well-controlled dataset, the number of samples 

should be much larger than the number of variables. In such cases, the number of degrees of 

freedom is small. However, this is not the case with Raman spectral data (i.e. > 500 variables 

in typical handheld Raman instruments). Therefore, feature selection or variable reduction 

techniques are often required prior to conducting MVA [191]. In Chapters 4 and 5, a number 

of variable reduction methods were evaluated. In Chapters 5 and 6, analysis was performed 

over a limited spectral range (i.e. 1750 – 1300 cm-1) and the number of variables or data points 

was ca. 522. By contrast, using the same spectral range with the handheld instrument, the 

number of variables was reduced to ca. 90, which was insufficient to reliably calculate the PCA 

projection using the Unscrambler® X 10.4. Unlike the methods adopted with the benchtop 

instrument, larger spectral ranges were evaluated for the handheld instrument in order to 

efficiently increase the number of variables.  

Unlike Chapters 5 and 6, the reduction or filtering of high frequency noise was not addressed 

via smoothing methods for two reasons. The first is to preserve small Raman peaks and the 

second is to prevent a further reduction in the number of variables as discussed above. 

However, the region 1700 - 2500 cm-1 (shot and residual noise) was truncated as it does not 

contain any spectral data and may impact classification of ‘query’ samples (Chapter 5 Sections 

5.3.2.2. and 5.3.2.6.).  

In addition, values in the dataset with positive and negative signs may impact the reliability of 

calculating maximum normalisation using the Unscrambler® X 10.4, where a single sign 

should be used (Chapter 4). Finally, variable absolute Raman intensities have been shown to 

impact sample classification and consequently, normalisation of spectra was essential to scale 

the spectral data and ensure an even distribution of the variance between samples (see Chapter 

4). Therefore, pre-processing methods including truncating the spectral range 2500 – 1700    

cm-1 (region without any spectral data), baseline offset method to remove negative data points 
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and maximum normalisation were suggested for investigation (Unscrambler® X 10.4). It is 

expected that raised baselines observed in Chapters 5 and 6 are reduced with a longer laser λex 

(i.e. 1064 nm) and, therefore baseline subtraction was not accounted for in this method. 

The impact of using a larger spectral range with a reduced number of variables on the accurate 

identification of ‘query’ samples was investigated. The selected spectral region 1700 – 145  

cm-1 includes vibrations attributed to diverse functional groups, which may improve the 

identification of larger molecular moieties, as compared to the benchtop instrument, where a 

shorter spectral range (i.e. 1750 – 1300 cm-1) was used in the analysis (see Chapters 5 and 6).  

The region 1700 – 145 cm-1 includes vibrations attributed to carbonyl stretches C=O at 1700 - 

1680 cm-1 (medium to weak) as in cathinones; olefinic groups C=C at 1750 - 1500 cm-1 

(strong); amine NH deformation vibrations for amines, amine salts and amide substances at 

1660 – 1500 cm-1 (weak); aromatic and heteroaromatic rings at 1620 – 1420 cm-1 (medium to 

weak); methyl and methylene deformation vibrations at 1500 – 1300 (weak to medium) such 

as CH3 at 1380 cm-1 (medium); CH2 and CH3 asym at 1470 - 1400 cm-1 (medium); and CC 

related to aromatic ring chain vibrations at 1580 and 1600 cm-1 (strong), 1450 and 1500 cm-1 

(medium); C-F stretches at 1350 – 1000 cm-1  (weak to moderate) as in 4F-α-PVP, 5F-APICA, 

5F-APINACA, 5F-PB22, afloqualone, AM-2201, flephedrone, flubromazepam, 

flubromazolam and NM-2201; C-O stretching vibrations at 1300 – 750 cm-1, where, Raman  

bands with variable intensities for carbonyl compounds occur at 1300 - 1100 cm-1 for esters and 

at 1310 – 980 cm-1 for anhydrides; CH wag vibrations of olefenic and acetylenic compounds 

(weak) at 1000 – 600 cm-1; aromatic ring vibrations involving in-plane 2,4,6 stretches (very 

strong) at 1290 – 990 cm-1; aromatic ring CH wag vibrations (weak) at 900 – 700 cm-1; halo-

alkane stretching involving F, Cl, Br and I (strong) at 850 – 480 cm-1 [125] as in 5-IAI, 

flubromazepam, flubromazolam, ketamine, mebroqualone, N-Me-2C-B, phenazepam and 

pyrazolam.  

It is hypothesised that larger molecular moieties identified may improve classification of pure 

NPS but may hinder NPS identification in mixtures via PCA projection owing to poorer 

resolution. 

7.3.2. Overview of PCA1 generated from ‘53 representative’ NPS reference standards 

Prior to predicting the ‘query’ samples, an overview of the training samples (i.e. ‘53 

representative’ pure NPS), was performed using an exploratory PCA (i.e. PCA1) over the 
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spectral range 1700 – 145 cm-1 (Figure 7.3). The cumulative calibrated and validated explained 

variance for 20 PCs was 82 and 78 % respectively. The first three PCs explained approximately 

34 % of the total variance (15/12/7 % for PC1/PC2/PC3). The total % variance explained by 

the first three PCs was low. This is partly because the dataset is chemically and structurally 

diverse as previously investigated in Chapter 5 Section 5.3.3.1. In addition, the relatively poor 

Raman scattering efficiency of the 1064 nm laser λex (Raman scattering is proportional to the 

fourth power of the frequency of the laser source [120]) and sample presentation for handheld 

analysis, which has eliminated variations between replicate reference spectra when compared 

to the benchtop instrument.  

In Figure 7.3, the training samples were classified into previously described superclusters 

(Chapter 5). The data matrix consisted of 530 rows and 512 variables. The PCA scores plot for 

PC1/PC2 showed that replicate spectra of individual NPS grouped together, yet were 

discriminated from different NPS, demonstrating the efficiency of the pre-processing method 

in removing artefacts not pertinent to the investigated substances. For example, the spectra of 

five reference NPS (i.e. 4-HO-DET, 5-MeO-DALT, 5-MeO-MiPT, FDU-PB-22 and NM-

2201), all members of supercluster 1 (red boxes), were clustered into five distinct groups in the 

upper quadrants of the scores plot for PC1/PC2. Each group represented replicate spectra of 

individual NPS reference standard. Both FDU-PB-22 and NM-2201 (upper left quadrant) are 

in very close proximity to each other, which is not unexpected since both are structurally similar 

synthetic cannabinoids, yet do not show any overlap between their replicate spectra upon 

zooming in, supporting the fact that the model is sufficiently discriminatory between 

structurally similar NPS (Figure 7.3).  
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Figure 7. 3:  2D-PCA scores plot (PC1/PC2) illustrating the classification of ‘53 

representative’ NPS reference standards classified in previously described superclusters 

(Chapter 5). Raman spectra were collected using ProgenyTM (Rigaku, USA). 

Similar pure NPS classification trends were observed as previously described in Chapter 5 

Section 5.3.3.1. using the benchtop instrument. In PCA1 (Figure 7.3), results showed that the 

scores plot displayed grouping of NPS in discrete regions of the PCA 2D-scores plot, mostly 

according to their EMCDDA/EDND classes. For example, for PC1/PC2, the tryptamines (4-

AcO-DMT, 4HO-DET, 5-MeO-DALT, 5-MeO-MiPT and DPT) grouped together in the upper 

right quadrant, whereas the phenethylamines (25H-NBOMe, N-Me-2C-B and STP) grouped in 

the lower right quadrant. Moreover, the cathinones (4F-α-PVP, 4-MeO-α-PVP, α-PVP, 4-Me-

N-ethylnorpentedrone, DL-4662, mephedrone and methylone) grouped in the lower half of the 

scores plot, whereas the cannabinoids (5F-APICA, 5F-APINACA, AB-FUBINACA, AM-679, 

AM-2201, JWH-073, JWH-122, NM-2201, N-PB-22, PB-22 and THJ-018) grouped in the 

upper half of the scores plot. PCA1 results (PC1/PC2) showed that etizolam was delineated 

from the benzodiazepines flubromazolam and pyrazolam (supercluster 8), whilst, C8-CP, 47-

497 was delineated from remaining cannabinoids, as observed and previously discussed in 

Chapters 5 and 6. This illustrates the potential efficiency and discriminatory power of the 

developed model in classifying NPS based on structural diversity using handheld Raman 
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spectroscopy (λex = 1064 nm) and chemometrics (Figure 7.3). Consequently, these methods 

were applied to subsequent PCAs. 

7.3.3. Prediction of ‘test’ and ‘out-of-model (OOM)’ pure reference samples via PCA 

projection onto the ‘NPS reference standards/handheld’ model (test sets 1 and 2) 

In this Section, prediction of ‘test’ and ‘OOM’ NPS reference standards was performed by 

projecting the Raman spectra of 15 ‘test’ and 4 ‘OOM’ pure NPS onto PCA1 generated from 

’53 representative’ NPS reference standards. Similarity between test sets 1 and 2 (i.e. 15 ‘test’ 

and 4 ‘OOM’ pure NPS respectively) and library/ training substances (i.e. ‘53 representative’ 

pure NPS) was evaluated using PCA projection plots (Unscrambler® X 10.4) (Figure 7.4).  

 

Figure 7. 4:   2D-PCA projection plot (PC1/PC2) illustrating training, ‘test’ and ‘OOM’ sets. 

Test sets 1 and 2 (i.e. ‘test’ and ‘OOM’ reference spectra) are projected onto the PCA model 

developed with 53 training NPS, classified in previously described superclusters (Chapter 5). 

Raman spectra were collected using ProgenyTM (Rigaku, USA). 

When ‘test’ and ‘OOM’ samples were individually projected onto PCA1, the variance 

explained for ‘test’ and ‘OOM’ samples was 12/12/4 and 4/7/2 % for PC1/PC2/PC3 
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respectively (Figures 7.5a and 7.5b). The total explained variance by the PCA projection model 

for PC1/PC2/PC3 described how well the variance in the ‘query’ samples is explained by the 

calibration model.  

 

Figure 7. 5:  PCA projection explained variance plots for: a) ‘test’ (test set 1) and b) ‘OOM’ 

(test set 2) sets. This is the variance explained by the projection of ‘test’ and ‘OOM’ samples 

onto PCA1.  

The variance explained by PCA projection was reduced to 10/11/4 % for PC1/PC2/PC3 when 

all ‘test’ and ‘OOM’ reference samples were projected together onto PCA1. Poorer projection 

explained variance for ‘OOM’ samples was expected since they were not included in the initial 

model of 478 NPS, used to produce the ‘representative’ database through ‘hierarchical cluster 

analysis’ [204]. Hence they have reduced the model’s efficiency in prediction via PCA 

projection (Chapter 5).  

PCA projection results for both test sets 1 and 2 were relatively poor (< 25 %) for the first three 

PCs owing to the complexity and chemical diversity of the dataset and the reduced number of 

variables owing to relatively poor resolution of the instrument. This also demonstrates the 

limitations of the calibration model PCA1 in predicting the ‘query’ samples. However, the PCA 

projection explained variance plot (Figure 7.5a) shows relatively close calibration and 

validation values between training and test reference samples for three PCs demonstrating the 

potential of successfully suggesting the chemical scaffold or EMCDDA/EDND class of a pure 

‘unknown’ sample, previously part of the 478 NPS employed to develop the initial model (i.e. 

the ‘53 representative’ NPS) (Chapter 5). Unlike random validation, the PCA method was 

designed to implement a full validation to enhance model robustness. In contrast to ‘test’ 
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samples, PCA projection values for ‘OOM’ samples were relatively poor for three PCs 

suggesting sub-optimal potential for the successful classification of an ‘unknown’ newly 

emerging to the market (Figure 7.5b), yet a definitive conclusion cannot be made due to the 

limited number of ‘OOM’ samples tested (i.e. four) and also because most of the ‘OOM’ 

samples are known drugs of abuse (i.e. MDMA, MPD and methamphetamine) and, therefore 

may not fully represent newly emerging NPS.  

All training and projected samples were included in the Hotelling T2 ellipse at 95 % CL, except 

a few pyrazolam replicate spectra (ellipse not shown in Figure 7.4). However, the examination 

of these spectra using the influence plot (plot not shown) demonstrated that they are not true 

outliers (i.e. not associated with high F-residuals and Hotelling T2 values (see Chapter 4)), 

hence are described by the calibration model. 

In this analysis a successful grouping/ overlap or delineation between scores was confirmed 

via direct comparison to the results obtained in Chapter 5 (Figure 7.6). Grouping/ overlap or 

delineation of both ‘test’ and ‘OOM’ samples was evaluated for each of the previously 

described superclusters (Chapter 5).  

 

Figure 7. 6: 3D-PCA projection plot illustrating training, ‘test’ and ‘OOM’ sets. Test sets 1 

and 2 (i.e. ‘test’ (green) and ‘OOM’ (blue) spectra) are projected on the PCA model developed 

with ‘53 representative’ training NPS (n = 10/ NPS (red)).  

Superclusters 1, 2, 4, 9, 10 and 13 were not challenged with any ‘test’ or ‘OOM’ samples due 

to high costs and lack of availability of reference standards when this study was conducted. 

This is one of the limitations of the dataset.  
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For supercluster 2, ‘test’ samples 5-APB and 6-APB grouped in close proximity to other 

arylakylamines (i.e. 5-EAPB and MPA) on PC1/PC2 (Figure 7.4). The ‘test’ sample βk-2C-B 

(cluster 2.06) was not aligned with N-Me-2C-B (cluster 2.06) as expected, possibly because of 

the very poor S/N in N-Me-2C-B replicate spectra obtained with the handheld instrument. 

However, βk-2C-B grouped in close proximity to the cathinones (modified structures of 

phenethylamines) 4-MeO-α-PVP, DL-4662 and mephedrone. On PC1/PC3, βk-2C-B grouped 

in close proximity to the phenethylamine methamphetamine (plot not shown). Supercluster 2 

was challenged with the ‘OOM’ sample MPD which, unsurprisingly grouped with EPD, 

another piperidine (Figure 7.4).  The replicate spectra for MPD clustered together in the same 

plot region as all the cathinones. Both cathinones and piperidines are modified structures of 

phenethylamines. It is important to note that EPD was not one of the training samples, but one 

of the ‘test’ samples included in the analysis to challenge supercluster 5 (Figure 7.4). For 

supercluster 2, results were similar to that obtained with a high resolution benchtop instrument. 

‘Test’ and ‘OOM’ spectra correlated with structurally similar members of their 

EMCDDA/EDND class or near-neighbour. In the case of ‘OOM’ samples, where a member of 

the same EMCDDA/EDND class was not part of the training set, ‘OOM’ samples were aligned 

with structurally similar NPS. 

In contrast to supercluster 2, where ‘test’ and ‘OOM’ samples grouped in proximity to their 

EMCDDA/EDND class analogues, ‘test’ and ‘OOM’ samples employed to challenge 

supercluster 5, grouped in close proximity to training, other test or ‘OOM’ samples, which are 

members of the same supercluster/ cluster or class. For example, ‘test’ samples adrafinil 

(classified as ‘other’) and phenibut (classified as ‘other’) and ‘OOM’ sample MPD, all 

members of cluster 5.14 (Chapter 5), were grouped in the same region of the 2D-scores PCA 

projection plot (Figure 7.4). The ‘test’ sample phenibut was in close proximity to adrafinil 

(cluster 5.14), as explained above, but was closer to 2-AI and methamphetamine, both members 

of cluster 5.15.   

In addition, ‘test’ cathinone samples (i.e. flephedrone, mephedrone and mexedrone) and 

‘OOM’ sample S-cathinone grouped in the same plot region as all other cathinones irrespective 

of their cluster membership.  The latter ‘test’ and ‘OOM’ cathinones are all members of cluster 

5.18.  

The ‘OOM’ sample MDMA grouped in close proximity to the arylalkylamines 5-EAPB and 

MPA and the aminoindane 5,6-MDAI. Unlike results obtained in Chapter 5 Section 5.3.3.2., 
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the examination of the average Raman spectra in conjunction with the line loading plots for 

PC1/PC2 demonstrated that grouping of MDMA in close proximity to the arylalkylamines may 

be considered as a misclassification. This demonstrated the challenge evidenced by the ‘OOM’ 

samples (Figure 7.7). In contrast, 5,6-MDAI and MDMA were in the same plot region possibly 

because the former is a ‘test’ sample and the latter is an ‘OOM’ samples, both anticipated 

members of supercluster 11 with a common methylene dioxide group. However, the grouping 

of 5,6-MDAI was expected to occur with other aminoindane class analogues from the training 

set (e.g. 2-AI) or alternatively with samples with structural similarity, which are training 

members of the same supercluster (e.g. methylone (supercluster 11)). The reason for this 

grouping is not fully understood. However, it could possibly be attributed to the peak at ca. 

1679 cm-1, which is present in methylone but absent in both MDMA and 5,6-MDAI Raman 

spectra (Figure 5.23). In such cases, newly emerging NPS may group together due to structural 

similarity amongst themselves without an indication to their identity from the training set. 

 

Figure 7. 7: Average reference Raman spectra for 5-EAPB, MPA, MDMA and line loading 

plots for PC1 and PC2. 

Finally, the ‘OOM’ sample methamphetamine (cluster 7.04) grouped with its class analogue 

N-ethylamphetamine (cluster 7.04) (Figure 7.4). Based on the interpretation provided for 

supercluster 5, ‘test’ samples correlated with members of the expected supercluster, cluster or 

class analogue. In contrast, ‘OOM’ samples correlated with class analogues or members of the 

anticipated cluster when a class analogue was a member of the training set. However, where a 

class analogue was not included in the training set, ‘OOM’ samples were aligned with 

structurally similar training NPS.  
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For supercluster 6, the ‘test’ sample 5F-PB-22 (cluster 6.02) grouped with PB-22 (cluster 6.02) 

and THJ-018 (cluster 3.04), another cannabinoid. It was also in proximity to N-PB-22 (cluster 

6.01) (Figure 7.4). Again, the ‘test’ sample correlated with class analogues and members of the 

supercluster and cluster. 

For supercluster 8, the ‘test’ sample pyrazolam was in close proximity to the training sample 

flubromazolam. Both are fluorinated benzodiazepines, members of cluster 8.02. Both were 

delineated from etizolam (observation previously described in Chapter 5). In this case, the ‘test’ 

sample correlated with a class analogue, a member of the same supercluster and cluster. 

For supercluster 12, the ‘test’ sample DXM was in the same plot region as the training sample 

C8-CP, 47-497. In contrast, the test sample BB-22 was delineated from the training sample C8-

CP, 47-497 (observation previously described in Chapter 5). This is also a challenging case 

because supercluster 12 is composed of one cluster only, with a simple moiety ‘cyclohexane’ 

as a common substructure, which may, in turn, misalign/ misclassify newly emerging NPS. In 

addition, the ‘test’ sample DXM is classified as ‘other’ according to the EMCDDA/EDND 

classification and, hence it is challenging to investigate whether it correlate with other class 

analogues. 

In conclusion, for both ‘test’ and ‘OOM’ samples, on PC1/PC2, nine samples grouped with 

their EMCDDA/EDND class analogues, five grouped with members of their expected 

supercluster/ cluster and three clustered with both EMCDDA/EDND class analogues and 

members of their supercluster/ cluster. Two ‘test’ samples 5-IAI and βk-2C-B deviated from 

both the EMCDDA/EDND or supercluster/ cluster classifications and grouped with etizolam 

and the cathinones respectively. However, βk-2C-B correlated with its class analogues on 

PC1/PC3. In summary, 89 % of both test and ‘OOM’ correlated with their EMCDDA/EDND 

classes and/ or superclusters/ clusters, demonstrating the potential of the model to classify/ 

align new pure samples. 

7.3.4. Prediction of test NPS internet samples (test set 3) via PCA projection onto 

PCA1  

This model was not previously described with the benchtop instrument. However, it was 

applied in this Chapter as a preliminary step due to the complexity of data interpretation. This 

is because suggestion of the chemical scaffolds of NPS in internet samples is more challenging 

using handheld Raman instruments. In addition, this PCA projection study provides valuable 
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insight into the content of the training set (i.e. NPS only or NPS and non-NPS). Unlike the 

benchtop Raman instrument, which is equipped with confocal microscope lenses allowing the 

irradiation of micron size samples (spot radius = 1.2 µm) enabling the identification of mixture 

components, the handheld instrument has poor selectivity through irradiation of a larger sample 

size (spot radius = 20 µm), making the identification of mixture components more challenging. 

Furthermore, since the Raman scattering is proportional to the fourth power of the frequency 

of the laser sources, the S/N in Raman spectra analysed with the benchtop instrument (λex = 

785 nm) is greater than that of the handheld instrument (λex = 1064 nm). The impact of these 

challenges/ limitations were evaluated through PCA projection of NPS internet samples onto 

PCA1 developed with ‘53 representative’ reference NPS training samples (Figure 7.2a) and 

PCA2 developed with 75 training samples (i.e. ‘53 representative’ NPS and 22 cutting agents/ 

adulterants reference samples) (Figure 7.2b). 

The combined analysis of 25 NPS internet products (Chapter 6, Table 6.2) showed the 

complexity of the internet mixtures. Overlap/ closeness of projections of test samples (i.e. 19 

NPS internet products) to training samples (i.e. 53 NPS reference standards) were evaluated 

using PCA projection plots (Figure 7.8) and direct comparison to results obtained in Chapters 

5 and 6. In this Section the aim of the analysis was to evaluate the transferability of methods 

onto a handheld platform for the identification of claimed NPS in NPS products. This was 

achieved by projecting Raman spectra of 19 NPS internet products onto PCA1 derived from 

the Raman spectra of ‘53 representative’ NPS reference standards (Figure 7.2a). 

The cumulative calibrated and validated explained variance by PCA1 for 20 PCs was 82 and 

78 % respectively. The first three PCs explained approximately 34 % of the total explained 

variance, (15/12/7 % for PC1/PC2/PC3).  The variance explained by PCA projection of internet 

samples was 22/2/7 % for PC1/PC2/PC3 (Figure 7.8a and 7.8b).   
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Figure 7. 8: a) 2D-projection PCA scores plot for PC1/PC2; b) 2D-projection PCA scores plot for PC1/PC3. a and b are pre-processed Raman 

spectra of 19 NPS internet products (test set 3) projected onto PCA1 generated from training samples (‘53 representative’ NPS reference standards). 

P20 

P20 
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PCA projection of 19 NPS internet samples (19 NPS internet samples x 5 measurements) 

showed relatively poor projection values ca. 31 % for PC1/PC2/PC3 (< 100 %) (Figure 7.9). 

This demonstrated that the ‘query’ samples were not well described by the computed PCs of 

the original calibration model. This could be due to the high complexity of the ‘query’ samples, 

the limitations of the technique and the imbalance of the data matrix (number of samples versus 

number of variables) [191].  

The PCA projection was computed for three PCs only and the line plots (Figure 7.9) showed 

that the projection line (green) is getting closer to both calibration and validation lines and is 

rising upwards. This demonstrated the potential improvement of the projection model possibly 

if more PCs were computed. However, a greater number of PCs was not computed because the 

explained variance with the first three PCs was very low and, therefore computing more PCs 

carries the risk of incorporating explained variance due to residual noise. This was in fact 

demonstrated by lower projection values than calibration and validation values on PCs 2 and 

3. Furthermore, the use of a longer wavelength (λex = 1064 nm) has significantly reduced 

fluorescent backgrounds exhibited by NPS internet samples. However, raised baselines were 

still observed for some samples such as P11, 13-15 and 20, which accounted for most of the 

variance described by PC1 (Figure 7.8a and 7.8b). The baseline offset function using the 

Unscrambler® software does not bring the baseline down to zero i.e. does not subtract raised 

baselines or correct for fluorescent backgrounds and, therefore pre-processing methods 

employed in this Chapter may need to be optimised by evaluating a baseline subtraction step. 

 

Figure 7. 9: PCA projection explained variance plot. This plot shows the calibration (blue) and 

validation (red) plots of the training samples (i.e. ‘53 representative’ NPS) and the projection 

plot (green) of projected ‘query’ samples (i.e. 19 NPS internet products). 
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As discussed in Chapter 6, PCA projection analysis of NPS internet products was presented 

such that the products were grouped into three levels of complexity: 1) a group for pure 

products, where purity and identification were confirmed using HPLC and GC-MS 

respectively, 2) a group, where the NPS content in the sample was not included in the training 

set and 3) a group for complex brands and formulations (i.e. tablets and pellets). All training 

and projected samples were included in the Hotelling T2 ellipse at 95 % CL, except the replicate 

spectra for P11, 13-15 and 20 (ellipse not shown in Figure 7.8). The examination of these 

spectra using the influence plot (plot not shown) demonstrated that they are not well described 

by the calibration model (high Hotelling T2) and high F-residuals indicating a high sample 

distance from the calibration model. These results were expected for P11 and 13-15 (coloured 

pellets with purity < 8 % by HPLC) and poor quality of Raman spectra (raised baselines and 

very poor S/N). However, these results were not fully understood for P20, which exhibited 

raised baselines and explained most of the variance along PC1. This is because it was relatively 

pure by HPLC (ca. 77 %) and the Raman spectra displayed defined peaks, which were 

consistent with the reference spectrum for N-Me-2-AI (Figure7.10). 

 

Figure 7. 10: Normalised replicate Raman spectra for P20 and the average reference Raman 

spectrum for N-Me-2-AI. 

For group 1, results for PC1/PC2/PC3 (Figure 7.8) have shown that relatively pure samples 

(i.e. P1-3, 18 and 19) grouped in the same plot region with the NPS reference standard that 

correspond to the main NPS identified in the mixture (Chapter 6 Table 6.2). Both P1 and P2 

grouped in close proximity to the 2-AI reference spectra. Similarly, P3 grouped with the AB-

FUBINACA reference spectra, whereas P18 and P19 grouped with the MPA reference spectra. 

In such cases, the model developed using a ‘representative’ database and chemometrics in 

conjunction with handheld Raman spectroscopy equipped with a laser λex of 1064 nm has 
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successfully aligned the main NPS contained in internet mixtures with their corresponding NPS 

reference spectra as anticipated. However, both P18 and P19 were also in close proximity to 5-

EAPB, another arylalkylamine, showing an example of alignment with respect to their 

EMCDDA/EDND class analogue.  

In contrast, P4, 5, 10 and 25 grouped with members of their expected superclusters. For 

example, both P4 and P5, ca. 50 % pure by HPLC, known to contain AB-PINACA (cluster 

3.02), grouped in close proximity to the tryptamines including DPT (cluster 3.08). Furthermore, 

P10, a relatively pure sample by HPLC (> 95 %), known to contain the benzodiazepine 

flubromazepam (cluster 5.06) grouped in the same plot region as the cathinone 4F-α-PVP 

(cluster 5.03). P25, a relatively pure sample by HPLC (ca. 100 %), known to contain the 

synthetic cannabinoid THJ-018 (cluster 3.04) grouped in proximity to the synthetic 

cannabinoid AB-PINACA (cluster 3.02). In these cases, NPS internet products were aligned 

with members of their expected superclusters. 

For group 2, results for PC1/PC2/PC3 (Figure 7.8) described the classification of NPS internet 

samples containing NPS not present in the training set. For example, the relatively pure samples 

P16 and P17 (> 94 % pure by HPLC), known to contain 5,6-MDAI,  grouped in proximity to 

GHB. There is no structural similarity between these molecules, hence results represent a 

potential misclassification as suggested from the analysis of the line plots (Figure 7.11). 

Challenges faced in this case were two-fold. Firstly, there was no reference spectrum for 5,6-

MDAI in the training set. Secondly, 5,6-MDAI was expected to cluster with members of 

supercluster 11, which is composed of one cluster only, with benzo[d][1,3]dioxole as a 

common substructure. These challenges may potentiate false positive alignment/ classification 

of new or ‘unknown’ samples.  
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Figure 7. 11: Replicate Raman spectra for P16 and P17 and the average reference spectrum 

for GHB. 

For group 3, results for PC1/PC2/PC3 (Figure 7.8) have shown that highly impure (< 10 % 

purity by HPLC), branded and formulated samples were scattered in the PCA projection scores 

plots and were delineated from most training samples. These include P7-9, 11 and 13-15. As 

described above, P11 and P13-15 were not well described by the calibration model. This could 

possibly be because of poor quality spectra with a handheld instruments and 1064 nm λex (i.e. 

raised baselines, poor S/N and poor resolution). However, a few replicate spectra for P7 

grouped in proximity to the flubromazolam reference spectra. Due to the low purity of these 

samples, each measurement may represent a different constituent in the mixtures. P7 is an 

example, where only a few spectra suggested the presence of an NPS in the mixture. This 

demonstrated that numerous replicate measurements are often needed in ‘street-like’ samples. 

In this study, five replicate measurements were made and a greater number of measurements 

e.g. 10 could possibly provide insight into further details regarding other constituents in NPS 

mixtures. A compromise is often needed between the numbers of measurements and enhanced 

rapid identification in the field. 

In conclusion, based on the PCA projection of 19 NPS internet samples onto PCA1 derived 

from ‘53 representative’ NPS reference standards, 53 % (10/19 samples) of NPS internet ‘test’ 

samples were classified according to their EMCDDA/EDND classification and/ or assigned to 

their anticipated superclusters. These include relatively pure samples. Challenges include the 

identification/ classification of NPS not present in the initial training set, highly impure, 

formulated and branded samples with very low amounts of NPS and high amounts of cutting 
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agents/ adulterants. Optimisation of pre-processing methods may improve the identification/ 

classification of NPS displaying raised baselines and poor S/N with the 1064 nm laser λex.  

7.3.5. Prediction of test NPS internet samples (test set 3) via PCA projection onto 

PCA2 

In this Section, the Raman spectra of 19 NPS internet samples were projected onto a PCA 

model derived from the Raman spectra of NPS and cutting agents/ adulterants. Overlap/ 

closeness of projected test samples (i.e. 19 NPS internet products) to training samples (i.e. 53 

NPS reference standards, 14 cutting agents and eight adulterants) was evaluated using PCA 

projection plots (Figure 7.12) and direct comparison to results obtained in Chapter 6. The aim 

of this analysis was to evaluate the transferability of methods developed using a benchtop 

instrument onto a handheld platform for the identification of claimed NPS in NPS products 

from a database containing ‘53 representative’ NPS and non-NPS reference standards.  

The cumulative calibrated and validated explained variance by PCA1 (Figure 7.2a) for 20 PCs 

was 76 and 71 % respectively. The first three PCs explained approximately 33 % of the total 

variance (18/8/7 % for PC1/PC2/PC3).  PCA projection of internet samples was 55 % (48/2/5 

% for PC1/PC2/PC3) demonstrating improved performance of the model as compared to 

Section 7.3.4. (Figures 7.12a and 7.12b).   

All training and projected samples were included in the Hotelling T2 ellipse at 95 % CL, except 

the replicate spectra for P11, 13-15 and 20 (ellipse not shown in Figure 7.12). The examination 

of these spectra using the influence plot (plot not shown) demonstrated that they are not true 

outliers, except P20 R3, possibly due to raised baseline and poor S/N. 
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Figure 7. 12: a) 2D-projection PCA scores plot for PC1/PC2; b) 2D-projection PCA scores plot for PC1/PC3. a and b are pre-processed Raman 

spectra of 19 NPS internet products projected onto PCA2 generated from training samples (‘53 representative’ NPS and 22 cutting agents/ 

adulterants reference standards). 
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PCA projection of 19 NPS internet samples (19 NPS internet samples x 5 measurements) 

showed relatively poor projection values ca. 54 % for PC1/PC2/PC3 (< 100 %) (Figure 7.12). 

This demonstrates that the ‘query’ samples are still not well described by the computed PCs of 

the original calibration model. However, there is an improvement achieved by increasing the 

diversity of the training set. It is postulated that this is due to data overfitting since the 

projection values for PC1 are significantly greater than both calibrated and validated values for 

PC1 (48 versus 17 % respectively). This was demonstrated through the projection explained 

variance plot, where the projection line (green) is diverging away from both calibration and 

validation lines (Figure 7.13). All lines are rising upwards, suggesting the potential 

improvement of the projection model if more PCs were computed. However, this may not 

improve the model since the projection line is diverging away from both calibration and 

validation lines. 

 

Figure 7. 13: PCA projection explained variance plot. This plot shows the calibration (blue) 

and validation (red) plots of the training samples (i.e. ‘53 representative’ NPS, 14 cutting agents 

and eight adulterants) and the projection plot (green) of projected ‘query’ samples (i.e. 19 NPS 

internet products). 

By examining the 2D-PCA projection plots for PC1/PC2 (Figure 7.12a), the classification of 

NPS internet samples based on their relative purity was observed. By moving from the right to 

the left of the scores plot, a pattern can be observed where samples with relative low purity 

(e.g. P11 and 13-15) are located on the right, whereas samples with relative medium purity 

(e.g. P18 and 19) and located in the middle and samples with high purity (e.g. P1, 2 and 25) 

are located on the left of the scores plot. P20 is clearly an outlier to this pattern as discussed 

above. As discussed in Section 7.3.4., raised baselines and poor S/N for P11, 13-15 and 20 

explained most of the variance on PC1 (Figures 7.12a and 7.12b).  
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Furthermore, the PCA projection plots for PC1/PC2/PC3 showed an overlap between training 

NPS samples with adulterants such as BEN, CAF, DIL, LID, PRO, PHE, PAR and THEO, and 

cutting agents such as CRE, L-TYR, TAU and MgS, in a similar pattern as discussed in Chapter 

6 Section 6.3.2.3. and Table 6.3. Similarly, results for P1, 2, 7-15, 18-20 and 25 showed patterns 

akin to those discussed in Section 7.3.4. (Figures 7.12a and 7.12b). However, the relatively 

pure sample P3 (HPLC analysis 77 ± 3), known to contain AB-FUBINACA (cluster 3.01), 

grouped with the training sample class analogue AB-PINACA (cluster 3.02) as previously 

described in Figure 6.12. Furthermore, both P4 and P5, with medium purity (ca. 50 % by HPLC 

analysis), known to contain AB-PINACA, have clustered in close proximity to SUC (Figure 

7.14).  

 

Figure 7. 14: Replicate Raman spectra for P4 and P5 and the average reference spectrum for 

SUC. 

In this study, correct identification/ classification of ‘unknown’ NPS in NPS internet products 

has slightly declined, suggesting possible data overfitting and sub-optimal pre-processing 

methods.  However, increasing the diversity of the training set by adding cutting agents and 

adulterants has given a successful indication of NPS sample purity but has contributed to 

increased interference from cutting agents/ adulterants. Optimisation of pre-processing 

methods and increasing the number of replicate measurements may refine the identification/ 

classification of NPS and other constituents in the mixtures and may reduce interference with 

cutting agents.  

7.4. Conclusions 

This Chapter provided a proof-of-concept for the transferability of the methods developed 

using a benchtop Raman instrument to a handheld platform. Results showed the potential of 
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identifying, suggesting the chemical scaffolds, classifying and/ or assigning ‘unknown’ NPS 

to their near neighbours, EMCDDA/EDND class analogues or superclusters/ clusters. Results 

revealed the challenges faced with complex ‘street-like’ NPS mixtures and the limitations of 

the chemometric techniques used including high dependence on minimum common 

substructures (MCSs) between training samples used to build the initial ‘hierarchical 

clustering’ model. Results also illustrated the compromise between reducing fluorescent 

backgrounds and obtaining adequate S/N, which may, subsequently enable or not the 

identification of ‘unknown’ samples. Unlike benchtop Raman instruments, where powder 

regions are carefully selected to optimise the signal with confocal microscopes, using a 

handheld platform, the quality of spectra are primarily influenced with the instrument features 

such as poor resolution. 

In this Chapter, 89 % of both ‘test’ and ‘OOM’, projected onto a PCA model containing the 

‘53 representative’ NPS reference standards, were aligned with their EMCDDA/EDND classes 

and/ or anticipated superclusters/ clusters. This clearly demonstrated the potential of the ‘NPS 

reference standards/handheld’ model to classify/ assign previously seen or unseen pure samples 

to their previously designated classifications.  

By contrast, using the ‘NPS reference standards/handheld’ for the identification of internet 

samples, 53 % of the samples were aligned with their EMCDDA/EDND classes and/ or 

assigned to their anticipated superclusters. These include the relatively pure samples. 

Challenges include the identification/ classification of an ‘unknown’ sample containing an NPS 

(s) not represented in the training set (n = 2/19). In these cases, the ‘unknown’ samples were 

misclassified. Other challenges include the identification/ classification of highly impure 

branded formulated samples with minute amounts of NPS versus high amounts of cutting 

agents/ adulterants (n = 4/19). In total, five samples (26 %) were not described well by the 

calibration model and constitute the proportion of rejected samples by the model. 

Finally, using the ‘NPS and non-NPS/handheld’ model for the identification of internet 

samples, only 42 % of NPS internet samples were aligned with members of their superclusters. 

The calibration model has not described well the highly impure branded formulated samples 

and interference with cutting agents was observed.  This is possibly because of data overfitting, 

sub-optimal pre-processing methods as well as insufficient number of replicate spectra to 

represent mixture components. Optimisation of pre-processing methods may refine the 

identification/ classification of NPS displaying raised baselines and poor S/N with the 1064 nm 
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laser λex. It may also improve the identification of other constituents in the mixtures and may 

reduce interference with cutting agents. Other chemometric techniques employing different 

parameters such as different molecular moieties and properties could improve prediction 

selectivity. 
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8. Conclusions 

The work presented in this thesis serves as a proof-of-concept for the identification of existing 

or newly emerging NPS. It has demonstrated that the use of Raman spectroscopy in conjunction 

with a ‘representative’ NPS database and chemometrics has the potential for rapidly and non-

destructively classifying ‘unknown’ NPS according to their chemical structure and purity in 

‘street-like’ mixtures.  

In this thesis, five models were developed, and three of these provided an insight into the 

identification and classification of NPS depending on their purity. These are: the ‘NPS and 

non-NPS/benchtop’ model, the ‘NPS reference standards/handheld’ model and the ‘NPS and 

non-NPS/handheld’ model. In the ‘NPS and non-NPS/benchtop’ model (laser λex = 785 nm), 

NPS internet samples were projected onto a PCA model derived from a Raman database 

comprising ‘representative’ NPSs and cutting agent/ adulterant reference standards. This 

proved the most successful in suggesting the likely chemical scaffolds for NPS present in 

samples bought from the internet. It does this by grouping the relatively pure internet samples 

in close proximity to their corresponding reference standards where they exist. If the NPS 

claimed in the internet samples were not represented in the training set for the model, the test 

samples were grouped in close proximity to their NPS class or structurally similar analogues 

(supercluster/ cluster). For branded and formulated products with high impurity profiles, a few 

of the spectra obtained from each product were grouped next to their corresponding reference 

standard, or other products previously confirmed to incorporate the NPS in the sample. Of the 

spectra, 23% displaying high fluorescent backgrounds and very low purity profiles were not 

classified. It has been demonstrated that this model performed the best of the three investigated 

for suggesting the chemical scaffolds of NPS internet samples (Chapter 6).  

The ‘NPS reference standards/handheld’ model successfully identified 89 % of the ‘query’ 

NPS reference standards (Chapter 7). In this model, NPS reference standards were projected 

onto a PCA model derived from a Raman database comprising the ‘representative’ NPS 

reference standards collected with a handheld instrument (λex = 1064 nm). This model 

outperformed results obtained with the benchtop instrument (76 %), because of reduced 

fluorescent backgrounds and, subsequent improved identification and classification of NPS 

reference standards. 
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The ‘NPS and non-NPS/handheld’ model successfully classified 95 % (18/19 samples) of the 

NPS internet samples with respect to their purity on the PCA projection scores plot. In this 

model, NPS internet samples were projected onto a PCA model derived from a Raman database 

comprising the ‘representative’ NPS and cutting agent/ adulterant reference standards collected 

with a handheld instrument (λex = 1064 nm) (Chapter 7).  

These models can be considered as useful tools for the early screening and classification of 

existing and newly emerging NPS. The systematic approach underpinned by the group’s in-

silico clustering analysis [204], has shown great promise with its ability to detect the 

similarities and differences between ‘unknown’ samples and references contained in the 

spectral database based on a)  chemical similarity, b) Raman spectral features over designated 

spectral ranges and c) high loading values along calculated principal components.  

The potential of the proposed models for the task at hand was established by successfully 

classifying/suggesting the chemical scaffolds of NPS reference standards and internet samples 

using benchtop and handheld Raman platforms with and without the presence of matrix 

interferences such as adulterants and cutting agents (Chapters 6 and 7). Confirmation is still 

challenging for internet samples due to numerous interferences from cutting agents and 

adulterants. Nevertheless, these results are valuable in reducing false negatives since they may 

serve as a means to propose further assessment of internet samples using other lab-based 

techniques. The use of spectral subtraction is a possible tool that could be applied to mixtures 

that may reduce these types of false negatives i.e. it could be used to improve the identification 

of NPS with low content in the presence of large amounts of excipients with masking Raman 

signals. 

The models developed demonstrated practicability, rapidity, the need for minimal sample 

manipulation via analysis through glass vials, and significant reduction in false negatives/ 

positives subsequent to reduction in fluorescence, all of which are vital requirements for in-

field Raman applications with respect to NPS. This project suggested, for the first time, the 

possibility of identifying NPS or classifying them with their near-neighbours based on a dual 

mechanism i.e. classifying or aligning ‘unknown’ NPS with members of their anticipated 

superclusters/ clusters or EMCDDA/EDND class, whether or not they were analogous to 

existing training NPS used to build the model.  
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To achieve these results, a number of studies were conducted. Initially, there was a need to 

identify a suitable technique specifically for the identification of NPS. Thus, a pilot study was 

conducted [128] to investigate the feasibility in using different handheld techniques (i.e. FTIR, 

NIR and Raman) for the identification of NPS in simulated binary mixtures and internet 

mixtures. This study illustrated that handheld Raman outperformed both NIR and FT-IR to 

give a greater discrimination between NPS and excipients i.e. cutting agents and adulterants in 

internet products. However, the study revealed that the use of on-board libraries and library 

matching in-built algorithms was limited in identifying NPS in NPS mixtures due to swamping 

by fluorescence signals. Therefore, a study was conducted to propose a handheld Raman 

instrument for the identification of NPS (Chapter 2). 

Three different handheld Raman instruments i.e. TruscanTM GP (λex = 785 nm), FirstGuardTM 

(λex = 1064 nm) and ProgenyTM (λex = 1064 nm) were evaluated for the identification of NPS 

in more complex simulated mixtures (i.e. binary, ternary and random mixtures) and internet 

mixtures. Results showed that ProgenyTM operating with a 1064 nm laser source and multiple 

algorithms was the optimal instrument since it has demonstrated to be more suitable for the 

identification of NPS in ‘street-like’ NPS products. In this respect, ProgenyTM showed better 

selectivity and successfully identified 100 % of pure substances, the ‘drug’ constituent in model 

binary mixtures within a minimum range of 10 – 95 % m/m without any false positive 

correlations for model binary mixtures, random ternary mixtures and NPS internet products. 

The ProgenyTM instrument identified the NPS/ adulterant content in 83 % of the NPS internet 

products in consistence with GC-EI-MS confirmatory analysis (Chapter 2).  

This pilot study has highlighted important factors that influence the identification of NPS 

mixtures using handheld Raman spectroscopy that will now be discussed in turn. 

First there are the instrumentation factors related to their specification.  A critical one is the 

laser λex (i.e. 785 versus 1064 nm), where an adequate Raman spectrum could not be obtained 

for a few cutting agents and NPS products using a high energy short laser λex of 785 nm, but 

identification of constituents in NPS internet products was improved with a longer laser λex of 

1064 nm, possibly because of reduced fluorescence. Also, the design and weight of the 

instruments made them difficult to hold steady and so present a stable sample for analysis. This 

may have had a great impact on collecting Raman spectra for samples placed on aluminium 

plates as opposed to those in glass vials. The content and quality of library spectra had an 

impact on the number of positive correlations using the instruments’ in-built algorithms. 
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Instruments which have fixed non-adjustable parameters, designed for non-experts, may cause 

sample degradation (burning/ melting) which will hinder NPS mixture identification. 

Secondly, there are problems related to the in-built algorithms within the handheld instruments. 

These are: the presence of a threshold for positive correlations; and the impact of poor S/N on 

correlation values and algorithm calculation which will also affect accurate identification of 

NPS in mixtures.  

Thirdly, there are factors related to the nature of the sample. These are: sample heterogeneity; 

colour; the number of adulterants in a single mixture; Raman scattering activity of constituents 

in mixtures; and the presence of fluorescing impurities. All these were identified as important 

factors that influence the identification of NPS.  

As a result of the instrumentation issues, a study was conducted to investigate the impact of 

the laser λex on the identification of a wide range of NPS. This was done using two handheld 

Raman instruments only differing in the laser λex, Xantus-1TM (λex = 785 nm) and FirstGuardTM 

(λex) = 1064 nm (Chapter 3) [12]. Results demonstrated that a 1064 nm laser source 

significantly reduced background fluorescence for  a wide range of NPS products compared to 

a 785 nm laser source and subsequently improved identification using an in-built ‘first pass’ 

matching algorithm in 48 % of the samples. An increase in the laser excitation wavelength 

from 785 to 1064 nm improved positive NPS identification mainly due to reduced fluorescence, 

most likely originating from cutting agents and coloured constituents in the products. 

Correlations between the internet products with the NPS signatures that were confirmed with 

GC-MS, ranged from 57.0 to 84.1 % using the 1064 nm source, demonstrating that reduced % 

HQI thresholds may be required when monitoring NPS products in the field. Results also 

showed that a higher number of false positives and false negative were observed when using 

the 785 nm source, again resulting mainly from the fluorescent background produced by these 

samples. False negatives observed for both wavelength sources were also attributable to a 

variety of factors: low NPS concentration; absence of appropriate reference spectra from the 

instrument’s library; and the high chemical complexity of the product. Chemically complex 

samples, such as some of the ‘branded products’, did not correlate to an NPS signature but did 

show marked improvement in the Raman spectra and characteristic Raman bands upon using 

the 1064 nm source.  
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To overcome the limitations of the in-built matching algorithm and to enable the maximum 

extraction of hidden patterns and chemical information from the Raman multivariate data, 

further work was needed to optimise spectral pre-processing, with the aim of improving the 

identification and classification of NPS. 

Various pre-processing strategies for Raman data of NPS-related substances were evaluated. 

An iterative step-wise pre-processing of Raman spectra was carried out to evaluate the 

contribution of each stage to enhancing the accurate classification of NPS. Based on the 

analysis, a universal protocol was developed and was recommended prior to conducting 

exploratory PCA and prediction via PCA projection (Chapter 4). The protocol included the 

visual inspection of Raman spectra, rejection of the spectra with errors, removal of cosmic 

spikes, interpolation of the spectra if required, examination and evaluation of spectra using 

descriptive statistics using e.g. the Unscrambler® software, and, finally, the comparison and 

assessment of the effect of step-wise pre-processing on spectral data using PCA. Interestingly, 

this study also suggested that PCA of pre-processed Raman data could be employed to identify 

substance peak identifiers and improve the classification of drug mixtures using a discrete 

number of Raman bands. This method had the potential of enhancing and optimising samples 

delineation using PCA. Optimised spectral pre-processing made it possible to explore and 

visualise the important differences in the dataset based on chemical differences and/ or patterns 

in the mixtures. 

In order to overcome the limitation of the on-board libraries in field instruments and to address 

the dramatic increase in the numbers of emerging NPS, there has been an interest in developing 

predictive models that could enable law enforcement agents to classify ‘unknown’ NPS by 

exploiting chemical information related to existing NPS. Based on the ‘hierarchical clustering 

analysis’ performed by Zloh et al. [204], a ‘representative’ Raman database was therefore 

developed and evaluated for its ability to suggest the chemical scaffolds of ‘unknown’ NPS. 

The projection of pure NPS reference standards against the ‘representative’ Raman database 

highlighted the success of the clustering analysis performed by Zloh et al. [204] and the 

robustness of the pre-processing methods developed in this thesis. It also demonstrated the 

feasibility of predicting the chemical scaffolds of ‘unknown’ NPS by examining proximity on 

the PCA scores plots to their near-neighbours (Chapters 5 – 7).  

Accordingly, a number of models were developed, where ‘query’ NPS reference standards and 

NPS internet samples were projected onto PCA models derived from training sets including 
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the ‘representative’ NPS database with and without cutting agents/ adulterants. Raman spectra 

of ‘query’ samples, which displayed intense fluorescent background were not successfully 

aligned with their anticipated supercluster/ cluster/ class even after pre-processing. Fluorescent 

background may have hindered the accurate correlations of pre-processed spectra with the 

spectra of training sample members from the same supercluster, possibly because of shot noise 

and poor S/N. Other ‘query’ samples were not successful as anticipated as a consequence of 

poor structural similarity to the training set molecules in the dataset used to generate the 

models.  

The identification of the likely chemical scaffolds of ‘out-of-model’ samples was more 

challenging because they exhibited structural similarity to a number of superclusters/ clusters, 

which increases the likelihood of a misclassification.  Additionally, the overlap between NPS 

and non-NPS may result in false negatives, where NPS samples contain large amounts of these 

cutting agents and adulterants. Greatest overlaps were observed between training NPS and 

adulterants of the same chemical class, such as anaesthetics. This is understandable given that 

their structural similarities would give rise to similar Raman spectra.  

By comparing the general limitations of the models developed in this thesis with the marketed 

library and mixtures algorithm deployed on the ProgenyTM platform, the following could be 

observed: with a very limited NPS library (n = 2) corresponding to claimed NPS on the 

products’ labels, and by using the in-built mixtures algorithm, 100 % of the NPS reference 

standards correlated to themselves in the library (Table 2.12). However, the NPS content in 

only 6 out of 7 NPS products were identified (86 %) (Table 2.15). This is because of the absence 

of the 7th unclaimed NPS from the instrument’s library. Furthermore, by populating the library 

with reference spectra of representative NPSs, test and ‘OOM’ NPS (n = 74), the NPS content 

in only 10 out of 25 NPS products were identified (40 %) (Table 6.2). 

In contrast, using the models developed via a combination of similarity studies, chemometrics 

and a training set comprising the reference spectra of representative NPSs, test and ‘OOM’ 

NPS (n=74), 89 % of the test and ‘OOM’ NPS reference standards were identified and 53 % 

of the NPS products were aligned with their EMCDDA/EDND classes and/ or assigned to their 

anticipated superclusters. When the reference spectra of 22 cutting agents and adulterants were 

added to the training set, only 42 % of NPS internet products were aligned with members of 

their superclusters because samples with low amounts of NPS correlated to cutting agents. 
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From the above, it could be observed, that the developed models resulted in similar findings to 

that of the proprietary mixtures algorithm deployed on ProgenyTM. However, the advantage of 

the developed models is their ability to suggest the chemical scaffolds of newly emerging NPS 

even if they are absent from the library.  

Overall results from the PCA modelling revealed the challenges faced with identifying NPS in 

complex ‘street-like’ mixtures and the limitations of the chemometric techniques used 

including a high dependence on the minimum common substructures between training samples 

used to build the initial clustering model by Zloh et al. [204]. These challenges were 

exacerbated by the difficulty of obtaining good quality Raman spectra for NPS internet samples 

using a handheld platform, which may have added to problems for complex mixtures. This was 

compounded by the poor sensitivity of the 1064 nm laser. However, despite the limitations, the 

technique used enabled the extraction of Raman signals via data reduction and identification 

of important patterns for classification of NPS out of noisy and corrupt data. 

The overall aims and objectives of this work were met. This work has potentially significant 

practical implications with respect to improving the rapid, non-contact, non-destructive 

identification of NPS in solid mixtures in the field, in particular by first responders, front-line 

staff in emergency settings, customs and border control, forensic officers and researchers. This 

work has highlighted the successes and challenges in the identification of these mixtures using 

Raman spectroscopy including the strengths and limitations of bench-top versus hand-held 

instruments and different in-built detection and classification algorithms.  

Implications for practical use 

The proposed step-wise pre-processing protocols (Chapter 4) is designed to assist stakeholders 

in extracting Raman information from noisy complex Raman data. Automated protocols 

including pre-processing of Raman spectra in combination with a ‘representative’ NPS Raman 

database would be of paramount importance for first responders as it may potentially assist in 

the indication of the chemical scaffolds of an ‘unknown’ NPS. This may, in turn, be very useful 

for front-line healthcare professionals in informing decision making in emergency situations. 

It can also be useful for manufacturers of these instruments as they may financially benefit 

from it if the pre-processing method and the ‘representative’ Raman database were transferred 

onto/ deployed on a handheld platform equipped with a 1064 nm laser λex. 
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Also, NPS have been shown to be incorporated in illicit drug products and unintentionally 

consumed [38]. Therefore, it is indispensable to be able to screen these products for NPS, 

adulterant and cutting agent content in music festivals and nightclubs in order gain the 

understanding of the current patterns and trends of drug misuse, changes to the drug market, 

inform treatment decision-making if needed and inform law enforcement on potential supply 

chains. It is crucially important for clinicians to understand prevalent trends particularly in 

those who are resisting or not responding to abstinence treatment. 

NPS are also often undetected using common drug testing kits, and, therefore are preferred for 

users who undergo regular drug check such as for those among the military personnel, 

individuals in jail or those in mental health units [64]. Therefore, the proposed method can be 

used as a prototype screening protocol to overcome the limitations of the current drug testing 

kits if a suspect sample is seized. There is no doubt that the wide chemical diversity, patterns 

of use and toxicity profiles of NPS, samples’ complexity, and the current limitations of 

detection kits require varied interventions and harm reductions techniques that are complex to 

implement. Therefore, preliminary classification of emerging NPS can be considered as an 

invaluable contribution to assist these interventions. 

Information presented herein (i.e. spectra and PCA plots) provide an important source of 

identification data for NPS reference standards as well as for adulterants and cutting agents 

commonly incorporated in street samples which could be exploited by the Home Office, police 

officers, investigators, personnel in the criminal justice system, forensic laboratories and 

stakeholders involved in the routine analysis of seized NPS, toxicologists, medical examiners 

and the training and education of healthcare professionals. The ‘representative’ Raman 

database accompanied with proposed supercluster/ cluster membership and EMCDDA/EDND 

classification could subsequently be deployed on handheld Raman platforms to create a 

searchable library for newly emerging NPS. 

Despite all the advances in analytical techniques used by forensic and toxicology scientists in 

order to enable the identification of NPS, the ‘unpredictability factor’ makes it very challenging 

to detect an ‘unknown’ substance [2]. This makes the developed models a significant 

contribution in this field for their ability to suggest the chemical scaffold of an ‘unknown’ 

molecule and its potential alignment with supercluster/ cluster or class of known NPS. This 

method may accelerate the screening of newly emerging NPS by assigning them to a 

supercluster/ cluster or class. This, in turn could assist in informing law enforcement and 
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treatment decision-making. Ideally, this would suggest the need for a full characterisation of 

the suspected sample in a forensic lab. 

Future Work 

In view of the misclassification of NPS internet mixtures and false positives engendered by the 

complex nature of these mixtures, the poor S/N and intense fluorescent background, future 

work should focus on the optimisation of the pre-processing of Raman data obtained with poor 

resolution handheld Raman instruments. Future work should also focus on the use of PCA in 

conjunction with machine learning techniques such as SVM and ANN, which may, in turn 

improve the identification of newly emerging NPS. Linear SVM could be applied to screen 

whether a confiscated mixture (powder or tablet) contains an NPS or not. This could be 

optimised by testing the ‘unknown’ mixture against the ‘representative’ NPS Raman database. 

The use of ANN may be more successful if the input neurones were trained using the 

‘representative’ NPS Raman database. Since ANN works by identifying patterns in noisy 

corrupt data, it may perform well with noisy corrupt Raman spectra of internet complex 

mixtures. Both SVM and PCR could be investigated to give numerical accuracy to NPS 

classification. Independent component analysis (ICA), known as a ‘blind source separation’ is 

another method that could be used to filter off the patterns related to a specific NPS in a 

complex mixtures [292]. 

A current limitation of the supervised PCA methods is their limited ability of classifying 

diverse datasets comprising a large number of classes. Hence, there is a need to apply 

classification algorithms such as SIMCA analysis in order to assign class membership of 

clusters, define class boundaries and distinguish between closely related classes (e.g. 

crystallising and corresponding non-crystallising substances [165]), enable the assignment of 

cluster numbers and concentration limitations [293]. This in turn will enable the theoretical 

contribution of this work to be developed further for in-field detection of NPS. SIMCA allows 

an optimum data reduction by calculating a PCA for each group and producing a model from 

the combined PCs [178]. SIMCA also allows the identification of outliers at certain confidence 

limits and the evaluation of the distribution of data. Therefore, future work will include SIMCA 

analysis in order to measure the ‘Mahalanobis distance’ between ‘unknown’ samples and the 

multivariate centroid of the variables using the scores of the retained PCs and assign ‘unknown’ 

samples to pre-defined classes  [184, 194, 195].  
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Quantitative methods using PCR and partial least squares regression (PLSR) may be employed 

to determine the NPS amounts in complex mixtures. However, ‘design of experiments (DoE)’ 

may be employed to optimise the efficiency of the experiments to be conducted. In this thesis, 

the ‘representative’ database was based on selecting ‘representative NPS with maximum 

structural similarity to others in their cluster (medoids), but maximum dissimilarity to members 

of other clusters. Other chemometric techniques employing different parameters such as 

different molecular moieties and properties could be used to improve prediction selectivity. 

Also, further work needs to be done to improve in-built algorithms on handheld Raman 

instruments to match the rapid explosion of NPS.  

In this work, limitations due to the instruments employed in the studies i.e. laser spot sizes, 

laser penetration depth, etc. may have had a direct impact on the power of the statistical 

sampling. In Chapters 5 and 6, the number of measurements taken per sample coupled with the 

random selection of sampling was evaluated and optimised such that the analysis time was 

considered and the robustness of the PCA models was not compromised. In future work, the 

power of the statistical sampling should be considered in order to ensure that the combined 

results for all measurements per street sample are representative of the constituents of the 

sample.   

Future work may also include optimising the use of exploratory PCA for its ability to 

discriminate between NPS, adulterants and cutting agents and also between NPS salts by 

individually evaluating each class or supercluster previously described in this thesis. This could 

be beneficial for law enforcement and forensic examiners to inform them on supply chains, 

common origins of NPS batches and new patterns/ trends in the NPS market. Further work 

needs to be done to improve the model on a handheld platform with reduced number of 

variables and low detector sensitivity. 

The last decade has witnessed dramatic changes to the NPS market at a local and international 

level. Therefore, information sharing and dissemination of findings with our global partners, 

researchers, forensic scientists, law enforcement agents, customs and border control agents, 

personnel of the criminal justice system and emergency departments is crucial.
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10. Appendices 

10.1. Appendix A – Chapter 2 

Table A2.1: Cutting agents and adulterants analysed in this study 

Name Supplier Batch 

Number 

Adulterants 

Benzocaine (BEN) Sigma-Aldrich (Dorset, UK) SLBB1067V 

Caffeine anhydrous (CAF) 

Fluka Analytical (Dorset, 

UK) 1428211V 

Diltiazem HCl (DIL)  Medicines Testing Lab (UK)  N/A 

Lidocaine HCl (LID) Sigma-Aldrich (Dorset, UK) 050M0098V 

Paracetamol (PAR) Sigma-Aldrich (Dorset, UK) SLBB2780V 

Phenacetin (PHE) Sigma-Aldrich (Dorset, UK) STBB2177V 

Procaine HCl (PRO) Sigma-Aldrich (Dorset, UK) STBB9655V 

Teophylline HBr (THEO) Sigma-Aldrich (Dorset, UK) 120M0211V 

Cutting agents 

α-lactose monohydrate (LAC) Sigma-Aldrich (Dorset, UK) SLBJ4979V 

α-D-glucose, anhydrous 96 % (GLU) Sigma-Aldrich (Dorset, UK) STBC9352V 

Alginic acid sodium salt (ALG) Sigma-Aldrich (Dorset, UK) 

MKBP7317

V 

Calcium carbonate (CaCO3) Sigma-Aldrich (Dorset, UK) 071M0073V 

Creatine monohydrate (CRE) Sigma-Aldrich (Dorset, UK) 

SLBH1411

V 

Dextrose monohydrate (DEX) Sigma-Aldrich (Dorset, UK) 011M0083V 

D-Mannitol (MAN) Sigma-Aldrich (Dorset, UK) 

WXBC0281

V 

L (+) - Glutamic acid monosodium salt 

monohydrate (GLUT) 

Acros Organics (Geel, 

Belgium) A0363200 

L-Tyrosine (L-TYR) Sigma-Aldrich (Dorset, UK) 

BCBF4244

V 

Magnesium stearate (MgS)  Sigma-Aldrich (Dorset, UK)  - 

Maize Starch EP (STA) 

J. M. Loveridge Ltd 

(Andover, UK) BN K363 

Microcrystalline cellulose (MCC) Sigma-Aldrich (Dorset, UK) 

MKBH4403

V 

Niacinamide (Nicotinamide) (NIA) Sigma-Aldrich (Dorset, UK) 031M0198V 

Sucrose (SUC) Sigma-Aldrich (Dorset, UK) SLBF7618V 

Talc (Hydrous magnesium silicate) (TAL) Sigma-Aldrich (Dorset, UK) 

MKBS2607

V 

Taurine (TAU) Sigma-Aldrich (Dorset, UK) 1419568V 
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10.2. Appendix B – Chapter 3 

Table A3.1: Details of websites accessed to purchase the NPS products 

Website code Websites 

1 www.brc-finechemicalc.com 

2 www.buyanychem.com/rearch-chemicals 

3 www.benzo_fury.me.uk  

4 www.chem_shop.co.uk 

5 www.rc-lab.co.uk 

6 www.chemicalwire.com  

7 www.buyresearchchemicals.co.uk/buy-mdai.html  

8 www.buckledbonzi.co.uk 

9 www.herbalhighs.co.uk 

10 www.highstore.net 

11 www.acechem.com 

12 www.elegalhighs.com 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

http://www.brc-finechemicalc.com/
http://www.buyanychem.com/rearch_chemicals
http://www.benzo_fury.me.uk/
http://www.chem_shop.co.uk/
http://www.rc-lab.co.uk/
http://www.chemicalwire.com/
http://www.buyresearchchemicals.co.uk/buy-mdai.html
http://www.buckledbonzi.co.uk/
http://www.herbalhighs.co.uk/
http://www.highstore.net/
http://www.acechem.com/
http://www.elegalhighs.com/


 

326 

 

10.3. Appendix C – Chapter 4  

Raman spectra of BEN, CAF, CRE and LAC (WiRE 3.4). 
 

 

Figure A4.1: An example of a BEN Raman spectrum (WiRE 3.4) 

 

               

Figure A4.2: An example of a CAF Raman spectrum (WiRE 3.4) 

 

Figure A4.3: An example of a CRE Raman spectrum (WiRE 3.4) 
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Figure A4.4: An example of a LAC Raman spectrum (WiRE 3.4) 
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10.4. Appendix D – Chapter 6 

Table A6.1: The chemical structures of cutting agents/ adulterants analysed in this Chapter 
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Table A6.2: Summary of GC-MS method parameters used in the qualitative analysis of NPS internet products1 

Sample ID GC-MS Method Parameters 

Injector Column Temperature Programme 

Product No. Sample name Injector To Injection mode Flow (ml min-1) Temperature (oC) Rate (oC/min) Hold (min) Total (min) 

P1             

P2 

2-AI                          

2-AI 

200 Splitless 1.5 70 0 1 1 

280 15 2 17 

310 20 2 20.5 

P3             

P4              

P5 

AB-FUBINACA         

AB-PINACA          

AB-PINACA 

250 Splitless 1 160 0 1 1 

280 15 2 11 

310 20 2 14.5 

320 20 3 18 

P6                

P7             

P8             

P9 

Etizolam       

Etizolam                      

Etizolam                 

Etizolam 

275 1 in 100 1   

50 0 2 2 

300 15 5 28.67 

  

P10            

P11          

P12         

P13         

P14            

P15 

Flubromazepam                       

Flubromazepam                 

Flubromazepam                        

Flubromazepam                      

Flubromazepam                      

Flubromazepam 

220 Splitless 1.5   

150 0 3 3 

250 15 1 10.67 

310 20 4 17.67 

  

P16             

P17  

MDAI                           

MDAI 

200 Splitless 1.2 90 0 1 1 

250 15 2 13.67 

310 25 3 19.07 

P18          

P19 

MPA                        

MPA         

275 1 in 100 1 50 0 2 2 

300 15 5 28.67 

P20 N-Me-2-AI 200 Splitless 1.2 90 0 1 1 

250 15 2 13.67 

310 25 3 19.07 

P21            

P22             

P23           

P24 

Pink Champagnes                  

Pink Champagnes                     

Pink Champagnes                  

Magic Beans 

275 1 in 100 1   

50 0 2 2 

300 15 5 28.67 

  

P25 THJ-018 250 Splitless 1 160 0 1 1 

280 15 2 11 

310 20 2 14.5 

320 20 3 18 
1GC-MS experiments were conducted under my supervision by Miss V. Guarino, a visiting Erasmus student  



 

330 

 

Table A6.3: Summary of HPLC method parameters used for NPS internet products 

Sample ID HPLC method parameters 

Product 

No. 

Sample name Absorption 

wavelength      

(nm) 

Sample solution 

concentration  

(µg mL-1) 

Flow rate 

(mL min-1) 

Injection volume 

(µL) 

Mobile Phase  

A (%) 

Mobile Phase  

B (%) 

LC run time 

(min.) 

P1 2-AI 210 40 1.0 15 OAB2 (90) ACN (10) 3 

P2 2-AI 210 40 1.0 15 OAB (90) ACN (10) 3 

P3 AB-FUBINACA 210 40 1.2 10 OAB (40) ACN (60) 4 

P4 AB-PINACA 210 40 1.2 5 OAB (40) ACN (60) 4 

P5 AB-PINACA 210 40 1.2 5 OAB (40) ACN (60) 4 

P6 Etizolam 205 40 1.0 5 OAB (60) ACN (40) 5 

P7 Etizolam 205 40 1.0 5 OAB (60) ACN (40) 5 

P8 Etizolam 205 40 1.0 5 OAB (60) ACN (40) 5 

P9 Etizolam 205 40 1.0 5 OAB (60) ACN (40) 5 

P10 Flubromazepam 227 40 1.0 5 OAB (40) ACN (60) 4 

P11 Flubromazepam 227 40 1.0 5 OAB (40) ACN (60) 4 

P12 Flubromazepam 227 40 1.0 5 OAB (40) ACN (60) 4 

P13 Flubromazepam 227 40 1.0 5 OAB (40) ACN (60) 4 

P14 Flubromazepam 227 40 1.0 5 OAB (40) ACN (60) 4 

P15 Flubromazepam 227 40 1.0 5 OAB (40) ACN (60) 4 

P16 MDAI 210 40 1.5 15 OAB (90) ACN (10) 5 

P17 MDAI 210 40 1.5 15 OAB (90) ACN (10) 5 

P18 MPA 233 40 1.5 15 OAB (90) ACN (10) 4 

P19 MPA 233 40 1.5 15 OAB (90) ACN (10) 4 

P20 N-Me-2-AI 210 40 1.5 5 OAB (90) ACN (10) 3 

P21 Pink Champagnes 210 80 1.5 5 OAB (90) ACN (10) 3 

P22 Pink Champagnes 210 80 1.5 15 OAB (90) ACN (10) 3 

P23 Pink Champagnes 210 80 1.5 15 OAB (90) ACN (10) 3 

P24 Magic beans 210 80 1.5 15 OAB (90) ACN (10) 3 

P25 THJ-018 216 40 1.5 5 OAB (10) ACN (90) 3 
1HPLC experiments were conducted under my supervision by Miss V. Guarino, a visiting Erasmus student; 2OAB: Orthophosphoric aqueous buffer 
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