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Urban Big Data Centre

UK-wide data service for researchers who want to use big data
to address a range of urban challenges, both local and global.

Funded by the UK Economic and Social Research Council

Objectives

Develop novel solutions for using and sharing urban big data including the
infrastructure, tools and expertise to access such data;

Provide high quality training and outreach activities to equip researchers and
decision-makers with the skills and knowledge to use big data to inform public
policy debates and business innovations;

Deliver cutting-edge research to develop methods and tools to analyse urban
big data as well as exemplar projects on substantive urban issues.
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Plan for the talk

* |'ll be talking about one of my projects at the
UBDC

* |t's about one way in which we might get
different (better?) transport data



Some traditional data sources and limitations

* Surveys * Sensor networks

* Requires (expensive)

* Expensive _
infrastructure

* Small samples o o
* Lacks origin/destination

 Hard to complete .
info

* May lack detail * Not multimodal
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Some limitations BCkreess

Hard/expensive to access

Pre-processing of data can be a black box
May be tied to one mode

Spatial coverage may be patchy
Unknown biases



Smartphone data ey

* Smartphones offer the chance to collect rich
data

* |ndependent of operator

* Information for all travel modes

* Full door-to-door OD and route data
* Potentially real-time



Catch! Project  [Eerecd

The Catch! (citizens at the city’s heart!) app is a journey
olanning app

t passively collects GPS trajectories
t utilises the phones’ sensors to infer travel mode

Users get to contribute data to improve transport planning in
their city

Insight from the data can feed back into better journey
suggestions

Funded by Innovate UK




Catch! App

* Includes real time information on road and public
transport performance
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Catch! App
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< Journey options

Options
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From: Goodge Street
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From: Oxford Circus
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Arrive at 10:12 (36 minutes)

[ ]
lﬁ Walk for 13 minutes

From: 25 Mortimer Street, Fitzrovia
To: Goodge Street

36 min

09:49 (13 minutes)

e Northern to Kennington Station

From station: Goodge Street
To station: Embankment

9 District to Upminster

From station: Embankment
To station: Blackfriars

37 min

09:54 (5 minutes)

10:03 (3 minutes)

[ ]
‘F Walk for 9 minutes

From: Blackfriars
To: Carmelite Street, City

10:12 (9 minutes)
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B Plane
B Coar
B Metro
B Train
M Bus
B Cycle
= Walk

All journeys as '
if on one day

08:35

0 miles e
b v itol
M 197 miles R
582 miles
M 213 miles

B 122 miles
I 81 miles

Analysing infrastructure at a number
of levels and over long than normal
periods can highlight city-wide as
well as junction-specific traffic flow
issues

Morning rush hour in London



The Consortium ) njyersity

SMEs
* TravelAi, The Behaviourlist, Elgin Roadworks, Placr

 App development, data sources, citizen messaging, impact assessment

Research organisations

* University of Glasgow (UBDC), University of Leeds (CDRC), Transport
Systems Catapult

* Data cleaning, anonymization, aggregation, analysis

Local Authorities and cities
* Coventry, Ipswich, Leeds, Newcastle, Oxfordshire

* C(itizen access, sounding boards, pilots, data sources, advocates



Data from the app Rk

Person identifier

Latitude, longitude

Time

Inferred mode

Collected every 5 seconds (may change)



Processing 8 ey
* Begin by removing nonsensical points e.g.

points where the travel speed is unrealistic

* Assign the points onto the transport network
(map matching)



Map matching approaches

* Geometric approach
* node-to-node, node-to-link, curve-to-link
* Topological approach

* geometric approach plus connectivity of the road
network

* Advanced approaches
* Weight based or probabilistic algorithms



Mapillary, map matching
(mm) in Python

Multiple Hypothesis
Technigque (MHT) based
library in Python

GraphHopper in Java

Barefoot in Java

Four open source libraries

Combined Geometricand Selecting road links that are close to the sampling points,
Topological . connectivity of road network is of concern but only inside the points bounding box.

. Multiple route candidates are kept in memory when matching each sample point at a time,
connectivity, distance to samples and turning directions are of concern all the time,
. path is determined by consistent updating scores the candidates road segments.

Combined Geometric and
Topological

. Select candidate closest to GPS points,
probability is calculated based on their distance to samples,
sorting route by minimizing probabilities,

. assign points to road edges.

Advanced - probabilistic

. Probability lattice is calculated where
. emission probabilities are the chances of GPS points observed at the road segment are reduced when distance
increases.

. transition probabilities arethe chances of movement between road segments due to road connectivity at
consecutive times.

. the best path is calculated by Viterbi algorithm from the probability lattice.

Advanced -Hidden
Markov Model



MHT

Barefoot




Aggregation of output

Journey information can be aggregated at the link-

Can provide mode-specific counts of users/journeys

Can provide a very fine-grain temporal scale
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Semantic Trajectory ! Unlversuy

of Glasgow

* Another strand of our work deals with the semantic annotation of the GPS trajectories
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Alvares, L.O., Bogorny, V., Kuijpers, B., Macedo, J.A., Moelans, B. and Vaisman, A. (2007a), “A model for enriching trajectories with semantic geographical information”, Proceedings of the 15th ACM International Symposium
on Advances in Geographic Information Systems, ACM, Seattle, WA, pp. 1-8.



Models or Frameworks for Semantic Trajectory Development

Paradigm of Trajectory Data Mining (Y. Zheng)
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An advanced map-matching algorithm




Models or Frameworks for Semantic Trajectory Development

Weka-STPM — an open source toolkit

| GUI
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Models or Frameworks for Semantic Trajectory Development A Ulierciey J/T E‘-;:
Semantic Trajectory Platform Architecture in (Z. Yan et al) of Glasgow [RVSEEEE
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Unlver51ty

An Extra Data Anonymization Layer to Semantic Trajectory !
0 G angW R{ " Centre

Framework 1

* Current frameworks have no facilities for data anonymization and data sharing;

 Two main sources of contextual information: road network and geographical regions
or points through Map Matching and stop/move Detection and Annotation;

e QOur contribution:
Adding an extra data anonymization layer to the framework to better:
(a) Protect individual users’ privacy

(b) Develop a workflow including methods and algorithms towards such a goal using a
raster/grid based generalization structure.



An Extra Data Anonymization Layer

ta University
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[ Urban Planning ] [People Trajectory] [ Traffic Analysis ] [ Fleet Tracking ]
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Stay point detection is

* the set of geographical locations that an individual stays at for a certain amount of time (Li
et al., 2008)

Knowing the stay points allows us to
* infer activities that are conducted at different locations (Liao et al. 2007, Ye et al. 2009),
 Segment the trajectory with separate travel purposes (Zheng 2015)

* Find points where modes are switched e.g. walking to train (Zheng et al. 2008, , Patterson
et al. 2003, Liao et al. 2007, Gonzalez et al. 2008).



Stop Detection Methods
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Threshold based Approaches

taking GPS embedded or calculated parameters, such as speed, dwelling time, clustering density and ‘power-off’ gap
durations (Ashbrook and Starner 2003, Schuessler and Axhausen 2008, Srinivasan et al. 2008). Some problems:

* threshold settings are arbitrary and require additional information about the raw GPS data
* speed values are unreliable due to limitations of GPS
Density based Approaches

* spatial clustering algorithms (e.g. DBSCAN ) assumes there are a larger number of points clustered around significant
locations (Schoier and Borruso, 2011).

* The algorithm scans for a minimum number of tracking points (MinPts) around a randomly selected unvisited points
within a pre-specified search radius (eps) then further aggregates clusters if they are densely connected (Ester et al.
1996).

* Approaches such as Hinneburg and Keim (1998), Ankerst et al (1999) and recent work proposed by Campello et al (2013)

try to simplify the parameters

* Other proposed improvements include introducing temporal and other dimensions (Birant and Kut 2007, Hwang 2013].

ST-DBSCAN (Birant and Kut 2007), temporal DBSCAN (Hwang et al. 2013), interpolate missing GPS points (Hwang et al.
2017).

 DBSCAN is less sensitive to noise and can detect stops with arbitrary shapes. It doesn’t work well with large temporal
gaps, loss of GPS signal or movement inside a house




Stop Detection in Semantic Trajectory Mining
(Y. Zheng et al.)

Density based method: distance between each points
to all other points until the final distance and the
duration of the set of points exceeds the thresholds.
The algorithm loop and add points into the candidate
stop until the clusters is no longer expansible.

A supervise model: features including a) minimum
bounding ratio (MBR), average and centre distance to
road segments, duration and speed for last stop, b)
term frequency invers document frequency (tf-idf) for
Point of Interests, c) repetitive historical visits, to filter
out the clusters caused by slow speed.

The method is designed for taxi stop location
detection, therefore, it is transport network
constrained.
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Parking candidates detection

Algorithm 1: ParkingCandidateDetection

Input: A road network (G, a trajectory 7'r, distance threshold 8, time
threshold 7
Output: A sct of parking candidates P = { P}

1 i+ 0, M« |Tr|,P+ @.P+ @
2 while i < (M — 1) do
3 7+ i+ 1;flag «false:
4 while j < M do
5 dist <—Distance (p;,p;);
6 if dist < ¢ then j < j + 1:flag =true;
7 | else break;
8 if pj_1.t — p;.t > 7 and flag =true then
9 foreach point p € Tr[i,j)and p ¢ I do
10 | P.Add(p);/+ build a candidate
11 ifi = j — 1 then
12 P.Add(MB (P); P «+ &
/% add the minimum bounding box of P
into P
13 L i—i+1;
14 | returnP

%/




Stop Detection in Semantic Trajectory Mining

Weka-STPM

An Intersection based Stop and Move
Trajectories (IB-SMoT): approach where GPS
trajectories are spatially intersected with pre-
defined geographical file to look for durations
that spend inside each stop shape to determine a
stop.

A clustering-based Stop and Moves of
Trajectories (CB_SMoT) algorithm: based on
DBSCAN but clusters speed values of the
trajectory. By apply the algorithm, slower speed
part of trajectories are clustered. If stay duration

is greater than a threshold, stay point is detected.

A direction-based stops and Moves of
trajectories: similar direction change controlled
by a minimal direction change threshold, minimal
amount of stop duration is used to verify if the
direction change is noise or direction change
reaches its end.

sta| Universit
of Glasgov}\lf

&
OO

(a) Example of the IB-SMoT method, and (b) Example of the CB-SMoT method



Stop Detection in Semantic Trajectory Mining
Yan (et al. 2013)

A combined velocity-based and density
based methods.

For the velocity-based method, the
speed of successive GPS points are
compared with the minimum value of
observed speed on the by-passing
road segment and the average travel
speed of the user.

further compare the time duration of
the groupings of the stop episode
with a minimal stop time threshold to
eliminate congestion stops.

Since speed value is not always
reliable to indicate stop, the authors
apply another supplementary density-
based method to cover generic cases.

I congestion

|

R

I Urban
\/7 Big

University Big _
R{ " Centre

of Glasgow

Speed evolution during
a trajectory

Velocity-based stop identification

ALGORITHM 2: Velocity-based trajectory structure

Input: a raw trajectory Zr., = |p1, P2, - - -, Dl

Output: a structured trajectory 7, = {e;, es, ..., e,} where ¢; is a tagged trajectory

episode (stop S or move M)

1 begin
2 /* initialize: calculate GPS instant speed if needed */
L] ArrayList(x, ¥, t, tag) gpsList < getGPSList(7,,);
4 if no instant speed from GPS device then
5 | compute GPS instant speed s; for all p; = (x, y,¢) € gpsList;
6 /* episode annotation: tag each GPS point with ‘S’ or ‘M’ */
7 forall the p; = (x, y.t) € gpsList do
8 /I get dynamic A:f;ﬂ,d by Algorithm 1
9 A;‘,LM <« getDynamicAeed (P, 0bjid, 8);
10 /I tag GPS point as a stop point ‘S’ or a move point ‘M’
11 if instant speed s; < Ay, then
12 | tag current point p;(x, y, t) as a stop point ‘S’;
13 else
14 | tag current point p;(x, y, £) as a move point ‘M’;
15 /* compute episodes: grouping consecutive same tags*/
16 forall the consecutive points with the same tag ‘S’ do
17 /| compute stop episode
18 get the total time duration £, .. of these points;
19 if tipervar > T the minimal possible stop time then
20 stop <« (time from, time,,, center, bounding Rectangle);
21 Tar-(stop, *S"); /| add the stop episode
22 else
23 L change the ‘S’ tag to ‘M’ for all these points; // as “congestion”
24 forall the consecutive points with the same tag ‘M’ do
25 /I compute move episode
26 move < (SLOP from, StOPs, duration) | / create a move episode
27 Tewr (move, ‘NI'); / / add the move episode
28 | return the structured trajectory Zu»;

ALGORITHM 1: getDynamicA ..q (gpsPoint, obj, §)

input : gpsPoint p = (x, . t), moving object abjiz

output: dynamic speed threshold A,
1 get the average speed of this moving object objiy: object AvgSpeed;
2 if network-constrained trajectory then
3 get the average speed of the nearest road crossing to p: crossing AvgSpeed,
4 get the average speed of the map matched road segment of p: segment AvgSpeed;
5 positionAvgSpeed «— min{crossing AvgSpeed, segment AvgSpeed)
6 else
7
8

get the average speed of the cell that (x,y) belongs to: cell AvgSpeed;
| positionAvgSpeed « cell AvgSpeed

9 compute the dynamic speed threshold by Definition 4;
10 return Ag.q
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A ‘top-down’ raster sampling method which directly queries a set
of GPS records and samples those with significant differences

* Geographical attributed raster cells by nature impose spatial constrains
while we try to sample temporal and other attributes inferred from the
GPS records

* A data clustering method is performed at the final stage

* |t does not sampling the density of GPS records inside grid cells, but
rather information such as total dwelling time

Advantages:
* requires only the setting of the raster cell size
e fast and accurate (compared to a travel diary)
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Data: a day-to-day episodes of one user’s one month, from 2016-07-12 to 2016-8-10 which are cleaned,
and a travel dairy containing locations of stops in chronological order

Method:

o Top-down sampling method which depend on indicators including
(a) time difference between two consecutive GPS tuples,
(b) an rough estimation of single trip GPS dwelling time at a given cell,
(c) a dwelling time deducing the travel time observed before and after a given GPS record,
(d) an estimation by pulling actual dwelling time per visit.
o Natural Break (Jenks) with goodness of variance fit over 0.8, to cluster the cell values into
groups then select stops
o Two baseline methods:
(e) using thresholds to select stops with higher GPS dwelling time

(f) detecting stops less ‘bounded’ with the road network through a map matching process, are chosen as
baselines for comparison.
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Advantages: Limitations:

* enable multi-level data sharing while protect privacy; * extra processing time;

» facilitate stop detection and further stop/move

_ » stop/move segmentation is still a raster/vector combined method
segmentation;
. . . . . - i i
e support fast and semantic enriched GPS queries without top-down approach missing shorter stays
performing expensive spatial joins or intersections;  scalability needs to be investigated.
* ease further spatial/temporal activity pattern mining and [ \ i I }
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(Some) limitations of the project

Will the app be used by enough people
Will it drain people’s batteries?

The data are biased; but how? Will this
change over time?



Thank you for your attention.
Questions?
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