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ABSTRACT

We present a deep near-infrared (NIR; J, H, and K bands) photometric catalogue of sources
from the Parkes H1 Zone of Avoidance (HIZOA) survey, which forms the basis for an inves-
tigation of the matter distribution in the Zone of Avoidance. Observations were conducted
between 2006 and 2013 using the Infrared Survey Facility (IRSF), a 1.4-m telescope situated
at the South African Astronomical Observatory site in Sutherland. The images cover all 1108
HIZOA detections and yield 915 galaxies. An additional 105 bright 2MASS galaxies in the
southern ZOA were imaged with the IRSF, resulting in 129 galaxies. The average K;-band
seeing and sky background for the survey are 1.38 arcsec and 20.1 mag, respectively. The
detection rate as a function of stellar density and dust extinction is found to depend mainly on
the H1mass of the H1 detected galaxies, which in principal correlates with the NIR brightness
of the spiral galaxies. The measured isophotal magnitudes are of sufficient accuracy (errors
~0.02 mag) to be used in a Tully—Fisher analysis. In the final NIR catalogue, 285 galaxies
have both IRSF and 2MASS photometry (180 HIZOA plus 105 bright 2MASX galaxies).
The K;-band isophotal magnitudes presented in this paper agree, within the uncertainties,
with those reported in the 2MASX catalogue. Another 30 galaxies, from the HIZOA northern
extension, are also covered by UKIDSS Galactic Plane Survey (GPS) images, which are one
magnitude deeper than our IRSF images. A modified version of our photometry pipeline was
used to derive the photometric parameters of these UKIDSS galaxies. Good agreement was
found between the respective K-band isophotal magnitudes. These comparisons confirm the
robustness of the isophotal parameters and demonstrate that the IRSF images do not suffer
from foreground contamination, after star removal, nor underestimate the isophotal fluxes of
ZoA galaxies.

Key words: galaxies: distances and redshifts—galaxies: photometry —galaxies: spiral—
cosmology: observations —large-scale structure of Universe —infrared: galaxies.

that cross the ZOA, such as the Perseus-Pisces Supercluster (PPS;

1 INTRODUCTION Einasto, Joeveer & Saar 1980; Giovanelli & Haynes 1982; Focardi,

The Milky Way obscures the background extragalactic sky through
dust extinction, notably within 5° of the Galactic Plane, and stellar
confusion. This results in the so-called Zone of Avoidance (ZOA),
literally meaning that the region is devoid of galaxies, and accord-
ingly, extragalactic astronomers avoid working in this region of
the sky. This has led to a gap in our understanding of large-scale
structure (LSS) in the ZOA, especially the conspicuous features
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Marano & Vettolani 1984; Hauschildt 1987), the Great Attractor
(GA; Dressler et al. 1987; Lynden-Bell et al. 1988; Woudt, Kraan-
Korteweg & Fairall 1999) and the Local Void (LV; Tully & Fisher
1987; Kraan-Korteweg et al. 2008).

Galaxy peculiar velocities, i.e. deviations from the isotropic Hub-
ble expansion, are sensitive to LSS such as the GA (Dressler et al.
1987) and can be used alongside redshift surveys for cosmography
and to study the dynamics of the Local Group (LG), cosmic flow
fields, and the origin of the observed dipole in the cosmic microwave
background (CMB) (e.g. Masters et al. 2006; Springob et al. 2007;

© 2016 The Authors

Published by Oxford University Press on behalf of the Royal Astronomical Society


mailto:khaled@ast.uct.ac.za

Masters, Springob & Huchra 2008; Magoulas et al. 2012; Courtois
et al. 2013; Hong et al. 2014; Mutabazi et al. 2014; Springob et al.
2014; Tully et al. 2014; Carrick et al. 2015; Springob et al. 2016;
Tully, Courtois & Sorce 2016). The use of infrared wavelengths in
these studies (Masters et al. 2008; Lagattuta et al. 2013; Sorce et al.
2013, 2014; Neill et al. 2014) has minimized the impact of the ZOA,
but the most obscured part of the ZOA (|b| < 5°) remains mostly
unexplored.

This project aims to derive the peculiar velocities of galaxies in
the ZOA to supplement the above studies and provide a truly all-
sky peculiar velocity survey. In this series of papers, we aim to map
most of the dynamically important structures in the ZOA such as
the GA and LV in greater detail. The requirements to pursue such a
project are: (i) a calibrated and unbiased Tully—Fisher (TF) relation
to be used as the global template relation; (ii) 21 cm observations of
spiral galaxies in the ZOA from which to extract the redshift and the
rotational velocity of galaxies; (iii) follow-up NIR imaging of the
H1sources to measure the apparent magnitude of each galaxy. With
these three ingredients, the absolute magnitude can be derived using
the template relation given the rotational velocity. The distance to
each galaxy can then be calculated independent of the redshift using
the distance modulus.

The TF template is constructed by Said, Kraan-Korteweg &
Jarrett (2015) using the isophotal magnitudes of the 888 spiral galax-
ies from Masters et al. (2008). The advantage of using isophotal and
not total magnitudes is twofold. First, they are more robust and can
be measured easily both in and out of the ZOA. Secondly, they are
consistent between different surveys which means they can be used
to combine data from different data sets without corrections (see
fig. 1 in Said et al. 2015). A correction model for the change in the
shape of galaxies due to dust extinction is also presented in Said
et al. (2015). Said et al. (2016) presents the second element for this
ZOA peculiar velocity survey which is the 21 cm H 1-line spectra of
inclined, (b/a)° < 0.5, spiral galaxies. The average signal-to-noise
ratio for this H1 survey was 14.7 which is adequate for TF stud-
ies. Five different types of line-widths are presented to select the
most robust one. Conversions between these widths are derived to
allow combination of data from different surveys. This third paper
is dedicated to systematic NIR follow-up observations of all galax-
ies in the HIZOA catalogue (HIZOA-S; Staveley-Smith et al. 2016,
HIZOA-N; Donley et al. 2005, GB; Kraan-Korteweg et al. 2008).

Atlow Galactic latitude NIR wavelengths are preferred over opti-
cal wavelengths because of the ability of NIR radiation to penetrate
through dust. The NIR also provides a more stable indicator of to-
tal stellar mass (Kraan-Korteweg & Lahav 2000; Kraan-Korteweg
2005). In the last few decades many surveys have used the NIR to
unveil the LSS hidden behind the Milky Way. The 2MASS extended
source catalogue (2MASX) contains galaxies that have never been
seen before in the ZOA (Jarrett et al. 2000). Jarrett et al. (2000)
present new extended sources in the ZOA at Galactic longitude
between 40° and 70°. Deeper NIR observations have been used
specifically for dedicated surveys in the ZOA. Nagayama et al.
(2004) used the same instrument that we have used in this work to
conduct an NIR survey around the radio galaxy PKS1343-601. They
detected 19 galaxies and another 38 galaxy candidates of which only
three were known previously. Woudt et al. (2005) also used the IRSF
to obtain deep photometry for 76 galaxies which was used in the
determination of the distance to the Norma cluster. Nagayama et al.
(2006) used a deep NIR survey of a luminous cluster in the GA
region and identified 111 galaxy candidates. Longer wavelengths
are also used in the ZOA; Jarrett et al. (2007) used mid-infrared
wavelengths to unveil two galaxies in the GA region. A large deep
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NIR survey of the Norma Wall (NWS: Riad 2010; Riad, Kraan-
Korteweg & Woudt 2010; Kraan-Korteweg et al. 2011; Riad et al..
in preparation) was also conducted with the IRSF. This survey re-
sulted in a catalogue of 4360 galaxies with completeness limits of
15.6, 15.3 and 14.8 mag in the J, H, and K; bands, respectively.
Given the success of these surveys, we started a follow-up NIR
survey of the HIZOA galaxies in the southern ZOA using the same
telescope and instrument (IRSF).

This paper is organized as follows. Section 2 discusses the ob-
servations, calibration and observatory site conditions. The final
extended source catalogue and parameter characterization are pre-
sented in Section 3. Completeness as a function of dust extinction
and stellar density is discussed in detail in Section 4. Comparison
of the resulting photometry with the 2MASS and UKIDSS surveys
is presented in Section 5. We summarize our results in Section 6.
All magnitudes are quoted in the Vega System.

2 OBSERVATIONS

Deep NIR follow-up observations of all HIZOA galaxies were con-
ducted with the Infrared Survey Facility (IRSF), a 1.4-m telescope
situated at the South African Astronomical Observatory (SAAO)
site in Sutherland, South Africa. The Simultaneous three-colour
(J, H, and K;) Infrared Imager for Unbiased Survey (SIRIUS;
Nagayama et al. 2003) camera on the IRSF has a field of view
of 7.7 x 7.7 arcmin? (ideally suited for HIZOA follow-up given the
4 arcmin positional accuracy of the H 1 detections) with a pixel scale
of 0.45 arcsec pixel ™! compared to 2.0 arcsec pixel ™' for 2MASS
(Skrutskie et al. 2006). A pilot project and the first results of the
catalogue were published by Williams, Kraan-Korteweg & Woudt
(2014) who presented photometry for 557 galaxies in the HIZOA
catalogue with cz < 6000 km s~'. For completion we have included
their 578 fields in the current study.

An additional 105 2MASX fields in the southern ZOA but not in
the HIZOA survey were also observed. The H1 spectral line data for
these 105 2MASX fields are from Parkes observations and available
either from the 2MASS TF Survey (Hong et al. 2013) or from Said
et al. (in preparation). These additional galaxies are all the bright
(K; = 11.25 mag), edge-on (b/a = 0.5) 2MASX galaxies in the
southern ZOA (5° < |b| < 10°).

2.1 Data acquisition

Data acquisition started in 2006 and was completed by 2013, result-
ing in deep NIR imaging of all the HIZOA targets. The images have
exposure times of 10 min, and are 2 mag deeper than 2MASS in the
K;-band (Riad 2010). We used the dithering technique to overcome
the problem of faulty pixels in the NIR detector. We repeated a 24 s
exposure 25 times with a dithering step of 15 arcsec. This dithering
resulted in increasing the final image size to 8.6 x 8.6 arcmin’. A
total of 12 weeks were allocated to this project starting in 2009.
101 fields were observed between 2006 and 2008 as part of other
projects to test the feasibility of this project. Table 1 shows the ob-
servations, number of allocated weeks, number of fields observed
and the Observer In Charge (OIC). Substantial time was lost during
the 2009 and 2010 runs due to bad weather and cooling system
problems.

2.2 Data reduction and calibration

The primary data reduction, including dark frame subtrac-
tion, flat-field correction, sky-subtraction, dither combination and
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Table 1. IRSF observations and the Observer In Charge (OIC). OIC: Wendy
Williams (WW), Tom Mutabazi (TM) and Khaled Said (KS).

Year Month(s) Allocated weeks No. of fields OIC
2006-2008 101
2009 March/April 2 249 WwW
2009 March/April 2 67 wWw
2010 June/July 3 138 WWwW
2012 May 2 231 ™
2013 April 3 430 KS
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Figure 1. Distributions of the measured K-band seeing FWHM from 2006
to 2013.

astrometric and photometric calibration, was carried out using the
pipeline software for SIRIUS.!

2.3 Observatory site conditions and quality control

Figs 1 and 2 show the distributions of the K;-band seeing and the de-
viation of magnitude zero-point from the mean, respectively, for the
1229 observed fields as a function of observation date. An average
K;-band seeing of 1.38 arcsec and an average K -band magnitude
zero-point of 20.1 mag were found for the entire survey. These
values agree with those found for the Norma wall survey (Riad
2010; Kraan-Korteweg et al. 2011). Fig. 1 shows that 95 per cent
of the survey has seeing values below 2.0 arcsec. Fig. 2 shows that
85 per cent of the survey lies within &= 0.2 mag of the mean magni-
tude zero-point. While the deviations of magnitude zero-point from

! http://irsf-software.appspot.com/yas/nakajima/sirius.html
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Figure 2. Distributions of the K-band photometric zero-point magnitude
from 2006 to 2013.

the mean are not significant, Fig. 2 shows a clear trend that the sky
is getting brighter with time. All fields with either seeing or zero-
point magnitude outside of these two ranges were inspected visually
to check their image quality. Poor quality fields were re-observed
under photometric conditions.?

Fig. 3 shows one field that was re-observed, where the left-hand
panel shows the field observed under non-photometric conditions
and the right-hand panel shows that same field re-observed under
photometric conditions. The image on the left-hand side was taken
under a partially cloudy sky which affects both the seeing and
magnitude zero-point. The K -band seeing for the left-hand side
image is 2.6 arcsec. The K-band zero-point magnitude for the image
on the left-hand side was found to be 18.1 mag. In contrast, the
right-hand side image shows the field observed under photometric
conditions. The K-band seeing and zero-point magnitude for the
right-hand side image are 0.9 arcsec and 20.1 mag, respectively.
The counterpart of the HIZOA galaxy, J1624-45A, in this field
is an edge-on galaxy and is marked with the white ellipse in the
bottom-left corner of each image. This example demonstrates how
important photometric conditions are for this kind of survey. The
extent of the galaxy on the left-hand side is underestimated while
the real size of the galaxy is apparent in the right-hand image.

2 These poor fields were removed and replaced with the photometric-quality
ones for the final catalogue but we have made both FITS files available for
comparison purposes.
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Figure 3. K,-band photometric versus non-photometric images of the same field. Both images are 8.6 x 8.6 arcmin; the image on the left was observed under
non-photometric conditions while the image on the right was re-observed under photometric conditions. The K-band seeing and zero-point magnitude for the
image on the left are 2.6 arcsec and 18.1 mag, respectively, while the K;-band seeing and zero-point magnitude for the image on the right are 0.9 arcsec and

20.1 mag, respectively. Note also the increase in resolved stars in the right image.

3 FINAL EXTENDED SOURCE CATALOGUE

The procedures for source identification, star subtraction and pho-
tometry are described in detail by Williams et al. (2014). In this
section we will therefore only present the final extended source
catalogue. This catalogue contains photometry in the J, H, and K,
bands for 1044 galaxies. We divide the final catalogue into two sep-
arate catalogues, one for the HIZOA galaxies and the second for the
bright 2MASX galaxies, full catalogues are available electronically.
FITS files for the three bands are also available upon request. An
example of the catalogue is given here for the brightest 100 galaxies
in the catalogue.

3.1 NIR parametrization and catalogue

The main goal of this paper is to provide accurate NIR photometric
parameters for galaxies hidden behind the ZOA. These parameters
will be used in the forthcoming NIR TF analysis. In this section
we provide the required parameters. For consistency with Williams
et al. (2014), we employ the same methods and naming for the
whole survey as that described by Cutri et al. (2003). Table 2 and
Fig. 4 present the photometry for and the postage stamp images of
the brightest 100 galaxies in the catalogue, respectively, in order of
isophotal K, fiducial elliptical aperture magnitude. The catalogue
is presented in its entire form online. The NIR parameters listed in
the catalogue are as follows.

Column (1) — unique ZOA ID formed from sexigesimal coordi-
nates [ZOAhhmmss.ssst=ddmmss.ss].

Column (2) — HIZOA ID as reported in the HIZOA survey pub-
lications (Donley et al. 2005; Staveley-Smith et al., 2015; Kraan-
Korteweg et al., in preparation).’

31If the galaxy is not in the HIZOA catalogue, the 2MASX ID is provided
instead.

Column (3) — Survey name.

Columns (4 and 5) — Right Ascension (RA) and Declination
(Dec.) in the J2000.0 epoch.

Columns (6 and 7) — Galactic coordinates [degree].

Column (8) — J-band ellipticity (¢ = 1 — b/a) measured as the
mean value of the ellipticities of the ellipses fitted between the 1o
and 20, where o is the sky rms.

Column (9) — Isophotal Ky, fiducial elliptical aperture semi-
major axis [arcsec].

Columns (10-12) — J-, H-, and K,-band Ky fiducial elliptical
aperture magnitudes and associated errors [mag].

Columns (13-15) — J-, H-, and K-band central surface brightness
[mag arcsec™2].

Column (16) — E(B — V), Galactic extinction as reported by
Schlafly & Finkbeiner (2011).

Column (17) — SD, IRSF stellar density log(Ng, <14/ deg?) where
Nk, <14 is the number density of stars brighter than 14 mag in the
K, band.

3.2 Data presentation

Table 3 and Fig. 5 summarize the characteristic properties of the
NIR catalogue. In Table 3 we list the mean, maximum and minimum
for a number of parameters. These parameters are as follows:

(i) J-band ellipticity (€;)

(ii) Koo fiducial elliptical aperture semi-major axis (7, fg)

(iii) J-, H-, and K;-band K fiducial elliptical aperture magni-
tudes (Jx /. s Hioop,» a0d Kk ,,)

(iv) Galactic extinction as reported by Schlafly & Finkbeiner
(2011) (E(B — V)

(v) IRSF stellar density of stars brighter than 14 mag in the K;
band (SD)

MNRAS 462, 3386-3400 (2016)
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Deep NIR catalogue of the HIZOA galaxies 3393

Figure 4. Postage stamp images of the brightest 100 galaxies in the catalogue in order of isophotal Ky fiducial elliptical aperture magnitude. The colour
composites are generated in the standard fashion: blue — J band, green — H band, and red — K band.
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Figure 4 - continued
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Figure 4 - continued

Table 3. Summary of the characteristic properties of the catalogue.

Parameter Mean Max. Min.
€y 0.42 0.90 0.10
Koy, [arcsec] 15.57 136.08 0.51
JK 207, [Mag] 14.28 22.08 7.50
Hg s, [mag] 13.39 22.65 6.49
Kk 0, [mag] 13.02 23.02 6.09
E(B — V) [mag] 0.92 12.76 0.09
SD 3.95 5.32 3.28

Fig. 5 shows histograms of all parameters except E(B — V) and
stellar density which are discussed in detail in the next section as
part of the completeness. The top panels, A, B, and C, of Fig. 5
show the distributions in Galactic longitude, shape and size. Panel
A illustrates the success of this work in unveiling galaxies hidden
behind the MW especially in over-dense regions like Puppis and
the GA around 240° < [ < 270° and 300° < I < 330°, respectively.
The drop in the number of sources towards the Galactic bulge is
due to the LV (Kraan-Korteweg et al. 2008; Staveley-Smith et al.
2016). Panel B shows a fairly flat distribution of galaxy ellipticities,
which is consistent with the expectation of a random sample of disc
galaxies. However, for our final TF sample we use only edge-on
galaxies after applying the axial ratio correction from Said et al.
(2015). In panel C we plot a histogram of the distribution of the
K> fiducial elliptical aperture semi-major axis. Panel C shows that
only three galaxies in our sample have r,, , larger than 100 arcsec
and 21 galaxies are larger than 50 arcsec. The largest three galaxies
are J1514-53, 2MASX1514-464, and J0730-22 which have rg ,,,
of 136, 114 and 104 arcsec, respectively.

In panels D, E, and F of Fig. 5, we show histograms of the
J-, H-, and K;-band K, fiducial elliptical aperture magnitudes.
Based on the deep NIR survey of the Norma Wall (Riad 2010;
Kraan-Korteweg et al. 2011), which used the same instrument with
the same setup, we expect similar completeness limits of J° =
15.6, H° = 15.3, and K7 = 14.8 mag in the J, H, and K, bands,
respectively. However, these limits are only valid for Ax, < 1.0 mag
and log(N(x, 14)/deg?) < 4.71. Compared to other NIR surveys,
this IRSF survey is 1 mag deeper than 2MASS in the J band and
2 mag deeper in the K; band. Moreover, it is only 1 mag shallower
than the UKIDSS Galactic Plane Survey (GPS; Lucas et al. 2008)
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and VISTA Variables in the Via Lactea (VVV; Amores etal. 2012) in
the K band. In Section we present a full comparison with UKIDSS
GPS galaxies. The three panels (D, E, and F) of Fig. 5 show that
the detection rate drops rapidly for galaxies fainter than 16 mag.
However, this survey is not magnitude limited in any sense. Panel
F shows that our survey has 63 galaxies brighter than 10 mag.

4 COMPLETENESS

In this section we discuss the completeness as a function of dust ex-
tinction, stellar density and H1 mass. We divided the catalogue into
three sub-samples according to their logarithm H 1 mass reported by
Staveley-Smith et al. (2016). The first column in Fig. 6 shows galax-
ies with log My, [M@] > 9.5. The second column presents galaxies
within the range of 8.5 < log My, [M@] < 9.5. The third column
shows galaxies with log My [M@] < 8.5.

The top panels in Fig. 6 show the completeness as a function
of the IRSF stellar density of stars brighter than 14 mag in the
K band for the three sub-samples. The first two columns in the
top panel show that detection rate is 100 per cent for massive
galaxies (log My,[M@] > 8.5) in regions with stellar density of
log(Nk, <14 /deg2) < 4. This detection rate drops to 50 per cent for
regions with log(Ng, <14 /degz) > 4. In contrast, the third column
in the top panel shows that the detection rate of the least massive
galaxies (log My,[Mp] < 8.5)is 75 per cent complete in regions of
log(Nk, ~14/deg?) < 4 and only 30 per cent in regions with stellar
density of log(Nx, <14/deg?) > 4. Most of these least massive galax-
ies are dwarfs and will be excluded from the TF analysis because
they have the highest scatter in the TF relation.

Similar conclusions can be drawn from the bottom panels of Fig. 6
which show the completeness as a function of Galactic reddening
along the line of sight (Schlafly & Finkbeiner 2011). The first two
columns in the bottom panel show that the detection rate of the
massive galaxies is nearly 90 per cent in regions of E(B — V) <
1 mag (Ay < 3.1 mag). Furthermore, we can still detect massive
galaxies up to E(B — V) =7 mag (Ay = 21.7 mag). On the contrary,
the third column in the bottom panel shows that the detection of
the least massive galaxies is not complete anywhere, not even in
regions with E(B — V) < 1 mag (Ay < 3.1 mag).

We note that the measured photometric parameters (e.g, magni-
tude, size and shape) will be also affected by these trends and should
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Figure 5. Summary of the characteristic photometric properties of the catalogue. The top panels A, B, and C show the distribution as a function of Galactic
longitude, the shape, represented by (e,) the J-band ellipticity, and size, represented by (rky, ) K20 fiducial elliptical aperture semi-major axis, of 1044
galaxies in the catalogue. The bottom panels D, E, and F show the distributions of the Ky fiducial elliptical aperture magnitudes in the J, H, and K bands,

respectively.

be corrected before use in the TF analysis. Riad et al. (2010) discuss
the effect of dust extinction on magnitude and size of galaxies and
provide a correction model for extinction values up to Agx, = 3 mag
(Ay = 25 mag). While Said et al. (2015) simulate the effect of dust
extinction on the shape (ellipticity) of galaxies and also provide a
correction model to reproduce the intrinsic axial ratio from the ob-
served value up to extinction levels of A; = 3 mag (Ay = 11 mag).
These corrections will be used to correct the magnitudes, sizes and
shapes of galaxies before use in the TF analysis.

5 COUNTERPARTS AND COMPARISONS

In this section we discuss the counterparts of our survey. We present
the confirmed HIZOA counterparts then check for counterparts in
the 2MASX (Jarrett et al. 2000) and UKIDSS GPS (Lucas et al.
2008) surveys. We also present a comparison of our photometry
with both the shallower 2MASX and the deeper UKIDSS GPS
surveys.

5.1 HIZOA counterparts

The pixel size of the final HIZOA cubes of 4 arcmin in RA and
DEC makes the IRSF perfect for the follow-up observations given
its 8.6 x 8.6 arcmin?® field of view (after dithering). Centering
the NIR camera on the HIZOA position has a high probability of
locating the counterpart in the image. Thus, the detection of these
H1 sources depends only on their Hi mass and the stellar density
and dust extinction of the region in which they lie. Some NIR fields
contain more than one possible counterpart to the H1 galaxy and

therefore need more attention. All sources identified as H1sources in
the NIR fields were inspected by eye and information from their H1
profiles used to identify the H1 counterpart. A galaxy with double-
horn Hr profile was normally identified as an edge-on galaxy in
the NIR image, while a galaxy with a Gaussian profile was usually
identified with a face-on galaxy in the NIR image.

The final NIR catalogue contains counterpart galaxies to 674
sources from all three HIZOA catalogues (HIZOA-S; Staveley-
Smith et al. 2016, HIZOA-N; Donley et al. 2005, GB; Kraan-
Korteweg et al. 2008). A single counterpart was found for 527
galaxies, while more than one counterpart was found for 147
galaxies.

5.2 2MASS counterparts

Of the 1044 NIR galaxies in the final catalogue, 285 have counter-
parts in the 2MASX catalogue (180 HIZOA plus 105 2MASS). We
used a search radius of only 1 arcsec because of the high positional
accuracy of both 2MASS and the IRSF. In Fig. 7 we compare our
measured K;-band Ky fiducial elliptical aperture magnitudes with
the same parameter from the 2MASX catalogue (Jarrett et al. 2000,
2003) for these 285 galaxies.

Fig. 7 shows good agreement between the Ky measured for
this catalogue and the same parameter reported in the 2MASX
catalogue. Small systematic deviations are visible for both faint
galaxies (>14 mag) marked as blue circles and bright galaxies
(<9 mag) marked as red circles. The deviation for bright galaxies
is due to the difference of the pixel scale between these two instru-
ments. The IRSF has pixel scale of 0.45 arcsec pixel ™! compared to
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Figure 7. A comparison between the K;-band Ko fiducial elliptical aper-
ture magnitudes in this catalogue and the same parameter reported in the
2MASX catalogue.

2.0 arcsec pixel~! for the 2MASX survey. Small, faint stars super-
imposed on bright galaxies can not be resolved by 2MASX. Thus,
the magnitudes of these galaxies are over-estimated because these
stars are not subtracted from the image before measuring the pho-
tometry. The high resolution of the IRSF instrument leads to more

MNRAS 462, 3386-3400 (2016)

effective star-subtraction and thus more accurate photometry which
is vital when working in the ZOA. The deviation for faint galaxies is
a bias due to the completeness limit of 2MASX. The scatter should
to be on both sides of the one-to-one line but there are no 2MASX
galaxies fainter than 14 mag.

5.3 UKIDSS counterparts

The UKIDSS GPS (Lucas et al. 2008) overlaps with the HIZOA
survey in the northern extension published by Donley et al. (2005).
We used the publically accessible UKIDSS DRS plus data release
to search for counterparts. Given the high positional accuracy of
both the IRSF and UKIDSS GPS, the minimum available search
radius of 3 arcsec was used. We found 30 confirmed counterparts
in the UKIDSS GPS survey. A modified version of our IRSF pho-
tometry pipeline was used to consistently measure the photometric
parameters for these galaxies from the UKIDSS GPS images.

Fig. 8 shows the comparison between the K -band Ky, fiducial
elliptical aperture magnitudes measured from the IRSF images and
the same parameter measured from the UKIDSS GPS images. The
solid line in Fig. 8 is the one-to-one line. Excellent agreement
between the IRSF and UKIDSS GPS photometry can be seen. The
pixel scale for the UKIDSS GPS images is 0.4 arcsec pixel™!,
which is comparable to the IRSF pixel scale of 0.45 arcsec pixel ™.
The average seeing of 1.54 arcsec for the UKIDSS GPS images
used in this comparison is similar to that of 1.38 arcsec for the IRSF
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survey. This agreement shows that the IRSF imaging does not suffer
from foreground contamination, even after star removal, nor does it
adversely underestimate the isophotal flux of the ZOA galaxies. It
is satisfying to see this agreement between photometric parameters
because we plan to extend the current TF project to the northern
ZOA using the UKIDSS GPS survey along with H1 data from the
Nancay Radio Telescope.

6 SUMMARY

In this paper, we present the observations, data reduction and final
catalogue for 1044 NIR galaxies, in the J, H, and Ky bands, in
the southern ZOA. The observations were conducted between 2006
and 2013 using the IRSF, a 1.4-m telescope situated at the South
African Astronomical Observatory site in Sutherland. This resulted
in observations of all galaxies in the three blind systematic deep
HIZOA surveys (Donley et al. 2005; Kraan-Korteweg et al. 2008;
Staveley-Smith et al. 2016).

The quality of the images is discussed in detail. The survey has
an average seeing and zero-point magnitude of 1.38 arcsec and
20.1 mag in the K band, respectively. These values agree well with
those from previous surveys done with the same instrument (Riad
2010). The mean error of the measured isophotal magnitudes is
0.02 mag which is sufficient for the TF analysis.

The completeness as a function of stellar density and dust ex-
tinction was found to be dependent on the Hi mass of each
galaxy. The detection rate was found to be 100 per cent for
massive galaxies (log My,[Mp] > 8.5) in regions with stellar
density of log(Nk,-14/deg®) < 4. However, for small galaxies
(log My, [M@] < 8.5) the detection rate is 75 per cent in regions of
log(Nk, <14 /deg?) < 4. This detection rate drops to 50 per cent and
30 per cent for regions within log(Nx, -14/deg®) > 4 for massive
and small galaxies, respectively. The same conclusion was found
for the detection rate as a function of dust extinction. Although the
detection rate was high for massive galaxies in regions up to E(B —
V) =1 mag (A, = 3.1 mag), it was very low for small galaxies even
in regions with very low dust extinction.

We identified 674 galaxies in the final NIR catalogue that have
confirmed counterparts in the three HIZOA catalogues. Coun-
terparts from similar NIR surveys are presented. We found 285
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2MASX galaxies have counterparts in our final catalogue. How-
ever, only 30 galaxies in the UKIDSS Galactic Plane Survey have
counterparts in our final NIR catalogue because UKIDSS GPS only
overlaps with our survey in its northern extension.

A comparison of our IRSF pointed observations with the 2MASX
and UKIDSS GPS surveys was performed for these galaxies. We
found good agreement between the K -band K, fiducial elliptical
aperture magnitude presented in this paper and the same parameter
reported in the 2MASX catalogue. We detect only small deviations
for both faint galaxies (>14 mag) and bright galaxies (<9 mag).
The deviation for bright galaxies is due to the difference of the pixel
scale between IRSF and 2MASX instruments. While the deviation
for the faint galaxies is a bias due to the completeness limit of
2MASX.

Good agreement was found between the K;-band K, fiducial
elliptical aperture magnitudes measured from the IRSF data and the
UKIDSS GPS data. This agreement confirms that the IRSF images
are of equal quality to the UKIDSS GPS images, which are one
magnitude deeper. This indirectly implies that IRSF photometry
does not suffer from foreground contamination, after star removal,
nor does it underestimate the isophotal flux of the ZOA galaxies.
The measurement of UKIDSS photometry is regarded as a pilot
project of our TF survey in the northern ZOA.

This paper is the third in a series towards the full ZOA TF analysis.
The data presented here will be used with the recently calibrated
TF relation in Said et al. (2015) as well as the H1 data presented
in Said et al. (2016) to derive distances and peculiar velocities for
inclined spiral galaxies in the southern ZOA. An extension of this
project into the northern ZOA already started last year with the H1
observations of bright inclined 2MASS galaxies using the Nancay
Radio Telescope.
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