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ABSTRACT 

This work investigates molecular opacities under conditions 

appropriate to the atmospheres of late-type stars. Given a specified 

initial abundance of the chemical elements, the equations of atomic 

ionization and molecular dissociation are solved by iteration for 

various temperatures and densities. With the abundances of the atomic 

and molecular species so determined at a particular temperature and 

density, the continuous absorption coefficient due to a number of 

processes is first computed, then the molecular band absorption 

coefficient is computed line-by-line superimposed for diatomic and 

triatomic molecules considered separately. The band calculations for 

the diatomic molecules include all possible isotopic variants, but 

computing resources did not permit this degree of detail for triatomic 

molecules, nor diatomic and triatomic molecules to be considered 

together. These calculations are performed for a number of different 

temperatures and densities. 

The theory for calculating the spectral lines due to molecules is 

discussed in some detail, with various methods being investigated for 

computing opacities including the contributions from these spectral 

lines. With the computing resources available, the best method for 

the calculation of the opacity due to the molecular absorption is 

found to be that of opacity sampling, 

sampling is adequate. 

provided the frequency of 



From the results presented in this thesis, a number of important 

conclusions can be drawn. At low temperatures and high densities, 

pressure-induced absorption due to molecular hydrogen is an important 

source of continuous opacity. Isotopic variants of at least diatomic 

molecules pave to be considered in any calculations, as they can 

significantly affect the contribution that diatomic molecules make to 

the Rosseland mean opacities. 

major source of absorption. 

Also at low temperatures, water is a 

Finally, tables of some thermodynamic 

quantities for the ~olecular gas are 

temperatures and densities. 

given for a number of 
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1 INTRODUCTION 

1.1 Introduction to Stellar Opacities 

With the advent of modern high speed computers, it is now 

possible to perform detailed numerical integrations of the equations 

of stellar structure, enabling one to construct a large number of 

stellar models. Given a specified mass and chemical composition, one 

can determine the internal distribution of temperature, density and 

pressure, as well as the observable quantities of luminosity and 

effective temperature, leading to such important calculations as 

stellar evolution, pulsation etc. Hmvever, discrepancies between 

theory and observation are due to our approximations and lack of 

understanding of the input physics, such as nuclear reaction rates, 

equation of state and the opacity of the stellar material to 

radiation. It is the radiative opacity of stellar material which is 

the subject of this work. 

There are three basic modes of energy transport in stars, 

radiation, conduction and convection, where respectively energy is 

carried by photons, individual particles and large aggregates of 

particles, such that the total energy flux at a radial distance r is 

given by: 

(1.1.1) 
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where in each case the radial flow of energy is opposite to the 

temperature gradient. The radiative flux is given by: 

ciT 
oLl"' 

(1.1.2) 

where f is the density, Kr the radiative opacity and Kr the "radiative 

conductivi ty"; a similar expression can also be written for the 

conductive flux. The total conductivity is: 

K = K + K r c (1.1.3) 

and the total opacity is: 

= 1 + (1.1.4) 

where Kc is the thermal conductivity and J.C
c 

the "conductive opacity". 

Normally in stars, radiation and convection are the main forms of 

energy transport, with radiation in preference to convection if the 

logarithmic derivative of temperature with respect to pressure is 

subadiabatic, and convection in preference to radiation if the 

temperature gradient is superadiabatic. Conduction is normally 

unimportant except at high densities, particularly when electrons 

become degenerate. However, because the energy ultimately escapes 

into free space by radiation at the photosphere, whichever mechanisms 

of energy transport operate in the stellar interior, there will always 

be a region where the transport of radiation is important. 
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The opacity in equation (1.1.2), which from now on in this work 

is understood to be just the radiative opacity, is the absorption per 

unit mass, or mass absorption coefficient, which in the cgs units 

generally used is in cm2 per gm. However, it is often convenient to 

work with the absorption per unit volume, or volume absorption 

coefficient, "tvhic.h is in 
2 

cm per 3 
cm 

-1 
or cm Given the volume 

absorption coefficient, the mass absorption coefficient can simply be 

found by dividing by the density in gm per cm3 The opacity here is 

at a particular temperature and density, i.e. at some radial distance 

in the star, but it is a mean value, as the opacity is generally 

dependent on the frequency of the radiation. The mean which is used 

is the Rosseland mean (see chapter 3 and for example Cox and Giuli 

(1)), which is a weighted harmonic mean opacity; another mean which 

we also discuss is the Planck mean, which is a weighted arithmetic 

mean opacity. It should be noted that the Rosseland mean opacities 

that we calculate would be of limited use when the medium is optically 

thin, so the diffusion approximation does not hold, and where 

convection is important. Although one of these conditions is often 

fulfilled for the cases we are considering, the monochromatic 

opacities which we calculate in order to obtain the Rosseland mean 

opacities, are important for radiative transfer calculations. 

Over the vast range of temperatures and densities between the 

centre and photosphere of a star, many processes can contribute to the 

opacity, with many calculations having been done on this, see for 

example Cox and Stewart (2). 

( 
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1.2 Summary of this Work 

In this work, we consider opacities at various densities and 

o 
temperatures below about 6000 K, which for photospheres corresponds to 

stars of spectral type of the Sun and later. At these temperatures, 

the formation of molecules is important, and in this thesis we 

consider how we determine molecular abundances then how we attempt to 

compute their opacities. This work at the University of St.Andrews is 

part of a larger project by Dr.Carson to compute opacities over a 

greater range of conditions, for example Carson and Alexander (3) are 

working on temperatures from about 60000 K upwards where molecules can 

be neglected. 

In this thesis, we discuss in chapter 2 hmv we obtain the 

abundances of free atoms, ions and molecules, by the iteration of the 

simultaneous equations of atomic ionization and molecular 

dissociation, having first to compute the various equilibrilli~ 

constants, given the initial abundances of the chemical elements. We 

handle diatomic and triatomic molecules in quite a general way, and 

allow for all possible isotopic variations by specifying the isotopic 

abundances, when relevant, of the various elements. So far as is 

known, no other work has been done in such detail. These calculations 

are performed over a range of temperatures and densities, but with 

fixed abundances of the elements and their isotopes obtained from 

Cameron (4) from the Sun and meteorites, which should be 

characteristic of the primitive solar nebula, and we consider to be a 
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typical population I mixture. In principle, we could very easily 

consider different mixtures, 

here. 

but this possibility is not explored 

Having· obtained the converged abundances for a specified 

temperature and density, in chapter 3 we discuss how we compute 

contributions from the various continuous sources of opacity: electron 

scattering, Rayleigh scattering of atoms and some molecules, free-free 

and bound-free absorption of some negative atomic and molecular ions 

and some neutral atoms and molecules, and finally the pressure induced 

opacity of molecular hydrogen and the opacity due to quasi-molecular 

hydrogen. With these calculations, we establish the continuum as a 

foundation onto which we put the bound-bound absorption due to 

molecular bands. 

In chapters 4 and 5, we discuss the theory which v7e use to 

compute the bands of diatomic and triatomic molecules respectively_ 

Unfortunately, though the vibrational and rotational constants are 

often well known for diatomic molecules, the dipole moments or 

oscillator strengths that we need for computing the absolute band 

strengths, hence the strengths of individual spectral lines, are often 

only known upproximately or not at all. Though we have to make some 

approximations in computing the line positions and strengths, in many 

cases the ultimate accuracy is limited by the input data. It is hoped 

that at worst we can obtain the gross properties of bands or band 

systems. For triatomic molecules, the band spectra are much more 

complex with many millions of lines being present, and at least we 

have to use very approximate techniques to calculate these bands. 
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Although we do individual line-by-line calculations, we would be 

optimistic in hoping for anything much better than obtaining the 

approximate properties of bands. 

Once individual lines have been produced using the theory in the 

previous two chapters, in chapter 6, on which this work hinges, we 

discuss how we actually handle these lines in order to compute the 

opacity. Because generally there are a very large number of lines to 

handle, and they are very narrow, 

placed over the spectral regions 

i.e. millions of lines could be 

that we deal with without 

overlapping, we consider various techniques all based on splitting the 

spectrum into a large number of bins, in which we lose information on 

individual lines, but retain summed quantities such as line 

strengths. Though the spectrum is split into many bins, of the order 

of a few tens of thousands, it is manageable and we can sum over all 

bins to obtain a total Rosseland and Planck mean opacity. In stellar 

atmosphere calculations, the opacity is required at many frequency 

points, rather than just the total mean, and we have the option of 

storing the generated spectra on some medium such as disk or magnetic 

tape. 

In chapter 7 we put all the theory discussed previously into 

practice, and display and discuss the results of some numerical 

calculations. We consider not just final opacities at various 

temperatures and densities, but also some abundances and examples of 

some of the intermediate calculations, as ~vell as some tests and 

checks. In addition, some tables of the adiabatic exponents and some 

other thermodynamic quantities are also given. Finally in this 
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thesis, some additional discussions and tables not included in the 

main body of this work, are found in the appendices following the last 

chapter, together with the listing and documentation of the computer 

programs in the Molecular Stellar Opacity Program Volume, with further 

examples of results. 

We only consider spectral lines produced by molecules, though of 

course there will also be atomic lines which we neglect. However, 

particularly at the lower temperatures that we consider, the effect of 

including atomic lines would be expected to be completely negligible, 

as many of the atoms are combined into molecules, the spectrum can be 

very heavily blanketed by molecular bands, many of which will be in 

the infrared part of the spectrum where most of the energy lies, and 

where relatively few atomic lines are found. Many bands of molecules 

such as TiO, ZrO, YO and VO are observed in M-type stars, where even 

if a molecule has a relatively low abundance, if it absorbs in places 

in the spectrum where there is little other absorption, then its 

effect is all-important. In carbon stars, 

bands due to molecules such as C
2 

and CN. 

one would also observe 

On the other hand in 

early-type stars, molecules can be completely neglected from both the 

statistical mechanics calculations and as sources of opacity, the 

bound-bound absorption being due only to atoms and ions, which then 

have to be considered in opacity calculations. 

Finally, note that we try to keep the notation as consistent as 

possible. This is particularly important in chapter 2 where we have 

to define unambiguously such items as different sorts of fractional 

abundances of various species and different indices. On the printer 
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used in producing this thesis, because a lm,'er case "L" looks very 

much like the number "1", to prevent confusion we generally use the 

letter "h" when considering indices, thus the indices representing the 

isotopes in a triatomic molecules in chapter 2 are h, m and n, 

however, for the vibronic quantum number in chapter 5, we instead use 

the handwritten "l". 
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1.3 Brief Literature Survey 

Before we discuss in detail the methods used in this work, we 

give here a brief survey of other work on molecular opacities. For a 

general review on opacities, refer in particular to Carson (5) and 

also to Hack (6) for opacities and many other aspects of late-type 

stars. Some examples of earlier work can be found by referring to 

Yamashita (7) and Cox (8). 

Tsuji (9) considers the vibration-rotation and pure rotation 

bands of CO, OH and H20 in cool stellar atmospheres, these being 

normally the most abundant molecules in such atmospheres that produce 

bands in the infrared where most of the flux is. These bands are 

underlaid by a continuum due to a number of processes which are 

discussed in chapter 3, and we adopt some of his data, in particular 

the bound-free and free-free absorption coefficients of the negative 

hydrogen ion, which is an important continuous source of opacity in 

late-type stars. 

Given several overlapping bands, Tsuji computes molecular 

absorption on the basis of the Just-Overlapping Approximation (JOA). 

Here it is assumed that because there are so many lines in a region of 

the spectrum, they are all overlapping with the windows between the 

lines filled in, so that just part of the spectrum can be represented 

by a pseudo-continuum. Unfortunately as is stated, although the JOA 

can be used for H
2

0 at high enough temperatures and turbulent 
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velocities, because of the very large number of lines it produces, it 

cannot be used for CO and OH, nor at lower temperatures, for H
2
0, as 

there will be windows between the lines through which flux can pass. 

In this case the generalization of the JOA to the Partial Overlapping 

Approximation (POA) is discussed, where the spectral region in 

question is split up into a number of meshes, where in each the 

smeared absorption is redistributed so as to leave some continuum, yet 

retain some overlap. Unfortunately, this method depends on a smearing 

parameter which is difficult to determine, and we know from our own 

work that the Rosseland mean can depend very critically on the number 

and sizes of windows between lines in bands. Tsuji also gives some 

useful spectra and other plots for several temperatures and 

pressures. 

In later papers by Tsuji (10) and (11), the above work is taken 

further by allowing for the fact that the bands will not in general be 

completely smeared out. This is done by adopting Elsasser band 

models, see Vardya (12) and Golden (13), where an ideal Elsasser band 

consists of an infinite number of regularly spaced identical spectral 

lines, and can be treated analytically. Tsuji also considers in some 

detail the abundances of a large number of molecules in stellar 

atmospheres in his paper (14). 

Auman (15) computes the opacity of H
2

0 for several temperatures 

and turbulent velocities by a line-by-line calculation, and gives 

extensive tabulations of such opacities. This work is subsequently 

{ 
applied to models of late-type stars, see Auman and Bodenheimer (16). 

i 
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An important technique for calculating opacities is by the so 

called Opacity Distribution Function (ODF). With this method, the 

spectrum is split up into a large number of pickets or bins, where in 

each the details of the variation of the opacity across the bin is 

lost, but the information about how the opacity is distributed is 

retained, i.e. how much opacity there is covering a given fraction of 

the bin. We have in effect re-arranged the absorption so that it 

changes monotonically across the bin, either smoothly or in the form 

of a histogram. This method is discussed by Strom and Kurucz (17), 

who apply it to a model atmosphere of the F5IV star Procyon (~CMi), 

where virtually all spectral lines would be atomic in origin, and also 

by Miha1as (18). Kunde (19) uses ODFs for computing CO opacities in 

stellar atmospheres, and Querci et a1. in such papers as (20), (21) 

and (22) apply ODFs for cool carbon rich stellar atmospheres. Also 

refer to for example Carbon (23) and Mould (24), the latter giving 

tabulations of model atmospheres of M-type dwarfs, where of course the 

densities are much higher than for red giants. Finally, Gustafsson et 

a1. (25) considers ODFs over a grid of atmospheres, 

tables given in Bell et a1. (26). 

with extensive 

Another method of calculating opacities is by opacity sampling, 

see chapters 6 and 7. In this method, the opacity is computed in 

detail at a number of grid points across the spectrum, see for example 

Sneden, Johnson and Krupp (27)s and Johnson and Krupp (28), rather 

than having so many grid points that individual lines are profiled. 

(27) and (28) use at most a few thousand grid points across the 

spectrum to calculate model stellar atmospheres with molecular bands, 
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this being a statistical method as the separation of the grid points 

is very much larger than the widths of individual profiles, so most 

spectral lines are missed altogether. However) in our application of 

opacity sampling to calculate Rosseland mean opacities, we use a very 

much finer grid, so that in general individual spectral lines will be 

at least approximately represented, by having one or two grid points 

across the profile. If we apply a coarser grid so that undersampling 

results, the contribution to the Rosseland mean from those parts of 

the spectrum that are either pure continuum or are very heavily 

congested by lines giving rise to a pseudo-continuum, are likely to be 

fairly accurate, but the contribution from those regions of partial 

congestion is likely to be more uncertain. 

Finally, most of the basic theory on molecules is obtained from 

Herzberg (29) and (30) and Kovacs (31), the physical constants and 

atomic ionization potentials from Allen (32), atomic energy levels 

from Moore (33), and molecular data is obtained from many sources 

including Herzberg (30) and (34), Rosen (35) and Mizushima (36). 

These and other sources are quoted when required. 
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2 DETERMINATION OF EQUILIBRIUM ABUNDANCES 

2.1 Introdu~tion 

In order to determine the total opacity of a stellar atmosphere, 

the individual contributions each opacity source makes over the 

spectrum has to be known. Clearly, the contribution each species 

makes to the opacity depends on its abundance; and it is this which is 

considered in this chapter. 

The equilibrium abundances of atomic and molecular species, 

together with the populations of their excited electronic states are 

calculated on the basis of the condition of local thermodynamic 

equilibrium (LTE) being satisfied. Because the equations governing 

the equilibrium abundances are all coupled, it is necessary to include 

in these calculations those atomic and molecular species, which 

although they may not necessarily contribute significantly to the 

total opacity themselves, may nevertheless affect those species which 

do. Unfortunately, it is often not possible to know whether the 

inclusion of a particular molecule will significantly affect the 

abundances of those important molecules, until after the calculation 

itself is performed. Then, after that, it is only known at those 

particular conditions of temperature, density and specified mixtures 

chosen. A similar problem arises when the opacity of a species is 

determined; it may not be known whether it can be neglected until 

after it has been calculated. 
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As the molecular opacities of late-type stars are considered, the 

temperature range chosen is from about 10000 K to 60000 K, and densities 

-14 -2 -3 0 between 10 and 10 gm cm Above 6000 K, molecule formation 

becomes negligible, and already at 10000 K, one is well to the right of 

the· Hayashi forbidden zone in the H-R diagram where no stable stars 

are expected to exist with such photospheric temperatures, in addition 

to which, opacities are dominated by solid particles that are not 

considered in this work. However, at because of strong 

negative ion formation, the iterative process tends to converge very 

slowly, particularly at the earlier stages, though eventually 

sufficient convergence is reached, giving confidence in the method at 

higher temperatures. The density range includes the region in which 

red giants lie, where pressure independent partition functions and 

lines not dominated by pressure broadening could be assumed, though we 

do have to handle atomic and ionic partition functions correctly (see 

section 2.2). 

Coding in FORTRAN is written by which diatomic and triatomic 

molecules could be treated in quite a general way. Molecules are not 

considered in this work that have more than three atoms, as to treat 

them in quite a general way would be enormously complex, though they 

could be easily included on an individual basis. 

Furthermore, isotopically substituted molecules are included, as 

they may be present in significant abundances) to affect both the 

equilibrium abundances and in particular the opacity. The latter 

being due to the fact that an abundant isotopically substituted 
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molecule having a shifted spectrum ,,,i th respect to its parent molecule 

(i.e. the molecule which normally has the most abundant isotopes) may 

fill up windows in a part of the spectrum, thus radically altering the 

opacity in that region; also the fine structure may be different, 

depending on the identities of the nuclei. Unfortunately, as the 

molecular partition functions depend on the rotational and vibrational 

energy levels, which are shifted when isotopes are substituted, it is 

necessary to calculate the dissociation equilibrium constants for each 

isotopic molecule in turn, then to perform the iteration on each of 

them. Thus isotopes rather than elements are considered in the 

dissociation equilibria, and isotopic molecules are treated in quite a 

general way. This is particularly complex for triatomic molecules, as 

there can be up to five different point groups, and the symmetry of a 

molecule can change completely when one isotope is substituted. 

Initially, the atomic abundances both bound and free are 

specified either by mass or by number, either in absolute form, or for 

the metals (elements other than hydrogen and helium), relative to the 

total metal abundance. In addition, one can specify for each element 

the fractional abundance by number of each isotope that makes up that 

element. Molecular abundances, however, are not specified, instead, 

with the necessary data, molecules are allowed to form in the course 

of iteration. 

The iterative process for determining the abundances of free 

atoms and molecules is subdivided into two equilibrium calculations. 

First, with the molecular abundances set to zero, . iterations are 

performed to determine equilibrium between atoms, their respective 
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ions and electrons, where negative ion formation is allowed for in the 

coding. Then, with the relative abundances of each element in 

different stages of ionization held constant, iterations are performed 

to find equilibrium between free atoms and molecules, yielding 

abundances of diatomic and triatomic molecules, and the fractional 

abundance of each element that is free. Once these quantities have 

been calculated, the equilibrium between atoms and their respective 

ions is redetermined with the molecular abundances held constant. The 

molecules are then considered again, and the whole process is 

repeated. 

The sequence of ionization equilibrium followed by dissociation 

equilibrium iterations is considered as a grand iteration, and 

particularly at low temperatures where molecules and negative ions are 

present in great abundance, many such iterations may have to be 

executed until final convergence is reached. In the first grand 

iteration, the convergence criterion for both the ionization and 

dissociation iterations is quite loose, however, with the next fe.v 

grand iterations, the criterion is progressively made more stringent 

until the maximum stringency required is reached, then with this 

criterion, iterations are continued until final convergence is 

attained. 



- 18 -

2.2 Determination of Atomic and Ionic Partition Functions and 

Equilibrium Constants 

Before we can proceed with the equilibrium calculations, we have 

to find the equilibrium constants of the atoms, ions and molecules, 

which in turn require the partition functions. The determination of 

these quantities for atoms and ions is explained in this section; the 

discussion for the molecules is deferred until later. 

The partition function of any species is given quite generally 

by: 

(2.2.1) 

where g. and E. are the statistical vleight and energy respectively of 
1. 1. 

the ith level. However, the sum in (2.2.1) if taken to the ionization 

limit is divergent, and we need a cut-off based on physical 

arguments. 

The most convenient way of dealing with this, is to evaluate 

(2.2.1) w'ith explicit values of g. and E. from published sources up to 
1. 1. 

some appropriate limit. A convenient value is in the region of 

-1 
20,000cm above the ground state where the Boltzmann factor is less 

o than 0.01 at 6000 K, then continue the summation assuming the levels 

are hydrogen-like until the final cut-off is reached. 
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3 If N is the total number of particles per cm , then: 

(2.2.2) 

where r is the mean distance from an atom or ion to the nearest 

neighbour. Now if we take a valence electron (electron from the 

outermost shell) to a sufficient distance from the rest of the atom, 

we can assume the energy levels are hydrogen-like and the orbital 

radius is given by: 

(2.2.3) 

where a is the first Bohr radius, n is the principal quantum number o 

and Z~ is the effective nuclear charge as experienced by the electron 

at a large distance, such that Z~= 1 for neutral atoms, Z<,4= 2 for 

singly ionized atoms etc. From (2.2.2) and (2.2.3), we can write: 

where the int function takes the integer part 

(2.2.4) 

and n is the largest 
u 

value n can take as the nearest neighbour prevents further levels from 

existing. 

then: 

Let E be the energy in ergs of 
n 

th the n hydrogen-like level, 

En - Eo:;> - Ii he l~ (rt) (2.2.5) . 
f\~ 
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where Ze(n) is the effective nuclear charge as experienced by the 

electron at an energy well above its ground state, R is the Rydberg 

constant and E~ is the ionization potential in ergs, such that: 

where I is the ionization potential in eV and s 
o is 

-1 
factor of 8065.46cm for leV; and when n -7~, E -7 E~. 

n 

(2.2.6) 

the conversion 

Except for the special cases of H, + He , L
o ++ 

1. etc., (2.2.5) is 

invalid for small values of n where the levels are no longer 

hydrogen-like or are completely filled, but as stated above, the lower 

levels are handled explicitly. For Hand H-like ions only, El = 0 in 

(2.2.5) has meaning. 

In (2.2.5) the effective nuclear charge would vary with n, such 

that as n -7 00 , Ze(n) -7 Zoo. Thus let n = n
l 

be the lowest value of n 

that we can assume a level is hydrogen-like, with the corresponding 

energy E being specified, 
n 

then inserting these into (2.2.5) and 

solving for Ze(n), we obtain the effective nuclear charge Zl for the 

level We can then make up a simple formula that gives these 

limiting values of Z: 

(2.2.7) 

which can then be put into (2.2.5) for n ~ nl with, which we can 

calcula te E • 
n 
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Having obtained E this way for e"ach value of n in the range, the n . 

total partition function Q is given by: 

(2.2.8) 

where Q' is that part of the partition function computed from (2.2.1) 

using explicit values, 2n2 is the statistical weight of the 

th 
hydrogen-like n level and gc is the core statistical weight due to 

all the other electrons, see the appendices. 

When n = n (2.2.5) gives a new ionization potential which will u' 

be slightly less than the unperturbed value, it is this new value that 

we should really insert into the formulae below. 

Technically N in (2.2.4) should be the total number of particles 

3" 1 d" 1 d 1 1 per cm 1nc u 1ng e ectrons an mo ecu es, but this would require an 

extra level of iteration. However, because of the relatively weak 

dependence n has on N due to the sixth root, we can take N to be the 
u 

3 total number of atoms per cm which is a kno,m and fixed quantity, see 

the next section, regardless of their ionization or association into 

molecules. Over the temperature range of interest, the total number 

of particles is unlikely to vary by much more than a factor of two on 

either side of N, due to the presence of free electrons at higher 

temperatures and association into molecules at lower temperatures. 

Also, because the cut-off occurs at large values of r for realistic 
n 

densities, it is reasonable to use the effective nuclear charge at 

large distances Z"oin (2.2.4). 
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In practice it is found that for most atoms and ions under the 

conditions of interest, the sum in (2.2.8) contributes negligibly to 

the partition function as computed from the lower explicit values. 

However, for atoms like Na and K with low ionization potentials, at 

higher temperatures the upper levels do become important and the sum 

in (2.2.8) is significant. 

This method cannot be applied to negative ions as there are only 

a finite number of states, and in principle we can only evaluate 

(2.2.1) for those states, in practice usually only the ground state, 

hence the partition function is just the statistical weight of that 

state, and of course for completely ionized atoms the partition 

functions are just unity. 

The explicit values of g. and E. are taken from Charlotte E. 
~ ~ 

Moore (33), giving tables of energy levels of atoms and ions, and Q is 

computed from (2.2.1) and (2.2.8) rather than taking the tabulated 

values of Allen (32) and interpolating. 

In conditions of thermal equilibrium, the degree of ionization is 

given by Saha's equation: 

(2.2.9) 

or more conveniently for computation in log form as: 

(2.2.10) 
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Where: N is the number density of electrons, e 

Nh is the number density of the hthion of a given element, 

Xh h+1 is the ionization potential of the hth ion in eV, , 
Q

h 
is the partition function of the hth ion, 

and e = 5039.935/T. 

So h = 0 for neutral atoms, h > 0 for positive ions and h < 0 for 

negative ions. In fact, only h = -1 is allowed for negative ions, as 

no stable bound ions of a larger negative charge exist in the gaseous 

phase, and for many elements like the inert gases, no bound negative 

ions exist at all. Where possible confusion may occur with other 

indices, like labelling of different elements, h is used as a 

superscript. 

The left hand side of (2.2.9) is the equilibrium constant, and is 

defined as: 

(2.2.11) 

In this work, intermediate calculations involving abundances, are 

wherever possible, handled in the log rather than in magnitude, to 

avoid problems with machine overflow or underflow. 
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2.3 Iterative Process for Determining Equilibrium Abundances of Atoms 

and Ions 

It is initially assumed that all the atoms are free with no 

molecules present, and the early part of the iterations treat the 

mixture as if it consisted purely of atoms with their associated 

ions. 

Before iterations can commence, a trial value for the electron 

number density is required. The total number density of all atoms, 

irrespective of their ionization states, is given by: 

2 NlD (2.3.1) 

where p and are the mass density and Avogadro's number 

respectively, and A., 
1. 

and m. are the fractional abundance by 
1. 

number, the total number density and the atomic mass in atomic mass 

units (amu) of atom i respectively. In the analysis, the index i is 

used to label different atoms, but does not in general correspond to 

their atomic numbers. It is easy for the computer code to handle 

elements in any order and the input data having elements of very low 

abundances omitted. Indeed, using this scheme, deuterium can be 

handled as if it were quite a separate element, rather than as an 

isotope of hydrogen. 
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Clearly: 

(2.3.2) 

where Z. is the atomic number of element i, Z is the average nuclear 
1. 

charge per atom and N is the number density of free electrons, which 
e 

for total charge neutrality, cannot exceed the sum of all the nuclear 

charges. 

It is found empirically that a good initial trial value is given 

by: 

(2.3.3) 

where the function min returns the minimum of the two arguments. As 

logarithms are handled, a physically realistic initial trial value of 

N > 0 is chosen. e 
Also, the formula assumes that the system is 

5 completely ionized above about 10 K, which although being far beyond 

the range of interest in this application, does allow generality. The 

choice of a trial value of N is not too critical, but a poor initial 
e 

value will increase the number of iterations before final convergence 

is reached. 

For each ion, we can calculate the ionization equilibrium 

constant, thus from equations (2.2.10) and (2.2.11) we have: 

-x e 
h,h+'I (2.3.4) 
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Let R~ be the relative abundance of the hth ion of element i with 
1. 

respect to the most negative ion of that element, where the most 

negative ion has a charge of -1 if a stable negative ion exists, 

otherwise a. charge of zero. At high enough temperatures, outside the 

range of interest here, neutral atoms may be practically absent, and 

the minimum value h can take will in practice be positive. 

k 
Then given Ne and Kh ,h+1 from above, and setting log R = 0, where 

k here is the smallest value h can take as above, the expression: 

(2.3.5) 

can be evaluated successi.vely for each ion belonging to each element, 

where Kh ,h+1,(i) is 

element L 

the equilibrium constant of ion h belonging to 

Once all the values of 
h 

log R. have been found for element i, 
1. 

log R . can be obtained, and is just the maximum fraction R in the 
max, 1. 

list of ions belonging to a given element, Le. the most abundant 

ion. 

Then for each element i: 

(2.3.6) 

is evaluated, and expresses the relative abundance of each ion h of 

element i with respect to the most abundant ion of that element •. 
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Writing: 

(2.3.7) 

then after summing these relative abundances, we can calculate the 

fractional abundances of each ion of element i: 

14-

S~ 
R,. 

= (.. 

(2.3.8) 
t.. <p. 

(.. 

where by definition: L:S~ = 1. Then the average number of electrons 
h 1 

donated (+) or accepted (-) by atom i is: 

x. 
(, 

(2.3.9) 

Hence the number of electrons per 3 cm donated or accepted on average 

by atoms of element i is: 

X. 
i. 

(2.3.10) 

where N. is the number density of free atoms of element i in all 
1 

stages of ionization, and is quite distinct from the previously 

3 
defined N(i)' the total number of atoms per cm in any state, combined 

in molecules or free. As already stated, as molecular abundances are 

'initially set to zero, Ni = N(i) initially. It is extremely useful at 

the end of all the iterations, when all the a.bundances have been 

converged, to know x. and X. for each element, as it is easily seen 
1 1 

which elements are important net sources or sinks of electrons. 
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The total number density of free electrons present in the mixture 

is given by: 

:: L L Iv IJ:- :) ~ It -I- L L t M s t (2.3.11) 
I. h 5 t 

where M is the number density of electrons contributed by charged e 

molecules, derived from the last term where Mt is the actual abundance 
s 

of molecule of type s with charge t. Initially, as the molecular 

abundances are set to zero, M is also set to zero. e Subsequently, 

when molecules are treated, it is found that in practice M «N , as 
e e 

abundances of charged molecules appear to be generally very small. As 

will be discussed later, unlike atomic ions, molecular ions are 

treated as quite separate molecules. 

To make the process of convergence as efficient as possible, 

rather than simply taking the geometric mean of the output value of Ne 

from (2.3.11) and the previous input value in (2.3.5), and putting 

this back into (2.3.5) as our new input value, the new input value is 

found from the geometric mean of the smallest value so far found that 

is larger, and the largest value so far found that is smaller than the 

expected solution, which must lie between these two values. Using 

these bounds, reduces the amount of "wander" in N in the iterations. 
e 

However, at low temperatures where negative ion formation is 

important, it is frequently found that Ne(out) < O. Invariably this 

means that N (in) has been considerably overestimated, 
e 

and if no 

previous positive output was obtained in earlier iterations covering 

the ions to act as a guide, then a new trial value is found simply by 
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reducing the previous input value, typically by a factor of 10. This 

is done in subsequent iterations until N (out) > 0, e 
after which 

convergence is relatively rapid. At temperatures near the upper limit 

of the region of interest, this difficulty is not encountered, and 

convergence is quite rapid. 

Iterations are terminated when either a suitable accuracy has 

been reached, or failing that, after a maximum specified number of 

iterations with positive outputs has been attained, negative outputs 

not being counted. This technique allows computer time to be used 

more efficiently, as we do not attempt to converge the abundances of 

the ions to the required accuracy in a given grand iteration, if the 

convergence process is very slow, as the abundances of the ions tend 

to converge to different values in the next grand iteration, due to 

the altered molecular abundances. 

Thus, in the program, if we define a quantity~log N , such that: 
e 

(2.3.12) 

Then the iterations are terminated if: 

(2.3.13) 

\V'here E is the convergence criterion, 
-4 typically 10 or less, except 

for the first few grand iterations vlhen it is larger. In (2.3.12), if 

Ne(out) < 0, then some large negative value for the log is assumed so 

that (2.3.13) is not valid. 
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As the electronic structure of an atom is to a very high 

approximation independent of the isotopic form of the atom, the 

isotopic abundances making up a given element are ignored in these 

ionization calculations. Thus if deuterium is present, hydrogen in 

its various ionic forms contains the same fractions of deuterium. 
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2.4 Introduction to Diatomic Molecules 

Whereas the case of the atomic ionization equilibrium is quite 

straightforward, the partition functions are simple to calculate and 

independent of isotopes, and only one quantity, i.e. the number of 

free electrons, is the "handle" in the iterative process, the case of 

molecular dissociation equilibrium is rather more difficult to deal 

with. For molecules, the partition functions are often strongly 

dependent on the isotopes substituted, so the equilibrium constants 

have to be individually determined, also the quantities iterated are 

the fraction of atoms of each element free in the mixture, defined as: 

F· (. 

N: 
--" 

NU) 

(2.4.1) 

where for each element i, as previously defined, N(i) is the total 

3 number of atoms present per em , and N. are those atoms that are free, 
]. 

regardless of their states of ionization, or the fractions in various 

isotopes. Clearly, it follows that N(i)- Ni are those atoms combined 

in molecules. The aim is to iterate until the fractions for each 

element have converged. This is rather more convenient than handling 

the actual number of atoms that are free, as 0 ~ F.~ 1. 
]. 

Unlike atoms, molecular ions are dealt with quite separately, 

thus CO + and CO are regarded as quite separate molecules, all the 

properties being quite different, apart of course from their mass and 

constituent atoms. Thus, although we could consider the molecular 
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ionization equilibrium, as with the atoms in the previous section, as: 

CO ~--7 e , 

it is far ~ore convenient to consider the dissociation equilibria: 

CO ~--7 C 

co+ ~--7 c 

+ 0 , 

+ 

together with the atomic ionization equilibrium: 

o ~--7 e , 

which are all linked together automatically. 

instead consider the dissociation equilibrium: 

Equally, 

with the associated atomic ionization, but whichever 

specified, the same results must be reached. 

one could 

path is 

There are two types of diatomic molecules, homonuclear, point 

D . C12C12 d h I group ""h l.e. an eteronuc ear, . C· C12016 
pOlnt group l.e. wv 

C
12C13 A . ·d d or • s lsotopes are conSl ere , due account must be made of 

the isotopic variations, thus if the two isotopes C
12 

and are 

specified to be present in the mixture, we must allow for the three 

forms of the molecule C2 to be present, of which two will be 

homonuclear and one heteronuclear. As the vibrational and rotational 
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constants are slightly different as between these forms, their 

partition functions will be different and the band spectrum of one 

form will be shifted relative to another form. In addition, however, 

there will be differences between the homonuclear and heteronuclear 

forms. Apart from a constant factor, the Jth rotational level of a 

molecule has a statistical weight of 2J+1, but if the molecule is 

homonuclear, there will be an additional factor for even values of J, 

and a different factor for odd values, dependent on the spins of the 

nuclei; hence giving alternating intensities in the fine structure of 

a band. If h h · 016 t e tree lsotopes , 0
17 

and 018 are also present, 

clearly there will be six forms of CO present, though all will of 

course be heteronuclear, and we do not have to worry about the spins 

of the nuclei. 

When the molecular data is read by the program, the dissociation 

products are checked against the list of atoms previously read in. If 

any of the dissociation products cannot be matched with the list of 

atoms, then the molecule is ignored. As molecular ions have charged 

dissociation products, the matching must take ions into account. 

Likewise, for any of the excited electronic states of the molecule 

considered, if there is insufficient data, then those states will be 

ignored, with the whole molecule being ignored if the ground state is 

not furnished with sufficient data. 

The molecular constants read in as data for a particular 

molecule, refer to only one isotopic form of that molecule, though 

several isotopic forms may be present, and that form so referred to is 

defined as being the parent molecule, briefly mentioned in section 
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2.1. As explained later, the constants for the isotopically 

substituted forms have to be calculated, which can be quite an 

involved process for some triatomic molecules. The parent molecule 

would normally be the most abundant isotopic form present in a 

mixture, unless abnormal isotopic abundances are specified, as the 

data available refers usually to the most abundant isotopes of the 

elements concerned making up the molecule. 

Finally, the object of calculating the partition functions of 

diatomic molecules is to determine the equilibrium constants, which 

are then used for calculating the molecular equilibria by iteration. 

The equilibrium constant for dissociation is defined as: 

K·· I.J 
N~ N~ 
--J 

N·· I..J 

(2.4.2) 

which is the ratio of the product of the abundances of the free atoms 

i and j to the combined molecule ij, and is the Guldberg and Waage's 

law of mass action. In the limit of complete association, K .. = 0 and 
1.J 

complete dissociation K . . -7 cO • In the units we are working in, K .. is 
1.J 1.J 

. -3 
1.n cm and is analogous to the ionization equilibrium constant 

defined in (2.2.1). The determination of the equilibrium constants is 

discussed in section 2.7. 
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2.5 Determination of Rotational Partition Functions of Diatomic 

Molecules 

The total internal partition function of any molecule can be 

approximated as: 

Where: QR is 

QV 

QE 

QS 

the rotational partition function, 

vibrational 

electronic 

symmetry 

and QS= lilY • .;There cr is the symmetry number. 

(2.5.1) 

~= 1 for non-symmetric i.e. heteronuclear diatomic molecules, and 

~= 2 for symmetric i.e. homonuclear diatomic molecules. (2.5.1) is 

normally a good approximation, as the separation of the electronic 

states is large compared to the vibrational levels, which is in turn 

large compared to the rotational levels. It is the rotational levels 

of diatomic molecules that are considered in this section. 

The rotational term values in cm-1 are expressed as: 

F(J") (2.5.2) 

where J is the rotational quantum number and takes the integer values 

O,1,2,3 ••• (cases are discussed later where depending on the electronic 
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state, there are restrictions on this, and J can also take half 

integer values, Herzberg (29)). Also: 

(2.5.3) 

where Band D are the rigid and first order non-rigid rotational 
e e 

constants at the equilibrium separation of the atoms respectively, B 
v 

and D the corresponding constants 
v 

corrected for vibrational 

interaction, and o(e and f3 e are the corresponding correction terms. 

There will be in general higher order terms in the above three 

expressions, however, due to their very small value, and the fact that 

they are usually not available in the literature, they are neglected; 

and v is the vibrational quantum number. 

The rigid rotational constant B is defined as: 
e 

(2.5.4) 

where I is the moment of inertia at equilibrium separation in cgs, 
e 

and hand c have there usual meanings. Finally, 

. -1 
constants above are in units of cm • 

all the rotational 

The expressions (2.5.2) and (2.5.3) are required for calculating 

the rotational energy levels, hence the rotational fine structure of a 

molecular band, and are discussed again in the section dealing with 

molecular band spectra. However, in order to find the partition 

function, it is not necessary to sum laboriously over the levels 

generated by (2.5.2) and (2.5.3), but use a far more efficient 
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asymptotic expansion of QR' see Kassel (37). 

Let b = Bhc/kT and d = Dhc/kT, where band d are dimensionless, 

and the corrections due to vibration are neglected. Then the 

rotational partition function is: 

(~J~1) e-
~ 

6- J ( J 4-1) r oi J{(J f- 1) 

(2.5.5) 

where J = f(I), I = 0,1,2,3 ••• and f(I) can have one of four forms, 

see below. This is the general expression for the rotational 

partition function of a non-rigid diatomic, or linear polyatomic 

molecule. As can be seen, particularly at fairly high temperatures, 

many levels in (2.5.5) may have to be summed, but it can be replaced 

by the four asymptotic expansions: 

']:;1 Q
R1 

.i + .L + k. + ~ (1 + b(1.) + . '. (2.5.6) ) fr :3 1S" (;.:, fr'J. 

:J-:I+"!"l QQ~ ..L I r:;f.,. f- ~ (1 4- b~)+ ... (2.5.7) - + 1q <1 lr ir~O 

J=-'l.I+{) Qn 1e) - ..:L + J:. + tEl- + cl (l+G&~)r" (2.5.8) J.lr ~4- 'lGO Ir'} 

J:;:l.1 + ~). QIt{o) - .1. 5' 1q36- f- cL (1 +- ~ ) ~ _ . (2.5.9) 
J.(" '-4- <160 (,. 3 (/ 

(2.5.10) 

Where: QR(e) is the sum over levels with (J-1/2) even, 

QR(o) is the sum over levels with (J-1/2) odd, 

and sl and s2 the respective statistical weights due to 
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nuclear spin. 

QRl is evaluated from (2.5.6) for odd multiplicities, i.e. the 

molecule has an even number of electrons, and anyJL, the electronic 

orbital angular momentum, for either homonuclear or heteronuclear 

molecules, with J taking integer values. Most of the diatomic 

molecules fall into this category, as it must include all homonuclear 

molecules, except those that are charged, as there are an even number 

of electrons. Such examples include CO, C
2

' NH, R2 etc. Horeover, 

most of these molecules have a L. Le • .A = 0 ground state, making the 

calculation of the band spectra relatively straightforward. 

Q
R2 

is evaluated from (2.5.7) for even multiplicities, Le. an 

odd number of electrons, and anyJL for heteronuclear molecules. but is 

restricted to values ofJl > ° for homonuclear molecules, with J taking 

half integer values. As there are an odd number of electrons, any 

homonuclear molecules considered must have an odd charge, hence 

neutral homonuclears are excluded. Also, the above mentioned 

restriction is due to the alternation of the statistical weights of 

the rotational levels when there are two identical nuclei, however, 

when A > 0, there are very close pairs of levels of opposite symmetry 

and the effects of the statistical weights cancel out, so (2.5.7) can 

be applied. Such examples include, CaR, CR, CN, OR etc., and 0; is a 

valid example of a charged homonuclear molecule. 
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QR3 is evaluated by summing separately alternate levels from 

(2.5.8) and (2.5.9) and combining them together in (2.5.10), taking 

account of nuclear spin. QR3 covers those molecules that are not 

dealt with in the previous two cases, and is relevant for even 

multiplicities with Jl= 0 for homonuclear molecules. Such molecules 

with even multiplicities must have odd positive or negative charges, 

+ + and have a2 ground state, e.g. H2 and O2 • As QR2 

then since, except for large b, QR(e) = QR(o) and hence 

QR3 = QR2' we can calculate QR2 directly from (2.5.7). Because of the 

above restrictions, the molecule in question would have very low 

abundances and the increased complexity in the program for handling 

QR3' it was decided to omit the method of QR3 from the program, and 

apply Q
R2 

where relevant. The QR3 method is thus included in this 

discussion for completeness. 

It is found that even for the worst possible case, 

1000oK, with b < 0.1, all higher order terms that are omitted from 

(2.5.6) to (2.5.9) are negligible. Also, if non-rigidity is 

neglected, and for reasonably small values of b, QR1' QR2 and QR3 

reduce to approximately l/b, or kT/Bhc, the standard approximation for 

the rotational partition function. 

If B is not known, it can be calculated from (2.5.4), where: 
e 

Ie 
}L Yc <. 

(2.5.11) -
NA 

where r is the equilibrium internuclear separation in em, ~ the 
e 
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reduced mass in amu and NA-Avogadro's number, hence: 

Also, if D is not known, it can be found from: 
e 

De. :: 

(2.5.12) 

(2.5.13) 

where w is the harmonic vibrational constant of the molecule, see e 

next section. 

The rotational statistical weight obtained by the above method is 

strictly correct only for'2 states, as for states with A > 0 there are 

missing levels that have to be corrected for, in addition for 

multiplet states there can be a very large separation of levels that 

differ in~, the projection of the electron spin on the internuclear 

axis, but have the same total angular momentum apart from spin, 

i.e. Hund's case (a) for strong spin coupling. 

For singlet states with iL > 0, we evaluate (2.5.6) which includes 

the contribution from the non-existent levels J = 0 •• ~-1 which must 

be removed by evaluating the sum of (2.5.5) only up to_~-l then 

. subtracting this from (2.5.6). The zero point of energy must now be 

moved up to the first level that exists, i.e. J = A which is 

accomplished by dividing by the Boltzmann factor for this level. We 

thus 

Q = 

calculate: 

.1.- 1 (,."3(-:1+1) .t-d1<(:)+i)~] 
[ Q (11 - fo (~J + 1) e -

lrA (A. H) -- J A \1+ 1)~ 
Xe. 
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For multiplet states we have 'the additional complication of 

electron"spin to consider. In Hund's case (b) for weak spin coupling, 

the splitting of levels due to spin that have the same total angular 

momentum apart from spin is small, and the 2S+1 ladders in the energy 

level diagram, with S being the electron spin, can be treated as a 

single ladder with each level having an additional 2S+1 statistical 

weight factor. In practice this factor is put into the electronic 

statistical weight and (2.5.14) is evaluated in exactly the same way 

as for the singlets, except that the quantum number N, the total 

angular momentum quantum number apart from spin, is used in place of J 

with N always taking integer values hence (2.5.6) is used. Hund's 

case (b) is always applicable to L states. 

For Hund's case (a) where the spin splitting is large, we have 

2S+1 separate ladders to consider with different Boltzmann factors so 

the 2S+1 cannot be factorized out as before. 

From Kovacs (31) a good approximation to the term values for 

Hund's case (a) is given by: 

F ('"3) - A --1- L. + 13 [ J ( J +J) - 12 ~ t S (S + 1) - L < 1 (2.5.15) 

where A is the spin-orbit coupling constant such that the larger IAI 

is the better is (2.5.15) as an approximation to case (a), with strict 

case (b) occurring when A = 0 and (2.5.15) is in that case invalid. 

L. = S ••• -8, Il = 1A.+11 and there are 2S+1 ladders given by 

IA+sl ••• IA-sl where J =.J1,it+l. •• , hence putting J = 0 into (2.5.15) 
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gives us the origin for each ladder even if that level does not 

exist. The rotational partition function is then found by first 

obtaining the relative partition function for each ladder from its 

origin using (2.5.6) or (2.5.7) depending on J being integer or half 

integer respectively, and subtracting off the contribution to the 

series from any non-existent levels for J < D. like above for case 

(b). Putting J = n into (2.5.15) gives us the lowest level that 

actually exists for each ladder, hence the lowest energy level of all 

is found by taking the minimum of (2.5.15) over all values of 2. 

Using this minimum as our new zero point in energy, the Boltzmann 

factor for each ladder relative to this point is applied and weighted 

functions are added together giving the final rotational partition 

function. 

Because of spin uncoupling for large enough values of J, case (b) 

is eventually approached, accordingly, even for non-zero values of A, 

the case (b) partition function may be a better approximation if those 

levels most heavily populated are better represented by case (b). If 

the relative population of each level is given by: 

.. IrN(tJ·t1) 

P - (~N + -1) e (2.5.16) 

neglecting non-rigidity, the most populated level is given by 

N int(N*+O.5) where: 
max 

(2.5.17) 

and where Nmax is the nearest integer to N*. Also with Y = A/B, if 

lyl » N(N+l) case (a) is a good approximation (in which case N loses 
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its meaning as a quantum number though we can still use it 

notionally), and if Iyl « N(N+1) case (b) is a good approximation. 

Thus, inserting this criterion in (2.5.17): 

use case (a) if Iyl > ..:L - '\ 
),t- ~ 

1 
use case (b) if Iyl < ::d-

(2.5.18) 

where either case will obviously be better the further from the 

changeover we are. 

If y* is Iyl at the changeover in (2.5.18), and if A*= y*B, we 

can write: 

(2.5.19) 

such that interestingly ~ is almost independent of B and dependent 

only on the temperature, as kT/2hc» B/4 for the temperatures of 

interest. 

However, in the temperature range of interest, it is indeed found 

that in practice the case (b) approximation is the better one on the 

basis of the criterion above, even for relatively large values of Iyl, 

due to the smallness of b. Only for some unusual molecules like SnH, 

which we are unlikely to consider, would Iyl be large enough for case 

(a) to be a better approximation for some of the temperatures we need 

consider. 
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Neglecting non-rigidity and other' higher order terms) Kovacs (31) 

gives an'expression for the Hund's case (b) approximation: 

F(N) (2.5.20) 

which differs from (2.5.15) in that here Iyl « N(N+1) and case (b) is 

a good approximation, with the second term representing the deviation 

from pure case (b) if A ~ o. Unfortunately, the correction term 

cannot be integrated analytically, in addition to which at small 

values of N it is no longer valid, as we are in the case (a) regime 

where (2.5.15) is a better approximation. However, except in unusual 

cases, the maximum populated levels occur at large enough values of N 

to be well into the case (b) regime and \"here the correction term is 

negligible, and accordingly we do not consider it. 

Finally, it must be remembered that (2.5.15) and (2.5.20) as well 

as more detailed expressions given by Kovacs in the case (a) and (b) 

limits are only approximations. In section 4.2 where we discuss how 

the rotational lines in the spectra of diatomic molecules are 

computed, explicit formulae for general coupling cases between (a) and 

(b) are used for doublets and triplets. Unfortunately, no formulae 

exist for general multiplicities with general coupling. 
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2.6 Determination of Vibrational Parti,tion Functions of Diatomic 

Holecules 

-1 
The vibrational term values in cm are expressed as: 

(2.6.1) 

where v is the vibrational quantum number that takes integer values 

v = 0,1,2 ••• unlike J, there are no complications with missing lower 

levels or half integer values. Also ~ is the harmonic oscillator e 

constant and ~ x , ~ y ••• are terms in the anharmonicity with higher 
e e e e 

order terms being neglected. 

As with the rotational constants, for convenience we convert the 

above constants into dimensionless form, hence w = hcw /kT e e' 

w X = hCQ x /kT and W Y = hc~ Y /kT. Then the vibrational partition 
e e e e e e e e 

function, after allowing for the zero point energy, is: 

cO 

2. ea.p[ - \Jell + WeXeV-(V-VI)- We'/eV-(V-~+ -: + f)] (2.6.2) 

V"::o 

In common with finding the rotational partition function, an 

efficient way of obtaining Q is v 
to replace the sum in (2.6.2) by a 

series using the method of Kassel (38). Relative to the v = 0 level, 

the term values can be expressed as a power series in v whose 

coefficients in units of kT/hc are given by: 



- 46 -

\Jv Xo - I.Jx '?> 'l.JeYe - - - (2.6.3) e e 
~ 

~D '10 ~ \v'e 'Ie 

Also let: 

Z = e - Vo 
(2.6.4) 

Then an analytic approximation to the partition function of the 

anharmonic oscillator is: 

4> .... ::: --L + \..J",)(" l (1+}') + (i.J"x~·tl ("1 +112 +1-1"2:~ +2:2 
(1-i:) (-l-~)~ ~(1-~)' 

( ~ (-1+Sfl+"3o~Z:=<+~O:.1.2:>..f572't+2S) + W,,)(o')?: . 
6(1-?:)t 

(2.6.5) 

where higher order terms in ~.;r X , VI Y and cross terms are neglected. 
o 0 0 0 
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2.7 Determination of the Electronic and Total Partition Functions and 

Equilibrium Constants of Diatomic Molecules 

The electronic statistical weight of the ith electronic level 

neglecting spin splitting, by Tatum (39) is: 

= (2.7.1) 

where 2S.+1 is the spin multiplicity and ~ the Kronecker delta, 
1 O,A

i 
such that~O,A.= 1 whenAi = 0 and 80 A= 0 whenJl.1 O. 

1 ' i 1 

If the first excited electronic state in the molecule is very 

high with a negligible population, and the substates of the ground 

state, if there are any, are very close together with very similar 

rotational and vibrational constants, as occurs in Hund's case (b), 

then indeed the electronic partition function QE= g , 
e

1 
and if Q

R 
and 

Qv are known, Q
I 

is immediately found from (2.5.1); this situation is 

realized for many molecules. 

As already explained in section 2.5, if the spin splitting of the 

electronic state is large, the spin multiplicity is imbedded in the 

rotational partition function and the definition in (2.7.1) is 

incorrect. HOvlever, for convenience we can retain the (2-S0 ,A.) 
1 

factor in (2.7.1) as the definition of g • Further, if this is the 
e

i 
ground state and excited electronic states are neglected, we can still 

regard this as the electronic partition function. For any degree of 
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spin coupling, the same vibrational and rotational constants are 

assumed to apply in the different members of a multiplet, as in 

practice·this would introduce at worst small errors. 

However, if the excited electronic states are sufficiently 

populated to alter the total partition function, then in general the 

rotational and vibrational constants in these states will be different 

and we must compute individually the partition functions of each 

electronic state weighted with the appropriate Boltzmann factor and 

summed. Thus the total partition function is: 

where QR. and QV. are the 
1. 1. 

functions respectively for the 

energy of 

energy. 

. -1 
that state 1.n cm 

(2.7.2) 

rotational and vibrational partition 

.th I· d T 1. e ectron1.C state, an 
o. 

l. 

after allowing for the zero 

is the 

point 

By direct analogy to Saha's equation of ionization equilibrium of 

atoms, the dissociation equilibrium of diatomic molecules can be 

written as: 

(2.7.3) 

where K .. is the equilibrium constant as defined in section 2.4, or in 
1.J 

log form we can write: 

(2.7.4) 
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where N.,N.,N .. ,Q.,Q. and Q .. are the number densities and partition 
1 J 1J 1 J 1J 

functions of the atoms and molecules, and in (2.7.4) A .. is the . 1J 

reduced mass in amu defined as: 

e = 5039. 935/T 

411 •. "11l. 
-~-~ 

'm. +rm. .. ~ 

and DO is the dissociation energy in eV of the 
o 

(2.7.5) 

lowest 

electronic state taken from the lowest vibrational level, with the 

zero superscript being used to distinguish this from the non-rigidity 

constant. Hence the equilibrium constants are known, and can be used 

to calculate the abundances of diatomic molecules. 
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2.8 Isotopic Shifts of Rotational and Vibrational Constants of Diatomic 

Molecules 

When isotopes are substituted in a molecule, the force constants 

remain the same bet1;veen the constituent atoms but the masses are 

changed, with the result that both the rotational and vibrational 

constants, hence their energy levels, are changed. Also, the symmetry 

can change, as already mentioned, and the stati.stical weights of the 

rotational levels depend on the spins of the nuclei if the molecule is 

homonuclear. 

From Herzberg (29), let: 

where /A. I and jl are the 

(2.8.1) 

reduced masses of the original and the 

isotopically substituted molecule respectively. Then for the various 

rotational and vibrational constants: 

(2.8.2) 

'3 ::: f cX e ) 

withcX e and Pe not being needed until the spectrum is computed, but 

the other constants are used to obtain the isotopic partition 

functions. 



- 51 -

Although the electronic potential wells are not affected by 

isotopic substitution, as the dissociation potential used in the 

previous section is measured from the lowest vibrational level, which 

is shifted, this must be allowed for; likewise this must be done for 

the electronic energy of any excited states being considered. Thus we 

make use of (4.3.7) and (4.3.9) for correcting the electronic energy 

of an excited state and the dissociation potential respectively, where 

by convention, the single and double primes refer to an upper and 

lower state respectively, with the latter in this case being the 

ground electronic state. 

Hence for the original molecule, if DOn and T' are given they are 
e e 

converted to DOn and T' respectively for use in the determination of 
o 0 

the partition function and equilibrium constant. Then for 

isotopically substituted molecules, (4.3.9) and if necessary (4.3.7) 

are used with I etc. to obtain DOnI and T': If however, 
e 0 0 

DOn, Tn and 
o 0 

T' are given for the original molecule, we must obtain the constants 
o 

from the equilibrium positions first using (4.3.7) and (4.3.9) before 

proceeding as mentioned. 

Finally, when dealing with a molecule that has two atoms of the 

same charge, we have the additional complication of having to 

distinguish between those molecules with identical nuclei for which 

Qs= 1/2, and those \vi th different nuclei for "\olhich Q
S

= L Of course, 

only the latter can occur for the isotopic forms if the two nuclei 

have different charges. As mentioned in section 2.5, for homonuclear 

molecules, there is in addition an alternation of the statistical 
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weights of the rotational levels due to the nuclear spin, however, 

this has a negligible effect on the rotational partition function, but 

is important when computing the band spectra, and is accordingly 

discussed in that section. This is because at the temperatures of 

interest, there is hardly any difference numerically between summing 

the even and odd levels separately, then adding the sums together with 

the appropriate weights, and summing all the levels in one. 
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2.9 Introduction to Triatomic Molecules 

The treatment of triatomic molecules is analogous to that of 

diatomic molecules, but there is much greater complexity, as the 

molecules can have up to five different point groups and the 

arrangement of the atoms has to be specified. Also, the isotopic 

shifts are often non-trivial to evaluate. The following table lists 

the possible point groups that have to be considered for diatomic and 

triatomic molecules. 

Table (2.1) of Molecular Point Groups 

Type of Molecule Point Group tY Examples 

Linear Symmetric Do<>h 2 H2 , CO 2 

Linear Non-Symmetric C 1 OH, HCN cov 

Bent Symmetric C
2v 2 H2O 

Bent Non-symmetric C 1 HNO 
s 

Equilateral Triangle D3h 6 H+ 
3 

As with diatomic molecules, for the symmetry type to be valid if 

two atoms have the same charges, they must be identical isotopes, thus 

unsymmetrically 

belongs to C oov 

but as soon as the molecule is 

isotopically substituted e.g. then it 

Likewise C
2v 

will go over to Cs if H20 is substituted 

to give HOD. Hm.;ever, any single substitution in a D3h molecule will 

make it go over to C
2v

' and an additional substitution to give three 
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different isotopes will put the molecule into the C point group, see 
s 

+ the discussion on H3 in section 5.4. 

In the more detailed table below are sho\vu the numbers and 

symmetries of isotopically substituted diatomic and triatomic 

molecules, where the substituted molecules include the initial 

molecules that have the highest possible symmetry. Let x, y and z be 

the number of isotopes belonging to elements X, Y and Z respectively, 

N be the total number of different isotopic molecules and M be the 

number belonging to some particular point group. When the point 

groups are given in pairs, they refer to a non-linear and linear case 

respectively. 

Table (2.2) of Possible Isotopic Substitutions 

A B C N D M 

{:~h x 
X2 

D· C2 x(x+l)/2 ceh 
x(x-l)/2 

""'v 

XY C CO xy C xy 
oeV ~v 

D3h x 

X3 D3h 
+ 

H3 x(x+l) (x+2) /6 C2v x(x-l) 

C x(x-l)(x-2)/6 
s 

fzv'D~h 
2 

2 
x 

X3 C2v ,D""'h °3,C3 
x (x+l)/2 2 

C C x (x-l)/2 s' .."v 

fzv,D=h xy 
XYX C2v ,D""'h H2O,C02 xy(x+l)/2 

C C xy(x-l)/2 s' c.¢v 
2 C , 

2 
XXY Cs ' C ... v S20,N2O x Y C x Y 

s -v 

XYZ C , C HCO,HCN xyz C , C xyz s ot>v S ...,v 
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Where column A gives the molecule type, B the highest symmetry point 

group, C examples, D the possible point groups of the isotopic 

variants and Nand M have the meanings as stated above. 

Any charged triatomic molecules are considered as quite separate, 

as is the case with diatomic molecules, and triatomic molecules can 

split up in a number of ways of which only one need be specified. 

Thus considering the complete dissociation of HCN, we need only 

consider the equilibrium; 

HCN ~--7 H + CN, 

provided we have already specified for diatomic molecules the 

equilibrium: 

CN ~--7 C + N, 

so the system is complete. 

Thus when treating the triatomic molecules,. the dissociation 

products must match the species already in the list of atoms and 

diatomic molecules to give a self contained system. 

In many cases when isotopic substitution is considered, it is 

necessary to know the central atom in order to identify the force 

constants with the appropriate bonds, and to distinguish say HCN from 

HNC which are regarded as quite separate molecules. 
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In keeping with the treatment bf diatomic molecules, excited 

states are also considered, and insufficient data in any state will 

lead to that state being rejected, the whole molecule being rejected 

if the ground state is insufficiently specified. 

As with the diatomic molecules, the object of determining the 

partition functions of triatomic molecules is to obtain the 

equilibrium constants which are needed in computing the molecular 

abundances by iteration. The equilibrium constant for complete 

dissociation of a triatomic molecule is defined as: 

N~ NI1Nn, 

N~Jh 
(2.9.1) 

which is the ratio of the products of the abundances of the free atoms 

i, j and k to the combined molecule ijk. Again, as for diatomic 

molecules, in the limit of complete association, K, 'k= 0 and complete 
1J 

dissociation K, 'k-7 toO, wi th the units we are working in being in 
1J 

-6 cm Because the equilibrium constants for diatomic and particularly 

triatomic molecules can have values ranging over many orders of 

magnitude, care has to be exercised in programming to avoid 

excessively large or small floating point numbers. The determination 

of the equilibrium constants is discussed in section 2.12. 
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2.10 Determination of Rotational Partition Functions of Triatomic 

Molecules 

If the molecule is linear, the rotational partition function is 

calculated in the same way as for diatomic molecules in section 2.5, 

neglecting the coupling between rotation and vibration and in addition 

vibronic motion. If there is also electronic orbital angular momentum 

or spin, this interacts with the vibronic motion in a complex manner 

considered beyond the scope of this work, see Herzberg (34), and 

accordingly we just assume Hund's case (b) as treated in section 2.5. 

In most cases this does not arise, as for most linear molecules of 

interest, the ground vibrational level is a 1L:state. 

For non-linear molecules, an approximation to the rotational 

partition function by Herzberg (30) is: 

(2.10.1) 

where: 

A B - h c h 
(2.10.2) 

such that lA' IB and IC are the principal moments of inertia. By 

convention: IA~ IB~ I
C

' hence A ~ B ~ C. As the three atoms define a 

plane, the identities: 
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= or l/A + liB l/e (2.10.3) 

are always valid. 

For non-linear molecules, there appears to be no simple way of 

incorporating non-rigidity into the calculation of the rotational 

partition function, which is calculated simply on the basis of a rigid 

molecule. In fact, the constants for non-rigidity are generally not 

readily available for such molecules. 

If A, Band e are not known, they can be calculated from 

molecular geometry, see section 2.13. In fact, it is convenient to do 

this anyway as such calculations are necessary when isotopic versions 

are considered. 
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2.11 Determination of Vibrational Partition Functions of Triatomic 

Molecules 

As with section 2.6 in the case of diatomic molecules, we can 

find an analytic expression that gives the vibrational partition 

functions for triatomic molecules, taking into account some of the 

anharmonic terms. 

A triatomic molecule will have three different modes of 

vibration, of which one is doubly degenerate if the molecule is 

linear. The vibrational term values in 

anharmonicity, are given by the expression: 

tv (i/' -1- J..) +' I ~ , (V', 
l I ~ ...., '< "\ 

Where: v. are the vibrational quantum numbers, 
1 

~i are the harmonic constants, 

-1 
cm 

x .. are the lowest anharmonic constants, 
1J 

with first order 

(2.11.1) 

12 and g22 the vibronic quantum number and associated 

coupling constant which are only defined for linear molecules, 

see section 5.2. 
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In order to obtain a reasonable analytic expression, the cross 

terms involving x12 , x13 and x Z3 together with higher order terms are 

neglected. Numerical tests show this approximation to be acceptable. 

Also, because of the relative smallness of the g22 term when defined, 

this can be neglected, leaving for linear molecules a vibrational 

statistical weight factor g of v2+1. Thus: 
v 2 

d 1, 1 for non-linear molecules, 

d 2, v
2 

+ 1 for linear molecules, 

where d is the degeneracy of the v2 mode appearing in (2.11.1). 

As in section 2.6, the term values can be expressed relative to 

the lowest vibrational level,' giving: 

\;11 ~ ( tv I + OX- ) h.: 
il RT 

\J'J. -= (lJ '.1'>.. ) h" 
'l 1- ·H "T 

'X ) he 
(2.11.2) 

\J~ -:::. ( lJ 3 + }) nT 

X·. x·· he- . 1 ) ~,3 -::: ~ ::: 
~l ~ .. hoT 

Then the vibrational partition function is given by: 

(2.1L3) 

which is to be replaced by an analytic approximation, hence putting: 

e (2.11.4) 
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the same treatment can be applied as before. Because we have neglected 

the cross terms, the vibrational partition function can be written as: 

(2.11.5) 

The complete analytic approximation to the vibrational partition 

function of a triatomic molecule is given by: 

(2.11.6) 

where (d-1)5. 2= 1 when i = 2 and the molecule is linear, otherwise 
1., 

(d-1)J. 2= 0 and the last set of terms is not evaluated. 
1., 

For the special case of a molecule with a D3h point group, there 

are only two modes of vibration, and with v 2 being doubly 

degenerate, thus all terms involving v3 are dropped and (2.11.6) is 

evaluated as for a linear molecule with (d-l)~.?= 1 but i = 1 or 2 
1.,_ 

only. Thus the above expression can be used for all triatomic 

molecules. 
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2.12 Determination of Total Partition Functions and Equilibrium 

Constants of Triatomic Molecules 

The total partition function for a triatomic molecule can be 

computed from the general formula (2.7.2) in exactly the same way as 

in the case of diatomic molecules. If the molecule is non-linear, 

(2.7.1) has no meaning but the electronic statistical weight can be 

obtained from the electronic species of the state considered. 

The dissociation equilibrium equation of a triatomic molecule 

splitting up into an atom and diatomic molecule can be very easily 

obtained from (2.7.4) by replacing one of the atoms by a diatomic 

molecule. 

Thus for ijk ~--7 ij + k: 

- en,:.-.I. 
d ' ,." 

(2.12.1) 

where D .. k is the dissociation potential from the lowest vibrational 
1J; 

level of the triatomic molecule ijk into atom k and diatomic molecule 

ij, and: 

( '7YI ~ -t -?l1;j )?rl h 

'111· + "1rl. 1- "111 I-
t,.. a R 

(2.12.2) 

the reduced mass of the molecule for the specific dissociation in 
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amu. The associated equilibrium constant is: 

(2.12.3) 

However, it is the total dissociation equilibrium which is 

required, i.e. ijk ~--~ i + j + k. Provided that the dissociation 

equilibrium ij ~--~ i + j has already been dealt with under the 

diatomic molecules, then with the partial dissociation 

ijk ~--~ ij + k, the complete dissociation follows: 

(2.12.4) 

where D. 'k is the total dissociation potential of the molecule, such 
1.J 

that: 

(2.12.5) 

where D .. is DO from (2.7.4), 
1.J 0 

and ~ijk in amu can be thought of as 

another reduced mass, such that: 

(2.12.6) 

Finally, as we actually deal with the dissociation in two steps, 

given K .. 
1.J 

and as computed from (2.7.4) and (2.12.1) 

respectively, the complete dissociation equilibrium constant Kijk , as 

defined in section 2.9, is given by: 
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K· . -I-. -= k l. i f(;i -. l 
t~l-< D v\l"~ 

(2.12.7) 

which is used in the iteration calculations. 
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2.13 Rotational Isotopic Shifts of Triatomic Molecules 

If a molecule is isotopically substituted, then new rotational 

constants used to find the rotational partition function can be 

computed from the geometry of the molecule, rather than actually 

calculating the shifts in the constants, as is the case for diatomic 

molecules. There are usually small discrepancies between the 

rotational constants listed in the literature and those constants 

obtained from geometrical data in the same source, and are presumably 

due to effects of non-rigidity etc. and insufficiently accurate 

molecular data. 

Let a triatomic molecule consist of the atoms with masses m
l

, m2 

and m
3

, with m
2 

being the middle atom at which is located the bond 

angle 0(, such that for linear molecules 0(= 1800
• Let s12 and s23 be 

the bond lengths joining the respective atoms, and the third side of 

the triangle s13 opposite ffi2 being in some special cases also a bond; 

see figure (2.1), where the other quantities are the force constants, 

as discussed in the next section. 

If the masses are given in grams and length in centimetres, then 

-1 
the rotational constants in cm can be computed from the formulae: 

c 
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___ +-- f13 ----' 
---- -------

Fig. 2.1 
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or if s13 is given instead: 

(2.13.2) 

(2.13.3) 

with the larger root being A, and where: 

R= (2.13.4) 

which satisfy (2.10.3). If the masses are in amu and lengths in ~ then 

(2.13.1) and (2.13.2) must be multiplied by 1016NA and (2.13.4) by 

10-
32

/N
A

• 

Thus given any isotopic masses, values of A, Band C can be 

obtained and substituted into (2.10.1) to obtain the rotational 

partition function if the molecule is non-linear. 

If the bond angle is opened up so that in the limit the molecule 

becomes linear, then as 0\-7 180°, k -~ 0 from (2.13.4) and it can be 

shown that A -700, and B -7 C from (2.13.3) giving the simple rotator, 

whose partition function is discussed in section 2.5. If the 

non-rigidity constant D is known for the original molecule, then by 

analogy with the isotopic shifts in (2.8.2), we can write the 

isotopically shifted constant: 

T 
1) (2.13.5) 
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For a linear or bent triatomic molecule whose end atoms have the 

same charge, we have the same situation as discussed with diatomic 

molecules, needing to consider the statistical weights of the 

rotational levels due to nuclear spin only for the calculation of the 

spectrum, and using the appropriate value of Q
S

• This also applies 

when all three nuclei are identical and equivalent i.e. D3h point 

group. 

The mathematics for deriving the expressions for the principal 

moments of inertia, hence the rotational constants in this section, is 

given in the appendices. 
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2.14 Vibrational Isotopic Shifts of Triatomic Molecules 

The determination of isotopic shifts of triatomic molecules is a 

rather complex affair compared to the case of diatomic molecules, 

particularly in the most general case of a non-linear non-symmetric 

molecule i.e. point group C . 
s 

Using the same scheme as the previous section for designating the 

atoms and bonds, we include the force constants such that f12 and f23 

are the stretching constants for the bonds s12 and s23 respectively 

is the bending constant at in some cases the 

coupling constant f13 between the atoms m1 and m3 is also used (see 

figure (2.1) ). All force constants are in dyne 
-1 

cm is a 

;n cm-1 and -"I vibrational frequency 4 ~ is an isotopically shifted 

frequency. 

The assumption of valence forces is used, and for symmetric 

molecules the coupling constant f13 is also employed as this allows 

for a more general force field (see Herzberg (30) ). For 

non-symmetric molecules, f13 cannot be included in the, equations as 

there would be too many unknowns with the method used. 

It is assumed that isotopic substitution does not alter the 

molecular force constants, thus having solved for the force constants 

using the initial frequencies and atomic masses, we replace these 

masses by isotopes and using the force constants to obtain the 
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isotopically shifted vibrational frequencies. It is further assumed, 

without loss of generality, that if the two end atoms of the initial 

molecule belong to the same element, they will also be of the same 

isotopic form i.e. 016 C
12016 hence the molecule is symmetric. Thus 

isotopic substitution will cause a lowering or at best no change in 

symmetry. The somewhat artificial ca.se of beginning with a molecule 

like 018C12016 would be considered only as a means of checking, but we 

do allow for this possibility. 

As the treatment in determining isotopic shifts depends strongly 

on the symmetry of the initial and substituted molecules, it has to be 

divided up into five subsections A, Band C being for cases where as a 

result of substitution there is no lowering of symmetry, and D and E 

where the symmetry is lowered. The special case of the D3h point 

group is considered as a subclass of C
2v 

and is accordingly handled as 

a symmetric bent molecule with all force constants and bond lengths 

equal. However, it is convenient here to depart from what is stated 

at the end of section 2.11 and consider the v
2 

mode to be split into 

two vibrations such that ~2= ~3. Then if the isotopic substitution 

lowers the symmetry to C2v or Cs ' the degeneracy is removed, w2# w3 ' 

and in calculating the vibrational partition function, equation 

(2.11.6) is used for the general non-linear molecule. WhenU2= w3 ' it 

Hirschfelder (40) discusses 

+ the vibrational frequencies and force constants of H
3

• 

,I 
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2.14A Symmetric Linear to Symmetric Linear or Symmetric Bent to 

Symmetric Bent 

Point Groups 

D¢h -~ Dooh 

C2v -~ C2v 

D3h -~ D3h 

D3h -~ C2v 

Examples 

016C12016 -7 018C12018 

H 0
16 -~ D 016 

2 2 

H+ -~ D+ 
3 3 
+ + 

H3 -~ H2D 

Then m1= m3 , s12= s23' f12= f23 and as the following equations 

are general in~, for linear molecules we solve with 0(= 1800
• 

(i) Determination of the Force Constants 

(2.14.1) 

(2.14.2) 

(2.14.3) 

Then: 

(2.14.4) 
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Equation (2.14.1) is in fact· ambiguous, as there exists a 

negative·root giving a second pair of values (ga,g~). However, it is 

~ound that the smallest Iga- g~1 is obtained by taking the positive 

root shown, also in practice ga> gs; the values so obtained agree with 

Herzberg (30). 

Another difficulty may occasionally arise when the argument of 

the square root in (2.14.1) is negative, indicating that in that case 

the theory is insufficient as the force constants must be real 

quantities. In such cases there is no alternative but to set the 

quantity under the square root to zero and solve, since the negativity 

must be due to small inaccuracies in a quantity which is very small in 

any case. 

(ii) Determination of the Isotopic Frequencies 

Having obtained ga' gb and gs from above, it is then possible to 

find the shift in vibrational frequencies when one or more atoms are 

substituted by isotopes, such that the molecule remains symmetric. 

(2.14.5) 

(2.14.6) 

Where: 
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where the two roots of (2.14.5) give ",I 
1 

I 
and °2 and the superscripts 

(i) and (j) denote isotopically substituted atoms. 

The constant can always be eliminated between (2.14.2) and 

(2.14.6), and if in addition ga= gb' i.e. f13= 0, we can completely 

eliminate the force constants and express the shifts in frequencies as 

a function of atomic masses and the bond angle. Hence: 

'if}; 'm~ 

1r)(i)'m Lj) 
I ~ 

(2.14.8) 

(2.14.9) 

However, these last two equations are not used, as the individual 

f 
,.,1 I 

values 0 ..... 1 and ~2 cannot be obtained, and the force constants are 

needed for non-symmetric substitutions of bent molecules (see 

subsection E); however, it could be a good check to determine them. 

A useful check to see that the equations of part (ii) are the 

inverse of part (i), is to put the original masses into equations 

(2.14.5-7). If the square root in (2.14.1) has had to be dropped, as 

mentioned above, there will no longer of course be perfect agreement 

with the original frequencies, the amount of disagreement indicating 

the goodness of the approximation. 
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Finally, note that at no place do the bond lengths enter into the 

calculation. 

2.14B Non-Symmetric Linear to Non-Symmetric Linear 

Point Group Examples 

C 
-=v -7 C""'v HC

12
N

14 -7 DC
12

N
14 

C -7 C N
14

0 16 -7 N14N15016 
oDV wV 2 

(i) Determination of the Force Constants 

(2.14.10) 

(2.14.11) 

(2.14.12) 

The two-fold ambiguity of equation (2.14.10) leading to two 

possible values of the pair (f
12

,f
23

) is analogous to equation 

(2.14.1), only in this case the two signs have been left as there 

appears to be no particular preference to one sign. This is no doubt 

due to both f12 and f23 being similar quantities, i.e. both stretching 

constants, unlike g and 
a 

and often not being of dissimilar 

magnitude. However, it is still found tha.t the root taken is the one 
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that gives the smaller If 12- £23 1, in agreement with Herzberg (30). 

As 'with (2.14.1) only more likely, is the possibility of a 

complex solution of (2.14.10), which indeed happens for N
2
0. The 

explanation is clearly that f12~ f23 as the two bonds are similar, so 

the argument of the square root should be close to zero, however, 

because the valence bond theory is an approximation, the argument can 

go slightly negative, giving the above problem. As with the previous 

subsection, the only alternative is to set the square root term to 

zero. 

(ii) Determination of the Isotopic Frequencies 

From the force constants obtained above, the new vibrational 

frequencies can be found when one or more atoms are isotopically 

substituted. 

r---------------------------.--------------~, 

1 + (2.14.13) 

---, 
(2.14.14) 

Where: 

F -= /., ( ~~" + ~:i) + f.) ( ~~, + ~~k) (2.14.15) 

where the roots of (2.14.14) 
. , I 

g~ve w
1 

and 
.1 
w3 • 
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The constant f~/s12S23 can be eliminated at once between 

(2.14.12) and (2.14.13) giving: 

(2.14.16) 

As before, a useful check is to put the original masses into 

equations (2.14.13-15), and again for a case like N
2

0 where a real 

solution has to be "patched up", disagreement between the calculated 

and original frequencies give an idea of the approximation. 

2.14C Non-Symmetric Bent to Non-Symmetric Bent 

Point Group Examples 

C -7 C HC
12

0
16 

-7 DC
12

0
16 

s s 

C -7 C HN
14

0
16 

-7 DN
14

0
16 

s s 

case where triatomic molecules have the lowest possible symmetry, thus 

the most general method has to be adopted. 

Unlike the other cases discussed, it is unfortunately not 

possible to separate out the force constants and express them in terms 

known molecular properties. Instead, a set of three 

equations has to be solved by iteration, starting with 
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trial values of the force constants. Having obtained a converged 

solution for the force constants, it is possible to do the reverse and 

calculate the isotopic vibrational frequencies. As the method for the 

latter is essentially the same, with the equations of a similar 

structure, it is relatively easy to use the same coding for both 

tasks. We use here the method from Lechner (41). 

(i) Determination of the Force Constants 

Let: 

.1. '1 1. 1 1 ~ + ) - + ) 

Jl q 111 ?71~ ,..u~} '1r!l 'lTI3 • (2.14.17) 

1 -= 1 ~ i,J-5" + 1 

j-<I) ~ 
"un S~?'J> ;-(''lSq 1n~ Sq S~:. 

:t-a -::: 1 )-i q jf n 0? ~o( 
[,.~ 1 fi q f 1v ~ ~':>\ 

'17l~ ?1)~'S:),. 
) 

? ~ ~} (2.14.18) 

(,.~ -= 1 ;-< n J-f 0 y~ l::>( 
Co := 1 ';un J!!,'!> 

171<S "< 1T)~ 
ot j < ;! 

and also let the scaled force constants be: 

F = 
~ 

Then the general equations relating the force constants to the 

vibrational frequencies are: 

+ + ~} ~ F) 

CO F. ~ F~ -

p 

q 

R 

(2.14.20) 



- 78 -

where: 

p tJ':J.. 
I + lJ~ 

~ + lJ~ 
~ 

Q tJ <-(.) ~ 
• :t -\- (.) <.. {.) :t 

i '} 1- (,J~tJl 
:t , (2.14.21) 

R tv 'J... (.) <. (.) '<. 
I J. :> 

Clearly, equations (2.14.21) for the squares of the frequencies have a 

similar structure to equations (2.14.20) for the force constants. 

P, Q and R are immediately found from 

(2.14.21), also given trial values of the force constants Fi, F2 and 

F3, P', Q' and R' can be found from (2.14.20), then the differences, 

AP = P-P' etc. have to be made as small as possible. The trial 

values can be obtained from sources like Herzberg (30), or estimated 

from bonds of similar properties. 

Equations (2.14.20) can be written in differential form: 

+ + :: LlP 

(2.14.22) 

Co (F; ~ II FI + F, F) A. F;z + G F~ll~) 

Then by writing: 

1 1 t L\F 
a LlP 

D~,\ V:(~ D~3 L} F:.? - iJR (2.14.23) 

D3\ D3~ D33 Ll F3 LlR 
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where: 

Vat ::: ~~ + t~ ~) D'li ::: Co F; F3 
) 

DQ{ :::. lr.~ + ~, ;:; D~'l. ::: Co F; ~ 
I 

'D~~ ::: b-F + &3 F:l ) D33 :::. Co ~ F~ a. I 
} 

and the determinant D is given by: 

D - D~~j)33 V~~1):l~ + ]):/::.1);3l - D~1.D3' -

+ j)~1 D3:2 - j)~~ .031 

Then (2.14.23) can be inverted directly giving: 

LI F, :':[ll P(j)H3),;;-j):(3D:>J+L1Q(1J;;~-.D·3J+I1R(.D<3 -D:t,J] /J) 

AS::: L l\ P(.D~3 D3i - D:<j D») ·tll Q(D))- D)1) ·.Ll R (D7<' - D·u )) / J) 

/1 G-: I L1 P (Y'l))3'<- D~~ j).)1) +Li Q(D),-1J.n ) -tb R(D.(=/- D'.).1)) / J) 

Hence new trial values F: = F:+AF. are obtained, 
111 

(2.14.24) 

(2.14.25) 

(2.14.26) 

leading to 

P", Q" and R" from (2.14.20), and the ~lhole process is repeated until 

convergence is reached. On convergence, F
1

, F2 and F3 are obtained, 

from which the force constants f12' f23 and fb can be found from 

(2.14.19). 
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Convergence is assumed to have been reached when: 

+ (2.14.27) 

where typically, i.e. the average change in the force 

constants from one iteration to the next is less than one part in a 

million. 

(ii) Determination of the Isotopic Frequencies 

Having obtained the force constants above, the isotopic 

vibrational frequencies can be obtained by inverting the whole 

problem. I I I found from (i) m(j) and 
(k) 

using ?-12' Jl23 and ,,[,LO are m1 ' 2 m3 

equations (2.14.17), hence 
I I 

b
I and I found from bp b2 , 3 Co are 

(2.14.18). Equations (2.14.19) can be used to write: 

(2.14.28) 

expressing the isotopic scaled force constants in terms of the scaled 

force constants of the initial molecule. 

Equations (2.14.20) and (2.14.21) are used again, only with 

superscripts I to indicate isotopic shifts, and the whole problem is 

dealt with as before only in reverse. 
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Given I I I pI, QI and RI immediately be found from F
1

, F2 and F
3

, can 

(2.14.20), and trial values "I "I wI ) iJ 2 
and 

,I 
{.) 3 can be inserted into 

(2.14.21) to give p,I , Q,I and R,I , whereby the differences 

ApI = pI+p,I etc. are obtained. Obviously we can simply use the 

frequencies of the initial molecule as trial values for the isotopic 

molecule. 

Equations (2.14.21) can be written in differential form, leading 

to a form like (2.14.22), I 2 
only with F. and ~F. replaced by (Q.) and 

1 1 1 

~(w~)2 respectively, and putting b1= b 2= b3= c
O
= 1; then it can be 

I 2 
wri tten as (2.14.23) and solved for t:. (w .) • 

1 

Hence new trial values for the next iteration are 

(c:J :.1)2 = (w~I)2+ A (,:.;~)2 , with the same convergence criterion being 
1 1· 1 

1 · d b f Th . I . I d .,1 b' d app le as e ore. us on convergence, w
1

,t../2 an ~v3 are 0 talne • 

As before, the method can be checked by inserting the original masses 

into part eii). 

The method described above for the point group C can certainly 
s 

be applied for at least some of tOhe cases described earlier, but is 

unnecessarily general as the much simpler formulae already discussed 

can be used. 
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2.14D Symmetric Linear to Non-Symmetric Linear 

Point Groups 

DoOh -~ C<:>ov -

Example 

016C12016 _~ 016C12017 

Then after substitution, 

(i) Determination of the Force Constants 

As the initial molecule is linear and symmetric, this has already 

Qeen discussed in A( i), with 0(= 1800
• However, f13 has to be ignored 

as it cannot be used in cases of non-symmetric substitution. 

(ii) Determination of the Isotopic Frequencies 

The method used in B(U) is applied, where (2.14.13) and 

(2.14.14) become: 

tJ t -:: 1 f, (1 + 1 
4 1 -- 4-< J,."IT c. s-~ -m 14.) 1r1 ii) 171~ \) (2.14.29) 

.~ ~ 
I 

(2.14.30) 

Where: 

+ + (2.14.31) 
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Z.14E Symmetric Bent to Non-Symmetric Bent 

Point Groups 

c -~ C Zv s 

Examples 

HZO -~ HOD 

H; -~ HDT+ 

Then after substitution, 

(i) Determination of the Force Constants 

As with the previous subsection, this has already been discussed 

in A(i), only with 0« 1800 in this case, and as before, f13 has to be 

ignored. 

(ii) Determination of the Isotopic Frequencies 

With the force constants, C(ii) is used to find the isotopic 

frequencies for the non-symmetrically substituted molecule. 

If the isotopic frequencies calculated in subsections D and E for 

non-symmetric substitution of the initially symmetric molecules are 

used as starting values, together with the isotopic masses, and if \ve 

solve for the force constants and substitute back our original masses, 

we would not expect to recover exactly our original frequencies, as 

the force constant f13 is not determined, because we are starting with 

the non-symmetric cases. This is the artificial case mentioned 
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earlier. 

The methods described in the above subsections can be summarised 

in the following table, where the first entry of each pair represents 

part (i) of the subsection indicated, to determine the force 

constants; the second entry indicating part (ii) of the subsection 

shown, to find the isotopic frequencies. Quantities in parentheses 

indicate the unlikely applications of the methods. 

Table (2.3) of Methods for Obtaining Isotopic Frequencies 

Substituted Molecule 

D3h D ~v C2v C ¢h s 

D3h A,A A,A A,C 

Initial ~h A,A A,B 

Molecule C 
~v 

(B,A) B,B 

C
2v (A,A) A,A A,C 

C (C,A) (C,A) C,C 
s 

As Herzberg (30) gives dati on D
2

0 and HOD as well as H20, some 

of the methods above could be tested, in addition to the checks 

already mentioned. It is found that there is some disagreement in 

frequencies, particularly as these substitutions involve large mass 

changes, but it is considered that these are acceptable, particularly 

as deuterium has such a low abundance in stellar atmospheres. 

Disagreements for isotopes of other atoms are likely to be much 

smaller. 
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Regardless of the type of molecule being considered, we can use a 

simple approximation given by Herzberg (30) to calculate the isotopic 

shift of the anharmonic constants: 

1 
"V :: .A- •• 

t.d 

f r 
')L .. t.}- {j. 

~ J L d 
t.}.{.). 

t d 

(2.14.32) 

Herzberg (30) and Lechner (41), from which our expressions are 

derived, use the observed fundamental frequencies Y. in place of the 
]. 

harmonic constants t.;. , 
]. 

the classical vibrational frequencies for 

infinitesimal amplitudes that we use. Given Y., we should strictly 
]. 

speaking convert to (.). using 
]. 

a.nharmonic constants are known: 

y~ t..J, + ~?i.. 04-
of ::: 

II 
_ ?t.,~ 

~ 

)?~ -= lJ~ 1- ( 1 ~ cl) ?L:n + 1 

.l 

the following expressions, 

+ i-x. I;' 
~ 

XI< .1- 1 ? - .. ~;, 
< 

y) - tJ} + ~ X"}) + -1 -+ d ')' - - 'X,) - '-?"} 
~ ~ 

where d is the degeneracy of the v2 vibrational mode. 

if the 

(2.14.33) 

After computing the isotopic shifts of the vibrational constants, 

we have to ~onvert the dissociation potential and the energies of any 

excited electronic states being considered, in the same way as is done 

for diatomic molecules. Thus defining DO", DO" T' and T' in the same 
eo' e ° 

way as section 4.3, where the dissociation may be complete or only 

partial, we can write: 

0" 3)0 •. f'( (c I a Ii 
l)e - 0 ::: 1 0, + Ol- CJ ~ 

/ '.,. it) 1 ( Ii 1'< 'I 'I 
t- V ~ + L;. ?lli +ot )L.~ .. 

(2.14.34) 

). "" '1 + r?i. LX. q.'- .) 
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T,/·- T ' = e 0 

+ 
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.1 (iJ " -+ d. lit.; I( + tJ 'I _ t,:) ( - J't.; I _ t.J .) 
J. I .;z } , ~ " 

I ( 1/ of ~ , I, " J. I, I, + JI'JL~~ - ?L + ?l.~ + "Jl~> + ?l" + ?i.,) Lr II ~ '? 
(2.14.35) 

I d~/. I I el' . I I Cr?l.;» -?i:- - ?\.-~1 - 'Xn - ?Ll~ - ?L':l -" 

where we distinguish between d' and d" as the molecule may be linear 

in one electronic state but non-linear in the other. 
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2.15 Molecular and Grand Iteration Scheme for Determining Equilibrium 

Abundances 

As already mentioned in section 2.3, approximate initial atomic 

ionization equilibrium abundances are found in the absence of molecule 

formation, and these now have to be used for starting values for the 

molecular dissociation equilibrium calculations together with the 

diatomic and triatomic dissociation equilibrium constants discussed 

above. 

For performing the dissociation equilibrium iterations, in 

addition to the requirements already mentioned, it is necessary to 

give some initial trial values for Fi' the fraction of atoms of 

element i free, as defined in (2.4.1) for each element. Of course, 

the initial state F.= 1 for all i, as is the case with the first set 
~ 

of atomic ionization iterations, can be used. Indeed, for 

temperatures above typically 3000oK, although molecule forma.tion may 

still be fairly important from the point of view of opacity, the gas 

is predominantly monatomic, 

conveniently be applied. 

hence the initial trial values F.= 1 can 
~ 

However, at lower temperatures where 

molecules dominate the mixture, convergence in the earlier stages of 

iteration can be speeded up by calculating some approximate trial 

values of Fi ; at least to obtain upper limits. 
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At low temperatures, it may appear to be better to assume 

complete"molecular association before we execute the atomic ionization 

iterations for the first time. However, even at the lm.;rest 

temperature of 10000 K that we are likely to consider, which is already 

unrealistically low, there are usually still plenty of free atoms, 

besides which we have to break into the cycles of ionization and 

dissociation iterations at some point. It is convenient always to 

start with the ionization iterations, initially neglecting any 

molecular association, then do the molecular dissociation iterations 

using appropriate starting values. 

Neglecting the formation of triatomic and charged molecules, and 

considering at an~ one time a particular diatomic molecule and its 

constituent atoms in equilibrium and in isolation from other species, 

we can then write for a heteroelement molecule, (where we use the 

terms heteroelement and homoelement with reference to atomic numbers 

only, isotopes not being considered), with i # j: 

Nii ) -- IJ· + N·· '- (..4 
(2.15.1) 

N(3) - tJ· . l- IJ· . 
1\ "d 

Where the symbols have their meanings as described in earlier 

sections, i.e. N. and N. are the number of free atoms of type i and j 
1 J 

respectively, N .. the number of diatomic molecules consisting of i and 
1J 

j, and and N(j) are the total number of atoms of type i and j 

respectively, free and combined; only here they do not include other 

molecules. 
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Using the definitions for F. andK .. , 
~ ~J 

(2.4.1) 

respectively, (2.15.1) becomes: 

F- 4-
F. j:. Nt' j L;l ~) ::: 

L 

k~3 

F: + F; F~· tJ Ii) -::: 1 
~ k,· 

... ~ 

which on being combined and solving for F. becomes: 
~ 

and likewise for F. if the indices are interchanged. 
J 

and (2.4.2) 

(2.15.2) 

(2.15.3) 

For a homoelement molecule i j, and we write in place of 

(2.15.1): 

-= N, 
( t 

Hence using (2.4.1) and (2.7.6) again: 

= 1 

which becomes: 

F· -= L 

(2.15.4) 

(2.15.5) 

(2.15.6) 
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Equations (2.15.3) and (2.15.6) can be combined together and 

expressed neatly as: 

F· 
" 

where: 

a. . 1 if i f. j 
1.J 

a .. = 2 if i j 
1.J 

and 

(2.15.7) 

(2.15.8) 

x· -u 
(2.15.9) 

Equation (2.15.7) can be evaluated to find a value of Fi for a 

particular molecule considered. 

by interchanging the indices. 

If i f. j, F. can of course be found 
J 

Unfortunately, (2.15.7) is not always suitable for handling 

numerically, owing to the very large range the variables can take, it 

is found that machine overflow can occur at an intermediate step in 

the evaluation, or loss of significance. Let: 

1 - X· 1- X' (. I 
and (2.15.10) 

Also let V and L be the overflow and loss of significance criterion 

respectively, such that V is a large real number within the range of 

the machine and L = 30 say. Then (2.15.7) can be re-written in four 

possible ways, subject to the specified restrictions: 



f. L 
~I/ . ~ )L~ + J -

for :x < - jv 

F-
e... 

1 
J.: 

for X> L j'j 
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(2.15.11) 

(2.15.12) 

(2.15.13) 

(2.15.14) 

Thus for each molecule in turn, the fractions of constituent 

atoms which are free are calculated on the assumption that the 

molecule is in equilibrium with its constituent atoms in isolation 

from other molecules, and the minimum is then taken of the values of 

F. 
1. 

so calculated and the previous minimum of F. 
1. 

obtained from 

molecules already considered. For heteroelement molecules, the other 

fraction F. is identically treated. 
J 

After all molecules have been considered, approximate trial 

values for the fraction of atoms free for each element are thus 

obtained. Naturally, the fraction of atoms free of those elements 

that have no molecules associated with them in the specified mixture, 



-92 

always remain unity. 

With the starting values of F. so obtained, together with other 
1. 

necessary data already mentioned, it is now possible to consider the 

equilibrium,dissociation of both diatomic and triatomic molecules. 

For element i to be in equilibrium with diatomic molecules ij and 

triatomic molecules ijk, where for any particular element the index i 

is fixed, but j and k represent other elements which i can combine 

with, we can \\Trite: 

where a. 0 are as before and: 
1.J 

a ijk = 1 if i i= j and i 

a ijk = 2 if i j or i = 

a ijk = 3 if i = j = k 

(2.15.15) 

i= k 

k but j :f k (2.15.16) 

Using the definitions for F., K .. and K. ok and simplifying: 
1. 1.J 1.J • 

1 (2.15.17) 

which can be written as: 

or F· -L 

1 
(2.15.18) 
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where r. is the expression in the square brackets of (2.15.17). 
~ 

with the initial .'" Hence, term of t'i as 1 and trial values of 

for all i, for each molecule ij or ijk considered in turn, lfi 

incremented by the terms in (2.15.17) a .. F .N( ./K .. 
~J J J ~J 

F. 
~ 

is 

or 

aijkFjFkN(j)N(k)/Kijk respectively. When the summation is completed 

after all molecules have been considered, (2.15.18) gives new values 

of F. from the 
~ 

computed For those elements that do not form 

specified molecules, the terms in (2.15.17) beyond the first never 

occur, hence t.= 1 always, 
~ 

thus F.= 1. 
~ 

Furthermore, since all the 

terms in the sum beyond the first are ~ 0, it follows that Fi~ 1 for 

all i. 

With the output values of F. so obtained, 
~ 

we can form the 

geometric mean of those with the input values of F. to give new values 
~ 

that can be used as input for the next iteration, as this is rather 

more satisfactory than simply using the output values as new input. 

So far in our discussion in this section, we have omitted to 

consider the presence of atomic and molecular ions, and the formation 

of isotopic molecules. It is now our job to consider in a much more 

general way molecular equilibrium dissociation with ions and isotopes 

taken into account. The equations already considered have to be 

generalized, and considerable care has to be used with the definitions 

and particularly the indices. 
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Let i, j and k index the elements as before, h, m and n be the 

charges of the respective atoms and p, q and r index the isotopes 

belonging respectively to each element. 

As before, i, j and k are merely indices that do not necessarily 

correspond to the atomic numbers. The indices p, q and r index 

isotopes in such a way that a particular isotope p, is an isotope of 

element i and no other, and likewise for q and r. Thus these indices 

can be used 

unambiguous. 

without explicitly naming the element and remain 

In other words, we can consider a common list of 

isotopes of all elements arranged such that those belonging to each 

element are grouped together. Then if for example element i has three 

isotopes with the first being tenth in the list of isotopes, then p 

can only take the values 10 to 12, if j happens to be the next element 

in the sequence, then r = 13 to whatever its upper limit is, and so 

on. Thus it follows that if p = q then i = j, but the converse is not 

necessarily true, and i 1 j meang p j q for all isotopes of i and j. 

The indices h, m and n are the actual charges of the specified 

dissociated atoms that make up the molecule. Thus h = 1 indicates 

that the atom of element i (or more correctly, to be consistent any 

isotope of element i) has a single positive charge, h = 0 indicates a 

neutral atom, and likewise for m and n. Unlike the isotopic indices, 

h = m says nothing about the equality or otherwise of i and j. 

Actually, for computational convenience, these indices in the coding 

are not charges but indices of ions in a common list, as is done above 

for isotopes, but it is much easier to treat them directly as charges, 
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as we can define quantities like h+m+n. 

In order to proceed further, it is necessary to state carefully 

the following additional definitions: 

N(p) --- The total number of isotopes of type p belonging to element i 

in the mixture that are free or combined. 

N --- The number of isotopes of type p that are free. p 

Nh+m and Nh+m+n --- The abundances of molecules consisting of isotopes 
pq pqr 

p and q, and p, q and r, with charges h+m and h+m+n respectively. 

K
hm 

and pq K
hmn T' . 1 . b . f lId· .. --- ne equl l rlum constants 0 mo ecu es lssoclatlng 
pqr 

completely into isotopes with charges indicated. 

And also define: 

(2.15.19) 

The fraction of atoms of isotope p that are free, i.e. the isotope 

analogy of ~he atomic fractions F .• 
l 

Of those atoms of element i that are free, 

isotope p. 

(2.15.20) 

f is the fraction of 
p 
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(2.15.21) 

The fraction of all atoms of element i in the mixture, free and 

combined, that consist of isotope p, and is constant. 

The definitions of the equilibrium constants in (2.4.2) and 

(2.9.1) can be generalized to include isotopes and ions, and are 

determined from Saha's equation by substituting in the appropriate 

isotopic quantities. Thus for diatomic molecules: 

" lPI S. s. 
L c) (2.15.22) 

and for triatomic molecules: 

(2.15.23) 

h defined in (2.3.8) is the fraction of N. that is in where S. etc. as 
l. l. 

the hth stage of ionization. Thus S~N is the number of free atoms of 
l. p 

isotope in the 
th 

of ionization. As: p h stage 

(2.15.24) 

etc., and (2.15.22) and (2.15.23) can be re-written as: 

(2.15.25) 

and 



- 97 -

(2.15.26) 

The indices i, j and k in equation (2.15.15) can be replaced by 

p, q and r respectively, so that isotopes rather than just elements 

are indexed, thus (2.15.15) is generalized and becomes: 

(2.15.27) 

where a and a have pr pqr the same meanings, apart from the indices, as 

equation (2.15.15) and we also sum over molecular ions, such that 

t = h+m or t = h+m+n for diatomic and triatomic molecules 

respectively, with t = 0 for neutral molecules, t = 1 for singly 

ionized positive molecules, etc. 

As with (2.15.15), \Ve wish to replace quantities by number by 

quantities by fraction, apart from the total number of atoms for each 

element, to make the problem suitable for computation. If the 

definitions (2.15.21) and (2.15.24-26) are substituted into (2.15.27), 

then after simplification, (2.15.27) becomes: 

Iv ij) 

(2.15.28) 

which can be written as: 

1 = (2.15.29) 
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wheregr is the expression in the brackets of (2.15.28). 
p 

Hence, as before when neglecting isotopes and ion formation, 

after having set the initial term of r as 1 for all isotopes, then -p 

the summations in (2.15.28) are evaluated for all isotopic molecules 

it is more convenient to 

find output values of f and F., 
P ~ 

however, these cannot be found 

directly from (2.15.29). 

From the definitions of Fi' Fp and Jp ' 

found from the expression: 

the fractions F. can be 
~ 

F-
(. L (2.15.30) 

f' 

where the summation is over only those isotopes belonging to element 

i. Once (2.15.30) has been evaluated for element i, the fractions f 
p 

can be obtained from the expression similarly derived from the above 

mentioned definitions: 

(2.15.31) 

After evaluating (2.15.30) and (2.15.31) for isotopes of all 

elements, we have the output values of F. and f from (2.15.28). 
~ p 

As 

mentioned earlier, the new input values of F. for the next iteration 
~ 

are obtained from the geometric means of the previous input and output 

values calculated above. The calculated values of f, however, 
p 

are 

put directly in as new input values, without taking geometric means, 

as they are not expected to change very much, and are not the "handle" 
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of the iterative process. 

On the very first entry into the molecular dissociation 

iterations, in addition to initializing the values of F. to some trial 
~ 

values as discussed at the beginning of this section, the values of f 
p 

are set equal to X for all isotopes. . p 

As expected, it is found that f = J in general, 
p p 

exact equality 

being the case, except at initialization, only when a particular 

element i forms no molecules, in which case Ni = N(i) and Np= N(p) 

etc., or when only one isotope of a particular element i is present in 

the mixture, in \vhich case f = J: = 1 and both (2.15.30) and (2.15.31) 
p p 

reduce down to (2.15.18). 

After performing each iteration, it is necessary to test for 

convergence. As mentioned much earlier when dealing with ionization, 

a test is performed on each iteration on the change in the one 

quantity N , 
e 

the number of free electrons present. However, for 

molecular dissociation, it is necessary to incorporate in a test in 

some way, the changes of all the fractions F. for all N elements. 
~ 

One such method that could be chosen is to define a quantity SF' 

such that: 

5
" 
F =-

r~ (I.w) I 
F. (oU) 

l. 

(2.15.32) 

where F.(new) is the geometric mean of the previous input and output 
~ 

values of the iteration just performed, and F.(old) is the input 
~ 
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value. As conver£ence is approached, SF-7 O. hence the test for 

convergence would be: 

where f is, as before, the convergence criterion, 

(2.15.33) 

-4 typically 10 or 

smaller, except for the first few grand iterations when it is larger. 

With single precision programming used here, 

point having £ less than 10-6 • 

however, there is no 

Unfortunately, it is found in practice that this simple test for 

convergence is not suitable, because although SF might converge fairly 

rapidly, some of the individual ratios F.(new)/F.(old) may converge 
1. 1. 

much more slowly. This is found to be particularly troublesome in the 

case of carbon and oxygen, where the predominant molecule formed is 

carbon monoxide, which is tightly bonded. Here it often noticed that 

the convergence of the fractions of the atoms is slow, and if there 

are a large number of fractions of other atoms that have converged, 

then the above test is insensitive. This may often be the case if all 

but a few of the fractions have converged. 

A much better method is to define a quantity F such that: 
max' 

F· (1lU.') I) 
~i- (ctJ) 

(2.15.34) 

over all i. Then with the test: 
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(2.15.35) 

each individual fraction has to converge to the required degree before 

(2.15.35) is satisfied, hence completing the dissociation iteration 

loop in that particular grand iteration. It is nevertheless 

convenient still to find SF as a monitor to the progress of the 

iterations. 

As is stated right at the beginning of this chapter, like the 

ionization iteration loop, the iteration criterion for molecular 

dissociation is quite loose in the first grand iteration, but becomes 

progressively more stringent for each grand iteration, until the 

maximum specified stringency, as said typically 10-4 
or less, is 

reached. If after a specified number of iterations, (2.15.35) is not 

satisfied, then like the ionization iterations, the dissociation 

iterations belonging to that particular grand iteration, are 

terminated. 

Having left the dissociation iteration loop by whichever method, 

it is necessary to complete the current grand iteration by computing 

the number of free electrons contributed by ionized molecules, 

(including if necessary any electrons absorbed by negative molecular 

ions), hence completing all the equations in the iterative process. 

Re-writing the part of the expression (2.3.11) that is relevant 

to molecular ions: 

(2.15.36) 
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where M is the number of electrons contributed by charged molecules, e 

and Mt the actual abundance of a diatomic or triatomic molecule of 
s 

type s with charge t. Then (2.15.36) can be expressed as: 

(2.15.37) 

h+m 
where Nij 

and Nh+m+n 
ijk are the abundances of diatomic and triatomic 

molecules for the indicated elements, with charges t = h+m and 

t = h+m+n, where we sum over t. 

Making the substitution (2.15.46) and (2.15.47), see below, 

gives: 

where 
-hm 
K .. 

1J 
and 

-hmn 
K .. k are 

1J 
the 

(2.15.38) 

mean dissociation constants of the 

molecules with the indicated elements, averaged over all isotopes 

belonging to those elements, that split up into atoms with the 

appropriate charges. 

Having obtained M from (2.15.38)) 
e 

it is added to the number of 

electrons obtained from the last execution of the ionization iteration 

loop, giving the total number of free electrons N. 
e 

It is then 

possible to begin a new grand iteration, starting again with the 

ionization iterations, and using the value of N incorporating M • 
e e 
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The whole process of performing ionization iterations followed by 

dissociation iterations that constitute a grand iteration, is 

performed until total convergence is reached, or failing that, until a 

specified maximum number of allowed grand iterations is attained. As 

expected, at low temperatures there are a large number of iterations 

due to abundant molecule and negative ion formation, but at 

progressively higher temperatures, convergence becomes rapid. 

To test for overall convergence of the grand iterations, it is 

convenient to do the test: 

(2.15.39) 

where b10g N and ~F are defined respectively in (2.3.12) and 
e max 

(2.15.34), and £, the convergence criterion, has our usual value of 

-4 typically 10 or less. 

In the way the equations in the iterative process are arranged, 

it is not necessary to know directly the abundances of the various 

molecules, the fractions of them in various isotopic forms, or except 

for calculating }f, the mean equilibrium constants. However, as the 
e 

whole object of performing these calculations is to determine the 

molecular abundances, which are then used as inputs to the process of 

determining the opacity, it is necessary to find them together with 

the other quantities mentioned, at the completion of all iterations. 
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the definition for the K .. and K" k from (2.7.6) 
1J 1J 

Taking and 

(2.12.7) -respectively, and allO\ving for the formation of ions, these 

equations can be re-written as: 

(2.15.40) 

and 

(2.15.41) 

Where now several isotopic variants of a molecule ij or ijk exist, so 

we now consider these equilibrium constants to be some kind of mean of 

the actual equilibrium constants for the individual isotopic variants, 

as distinct from the definitions (2.4.2) and (2.9.1) where each 

element is assumed to have only one isotope, 

found directly from Guldberg and Waage's equation. 

and 

Using the fact that: 

N i)t"" 
I fCV 

and K .. and K" j are 
1J 1J< 

(2.15.42) 

(2.15.43) 

together with the definitions (2.15.20), (2.15.22) and (2.15.23), it 

is easy to show that: 
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1 
.- 1-.111 

L2 (hi.:) 
(2.15.44) 

K·· (,o 
f 1" kr'lt 

and 

1 
R~~ln 'i'i'I (If!;!:) (2.15.45) 

Lap-

t c"" l' /, f'F" 

where the fractions S~ etc. cancel. 
1. 

Thus (2.15.44) and (2.15.45) are evaluated whenever it is 

required to determine M , 
e 

and the molecular abundances at the end of 

the iterations; in addition, the mean equilibrium constants are a 

useful check. It is immediately obvious that if elements i and j have 

one specified isotope each, then there will be only one molecule of 

the type ij, hence -hm hm 
K .. is just K from (2.15.44), 

1.J pq 
and likewise for 

(2.15.45). 

hm 
.It is worth noting that whereas the equilibrium constants K and 

pq 

Khmn are determined at the very beginning and remain fixed, the mean 
pqr 

equilibrium K
-hm -hmn 

constants .. and K. 'k are 
1.J 1.J 

not known accurately until 

convergence is reached. as they depend on the isotopic fractions f 
p 

etc. 

Once the mean equilibrium constants are known, then the molecular 

abundances can be found directly from: 

(2.15.46) 
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and 

(2.15.47) 

where the abundances so determined are the sums of the abundances of 

the individual isotopic molecules making up ij and ijk. 

Rather than determining the abundances Nh+m and 
pq 

Nh+m+n 
pqr of 

isotopic molecules directly, it is far more convenient, as is the case 

with isotopes, to determine the fractional abundances. 
hm 

Thus let gpq 

be the fraction of the molecules ij with charge h+m that consist of 

the isotopic form pq, and likewise for hmn then: gpqr' 

.... -»1 N:~~ 
Jr'\ N~·~~ 

L~ 

(2.15.48) 

and 

f',/'t~" d h -»1\ C''\."l"' 
r'p' Nht"tl-tll 

t ih 
(2.15.49) 

Where by definition: 

IL dr~~~ -= 1 (2.15.50) 

f 1-

and 

LLL ~'Mn . dr'\'" - 1 - (2.15.51) 
f' "'"'}-" 

Then, these fractions can be determined from: 
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(2.15.52) 

and 

(2.15.53) 

This discussion should be completed by briefly considering 

several extra quantities that are useful to determine, together with 

important checks. 

The total number of particles per 3 em is obtained by adding to 

the number of free electrons, the sum of all free atoms in any stage 

of ionization, together with the sum of all diatomic and triatomic 

molecules, thus: 

.f. :z rJi. + L L Msf:: (2.15.54) 
I- s t 

which in full is: 

(2.15.55) 
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As the number of atoms of element i combined in diatomic 

<;--=:; h+m 
molecules is L La . . N.. and in 

j t 1-J 1-J 
. . I I . c;- <; <. Nh+m+n tr1-atom1-C mo ecu es 1-S LL La·· k .. k ' 

j k t 1-J 1-J 

we can easily check to see how well each element has converged from 

the expression: 

R. 
c.. 

where}t. is the residual abundance of element i, that is free and 1-

combined in molecules, expressed as a fraction that does not agree 

with the total number of atoms of element i. If convergence has 

occurred properly, then: 

(2.15.57) 

The whole iterative process discussed in this chapter can be 

repeated for a variety of temperatures, densities and chemical 

compositions, enabling one to determine molecular abundances under 

many different conditions. Also, if any of the above number densities 

2 
are multiplied by kT, we obtain a pressure in dynes per cm 
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2.16 The Inclusion of Molecules with more than Three Atoms and Solid 

Particles 

. A detailed treatment of the properties of molecules with more 

than three atoms and of solid particles, is considered to be well 

beyond the scope of this work. However, in order to help to put this 

work into perspective, a very brief discussion is given. 

All computations in this work neglect the possible formation of 

solid particles and tetra-atomic and more complex molecules, as this 

should be a good approximation, except at the very lowest 

temperatures. However, at such low photospheric temperatures, .where 

by our calculations diatomic and triatomic molecules are very 

abundant, one could reasonably expect more complex molecules like NH3 

and CH4 to form, and even solid particles like graphite and silicate 

to condense out when the partial pressure of the appropriate species 

in the gas phase rises above the saturated vapour pressure of the 

solid particles. 

To calculate ab initio the partition functions and equilibrium 

constants of these more complex molecules, in the same general way as 

is done for diatomic and triatomic molecules: would be very 

complicated, particularly if the isotopic variations are to be 

included in the same way. The only solution would be to include 

molecules on an individual basis, whose equilibrium constants are 

already known at the relevant temperatures, or can be found from 
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simple empirical formulae. 

Neglecting the presence of isotopes and ions, (2.15.15) 

generalizes to: 

Nii) = Nl + ~>;<'iJ N("i +~% ttijhN("~k +L:22. 4..id·hlNl·jh~+'" (2.16.1) 

J d R <i lt .{ 

Hence (2.15.17) can be written as: 

(2.16.2) 

where i,j,k,l ••• are the indices of the atoms, and a. 'kl gi ves the 
~J ••• 

number of atoms in a molecule belonging to type i. 

Then (2.16.2) can be iterated in the same way as before, yielding 

abundances which could be used in any opacity calculations. Of 

course, (2.16.2) could be generalized to include isotopic variants. 

If solid particles are to be allowed to form in the mixture, then 

we can say qualitatively, that the right hand side of (2.16.1) must 

include terms for the conservation of atoms that do not contribute any 

pressure in the gas when condensation occurs. The net result of 

condensation is to reduce the overall pressure and density of the gas 

phase, and alter the molecular equilibria. The formation of solid 

particles would affect the opacity both directly, and indirectly by 

changing the abundances of the species in the gas phase important for 
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opacity, and would be an exceedingly complex problem to handle. 
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3 DETERMINATION OF SCATTERING AND CONTINUOUS OPACITY 

3.1 Introduction 

Having obtained the atomic and molecular abundances from the 

methods in the previous chapter, these abundances are then used to 

calculate the opacities, which is the whole object of this work. 

We can split up the types of opacity into two components, a 

background continuous opacity due to electron scattering, Rayleigh 

scattering, free-free and bound-free absorption, and discrete opacity 

due to bound-bound absorption. In this chapter, we consider the 

various forms of continuous opacity, deferring to the following 

chapters the much more extensive discussion of the determination of 

bound-bound absorption. 

It is convenient to express frequency in a dimensionless form 

when determining the opacity, thus let u be the reduced frequency, 

such that: 

u= (3.1.1) 

We can write the total opacity corrected for stimulated emission, 

see Carson (42) and (43): 

(3.1.2) 
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where Ka(u) and Ks(u) are respectively the absorption and scattering 

opacity, -u and (l-e ) is the stimulated emission factor. The main aim 

is to obtain the Rosseland mean opacity (ID10) K, which is given by: 

(3.1.3) 

where the Rosseland weighting function: 

tS- lA- 't e «. 

LtTT v (e ~L_ 1) ~ (3.1.4) 

normalizes to unity, and has its maximum at u = 3.830016 •.• , hence 

giving the greatest weight to K'(u) at that value. 

However, it is more convenient and computationally more efficient 

to factorize out the stimulated emission factor from (3.1.2), and 

incorporate it into the weighting function. Writing: 

J( l £.I.) 

(3.1.2) can be re-written as: 

Hence the RHO is now given by: 

\. 
R 

where the weighting function: 

(3.1.5) 

(3.1.6) 

(3.1.7) 
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15 iA" '( e ~t<. 

4rr 4 (e"'"-1» 
(3.1.8) 

no longer normalizes to unity, but to the value 1.055313 ••• , and now 

has its maximum at the value u = 3.724 •.• 

Because the RMO is an harmonic mean, it is not directly additive, 

thus the RMO of all opacity sources together is not the sum of the 

individual RMOs of each opacity source on its own. Thus the 

integration in (3.1.7) cannot be performed until all the absorption 

has been accounted for. 

As useful additional information, we can also find the Planck 

mean opacity (PMO), which is given by: 

. (3.1.9) 

where the Planck weighting function: 

I B li-l) :: is" u..3 

nit (e Lt -1) 
(3.1.10) 

has its maximum at u = 2.821439 ••• , which is also the same value as 

the Planck function itself, which in dimensionless frequency units is 

given by: 

(3.loll) 
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As before, it is more convenient to incorporate the stimulated 

emission factor in the weighting function, and accordingly the PMO can 

be written as: 

(3.1.12) 

where the new vleighting function: 

B (u) (3.1.13) 

has its maximum at u = 3 exactly. 

Because the PMO is a straight mean, it is directly additive, thus 

the PMO of all opacity sources together is also the sum of the 

individual PMOs of each opacity source on its own. 

Although we ultimately want the RMO and PMO as mass absorption, 

i.e. 2 
cm per gm, it is much more convenient to determine the volume 

absorption opacity /~(u) in cm-
1 i.e. 2 3 

cm per cm , as abundances are 

expressed by number. Thus the total volume absorption at frequency u 

is given by: 

where N. and 6.(u) are respectively the abundance by 
~ ~ 

(3.1.14) 

3 
number per cm 

and cross - section in cm2 for species i. To convert· to the mass 

absorption coefficient i(u) , we divide by the density, thus: 
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(3.1.15) 

where ~ is the density in gm per 
3 

cm • We can accordingly replace K(u) 

by~(u) in (3.1.7) and (3.1.12), and take f outside the integrals. 

In order to determine the RMO for the continuum, it is necessary 

to determine the opacity at a large number of grid points by adding on 

each newly calculated spectrum on top of the previous ones, 

effectively evaluating (3.1.14) for a large number of values of u, 

then integrating (3.1.7) numerically between u = 0 and some 

appropriately large upper value, say u = 20, as W(20) = 1.27XI0-5 

which is small compared to W(3.724) = 1.92X10-1 the maximum value. 

It is simplest to make the grid points equally spaced, defining 

an interval ou, then after evaluating the integrand of (3.1.7) at each 

value of u, integrate using Simpson's rule. Because the continuum is 

generally changing slowly, the grid does not have to be too fine, but 

fine enough to allow for sudden changes in the continuum at absorption 

edges. No more than a few thousand grid points would be adequate. 

As there would in general be many species, each producing a 

spectrum by several different processes, we can build up the total 

spectrum by considering each process in turn, and within each process 

deal in turn with each species that contributes to that process. In 

fact, we can put in a vector for containing jL'(u) the electron 

scattering, then accumulate the Rayleigh scattering for the various 

species and also any continuous absorption processes where the 
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stimulated emission has already been taken into account. Into another 

vector forjA(u), we can accumulate the absorption from those processes 

for which stimulated emission has not been included, then after 

applying (3.1.5) and (3.1.6) as appropriate, 

(3.1.7). 

we can integrate 
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3.2 Electron and Rayleigh Scattering 

We consider electron scattering first, which for conditions of 

interest here is quite straightforward, see Carson (42) and (43). 

As at the frequencies of interest here, the photon energies are 

h · hI" 1 t·· .... h "j 2« 1 ~g Y non-re a ~v~st~c ~.e. Y m c , 
e 

we simply have coherent 

Thomson scattering which is frequency independent. Thus: 

where O'T = 6.65246X10-
25 2 cm is 

(3.2.1) 

the Thomson electron cross-section, 

and r = e 2 jm c 2 = 2.81794X10-
13 

is the classical electron radius. 
e e 

If electron scattering is the only source of opacity, then: 

, . 
K (u) 

,,1 o{c.t) 
rVe -

f 
(3.2.2) 

where N is the number density of electrons. It is at once seen that 
e 

on integrating (3.1.3) for the RMO, or (3.1.9) for the PMO, ~ = K'(u) 

for any u. 

In practice, it is found that at very low temperatures like 

lOOOoK, as expected, electron scattering is totally negligible as 

there are very few free electrons. Even at temperatures in the upper 

end of our range of interest, other processes still dominate, hence in 
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our context, this particularly simple ~~o is never realised on its 

own. 

The other source of scattering opacity considered here is 

Rayleigh scattering. 

If 0' R (A) is the Rayleigh scattering cross-section in 
2 

cm per 

particle, then from Tarafdar and Vardya (44), we can write: 

+ + +- (3.2.3) 

where ~ is the polarizability in units of a (the first Bohr radius), o 

~ is the wavelength in cm, and the coefficients AI' ~ ••• are 

;
,-4 corrections to the A law. In many cases, these correction terms are 

not available, 
,\-4 

so we have to assume the simple ,\ law, and assume 

that we are considering frequencies less than the characteristic 

transition frequency of that species, which would in practice be 

nearly always the case. 

Re-writing (3.2.3) as: 

+ + +.J (3.2.4) 

where: 

B~ - AI:) -

we can at once express the total Rayleigh scattering at any wavelength 
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due to many species by putting in sums in (3.2.4), hence giving: 

~ 1. [") B.,. N. 
)~ '-:- '" <-

(.. 

+ (3.2.6) 

in units of cm-1 
where Ni is the number density of species i, and BOi 

etc. are the coefficients for each species. Thus we obtain at once 

the whole contribution to the opacity of Rayleigh scattering, without 

having to compute individual spectra. 

Putting (3.2.6) into dimensionless frequency units gives: 

+ u..<.(k')<<) B . N. 
he L:- I" ... 

c.. 

+ U ~ ( k T )~ LC D . N. + .... ] 
he . <~ (... .. 

(3.2.7) 

and neglecting the higher order terms, we can put this straight into 

(3.1.3), yielding for the RMO: 

1 
){ 

(3.2.8) 

which is clearly divergent when the 10vler limit is zero, see Vardya 

(45), implying that the RMO is zero even though the opacity is finite 

everywhere (at zero frequency it vanishes, but so also does the 

flux). The RMO will however be usually non-zero when account is taken 

of the other forms of opacity, of which in practice there will ah.ays 

be, and which do not vanish at zero frequency; in fact, free-free 

opacity becomes infinite. Indeed, as stated earlier, as electron 

scattering, no matter how small it may be, is included when Rayleigh 
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scattering is calculated, we never allow the opacity to vanish 

anywhere. However, if the lower bound in (3.2.8) is a, with a > 0, 

(3.2.8) can be integrated analytically, yielding: 

-00 

Kc.- (3.2.9) 

2 -1 
in cm gm to which could be added the contribution between u = ° and 

u = a where other forms of opacity will be important. In practice, 

other forms of opacity cannot be neglected elsewhere in the spectrum 

for our purposes. 

If (3.2.7) is substituted into (3.1.9) with the higher order 

terms to obtain the PHO, we can write: 

where these integrals can be evaluated analytically from: 

I ~~/l } ('J. IT):\''' 
4rt (3.2.11) 

see Abramowitz and Stegun (46), where B2n is a Bernoulli number. Hence 

we obtain the result: 

::: E; TI'r ( ~ i)~ [1. L D v ~ iV:. 
K (> he.. 15 ~ 

&~4-lrS' TT'f( h 1)~")-13 oN-t---] (3.2.12) 
I' - h' L 1 .. <-·t:::'\:i'? .~ . ... 
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which, unlike the RMO, gives a non-zero result even though the lower 

bound is zero. Taking the first term, and writing the PMO in terms of 

~for an individual absorber, we can write: 

-k (3.2.13) 

2 
in cm per absorber. 

Unfortunately, the polarizabilities of most elements are not well 

known except for hydrogen and helium, the first row in the periodic 

table, and the remaining inert gases and group I elements. As in the 

first period for Li to Ne, log~ is approximately proportional to Z 

with ~ decreasing from Li to Ne, this result can be used to 

interpolate for the other elements in the periodic table lying between 

their respective alkali and inert gas, if the polarizabilities are 

otherwise unavailable. 

In addition to neutral atoms, the polarizabilities of negative 

and positive ions could be obtained from a simple empirical formula 

given by Tarafdar and Vardya (47), if they are otherwise unavailable: 

where <X.Oh 
1 

is 8.1X10 , 
4 . 6 

2.4X10 and 4.7XIO with h = -1, 

(3.2.14) 

o and 1 

respectively for negative ions, neutral atoms and positive ions, with 

~Oh being in units 

in eV. 

of a and I being the ionization/detachment energy 
o 
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The Rayleigh scattering coefficients of molecules, except in a 

few cases like H
2

, are little known or no experimental values are 

available at all. However, Tarafdar and Vardya (47) gives formulae by 

which polarizabilities of diatomic molecules could approximately be 

computed, and gives a very simple semi-empirical relationship for 

polyatomic molecules: 

<X = ~L . - 0(-
:'. .' (3.2.15) 

" 
where~. is the polarizability of atom i, with the summation being 

1. 

over all atoms in the molecule; clearly, this could also be used to 

estimate ~ for diatomic molecules if no other source of data is 

available. 

The Rayleigh scattering coefficients for Hand Ne are obtained 

from Dalgarno and Kingston (48), who give expres~ions of the form: 

+ -+ ... ] (3.2.16) 

where n is the refractive index at atmospheric pressure and CO' Cl , C2 

etc. are coefficients. These coefficients must be converted into the 

forms suitable for our use by: 

N~ 
L 

) - ~C. ) 
J 

,.;rhere NL is the Loschmidt number. 

= C, ~ + .:t c ~ ) . '. (3.2.17) 
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The coefficients for He, C, N and ° are given directly by 

Tarafdar and Vardya (44), (length formalism used). For all the 

remaining elements we have only the coefficient AO obtained from the 

polarizabilities given by Carson (3) using the interpolation method 

described earlier, though (48) could be used for the other inert 

gases, but their abundances are much lower. Also, the Rayleigh 

scattering by ions is neglected, and accordingly no use is made of 

(3.2.14) or of Dalgarno (49) who lists polarizabilities of specific 

atoms and ions. 

For the diatomic molecules, the coefficients for H2 are obtained 

from Dalgarno and Williams (50), and for C
2

, N2 and 02 from Carson 

(3), the polarizabilities for OR, CO and SiO are obtained from 

Tarafdar and Vardya (47). Of the triatomic molecules, the calculated 

value of the polarizability of H
2

O is used from (47) given by 

(3.2.15), and this formula is also used to obtain the polarizability 

of CO2 • As the molecules considered here are amongst the most 

abundant, it is not considered worthwhi.le to include data for other 

molecules. 

All the Rayleigh coefficients used in this section are tabulated 

in the appendices. 
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3.3 Free-Free and Bound-Free Sources of Opacity 

Free-free and bound-free absorption are particularly important 

sources of continuous opacity, with free-free absorption being 

smoothly varying over the whole spectrum due to electronic transitions 

between two continuous electronic states, and bound-free absorption 

for atoms has a sharp cut-off in frequency) i.e. an absorption edge, 

below which no absorption occurs due to the minimum energy needed to 

remove a bound electron to infinity. However, unlike other quantities 

that are computed for atoms and molecules in a general T.'lay in this 

work, here we have to handle the various species responsible for the 

free-free and bound-free opacity on an individual basis, as we have to 

interpolate from tables and evaluate empirical formulae supplied by 

different authors for the various species considered. 

In the temperature regime of interest, a very important source of 

free-free and bound-free absorption is due to H. The photodetachment 

energy of the H ion is 0.7551 eV corresponding to ~= 16,419g, at 

wavelengths longer than this there is no Hbf absorption, but we still 

have H
ff 

absorption, due to an electron moving in the field of a 

neutral H-atom. Tsuji (9) gives both tables and analytic formulae for 

H absorption, however, by comparing both, an error was found in his 

formula 6, or (3.3.4) here, such that the coefficient of 8 2 
in the 

expression for G(e) should read 2.8914XIO-
2

, and the next term in G(e) 

should have 03 , not e2 
again, these corrections are noted in Tsuji 

(11). In this work, the absorption is in fact obtained by linear 
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interpolation of the tables, the values being in logs. As the units 

. 4 d are 1n cm per yne, on multiplying by the electron pressure in dynes 

per cm2 and the density of neutral H in particles per cm3 , gives us 

the volume absorption opacity in 2 cm 3 -1 One would per cm or cm 

expect that H as a source of opacity will be strongly dependent on 

the abundances of Na and K, as they are major sources of electrons at 

low temperatures due to their low ionization potentials, even though 

these elements have relatively low abundances. 

The formulae given by Tsuji for H as an alternative to 

interpolating from the tables are given here, where e= 5040/T and 1 

is in microns (~). 
o 0 For the range 0= 0.6 to 6.0 (T = 840 K to 8400 K) 

Kff(~'O) = (A(e)~-l + B(&) + C(O)A + D(e)~2 + E(&)~3 
+ F(e)~4]X10-26 cm4 dyne-1 

where: 

A(e) 2.8613X10-3 - 1.7104X10-2g + 1.9241X10-2e2 

- 3.8625X10-3e3 + 2.0673xlo-4e4 

B(e) - 5.2107X10-3 + 7.2695X10-2e - 9.4204X10-2e2 

+ 2.0739X10-2e3 - 1.1541X10-30 4 

C(e) = 7.5533X10-4 - 4.1764X10-3e + 1.0863XIO-202 

+ 1.4533XIo-3e3 - 1.1748XIo-4e4 

D(a) - 4.1964XIO-2 + 6.6949XIo-1e - 1.0139XIO-1e2 

+ 1.3046XIO-2J 3 - 6.8082X10-4e4 

E<e) = - 3.7419XIO-7 - 6.3651XIO-7e + 6.064l,XIO-6e2 

(3.3.1) 

(3.3.2) 
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2.5328X10-6&3 + 1.1071X10-70 4 

F(e) 3.5121X10-9 - 1.602SX10-
ge - 2.5083X10-88 2 

+-1.2852X10-8e3 - 6.3522X10-10e4 

which is formula 5 by Tsuji. For wavelengths in the range A = 0 to 

1.65~, it is better to use formula 6 by Tsuji for H;f: 

Kff(~'O) = [G(O)A + H(e)~2 + I(D)A3 + J(e)}4 

+ K(g)}5]X10-26 cm4 dyne-1 

where: 

G(e) = - 4.9072X10-2 + 1.2953X10-10 - 2.S914X10-2&2 

+ 7.S357X10-3&3 - 6.1S3SX10-404 

H(e) = 2.4013X10-1 - 1.3996XIO-1& + 3.7506X10-1e2 

- 7.7846X10-2e3 + 6.0802XlO-304 

1(&) = - 2.9875XIO-1 + 1.05030- 8.1111X10-1e2 

+ 1.8419X10-103 - 1.4761X10-2e4 

J(O) 9.6893X10-2 - 4.6764X10-10 + 4.3440X10-1e2 

- l.OS08X10-1&3 + 9 .1l63XIO-3e 4 

K(O) = - 6.7575X10-3 + 6.9126X10-2e - 7.7600XIO-20 2 

+ 2.0616X10-2e3 - 1.809SXIO-3e4 

(3.3.3) 

(3.3.4) 

in the same temperature range as before, and with the corrections as 

stated earlier. 
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For Hbf , we could use Tsuji's formula 7: 

0.4158X10-26e5/2e1.7269[2.0275A + 15.6235}2 

- 20.4140).3 + 8.1524).4 - 2.291615 + 0.6639)..6] 

X(l -2.85410/A) 4 d -1 -e cm yne 

(3.3.5) 

with the stimulated emission factor incorporated. (3.3.5) can be used 

at any temperature, but with). < 1.64191'. 

At higher temperatures, another important source of opacity is 

Hbf and H
ff

, i.e. the absorption due to the ionization of neutral 

hydrogen, and an electron moving in the field of a proton 

respectively. We evaluate formula 10 of Tsuji (9 ) but omit the 

stimulated emission factor, which is included at the end of all 

calculations associated with this section, as discussed in section 

3.1. On multiplying by the abundance of H in cm-3 we again obtain 

the required volume absorption. 

Tsu;i's formula 10 which we do use, but without the stimulated 

emission factor is given here for Hbf+ff : 

-14\3 n*-l -3 -2 
1.045X10 It 2: n exp[-31.30364(1-n )e] 

n=n 
o 

+ (60.60729 )-lexp[-31.30364(1-n~2)e] 2 cm 

(3.3.6) 

with A and e as for (3.3.1-5), n* = 7 and no is the lowest quantum 

state which contributes to the absorption at).. As stated by Tsuji, 
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the bound-free and free-free Gaunt factors are assumed to be unity, as 

n* = 7, so for states with n ~ n*, the sum is approximated by an 

integral, and the partition function of H is taken as the statistical 

weight of the ground state i.e. 2. 

expression: 

n can be found from the o 

(3.3.7) 

which rounds up to the nearest integer by including 1 in the bracket, 

and where R is the Rydberg constant. 

As helium is the next most abundant element, we must include it 

as a source of continuous opacity, there being no bound-free 

absorption of He as no stable negative ion of any importance exists. 

The absorption is obtained by interpolating the log of the absorption 

of Re;f as tabulated by Somerville (51). John and Horgan (52) gives 

tables for CI;f absorption for both the velocity and length 

formalisms, the former being used in this work, and for C
ff 

we use the 

tabulation given by Myerscough and McDowell (53). The free-free 

absorption due to Ne, Ar, Kr, Xe, Li-, Na , Cs , Hg-, N ·and 0 

are obtained from tables by John (54), though some have negligible 

abundances even if included in the mixture. 

The bound-free absorption for C, 0 

I are obtained from Robinson and Geltman (55), where the energies are 

given relative to the photodetachment energy of the negative ion, 

below which no absorption occurs. All interpolation/extrapolation of 

tables of cross-sections at energies above the absorption threshold 
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are performed in the number, rather than the log, as done elsewhere. 

For the molecules, we obtain the free-free absorption for the 

from tables also by John (54), 

though H2 is also given, Somerville (56) gives a more detailed table 

which we use; Tsuji (9) also gives an analytic approximation for H;. 

Because of its large abundance at low temperatures, H;ff can be an 

important source of opacity. The bound-free absorption for OR and CH 

are obtained from Tarafdar and Das (57). where the transitions are 

from bound ground states to repulsive excited states, and there is no 

absorption threshold. For OR we simply interpolate the log of the 

tabulated values as usual, but for CH we must first make up a new 

table by combining the three tables for the separate upper states by 

adding together the corresponding tabulated, 

interpolated values, then proceed as before. 

or when necessary, 

The tables that we use from the various sources for obtaining the 

continuous opacity in this section, cover the regions of the T-A plane 

that is of the greatest interest to us reasonably well, so any 

extrapolation is likely to be at temperatures or wavelengths where the 

species in question will not be important. Of course, extrapolating 

too far beyond the range of the tables is dangerous, however, the 

alternative is to cut off at the limit of the tables, or extrapolate 

then cut off at some arbitrary value of T or~, which could produce 

spurious effects if the species in question is still important. It 

was decided that extrapolation without cut off is the lesser of the 

two evils. Unfortunately, one can never know how important various 

species are in different parts of the spectrum, until after they have 



- 132 -

all been computed. 

Fortunately, (51), (52), (54) and (56) give simple expressions 

which enable us to compute the absorption at lower energies than those 

tabulated. Re-writing expression 2 of (54) for dimensionless energy: 

KL<. (T) j( (T) 
.0 

(3.3.8) 

4 -1 in cm dyne where ~O(T) is the absorption at 10 microns. For the 

other references, if f( (T) is the tabulated value of the scaled 
o 

absorption, being the first entries in the tables, then: 

1(" (1') -.-'::t 
U 

1<" (T) (3.3.9) 

in 4 -1 cm dyne where Ro¢ is the Rydberg constant for infinite mass in 

-1 -cm We can also apply the same treatment to e
ff 

from (53), who does 

not give the scaled absorption, by calculating the scaled absorption, 

then applying (3.3.9). 

All the tables for the cross-sections used in this vlOrk are given 

in the appendices. 
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3.4 Other Sources of Continuous Opacity 

Although of apparently negligible importance in our context, for 

the sake of completeness, the contribution due to quasi-molecular 

hydrogen is also included by interpolating from tables given by 

Solomon (58). In this case the absorption is free-bound, i.e. from H2 

in a repulsive state to H2 in an excited bound state. The units given 

are in cm3 per dyne, so on multiplying by the square of the pressure 

. -1 of H, we obtain the correct volume absorption 1n cm The tables are 

given in the appendices. 

Of possibly more significance, is the pressure-induced opacity of 

H2 due to and H -He 
2 

collisions, where Linsky (59) gives 

expressions which we use to compute the opacity. The absorption 

consists of three components which are added together: translational, 

rotation-translational and vibration-rotation-trans1ationa1; these 

consist of highly broadened overlapping bands which for our purposes 

can simply be regarded as other sources of continuous opacity and 

added to the continuum already computed. 

The expressions given by Linsky are least square fits over 

specified temperature and spectral ranges, with stimulated emission 

included. Considering first the translational opacity, let k~ T be , 

the translational opacity dependent on the wavenumber 
. -1 

Y 1n cm and 

the temperature, then for H2-H2 induced opacity: 
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k- -2 -":JIb for v < .y • a)) e y ,T c (3.4.1) 

k) T 
-~/d for 1 ~ ~ ce , c 

log (l/a) 7.02391 + 1.3380 log T 

b 91.67 + 0.1033T 

c = 

log d 

[15.57906 - 2.06152 log T - 0.477352(log T)2]X10-7 (3.4.2) 

2.31317 + 3.8856X10-4T 

274.3 + 0.2762T 

which are expressions 1 and 2 by Linsky. 

For the rotation-translational opacity of H2-H2, Linsky's 11 and 

12 are respectively (3.4.3) and (3.4.4): 

k~ RT 
_(;_~,)2 Ib 

for ~ < 1.5-:;' ae , 

k~ RT 
-d">' for ~ > 1.5)' ce , 

o 0 where for 600 ~ T ~ 4000 K: 

a = 

b 

c = 

4.2432X10-6 - 2.8854X10-7ln T 

1.2171X105 + 258.28T 

2.5830X10-4 - 4.3429X10-8T 

d 1.1332X10-2 - 1.1943X10-31n T 

y' - 2973.3 + 600.73 In T 

(3.4.3) 

(3.4.4) 
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For the vibration-rotation-translational 

write down Linsky's expressions 18 and 19; 

'&Y (~-} )/0.6952T a e 0 -
kli,VRT for < = Y Yo 4161.1 em 

0- ~ )2 + &2 
0 

a'~::;7 
-

k~,VRT l )2 b
2 

for v o$.. .,y < ) .,. 0 + 33/2 
(~ - + 

0 

k)i,VRT 
- -(i-l )/b a·Ye 0 for 'oJ 

b2 
1.2750X105 + 437.50T 

log a' 

l/a 

log b 

-7.0659 + 0.2825 log T 

1.6288X108 + 1.4904XI05T 

0.9376 + 0.5668 log T 

> l7 + 3'iJ/2 
0 

-1 

However, Linsky gives all absorption in units of 

we 

(3.1+.5) 

(3.4.6) 

-1 -2 em amagat 

with the pressure assumed to be in amagat, where 1 amagat is the 

volume of 1 mole of an ideal gas at 1 atmosphere at oOe = 22.4136X103 

3 -1 2 -1 . em; but we require the absorption to be in em or em gm glven the 

-3 abundances of H2 and He in em . Using the constants from Allen (32): 

P(amagat) 273.1S0P(atm)/T (3.4.7) 

-2 6 273.15P(dyne em )/(1.0132S0X10 T) 
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273.150oK and 1 atmosphere- = 1.013250X106 dyne cm-2 

Because helium is also present, we have to include the absorption 

due to H2-H: induced opacity; for translational opacity we can combine 

H2-H2 and H2-He from expression 21 of Linsky: 

I(~ T , 
-1 

cm (3.4.8) 

where K~ T is the total volume translational opacity in , 
-1 

cm due to 

-1 -2 
cm amagat computed from (3.4.1) and (3.4.2) and PH and PHe are 

2 
the partial pressures of the gases in amagat. As we have the 

-3 
abundances of H2 and He in cm 

to: 

IG~ T , 

where: 

q = [273.15k/(1.01325X106 )]2 

using (3.4.7) we can convert (3.4.8) 

-1 
cm 

1.38523X10-39 
cm 

(3.4.9) 

6 (3.4.10) 

where k and NL are Boltzmann's constant and Loschmidt's number 

respectively, 

-3 
cm 

and NH and NHe are the abundances of the gases in 
2 
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H -He 2 
induced rotation-translational 

opacity can similarly be obtained from Linsky's expression 22, which 

in the form we require is: 

-1 
cm 

where k~,RT(H2-H2) is the opacity for H2-H2 

from (3.4.3) and (3.4.4). 

in 

(3.4.11) 

-1 -2 cm amagat computed 

For the vibration-rotation-translational opacity of H2-H2 alone, 

we can simply write: 

(3.4.12) 

with k~,VRT calculated from (3.4.5) and (3.4.6). 

The vibration-rotation-translational opacity of H2-He is computed 

separately using the expression (3.4.5) but with different 

coefficients: 

~2 = _ 4.033X104 + 263.93T 

log a' = 7.7245 + 0.4246 log T (3.4.13) 

l/a = 1.125X109 + 1.5866X104T + 24.267T2 

log b = 1.2044 + 0.4956 log T 

-1 -2 
giving k~ VRT(H2-He) in cm amagat , The required opacity is thus 

obtained from: 
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-1 
cm 

total mass absorption coefficient in 2 -1 cm gm due 

(3.4.14) 

to all 

processes, working in dimensionless energy units, is simply obtained 

by adding (3.4.9), (3.4.11), (3.4.12) and (3.4.14) and dividing by the 

density: 

(3.4.15) 

with stimulated emission included. 

Other sources of continuous absorption or diffuse molecular 

spectra like pre-dissociation or pre-ionization are not considered. 
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4 COMPUTING THE BAND SPECTRA OF DIATOMIC MOLECULES 

4.1 Introduction 

So far we have only considered how the continuous opacity is 

obtained. It is the purpose of this chapter and the next to discuss 

the theory by which molecular bands are computed, then in chapter 6 we 

discuss how the corresponding bound-bound opacity is calculated. In 

this chapter, it is convenient to refer consistently to "states" in an 

electronic context, i.e. electronic states, hence also singlet states, 

I states etc., but to refer to "levels" in a vibrational or rotational 

context, i.e. vibrational levels etc. 

As far as this work is concerned, there are two types of bands 

that have to be considered, vibration-rotation (VR) and 

electronic-vibration-rotation (EVR). In the first case, transitions 

involve different vibrational and rotational levels within the same 

electronic state, usually the ground state, whereas in the other case, 

the transitions involve in addition a change in the electronic state, 

where again for our purposes, the initial state is normally the ground 

electronic state; one notable exception being C2 where there are 

several low lying electronic states giving rise to many bands. There 

is in addition a third type of band, pure rotation, which involves a 

change in rotational energy only. However, although they have the 

simplest structure of all three types, the bands are not considered as 

they normally occur in the far infrared where a very small proportion 
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of the flux occurs, the Rosseland and Planck weighting functions are 

small, and the background continuum due to free-free transitions, as 

discussed in the previous chapter, tends to infinity as the wavelength 

tends to infinity, making the contribution due to lines relatively 

less import~nt still. 

As the VR bands can be considered a subset of the more general 

EVR bands, the same coding is used to handle the rotational fine 

structure of both types. In this work, it is convenient to discuss 

first the properties of the EVR bands in general, 

restrictions and differences for VR bands where relevant. 

mentioning 

For EVR bands, the following general selection rules for electric 

dipole radiation have to be observed, see Herzberg (29): DJ = 0 or ±l, 

except that J = 0 -+7 J 0, LlA = 0 or +1, An = 0 or +1 if n is 

defined, see sections 2.5 and 4.2, DS = 0 i.e. no change in 

multiplicity; we also have the selection rules of parity for 

transitions between individual rotational levels, such that + ~-7 -

but + ~+7 + and - ~+7 -, where + or - means respectively the total 

eigenfunction does not or does change sign with reflection. In 

addition, for the overall selection rules of the electronic states, we 

have: L + ~-?' L +, 2. -~-7 2.. -, IT ~-7 2: ±, and A' ~-7A" for any other values 

ofJl subject to the above selection rules. Here "~-7" means these 

transitions are allowed, but "~+7" means these transitions are 

forbidden. 

e.g. C12C12 

If in addition the 

(but not C12C13), 

molecule has two identical nuclei, 

the additional selection rules for 

transitions between individual rotational levels are s ~-7 sand 

a ~-7 a but s ~+7 a, where s or a means respectively the total 
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eigenfunction is symmetric and does not change sign with respect to 

the exchange of nuclei, or is antisymmetric and does change sign with 

respect to this exchange. This leads to the overall selection rules 

for electronic states, such that g ~-7 u but g ~+7 g and u ~+7 u, 

+ <:;+ 
e.g. L ~-7 L... applies, 

g u 
and the rotational levels have alternating 

statistical weights (see section 4.2). For cases where some of these 

rules do not apply, e.g. electric quadrupole radiation, the 

transitions are usually very weak and hence are ignored. This also 

applies for cases vlhere 6. S f 0 for electric dipole radiation, so 

intercombination bands are also ignored. 

Also, for transitions to be considered, the following points must 

be observed: 

(i). the molecule is sufficiently abundant, 

(ii). the initial electronic state must be sufficiently populated, 

i.e. the ground state or low lying excited state, 

(iii). the rotational and vibrational constants are knovffi or assumed 

for both electronic states, 

(iv). the electronic transition moment or band oscillator strength is 

known or assumed, 

(v). the transition is in the spectral region of interest, i.e. 

precluding transitions in the far ultraviolet. 

For VR bands, as always the same rule for J applies, as the same 

electronic state applies to both upper and lower levels, the 

conditions llA = 0, LlS = 0 and if A = 0 I+<--7Z+ or2.-<--72- are of 

course automatically satisfied. If the molecule has nuclei of the 
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h C12C12 C12C13 same c arge, e.g. or , there is no net dipole moment so 

no transitions occur. (Actually this is not strictly true for the 

latter molecule. The molecule HD is known to have a very small dipole 

moment, see for example Mizushima (36), so it would be reasonable to 

assume that all diatomic molecules consisting of atoms with like 

charges but unlike isotopes would have very small dipole moments. 

However, for our purposes, such effects are completely negligible). 

As before, for transitions to be considered, the following 

additional conditions must be satisfied: 

(i). the molecule is sufficiently abundant, 

(ii). the electronic state must be sufficiently populated, in 

practice the ground state, 

(iii). the rotational and vibrational constants for that state are 

known or assumed, 

(iv). the dipole moment expansion is kno\vu or assumed, 

(v). the atoms have different charges. 

If these conditions are met, there will automatically be some VR bands 

in the spectral region of interest, notably in the near infrared, as 

there is no change in electronic energy. 

As a result of the above restrictions, some molecules will be 

inactive in the spectral region of interest. The best example is H2 , 

although it is usually by far the most abundant molecule, as the 

nuclei have the same charge there is no electric dipole VR spectrum in 

the near infrared (or pure rotation in the far infrared), the first 
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excited electronic state is at such a high energy that the resonance 

band system lies well into the ultraviolet where the flux is 

unimportant, and closer lying excited electronic states that would 

give rise to transitions at longer wavelengths are negligibly 

populated. However, as discussed in the previous chapter, because H2 

can be so abundant, other processes are considered. 

The types of electronic states dealt with are restricted to 

multiplicities between one and three, as this covers the overwhelming 

majority. Moreover, Kovacs (31) gives general formulae for 

Honl-London factors and term values only up to triplets, which are 

complicated enough, and even specific Honl-London factors for higher 

multiplicities become very complicated, see the next section. 
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4.2 Rotational Fine Structure of Bands 

In this section we explain how the detailed rotational fine 

structure of VR and EVR bands is computed for diatomic molecules. For 

both diatomic and triatomic molecules, we need to compute individual 

lines that make up a band, as this is required by our methods of 

determining opacity in chapter 6. The relative line positions are 

calculated from appropriate term formulae and relative line strengths 

from Honl-London factors, then from this we can subsequently obtain 

absolute line positions and strengths in the spectrum. 

The formulae used to determine term values and intensities are 

based on coupling cases intermediate between Hund's cases (a) and (b), 

see Herzberg (29) and Kovacs (31). Where for case (a), the electron 

spin is strongly coupled to the internuclear axis, but for case (b) it 

is very weakly coupled, or not at all, as is the case with ~ states. 

By using general intensity formulae, selection rules that are specific 

to the limiting cases are automatically taken into account. Although 

a few examples of other coupling cases exist, most states conform to 

either cases (a) or (b) or intermediate; accordingly, this is used as 

an approximation to all states considered. Likewise, any 

perturbations between energy levels are neglected throughout this 

work, where perturbations are caused by two or more levels at nearly 

the same energy, such that these levels are displaced from their 

unperturbed positions and the wave functions of each of the perturbed 

levels are now a linear combination of all wave functions of these 
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levels if unperturbed, see Herzberg (29). However, for most purposes, 

these approximations are good, and computed bands should agree 

reasonably well with observation. Even in poor cases, particularly if 

the spectroscopic constants are not well determined, it is hoped that 

the gross features of the spectrum are reproduced, hence accounting 

approximately for all the absorption even if the details are 

incorrect. 

The three multiplicities considered are handled in detail in the 

following subsections, where under singlets, some aspects common to 

all multiplicities are considered. 

4.2A Singlets 

Most electronic states of interest belonging to molecules with an 

even number of electrons, including of course all neutral homonuclear 

molecules, are singlet states where Hund's cases (a) and (b) are the 

same, and are the simplest to handle. 

The rotational term values 

section 2.5): 

where J = .A.,;\.+1,A+2 ... and B 
v 

in 
-1 

cm are given by, (see also 

g., 

Dv I J (J + j) - /l'l. ] + ... (4.2.1) 

and D are the rigid and non-rigid 
v 

-1 
rotational constants respectively, given in cm ,and are dependent on 

the vibrational levels by: 



- 147 -

B .' 1) -IX (Ir+- +"',i e e ~ 
1"\ :; D +n (v-+~)+ -.. Jlv- e I~e (4.2.2) 

where Band Dare 
e e 

the rotational constants at equilibrium 

separation, «e and re are the coupling constants between vibration and 

rotation, and v is the vibrational quantum number with v = 0,1,2 ••• , 

and higher order terms in these expressions are neglected as they are 

generally very small. 

As stated earlier, 

(4.2.3) 

where I is the equilibrium moment of inertia in cgs units, or we can 
e 

write: 

where the reduced mass ;t is: 

and r the equilibrium separation of the nuclei. 
e 

If the constants 0( and A e ,-e are not 

(4.2.4) 

(4.2.5) 

available in the 

literature, as is often the case, they can be found from the following 

relations: 
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(4.2.6) 

(4.2.7) 

(4.2.8) 

where at least B, and the harmonic and anharmonic constants 0 and 
e e 

~ x respectively must be known, and where a Morse potential function e e 

is assumed, from which these expressions are derived. The Morse 

potential function, see Herzberg (29), is defined as: 

(4.2.9) 

where DO is the dissociation potential measured from the bottom of the 
e 

potential well, r is the equilibrium separation of the nuclei as 
e 

stated above, and 0< is a constant. We can assume that the Morse 

potential is a reasonably good approximation to the actual potential 

function; the minimum VCr) = 0 o 
occurs when r = rand VCr) -~ D as 

e e 

r -~oO. However, VCr) does not approach infinity at r = 0 by (4.2.9) 

as it would do for a correct potential, but this region is of little 

importance. Because the Morse function is an approximation, (4.2.6-8) 

are approximate relations. 



- 149 -

In some cases, Band D are given, 
o 0 

expressed for the ground 

vibrational level, (4.2.2) is then used in reverse to obtain Band D e e 

provided ~e and ~e are known, hence: 

= B eXe 
o + -;f) (4.2.10) 

then Bv and Dv are found in the usual way. 

In some electronic states where the spectroscopic constants are 

poorly known, only B may be given, together \vi th some vibrational 
o 

constants. Unfortunately, B cannot then be obtained directly from 
e 

(4.2.7) and (4.2.10), without resort to some form of iteration. 

However, as these equations are only approximations andC«< B , it is 
e e 

not considered worthwhile to solve for B, e 

solve for~ from (4.2.7), hence also D , 
e e 

required. 

so we just put B = B , 
e 0 

then apply (4.2.2) as 

The Honl-London factors by Kovacs (31) for bJl= 0 are: 

P(J) = (J+A) (J-A)/J 

Q(J) 1\.2(2J+1)/J(J+1) (4.2.11) 

R(J) = (J+A+1)(J~A+1)/(J+1) 

and for tJA = +1 are: 
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bA = +1 bA= -1 

p(J) = R(J-l) (J-./L-l) (J-II-)/2J 

Q(J) = Q(J) = (J-A) (J+A+l) (2J+l)/2J(J+l) (4.2.12) 

R(J) P(J+l) (J+A+l) (J+A+2)/2(J+l) 

where the Honl-London factors give the relative line strengths in a 

given band due only to rotation, neglecting the frequency and 

Boltzmann factors, and assuming the rotational wave functions can be 

separated completely from the vibrational and electronic wave 

functions according to Born and Oppenheimer (60). The Ronl-London 

factor appears in (4.4.1), the expression for the total line 

strength. 

In (4.2.11) and (4.2.12), P, Q and R refer to the branches 

according to whether bJ = -1, 0 or +1 respectively, there being no 

Q-branch in (4.2.11) if Jl= 0, and all Honl-London factors given are 

expressed in terms of the initial level, which for absorption is the 

lower level J". In (4.2.12), when l1A= -1 , if we require R(J), 

replace J by J+1 on the right hand side of the corresponding 

expression, for Q(J) no change is needed, and for P(J), replace J by 

J-1. These are normalized such that: 

" s -_ 'I ~ '/ -+ 1 L '3 .. J " 01. v (4.2.13) 
:;1 

where SJ .... J.. is p(J), Q(J) or R(J) depending if J .... = J"-1, J" or J"+1 



- 151 -

respectively and A for the two levels is kept constant. Hence 

equations (4.2.12) differ from those for bA +1 on page 208 of 

Herzberg (29), which are normalized such that: 

~ 2. S-.l'j', = ~J'f + 1 (4.2.14) 

..{' J: 

which are half those of (4.2.12) 

If A > 0 for any multiplicity, all levels are split into two, 

i.e.)l-doub1ed, however, because of selection rules, we will not get 

splitting of lines unless both participating electronic states have 

A> o. As the theory ofJl-doubling is considered beyond the scope of 

this work, when required, we split a computed line into two components 

separated by lcm-
1

, a typical value forJl-doubling, and the sum of the 

strengths of the two lines taken to be twice that of the original 

line, with each component equal in strength to the original line if 

the nuclei are not identical. In the conditions of interest, a 

-1 
separation of 1cm is much greater than the line's Doppler width, so 

the components are assumed not to overlap. 

For all multiplicities, if we have an EVR band from a molecule 

with identical isotopes, then in addition to the Honl-London factor 

and Boltzmann factor due to the population of the levels, there is an 

alternation of the intensities of the spectral lines due to the 

nuclear spins. If I is the nuclear spin quantum number and N the 

total molecular angular momentum quantum number apart from electron 

spin (for singlets J=N), then gI is the nuclear sp~n statistical 

weight factor which must multiply the Honl-London factor, and gI is 
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calculated according to the method below. He adopt the conventional 

notation for transitions between molecular electronic states, where 

for examplelT ~-- £ means absorption from a lower ~ state to an upper 

1T state, then"rr --72" is emission from the upper IT state to the lower 

L state. Though we deal only wi th absorption in this work, this 

method below is exactly the same for emission, but the initial and 

final states are interchanged. 

'2 ~--1 and If ~--1. 

u = +1 for '2+ or2 -, 
1 g u 

+ -
u = -1 forL or1 , 

1 u g 

u = +1 for I-integral, 2 

u = -1 for I-l/2-integral, 
2 

u
3

= +1 for N-even, 

u
3
= -1 for N-odd. 

= 'lT4-U+1 
".l.(:{I +i) 

(4.2.15) 

i.e. gI = (1+1)/(21+1) for U = +1 and gI = 1/(21+1) for U = -1, if 

1=0, as is the case for C
12

C
12 , alternate lines are missing. U and 

gI are here expressed in terms of the initial state. 

L~--lT 

We do the same analysis as above, only U and gI are now expressed in 
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terms of the final state. 

A') ° ~-- A") ° 
Each line is split into two components with intensities in the ratio 

of the statistical weight factors 2(1+1)/(21+1) and 21/(21+1), which 

add up to 2 taking account of It-doubling. If I = 0, only one line 

will occur, and for singlet states the spectrum may mimic 

'rr~-7~ transitions for a heteronuclear molecule. 

4.2B Doublets 

A doublet is the lowest possible multiplicity of an electronic 

state of a molecule with an odd number of electrons, and is 

accordingly a very common species. 

The general rotational term values for the two spin components 

are given approximately by: 

':l 

- Dv[('3-*){J+1) - A11 
(4.2.16) 

FJ~\(J)~ ~(J):: 6· .. 1 (J t 1){-A.\1)4(J-r 1)<t- "/{"'1'··lt)A'] 

Dv[ ("J + {)(Jt't) - A1} 
~ 

where Y = A/B, with A being the spin-orbit coupling constant, such 
v 

that when Y = 0, we have Hund's case (b), with Y -3> +t>6we approach 

regular Hund'" s case (a), and when Y -7 - oC we approach inverted Hund's 



- 154 -

case (a). 

However, in (4.2.16) obtained from Kovacs (31), we are neglecting 

spin-rotation coupling due to the single unpaired electron, and 

.A.-doubling, as both these quantities are small, involve fairly complex 

terms and the constants are frequently unavailable; A-doubling is in 

fact handled crudely as stated in 4.2A. In addition, the centrifugal 

or non-rigidity terms are taken to be in the case (b) limit, i.e. with 

Y = 0, rather than the more general form as given by Kovacs (31) page 

62 equation 10, (where there is a misprint, as the very last term 

should be preceded by a positive sign). Except for strict case (b), 

the centrifugal terms given in (4.2.16) are expected to be a poor 

approximation when J is small; however, as these terms are very small 

compared to the rigid terms in such cases, their errors are 

unimportant. By the time J becomes large enough for the centrifugal 

terms to contribute significantly to the total rotational term values, 

spin uncoupling occurs and case (b) is a good approximation. This was 

checked numerically by experimenting with realistic values. Note that 

the expressions for the centrifugal terms given by Herzberg (29) page 

232 are incorrect, the corrected form being given in (4.2.16) in the 

case (b) limit as stated. 

For states, Y ° so we have strict case (b), and (4.2.16) 

reduces to: 

f..,_lft ( N) :: F (N) - BlI' N(N-H) .. j)"N 'J.(tV+1)~ -+ ~ 'I N 
i 

(4.2.17) 

1:;+ '/~ (N) = F;J. (N) :- B ... N (Ni-1) -- 'Dv NJ.( Nt1/ - ~ y( N+1) 
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where the spin-rotational coupling constant 1 is included for this 

special case, as it is often known for 1 states, and N is the angular 

momentum quantum number apart from spin • 

. Quite generally, in (4.2.16), F2(J) > F1 (J) for any value of Y 

andJl, also for the series F1 , N = J-l/2 and for F2 , N = J+l/2, even 

in the case (a) limit when N is no longer defined as a meaningful 

quantum number, with the rule N =A,A+l,A+2 ..• still applying. 

Considerable care has to be taken in the correct assignment of 

levels, in order to ensure that the correct formulae are selected when 

the Honl-London factors are computed. For 2 states, 

J = 1/2,3/2,5/2 ••• , each level of J is split into components Fl and 

F2 , such that F2(J) = F1(J+l) associated with a given value of N as 

s ta ted above. Thus except when N = 0 where there is only a single 

level of J = 1/2 belonging to the Fl series, each value of N splits 

into two J-components as given by (4.2.17), such that the splitting is 

i(N+l/2) • 

When A> 0, we can define a new quantity 11, such that n = 1A.+:tI, 

so Jl = A~..1/2 giving two series of levels wi th 

J = 1l,fl+l/2,fi+3/2 ••• where in the case (a) limit, .n. is the total 

electronic angular momentum quantum number. As with N, 11 is used as a 

convenient index even when it is not a good quantum number. There is 

only one level for '\lhich J = A-l/2, and particular care must be taken 

to index it correctly. The assignments are as follows: 
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FleJ) belongs to the series with n=JL-l/2 for all J, 

F2eJ) belongs to the series withfl =A+l/2 for all J, 

o < Y < 2 same as above, except the single level J =JL-l/2 now 

Y < 0 

Thus, 

for a 

belongs to F2 , i.e. Fl (A-l/2) is renamed F2eA-l/2), 

Fl(J) belongs to the series with fl=A+l/2 for all J, 

F2(J) belongs to the series with fl =A-l/2 for all J. 

when Y changes sign, with the exception of the level J =A-l/2, 

level specified by a given D, Fle J ) is renamed F2(J) and F2(J) 

is renamed Fl(J), see also Mulliken (61). 

The rotational constants Band D and the vibration-rotation 
e e 

coupling constants eX e and (3 e are defined in the same way as for 

singlets, except that when A is large. we can write: 

B~ -AA '" ) (4.2.18) 

as given by Herzberg (29) page 233, such that for so~e electronic 

states, Beff is given for the two il ladders, 

recovered by simply taking the mean. 

in which case B is 
e 

The Honl-London factors for doublets for any intermediate 

coupling cases are obtained from Kovacs (31), see the appendices. 

5Z" 
There are in general twelve branches for S~'J" = Xn'n"eJ"), where X is 

P, Q or Rand n is an index 1 or 2 accordir.g to the series. In fact 

the 24 equations given, allowing for /J.lL= 0,+1. can be compressed into 
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6 different equations. 

In addition to the general selection rules, it is only necessary 

to ensure that transitions occur between levels that actually exist, 

as the selection rules specific to the Hund's limiting cases are 

automatically taken care of by the Honl-London factors. However, 

these formulae often break down when a transition involves a level 

with J =A -1/2 for A > 0, but it is often found in this case that if 

such a level is assumed to have strict case (a) "character", quite 

regardless of Y, the value computed is consistent with the sum rule. 

Accordingly, the following additional rules are employed: 

2 2, L ~-- L: There is no problem as the general formulae can 

be applied, but the Honl-London factors for 6 of the 12 

possible branches are zero, i.e. forbidden transitions. 

= 1/3, as J'= 1/2 in these cases, otherwise the general 

formulae are applied when levels exist. 

2 2 :z:. <E-- TI: Q
ll 

(1/2) = Q21 (1/2) = 2/3 and RU (1/2) = R21 (1/2) 

= 1/3, as J"= 1/2 in these cases, otherwise the general 

formulae are applied as above. 

Jr~-- A": With min(.Ji' ,jL') > 0, then if either J"='/\'''-1/2 or 

J'=)t'-1/2 or both, strict case (a) is applied by using 

(4.2.11) or (4.2.12) as appropriate, \.;Iith 1l inserted instead 

of ll.., and the other transitions involving these levels being 



- 158 -

forbidden. As the case (a) selection rule lfi = ° is 

applied, transitions beginning or ending on a J =Jl-1/2 

level can only be "vertical" in the energy level diagram. 

The above rules are consistent with Schadee (62) after allowing 

for his different normalization. Kovacs's normalization is adopted 

throughout this work, such that the sum of all transitions for any 

level, neglecting any )L-doubling but including spin splitting, is 

2J+1. Thus for doublets, except for J =Jt-1/2 for 1 > 0, the sum of 

all branches for a given J is 2(2J+1), with 2J+1 being the sum from 

the odd level, if it exists. 

From the discussion earlier, if Y < ° the indices that refer to 

the state in question are changed such that 1 -? 2 and 2 -7 1 with the 

complication that this switchover occurs for Y < 2 with J =J~-1/2. 

That negative value of Y is substituted into the appropriate formulae 

of Kovacs, yielding both the term values and Honl-London factors. It 

must also be pointed out that the smaller of A' and A" is substituted 

into his 12 expressions for the branches when A';l: A." , but the 

respective values of A for the appropriate states are substituted in 

his equations 6 on page 61, as well as for the term values. 

For identical nuclei, the statistical weight factors follow 

exactly those rules for the singlets, except that N = J-1/2 for F1 and 

N = J+1/2 for F2 regardless of whether N is a well defined quantum 

number. However, this is of somewhat academic interest, as only 

charged homonuclear molecules fulfil this condition, and the 

equilibrium abundances of charged molecules are usually negligible. 
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4.2C Triplets 

Triplet electronic states can only belong to molecules with an 

even number of electrons, many such states are highly excited and are 

of no importance here. However, there are a number of molecules which 

can be of great importance that have a ground or low lying triplet 

states like C2 , 02 and TiO. Unfortunately, the general expressions 

for the term values and Honl-London factors are considerably more 

complicated than the doublets. 

The general rotational term values for the three spin components 

are given approximately by: 

F~})) = F. (J) -.: OiLJ ('Jf1)-it 
-I- i -/t-I -~iJ -1) .. [ (J - t)] - A~r 

F-s (1) =- ~(J):- B;.-IJ(J41)-A
t j.r +42:- l 1- .D .. ["J(J.t1)_A~]1 (4.2.19) 

t;H (J) -: F} (J) = .Birr] LJ-H}-A 1-4 } + /? I - ~ lJ -- j)v( (J +1)( J·n) --A.~r· 

where ~I -= A 'l.'J ('1-4) + ~ t 4'3 ('J'H) 
3 

(4.2.20) 

and 

where _A2+2/3 in (4.2.19) from Kovacs (31) page 69 has been omitted by 

Herzberg (29) page 235, which is inconsistent with the latter's 

treatment of doublets. As before, Herzberg also gives the incorrect 

expressions for the centrifugal correction terms, which are corrected 

here for the case (b) limit. As with the doublets, it is assumed that 
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by the time J becomes large enough for the centrifugal terms to 

contribute appreciably to the term values, case (b) is a good 

approximation, as the general expressions for the centrifugal terms 

are extremely complex • 

. In the above, Fl(J) is invalid when J =.A-l and 0 < Y < 4, in 

which case by Buda (63), Z2 is re-written as 

"Z:t = J.. [A~ ('I -3)('{-4) - ~ - ~J (:J + 1)J 
3c

I 
q 

(4.2.21) 

and J = A is put into Zl' Z2 and Fl· 

As with the doublets, the general spin-rotation coupling and 

A-doubling are neglected, as well as the additional spin-spin coupling 

due to the two unpaired electrons. However as before, for L states we 

can include these coupling terms as they are simpler, the constants 

often being available. 

Accordingly, from Herzberg (29), where 'Yle include the centrifugal 

terms: 

~_ i (IV) -= fl (tv) := 13 v ( N'< ... '3 tv + 3» - Dv N ~ ( N + 1) ? - ~ 

- / ('J. N -t '!> ).~ B ,,: +). < - ~ '} B iI~ + ~ (N + 'I ) 

(4.2.22) 
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where ~ and } are the spin-rotation and spin-spin coupling constants 

respectively, and f in Kovacs (31) is 2A/3 in Herzberg (29) or 

Mizushima (36), the latter giving extensive tabulations of Y for 

2 L states and i '\ 3· 
and A for ! states. For F3 (N=1) with J = 0, the 

sign in front of the square root must be inverted. 

Quite generally, F3(J) > F2(J) > F1(J), and for the series F
1

, 

N = J-1, for F2 , N = J and for F3 , N = J+1 for any coupling case even 

if N is not a good quantum number. IfJl> 0, like the doublets, we 

can define 11 = IA+11, so fl = A-1, A and A+1. Also care must be taken 

in the assignment of the levels such that: 

y > ° F1(J) belongs to the series with .fl=A-1, 

F2(J) belongs to the series with n =fL, 

F3(J) belongs to the series with.fl =A +1. 

When Y < 0, F1 and F3 are interchanged. This rule is applied to all 

values of J even when lyl is small, as the lowest levels behave in a 

very complicated way, see for example Challacombe and Almy (64). When 

A is large and Beff is given for the three levels separately, the 

middle one can be used as B • 
e 

As with the doublets, the Honl-London factors for triplets are 

found from Kovacs (31), see the appendices, with 27 branches in 

~':2: " 
general in the form SJ'J" = Xn'n,,(J") where n is an index 1, 2 or 3. 

There are 54 equations for L\A = ° .2:1 which cannot unfortunately be 

compressed to 6 like the doublets. 
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Considerably greater problems were encountered, when attempts 

were made to determine the Ronl-London factors for the lowest levels, 

than the doublets. It Was decided to treat the J =.11.-1 and 

J =.A. levels belonging to the .n = A.-1 ladder as strict case (a) 

regardless of Y when Jt > 0. Accordingly, the following rules are 

employed: 

3· 3";": 
1~--~: There is no problem as the general formulae can 

be applied, but the Honl-London factors for 15 of the 27 

possible branches are zero. 

3n ~--~: Ql3(O) = Rl3 (O) 0, QU (1) Pl2 (l) 1/2, 

Pu (1) 1/3, Ql2(1) = 3/4, Pl3 (l) 1/6, Ql3(1) 1/4, 

PU (2) 9/20, Pl2 (2) = 3/4, Pl3 (2) 3/10, with all other 

transitions being obtained from the general formulae when 

the relevant levels exist. 

3 3 2. ~-- n: RU (0) = 1/3, R21 (0) = 1/2, R31 (0) = 1/6, Q 31 (0) 

= 0, Q11(1) = 1/2, R11 (1) 

Q31(1) = 1/4, R31 (1) = 3/10, 

before, apply the general formulae. 

0, otherwise as 

k~--.A..": With min(K,J(') > 0, iL(l =fl-1 and J = 11. orfi+1 

for the upper or lower states or both, then apply strict 

case (a) with (4.2.11) or (4.2.12) as appropriate, using 

fl in place of and "diagonal" transitions involving these 

levels are forbidden, i.e. ~L = o. 
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As with the doublets, these rules are consistent with Schadee 

(62) a.fter correcting his normalization. Hhen J > A, the sum of all 

branches is 3(2J+1) from a given J, but is not true for the lowest 

values of J which are not tripled. Thus for L states, there is only 

one level for J = 0, however, the sum rule of 2J+1 from a given level 

should always apply. 

Unlike the doublets, where the sum rule is always recovered when 

the transitions from the lowest levels are "patched up", for the 

triplets this is only approximately the case using the above 

prescription, as for some small values of Y for some transitions, the 

sum rule does break down for the lowest levels. At worst, this would 

only affect the first few lines in a complex band, with typically many 

hundreds or thousands of lines, and would thus be expected to have a 

negligible effect. In view of this, it was unfortunately not 

considered worth while pursuing this matter further. 

It is also found that for the most intermediate case when 

J(J+1) ~ lyl with Y I 0, the sum rule is out by a few percent, but as 

this affects only a limited range of values of J for a given value of 

y, it is again considered that the treatment is sufficient. Far 

greater uncertainties would be due to the input data, particularly 

oscillator strengths or transition moments, and in practice one would 

only expect in many cases at best to reproduce the gross propert·ies of 

bands. 
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When Y < 0, the indices that refer to the state in question are 

changed such that 1 -~ 3, 2 -~ 2 and 3 -7 1. Great care must be used 

with Kovacs's formulae, Y is substituted with a negative value in all 

the relevan,t expressions, but in additionA must be replaced by -A in 

equation 10 page 70 only. This is in addition to the same rule as for 

the doublets concerning the values of.~ to be inserted into the 

appropriate expressions. 

The following misprints were noted in Kovacs's formulae: page 

132, Q31(J) in the last term, for -8A(J-1)(J-A+1)... read 

-8A(J-A)(J-A+1) ••• and page 133, R
32

(J) in the second tel~, for 

+ . 
••• u;(J+1)+ ••• read ••• u) (J+1)+ ••• 

For identical nuclei, the statistical weights follow the same 

rules as before, only now N = J-1 for F
1

, N = J for F2 and N = J+1 for 

Tatum (39) gives some very useful energy level diagrams for 

singlet, doublet and triplet electronic states for Hund's cases (a) 

and (b), together with some of the possible rotational transitions. 

Also, notf that although we neglect transitions between different 

multiplicities, as stated in section 4.1 because they are very weak, a 

good example of such transitions observed both in absorption and 

emission in the ultraviolet are the Cameron bands of CO, a3IT~-~ x~+, 

i.e. transitions between the 1m"rest excited electronic state which is 

a triplet, and the ground electronic state. Kovacs (31) and (65) give 

Honl-London factors for transitions involving different 
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multiplicities, also when IlLtl > 1 which we also neglect. Finally, 

although we consider states to be strictly Hund's case (b), Tatum 

and Watson (66) gives Honl-London factors for 3L ~-7 32: transitions 

when spin-spin and spin-orbit interactions do cause these states to 

approach case (a). 

Having discussed the multiplicities in detail, we now make some 

general points about bands, neglecting the effects of centrifugal 

stretching and spin splitting. 

When B ,> B .. , a band head forms on the P-branch at a longer v v 

wavelength than the band origin, such that: 

(4.2.23) 

when: 

+ 1>., I (4.2.24) 

so the band appears shaded towards the blue, and \v-here ..yo is the 

position of the band origin in wavenumber. When B ,< B .. , a band head 
v v 

forms on the R-branch at a shorter wavelength than the band origin, 

such that: 

1 
(').i3 v" - B".,') 

It ( 1>" I - j).;-.) 
(4.2.25) 

when: 
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(4.2.26) 

so the band appears shaded towards the red. The latter is always the 

state of affairs for VR bands, as B, 
v 

except possibly in some very rare cases. 

is always smaller than B u, 
v 

If the relative population of the energy levels is given by (see 

also section 2.5): 

(4.2.27) 

then: 

(4.2.28) 

when: 

(4.2.29) 

which corresponds approximately to the maxima in the P and R branches. 

Finally, because higher order terms in the centrifugal stretching 

are neglected, for sufficiently large N, the levels will turn over in 

our approximation and become meaningless. This occurs when: 

(4.2.30) 
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3 
D 

(4.2.31) 

As N is of course always an integer in these expressions given here, 

we must round to the nearest integer. So in ascending the rotational 

energy level ladder, if N or J reaches the value in (4.2.31), the 

computation of the band is stopped, likewise if the top of the 

potential well is reached. In practice one would normally expect the 

band to be cut off long before these safeguards, due to the 

diminishing Boltzmann factor. 
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4.3 Vibrational Energy Levels and Matrix Elements 

The vibrational term values measured from the bottom of the 

potential well, see section 2.6, is again: 

cr(v) (4.3.1) 

where v is the harmonic constant, 
e ~ x, W y ••• are anharmonic e e e e 

constants, and v = 0,1,2 ••• is the vibrational quantum number. 

As the zero point for calculating the vibrational partition 

function is the lowest vibrational level of the ground electronic 

state, the Boltzmann factor for this level, neglecting the effect of 

rotation, must be unity, hence we must refer all other vibrational 

levels to this. The zero-point energy of the v = ° levels is: 

G- (D) := 

hence: 

Frequently the vibrational constants Q , o 

refer to the v = ° level, are given such that: 

(4.3.2) 

(4.3.3) 

(4.3.4) 
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It is, hOvlever, convenient always to \~ork wi th the same quantities and 

convert these with the following relations, which are the inverse of 

those given in section 2.6, terms higher than Q y being omitted: 
o 0 

(4.3.5) 

When the electronic state in question is an excited state, great 

care must be exercised in correctly calculating the term values 

consistently. If T and T are electronic energies of an electronic e 0 

state measured respectively to the bottom of the potential well and 

the lowest vibrational level, then for the ground electronic state, by 

definition: 

o or Til,;: 0 
e 

(4.3.6) 

which respectively define the zero-point energy in whichever system we 

are working in. For an excited electronic state, T~ is the energy of 

the bottom of the potential well of the excited state above the bottom 

of the pot~ntial well of the ground state, and T' is similarly 
o 

measured with respect to the lowest vibrational levels. It follows 

that: 

I 

--I ~ (. We" - Ue") e -= co( 

1 ((; i?l I _ tJ "?t. /.) Lf- e.e e e 
(4.}-.7). 



- 170 -

which is useful if we consistently want to work with T when T is 
e 0 

given. Except for the ground state, by definition, To is subject to 

isotopic shift, unlike T which is constant. 
e 

If R(v) is the term value for the vibrational level in an excited 

electronic state, then neglecting rotation and spin etc., we can 

write: 

I-I(v-) - G- '(Ii) +- Te; - G- "(0) = G~ (Ir) (4.3.8) 

which ensures that the Boltzmann factor is correctly set. 

Finally, are respectively the dissociation 

potentials, distinct from D 
e 

and D the non-rigid rotational 
o 

constants, measured from the bottom of the potential well and the 

v = 0 level, we can write: 

(4.3.9) 

where again, DO is constant but DO is subject to isotopic shift. If 
e 0 

either of these two constants is not available, it can be found from 

the Morse approximation, thus: 

) (4.3.10) 

which will in general not agree with the empirical value, if 

available. The Morse potential approximation, see later, allows only 

for the constants ~ and ~ x in the expansion for the vibrational 
e e e 
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term values; in practice there are higher order terms of which only 

tJeYe is usually known. In rare cases ~ z is also given, however, it e e 

is so small in such cases, that it is neglected in calculating the 

vibrational term values. 

As in ascending the rotational ladder for a band, so in ascending 

the vibrational ladder for a band system, if the Boltzmann factor does 

not cut off the band system, we stop on reaching the top of the 

potential well, or when the levels turn over and become meaningless, 

or indeed when the maximum specified number of levels has been 

reached. The turnover is not found from a simple quadratic equation, 

as is done with the rotational levels, due to the presence of the 

cubic w y term. Instead a test is done for each vibrational level in e e 

turn, to see if it has turned over. 

We now come the the considerably more difficult problem of 

calculating the vibrational matrix elements. Originally, it was 

decided to find the overlap integral Ji'v' r~ .. dr, the square of which is 

known as the Franck-Condon factor, by calculating the harmonic overlap 

integral from Manneback (67), then applying Hutchisson II (68) to 

determine the anharmonic overlap integrals. Harmonic overlap 

integrals evaluated from recurrence relations by (67) were found to 

agree with the more cumbersome method by Hutchisson I (69) after 

correcting some errors in the latter. In (68), the Morse function is 

only expanded to three terms in the exponential, then perturbation 

analysis is used to obtain the anharmonic wave functions and overlap 

integrals. Unfortunately, a large number of errors were also found in 

this paper. Bates (70) gives formulae and also tables for determining 
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harmonic overlap integrals -together with anharmonic corrections. 

Most fortunately indeed, a recent method by Doktorov et ale (71) 

was found subsequently to be far superior to the Manneback-Hutchisson 

method mentioned above. The Schrodinger equation is solved explicitly 

with the Morse potential, rather than a truncated series, the computer 

code is far more efficient and there are a number of other important 

advantages discussed below. Accordingly, the Manneback-Hutchisson 

method was abandoned in favour of Doktorov's, except that the harmonic 

overlap integrals by Manneback, together with work from other 

references could be used as a check. 

In addition to EVR bands, Doktorov's method is adapted here for 

calculating the vibrational transition moments of VR bands, hence 

tying together two separate branches of spectroscopy, and replacing 

the many long and complex formulae published in several papers by 

Bouanich e.g. (72), 

enough approximation. 

if the Morse potential is accepted as a good 

These analytic techniques are adopted, as detailed numerical 

integration of wave functions of general Rydberg-Klein-Rees potential 

functions are considered beyond the scope of this work. For the same 

reason, it is assumed that the rotational contribution to the "matrix 

elements can be factorized out as the Honl-London factors, hence they 

are the rotationless vibrational matrix elements that are determined. 

This is expected to be a reasonably good approximation except, for 

large J, by which time other uncertainties increase. 
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Doktorov's equations are taken· and recast in a form found 

suitab1e'for numerical work, as explained below. The Morse potential 

is again: 

where DO is, as before, 
e 

-1 
the dissociation potential in cm 

(4.3.12) 

r the 
e 

equilibrium internuclear separation and 0< a constant. To avoid 

excessively large or small numbers, it is convenient to express r in 
e 

Rngstroms, and hence adjust 0( accordingly. We can ,.rrite the following 

relations: 

(4.3.13) 

" 

/, 1\ ve 

I - :i ) 
I 

S - ~D/' J 

lJ I - J 
e 

(4.3.14) s 

(4.3.15) 

and: 

~s (, + i (4.3.16) 
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where ~ is the reduced mass in grams and s is the number of 

vibrational energy levels, such that the vibrational quantum numbers 

are restricted to the ranges 0 ,< v"~ s" and o.{.. v'~ s'. s will lie 

very roughly between say 20 and 100, and will not in general be an 

integer by (4.3.14), though of course actually there can only be an 

integral number of vibrational levels. However, to make the treatment 

easier and more realistic, s is rounded to the nearest integer, as 

this is considered a minor approximation, in view of the fact that the 

Morse potential function is itself only an approximation. Indeed for 

safety, we restrict v ~ s-l. We also have the additional 

approximation of the OC:-averaging method, where ,ve have to use the mean 

value of ~ from (4.3.15) for both of the electronic states, this being 

a compromise as Doktorov's equations can only be written in closed 

form when 0<'= c.(". Fraser (73) uses this approximation in calculating 

the overlap integrals with Morse potentials using earlier methods, see 

for example Fraser and Jarmain (74) and Jarmain and Fraser (75). 

Clearly the further apart the two values of ~ are, the poorer is the 

approximation, at worst we can at least hope to obtain trends of the 

band strengths. (It is noted that there is an error in Doktorov's 

expression for the energy levels, as his D, 
e 

the dissociation 

potential, in the anharmonic term must not be squared). 

With the above information, we can now calculate the required 

vibrational matrix elements, defining: 

(4.3.17) 

giving the normal overlap integrals when N O. In order to fino each 
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. d 1 &: T(N) - b' (0) T(l) T(2) .. th 
requ~re va ue 01. v'v'" we must 0 ta~n TOO' 00' 00 ..• e .. c., en 

use recurrence relations. Because of the limitation of the available 

molecular data, the highest value of N used is 4. Re-writing 

Doktorov's expressions for Tb~) in a form suitable for numerical 

evaluation: 

(4.3.18) 

where: 

(; '::' S I + sit (4.3.19) 

and x(N)(t) are the following functions whose complexity increases 

rapidly with N: 

10) 

X (t):: 1 

Xl3
)(f) -: k\( + '5 l/'{f).t:ct f 3[ if'{'fO + [tf'(t)]jl,,4. 

+ ~(~){f)+ 3 r(f) 'f(l)(t) + [r(t)J 3 

X I") (t~) := 4 L{ u- + L/f (f) t~ c:.. +- r; [ LP (I) ( &) + [ tf ( t-) r] tr: II 
+- ltL Y;'{){f) 4- 3 !f/{-) \f(I)(f) + [<.fU)fJ ~a. + ~'(3)(f) . 

+ 4 <f{l-) l{/'J.){t) + 3{<{'(i){r)]1+ G[4JU)fr{I)(t) + [LfJ(6)J tr 

(4.3.20) 

(4.3.21) 

(4.3.22) 

(4.3.23) 

(4.3.24) 
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where: 

and 
jn r(/;) 
J t;" 

(4.3.25) 

(4.3.26) 

Numerical values of ~(N)(t), not to be confused with the symbols 

for wave functions in (4.3.17), are found by evaluating the asymptotic 

expansions as given by Abramowitz and Stegun (46), which are rapidly 

convergent even for fairly small arguments. The expansions used are: 

t(t) kt - 1 i. + ..i 1 -1 
;;:: - ..j..-

).t: 1<t~ -l~Dt'f ~5":{tb ~~Dt1' 13 '{ t'" (4.3.27) 

fOU-) :: 1 -+ -I 1 i +..! 1 - +- -
'?Jot <; 

... 
C ~t-:t bt> «-~e 1.0 t<l 

(4.3.28) 

'I'(:PO-) ~ -2- -\ - 1 +-.l 1 +2- :; 
t t}, ~ i-'f 't'" Gt'fJ to(:'o Gtt< b 

(4.3.29) 

'j'/» (l-) -= ':l. .;. '3 -l. ~ 
-, 4- ~ 3- ,I- 1.0 -t'3 t'-1. t1- '-tt;; 3t-~ til ti'!! 

(4.3.30) 

Direct summation of the recurrence relations given by Abramowitz 

and Stegun (46) agree well with (4.3.27-30) even for an 

unrealistically small value of t = 5, however, for large values of t, 

the direct summation becomes useless due to loss of significance. 
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With the required values of T~~) the recurrence relations given 

by Doktorov can be used to generate in a three dimensional 

array, which has to be in double precision to limit the accumulation 

of round-off errors. For the v" progression, i.e. V"--7 v"+l: 

+ (5 "-v;' -1-1)'4[(;)5'1+ O(J.S i -J.v'-1) 
If {$'I_V"f-j}'-_ j 

'd. (S" - v;' ~.1) I/-t [~ S:"H) 

It (S"-V"+1)'J -1 

(N-i) )a TV ',\li l_ 1 ) 

(4.3.31) 

For the v 
, 

progression, interchange single and double primes and 

replace ;--to by 100' Coefficients of array elements that are 

impossible, e.g. N-l = -1 or v'-l = -1 are zero, and care is taken in 

the computer code to avoid accessing such non--existent elements. 

Having computed T~~) , (1) 
TOO .•• we set v"= 1 and compute T(O) 

01 ' 

(1) h' " b TOl •.• t en ~ncrement v y 1 and compute T(O) 
02 ' 

(1) 
T02 ••• etc. until 

either a specified upper limit of v" is reached, or the Boltzmann 

factor is used as a criterion; failing that, v" is ultimately stopped 

when either the top of the potential \Ole11 is reached or the levels 

turn over, as stated earlier. Having computed all the required values 
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in the Nv"-plane, we set v"= 0 and v'= 1 then compute T(O) 
10 ' 

(1) T
10 

••• and increment v" as before. This process is repeated for each 

value of v' until the maximum allowed value is reached, this being 

from similar tests to v" except for no Boltzmann factor. For 

computing efficiency, the order of increasing rate of change of the 

indices is chosen to be v', v" and N. 

In developing the coding, a large number of tests were performed 

to check for errors and consistency. Quite generally, T(O) satisfies 
v'v" 

the normalization: 

= 1 (4.3.32) 
v':;;;; 

for any v' and v" respectively for any Horse potential in the two 

states. the two potential wells approach the 

harmonic limit, T~~~" approach the values computed by Manneback (67) 

and T(~)" approach those by Hanneback and Rahman (76), after errors 
v v . 

were corrected in (76). 

We also introduce here the concept of the r-centroid, as defined 

by Fraser (73), see also for example Nicholls and Jarmain (77) and 

Nicholls (78), where the r-centroid is defined as: 

(Vi \1"\ V"> 
< v'{ V")-

(4.3.33) 

and can be considered as the characteristic internuclear separation 

for the electronic-vibration transition, but need not necessarily be 

close to the average of the internuclear separations of the two 
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electronic states. In computing the r-centroid for transitions by 

some appropriate method, e.g. an earlier method for Morse potentials 

by Nicholls and Jarmain (77), we allow to first order at least the 

electronic transition moment to vary with vibrational transitions, see 

the next section. However, in computing higher order matrix elements, 

r-centroids are only an approximation, as generally: 

< V I 11f I V II > 
<v'l if II) 

(4.3.34) 

but the matrix elements of all orders can be computed directly by 

Doktorov's method, so we do not have to compute r-centroids as such. 

However, if we set t:; =i,)' = t.;" but r' :f. r", a very simple quick 
e e e e e 

check to Doktorov's method is to compute r-centroids by Schamps (79) 

for two harmonic states with equal frequencies: 

(4.3.35) 

where r, '" 
v v 

r' and r" are the r-centroid and the internuclear 
e e 

separation in the two states respectively, all in ~ngstroms, ~ is the 
e 

-1 
vibrational frequency of the tw·o states in cm '.fA- is the reduced mass 

. (1) (0) 
in amu and NA is Avogadro's number. Then the ratlos T , ,,/T , " agree v v v v 

with r , " by Schamps, if Doktorov's method is applied with very large 
v v 

values of DO, and DO" to approach the harmonic limit, and we do not 
e e 

consider matrix elements where \T(9),,\ are very small as residual v v 

anharmonicity and numerical round-off errors become important. 
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Although the formula (4.3.35) can only be strictly applied for 

equal frequency harmonic oscillators, it is a very quick and easy 

approximate check for more general cases if w is taken as the mean of 
e 

the harmonic frequencies of the two electronic states, as often these 

are not too different and anharmonic effects are generally small for 

the lowest vibrational levels. 

When applying these cross checks to Doktorov's method in the 

harmonic limit, they are invalid well away from the Condon parabola, 

(in the v'v"-plane with N = 0, the matrix elements \>lith the largest 

(0) 
magnitude usually follow a parabolic curve), where IT , "I « 1 due to 

v v 

the residual anharmonicity affecting the wave functions. Also, there 

is unfortunately no easy way of checking general T(~)" with N > 1, but 
v v 

there is confidence in them, as a result of applying Doktorov's method 

to VR bands, discussed later. 

Finally, if a
O

' a
1 

••• are coefficients, then: 

R",,,,, 
<I> 

+- ell T V'V" 

-[~) 

+- q:t I "·v" t··· (4.3.36) 

where R,,, is the electronic transition moment. If R ,,, is in 
v v v v 

Debyes, where 1D 
-18 = 10 esu-cgs, then a. is in units of DR-

i
, when 

T(~)" are computed in Rngstroms. 
v v 

consistently in Rngstroms and Debyes. 

J. 

It is most convenient to work 
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In the discussion so far, Doktorov's method is applied, as 

originally intended, to transitions between two different electronic 

states giving rise to EVR bands, however, Doktorov's method can be 

used with some modifications to transitions within the same electronic 

state, giving rise to VR bands. 

For VR bands, T(N) is computed in exactly the same way as 
v'v" 

before, except that as both electronic states are the same state, we 

have identical constants, and hence no o{-averaging approximation. 

However, the matrix elements obtained are <v'lrNlv">, but the elements 

required are <v'lxNlv"> where x = r-r • 
e 

) lV-? J I .. !J ( rv - i '}~ < V Ix ~ V U) + 
~! 

and defining: 

(N) 

SV'V" 

Expanding 
(N) 

T ,. n! 
V V 

then rearranging (4.3.37) for each value of N, we can write: 

(0) 
riO) 

Sv1v" -== 
V'VH 

(I) ( I) (0) 

S~';V" ::: Tv ,v" .- re S"'Vfl 
I ~) -i~} '=l. to) 5v'v" 

(1) 

-= I v'v" - ~ Sil'.,·, - :21~ S"J v'" 

(4.3.37) 

(4.3.38) 

(4.3.39) 

(4.3.40) 

(4.3.41) 
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0) 

S ~ 
"'I:" 

-3 S /1) ~S i.) (:n 
- - .'7. 'y.: _', 

T'e lI'v- .) e ii'"" '3}e. 5 V'II" 

(4.3.43) 

where (4.3.39-43) are evaluated in this order for given v' and v" and 

T(~) .. = S ' ", Le. T(~) .. = 1 if v'= v" otherwise vv vv vv 
(0) 

T , " = O. v v 

It is eN) indeed found that on calculating the matrix elements T , " 
v v 

by Doktorov, then f · d' SeN) ln lng ,,, 
v v 

from (4.3.39-43) with large DO 
e' the 

harmonic oscillator result is approached. 

oscillator, the dimensionless length variable: 

where x r-r as already defined, and where: 
e 

For the harmonic 

(4.3.44) 

(4.3.45) 

by Hutchisson (68) after an error was corrected. From the expressions 

in (68), derived from the recurrence relations of the Hermite 

polynomials, we can write down the matrix elements for the harmonic 

oscillator, agreeing with those given by Shaffer and Krohn (80), given 

here for those elements up to fourth order that are non-zero: 

<v'\v"> 1 for b.v 0 (4.3.46) 

<v'\x\v"> 
'/-;. II;. 

-(3(v+1) /2 for ~v = 1 (4.3.47) 
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[ (>2(2V+1)/2 for Il v 0 

<v'lx2 Iv"> (4.3.48) 
2 :/~ 
~ [(v+l)(v+2)] /2 for 6.v 2 

3 ')11, "}/:t 

{3(l (v+1) /2 for Av 1 

<v'lx3 Iv"> (4.3.49) 

I/~ }/ -rl [ (v+ 1)( v+2 )( v+ 3)] / 2 ~ for /J.v 3 

3(.>4(2v2+2v+l)/4 for jjv 0 

4 ~ 
(!> (2v+3) [(v+l)(v+2)] l,,/2 for Av 2 (4.3.50) 

4 ~ r [(v+l )(v+2) (v+3 )(v+4)] ~/4 for fjv 4 

where v is the initial state, to express these in terms of the final 

state, we replace v by v-bv in all these expressions. 

Each matrix element above has an arbitrary sign, however, it is 

found that in applying Doktorov's method for computing the matrix 

elements large a D to approach the harmonic 
e 

limit, 

alternate off-diagonal elements alternate in sign, thus if we adopt 

<v' Iv"> = +1 for fjv = 0 in (4.3.4.6), the signs for all other matrix 

elements in (4.3.47-50) foHm-l, and are given 

keeping to this sign convention, the values of 

by (_1)6V. Thus 

S(~)" obtained 
v v 

in 

from 

(4.3.39-43) by Doktorov's method in approaching the harmonic limit, 

agree well with (4.3.46-50), hence this is another good check on 

Doktorov's method. Elements that are zero in the harmonic case, have 
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by Doktorov, values of small magnitude. Exactly as expected, as DO is 
e 

reduced and the potential becomes more' anharmonic, the agreement with 

the harmonic case becomes poorer, in particular, elements that are 

zero in the harmonic limit become larger in magnitude, except the 

elements S(~) .. which are always given by ~ , ... 
v·v v v 

Finally, we can write the dipole moment expansion in terms of x, 

the same x as previously defined, as: 

t 

where the most 

+ 

convenient 

M;,. ?L- '< + ... 

DO- i units are A as 

(4.3.51) 

before. Similar to 

(4.3.36), we can write the transition moment as a linear combination 

of the matrix elements: 

(4.3.52) 

MO is the permanent dipole moment of the molecule, but unless we are 

dealing with pure rotational bands when ~v = 0, the first term of 

(4.3.52) is of no interest as S(~) .. ° when I1v f. O. v v 

S(~).. and R,.. are all symmetric matrices about the main 
v v v v 

diagonal, unlike transitions between different electronic states. It 

is however, a convenient check to calculate the full matrices, 

although only half of each is used. Although 

(4.3.36) and (4.3.52) are of no interest, 

the signs of R , n 

V V 
in 

2 as R ,.. are used in 
v v 

computing the band strengths, the relative signs of the individual 

terms in the two expressions are of course important. 
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4.4 Determination of Absolute Line Strengths 

The Honl-London factors in section 4.2 can be used to obtain the 

relative rotational strengths within a given band, and the squares of 

the vibrational transition moments in section 4.3 can be used to 

obtain the relative band strengths within a given band system. Here, 

all the factors are put together to obtain the required absolute line 

strengths, ensuring in particular that the various statistical weight 

factors are correctly accounted for. 

Quite generally for the strength of an individual line: 

5 = 

r (" ".," """Il' I.) i j" T £ '1,.' II _... n J v . L ,J n, h 

S-;r'J",.L 
Q 

(4.4.1) 

in units of 
2 

cm /sec/molecule, for VR or EVR bands. Then V is the 

wavenumber of the line in cm-l 
R,,, is the transition moment between 

v v 

the two vibrational levels in esu-cgs, 
_5'~" 
~~ is the Honl-London J'J" 

factor, F(n",v","'i.",J") is the term value in cm-l for the initial 

state, where n" represents the electronic state, and Q is the total 

partition function. From section 4.2, the electron spin statistical 

weight of 2S+l is included in the normalization of the Honl-London 

factors, and the factor of two for)l-doubling, when relevant, is 

accounted for by splitting the line into t\VO components, as discussed 

in section 4.2, whose strengths are equal to the original line, 

neglecting any complication of nuclear spin, and it is one of these 

components that is given here. If the nuclei are identical, we have 
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the additional nuclear spin statistical weight of gr which is only 

relevant for EVR bands. 

Dropping the Boltzmann factor and partition function, we can 

write the total band strength as: 

= 
t!'?-nJ> -
11 I "llt'v' 

7:>h 
(4.4.2) 

in units of cm2 /sec/absorber, 

band origin in cm-l 

where .y , .. is the wavenumber of the 
v v 

Note that for the last term in (4.4.2), the factor of two for 

A-doubling is applied if A > 0 for at least one of the electronic 

states, and is quite distinct from the electronic statistical weight 

factor in (2.7.1), which is included in the total partition function, 

see Whiting and Nicholls (81) and Schadee (82). However, for the 

transitionsTi ~-7 2:, even though the rotational levels of the Ti state 

are A-doubled, the spectral lines will not be A-doubled due to the 

selection rules of the parity of the rotational levels, i.e. + ~-7 -, 

see section 4.1. This is because each rotational level of the"IT 

electronic state is split into a pair of sublevels of opposite parity, 

in addition to any spin splitting, with only one transition of each P, 

Q and R-type between any pair and the appropriate levels in theZ 

state, see the diagrams in Herzberg (29). 
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2 R , .. is obtained directly from (4.3.52), 
v v 

but for 

EVR bands, the total transition moment can be factorized into two 

parts: 

~ 

RVI II " 
(4.4.3) 

where q , .. is the Franck-Condon factor, and is the vibrational part 
v v 

of the transition moment, defined as: 

q -= < 1/ ; I V .f >J. 
yV'tJ" 

_ [ (0) 1~ 
Til'''' 

(4.4.4) 

which is a number between 0 and 1 and can be calculated by Doktorov's 

method. R2(r) is the electronic part of the transition moment, which 
e 

will in general depend on the r-centroid for the transition, so we 

cannot in general completely separate out the vibrational and 

electronic parts of the transition moment. 

or: 

R2
(r) is often given in the literature in forms like: 

e 

tty 
I + . (4.4.5) 

(4.4.6) 

where to first order at least, r is the r-centroid and. aO,a l .•• and a 

and b are coefficients. For higher orders, if we generalize the 
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r-centroid concept to the r(N)-centroid defined as: 

- (IJ) r 
t/IV /1 

<v j I Y"'i V"> 
<viI Vi') 

IN) 

Tv,,," 
T IO

) 

V'V" 

(4.4.7) 

as opposed to (4.3.35), and divid~ both sides of (4.4.5) by q , n, we 
v v 

end up with the square of (4.3.36), hence Doktorov's method can be 

applied directly. The same can be done for (4.4.6) after expanding 

the exponential, though Doktorov does give a method, which we do not 

use, that enables the exponential form to be treated directly. 

In some cases in the literature, instead of R2(r) being given, we 
e 

have a band oscillator strength 

strength f l(~ , n), such that: 
e v v 

Iv'v" 
~v'v" 

f , 11 

V V 
or an electronic 

If one of these is given for the 0-0 band, we can write: 

~" 

oscillator 

(4.4.8) 

(4.4.9) 

in units of cm2/sec/absorber, assuming that R2(r) is constant over the 
e 

whole band system in the absence of further information. Also, we can 

relate the band oscillator strength and transition moment by the 

expression: 

1TTJ.lffle C )lv'v" 

7> he~ 

~ 

Rv '"'' 

where m is the mass of the electron. 
e 

(4.4.10) 
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For EVR bands, if two electronic states are close together, it 

may happen that a vibrational level in the upper electronic state is 

actually at a lower energy than a particular level in the lower 

electronic state, giving rise to a reversed band and detected by a 

negative value of~. In this case, the absolute value of y is taken, 

and the Boltzmann factor is applied to the level in the upper 

electronic state. 
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5 COMPUTING THE BAl'lD SPECTRA OF TRIATOMIC MOLECULES 

5.1 Introduction 

Whereas the VR and EVR band spectra of diatomic molecules are 

calculated ab initio from dipole moments, rotational and vibrational 

constants etc., this is not followed through to triatomic molecules 

because of the very much greater complexity in their spectra, 

particularly non-linear molecules like Thus instead of 

calculating vibrational band strengths from a dipole moment expansion, 

band strengths are calculated in sequences of fixed ~vl' b,v
2 

and fjv
3

, 

as mentioned by Auman (15), with the strength of the first member of 

the sequence being known. An important additional simplification is 

to assume that all transitions occur within the ground electronic 

state, and that electronic transitions can be neglected. The lowest 

of the excited electronic states of H
2

0 and CO
2

, usually the two most 

abundant triatomic molecules, are at high energies, so any electronic 

transitions occur at short wavelengths where there is little flux and 

the effect on. the overall opacity is small. Molecules that do have 

electronic transitions at longer wavelengths, like N02' have lower 

abundances, so again the effect on the opacity is expected to be 

small. In view of this, together with the fact that the general 

theory of triatomic overlap integrals becomes extremely complex, it is 

considered beyond the scope of this work to deal with triatomic EVR 

bands. However, for restricted cases, overlap integrals could be 

calculated by Doktorov et al. (71) and (83). 
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For diatomic molecules, it' is assumed that to a good 

approximation, the dipole moment expansion is independent of isotopic 

substitution; and for atoms of equal charge, remains zero even if the 

nuclei are not identical. This is unfortunately not generally true, 

particularly with a change in symmetry, for triatomic molecules. Thus 

for normal CO
2

, being symmetric there is no net dipole moment, so 

vibrational transitions involving changes in the classical 

symmetric stretch with the carbon atom remaining stationary, are 

inactive in the infrared. If we now isotopically substitute one 

oxygen atom, . . 016C
12018 glvlng say , on the face of it we would appear 

t h ... '1 C12C13 
o ave a sltuatlon Slml ar to , as discussed in the previous 

chapter, and the dipole moment would remain zero. For the 

non-vibrating molecule, to a good approximation this would indeed be 

expected to be the case, however, the carbon atom is no longer at the 

centre of gravity so moves in the classical symmetric vibration, which 

is now no longer strictly symmetric; thus quantum mechanically, there 

is a vibrational transition moment associated with a change in 

hence vI is active in the infrared. Selection rules connected with 

the bending mode and the antisymmetric stretch are also 

affected, as described in the next section. 

The situation for a bent molecule is more complicated. In theory 

we could apply the method of Secroun et al. (84), if the coefficients 

of the dipole moment expansion are known for a bent XY2 molecule like 

water, where the permanent dipole moment lies along the symmetry axis, 

which is also the intermediate moment of inertia axis for water, and 

the transition dipole moment associated with vibrational transitions 
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will be either perpendicular or parallel to this axis, depending on 

the change of the vibrational quantum number, discussed later. 

However, Secroun's method is not applicable to non-symmetric molecules 

like HOD, as the vibrational transition moment will be at some general 

angle to the bisector of the HOD angle (no longer an axis of 

symmetry), which will now also be different from the intermediate 

moment of inertia. In addition, the permanent dipole moment of the 

non-vibrating molecule will not in general be aligned with any of the 

principal moments of inertia. 

Additional to VR bands of water vapour, pure rotational bands are 

also considered, unlike diatomic and linear triatomic molecules, due 

to the large number of lines at sufficiently short wavelengths in the 

infrared where the weighting function, for the temperatures of 

interest, is large enough for these bands possibly to have a 

significant effect on the total RMO. Most molecules have their pure 

rotational bands in the far infrared, where the weighting function and 

the radiative flux are small enough for the bands to be expected to 

have a negligible effect on the RHO. 

Because three atoms can only be collinear or coplanar, there are 

restrictions on the ranges of the rotational constants A, Band C, 

where by definition for general polyatomic molecules A ~ B ~ C: 

(i). A = B = C Spherical Top Molecule: This cannot occur 

with triatomic molecules, so is of no interest here. The 

best example is CH
4

, point group Td • 
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(ii). A = B > C Oblate Symmetric Top Molecule: This will 

occur with three identical atoms arranged in an equilateral 

triangle, point group D
3h

, or special cases of C
2v 

or C s 

where a symmetric top occurs accidentally. H+ is one of the 
3 

few examples known. 

(iii). A > B = C Prolate Symmetric Top Molecule: This cannot 

occur for any planar molecules, but linear molecules like 

CO2 and HCN, point groups ~h and C~v respectively, can be 

regarded as special cases of a prolate symmetric top. 

However, it is convenient to treat linear molecules quite 

separately. 

(iv). A > B > C Asymmetric Top Molecule: This will occur 

for all molecules in general of point group C
2v 

e.g. H
2

0 

and H
2

S, and C
s 

e.g. HCO radical. 

Although (ii) is only realized in a few cases, and (iii) is 

impossible, discounting linear molecules, they are useful 

approximations to (iv) under suitable conditions when considering 

selection rules, line strengths and energy levels. 

Because of the approximations that have to be made in computing 

the bands of triatomic molecules. it is likely that individual lines 

and even whole bands will correspond very poorly to those in the 

observed spectra. However, due to the large number of overlapping 

bands that are characteristic of triatomic molecules at the 
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temperatures of interest, details of individual bands are lost, and it 

is hoped that at least the gross properties of the spectra are 

reproduced. 

atmosphere, 

Only with the lower temperatures in a planetary 

where the lowest vibrational levels are significantly 

populated, would it be feasible to carry out an accurate line by line 

calculation for each band. 
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5.2 Vibration-Rotation Spectra of Linear Molecules 

Although the work here deals with linear triatomic molecules in 

general, in practice it would mostly be applied to CO
2 

and its 

isotopic variants, as CO
2 

is normally expected to be the most abundant 

linear triatomic molecule in stellar atmospheres, and more data is 

available on it than other linear molecules. 

For a given transition v --7 v+nv of the harmonic oscillator, 

from section 4.3, it is seen that the matrix element <vlxnlv+~v> is 

zero except for n = av,6v+2,Av+4 ..• , where the matrix element with 

n = ~v contributes most to the total transition moment. Neglecting 

the effects of the higher order matrix elements, the transition moment 

is: 

c' . 4v, - ,vi jC IV' T IJv/ :: (5.2.1) 

where M is a coefficient in the dipole moment expansion defined in 
t:.v 

(4.3.51) and p is defined in (4.3.45). 

If R2 is obtained from observation, 
O,l1v 

then R2 can be found 
v,v+/.IV 

easily from: 

~ 

R v Jv'tllii 

R~)LW 

(\f' + [\v') { 

if! bV! 
(5.2.2) 

neglecting anharmonicity and higher order matrix elements. Thus, for 
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general polyatomic molecules with non-degenerate vibrations, the total 

transition moment can be approximated' to a product of the transition 

moments of the individual vibrations: 

'1 

;] 
) 

(v: + l\V:')~ 
\1", I Ii V~ I 

l • LI L. 

(5.2.3) 

where for triatomic molecules, i 1, 2 and 3, giving the formula 

quoted by Auman (15). 

Thus given the first member of a progression of bands with 

constant ~vl' t1V2 and Llv3 , we can calculate the other bands in the 

progression using (5.2.3). Although the anharmonicity is neglected in 

obtaining the approximate band strengths, it is of course included in 

the calculation of the energy levels, see section 2.11. 

As we can write: 

v .. lJV. V, .. Ai.! If, + /JI/J.) 
I • / < 4 I ~ (5.2.4) 

and likewise for any other vibrational quantum number, then given a 

progression. of sum bands wi th say Ll vI = 0, IJ.v 2 = 1 and L1 v 3 = 1, we can 

immediately obtain the difference bands ~vl = 0, ~v2 = -1 and ~v3 = 1, 

provided this transition still corresponds to an increase in energy, 

which is normally the case here as 4J 2< tJ 3 for triatomic molecules in 

general. 
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For linear molecules, we have the additional complication that 

the v
2 

mode of vibration is doubly degenerate, giving rise to angular 

momentum about the internuclear axis specified by .t, the vibronic 

quantum number, such that ~= v
2

,v
2
-2,v

2
-4 ••• 1 or 0. For CO

2
, and 

any other linear molecules we are likely to consider, the ground 

electronic state has no electron spin or orbital angular momentum, so 

we do not have to consider any coupling bet"Vleen I, Aand S, which is 

described in Herzberg (34). 

We can consider j to occupy the same role as./l for diatomic 

molecules, giving rise to the same Honl-London factors, selection 

rules and restrictions on J. By Herzberg (30), /J1. = ° and at = ±1 

give rise to parallel and perpendicular bands respectively, and are 

analogous to the corresponding transitions in Jt for diatomic 

molecules, except that for them perpendicular bands must involve an 

electronic transition. It can thus be seen that if Ibv21 is even then 

lJi = ° and It1v
2 

I odd then 61= ±l, see Dennison (85), hence a given 

band with specified viv2v3 ~-- viv2v3 consists in fact of several 

bands vivz1'v; ~-- viv2t'v3 with f' and./." taking allowed values, and 

wi th the number of bands increasing \vi th v2 and v2 • 

Because of the degeneracy of the v
2 

bending vibration, the 

product in (5.2.3) is incorrect for i = 2, and has to be replaced by 

the square of the radial matrix element (RME) of the isotropic plane 

harmonic oscillator, v7i th the expressions for i = 1 and i = 3 being 

retained. With nV2 = 0, there is no problem as ~l= ° and the square 

of the Rl1E <v; f' I v2C"> is unity for each substate of 1, where for 
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,l = 0 there is one substate and for 1 > 0 the levels are i-doubled, 

exactly the same as A-doubled for diatomic molecules, with two 

substates. Thus: 

Z <If~/'j I'/ vJ'j I') ~ \I; (( + 1 
f" 

(5.2.5) 

which is also the degeneracy if the splitting in .f is neglected, and 

is the total strength that would be put into (5.2.3) if we wished to 

consider this as one transition and neglected the splitting. 

However, in keeping with our treatment for diatomic molecules, 

each line is computed separately with any degeneracy being "resolved" 

except for the fundamental 2J+l rotational degeneracy. Thus each band 

with different L is computed separately, and for those levels with 

1 > 0, i-doubling of the lines is treated in exactly the same way as 

A-doubling for diatomic molecules by using the same coding. Not every 

rotational line consists of v
2
+1 components, however. This is true 

for the P, Q and R-branches for v
2 

odd and P and R-branches for v 2 

even, but there are only v
2 

components in the Q-branch for v
2 

even, as 

there is no Q-branch with e = ° --7 0. Moreover, there are fewer 

components in all cases if J"( v2 as J cannot be smaller than 1. 

When /5.v
2 

= ±1, then !Jf = +1 or +1 subject to allowed values of 

f. The RMEs in these cases can be obtained from the rather cumbersome 

formulae quoted by Penner (86) page 155 obtained from Schrodinger 

(87). If the definition of the binomial coefficient is extended to 

include negative values, as is the case in Schrodinger's formula, then 

it is found that the formula agrees with the far simpler expressions 
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given by Shaffer and Krohn-(80) which are used here. From Shaffer and 

Krohn, we can write the expressions: 

6v'J. IJ-i 

1 1 

1 -1 

-1 1 

-1 -1 

It can be shown that: 

I L < v,/l J

(t'1 \tl</'l~>< 
t' L r 

< Vd, '11 h' I V;J.''1 fI > 'l. 

~ (\fa" + 1" -l :2) 

-t (V ~ " - {' II -l ~ ) 

i ( v'J"- (") 

i (V
J 

If + -t') 

(5.2.6) 

(5.2.7) 

which is the sum over all v
2

+1 possible bands, where the other 

vibrational quantum numbers are kept constant and v
2 

is the smaller of 

When lL\v21 > 1, we use further formulae given by (80) for fll = 0 

or ±l depending on Ll v
2

• However, Shaffer also gives RMEs of 

transitions for I~£I > 1 due to higher order effects of Coriolis 

interactions, McClatchey et ale (88), that contradict the simple 

selection rules of 1. Unfortunately, there are no general Honl-London 

factors for ~11 > 1 available, though one could in principle "fudge" 

intensities in the p. Q and R-branches by simply putting (2J+l)/3 into 

each. However, this complication does not arise for most of the 

strong bands, and in view of this and the additional complexity, all 

transitions for which 1.111 > 1. are neglected. 
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In order to compute the band strengths in a progression, we need 

to obtain the strength of the first member of the progression and put 

it into a convenient form. McClatchey et ale (88) gives extensive 

tabulations of band strengths of several molecules including CO
2 

and 

as the band absorption coefficient in 
-1 

cm /(molecule 

-2 0 cm ) at 296 K. 50 (296) contains several factors that are convenient 
v 

to multiply out to obtain the "reduced" band strength (5 /~ ) using: 
v 0 

(5.2.8) 

in 3 sec per absorber. Where SO(T) is the band absorption cm per 
v 

coefficient 
-1 -2 TOK ~(T) vibrational in cm /(molecule cm ) at , is the 

partition function at TOK, F is the fraction of molecules in the 

isotopic form being considered, G is the term value in cm-1 of the 
v 

lower vibrational level, where G 
v 

o for· the first member of a 

progression, and ~ is the band origin in cm-l ; all other symbols have 
, 0 

their usual meanings. In practice, the stimulated emission factor 

which is taken out in (5.2.8) makes little difference, and when 

computing individual line strengths, is included in the weighting 

function. 

The line strengths are calculated from: 

5 (5.2.9) 

2 in cm per sec per isotopic molecule. 

band strength of the first member of the progression,jt2 is the square 
v 

of the relative vibrational transition matrix element, obtained from 
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(5.2.3) but modified for- the vibronic quantum number, SJ'J" is the 

Honl-London factor, ~ is the spectral line's wavenumber in cm-l Q(T) 

is the total partition function at TOK and G +F (J") is the total term v v 

value of the lower rotational 
-1 

energy level in cm • If (5.2.9) is 

multiplied by the number of molecules of the required isotopic form 

3 per em , we obtain an absorption coefficient in 

sec)-l, which are the actual units handled. 

2 3 cm /sec/cm or (cm 

An additional problem, particularly for CO
2

, is due to the 

accidental degeneracy of the different vibrational levels, giving rise 

to Fermi resonances that cause a perturbation of the energy levels 

when permitted by selection rules, see Herzberg (30) and (34). The 

effect for two levels is to cause them to "repel" each other so they 

no longer agree with (2.11.1), and a mixing of the vibrational 

eigenfunctions so that the strengths of the corresponding bands are 

redistributed. This becomes even more complicated when more levels 

are involved, and accordingly this problem is considered beyond the 

scope of this work, but we must discuss it here qualitatively. 

For Q = 2w and there is a Fermi resonance between 
1 2 

the 

states and 02 00 which causes them no longer to agree with the 

simple formula, however, 0220 is not affected, causing an anomalously 

large splitting between '- = 0 and k! = 2. As we are neglecting the 

shifts on the perturbed levels, this strengthens our argument earlier 

of treating independently bands that differ only in l' and I", as any 

overlapping of lines is likely to be accidental. 
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Because of the mixing of the eigenfunctions of the levels in a 

Fermi polyad, each level assumes some of the properties of the other 

levels, in addition to being shifted, and some of the vibrational 

quantum numbers lose their proper meanings and cannot unambiguously 

designate the members of the polyad. Thus, if one of these levels is 

in a band at the beginning of some progression, we have a problem as 

to how to label this band and follow the quantum numbers through the 

progression. o Thus suppose 02 0 is at a slightly higher energy than 

1000 if no perturbation takes place, which according to McClatchey et 

ale is the case for CO2 , the Fermi resonance causes the two states to 

be moved apart and mixed so that v1 and v2 are no longer good quantum 

numbers. However, for convenience, we can continue to label the upper 

state as 0200 with notional quantum numbers. 

More generally, let kminr designate the level of a polyad from 

McClatchey et ale , where k = v 1max' m= v2min ' n = v3 and 

r = 1,2,3 •.• the rank in order of decreasing energy with v3 and l 

remaining constant. Then as 

(vl -2,v2+4,v3) .•• have all approximately the same energy, we can write 

in order of decreasing energy: 



1 
k,m,n,l 

~ 
k,m,n,2 

f 
k,m,n,3 

{ 
k,m,n,k+l 
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l 
0,m+2k,n 

i 
1,m+2k-2,n 

l 
2,m+2k-4,n 

l 
k,m,n 

where on the right, the notional quantum numbers we use for labelling 

bands, are associated with the ranks in a Fermi polyad with k+l 

members on the left. Because of anharmonicity which is only 

approximated in (2.11.1), the order may in many cases be reversed or 

even rearranged differently according to the simple formula, so in 

practice our notional designation is somewhat arbitrary. When CO
2 

is 

isotopically substituted, the orders in a polyad may also be 

rearranged. For different triatomic molecules, including non-linear 

ones, other such relationships between v
l

' v
2 

and v3 can occur in 

Fermi resonances. Even though the first band of a progression may be 

perturbed, for continuity with the other members of the progression, 

we put in (5.2.9) the unperturbed vibrational energy, though ~o is the 

actual observed wavenumber of the band origin. 

For molecules with a D~h point group like CO 2 , v l cannot change 

without an accompanying permitted change in v 2 and v 3 ' and V z and v3 

can only change according to when lav2+~v31 is odd. m1en the molecule 

is isotopically substituted so that it is no longer symmetric, or for 

molecules like HCN which can never be symmetric, these selection rules 

do not apply and many more transitions can occur. However, because of 

the way we generate the transitions, we do not have to consider these 
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selection rules. 

The rotational energy levels are calculated in exactly the same 

way as for the diatomic molecules, except that now Band D depend on 

the three vibrational quantum numbers, and j is used in place of A, 

see Herzberg (30). Thus: 

(5.2.10) 

where each of~. contains several terms including Coriolis interaction 
1. 

factors which we do not consider separately. 

MCClatchey et al. (88) gives vibration-rotation intensity factors 

for several bands of CO2 , with which we should obtain the correct line 

intensities on multiplying by the Honl-London factors etc., also in a 

series of papers mostly by Valero and Suarez, see for example Valero 

et al. (89), these factors are given in greater detail together with 

band strengths and transition moments for a few specific bands. 

However, because these factors are not available for higher members in 

a progression, and because we would not expect these factors to alter 

the gross appearance of the spectrum due to· the many overlapping 

bands, we. assume that we can factorize out the rotational line 

strengths as simple Honl-London factors in the same way as for 

diatomic molecules. Thus the rotational fine structure is computed 

exactly as before using the same coding. Also, when the two end 

nuclei are identical, the effect of nuclear spin on the statistical 

weights of the rotational levels) hence line strengths, is identical 

with that in diatomic molecules, so the same procedure is used. For 

. \ 
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normal CO Z' as the two oxygen atoms have zero nuclear spin, alternate 

rotational lines are missing. 

In computing a given progression of ~vl' ~vZ and Av3 , bands are 

computed by varying vi, v2 and vi and allowed values of 1" and l' in 

nested loops, climbing up the ladders of vibrational levels and 

cutting off at dissociation, turnover or when bands become too weak. 

This is repeated for any possible difference bands by taking negative 

values of .1v1 , .1vZ or Llv3 • 
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5.3 Vibration-Rotation and Pure Rotation Spectra of Non-Linear 

Molecules 

We consider here in general non-linear triatomic molecules whose 

three principal moments of inertia are different, and are thus 

asymmetric tops with point groups C2 and C • v s As with the previous 

section, in practice our discussion deals with one specific molecule, 

in this case H20, which is normally expected to be the most abundant 

by far of all triatomic molecules, in view of its stability and the 

abundances of hydrogen and oxygen. 

For bent molecules, there is no problem with any vibronic quantum 

numbers as all three modes of vibration are non-degenerate, hence 

(5.2.3) can be used with i = 1, 2 and 3 to obtain the intensities in 

the progressions. Although the vibrational transitions are easier to 

deal with in these molecules, this is more than outweighed by the very 

complicated rotational fine structure of bands that must be computed 

by making appropriate approximations. Accordingly, we deal below 

entirely with the rotational fine structure of vibration-rotation and 

pure rotation bands. 

For the oblate or prolate symmetric top molecule, each value of J 

has J+1 sublevels specified by the quantum number K which takes values 

K = 0,1,2 ••• J, such that all sublevels with K > 0 are doubly 

degenerate making 2J+1 sublevels in all. If the molecule is now made 

into an asymmetric top, this degeneracy is removed and each value of J 
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has 2J+1 different energy sublevels in addition to the ever present 

2J+1 statistical weight. Except for a few special cases, the general 

evaluation of the rotational term values for each of the 2J+1 

sublevels of J is very involved, see Herzberg (30), Wang (90) and King 

et ale (91), and likewise for the rotational line strengths, see Cross 

et ale (92) and Wacker and Pratto (93) who both give tabulations of 

line strengths. Because of this complexity and the expense in 

computer time of having to process millions of spectral lines, we have 

to resort to approximate means of calculation. 

The 2J+1 degree secular determinant whose roots give the required 

sublevel energies, breaks down into several algebraic equations whose 

degrees increase with J; for the smaller values of J, these equations 

are linear or quadratic and can be solved explicitly. Derived from 

Herzberg (30), these solutions are given below, where F(J~) is the 

rotational term value in 
-1 

em of the 1; sublevel of J with 

~ = -J,-J+l ••• J-l,J in order of increasing energy; 'l: being an index 

not a quantum number. 

(5.3.1) 

F(l_l) B + C 

F(1 0 ) A + C (5.3.2) 

F(l+l) A + B 

F(2_2) = 2A + 2B + 2C - (2A-B-C)(1+3b2 )1/2 

F(2_1 ) A+ B + 4C 

F(20) A+ 4B + C (5.3.3) 



- 209 -

F(2+l ) = 4A + B + C 

F(2+2) = 2A + 2B + 2C + (2A-B-C) (1+3b2)1/2 

F(3_3) 2A + sB + sC - (2A-B-C) (1+lsb2)1/2 

F(3_2) SA + 2B + sC - (2A-B-C) (4_6b+6b2)1/2 

F(3_l ) SA + sB + 2C - (2A-B-C) (4+6b+6b2)1/2 

F(3 0) 4A + 4B + 4C (5.3.4) 

F(3+l ) 2A + sB + sC + (2A-B-C) (1+lsb2)1/2 

F(3+2) SA + 2B + sC + (2A-B-C) (4_6b+6b2)1/2 

F(3+3) SA + sB + 2C + (2A-B-C) (4+6b+6b2)1/2 

F(4_4) 4A + 4B + 32C - * *2 7(A-B)b (l+b /4)/3 - F(4_3) 

F(4_3) SA + sB + 10C - (2A-B-C) (4-l0b+22b2)1/2 

F(4_2) = SA + lOB + sC - (2A-B-C) (4+l0b+22b2)1/2 

F(4_l ) lOA + sB + sC - (2A-B-C) (9+7b2)1/2 

F(40) 20A + 20B + 20C - F(4·_4) - F(4+4) (5.3.5) 

F(4+l ) SA + sB + 10C + (2A-B-C) (4-l0b+22b2)1/2 

F(4+2) = SA + lOB + sC + (2A-B-C) (4+l0b+22b2)1/2 

F(4+3) = lOA + sB + sC + (2A-B-C) (9+7b2)1/2 

F(4+4) = 32A + 4B + 4C - 7(B-C)b(1+b
2
/4)/3 - F(4+3) 

where: b = (C-B)/(2A-B-C) and * b = (B-A)/(2C-A-B) (5.3.6) 

All but F(4_4)' F(40 ) and F(4+4) are exact; however, although the 

latter three can only be obtained exactly by numerically solving a 

cubic equation, they can be obtained to a good approximation given 

F(4_3) and F(4+3). The approximate means of the F(4_4),F(4_3) pair 

and the F(4+4),F(4+3) pair are obtained from Heeke's (94) equations, 
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from which we obtain F(4_4) and F(4+4)' hence F(40 ) follows from 

Hecke's sum rule. 

For J = 5, only the sublevels for which ~= +2 can be solved 

explicitly, and for J ~ 6 no further analytic solutions exist, as all 

the algebraic equations from the determinant are cubic or higher in 

degree. Consequently, in order to calculate the sublevels for J 45, 

we need to resort to approximate means. 

In common with other workers, in order to calculate the 

approximate energy levels and line strengths, we have to associate 

each sublevel t to the K quantum number of either the corresponding 

prolate or oblate symmetric top as the situation demands. Thus let K 

and K 
c be the corresponding prolate and oblate notional quantum 

a 

numbers respectively, with the angular momentum taken accordingly 

about the A and B-axes. The correspondence between~, n, K and K is 
a c 

indicated here for J = 5: 

Table (5.1) of Rotational Sublevels of Asymmetric Top with J 5 

~ -5 -4 -3 -2 -1 

n 0 1 234 

K 0 1 1 2 2 
a 

K 5 5 4 4 3 
c 

o +1 +2 +3 +4 +5 

5 6 7 8 9 10 

3 3 4 4 5 5 

3 2 2 1 1 0 

where n is an additional index such that n 

n="r+J 

O,1,2 ..• 2J with: 

(5.3.7) 



211 

and more generally: 

K is the nearest integer ~ (J+t)/2 a 

K is the nearest integer 4 (J-~)/2 c 

r 
when J+K +K is even a c 

K +K a c 

J+1, when J+K +K is odd 
a c 

K K T a c 

(5.3.8) 

(5.3.9) 

Even though at best only either K or K can be a good quantum 
a c 

number, the symmetry properties of both are preserved rigorously, such 

that we have + for K even and for K odd, hence the selection rules, 

see Herzberg (30) and further in this section. 

Except for the smallest values of J, whose sublevels we can 

compute exactly anyway, it is seen than in. an energy level diagram for 

an asymmetric top with given J, the sublevels in the upper part of the 

diagram tend to pair up such that we have ('r=J ,J---1) , 

(~=J-2,J-3) ••• and likewise in the lower part of the diagram giving 

(r=-j , -J+1)? (~=-J+2,-J+3) ••• with a small odd number of unpaired 

sublevels near the middle. We can approximate the upper pairs by 

prolate sublevels with K being a good quantum number, 
a 

and the lower 

pairs being oblate sublevels with Kc being a good quantum number, with 

a simple interpolation for the odd sublevels in the middle that are 

not satisfactorily represented by either the prolate or oblate 

approximations, by using the method of Badger and Zumwalt (95). 
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If we write: 

BJ(J+1) (5.3.10) 

then for sublevels with F(J t ) > FB(J) can be approximated by the 

prolate symmetric top: 

F (:5) K~) :: B J (J-+ 1)[1 - f (S" - 3iC)( 1+ K)]+ {3 K}f (11-14K Hf) 
'F (3 - i<) .. ~ (3 _ K) ( 5 .3.11) 

where F(J,K ) is the mean term value of the pair of sublevels: 
a 

(5.3.12) 

For sublevels with F(Jr ) < FB(J), we can use the approximation for the 

oblate symmetric top: 

. r f (5" .f 3K){ f t- i"l) 1 12· < (;'} t I~ K. .;- K~) r- (J) tc c) = B -J CJ + 1) _ 1 + - lJ K P ( :? (~ + l() C ( ~ (:), + k) 5.3.13) 

where F(J,K ) is the mean term value of the pair of sublevels: 
c 

~= J-2K J-2K +1 
c' c 

and where: 

P = (A-C)/B and K. = (2B-A-C)/(A-·C) 

(5.3.14) 

(5.3.15) 

with K being the asymmetry parameter, such that for the prolate 
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symmetric top K = -1, the most asymmetric top K o and the oblate 

sy~metric top K = 1. 

Thus in computing these sublevels, we start from say the top with 

K = J and compute pairs of a sublevels dowmvards with decreasing K 
a 

until we leave the valid prolate region, then repeat from the bottom 

upwards with K = J 
c ' 

calculating the oblate pairs of sublevels \vi th 

decreasing K until we leave the valid oblate region. 
c 

There are then 

an odd number of sublevels left over in the intermediate region, which 

for simplicity are put equally spaced between the lowest and highest 

oblate pairs of sublevels. 

Most sublevels are fairly well represented by prolate or oblate 

pairs with a small intermediate region, and as J increases, this 

pairing improves for sublevels well away from the intermediate 

region. Also, if we consider a smooth transition from a prolate to an 

oblate symmetric top, the number of prolate pairs decreases as the 

number of oblate pairs increases, with the intermediate region moving 

up across the diagram, and with any individual sublevels changing 

rapidly from having prolate to oblate character as the intermediate 

region passes through. For the most asymmetric top, the intermediate 

region is at the centre at F(J
O
)' with all the sublevels above being a 

mirror image of those below. 

In computing the energy levels by the method of Badger and 

Zumwalt (95), of the 2J+1 sublevels for a given value of J, there will 

be at least one odd sublevel leaving at most J pairs. As the 

splitting within the pairs of sublevels cannot be computed by any 
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convenient method, it follows that on neglecting this splitting, 

artificial degeneracy is introduced, and in many cases there will be 

pairs of spectral lines that overlap exactly, which may cause 

systematic errors in computing the opacity. As with)l-doubling, we 

must resolv.e this splitting artificially. 

For a given value of J, let F+(J) be the highest pair of 

sublevels F(JJ) and F(JJ_l)' given by the prolate approximation, and 

F-(J) be the lowest pair of sublevels F(J_J) and F(J_J+l)' given by 

the oblate approximation, all in cm-1 • Then if we let there be J 

pairs, even if the actual number of pairs by the above method is less, 

then the average spacing between any pair is given by: 

(5.3.16) 

In the actual pairs produced by Badger and Zumwalt's method, we want 

to split the sublevels by an amount that is small compared to (5.3.16) 

but large enough to separate most spectral lines for realistic Doppler 

widths. However, if we apply the same splitting to all pairs 

computed, there can still be many transitions that cause spectral 

lines to overlap artificially. Thus we want the splitting to vary in 

a simple way that corresponds qualitatively to the actual case, 

i.e. least splitting for the highest and lowest pairs of sublevels, 

with the splitting increasing until we reach the intermediate region 

where neither the prolate nor oblate approximations are valid. The. 

simplest expression that we use is: 

.6 F ::: R[ F ~(J) -- F -(::1)] 

-:n~ 

(5.3.17) 
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where DF is half the required splitting, K is K or K depending on 
a c 

whether we are in the prolate or oblate region respectively, and k is 

a constant. Thus in computing the term values of a pair from (5.3.11) 

or (5.3.13), ~F is the amount the upper member must be shifted up and 

the lower member shifted down. It is found that k = 0.01 is an 

optimum value for H20, as the splitting of the pairs is generally less 

than about 1cm-1 • 

Having obtained at least approximately the energy levels of the 

asymmetric top, we have to find the selection rules, hence calculate 

the approximate line strengths. The selection rules for J are as 

always ~J = 0,±1 with J = ° -+7 J = 0, but the selection rules for Y, 

which is not a quantum number, depend on the symmetry of the sublevels 

and the type of band considered, as discussed below. See also 

Herzberg (30) for more details. 

As stated earlier, the symmetry of a sublevel can be obtained 

from the notional quantum numbers of the corresponding prolate and 

oblate symmetric tops. The rotational eigenfunction may either remain 

unchanged or change sign with respect to rotation about the A-axis, 

the axis of least moment of inertia, with behaviour + or 

respectively. The eigenfunction may also either remain unchanged or 

change sign with respect to rotation about the B-axis, the axis of 

intermediate moment of inertia, and likewise for the C-axis, the axis 

of greatest moment of inertia. Because rotation about any two axes in 

succession is equivalent to rotation about the third, we need consider 

only two, by convention the C and A-axes in that order. If the 
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eigenfunction has a "+" character for the C-axis, K is even, 
c 

otherwise K is odd, and likewise fot K with the A-axis. Thus a 
c a 

sublevel ·with K even and K odd has a symmetry of +-. Thus, A-type 
c a 

bands occur when the permanent dipole moment in pure rotation or the 

vibrational transitional moment in vibration-rotation is aligned along 

the A-axis, with only the transitions between the sublevels with the 

symmetries ++ ~-7 -+ and +- ~-7 -- allowed. B-type bands occur when 

the dipole moment or vibrational transition moment, as above, is 

aligned along the B-axis, with only the transitions ++ ~-7 and 

+- ~-7 -+ being allowed. Finally, C-type bands occur then the dipole 

moment or vibrational transition moment is aligned along the C-axis, 

with only the transitions ++ ~-7 +- and -+ ~-7 -- being allowed. 

For polyatomic molecules in general, the dipole moment or 

vibrational transition moment need not necessarily be aligned along 

one of the principal moments of inertia, and can thus have non-zero 

components along any two or all three axes, giving in relation to 

these components two or three types of bands superimposed on one 

another. However, for triatomic molecules, C-type bands cannot occur 

as the dipole moment or vibrational transition moment must be in the 

plane defined by the three atoms containing the A and B-axes. For 

triatomic molecules with the C
2v 

point group like H20, we will have 

either pure A or B-type bands, but for the C point group, the dipole 
s 

moment or vibrational transition moment will in general have 

components along both A and B-axes giving both types of bands 

superimposed like HOD. By superimposed bands, we mean here bands due 

to the same vibrational and rotational energy levels but different 

sublevels from the selection rules above, whereas overlapping bands 
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are different bands due to different vibrational and rotational energy 

levels whose frequencies just happen to occur in about the same part 

of the spectrum. 

Cross et ale (92) expresses the above mentioned selection rules 

in the form of a table for the three types of bands, however, we can 

express this table in the compressed form of table (5.2). 

Table (5.2) of Rotational Selection Rules of As)~metric Top 

0 1 2 3 4 

0 1 2 3 4 5 6 7 8 

0 0 W Y Z X W Y Z X W 

1 Y W X Z Y W X Z Y 

1 2 z X W Y Z X W Y Z 

3 X z y w X Z Y W X 

2 4 W Y Z X W Y Z X W 

5 Y W X Z Y W X Z Y 

3 6 z X W Y Z X W Y Z 

7 X z y w X Z Y W X 

4 8 W Y Z X W Y Z X W 

9 y w X Z Y W X Z Y 

5 10 Z X W Y Z X W Y Z 

J
2 n2 

Where for: 

PiR-Branches, J 2= J 1+1 with J 1= smaller of J",J', 

J
2
= larger of J",J', 

5 J l 

9 10 n
l 

Y Z 

W X 

X W 

Z Y 

Y Z 

W X 

X W 

Z Y 

Y Z 

W X 

X W 
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Q-Branches, J 2= J 1 and for the sake of argument taking J
1 

as the 

initial level. 

Then n1= 0,1,2 ••• 2J1 , n2= 0,1,2 ••• 2J2 and from the definition (5.3.7), 

~1= n1-J1 and ~2= n2-J2 • 

For a given value of J 1 and J 2 , all possible transitions of 

sublevels are bounded in columns by n1= 2J
1 

and rows by n
2

= 2J
2

, and 

the allowed transitions for the three types of bands are indicated as 

follows: 

W A-Type Band, P/R-Branches 

X A-Type Band, Q-Branch 

{ B-Type Band, P/R-Branches 
y 

C-Type Band, Q-Branch 

{ B-Type Band, Q-Branch 
Z 

C-Type Band, P/R-Branches 

It can be seen that the whole table is a repetition of a basic 4X4 

matrix. 

It can be shown that for one of the three types of bands with J 

being the initial level, there are for P, Q and R-branches 

respectively J2, J(J+1) and (J+l)2 possible transitions, giving a 

total of 3J2+3J+1 for all three branches for a given value of J, which 

on summing this over the many initial values of J in a typical band, 

will give many tens or hundreds of thousands of possible spectral 

lines. HOvlever, most of these lines are very weak and even their 
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approximate strengths cannot be obtained by our method. Because of 

the selec tion rules fo r the symme tric top, A K = O,:t 1, those 

transitions for which either K or K or both satisfy these rules, 
a c 

give rise to the strong branches whose intensities we can find, at 

least approximately, and are within a few elements on either side of 

the main diagonal in the above table. 

As stated by Hinkle and Barnes (96), the most important branches 

are those for which both IdK I and IAK I are ~ 1, followed by the 
at c 

"semiforbidden" branches for which one of these is > 1, with finally 

the weak "forbidden" branches where both are> 1 that are the branches 

that are neglected. 

Accordingly, we can write the subbranches that can be handled 

using the notation of Cross et al.(92), where for example P2 1 means , 
ilJ = -1, AK = -2 and ilK = 1, see table (5.3). 

a c 
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Table (5.3) of Subbranches Considered of Asymmetric Top 

A-Type Bands B-Type Bands 

Subbranch /.In Lit: Subbranch L}n Llt 

P2 1 -4 -3 P3 1 -5 -4 0 , , 

Po I 0 1 PI 1 -3 -2 e , , 
P- -1,1 -1 0 0 

Q2 1 -3 -3 0 P1 I 1 2 e , , 

QO 1 -1 -1 e P1 3 3 4 0 , , 

Qo I 1 1 0 , 

Q2 I 3 3 e Qy1 -2 -2 , , 

Q1 I 2 2 , 

RO 1 0 -1 , 

R2 I 4 3 RI 3 -3 -4 e , , 

RI 1 -1 -2 0 , 

R1 1 1 0 e , 

R1 I 3 2 0 , 

R3 I 5 4 e , 

Where e or 0 means that the transition is only possible if the initial 

value of n is even or odd respectively, otherwise the transition is 

always possible provided both initial and final states exist; this 

additional notation is in fact the same as that of Cross et a1. (92). 
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For small values of J for which Badger and Zumwalt's (95) method 

is invalid as the sublevels do not pair up properly, but are obtained 

from (5.3.1-5), we have to find the relative intensities by 

interpolating from tables; those by Wacker and Pratto (93) are very 

extensive, and it is considered sufficient to use the earlier ones of 

Cross et al. (92). 

Accordingly, we determine the mean of the asymmetry parameters 1<." 

and K' from (5.3.15) for the two vibrational levels, then use linear 

interpolation to obtain an approximate relative rotational line 

strength for the transition considered. The tabulated intensities are 

the squares of the direction-cosine matrix elements, normalized such 

that the sum of all (say) upward transitions from a given r sublevel 

is 2J+1. In the process of interpolation, and as any "forbidden" 

branches are ignored, the sum rule will not in general be preserved, 

so we have to renormalize the line strengths after having calculated 

all possible transitions (maximum of seven) from a given sublevel. 

This renormalization process ensures that all the line strengths are 

accounted for, even if the strengths are not absolutely correctly 

distributed. 

The number of subbranches \ve need actually consider j_s very much 

reduced by the fact that all P-subbranches are considered as reversed 

R-subbranches, and half the Q-subbranches are reverses of the other 

half. Additionally, for B-type bands, many subbranches are inverses 

of other subbranches, obtained by changing the sign of K. Thus for 

A-type bands, ,.;re need actually only handle QO I' Q2 l' RO 1 and R2 l' , " , 
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and for B-type bands, Q1 I' R1 l' R1 I and R3 I' , " , 

For safety, the above method is used up to when the smaller of J' 

and J" is ~ 5, even though the pairing is fairly good by then. For 

larger values of J, the rotational line strengths are calculated 

according to three possible situations: 

(i) • If F(J"'C,,) and F(J'_,) are well represented by the 
" 

prolate symmetric top, the relative intensity is calculated 

from the appropriate Hon1-London factor (4.2.11) or (4.2.12) 

with K in place of A. If 1.1 K I > 1 the transition has zero a a 

intensity. 

(ii). If F(J"t"n) and F(J'1:"') are well represented by the 

oblate symmetric top, the same procedure is used as above 

but with K • 
c 

(iii). For any other possibility, such as one sublevel 

having good oblate character with the other having prolate 

character, or a transition involving one of the intermediate 

sublevels, the relative strength is calculated from the mean 

of (i) and ( ii) . 

Unless the asymmetry parameter ~ is very much different in the 

two states, because most sublevels are well paired for reasonably 

large values of J, and Inri ~ 4 for our purposes, most transitions 

>vil1 fit into cases (i) or (ii) which are reasonably fair 

approximations. Unfortunately, case (iii) is a very crude 
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approximation, as the intensities vary as a very complicated and often 

non-monotonic function of K, thus the intensities so calculated are as 

likely to be gross overestimates as underestimates. Accordingly, 

within the framework of our level of sophistication, the treatment for 

case (iii) transitions is not much better than a guess. 

As before, all possible transitions that we are considering, are 

calculated first from a given "t" sublevel so that the strengths are 

renormalized such that their sum is 2J+1. Within the approximations 

made, we account for all the intensity in the band, though we have 

neglected the weak "forbidden" branches. Although individual line 

positions and strengths are approximate, hopefully the gross 

properties of VR bands of asymmetric top molecules can be reproduced. 

The total VR band strengths are computed in exactly the same way 

as for CO2 in the previous section, using the data from McClatchey et 

al. (88), except that the Honl-London factor 5J 'J" in (5.2.9) is 

"t'r" 
replaced by 5

J
'J'" the approximate rotational matrix element squared 

computed by one of the above methods, and F (J") 
v 

is replaced by 

Fv(J",C'.). Also, there is no vibronic quantum number, so the relative 

vibrational matrix element squared is obtained from (5.2.3) with 

i = 1, 2 and 3, and the data given by (88) does not have the 

complication of Fermi resonances included, though of course there 

still will be Fermi resonances. 
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For pure rotational bands, exactly the same method is used as 

described, except that the vibrational quantum numbers are the same in 

the two levels, hence the line positions are due only to the 

differences in the rotational term values of the two levels, the 

rotational constants and asymmetry parameters are the same, and only 

half the lines are produced, as the other half are in emission. 

However, (5.2.9) is replaced by: 

s '&1T3~ fl; 
3~ , 

t: 1'('1 _ [C.V 1- F v (J 'Y") 1 k~/J~T 
SJ'S" L 

Q{T) 
(5.3.18) 

in units of cm2 /sec/isotopic molecule, where ~o is the permanent 

dipole moment of the ground vibrational level. Strictly speaking,jU 

is dependent on the vibrational quantum numbers, such that (5.3.18) is 

incorrect for excited vibrational levels. However, the dependence of 

}£on the vibrational quantum numbers could not be found in the 

literature, but jL would be expected to change relatively slowly with 

vibrations, making this error relatively small. Indeed, as the 

strongest bands come from the lower vibrational levels due to the 

Boltzmann factor, the overall effect on the spectra should be small. 

By Ludwig et al. (97), Po for H20 is 1.87 Debye. 

For any molecule of point group C2v ' because of the identical 

nuclei. there will be an additional factor to the statistical weight 

due to nuclear spin. Using a similar notation as for the diatomic 

molecules, vIe can set out the following rules: 
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u l = +1 for symmetric electronic states', 

u l = -1 for antisymmetric electronic states, 

u 2= +1 for ~-integral, 

U2=-1 for I-l/2-integral, 

u 3= +1 for v3 even (Al-state), 

u3= -1 for v3 odd (Bl-state), 

u = +1 for K or T even as appropriate, 4 a 

u = -1 for K or ~ odd as appropriate. 4 a 

Then as for diatomic molecules, 

(4.2.15) to obtain the nuclear spin statistical weight factor gI' 

which is included in the formula for calculating the line strength. 

For the ground electronic state of H
2
0, 

product u3u4= ±l determines whether the rotational sublevel in 

question has an overall symmetry of species A or B respectively. When 

the axis (axis of symmetry) coincides ",ith the A-axis, 

determines the sign of u
4

' in the more usual situation, 

K a 

the C
2 

axis coincides with the B-axis, with L determining the sign of 

u 4 ' see the appendices. 

Because there are many more lines to compute in the bands of 

asymmetric top molecules than linear molecules, considerably more 

computer time ha.s to be used to calculate individual bands, and this 

becomes prohibitive ,,,hen a large number of bands has to be handled. 
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Accordingly, rather than calculating each band individually, we 

calculate the frequencies of the band origins and the total band 

strengths, including the Boltzmann factor, in a given progression, 

then sort the bands into the order of decreasing band strength. When 

each rotational line is computed for the first, and because of the 

Boltzmann factor, the strongest band in a progression, images of this 

line shifted and weaker due to the higher members, are immediately 

obtained without having to recalculate and renormalize each line. 

The rotational constants A, Band C used in this section which 

are dependent on the vibrational quantum numbers, should be given as 

A[v]' B[v] and C[v]' obtained from: 

see Herzberg (30), 

0<. 4 (V~ -4- 1.) 
3 > ol 

.13(11 I) 
0\3 v.3-t-:i 

(5.3.19) 

A 
where 0( 1 etc. are coupling constants and A 

e 

etc. are the rotational constants at equilibrium, as with the diatomic 

molecules. Thus rather than using the appropriate values of 

etc. for both vibrational levels in a given band, computed from 

(5.3.19), ,-le use those constants applicable to the first member of a 

progression; so in the progression beginning with the band 

001 ~-- 000, the rotational constants for this band are used 

throughout the progression. As the turnovers in the bands are due to 

the differences in the constants between the two vibrational levels, 

and as these differences do not change much in general in a 

progression, this would seem a r.easonable approximation. Thus, with 
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this method, all higher members of a progression are just images of 

the first member, but shifted in frequency and intensity, and the 

method is very much more efficient in computer time, and more than 

offsets the approximation of having to assume the same set of 

rotational constants for all bands in a given progression. 

The general theory on the asymmetric top molecule can also be 

found in Dennison (98). As with CO
2

, detailed work has been carried 

out on a number of specific bands of H
2
0, this time mostly by Toth, 

Flaud and Camy-Peyret, see for example Camy-Peyret et al. (99) and 

Toth et al. (100); because we have to handle so many bands, their 

detailed calculations are considered to be beyond the scope of this 

work. One can also refer to Luh and Lie (101) for theoretical matrix 

elements and Ludwig et al. (97) for pure rotational spectra. 

In the appendices are reproduced the relevant parts of the tables 

that we use from Cross et al. (92) of the relative rotational line 

strengths of asymmetric top molecules, 

diagram from Herzberg (30). 

and also an energy level 
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5.4 Equilateral Triangle Molecules 

As mentioned in sections 2.10 and 5.1, we must consider briefly 

in principle triatomic molecules with an equilateral triangular 

structure, i.e. point group D
3h

, the theory of which is covered in 

detail in Herzberg (30). 

As H; and its isotopic forms are amongst the fe,v examples of this 

type of molecule known so far; for which there is apparently 

insufficient spectroscopic data for computing a spectrum, together 

with expected low abundances in most cases, it is considered beyond 

the scope of this work to attempt a detailed treatment. For very 

+ + recent (1980) work on H3 and D
3

, see Oka (102), Shy et al. (103) and 

Carney and Porter (104). 

The + v
1 

symmetric "breathing" vibrational mode of H3 is inactive 

in the infrared due to symmetry, hence all VR bands are due to 

transitions involving the doubly degenerate v
2 

vibrational mode. As 

H; is a symmetric top, for fixed J, k = -J,-J+1 ••• J-1,J with 2J levels 

paired in energy for each K = Ikl with k # 0, which for an oblate top 

are ordered in decreasing energy for increasing K, see section 5.3. 

Because of the degeneracy of the v
2 mode, there is an additional 

vibronic quantum number 1, with which there is associated angular 

momentum in the same way as for linear triatomic molecules. The 1 

used by Oka (102) includes sign, 

that I f I gives the quantum number in the same form ,.;:: use for linear 
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triatomic molecules, and levels that differ only in the sign of l are 

paired. The form of the equation for the unperturbed vibrational term 

values is exactly the same as for linear triatomic molecules, except 

for the absence of terms involving v
3

• 

In addition to the selection rules on K and 1 as discussed in 

earlier sections, by Oka (102) we have the rule ~(k-l) = 0, and a 

further complication for H; are the i-resonance dyads such that the 

two levels (J,k,L) and (J,k±2,1±2) have the same k-l and are 

completely mixed. Due to identical nuclei, the rotational fine 

structure will be affected by nuclear spin, as is the case for any D3h 

molecule. 

If we consider H
2

D+ which is of the lower symmetry C
2v

' or in 

principle HDT+ which has the lowest symmetry C, clearly we have an 
s 

asymmetric top with the degeneracy in the v
2 

vibrational mode removed, 

giving us three different vibrational modes. The spectrum of 

will thus be more complicated, all three vibrational modes will be 

active in the infrared, and like H
2

0 there will be A-type and B-type 

bands. HDT+ would give an even more complicated spectrum as the 

transition moment for any vibrational transition would not in general 

be aligned along any principal moment of inertia, giving superimposed 

AB-type bands. 

Though H; is stable in an equilateral triangular configuration, 

neutral H3 is apparently not so in its ground state if stable, see 

Hirschfelder (40), with a linear configuration having a lower energy, 

so any stable equilateral triangular state that exists, would be an 
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excited state. 

Finally, + although H3 ~ay not be an important opacity source in 

the T-f domain of our interest, it appears to be important in the 

chemistry o~ the early stages of collapse of interstellar clouds, see 

for example the very recent paper (1981) by Adams and Smith (105). 
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6 METHODS OF COHPUTING OPACITIES DUE TO HANY LINES 

6.1 Introduction 

In the previous two chapters, the discussion is based on how 

molecular lines are computed without saying anything about how these 

lines affect the opacity. It is the purpose of this chapter to 

discuss the various methods that can be used to compute opacities when 

large numbers of spectral lines are present. Accordingly, this is the 

most important chapter in this thesis. 

Three separate methods are discussed: the Independent Line Hethod 

(ILH); the Line Smear Hethod (LSH); and the Opacity Sampling Hethod 

(OSM) with a fine grid. Each has its own advantages and disadvantages 

in terms of computer time, memory and accuracy, but all are based on 

splitting the spectrum up into a large number of bins into which 

individual lines fall, whose frequencies, strengths and widths are 

computed. 

In principle, the RMO with molecular lines can be obtained by 

having a very fine grid on which first the continuum, then all the 

spectral lines are computed. However, because typical line widths are 

very narrow, e.g. the Doppler width of CO at 2000
0

K is 
-6 6.0SX10 u, 

where again u = hv/kT our dimensionless frequency unit, several 

million grid points would be required to cover the spectrum. Until 

recently, computing resources were quite inadequate even to consider 



- 233 -

this method, however, with the acquisition of a VAX 11/780 computer by 

the University of st. Andrevls in 1980, a restricted form of this 

method in the shape of the OSM can be used, due to the large virtual 

memory of the computer; the OSM being discussed later. 

In computing the opacity by the various methods, the spectrum is 

divided up in four different ways which have to be compatible. We 

have a uniform coarse grid from u = 0 to say u = 20 of a few thousand 

grid points with which the continuum, as discussed in chapter 3, is 

computed. The spectrum is also divided into regions, with each region 

being of width ~u = 1, so we have region 1 with u o to 1, region 2 

with u = 1 to 2 etc., there being 20 such regions, and there must be 

an exact number of coarse grid intervals in each region, with coarse 

grid points at u = 0,1,2 etc. as well as intermediate places. The 

idea of having these different regions is to enable us to specify 

different bin sizes and fine grid intervals depending on the line 

widths in different parts of the spectrum, and blank out if necessary 

parts of the spectrum where we may wish to ignore lines and only leave 

the continuum. These regions also act as giant bins, with which we 

can have opacities in sections of the spectrum. 

When bins are specified in a region, the number of bins must be 

equal to or an exact multiple of the number of coarse grid intervals, 

so that each coarse grid point is on the boundary between two bins, 

making the interpolation of the continuum in the bins much easier. If 

a fine grid is also specified for the OSM, then the number of fine 

grid intervals must be an even multiple of the number of bins in a 

region, so that we can apply Simpson's rule of integration for a fine 
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grid in each bin. In this case, there must be a fine grid point at 

each bin boundary and at least one in the middle. 

Thus if we have say 2001 coarse grid points across the whole 

spectrum, then we can consider how a particular region can be set up. 

In a specified region, say 2 with u = 1 to 2 inclusive, there will be 

101 coarse grid points including ones at u 1 and 2. Then we can 

have say 1000 bins, which is an exact multiple of 100, the number of 

coarse grid intervals, and 10,001 fine grid points, giving 10,000 fine 

grid intervals which is an even multiple of the number of bins, so 

that for each bin we have 10 fine grid intervals with a fine grid 

point at each end and shared by neighbouring bins, 

bin. 

and 9 across the 

Throughout this chapter for all methods of determining the BlI0, 

the line profiles are assumed to be purely Gaussian with widths 

dependent only on thermal broadening, turbulent velocity and line 

position, given by the expression: 

(6.1.1) 

where m is the molecular weight in amu and ~ is the turbulent velocity 

in km/sec. However, because the Lorentzian profile is easily handled 

analytically in the ILM, it is included in the next section for the 

sake of completeness. 
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6.2 The Independent Line Method 

The ve,ry narrowness of a spectral line that makes it such a 

problem to compute the contribution it makes to the RHO using a grid, 

is a positive asset using the 11M in uncongested parts of the 

spectrum. 

Let Upq 
and KPqbe the RHOs in the bin u 

c 1 
P to u = q of the 

continuum alone, and the continuum plus a single spectral line 

respectively, then the definitions are: 

(6.2.1) 

(6.2.2) 

Where W(u), nc(u) and Kl(U) are the weighting function, continuous 

opacity and line opacity respectively, with u being the line centre 
o 

located within the bin. 

Using the above definition, we can write: 

(6.2.3) 

As the line is narrow, it is reasonable to assume that W(u) and K (u) c 

are constant over the profile, hence they can be replaced by W(u ) and o 

j{ (u ) respectively. Hence (6.2.3) can be re-written as: 
c 0 
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(6.2.4) 

If the bin u = p to u = q is wide compared to a line width, and 

the line is located comfortably within the bin so that its wings are 

also included, then the integral in (6.2.4) can be taken over the 

limits u = 0 to u = oCJ , hence we can define: 

x 
::>0 

W{d o) J Keft<) k 
Kc. (d. p ) l1i {u.) + K:,fu.) 

o 

(6.2.5) 

so that (6.2.4) can conveniently be written as: 

-x (6.2.6) 

where X can be regarded as effectively a measure of the amount of flux 

in the bin removed by the spectral line. This definition can be 

applied even if the line is near the edge of the bin so that one of 

its wings spills over into a neighbouring bin; it just means we take 

all the contribution in one bin. The definition (6.2.5) can be 

integrated analytically for a pure Lorentzian profile and an analytic 

expression exists for a pure Gaussian profile. Unfortunately, no 

convenient approximation is known to exist for a general Voigt 

profile. It is this analytic treatment that enables the lines to be 

handled by the ILM. 
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The Lorentzian profile in dimensi'onless frequency units is: 

(6.2.7) 

where D~ is the Lorentzian full width at half maximum, and F(u) is 

the profile normalized such that: 

(6.2.8) 

Also let: 

(6.2.9) 

where the factor h/kT has to be included as we are working in 

dimensionless frequency units, such that if Kc(U) and ITI(u) are mass 

absorption coefficients 

2 cm /sec/gm. 

in 
2 cm /gm, s is the line 

After substituting (6.2.7) and (6.2.9) into 

simplifying, we get: 

x h S [lL<t. -<_. 

Using the fact that: 

strength in 

(6.2.5) and 

(6.2.10) 

(6.2.11) 
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(6.2.10) can be integrated to give: 

+- '),,_hs ] 
itT 

(6.2.12) 

If aL is defined as the ratio of the absorption in the centre of 

the Lorentzian profile alone, to the absorption of the continuum 

alone, then: 

'J.hs. 1 
Tf sa K.~J'<o) l1u ... 

(6.2.13) 

Then (6.2.12) simplifies to: 

x - 11 w[I1,p) lJ£.tl.. GtL. 

lllJU.,) /0 .... +" 
(6.2.14) 

Hence, it is immediately seen that in the weak line limit 

aL « 1, X 0(. ~ and in the strong line limit aL » 1, X o<..-ra:;., where 

the line becomes saturated, and increasing the line strength further, 

causes a correspondingly smaller increase in the P~O. Although the 

integral in (6.2.10) can be evaluated between the finite limits p and 

q, to correct for the effects of the wings if the bin is not wide 

enough, a rather cumbersome expression involving arctangents is 

obtained, but is generally of little practical use. 

In the rest of this discussion, we deal with the Gaussian 

profile, given by: 

F/£,L) (6.2.15) 
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or F Itt) (6.2.16) 

where (6.2.17) 

and F(u) is normalized to unity as before. Although (6.2.16) is more 

cumbersome, it is found more convenient to work with /.luG than cr. 

On substituting (6.2.9) and (6.2.16) into (6.2.5), we obtain: 

(6.2.18) 

If a
G 

is defined as the ratio of the absorption in the centre of 

the Gaussian profile alone, to the absorption of the continu.um alone, 

then: 

hS 1 
h T t<. J" () ) Ll iLc_ 

If we also make the substitutions 

~ ;r;::; (<< -U.,) and 

[It.t~ 

together with (6.2.19) into (6.2.18), we obtain: 

x 
00 

lJ (~<)) . a.&J h. '2. 

lic.(<<") CL£r + e?. 
-,;J) 

(6.2.19) 

(6.2.20) 

(6.2.21) 
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Unfortunately, there exists no simple analytic solution to the 

integral in (6.2.21). However, using the fact that: 

(6.2.22) 

is the complete Fermi-Dirac integral of order k, and can be expressed 

as functions involving rational Chebyshev Polynomials depending on k 

and the range of y, see Cody and Thacher (106), and also making the 

substitutions: 

and 

it can be shown that: 

o 

which on substituting into (6.2.21) gives: 

x W {4:;) LltA.& 
~jk~ k.o (a.~) 

(6.2.23) 

F-I/~ ( in c{~) 
:<d..6-

(6.2.24) 

(6.2.25) 

after allowing for a factor of two, as we are integrating over half 

the range, and the integrand in (6.2.21) is an even function. 

As a quick check, an approximate value for (6.2.25) can be found 

from the expression: 

Wi () 0) L.1 LA G-. 

jim'). It.o. (uo) 

aC,_ jilt la&- -(-:() 

(c.1c,. -{. 1 ) 

(6.2.26) 
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where the function A(a
C

) is a correction that does not differ much 

from unity, and is given by the integral: 

(6.2.27) 

such that A(O) = {liT/In 2 = 1.0645 which is a maximum, A(2.6) = 1, 

A(21.7) = 0.9802 which is a minimum, and thereafter as ac-~ 00, 

A(aC) -~ 1. As A(aC) has its maximum deviation from unity in the 

limit of vanishing line strength, it follows that this simple analytic 

approximation is for all practical purposes rarely less accurate than 

2%. 

From (6.2.26), it is easy to see how X varies with line strength, 

in the weak line limit a
C 

« 1, X 0<; a
C 

as is the case with the 

Lorentzian profile, but in the strong line limit with a
C 

» 1, 

XC>( /in a~, i.e. the line becomes effectively more completely 

saturated than in the Lorentzian case, and any further increase in 

strength results in a very small increase in the opacity. This is due 

to the fact that the absorption in the wings drops off much more 

rapidly than in the Lorentzian case. 

The ILM discussed so far is exact, provided that: (i) there is no 

more than one line in a bin, (ii) the weighting function and continuum 

are assumed to be constant over the profile, and (iii) edge effects 

are neglected, so a line centre that is just inside a bin is assumed 

to contribute all its opacity to that bin and none to the neighbouring 

bin. 
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Unless lines are very broad or lie close to an absorption edge, 

(ii) is a very good approximation, and provided bins are wide compared 

to line widths, (iii) is also a good approximation. The problem in 

the practical application of the ILM is that (i) is often not valid, 

and great care must be taken in the use of the ILM. 

Suppose there are n lines in the bin, each producing its own 

contribution X., then (6.2.6) can be written as: 
1 

1 
(6.2.28) 

where ~iqiS the RMO for n lines and continuum, provided the lines do 

not overlap, and: 

x. , 

where a... 
l 

it} (t{~) !J~: 

J.jinl Kc{Gf.:) 

'J./k< 1.1:. __ '1 __ 
11 hi Kc il-{ .. )L1vt, 

(6.2.29) 

(6.2.30) 

As soon as there is any overlap between lines, the ILM no longer 

gives the correct opacity, as the contribution to the RMO· of the 

overlapping lines is less than if the lines are separate, which is 

discussed more fully in the case of only two lines in the next 

section. Thus for n > 1, the ILM gives at best an upper bound to the 

opacity. If, however, ~L!.u.« w where w is the bin width, there is a 
-: 1 

1 

good chance the lines do not overlap and the ILH gives the correct 

opacity if any information about the line positions is retained. 
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However, it is assumed that no information about individual lines 

is retained, so after each line is put in the bin with its own value 

of X subtracted from the right hand side of (6.2.28), all information 

about its strength, width and frequency is lost, so nothing can be 

said about any overlap. Thus as the number of lines in a bin 

increases, the likelihood of overlap increases so the value of the RMO 

given by the ILM becomes more likely to be simply an upper bound. 

In very congested parts of the spectrum, where the number of 

lines in a bin can be large, the right hand side of (6.2.28) can 

easily be negative, which means that the ILM has broken down 

completely as there is a great deal of overlap, and we are trying to 

remove more flux from the bin than there actually is. In this case, 

all we can say is that the upper bound to the RMO is infinity. 

The ILM can be used to obtain a lower bound to the opacity when 

n > 1, by lumping all the lines together in the centre of the bin to 

obtain a single line whose strength is the sum of the strengths of all 

the individual lines, and whose width is the minimum of all the line 

widths. Thus the contribution given by the total overlap is expressed 

as: 

hi [a 0) [l«" f: I/~ (k £) 
?. j It '2 I~) ({.,) 

(6.2.31) 

where (6.2.32) 

and where W(u
o

) and Kc(u
o

) are the weighti.ng function and continuum 



respectively at the bin centre, 

widths. 

For the sum in (6.2.28), 
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and hu is the minimum of all profile 
o 

writing X to mean the contribution of 
s 

the lines if they are assumed to be separate, it can be seen that for 

n > 1: 

(6.2.33) 

where X is obtained by profiling the lines, then integrating 

numerically to obtain the actual value. 

If the spectrum is divided into m bins, then by the ILM we can 

write: 

_1 

Kme...:. 
(6.2.34) 

and: 

tl 1 -X;] - h~" -
>t.}o~ J 

(6.2.35) 

4 =1 

where the maximum function in (6.2.34) ensures zero is returned in 

breakdown cases. Because in practice there will always be parts of 

the spectrum where there is not heavy congestion, (6.2.34) ,viII alvlays 

give a finite value for Ii max 
For those bins with no lines, of 

course: 

X
..., 

J)" . 4 
-= X - 0 s· 

d 
(6.2.36) 



- 245 -

and for those with one line: 

- Xs. "/ 0 - d 
(6.2.37) 

If the whole spectrum has lines that are well separated, then by 

choosing bin sizes appropriately, the ILM can give good results. In 

practice, however, at places like band heads, there may be heavy 

congestion even if the the spectrum is othenvise uncluttered. 

It is also possible to treat the whole spectrum as one giant bin, 

so that in (6.2.28) p = 0 and q = 00, a finite value for the RHO will 

be obtained, avoiding the summation in (6.2.34). Unfortunately this 

suffers from loss of significance in a computer, all information about 

the variation of the opacity over the spectrum is lost, and no account 

is taken .lhen lines are so congested that the ILM breaks down in those 

parts of the spectrum. It can nevertheless be done as a simple check 

against the bin method. 

In applying the lUI on a computer, five arrays are needed to 

store five separate quantities associated with each bin, they are: (i) 

the total number of lines in that bin, (ii) the right hand side of 

(6.2.28), which is initialized with the reciprocal of the RHO of the 

continuum, then for every line, the contribution X. is subtracted off, 
1. 

(iii) the sum of the line strengths used in computing X at the end, 
o 

and also for obtaining an opacity by the LSM, discussed in section 

6.4, (iv) the minimum of all line widths used in finding 

the sum of all line widths, only used for the LS£.1. 

x 
o 

and (v) 
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We can also use the s~~ of the line strengths in (iii) to 

calculate the PMO in each bin. Then: 

+ (6.2.38) 

where Kiqis the PMO of the continuum and n lines in the bin p to q of 

width w = q-p and u is the frequency of the bin centre, and we assume 
o 

the continuum and Planck weighting function do not change over the 

bin. The total PMO for the whole spectrum is simply obtained by 

summing (6.2.38) over all bins. This is clearly much more efficient 

than computing the contribution to the PMO for every line individually 

when the lines are computed. 

As discussed in section 6.1, we can vary the bin sizes over the 

spectrum taking the best compromise, so that bins are wide compared to 

the Gaussian widths of the lines, but not too wide, using (6.1.1) with 

a typical value of m as a guide. 

Finally for interest, we can derive expressions for the 

equivalent infinite opacity rectangle (EIOR) and the equivalent equal 

area rectangle (EEAR) of a profile. The first is a rectangle of 

infinite opacity but whose contribution to the ElID is the same as the 

profile, where to be meaningful, the bin width must of course be wider 

than both. Because the rectangle has an infinite area, the PMO due to 

it is infinite, hence also for the whole spectrum, and is thus 

meaningless. However, this rectangle can be regarded in a sense as 

the "equivalent width" of the profile. The EEAR is that rectangle 



whose contribution to the RHO is not only the same as the profile, but 

whose area is also the same, thus the PMO is also the same as that of 

the profile. 

Let [lu"" be the full \\Tid th of the EIOR, then re-writing(6.2.3): 

Uut/JlAoO/>" <.{q f ~ttODh 

1 - i + J ,-/Iu) k - J IVlu)d.. (6.2.39) 
)<.t i<,- IL{ (fA.) + J",/l{) It (a) c-

&1..0 -ll~"", /:<. Uo - IltJ>oh., 

where again u is the dimensionless frequency at the bin centre, and 
o 

we assume that W(u) and K (u) are constants over the bin. As: 
c 

rLt{vl) :: 00 when I iA.. - u I <- ~ 

and: 

n< lu) -;: 0 when I u - at) I > 

it can at once be seen that: 

Wi /u&) LJ u oD 

It (tA,,) 
G 

Lluc.t> 
2. 

6 ..... >./) 

;t 

therefore from (6.2.6), we can see that: 

So for the Lorentzian profile, from (6.2.14) we can write: 

and for the Gaussian profile, from (6.2.25) \ve can write: 

(6.2.40) 

(6.2.41) 

(6.2.42) 

(6.2.43) 
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L\ a G- F_ '1
2 

(ir. t( t-) 
'J/k~ 

(6.2.44) 

with a
L 

and aG being defined in (6.2.13) and (6.2.19) respectively. 

If the sum of the EIORs over several profiles in a bin equals or 

exceeds the bin width, then this indicates that the ILM has broken 

down for that bin. 

If we now define Du as being the full width of the EEAR, and 
r 

replaceLiu oO by Llu in (6.2.39), then we can write: 
r 

K.lIU) - d when l iA.- c(,{ ~ L\«y 

~ 
and: 

Kj t ... ) ::: 0 when I U - Uo I > ,day 

~ 

where d is the height of the rectangle above the continuum. 

to be conserved: 

where s is the strength, see (6.2.9). On integration: 

(6.2.45) 

For area 

(6.2.46) 

(6.2.47) 

then on substituting for d, and as before from (6.2.6) after some 

algebra, we obtain the result: 

(6.2.48) 
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Then for the Lorentzian profile, using (6.2.14) again, we obtain: 

(6.2.49) 

and for the Gaussian profile, using (6.2.25) again, we obtain: 

(6.2.50) 

Note that the weighting function drops out of (6.2.43), (6.2.44), 

(6.2.49) and (6.2.50), and the continuum also out of the first two. 
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6.3 The Partial Overlap of Two Gaussian Profiles 

An analytic approximation is discussed below that enables the 

contribution to the RMO in a bin to be computed from two Gaussian 

profiles that have any degree of overlap, and represents an 

improvement to the ILM. 

In conducting numerical experiments by integrating overlapping 

Gaussian profiles, the remarkable result is found that as two strong 

profiles which are completely overlapping are separated, the 

contribution they make to the bin increases linearly over a large part 

of the range. This can be explained by the fact that the integrand in 

(6.2.18) for strong lines, has the form approaching that of a 

rectangle, with a flat top centred at u and very steep sides, 
o 

and 

represents, in a sense, a measure of the flux removed at each 

frequency point. With two partially overlapping profiles, the 

integrand is not additive, as in the region of overlap, the height is 

hardly altered and we effectively have a rectangle of greater width. 

As the two profiles are separated, the width hence area of the 

effective rectangle increases linearly until the profiles no longer 

overlap, giving two separate rectangles. 

In (6.2.18), substituting for a
G

) 

half the value at the maximum when u 

t tn ([1..(,- -t 'J..) 

.itt'). 

and finding u-u that gives o 

we can show that 

(6.3.1) 



- 251 -

,,,here t is the full width to half maximum of the integrand, which is 

effectively the width of the rectangle in the strong line limit. Thus 

if two profiles with Au1 , a 1 and 4u2 , a2 are centred respectively at 

u l and u2 , and if: 

v- - \t.-1., - fA,. \ /' t-, ... t-J. (6.3.2) 

;),. 

then the profiles do not overlap. Then defining: 

y -= (6.3.3) 

it can be seen from (6.2.26) that in the strong line limit, Y/t Z 1 

for a single profile. 

From the above, we can obtain simple approximate relationships 

that enable us to calculate the contribution from two overlapping 

profiles. Let Y be the contribution from the two profiles that are 
o 

completely overlapping, 

separate profiles and 

overlapping profiles. 

Y 
o 

Y /2 s 

Then for: 

Y /2 
s 

Y s 

Y 
p 

Then 

be the sum of the contributions for two 

be the contribution from two partially 

for the separations VI and v2 with 

(6.3.4) 
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v < v1 , Y Y 
P 0 

v1 < v < v2 , Y = v v1+ Yo (6.3.5) p 

v > v2 ' Y = Y 
P s 

so that: 

for v < v1 (6.3.6) 

which holds well in the strong line limit if Y is obtained by direct 
p 

numerical integration, with a long linear portion in the range 

v1< v < v2 ' with a rapid change to a horizontal slope in the vicinity 

Because Y > Y /2, v1 will always be non-zero. 
o s 

Because the integrand in (6.2.18) is not well represented by a 

rectangle for weak lines, the approximate rules given above are poor, 

but can still be applied as the contributions are much smaller. 
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Figure (6.1) represents the idealized behaviour of the function 

Yp(v) such that it increases linearly from v = vI to v = v2 ' where v2 

is on the line Y = 2v, otherwise Y (v) is constant. Figures (6.2) and 
p 

(6.3) represent the actual behaviour of Y (v) for a number of profiles p 

of different strengths in reduced units. In all cases, the bin width, 

the height of the continuum and the weighting function are taken as 

unity, hence the area under the continuum is also unity. All profile 

widths are taken as 1/20 of the bin width, and it is convenient to 

scale v and Y by dividing by this factor, so that the abscissae is in 

terms of the width of one of the profiles, the maximum separation of 

the profiles being here six times the width of one profile. 

In figure (6.2), curves A to I show the behaviour of the function 

for the case where both profiles are of equal strength for 

6 5 -2 respectively, where is the under s = s = 10 ,10 ••• 10 s. area 1 2 1 

profile i- It can be clearly seen that for strong lines, the 

behaviour of Y (v) is very close to the idealized case, with curvature 
p 

over only a small portion of the function in the vicinity of vI and 

v 2 ' with vI being very close to the Y-axis in this figure. For curves 

G, II and I, with sl = s = 2 1, 10-1 and 10-2 respectively, the curves 

level out progressively further to the right of the line Y = 2v and 

our approximation becomes progressively worse, but as the 

contributions become smaller and the differences between total overlap 

and non-overlap also become less, the errors remain small; the extreme 

case here being for curve I. So we can still apply the approximate 

method as stated above. 
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Figure (6.3) shows the effect of ~eeping one profile constant and 

progressively weakening the other. Curves A to G represent the case 

for and 
4 3 -2 

s2= 10 ,10 ••. 10 respectively. Again it is seen 

that for the lowest curves, the deviation from the idealized case is 

largest, but the errors will still be small as the differences between 

the total overlap and non-overlap cases are small, though the total 

contribution may be large, this being due to the dominant profile. In 

this family of curves, it is seen that as the differences in sl and s2 

increase, the distance of vI from the Y-axis increases, and the 

smaller is the effect of the weaker profile on the total overlap, this 

not being perceptible here for curves C to G. Other families of 

curves produced in a similar way with sl)" s2 will be similar but 

shifted, except that if both profiles are weak, the effect of the 

weaker of the two on the total contribution for total overlap will be 

greater, this causing a larger spread on the left hand side. '. 

Though Y can always be obtained from the two separate profiles, 
s 

Y can only be found directly if both profiles have the same width, 
a 

in which case: 

othen-Jise Y has to be found by an approximation. 
a 

(6.3.7) 
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If the two profiles have different widths, Liu1 and ~u2' then let 

let a. be defined from (6.2.30) with i = 1 or 2, but also 
1. 

define a2 for the narrower profile that is broadened to the same 

width as profile 1, such that: 

ill 
2 (6.3.8) 

so that a2 ~ a 2 and strictly speaking }{c in (6.2.30) and (6.3.8) is 

taken at the mid point between the two profiles. 

overlap with broadened line 2: 

Then Y is the total 
a 

(6.3.9) 

Y is restricted to the 
o 

range Y1< Y ~ Y , o a where Y1 is obtained from 

(6.3.3) for line 1, such that for 4u2 -7 0, Yo -~ Y1 , line 2 becomes a 

S function and causes no absorption and ~u2= !.l u1 , 

the same width as line 1. 

Now if we let: 

')L 

and: 

:= 

Y = Y , 
o a 

line 2 has 

(6.3.10) 

(6.3.11) 

such that both x and y can lie between 0 and 1 only, then for any line 
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strengths y f(x), such that by definition y o when x o and y 1 

when x = 1. 

If /j u2 is varied from 0 to .6 u1 

numerical integration over the profiles, 

and (6.3.11) respectively are obtained, 

and Y is obtained by direct 
o 

then x and y from (6.3.10) 

and on plotting for given 

strengths, it is seen that the curve is approximately of the form: 

y with p > 0 (6.3.12) 

where p should be a constant, given by: 

(6.3.13) 

for any point on the curve. In practice, it is found that p does vary 

over the curve, so the most representative value taken is that where 

the line y + x = 1 intersects the curve, the line being the principal 

diagonal in the unit square for the range co~ered by x and y. 
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Figure (6.4) illustrates this very well for 10 curves with the 

strengths in the same dimensionless units as for figures (6.2) and 

(6 3) Wl."th 10-3 10-2 106 
" s1= s2= , ••• , intersecting the main diagonal 

progressively from upper left to lower right. Most other families of 

curves produced by profiles of different strengths are found to behave 

in a similar way. If the contribution produced by two profiles of 

different widths and strengths is plotted as a function of their 

separation, a curve similar to one of those in figures (6.2) and (6.3) 

results. Moreover, if a family of curves is produced by keeping both 

profiles of fixed and equal strengths, but with various values of Li u
2

, 

withJ.1u2~ {lu
1

, the family is very similar to that in figure (6.3). 

We can tabulate p for the various values of the relative line 

strengths r
1 

and r 2, such that: 

(6.3.14) 

and: 

1'" 
'2 = (6.3.15) 

where r2 is the relative strength of the second line if broadened to 

that of the first line. 
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Table (6.1) of Overlap Parameters for Different Relative Line Strengths 

Log r; 

-2 -1 0 1 2 3 4 5 6 7 8 9 

Log r 1 

-2 0.032 0.14 0.46 0.78 0.89 0.93 0.95 0.96 0.97 0.97 0.98 0.98 

-1 0.046 0.15 0.48 0.81 0.93 0.96 0.98 0.99 0.99 1.00 1.00 1.00 

0 0.30 0.37 0.68 1.08 1.22 1.23 1.22 1.21 1.19 1.18 1.17 1.16 

1 2.14 2.22 2.30 2.57 2.64 2.41 2.17 2.00 1.87 1. 78 1. 70 1.64 

2 6.18 6.92 7.06 6.97 6.60 5.45 4.31 3.55 3.07 2.74 2.51 2.34 

3 13.09 12.22 12.53 12.52 11.36 8.67 6.41 5.03 4.19 3.64 3.26 

4 17.12 18.05 18.23 17.78 15.99 11.92 8.57 6.57 5.34 4.55 

5 20.21 20.92 23.23 22.79 20.49 15.19 10.81 8.16 6.54 

6 27.23 25.19 27.98 27.66 24.92 18.55 13.12 9.79 

7 44.30 31.12 32.51 32.40 29.29 21. 75 15.36 

8 39.92 38.22 37.25 33.56 25.26 

9 43.73 41.39 41.85 37.98 

The rOvlS of this table are labelled by log r 1 and the columns by 

Note that values of p below the main diagonal are very 

approximate. 

Thus given parameters for the two lines, we can calculate r 1 and 

r; from the formulae above, obtain p from the table by interpolation; 

given p, y is found from (6.3.12) from vlhich Y is obtained from 
o 

(6.3.11), then Y can be found as already described. 
p 
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this corresponds eo a weak narrow line overlapping 

with a strong broader line, with the result that there is practically 

no difference between Y1' the strong line 

overlap of the two lines with line 2 being 

on its own, and Y a 

broadened to line 1. 

the 

In 

this case, the value of p is essentially meaningless, as in (6.3.11) 

we are interpolating between t,(10 values \vhich are practically the 

same. 

In computing X for the case of two lines in a bin, the strength, 

width and frequency of the first line are retained until the second 

line falls into the bin, then X can be computed. If the bin never has 

more than one line, then after all spectral lines have been generated, 

X is computed at the end. 

If the bin has more than two lines, then for every additional 

line, its own value of X is computed and subtracted off the right hand 

side of (6.2.28) as before, where Xl and X2 are already covered by the 

two line case. For bins with many lines, the effect of the two line 

treatment is at best to lower the value of the ID10 for the ILM, giving 

a slightly better upper bound to the opacity. Unfortunately, there is 

no easy way of handling the overlap of three or more lines. 

So to summarize, there are five possibilities that can occur with 

the ILM: 

(i). 0 lines, empty bin with continuum on its own, 

(ii). 1 line, ILM gives an exact value, 
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(iii). 2 lines, ILM gives an exact value if there is no overlap, or 

a good approximate value if there is overlap, 

(iv). 3 or more lines with a positive value in (6.2.28), ILM gives an 

upper bound to the opacity, but the more congestion there is in 

the bin, the further the true opacity is to be from this bound, 

(v). 3 or more lines with a zero or negative value in (6.2.28), ILM 

breaks down completely, and other methods must be used to 

obtain even an estimate of the opacity. 

The case of breakdown for only one or two lines in a bin 

indicates that the bin is simply too small. 
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6.4 The Line Smear Method 

If we do not wish to apply the 11M, or in cases where it is 

unreliable or breaks down completely, the LSM discussed below enables 

us to at least obtain an approximate estimate of the RMO in a bin. At 

the end of the computation of all spectral lines, because the 

individual information about lines in a bin is lost, all we have to 

work on is the number of lines, the sum of their widths, the sum of 

their strengths and the upper and lower bounds of the opacity given by 

the ILM if applied. 

Let us consider the case of extreme congestion, i.e. there are so 

many lines in a bin that we can replace the continuum by a level 

pseudo-continuum due to the effects of all the profiles combined 

together, see figure (6.5). Let Wand C be constant over the bin, and 

represent the average weighting function and continuum respectively, w 

the bin width and S the sum of all line strengths, given by: 

t\ 

5 h L (6.4.1) 

so that Sand C have the same units. Also let K be understood to 

represent the RMO of that bin on its ovm here. 
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If the height of the ne1;v pseudo-continuum above the true 

continuum is h, then its total height is clearly h+C, and it is easily 

seen that the RMO over the bin is given by: 

::: (6.4.2) 

If we conserve area, so as h S/w, we can write: 

(6.4.3) 

which is an absolute upper bound to the RMO in a bin, and corresponds 

to completely smearing all the lines, this bound being otherwise 

unobtainable in breakdown cases of the ILH. However, when the Illi 

gives a positive value in (6.2.28), generally it gives a better upper 

bound than (6.4.3) 

If the congestion is less extreme, then although there will still 

be a lot of absorption, there will also be windows in the bin through 

which radiation can pass. The crudest way of representing this is to 

put the absorption in the form of a triangle of height h sitting on 

top of the continuum, so that at one extreme end there is no 

absorption corresponding to the windows, and at the other there is 

absorption by an amount h, see figure (6.6). This can be regarded as 

a very crude Opacity Distribution Function (ODF). 
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Let Uo be the frequency of the bin centre and K1(u) be the 

distribution of smeared absorption, 

Again conserving area, as h = 2S/w, we can write: 

Ki{il) :: ~ (u -- U<> t-wh) 
/..J~ 

then the RMO is obtained from: 

.i 
k = 

which on integration gives: 

L 
R 

If S is zero in this or (6.4.3), then we get: 

which is just the continuum on its own. 

(6.4.4) 

(6.4.5) 

(6.4.6) 

(6.4.7) 

(6.4.8) 
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-If the RMO from (6.4.3) is Kr for rectangular smear, K
t 

from 

(6.4.7) is the triangular smear and I{c from (6.4.8) is the continuum 

alone, then we can show that for S > 0: 

(6.4.9) 

which we would intuitively expect to be the case. 

From Abramowitz and Stegun (46): 

:!. (" ~)"3 " 
3 ?vi 1 i-

~(~)~ ... ] 
5 ?{.i"1 + (6.4.10) 

which is valid for x > O. Then substituting: 

+ 1 (6.4.11) 

into only the first term in (6.4.10) and neglecting higher order 

terms, then (6.4.7) becomes: 

(6.4.12) 

which gives: 

;::: 
t.J< W + 

kc wCt-5 
(6.4.13) 

which gives the result in (6.4.3) if the higher order terms are 

dropped. Including these terms causes 1/Kt > 1/K r' 
therefore 
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Kr > ~t· If we put 5 

In addition to considering the two forms of smearing discussed so 

far, we could also distribute the line strengths in the form of the 

part of so?e giant profile, which is more like an ODF. However, 

unlike an ODF, we have no information about the distribution of the 

opacity across the bin, but only the sum of the line strengths and 

widths, so nothing more useful could be extracted from this concept 

than what is discussed below. 

Suppose we vlish to consider a degree of smearing intermediate 

between the triangular smear and complete rectangular smear. Let us 

split the sum of the total line strength 5 into components 51 and 52' 

then: 

5 - 51 + '5 
~ ) 

(6.4.14) 

where 0 ~ p < 1 is a smearing parameter, 51 is a rectangle on top of 

the continuum of height hi and 52 is a triangle on top of 51 with 

height h2' see figure (6.7). 

C+5
1

/w in (6.4.7), we get: 

+ 

Then as hl= 51 /W, if we replace C by 

1) (6.4.15) 
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then using (6.4.14) we can write: 

f 
){: (6.4.16) 

where if P = 0 we have (6.4.7), the least amount of smearing, and as 

p -7 1 we approach (6.4.3) the greatest amount of smearing. 

If we want to deal with smearing that is less than the triangular 

smear given by p = 0, then we can consider a triangular wedge of area 

S with width v, with w-v being just continuum, see figure (6.8). This 

would correspond to a relatively uncongested bin with quite a lot of 

continuum. Replacing w by v in (6.4.7) to correspond to integration 

over just that part of the bin with the wedge, then adding the 

contribution of the remainder of the bin containing just continuum, we 

get: 

.L 
k 

Letting: 

(6.4.17) 

(6.4.18) 

where p+1 is the fraction of the bin covered by the wedge, with 

-1 < p ~ 0, \ve can substitute this into (6.4.17) giving: 

(6.4.19) 
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As P -~ 0 from the negative 'side, the last portion of the 

continuum on its own vanishes and the opacity increases rapidly, hence 

by choosing p+1 as the fraction rather than another variable like q 

say, we avoid the problem of loss of significance, and hence 

continuity between the two smearing methods. 

Thus given a specified sum of line strengths S in a bin, so that 

the area S is fixed, and taking equations (6.4.19) and (6.4.16) 

together, we can vary the smearing hence opacity in a bin, such that 

in the range -1 < P ~ 0 \Ve apply (6.4.19) to obtain smearing from a 

triangular wedge increasing from the limit of a S function with no 

opacity, to a triangle across the bin. Then increasing p further so 

that it is in the range 0 ~ p < 1, we apply (6.4.16) with S 

partitioned between a triangle and rectangle, with the opacity 

continuing to increase as the smearing approaches that of just a 

rectangle. However, the most difficult part of this work is to find 

some way of pinning down the smearing parameter with the limited 

amount of information available, as we know nothing about. the 

distribution of line strengths or how the lines overlap. We want to 

correlate p in some way with the sum of the line widths, which is a 

measure of the congestion. 

Originally it was thought that we could relate p in a simple way 

to the sum of the line widths expressed as a fraction of the bin 

width, however, very extensive numerical experiments indicated that no 

simple relationship exists. In these experiments, a bin is created 

into which a specified number of lines are placed, whose widths are a 
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specified fraction of the bin width but line positions within the bin 

and strengths are chosen by random numbers, to simulate actual cases 

where many possibilities of line strengths and overlaps can occur. 

Working in dimensionless scaled units, let the weighting 

function, continuum and bin width all be unity, x be the relative 

frequency of the centre of a profile, chosen by a random number such 

that 0 ~ x ~ 1, and y be another random number in the same range, such 

that: 

(6.4.20) 

where s is the line strength and a and b are constants. The expression 

(6.4.20) is chosen to simulate actual cases where lines come from 

different levels where there will be the effect of the Boltzmann 

factor. 

In (6.4.20), a and b are chosen so that when y = 0, s = a is the 

strongest possible line, and s = a exp(-b) is the weakest possible 

line when y = 1. To simulate realistic cases, line strengths are 

chosen to range from about 0.016x to 108DX , where nx is the line width 

as a fraction of bin width, and the lower limit corresponds to the 

typical cut-off when generating actual lines. 

In handling these artificial bins, we have a grid fine enough to 

profile the generated lines correctly, so that the opacity in the bin 

can be obtained by direct numerical integration of the grid once all 

the required lines have been produced. These bins are wrap-around, so 
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that with a line near one- edge of the bin, the part of the profile 

that would otherwise be lost is put in at the other edge, which would 

simulate the actual case of parts of profiles that would spillover 

into neighbouring bins. 

If n is the number of lines in a bin, then with the four fixed 

parameters n, a, band 6x, we can produce many bins then find the 

value of p, which if inserted into (6.4.16) or (6.4.19) as 

appropriate, fits best. Naturally, those bins that have by chance 

more overlap than average would be expected to have a smaller opacity 

than given by p, and vice versa for those with less overlap than 

average. Hence p is determined by some sort of an average bin. The 

most efficient way is to find the average opacity and total strength 

for many bins, then given ~and S, solve for p in (6.4.16) and 

(6.4.19) by iteration. This can be done for various values of the 

four parameters, 

obtained. 

in particular n, to see what correlation can be 

It is indeed found that no simple correlation exists, accordingly 

we take the simplest empirical rule that gives the best fit by 

assuming that p depends only on the sum of the line widths. 

for p < 0: 

and for p ~ 0: 

f -= i 
_m1(~--1) 

e. 

Hence, 

(6.4.21) 

(6.4.22) 



- 276 

It. 

where .1.. I 
w. 

(6.4.23) 

L :: 4 

and k, land m are constants. It is found that the best fit is given 

by having ,the approximate values k = 2.5, 1 = 5.0 and m = 0.012. 

Hence for q < 5, p is obtained from (6.4.21) which together with S is 

substituted into (6.4.19) to give smearing over part of the bin, and 

for q ~ 5, p is found from (6.4.22) which on putting into (6.4.16) 

will give us smearing over the whole bin. 

If the opacity in many bins is computed by direct integration of 

a grid and by this empirical smearing method, it is found that when p 

is well away from zero, i.e. under-congestion or over-congestion, the 

agreement is often not too bad, but in cases when p is close to zero, 

i.e. complete triangular smear, the smearing technique can produce an 

opacity out by often more than an order of magnitude either way. 

However, if the opacity by this LSM is computed in tandem with 

the ILM, then if a value is obtained that is outside the bounds given 

by the ILM, the appropriate bound is chosen as the opacity in that 

bin. For cases of one or two lines in a bin, only the lUi should be 

used. 
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6.5 The Opacity Sampling Method 

Ideally we require a grid that is fine enough so that each 

spectral line on being profiled can be represented properly. However, 

as already stated in section 6.1, this could not be done in practice 

for the whole spectrum with realistic line widths, due to the 

limitation of the available computer memory. So we have to compromise 

by using a fine grid that is fine enough to represent each line, 

bearing in mind computer memory and execution time on the one hand, 

yet not too coarse so that our accuracy is low and lines can be 

missed. We thus aim if possible to have about one fine grid point per 

Doppler width, so that on average about three grid points will cover a 

profile. This is quite distinct from say Johnson and Krupp (28), who 

use a very much coarser grid for the calculation of model stellar 

atmospheres, 
--I 

the finest grid being used having a spacing of 12.5cm , 

which corresponds to 4.5Xl0-3 in the dimensionless frequency units 

used by us at their T
eff

= 4000 0 K, and is large compared to the Doppler 

width of say CO at u = 1, which is 8.6Xl0-6 at that temperature. 

Thus if a spectral line is given by: 

(6.5.1) 

2 -1 in cm gm and with the strength s - 2 -1 -1 - h - 1 d In cm sec gm Wlt stlmu ate 

emission not being included, we find the grid point closest to the 

line centre at u
o

' then evaluate (6.5.1) for each value of u computed 
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from the grid in one direction, until the ratio KI(u)/~c(u) is less 

than some specified value, say 0.01, then repeat this in the other 

direction for the other side of the profile, so the whole profile is 

represented. KI(u) is accumulated in an array for the fine grid 

points in exactly the same way as the continuum ~ (u) is accumulated 
c 

earlier, with the fine grid initialized with the continuum obtained by 

interpolation from the coarse grid. The above test for cutting off a 

profile is done with respect to the background continuum, rather than 

what has already been accumulated in the fine grid, so as to make this 

test independent of the order that lines are computed. 

Having computed all lines, a spectrum with many hundreds of 

thousands, or computer memory permitting, millions of data points is 

obtained, and the ~~o could be found directly by integrating across 

the whole spectrum using (3.1.7) with an appropriate upper limit, as 

can be done with the coarse grid for the continuum. However, the 

spectrum in this form is rather unwieldy and inconvenient to store on 

some medium like magnetic tape for future use, and is not directly 

comparable to the spectrum produced by the ILM and LSM. So instead, 

by an appropriate choice of bin sizes and fine grid intervals, as 

discussed in section 6.1, we can integrate (6.2.1) with K(u) for all 

sources of opacity using Simpson's rule over the bin. The spectrum is 

then in a form directly comparable to the ILM and LSM, as we now have 

it in the form of 11K. for each bin i. 
1 
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If the aSH is computed in tandem with the ILM, then for bins that 

have one or two lines, the I ill gives a better result because the aSH 

is only approximate. However, if there are more lines, and 

particularly for congested bins, the aSH is much more reliable, and we 

never have the problem of infinite or negative opacity that can occur 

with the ILM. Having obtained the reciprocal opacity for each bin, by 

whichever method, the total ~~o is found simply from: 

r'\. 

1- = L .l.. 
R- ii· . (6.5.2) 

, ~~ 

for n bins. 

In deciding the separation of the fine grid points, we can use 

(6.1.1) with a typical molecule like CO, then neglecting turbulent 

o -6 0 /J -5 velocity, at 1000 K, }Juju = 4.28X10 and at 6000 K, uju = 1.05X10 , 

which covers the temperature range of greatest interest to us. If we 

do not have enough computer memory to put a fine grid all the way from 

u = 0 to 20, as is the case with this ,.,ork, we can stop at u = 15 

where the weighting function is already quite small, leaving just the 

continuum at higher energies. Even so, if we are still short of 

memory, we can still compromise by not having the grid quite as fine 

as one grid point per Doppler width near the limits of the range 

covered where the weighting function is small, so errors are less 

important. In practice, because fJ. u -7 0 as u -7 0, we are compelled 

to under-sample in our first region of u o to 1, so we can choose a 

sampling interval to match at u = 0.5 or u 1. If turbulent velocity 

is included, then we can of course use a coarser grid, or have better 
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sampling. 

Although we obtain the final RMO K for the whole spectrum as mass 

2 -1 
absorption in cm gm it is in fact much more convenient to work in 

volume absorption.A(u) in cm-1 for individual species, be they sources 

of continuous opacity or profiled lines; in the latter case a line 

strength s is . -1 -1 1.n cm sec Thus all equations in chapter 3 and 6 

. l' W()' 2 -1 h d' 11 . h' k 1.nvo v1.ng I~ u 1.n cm gm t at are use numer1.ca y 1.n t 1.S wor, are 

in fact used with)L(u), where the two are related by (3.1.15). Also, 

it is more convenient when computing 1/~. for each bin by whichever 1. 

method, to omit the constant 15/4~4. Thus in evaluating the sum 

(6 5 2) 11 b · b' h . d RMO' 2-1 •• over a 1.ns to 0 ta1.n t e requ1.re 1.n cm gm we apply 

?+ a constant factor of 15f/4~ to the right hand side, and this factor 

must actually be applied to the computed values of every bin to obtain 

the correct RMO in each bin. 

So far in this thesis we have discussed all the required theory, 

it is the purpose of the next chapter to discuss the results and tests 

performed using the theory. The programming methods employed in 

obtaining our results are rather involved, and any discussion beyond 

mentioning brief points where relevant, is considered beyond the scope 

of this thesis. 
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7 PRESENTATION AND DISCUSSION OF RESULTS 

7.1 Introduction 

In this final chapter, all the theory discussed in the previous 

chapters is put into practice, and the results of calculations based 

on this theory are considered. A 10X13 grid of continuous opacities 

in the T-P plane is computed, with the results in the next section. 

Subsequently, some examples of opacities for a few grid points with 

the contribution of diatomic and triatomic molecular bands calculated 

in detail, are considered, together with examples of some intermediate 

calculations necessary in determining opacities, and some tests. 

All calculations presented here have been performed on a VAX 

11/780 computer acquired by the University of St.Andrews in the first 

half of 1980. As the VAX is fast and interactive, code could rapidly 

be developed and tested. Prior to this, while working in St.Andrews, 

use was made of an IBH 360/44, which could only be effectively used in 

batch mode. However, while working in Dublin, development was 

performed on the IBHs 370/148 and 158 at the Central Data Processing 

Services of the Irish government, which, although they could only be 

used in batch mode, were powerful machines. In addition, use was made 

at Dunsink Observatory of a Data General Nova minicomputer, which 

could be used interactively for testing small sections of code, and an 

Apple II microcomputer for graphics. 
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The opacities are calculated using the two computer programs 

MIXOP and TRIATOM. The latest versions of these are listed in the 

program volume of this thesis, together with some documentation and 

examples of. actual output. An attempt has been made to adhere as much 

as possible to the conventions of standard FORTRAl'l" IV, this being a 

subset of FORTRAN 77 used by the VAX, in order to make the programs as 

compatible as possible with compilers on other machines. However, we 

have had to depart from FORTRAN IV for such features as file 

manipulation, this being discussed more fully in the program volume. 

The MIXOP program calculates the abundances and continuous 

opacities using the theory discussed in chapters 2 and 3. This 

program can generate files that are subsequently used by TRIATOM which 

calculates spectral lines for diatomic and triatomic molecules, based 

on the theory discussed in chapters 4 and 5 respectively, and the 

opacities due to these lines by chapter 6. 

results of applying MIXOP. 

We consider first the 



- 284 -

7.2 Abundances and Continuous Opacities 

In this section, the results of calculating the abundances and 

continuous opacities due to various species over a 

temperatures and densities are considered. 

range of 

The following sources of data were used as the input for the 

statistical mechanics calculations: abundances of elements and 

isotopes from Cameron (4), atomic masses and spins of nuclei from the 

American Institute of Physics Handbook (107), atomic ionization 

potentials and electron affinities from Allen (32), atomic energy 

levels from Moore (33), most diatomic molecular rotational and 

vibrational constants from Rosen (35) and Mizushima (36), except for 

TiO from Phillips (108) and CIO from Cooper (109), and triatomic 

molecular data from Herzberg (30) and (34). With (30) also used as a 

source of the trial values for the force constants of the bonds of the 

two non-linear non-symmetric molecules considered, Le. HCO and ENO. 

The sources of the data for continuous opacities are given in chapter 

3, with the data given in the appendices. Finally, some sections of 

the coding in the MIXOP program were obtained from Carson (3), 

together with the subroutine for computing Fermi-Dirac integrals used 

by the ILM in the program TRIATOH. 
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In the mixture, we have the 22 most abundant elements: H, He, C, 

N, 0, F, Ne, Na, Hg, AI, Si, P, S, Cl, Ar, K, Ca, Ti, Cr, Hn, Fe and 

Ni, of which we allow for the formation of the stable negative ions of 

H, C, 0, F, Na, AI, Si, P, Sand Cl, and two positive ions of all 

elements from He ollYlards. In the molecular equilibrium calculations, 

we allow for the formation of the 36 diatomic molecules: H
2

, C
2

' N
2

, 

°2' OH, NH, CH, CN, CO, NO, SO, CaH, HgH, AlH, SiH, SiN, AlO, SiO, 

NaCl, HgCl, KCl, CaCl, Na
2

, NaH, SH, HgO, HCl, HF, ClO, TiO, 
+ 

H2 , CH+ , 

CO+ + 0+ and OH+, and the 9 triatomic molecules: H2O, , N
2

, 
2 HCN, HCO, 

HNO, N2O, CO2 , N02 , °3 and S02' together with their isotopic 

variations, there being 202 and 119 possible variations of diatomic 

and triatomic molecules respectively, due to the presence of 60 

different isotopes. Though this list appears formidable, there would 

be plenty of scope for including many more atoms and molecules. 

However, the object of this work is to devise a method to compute 

opacities and illustrate it with a number of examples. 

Many of the molecules in this list are chosen because their 

abundances are likely to be very high at low temperatures, such as 

obviously H2 as its constituent atoms are very abundant, or CO as it 

is tightly bound, or because they are likely to be important sources 

of opacity even for relatively IOvl abundances, like TiO. Also, in 

order to calculate the contribution to the opacity due to bands, 

discussed later in this chapter, we have to know the oscillator 

strengths or dipole moments, which are not always readily available, 

and some of these molecules are chosen because such quantities are 

known. However, some of these molecules tend to have low abundances 
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for any set of conditions, such as the molecular ions, and would be of 

essentially no importance in the statistical mechanics or opacity 

calculations, but at least illustrate that the computer program can 

handle abundances over a very great range of values. 

The abundances of some molecules are very sensitive to the 

initial abundances of the elements, the most spectacular example of 

this being C
2

• As CO is the most 

and as the elements C and 

tightly bound 

o tend to 

of all diatomic 

have comparable molecules, 

abundances, most of the C and 0 is bound up in CO at lower 

temperatures, with the surplus of either C or 0 combining with other 

elements as well as itself. In our mixture, as 0 is more abundant 

than C by a factor of 1.8, oxygen containing compounds predominate by 

far over carbon containing compounds, with C
2 

in particular tending to 

have a negligible abundance. In carbon stars, C is in surplus, the 

reverse is true, and in particular C
2 

is abundant and an important 

source of opacity, as it has a large number of bands across the 

spectrum. Thus one can see qualitatively, that the opacity can be 

very sensitive to the initial abundances of the elements. Because all 

the equations governing molecular dissociation are coupled, in many 

cases it is impossible to say even qualitatively whether a particular 

species wil~ be abundant or not at a particular temperature and 

density, before actually performing the calculations, this problem 

having been stated at the beginning of chapter 2. In reality, one 

should allow for the formation of many more molecules, but it is 

believed that the sample here is representative. 
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The RMOs and PHOs due to the continuum, together with the 

abundances of the various species were calculated over 128 grid points 

in the T-f plane in a 10X13 matrix, with the iteration convergence 

criterion £ = 10-6 • Because the densities are considered in log form, 

it was decided also to handle the temperatures in the log. The 

densi ties chosen are log f -14 to -2 in steps of 1 and temperatures 

of log T 3.0 to 3.9 in steps of 0.1, thus covering the range 

T = 1000
0

K to 79430 K. The grid points with log f = -2 and -3 for 

log T = 3.0 are not computed because of problems with floating point 

numbers exceeding the machine's range, and it is not considered worth 

while to handle specially these highly unlikely cases. This grid thus 

embraces very well, with a substantial overkill, the domain in the 

H-R diagram for late-type stars. Table (7.1) gives the RMO and PHO in 

that order in the log to four figures of accuracy for each grid point, 

by integrating the spectrum computed with 4001 data points, the first 

point being the dummy point at zero energy. All the opacities are in 

2 -1 cm gm , and log f is written as log R. 

It is seen that generally the opacities increase with increasing 

temperature or density, but not necessarily monotonically in any 

orthogonal direction in the table. It would, however, require the 

computation of many hundreds, if not thousands, of grid points to 

investigate the detailed behaviour of the opacities with temperature 

and density. 
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Table (7.1 ) of Log Pu~O and Log PMO for Continuum 

T 1000 1259 1585 1995 2512 
Log T 3.0 3.1 3.2 3.3 3.4 

Log R 
-14 -7.5588 -6.2429 -5.2485 -4.5990 -3.7880 

-6.4344 -5.9364 -5.1839 -4.5777 -3.7975 

-13 -7.7640 -6.4774 -5.5177 -4.7351 -4.0474 
-6.4356 -5.9920 -5.3732 -4.6874 -4.0440 

-12 -7.9016 -6.7287 -5.7731 -4.8909 -4.2942 
-6.4360 -6.0203 -5.5030 -4.7957 -4.2543 

-11 -7.6665 -6.9406 -5.9472 -5.0183 -4.4140 
-6.4353 -6.0304 -5.5608 -4.8580 -4.3236 

-10 -7.1920 -6.9024 -6.0980 -5.1980 -4.3981 
-6.4270 -6.0301 -5.5920 -4.8986 -4.1499 

-9 -6.7696 -6.5590 -6.1168 -5.3362 -4.2628 
-6.3504 -5.9946 -5.5924 -4.8883 -3.6953 

-8 -6.2885 -6.0497 -5.7300 -5.1409 -3.9712 
-5.9315 -5.7365 -5.4552 -4.7638 -3.2818 

-7 -5.5153 -5.2696 -5.0651 -4.5988 -3.5754 
-5.0758 -5.0008 -4.9044 -4.4275 -3.0079 

-6 -4.6066 -4.4825 -4.4612 -4.0148 -3.0545 
-4.0932 -4.0390 -4.0011 -3.7966 -2.7514 

-5 -3.7514 -3.8323 -3.9537 -3.4230 -2.4335 
-3.0950 -3.0430 -3.0133 -2.9048 -2.2792 

-4 -3.0036 -3.1284 -2.6911 -2.1198 -1. 2273 
-2.0940 -2.0185 -1. 7948 -1. 5407 -0.9664 

-3 -2.5290 -2.0904 -1.3455 -0.4539 
-1.0350 -0.9219 -0.5728 -0.0196 

-2 -1. 9319 -1. 5238 -0.8906 -0.1577 
-0.0413 0.0099 0.1667 0.5223 
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Table (7.1 ) Continued 

T 3162 3981 5012 6310 7943 
Log T 3.5 3.6 3.7 3.8 3.9 

Log R 
-14 -3.4375 -2.4662 -0.7264 0.3991 0.4862 

-3.4460 -2.4749 -0.7271 0.3988 0.4864 

-13 -3.4507 -2.8683 -1.2104 0.1431 0.4855 
-3.4588 -2.8794 -1. 2126 0.1417 0.4871 

-12 -3.5043 -3.1819 -1. 6894 -0.2527 0.4773 
-3.5109 -3.1843 -1. 6949 -0.2561 0.4928 

-11 -3.6095 -3.3212 -2.1401 -0.6805 0.4140 
-3.6098 -3.3125 -2.1498 -0.6800 0.5146 

-10 -3.6430 -3.2137 -2.4687 -1.0487 0.2754 
-3.5826 -3.2074 -2.4767 -1.0176 0.5422 

-9 -3.4735 -2.7840 -2.4079 -1.1585 0.1970 
-3.1831 -2.7048 -2.3925 -1.0966 0.5731 

-8 -2.9626 -2.1414 -1. 8805 -0.8938 0.3045 
-2.5344 -1. 9853 -1.8270 -0.8414 0.6380 

-7 -2.3350 -1.4741 -1.0890 -0.4620 0.5694 
-1. 9025 -1. 3041 -1.0173 -0.3907 0.7946 

-6 -1.8278 -0.8564 -0.2871 0.0709 0.9239 
-1.4602 -0.6894 -0.2121 0.1650 1.0971 

-5 -1. 3201 -0.3171 0.4291 0.7288 1.3728 
-1. 0768 -0.1693 0.5039 0.8280 1.5468 

-4 -0.3301 0.q·605 1.2333 1.5178 1. 9473 
-0.1730 0.5739 1. 3142 1.6225 2.1282 

-3 0.4017 1.0879 1. 7938 2.2125 2.6751 
0.5935 1.1913 1.8864 2.3360 2.8673 

-2 0.6296 1. 2838 1.8290 2.4748 3.2579 
1.0052 1.4812 1. 9740 2.6365 3.4846 
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It is interesting to see \vhat the continuum looks like at some 

grid points, and accordingly \.;re shm" in figures (7.1-7) the continuum 

for log f = -8 at log T = 3.2 to 3.8 without stimulated emission. 

Note that the scale in opacity is doubled for the last three figures 

to illustrate the features better. A number of interesting features 

can be pointed out, where in all cases the opacity increases to 

infinity at u = 0 due to free-free absorption. At log T = 3.2, the 

continuum is dominated by Rayleigh scattering at high frequencies and 

free-free absorption at very low frequencies, the minimum in between 

is filled by pressure-induced R
2
-R

2 
and R

2
-Re opacity causing the 

marked behaviour between about u = 0.5 and u = 6. At log T = 3.3 the 

pressure-induced opacity has become less important, and at log T = 3.4 

it no longer shows up on the plot; the Rbf absorption threshold at 

about u = 3.3 being obvious. At log T = 3.5, a very small bump at 

U ::: 13 is visible, and can be identified with Cl~f' Although Cl has a 

relatively small abundance, it has the largest electron affinity of 

all elements, so is a very efficient sink of electrons, and it is not 

surprising that the effect of the negative ion can just be seen. 

Rowever at log T = 3.6, this has vanished, but at log T = 3.7, in 

addition to the absorption threshold of R
bf

, an absorption edge of 

neutral Rbf is clearly 

Finally, at log T = 3.8, 

visible; this 

this jump has 

is in fact the Balmer jump. 

become much more pronounced, 

and has been joined by the Paschen jump to the left, and left of the 

Rbf edge is a very weak "glitch", ,v-hich is attributed to the Brackett 

jump. 
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The noticeable bump at u ~ 18 for log T 3.6, and visible again 

for log T = 3.7, but shifted, corresponds to a wavelength of 2000R and 

turns out to b~ due to OH
bf 

as given by Tarafdar and Das (57), the 

cross-section being tabulated at rather coarse intervals. Although OH 

is a relatively abundant species at these grid points, and is an 

important source of opacity, it is expected that such a feature will 

have a very small effect on the total PHO and RMO, particularly as it 

occurs where the weighting functions are very small. However, in 

investigating OH
bf 

further, it was found that anomalies can occur when 

extrapolating the table to very long wavelengths. So it was decided 

to let the cross-section falloff beyond the table according to a 

power law as determined approximately by the tabulated points at the 

limits of 1000 and 5000R. This was also applied to CH
bf 

from the 

limits 1200 and 3000R. Refer to chapter 3 and the appendices. 

Thus if KA(T) is the cross-section per particle at a wavelength 

for a particular temperature, then we can write: 

n{1') 

K,(T) ; (t) i<,tT) (7.2.1) 

where ~ is the wavelength at the last tabulated point, K (T) is the 
o 0 

interpolated or extrapolated cross-section for that temperature at ~ 
o 

and neT) is an exponent dependent on temperature, obtained from the 

empirical formula: 

(7.2.2) 
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where for ORbfAo = 5000~, k = 3.14 and m = -1. 33, and for CR
bf 

A = 3000~, k = 9.56 and m = -0.54, 
o 

which give a good fit. In 

dimensionless frequency units, if Aois in ~ngstr8ms, we can write in 

place of (7.2.1): 

( 

"t I )h (T) 
1 Dhc. 1 ( ) 
). . _. nIT)}CO T 

D t\ 1 U 
(7.2.3) 

It is not considered feasible in this thesis to give extensive 

tabulations of the abundances of all the various species for all grid 

points computed. However, for the seven gri~ points discussed in 

detail above, tables (7.2-8) give the abundances in cm-3 for the 

various species, being a restricted version of the output produced by 

the program. Some examples of more detailed tables of abundances are 

found in the program volume. In the tables, ENN is the number density 

of free electrons, and the columns headed ANF, FAF, AM2 and AM3 are 

the abundances of the free atoms, the fraction of atoms free, the 

abundances of the diatomic molecules and triatomic molecules 

respectively. 

It is immediately seen that with increasing temperature, of those 

atomic species combined into molecules, their fractions free approach 

unity with the abundances of all the molecules decreasing due to 

dissociation, exactly as expected. At the lowest temperature, the 

four most abundant molecules in order of decreasing abundance are H
2

, 

CO, N
2

, and SiD, the abundances of the last three being high due to 

their large dissociation potentials. Although as the temperature is 

increased the abundances of all individual molecules eventually fall, 
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because CO is very stable,-it does not appreciably dissociate until at 

quite high temperatures, whilst the abundances of, for example, CH and 

CN actually increase considerably to a maximum before decreasing. 

This behaviour is presumably due to the fact that as CO dissociates 

even slightly, because it is so abundant, a considerable amount of 

carbon, which is in short supply, is released and is free to combine 

with other atoms. This illustrates very well indeed how difficult it 

is to predict abundances before performing the calculations of 

statistical mechanics. 

Because H is such an important source of opacity, it is 

interesting to consider it briefly. 

points \\Tith log T = 3.2, 3.5 and 3.8 

In table (7.9) for the grid 

with log f = -8, H-fr is the 

fractional abundance of H- as a fraction of all free H atoms, H-ab is 

the absolute abundance of the ion in cm-3 and ENI is the number of 

electrons contributed (+) or absorbed (-) in cm-3 due to the tabulated 

element. It is seen that at log T = 3.2, H has a very low abundance, 

with most of the electrons responsible for its formation coming from 

Na and K, due to their low ionization potentials, with H being a 

strong sink of electrons. At log T = 3.5, the abundance of H is 

considerably higher, ,lith H being a large sink of electrons and many 

other elements now contributing electrons. Finally at the last grid 

point, from being the largest sink of electrons, H now becomes the 

largest source, this is due to a significant fraction of protons 

forming, yet H is higher still, i.e. many of the electrons needed to 

form H come from H itself. 
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Table (7.2) of Abundances 

Log T =. 3.20 Log R = -8.00 ENN = 4.06350E+07 

ANF FAF AM2 AM3 
H 4.8l098E+12 1.04593E-03 H2 2.29615E+15 H2O 1. 25742E+12 

He 3.19665E+14 1.00000E+00 C2 2.84850E-ll HCN 7.31695E+05 
C 1. 44024E.-03 8.43823E-16 N2 2.70486E+ll HCO 4.48163E+05 
N 5.26609E+02 9.73449E-IO 02 3.27750E+Ol HNO 1. 59186E-Ol 
a 1. 483 90E+05 4.77159E-08 OH 1. 61334E+08 N20 3.28365E-04 
F 3.69813E+Ol 1.04355E-07 NH 6.09529E+03 CO2 4.31538E+08 

Ne 4.97576E+ll 1.000OOE+OO CH 2.66803E-03 N02 6.82174E-07 
Na 8.67390E+09 9.99452E-Ol CN 1.02344E+OO 03 8.85927E-16 
Mg 1. 51862E+ll 9.89535E-Ol CO 1.70637E+12 S02 3.86927E+Ol 
Al 1. 21134E+IO 9.85247E-Ol NO 2.80069E+04 
Si 6.70740E+05 4.63716E-06 SO 6.64134E+05 

p 1.38859E+09 1.OOOOOE+OO CaH 9.99027E+04 
S 2.17614E+06 3.00896E-05 MgH 1. 60599E+09 

Cl 1. 37220E+06 1.66433E-03 AlH 1. 75261E+08 
Ar 1.69523E+IO 1.OOOOOE+OO SiR 1. 29676E+05 

K 6.04843E+08 9.95618E-Ol SiN 3.20437E-02 
Ca 1. 04262E+IO 9.99743E-Ol Ala 6.12554E+06 
Ti 1.22033E+05 3.04027E-04 SiO 1. 44644E+ll 
Cr 1. 83699E+09 1.OOOOOE+OO NaCl 1.38868E+06 
Mn 1. 34519E+09 1.OOOOOE+OO MgCl 3.48611E+04 
Fe 1.20055E+ll 1.OOOOOE+OO KCl 2.66182E+06 
Ni 6.94292E+09 1.OOOOOE+OO CaCl 2.58553E+06 

Na2 2.69890E-Ol 
NaH 3.36689E+06 

SH' 7. 23192E+IO 
MgO 4.90133E+03 
HCl 8.16432E+08 

HF 3.54379E+08 
ClO 1. 49010E-04 
TiO 4.01266E+08 . 
H2+ 8.03!+21E-21 
CH+ 4.91579E-25 
CO-!- 2.63763E-27 
N2+ 1. 58311E-25 
02+ 1.41410E-24 
OH+ 3.59162E-23 
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Table (7.3) of Abundances 

Log T = 3.30 Log R = -8.00 ENN = 7.58397E+08 

ANF FAF AM2 AM3 
R 1. 43765E+14 3.12552E-02 . R2 2.22668E+15 R20 1. 24538E+12 

Re 3.19665E+14 1. OOOOOE+OO C2 2.64770E-07 RCN 6.02438E+05 
C 1. 36253E+Ol 7.98295E-12 N2 2.70483E+1l RCO 2.19682E+06 
N 8. 33677E+05 1.54107E-06 02 5.73242E+04 RNO 3.66151E+Ol 
0 2. 95449E+08 9.50038E-05 OR 1.20416E+I0 N20 7.22951E-02 
F 9.30670E+03 2.62620E-05 NH 9.42726E+05 CO2 3.13596E+08 

Ne 4.97576E+ll 1.00000E+OO CR 3.86734E+OO N02 2.67833E-03 
Na 8.67490E+09 9.99567E-Ol eN 1.17510E+02 03 8.41013E-I0 
Mg 1. 52338E+ll 9.92636E-Ol CO 1.70648E+12 S02 5.81905E+02 
Al 1.22219E+IO 9.94074E-Ol NO 4.83166E+06 
Si 5.28357E+07 3.65280E-04 so 2.84832E+07 

p 1.38859E+09 1. OOOOOE+OO CaR 3.20970E+05 
S 9.87040E+07 1.36478E-03 MgH 1.12999E+09 

CI 3.78313E+07 4.58853E-02 AIR 6.64825E+07 
Ar 1. 69523E+I0 1.00000E+OO SiR 2.94826E+06 

K 6.07488E+08 9.99973E-Ol SiN 4.54235E+OO 
Ca 1.04284E+I0 9.99955E-Ol AIO 6.37276E+06 
Ti 2.48026E+06 6.17921E-03 SiO 1. 44589E+ll 
Cr 1.83699E+09 1.OOOOOE+OO NaCl 6.37633E+04 
Mn 1.34519E+09 1.00000E+OO MgCl 7.82266E+03 
Fe 1. 20055E+ll 1.OOOOOE+OO KCl 1.63511E+04 
Ni 6.94292E+09 1.00000E+OO CaCl 1. 464 77E+05 

Na2 9.70672E-02 
NaR 3.69594E+06 

SR 7.21949E+I0 
MgO 5.60671E+04 
RCI 7.86409E+08 

RF 3.54370E+08 
CIO 1.35301E-Ol 
TiO 3.98908E+08 
R2+ 7.55134E-12 
CR+ 4.62337E-16 
CO+ 9.75202E-18 
N2+ 1. 78215E-16 
02+ 1.56734E-14 
OR+ 1. 56199E-13 
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Table (7.4) of Abundances 

Log T = 3.40 Log R = -8.00 ENN = 7.62530E+09 

ANF FAF AM2 AM3 
H 1. 73078E+15 3.76281E-01 H2 1.43344E+15 H2O 8.41897E+11 

He 3.19665E+14 1.00000E+00 C2 3.88781E-04 HCN 4.80824E+05 
C 1. 97263E+04 1. 15574E-OS N2 2.70178E+11 RCO 6.80897E+06 
N 2.87739E+08 5.31893E-04 02 2.12131E+07 HNO 2.36259E+03 
0 1.20769E+11 3.88341E-02 OH 2 • 9575 OE+ 11 N20 5.90707E+00 
F 9.24133E+05 2.6077 5E-03 NH 4.21283E+07 CO2 2.74047E+08 

Ne 4.97576E+11 1.00000E+00 CH 1. 03658E+03 N02 2.03024E+00 
Na 8.67754E+09 9.99871E-01 CN 5.23698E+03 03 4.90311E-05 
Mg 1. 52755E+11 9.95357E-01 CO 1. 70652E+12 S02 6.26007E+03 
Al 1. 22632E+10 9.97432E-01 NO 2.85958E+08 
Si 1.68525E+09 1.16510E-02 SO 7.24947E+08 

p 1. 38859E+09 1.00000E+00 CaH 6.16812E+05 
S 2.38954E+09 3.30403E-02 MgH 7.12233E+08 

CI 3.78802E+08 4.59446E-01 AIH 2.50948E+07 
Ar 1. 69523E+ 10 1.00000E+00 SiH 2.88176E+07 

K 6.07505E+08 1. OOOOOE+OO SiN 2.33087E+02 
Ca 1. 04283E+10 9.99940E-01 AIO 6.47947E+06 
Ti 2. 61877E+07 6.52428E-02 SiO 1. 42931E+11 
Cr 1. 83699E+09 1.00000E+00 NaCI 1. 36296E+03 
Mn 1. 34519E+09 1.00000E+00 MgCI 1.74673E+03 
Fe 1.20055E+11 1.00000E+00 KCI 3.37067E+01 
Ni 6. 94292E+09 1.00000E+00 CaCI 1.00015E+04 

Na2 5.17061E-03 
NaH 1.12234E+06 

SH 6.92076E+10 
MgO 4.08054E+05 
HCI 4.45660E+08 

HF 3.53455E+08 
CIO 2.16555E+Ol 
TiO 3.75201E+08 
H2+ 7.45611E-05 
CH+ 5.58662E-09 
CO+ 4.23737E-IO 
N2+ 3.05845E-09 
02+ 1. 5917 8E-06 
OH+ 6.20808E-06 
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Table (7.5)1 of Abundances 

Log T = 3.50 Log R = -8.00 ENN = 3.35211E+IO 

ANF FAF AM2 AM3 
H 4.35106E+15 9.45946E-Ol H2 1. 24237E+14 H2O 6.93065E+09 

He 3.19665E+14 1.00000E+00 C2 1. 70228E+Ol HCN 1.81066E+06 
C 7.30509E+07 4.27998E-05 N2 2.55630E+ll HCO 6.34065E+06 
N 2.87944E+IO 5.32271E-02 02 1.77737E+07 RNO 2.06046E+03 
0 L23393E+12 3.96781E-Ol OH 1.14300E+ll N20 L83797E+Ol 
F 7.90625E+07 2.23101E-Ol NH 2.95352E+08 CO2 2.45219E+07 

Ne 4.97576E+ll 1.00000E+00 CH 3.56515E+05 N02 3.14110E+OO 
Na 8.67865E+09 9.99998E-Ol CN 1. 23999E+06 03 2.16697E-04 
Mg 1. 53296E+ll 9.98879E-Ol CO 1. 70670E+12 S02 4.51612E+02 
Al 1.22927E+IO 9.99834E-Ol NO 6.19806E+08 
Si 9.83737E+IO 6.80106E-Ol SO 1. 21354E+09 

p L38859E+09 1.00000E+00 CaH 3.96499E+04 
S 3.97617E+IO 5.49787E-Ol MgH 1. 71 777E+08 

CI 7.90850E+08 9.59216E-Ol AIH 1. 79337E+06 
Ar 1.69523E+IO 1. OOOOOE+OO SiR 2.32237E+08 

K 6.07505E+08 1.00000E+00 SiN 1.93971E+04 
Ca 1. 04288E+IO 9.99996E-Ol AIO 2.50796E+05 
Ti 3.64716E+08 9.08635E-Ol SiO 4.60387E+IO 
Cr 1.83699E+09 1.00000E+00 NaCl 1.86379E+00 
Mn 1. 34519E+09 1.00000E+00 MgCl 1.76519E+02 
Fe 1. 20055E+ll 1. OOOOOE+OO KCl 4.67125E-02 
Ni 6.94292E+09 1.000OOE+OO CaCl 4.32789E+Ol 

Na2 3.82118E-06 
NaH 1.32438E+04 

SH 3.13468E+IO 
MgO 1. 75402E+05 
HCl 3.36249E+07 

HF 2.75316E+08 
CIO 3.60722E+Ol 
TiO 3.66729E+07 
H2+ 5.14350E+00 
CH+ 1.45609E-02 
CO+ 7.55379E-04 
N2+ 2.55688E-03 
02+ 4.21559E-02 
OH+ 3.15180E-Ol 
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Table (7.6) of Abundances 

Log T = 3.60 Log R = -8.00 ENN = 2.25574E+11 

ANF FAF AM2 AM3 
H 4.59033E+15 9.97963E-01 H2 4.68073E+12 H2O 8.78000E+06 

He 3.19665E+14 1.00000E+00 C2 1. 49138E+06 RCN 5.37686E+06 
C 2.09719E+11 1. 22872E-01 N2 4.16657E+10 RCO 2.91524E+06 
N 4.57066E+11 8.44898E-01 02 6.76401E+05 RNO 8.66986E+01 
0 1. 60695E+12 5.16727E-01 OR 5.70574E+09 N20 1. 83314E+00 
F 3.39774E+08 9.58788E-01 NH 2.95019E+08 CO2 7.53704E+05 

Ne 4. 97576E+11 1.00000E+00 CR 8.02061E+07 N02 8.49735E-02 
Na 8.67866E+09 1.00000E+OO CN 1.75906E+08 03 6.81415E-06 
Mg 1. 53459E+11 9.99940E-01 co 1.49682E+12 S02 4.99146E-01 
Al 1. 22947E+10 9.99998E-01 NO 9.83578E+07 
Si 1. 44419E+11 9.98443E-01 SO 8.02274E+07 

p 1.38859E+09 1.00000E+00 CaR 7.70785E+02 
S 7.06021E+10 9.76218E-01 MgR 9.19881E+06 

Cl 8.23178E+08 9.98427E-01 AIR 2.00390E+04 
Ar 1. 69523E+10 1.00000E+00 SiR 3.12959E+07 

K 6.07505E+08 1.00000E+00 SiN 1.34030E+04 
Ca 1.04289E+10 1.00000E+00 AIO 6.93841E+02 
Ti 4.01373E+08 9.99961E-01 SiO 1. 93854E+08 
Cr 1. 83699E+09 1.00000E+00 NaCl 8.59027E-03 
Mn 1. 34519E+09 1.00000E+OO MgC1 5.36009E+OO 
Fe 1.20055E+11 1.00000E+00 KCl 2.88078E-04 
Ni 6.94292E+09 1.00000E+00 CaCI 1.10760E-01 

Na2 2.86401E-08 
NaR 2.98687E+02 

SR 1. 63977E+09 
MgO 6. 12927E+03 
RCI 1.29695E+06 

HF 1. 46046E+07 
CIa 6.62707E+00 
TiO 1.57927E+04 
R2+ 4.98008E+03 
CR+ 2.03633E+03 
Co+ 3.16380E+01 
N2+ 1.20611E+01 
02+ 3.06980E+00 
OR+ 9.52063E+01 
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Table (7.7) of Abundances 

Log T = 3.70 Log R = -8.00 ENN = 6.07987E+11 

ANF FAF AM2 AM3 
H 4.59904E+15 9.99857E-Ol H2 3. 28467E+11 H2O 6.89872E+04 

He 3.19665E+14 1.00000E+00 C2 2.57844E+06 HCN 2.73907E+04 
C 1. 67660E+12 9.82304E-Ol N2 1.72642E+08 RCa 3.70355E+04 
N 5.40566E+11 9.99249E-Ol 02 1.26433E+05 HNO 1.53502E+00 
0 3.07894E+12 9.90059E-Ol OH 8.04222E+08 N20 9.14373E-03 
F 3.53924E+08 9.98716E-01 NH 3.82313E+07 CO2 1.90553E+03 

Ne 4.97576E+11 1.00000E+00 CH 8.24998E+07 N02 1. 72718E-03 
Na 8.67866E+09 1.00000E+00 CN 1. 81672E+07 03 1.82191E-06 
Mg 1.53468E+11 1.00000E+00 CO 3.00973E+I0 502 3.68272E-03 
Al 1.22948E+I0 1.00000E+00 NO 4.73471E+06 
Si 1. 44644E+11 9.99994E-Ol SO 9.95804E+06 

p 1. 38859E+09 1.00000E+00 CaR 1. 72372E+Ol 
S 7.22174E+I0 9.98552E-Ol MgH 6.47681E+04 

Cl 8.24382E+08 9.99887E-Ol AIH 2.14899E+02 
Ar 1. 69523E+I0 1.00000E+00 SiR 4.95356E+05 

K 6.07505E+08 1.00000E+00 SiN 1.05260E+02 
Ca 1.04289E+I0 1.00000E+00 AIO 3.93054E+00 
Ti 4.01388E+08 1.00000E+00 SiO 3.13260E+05 
Cr 1.83699E+09 1.00000E+OO NaCl 6.57678E-05 
Mn 1.34519E+09 1.00000E+00 MgCl 2.38067E-02 
Fe 1. 20055E+11 1.00000E+00 KCl 2.81178E-06 
Ni 6.94292E+09 1.00000E+00 CaCl 4.81378E-04 

Na2 1. 98691E-I0 
NaH 8.10146E+00 

SH 9.47427E+07 
MgO Lf.95934E+Ol 
HCl 9.33138E+04 

HF 4.55093E+05 
CIO 2.67244E+00 
TiO 1. 49881E+Ol 
H2+ 2.06114E+06 
CH+ 6.24386E+05 
Co+ 6. 00118E+03 
N2+ 3.39219E+02 
02+ !f.12513E+02 
OH+ 2.46767E+04 
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Table (7.8) .of Abundances 

Log T = 3.80 Log R = -8.00 ENN = 9.28295E+12 

ANF FAF AM2 AM3 
H 4.59961E+15 9.99982E-01 H2 4.10317E+1O H2O 9.61026E+02 

He 3.19665E+14 1.0000OE+OO C2 1.15694E+05 HCN 7.20718E+01 
C 1.70665E+12 9.99909E-01 N2 1. 68355E+06 HCO 1.30836E+02 
N 5.40962E+ll 9.99980E-01 02 1. 25374E+04 HNO 3.56449E-02 
o 3.10961E+12 9.99921E-01 OH 1.04160E+08 N20 7.29061E-05 
F 3.54350E+08 9.99919E-01 NH 6.74059E+06 CO2 1.15742E+OO 

Ne 4.97576E'+1l 1.OOOOOE+OO CH 1.45813E+07 N02 2.69137E-05 
Na 8.67866E+09 1.00OOOE+00 CN 4. 72006E+05 03 1.53712E-07 
Mg 1.53468E+ll 1.OOOOOE+OO CO 1.38715E+08 S02 1.90408E-05 
Al 1. 22948E+1O 1.OOOOOE+00 NO 2.25273E+05 
Si 1. 44645E+ll 1.OOOOOE+OO SO 8.23914E+05 

p 1. 38859E+09 1. OOOOOE+OO CaH 5.44957E+OO 
S 7.23148E+1O 9.99900E-01 HgH 6.73436E+03 

Cl 8.24463E+08 9.99986E-01 AIH 3.83915E+01 
Ar 1. 69523E+10 1.OOOOOE+OO SiH 3.0333LfE+04 

K 6.07505E+08 1.000OOE+OO SiN 3.16520E+OO 
Ca l.04289E+10 1.OOOOOE+00 AIO 2.50960E-01 
Ti 4.01388E+08 1.00000E+OO SiO 1. 85899E+03 
Cr 1.83699E+09 1.00000E+OO NaCl 9.02739E-06 
Mn 1. 34519E+09 1. OOOOOE+OO HgC1 1.62894E-03 
Fe 1. 20055E+ll 1.000OOE+OO KC1 4.71838E-07 
Ni 6.94292E+09 1.000OOE+00 CaCl 3.83972E-05 

Na2 1.87787E-10 
NaH 3.14231E+OO 

SH 6.43556E+06 
MgO 3.37553E+OO 
HCl 1.16259E+04 

HF 2.87232E+04 
C10 7.89728E-01 
TiO 2.30235E-01 
H2+ 4.04343E+07 
CH+ 1.56214E+06 
Co+ 6.14085E+03 
N2+ 6.03478E+02 
02+ 1.15014E+03 
OH+ 1.94992E+05 
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Table (7.9) of Sources and Sinks of Electrons 

Log T = 3.2 Log T = 3.5. Log T = 3.8 

H-fr . 1. 666E-ll 3.105E-I0 7.661E-09 

H ab 8.015E+Ol 1. 351E+06 3.52lj·E+07 

. ENI ENI ENI 
H -8.01569E+Ol -1. 33842E+06 8.53856E+12 

He O.OOOOOE+OO 1.14931E-14 3.96740E+03 
C -7.69260E-13 1. 38541E+OO 2.51569E+ll 
N 5.76927E-31 1. 17869E-02 7.81864E+08 
0 -6.20094E-04 -7.05069E+03 4.96293E+09 
F -9.88856E-02 -1. 84780E+02 1.59384E+03 

Ne O.OOOOOE+OO 3.18175E-12 4.55510E+03 
Na 1. n067E+06 8.58221E+09 8.67731E+09 
Mg 1.28637E+OO 5.33218E+09 1.53117E+ll 
Al 1.73809E+03 7.11520E+09 1. 22777E+I0 
Si -1.48525E-03 1. 75830E+08 1. 41705E+ll 

p -6.30568E-Ol 1.44804E+03 9.45333E+08 
S -4. 66691E+OO 1. 11269E+04 2.91580E+I0 

Cl -1.20247E+04 -3.39993E+03 1. 48785E+07 
Ar 5.20125E-27 1.81213E-04 6.45913E+06 

K 3.89180E+07 6.07137E+08 6.07455E+08 
Ca 6.66073E+03 9.48428E+09 1.08077E+IO 
Ti 4.25266E-04 1.60970E+08 4.01624E+08 
Cr 4.19389E+OO 4.84168E+08 1.82600E+09 
Mn 3.13122E-02 5.94433E+07 1. 33526E+09 
Fe 1.35685E-Ol 1. 48004E+09 1. 19414E+1l 
Ni l.08719E-02 4.09378E+07 6.85840E+09 
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The fraction of a molecular species in a particular isotopic form 

is not expected to change much over the various grid points, and is of 

no importance for the continuous opacity, though isotopic variations 

of molecules can be important when band spectra are considered. 

However, as an example for CO at log T 

. 12 16 12 17 fractl0nal abundances of CO, CO, 

are respectively 
-1 

9.865X10 , 

3.5 and logf =-8, the 

e12018 e13016 e13017 and , , 
-4 -3 3.700X10, 2.018X10, 

-2 1.107X10 , 4.153X10-6 and 2.265X10-5 , given that the fractional 

abundances of e12 and e13 are respectively 9.889X10-1 and 1.110X10-2 

16 17 18 . -1 -4 and for 0 , 0 and 0 are respectlvely 9.976X10 , 3.740X10 and 

-3 2.039X10 • It can be seen that the figures for the isotopic variants 

of CO do not agree exactly with the products of the figures for the 

individual isotopes. This is to be expected, as the isotopic 

molecules have slightly different dissociation potentials, measured 

from the lowest vibrational level, and different partition functions. 

In the mixture, there are also IS different isotopic versions of TiO 

and as many as 24 of S02; and examples of these and many other 

molecules are found in the program volume. 

Before the discussion in this section can be completed, we must 

consider how accurate and reliable are the results presented here. 

For the grid point with log T = 3.8 and log f = -8, where the 

continuum has the sharp jumps, see figure (7.7), tests were performed 

on integrating across the spectrum with 1001, 2001, 4001 and 10001 

points. It was found that for the last three cases, the PHO and RHO 

changed only in the fifth significant digit, with even the first case 
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giving quite a good agreement. These differences are presumably due 

to the effect of the absorption edges, which are very pronounced at 

this temperature. It is thus considered that 4001 coarse grid points 

were good enough for the integration, and accordingly, all the 

opacities in table (7.1) were generated with that number of points. 

At least as far as these integrations are concerned, these opacities 

are reliable. As a matter of interest, the spectra for the run of 

temperatures at the extremes of log f -14 and -2 were examined and 

found to be rather uninteresting, with no appreciable sharp absorption 

edges. 

When the approximate general treatment of higher electronic 

states of atoms and ions was included in the work in order to obtain 

better partition functions, see section 2.2 and the appendices, it was 

important to check this against cases where this treatment was 

neglected. It was found that the partition functions of the positive 

ions were unaffected, (this treatment does not apply to the negative 

ions) and above 
o 

about 4000 K, only the partition functions of the 

group I elements Na and K and the transition elements Ti, Cr, Mil, Fe 

and Ni were affected appreciably. This behaviour of the group I 

elements is expected because of their low ionization and first 

excitation potentials, and the transition elements have a very large 

number of levels due to the partially filled 3d orbitals. When this 

effect, together with the attendant depression of the ionization 

potentials, is included in the statistical mechanics, no appreciable 

changes occur in the abundances of any of the species, including the 

molecules which have a small abundance at these temperatures. Even 

the abundance of KCI, which is negligibly small, is not much affected 
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by the partition function of K increasing by more than a factor of two 

at 6000
0

K with this approximate general treatment included. We can 

thus conclude that errors due to this treatment do not significantly 

affect the statistical mechanics over the range of interest, however, 

they will be, important at much higher temperatures where many of the 

highly excited electronic states are appreciable populated. 

Probably a greater source of uncertainty are errors in computing 

the partition functions of molecules, but here again, the errors are 

likely to be greatest at the higher temperatures where the molecules 

have low abundances. These errors would be due to neglecting higher 

order terms in the anharmonicity and non-rigidity, which are usually 

unavailable, and which may be important for highly excited rotational 

and vibrational levels, these being significantly populated at higher 

temperatures. 

Whereas the partition functions enter Saha's equation linearly, 

so errors propagate linearly, the dissociation potential of a molecule 

enters exponentially, so an uncertainty in the dissociation potential 

can result in possibly a large uncertainty in the abundance of not 

only the molecule in question, but of many other molecules, as their 

equilibria are all coupled. Unfortunately, dissociation potentials 

are often known only approximately, so they would be expected to be 

the greatest sources of uncertainty in the statistical mechanics 

calculations. We consistently take the dissociation potentials from 

the lowest vibrational level, not the bottom of the potential well, 

and allow for isotopic shifts, as discussed earlier in this work. The 

abundances given in tables (7.2-8) for each molecule, are the sums of 
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the individual isotopic forms computed separately, and would be 

expected to be better than neglecting isotopes or computing with 

"average~ molecules. Finally, as we have neglected the effects of 

pressure on dissociation and partition functions, this approximation 

is liable to cause uncertainties at the higher densities. 

Note that the continua calculated for the examples in sections 

7.4 and 7.5 do not take account of the pressure-induced H
2

-H
2 

and 

H2-He opacity, which is however included in table (7.1) and the 

accompanying graphs. If this source of opacity were included, it 

would have at worst a fairly modest effect on the figures given in 

these sections; but would not alter the discussion qualitatively in 

any way. However, the tables of opacities for diatomic and triatomic 

molecules in section 7.6 do include the pressure-induced opacity. At 

very low temperatures, pressure-induced opacity can be very important, 

as is sho\VIl when some of the entries in table (7.1) are compared with 

their values when pressure-induced opacity is neglected. Thus for 

logp = -8 and log T = 3.0, 3.1, 3.2, 3.3 and 3.4, log RMO without 

pressure-induced opacity reduces to -7.9651, -7.0444, -6.1505, -5.2894 

and -3.9783 respectively, with the corresponding values for log PMO 

being -6.4347, -6.0315, -5.5922, -4.7857 and -3.2821. 

temperature~ at this density the effect is negligible. 

At higher 

Within the framework of our computations and data available, it 

is hoped that the abundances and continuous opacities produced by the 

MIXOP program are reliable. 
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7.3 Some Examples of Computing Band Absorption 

The purpose of this section is to give a few examples of 

computing band absorption cross-sections using Franck-Condon factors, 

Honl-London factors etc., in order to illustrate some of the theory 

discussed in this thesis, rather than giving exhaustive tabulations. 

This, and the remaining sections of chapter 7 are mostly concerned 

with various aspects of the TRIATOH program. 

Table (7.10) below gives a comparison of the Franck-Condon 

factors q , ", defined in (4.4.4), by various methods for the Swan v v 

system of C2 , d1r,g~-7 a~u. Although C2 is not likely to be important 

in our mixture, as discussed in the previous section, the Swan system 

of C
2 

is \vell known and has been used as an example in some of the 

development work on the coding. For each value of v' and v" the 

first entry is the Franck-Condon factor we have computed for a Horse 

potential using Doktorov's method (71), the values given by Jain (110) 

using a Rydberg-Klein-Rees potential (R-K-R) are given second, _vi th 

for comparison, the Franck-Condon factor for a harmonic potential 

computed using }mnneback's (67) method. Our computed band origins in 

-1 em are the last entry for each v' and v". The following data used 

in our calculations are obtained from Rosen (35): 

3 714.2 l f, (.J" 1641. 35, . "x" 11.67, a IT : T" 
u e e we e 

d 3- T' 20022.50, l.J' 1788.22, t) ..... x ..... 16.44, (,J'y' -0.5067, I J : 
g e e e e e e 
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with the values for DO" and DO, calculated from (4.3.10). 
e e 

It can immediately be seen that in many cases Jain's values lie 

in between the values we have calculated using Doktorov's and 

Manneback's methods, giving us confidence in these methods. In 

particular, the agreement for the strong bands is often good, and that 

for the 0-0 band, the strongest of the system, is excellent. In most 

cases the agreement for the weaker bands is poor, which is to be 

expected as the effects of anharmonicity are greatest for them, and 

will be sensitive to the type of potential function adopted. In many 

cases the values computed by Doktorov's method for weaker bands 

overestimate the band strengths relative to Jain's values, but this 

would be at the expense of some of the stronger bands, in order to 

satisfy the normalization of the Franck-Condon factors. 

The r-centroids in table (7.11) for the Swan bands of C
2 

are 

again obtained from several methods. The first entry for each band is 

computed using Doktorov's method for calculating the first and zero 

order matrix elements, <v'lrlv") and <v' Iv") respectively, from which 

the r-centroid is obtained from their ratio, as defined in (4.3.33). 

The second entry is taken from Jain as before, with the values 

obtained using an R-K-R potential function. For an additional 

comparison, the values computed using Schamps's (79) formula, see 

(4.3.35), are also given, where tJ 
e 

1714.79, the mean of tJ" and IV', 
e e 

and r" = 1. 31195{ and r' = 1. 2660R from Rosen. The values tabulated e e 

are in 5{ngstroms, scaled by 10
4

• 



- 315 -

Table (7.10) of Franck-Condon Factors of the Swan System 

v" 0 1 2 3 4 5 6 7 8 
, 

v 
0 0.732 0.166 0.065 0.023 0.009 0.003 0.001 0.001 

0.733 0.212 0.043 0.008 0.001 
0.726 0.242 0.031 0.002 0.000 
19380 17762 16168 14596 13048 11524 10022 8545 7090 

1 0.262 0.381 0.157 0.106 0.050 0.024 0.011 0.005 0.002 
0.240 0.364 0.278 0.092 0.022 0.004 
0.222 0.336 0.358 0.078 0.006 0.000 
21134 19516 17921 16350 14802 13277 11776 10298 8844 

2 0.003 0.434 0.199 0.098 0.113 0.067 0.040 0.021 0.011 
0.022 0.372 0.168 0.267 0.120 0.037 
0.044 0.296 0.123 0.389 0.133 0.014 
22850 21232 19638 18066 16518 14994 13492 12014 10560 

3 0.003 0.008 0.542 0.108 0.044 0.099 0.070 0.051 0.032 
0.001 0.056 0.425 0.075 0.225 0.137 0.059 
0.007 0.099 0.286 0.026 0.367 0.187 0.027 0.001 
24526 22908 21313 19742 18194 16670 15168 13690 12236 

4 0.010 0.011 0.604 0.064 0.011 0.077 0.062 0.055 
0.000 0.001 0.091 0.451 0.027 0.176 0.149 0.070 

0.001 0.022 0.147 0.234 0.000 0.315 0.235 0.043 0.002 
26158 24540 22946 21374 19826 18302 16800 15322 13868 

5 0.025 0.012 0.629 0.044 0.000 0.055 0.048 
0.002 0.117 0.471 0.010 0.129 0.157 0.074 

0.004 0.044 0.179 0.169 0.013 0.251 0.274 0.063 
27744 26126 24531 22960 21412 19887 18386 16908 15454 
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Table (7.11) of r-Centroids of the Svlan System 

v" 0 1 2 3 4 5 6 7 8 
v" 
0 12979 12116 12010 11728 11566 11407 11273 11153 11045 

12940-12230 11663 
12890 12265 11640 11015 10390 9766 9141 8516 7891 

1 13644 13211 11974 12020 11696 11552 11391 11262 11143 
13710 13074 12300 11721 
13514 12-890 12230 11640 11015 10390 9766 9141 8516 

2 17433 13683 13642 11716 12060 11657 11542 11376 11250 
14690 13847 13251 12378 11773 11297 
14139 13514 12890 12265 11640 11015 10390 9766 9141 

3 12842 17433 13743 14365 11142 12149 11605 11536 11359 
14878 13951 13608 12415 11738 11377 

14764 14139 13514 12890 12265 11640 11015 10390 9766 

4 22054 13012 17555 13823 15428 9256 12321 11526 11541 
15209 14078 14262 12442 11855 11331 

15389 14764 14139 13514 12890 12265 11640 11015 10390 

5 13339 27174 13189 17839 13918 16723 X 12634 11396 
15236 14217 12382 12016 11283 

16013 15389 14764 14139 13514 12890 12265 11640 11015 

X = -334217 
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Again notice that in many cases, the values from Jain lie in 

between those values we have computed by the two methods, and again 

the agreement is best for the strongest bands, the ones that matter 

most. Although Schamps's method is a crude approximation, with the 

r-centroids' constant for any fixed fj v, it is very simple to apply and 

gives at worst an estimate of the r-centroids; indeed here, the 

agreement is often better than Doktorov's method, which is remarkable 

in view of its simplicity. For very weak bands, Doktorov's method is 

unreliable, as one is taking the ratio of two quantities which are 

small, and due to the approximations of the method, have a large 

uncertainty. The spurious value of -33.4217 using Doktorov's method 

for v" = 6 and v' = 5 occurs as <v'lrlv") = -3.866X10-2 and 

<v' Iv") = 1.157X10-3 , both being anomalous compared to neighbouring 

matrix elements: the Franck-Condon factor for this, being the square 

of the latter figure, 
-6 is 1.338X10 • In spite of such problems, as 

Doktorov's method is used to compute the zero order matrix elements, 

to be consistent, it is best to use the same method for the higher 

order elements. Besides, as discussed in chapter 4, in applying 

Doktorov's method, we are not required to compute the r-centroids as 

such. 

We now consider examples of Honl-London factors. Table (7.12) 

lists computed Honl-London factors for J'~ 3 for the 0-0 Swan band of 

d h 11 b · . -1 The constants nee ed for t e two states, a elng ln em ,are: 
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3 a Tf: B" 1. 63246, eX" = 0.01661, A" -15.25, u e e 

d3rr : B' 1.7527, 0(.' =.0.01608, A' -16.48, 
g e e 

from which Band Y for v'= v"= ° are obtained for the two electronic 
o 

states, see chapter 4. 

The first column is the type of branch, where the first digit 1, 

2 or 3, indicates a P, Q or R-branch respectively, and the second and 

third digits indicate the series to which the lower and upper levels 

of the branch belong respectively, this notation being the reverse of 

the normal molecular spectroscopic notation where the upper level is 

given first. The last two indices are the same as those defined in 

section 4.2C for the triplets. As Y < ° for both states, they are 

both reversed states, and as A'= A"= 1, for the series F1 , F2 and F3 , 

.n. = 2, 1 and ° respectively for the three ladders, hence also the 

lowest values of J. The remaining columns are clear, with A!l=.0:-..n." 

and with 
~';;E " 

SJ'J" computed using Kovacs's (31) formulae, see the 

appendices, except where breakdown cases occur, see then section 

4. 2C. As A > ° for both states, there is in addition A-doubling which 

we do not consider here, 12 12 however for C C , as the spins of the 

nuclei are zero, one component has zero strength so there is only one 

line for each transition considered anyway. 
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Table (7.12) of Hon1-London Factors 
of the 0-0 Swan Band 

Branch J" .a" itO. 
~'Z" 

SJ'J" 

332 0.0 0.0 1 O.OOOOOE+OO 
333 0.0 0.0 0 1.00000E+00 

123 1.0 1.0 -1 O.OOOOOE+OO 
133 1.0 0.0 0 1.00000E+00 
222 1.0 1.0 0 1.41202E+00 
223 1.0 1.0 -1 O.OOOOOE+OO 
232 1.0 0.0 1 O.OOOOOE+OO 
233 1.0 0.0 0 O.OOOOOE+OO 
321 1.0 1.0 1 4.89192E-02 
322 1.0 1.0 0 1. 42210E+00 
323 1.0 1.0 -1 4.08000E-02 
331 1.0 0.0 2 O.OOOOOE+OO 
332 1.0 0.0 1 O.OOOOOE+OO 
333 1.0 0.0 0 2.00000E+OO 

112 2.0 2.0 -1 4.93814E-02 
113 2.0 2.0 -2 O.OOOOOE+OO 
122 2.0 1.0 0 1.42065E+00 
123 2.0 1.0 -1 O.OOOOOE+OO 
132 2.0 0.0 1 4.20051E-02 
133 2.0 0.0 0 2.00000E+OO 
211 2.0 2.0 0 3.20185E+00 
212 2.0 2.0 -1 6.78814E-02 
213 2.0 2.0 -2 2.72060E-04 
221 2.0 1.0 1 6.92617E-02 
222 2.0 1.0 0 7.89584E-01 
223 2.0 1.0 -1 1.03240E-01 
231 2.0 0.0 2 2.94859E-04 
232 2.0 0.0 1 1. 0417 4E-01 
233 2.0 0.0 0 1. 44646E-02 
311 2.0 2.0 0 1. 67950E+00 
312 2.0 2.0 -1 2.52111E-02 
313 2.0 2.0 -2 1. 42453E.-04 
321 2.0 1.0 1 2.95956E-02 
322 2.0 1.0 0 2.55232E+00 
323 2.0 1.0 -1 5.99546E-02 
331 2.0 0.0 2 4.35025E-04 
332 2.0 0.0 1 5.66260E-03 
333 2.0 0.0 0 2.95656E+00 
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Table (7.12) Continued 

Branch J" .0." L1.o. 
l:'X:" 

-SJ']" 

111 3.0 2.0 0 1.67866E+00 
112 3.0 2.0 -1 3.08006E-02 
113 3.0 2.0 -2 4.20000E-04 
121 3.0 1.0 1 2.62440E-02 
122 3.0 1.0 0 2.54931E+OO 
123 3.0 1.0 -1 6.477 90E-03 
131 3.0 0.0 2 1.54327E-04 
132 3.0 0.0 1 6.23952E-02 
133 3.0 0.0 0 2.95476E+00 
211 3.0 2.0 0 2.11581E+00 
212 3.0 2.0 -1 9.35136E-02 
213 3.0 2.0 -2 3.30923E-04 
221 3.0 1.0 1 9.53644E-02 
222 3.0 1.0 0 5.56874E-01 
223 3.0 1.0 -1 1.07563E-01 
231 3.0 0.0 2 3.66389E-04 
232 3.0 0.0 1 1.08520E-01 
233 3.0 0.0 0 2.40353E-02 
311 3.0 2.0 0 3.02479E+00 
312 3.0 2.0 -1 4.09808E-02 
313 3.0 2.0 -2 1. 73950E-04 
321 3.0 1.0 1 1.87548E-02 
322 3.0 1.0 0 3.62169E+00 
323 3.0 1.0 -1 6.32329E-02 
331 3.0 0.0 2 4.33808E-04 
332 3.0 0.0 1 3.61640E-03 
333 3.0 0.0 0 3.96054E+OO 

Table (7.13) of Comparison Between Computed and Expected Sums of 
Honl-London Factors 

J" SUMt SUM J" SUMt SUM c c 

0 1 1.00000 10 63 63.0392 
1 6 5.92384 11 69 69.0317 
2 15 15.1725 12 75 75.0258 
3 21 21.1458 13 81 81.0212 
4 27 27.1362 14 87 87.0175 
5 33 33.1168 15 93 93.0146 
6 39 39.0958 16 99 99.0123 
7 45 45.0769 17 105 105.010 
8 51 51.0613 18 111 111.009 
9 57 57.0489 19 117 117.008 
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For J"~ 3 all 27 branches are possible, 9 for each P, Q and 

R-branches due to the three ladders in both electronic states. For 

J"< 3, not 

transitions 

only are 

that would 

there fewer branches, due to impossible 

involve non-existent levels with J < n, but 

some transitions have zero strengths due to the selection rules 

discussed in section 4.2C. As Iyl = 9 for both states, the 

Hon1-London factors eventually approach those for Hund's case (b) for 

J » 3 for both states. 

The values of the computed sums of the strengths from a given J" 

are compared to the theoretical values in the table (7.13) for J'~ 19, 

on the basis of the adopted normalization, where SUM and SUH are 
t c 

respectively the theoretical and computed sums. 

For the transitions considered here, the computed values agree 

very well with the sum rule, where for the smallest values of J, the 

special treatment, as discussed in chapter 4, has to be applied. 

Notice that the normalization of 3(2J+1) applies only for J > 1. As 

discussed generally in chapter 4, for J = 0, there is only one level, 

that belonging to the ladder with n= 0, so the normalization is 

(2J+1), for J = 1, there are two levels belonging to the ladders with 

A= 0 and 1, so the normalization is 2(2J+1), thereafter there are 

three levels for each value of J. It is thus technically incorrect to 

state generally that the sum is always (2S+1)(2J+1). However, when 

considering an electronic state as a whole, at the temperatures that 

we are interested in, the effect on the total partition function is 
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negligible, and the factor of (2S+1) in (2.7.1) is not inconsistent 

with this discussion. As J increases, the agreement between the 

calculated and theoretical values improves considerably as we approach 

the case (b) limit, as Kovacs's formulae for triplets agree best with 

the normalization in one or other of the limiting spin coupling 

cases. 

An example of a triplet system is shown in figures (7.8) and 

(7.9), 
3- 3 and is the 0-0 band of the A P ~-- X ~ system of TiO, known as 

the 'I -system, plotted at 2000oK. This turns out to be more 

picturesque than the Svlan sys tem above. The constants for the two 

electronic states are: 

X3h : T" 0.00, l.J" = 1009.02, w"x " 4.498, GJIt tt -0.0107, 
e e e e eYe 

D" -7 
0<" 3.011X10-

3
, (3~ -9 

B" = 0.535412, = 6.029X10 , 3.4X10 , 
e e e 

A" = 50.61, 

A3~: T' 14163.32, .' 867.78, t..;'x' 3.942, 
e (;)e e e 

B' 0.507390, D' -7 
e e 

6.918X10 , 

A' 57. 
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Notice that the structure is very complicated indeed, with many 

overlapping branches visible; yet this is just one band. It is easy 

to see from this, that when TiO is abundant, it can be an important 

source of opacity, as there will be many overlapping bands, each as 

complex as this one shown. However, it must be pointed out that such 

detail would never actually be observed in practice in real stellar 

spectra, after various broadening mechanisms, including instrumental 

broadening, have taken their toll. Moreover, the spectrum shown is 

idealized, with the line positions and strengths computed using the 

theory in chapter 4 with the above constants, with )l-doubling not 

shown and various higher order effects, that may in practice also be 

important, also being neglected. Nevertheless, this should at least 

give a general impression of the band. 

An example of the band strengths in absorption for the 

vibration-rotation transitions of CO are given in tables (7.14) and 

(7.15) for values of v' and v" from 0 to 11. Table (7.14) lists the 

band strengths in cm2/sec/absorber computed from (4.4.2) using the 

constants for the dipole moment expansion: 

-0.1221, HI -0.199, N3 -2.665, H4 0.26, 

where H. is in DR- i , obtained from Bouanich (111). On dividing by the 
1 

total partition function and multiplying by the Boltzmann factor for 

h .. b . I I I d b h b d ~ CO· -3 b· t e v vi ratlona eve an y t ,e a un ance OL ln cm , we 0 taln 

table (7.15) for the band strengths in the form of volume absorption, 
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i. e. 2 3 -1 -1 0 -8-3 
cm / sec/ cm or cm sec at T = 2000 K and p = 10 gm cm for 

the standard mixture. Strictly speaking, these band strengths are in 

fact the strengths of the fictitious J"= 0 -~ J'= 0 transitions with 

unit Honl-London factor, as the rotational partition function has not 

been removed as it is included in the total partition function; on 

multiplying by the rotational partition function, the true band 

strengths would be recovered. Note that as stated in chapter 4, MO 

does not enter the calculations, also as no higher terms than M4 are 

used, band strengths with AV > 4 will not be strictly correct, as 

contributions due to }is' M6 etc. are neglected, and should in reality 

be allowed for, however, such bands are usually very ,-leak. 

With the band strengths as computed above, the detailed structure 

of individual bands can be computed, with the line strengths obtained 

from (4.4.1). Figures (7.10) and (7.11) show at 2000oK, the second 

overtone sys tem of the vi bra tion-rota tion bands of CO, i. e. ~ v = 3. 

Unlike the example for TiO which is a single very complex band, the 

figures here show seven overlapping bands, each being very simple, 

with one P and R-branch each. Because the differences of the 

rotational constants for each pair of participating vibrational levels 

are larger than for the fundamental and first overtone systems, the 

turnovers in the R-branches are more marked, giving a more 

aesthetically pleasing picture. In order of decreasing frequency and 

strength, the bands are: 3-0, 4-1, 5-2, 6-3, 7-4, 8-5 and 9-6, the 

upper level being given first by convention. The constants for the 

ground electronic state that are used are: 

B 
e 

90543, (,) 
e 

1. 931271, D 
e 

2169.82, C.J x e e 

6.1198Xl0-6, 0< 
e 

13.294, i.Jy' 
e e 

1. 7513Xl0-2 • 

0.0115, 
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Table (7.14) of CO Band Strengths in em2/see/absorber 

.. 
v 

v 
, 

·0 1 2 3 4 5 
0 O.OOOE+OO 
1 2.892E-07 O.OOOE+OO 
2 2.017E-09 5.700E-07 O.OOOE+OO 
3 8.487E-12 6.165E-09 8.418E-07 O.OOOE+OO 
4 9.486E-15 3.615E-11 1.256E-08 1.104E-06 O.OOOE+OO 
5 8.328E-16 6.369E-14 9.607E-ll 2.l32E-08 1.357E-06 O.OOOE+OO 
6 1. 503E-16 4.170E-15 2.479E-13 2.039E-IO 3.255E-08 1.599E-06 
7 l.332E-17 9.848E-16 1.190E-14 7.306E-13 3.783E-10 4.636E-08 
8 1.024E-18 1. 031E-16 3.671E-15 2.516E-14 1.806E-12 6.406E-10 
9 7.776E-20 9.081E-18 4.476E-16 1.021E-14 4.322E-14 3.947E-12 

10 6.100E-21 7.763E-19 4.467E-17 1.437E-15 2.353E-14 6.278E-14 
11 5.036E-22 6.772E-20 4.258E-18 1. 609E-16 3.793E-15 4.742E-14 

6 7 8 9 10 11 
6 O.OOOE+OO 
7 1.831E-06 O.OOOE+OO 
8 6.285E-08 2.052E-06 O.OOOE+OO 
9 1.016E-09 8.214E-08 2.262E-06 O.OOOE+OO 

10 7.871E-12 1.532E-09 1.043E-07 2.460E-06 O.OOOE+OO 
11 7.789E-14 1.461E-11 2.221E-09 1.295E-07 2.645E-06 O.OOOE+OO 

Table (7.15 ) of CO Band Strengths in (em 
-1 

sec) at 20000 K 

.. v 
v 

, 
0 1 2 3 4 5 

0 O.OOOE+OO 
1 5.283E+02 O.OOOE+OO 
2 3. 683E+00 2. 22SE+02 O.OOOE+OO 
3 1. 550E-02 2.410E+00 7.175E+Ol O.OOOE+OO 
4 1.733E-05 1.413E-02 1.071E+00 2.092E+Ol O.OOOE+OO 
5 1. 521E-06 2.489E-05 8.189E-03 4.039E-Ol 5.824E+00 O.OOOE+OO 
6 2.745E-07 1.630E-06 2.113E-05 3.864E-03 1.397E-Ol 1.585E+OO 
7 2.433E-08 3.849E-07 1.015E-06 1.384E-05 1. 624E-03 4.593E-02 
8 1. 871E-09 4.028E-08 3.129E-07 4.766E-07 7.751E-06 6.347E-04 
9 1. 420E-IO 3.549E-09 3.816E-08 1. 934E-07 1. 855E-07 3.911E-06 

10 1.114E-ll 3.034E-IO 3.808E-09 2.722E-08 l.OlOE-07 6.221E-08 
11 9.198E-13 2.647E-ll 3.630E-IO 3.048E-09 1.628E-OS 4.69SE-08 

6 7 8 9 10 11 
6 O.OOOE+OO 
7 4.269E-Ol O.OOOE+OO 
8 1. 465E-02 1. 147E-Ol O.OOOE+OO 
9 2. 368E-04 4.589E-03 3.0S7E-02 O.OOOE+OO 

10 1.835E-06 8.559E-05 1.424E-03 8.353E-03 O.OOOE+OO 
11 1.815E-08 8.165E-07 3.031E-05 4.397E-OLf 2.277E--03 O.OOOE+OO 
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Note that because the constants for CO are well known, and we are 

dealing with simple singlet bands without the complications of spin 

coupling etc. , various higher order effects that are neglected are 

unlikely to be very important, and figures (7.10) and (7.11) are 

likely to represent quite accurately the true spectrum of CO, unlike 

the case for TiO. 

Finally, an example of a part of a band of H2O is given. Table 

(7.16) lists the transitions of the 001 ~- 000 band of H
2

O up to 

J"= 4, this being an A-type band. From left to right the columns are: 

J" the initial rotational level, m " the initial sublevel, where 

m"= n"+l = ""C"+J"+l, see (5.3.7), t which is simply the number of the 

transition, though a maximum of 7 is allowed for, in the cases here 

t ~ 6, gr the nuclear spin statistical weight factor, see the 

discussion near the end of section 5.3, S the line strength in the 

form of volume absorption in cm-1 and u the dimensionless frequency of 

the line. 

The strength S is computed from (5.2.9) for the case with the 

asymmetric top, as discussed in section 5.3. On multiplying by the 

abundance of the molecule in -3 cm an integrated absorption in the 

-1 -1 form of cm sec is obtained, then to be consistent with the units in 

our handling of lines and continuum in bins, as discussed in chapter 

6, an additional factor of h/kT is included, giving the final strength 

-1 
as cm with the factorg r also included. As stated in chapter 5, 

the quantities are normalized so that the sum from an initial 
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sublevel over all transitions is 2J+1, as there are also 2J+1 

sublevels, the sum over all transitions over all sublevels from a 

given J is (2J+1)2. From each initial sublevel, transitions are 

considered in turn to the final sublevels of increasing energy, for 

the P, Q and R-branches in turn. With the aid of table (5.2) of the 

rotational selection rules, it is possible to identify the upper 

sublevels involved, hence the subbranches. 

The calculations are again performed with the standard mixture, 

o -8-3 at T = 2000 K and f = 10 gm cm The constants for H20 as obtained 

from Herzberg (30) are: 

tJ 3825.32, ~'2 1653.91, w3 3935.59, 1 

x
11 -43.89, x22 -19.50, x33 -46.37, 

x
12 -20.02, Xu -155.06, x23 -19.81, 

A 27.210, B 14.596, C = 9.507, 
e e e 
A 0.747, ~ -3.323, A 

1. 241, 0(1 ~ 
B 

0.222, B -0.167, B 0.112, 0(1 !X2 0:3 

O\C 0.180, ::I.,C 0.135, 
C 0.129, 

1 2 
cx

3 

together with the reduced band strength (S /~ ) = 6.398X10-11 
o 0 

3 cm /sec/absorber, calculated from data from McClatchey et al. (88). 
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Table (7.16) of Some Transitions of \\Tater 001 ~-- 000 Band 

J" " 
t? .... "t " 

S m t gr SJ'J" u 

0 1 1 0.250 1.00000E+00 1.08916E-12 2.7186 

1 1 1 0.750 1.00000E+00 3.17176E-12 2.6846 
1 1 2 0.750 1.95370E+00 6.31177E-12 2.7344 
1 1 3 0.750 4.62995E-02 1.52024E-13 2.7792 
1 2 1 0.250 1.50000E+00 1.58235E-12 2.7045 
1 2 2 0.250 1.50000E+00 1.59777E-12 2.7308 
1 3 1 0.750 1.50000E+00 4.71607E-12 2.6970 
1 3 2 0.750 1.50000E+00 4.78853E-12 2.7384 

2 1 1 0.250 1. 95371E+00 1. 98565E-12 2.6682 
2 1 2 0.250 7.71327E-02 8.06457E-14 2.7448 
2 1 3 0.250 2.87323E+00 3.00800E-12 2.7484 
2 1 4 0.250 9.59312E-02 1. 02323E-13 2.8002 
2 2 1 0.750 1.50000E+00 4.54625E-12 2.6702 
2 2 2 0.750 8.33303E-01 2.56479E-12 2.7117 
2 2 3 0.750 2.65120E+00 8.26026E-12 2.7450 
2 2 4 0.750 1.54957E-02 5.00019E-14 2.8429 
2 3 1 0.250 1.50003E+00 1.49422E-12 2.6627 
2 3 2 0.250 8.33314E-01 8.38304E-13 2.6891 
2 3 3 0.250 2.63588E+00 2.71783E-12 2.7562 
2 3 4 0.250 3.07841E-02 3.26121E-14 2.8318 
2 4 1 0.750 7.71324E-02 2. 23233E-13 2.6542 
2 4 2 0.750 3.25617E+00 9.58259E-12 2.6989 
2 4 3 0.750 1.66670E+OO 4.99556E-12 2.7488 
2 5 1 0.250 L~. 64393E-02 4.41899E-14 2.6204 
2 5 2 0.250 3.26600E+00 3.19871E-12 2.6971 
2 5 3 0.250 1. 687 56E+00 1. 68672E-12 2.7524 

3 1 1 0.750 2.87960E+00 8.32077E-12 2.6531 
3 1 2 0.750 1.95982E-01 5.86490E-13 2.7476 
3 1 3 0.750 3.81393E+00 1.14690E-ll 2.7610 
3 1 4 0.750 1.10485E-01 3.40096E-13 2.8263 
3 2 1 0.250 2.65441E+00 2.54867E-12 2.6551 
3 2 2 0.250 6.02634E-01 5.93251E-13 2.7223 
3 2 3 0.250 3.71464E+00 3.70544E-12 2.7585 
3 2 4 0.250 2.83160E-02 2.93579E-14 2.8671 
3 3 1 0.750 2.63583E+OO 7.39308E-12 2.6440 
3 3 2 0.750 6.01901E-01 1.70951E-12 2.6774 
3 3 3 0.750 3.53829E-02 1. 04169E-13 2.7753 
3 3 4 0.750 3.63985E+00 1.07058E-ll 2.7727 
3 3 5 0.750 8.70322E-02 2.62732E-13 2.8457 
3 4 1 0.250 1. 66670E+00 1. 52301E-12 2.6466 
3 4 2 0.250 1.95548E-01 1.78930E-13 2.6502 
3 4 3 0.250 2.1377 5E+00 1.99431E-12 2.7020 
3 4 4 0.250 2.98023E+00 2.84456E-12 2.7645 
3 4 5 0.250 1. 97721E-02 1. 97 582E-14 2.8943 
3 5 1 0.750 

. 
1.6885SE+00 4.60376E-12 2.6433 

3 5 2 0.750 9.62770E-02 2.58055E-13 2.5986 
3 5 3 0.750 2.14547E+OO 5.95985E-12 2.6932 
3 5 4 0.750 3.04633E+OO 8.70942E-12 2.7719 
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Table (7.16) Continued 

J" " 
L'~1t 

S m t gr ,SJ'J" u 

3 5 5 0.750 2.33761E-02 6.96822E-14 2.8901 
3 6 1 0.250 1.54988E-02 1. 28814E-14 2.5509 
3 6 2 0.250 3.53902E-02 3.01873E-14 2.6180 
3 6 3 0.250 5.18858E+OO 4.55361E-12 2.6936 
3 6 4 0.250 1. 76053E+00 1.58476E-12 2.7628 
3 7 1 0.750 3.08628E-02 7.72782E-14 2.5621 
3 7 2 0.750 5.20085E+00 1.36897E-ll 2.6933 
3 7 3 0.750 1. 76828E+00 4.77622E-12 2.7638 

4 1 1 0.250 3.81675E+00 3.43731E-12 2.6386 
4 1 2 0.250 3.05447E-01 2.86996E-13 2.7529 
4 1 3 0.250 4. 78307E+00 4.52812E-12 2.7737 
4 1 4 0.250 9.47288E-02 9.26689E-14 2.8662 
4 2 1 0.750 3.71708E+00 1.00321E-ll 2.6403 
4 2 2 0.750 5.04788E-01 1.41156E-12 2.7356 
4 2 3 0.750 4.74215E+00 1. 34402E-ll 2.7726 
4 2 4 0.750 3.59774E-02 1.06412E-13 2.8935 
4 3 1 0.250 3.64376E+00 3.14311E-12 2.6261 
4 3 2 0.250 5.04383E-Ol 4.41081E-13 2.6623 
4 3 3 0.250 1. 27746E-01 1.16270E-13 2.7709 
4 3 4 0.250 4.58043E+00 4.21016E-12 2.7983 
4 3 5 0.250 1. 43685E-01 1. 34851E-13 2.8572 
4 4 1 0.750 2.98361E+00 7.59436E-12 2.6297 
4 4 2 0.750 3.04891E-01 7.80008E-13 2.6431 
4 4 3 0.750 1.52253E+00 3.99126E-12 2.7083 
4 4 4 0.750 4.14757E+00 1.11645E-ll 2.7810 
4 4 5 0.750 4.13973E-02 l.16710E-13 2.9126 
4 5 1 0.250 3.04314E+00 2.54761E-12 2.6232 
4 5 2 0.250 1.10522E-01 9.06987E-14 2.5715 
4 5 3 0.250 1.52469E+OO 1.30683E-12 2.6857 
4 5 4 0.250 1. 71309E-02 1.53928E-14 2.8156 
4 5 5 0.250 4.24045E+00 3.78782E-12 2.7990 
4 5 6 0.250 6.40584E-02 5.93259E-14 2.9020 
4 6 1 0.750 1. 76079E+00 4.21023E-12 2.6235 
4 6 2 0.750 2.82916E-02 6.51231E-14 2.5256 
4 6 3 0.750 1.27654E-01 3.04929E-13 2.6209 
4 6 4 0.750 3.85452E+00 9.46404E-12 2.6939 
4 6 5 0.750 3.2083QE+00 8.12556E-12 2.7788 
4 6 6 0.750 2.03911E-02 5.47734E-14 2.9472 
4 7 1 0.250 1. 77199E+OO 1.41057E-12 2.6227 
4 7 2 0.250 8.74391E-02 6.75979E-14 2.5471 
4 7 3 0.250 3.87117E+00 3.16288E-12 2.6919 
4 7 4 0.250 3.24820E+00 2.73899E-12 2.7782 
4 7 5 0.250 2.11995E-02 1.89590E-14 2.9465 
4 8 1 0.750 1. 977 63E-02 4.14683E-14 2.4903 
4 8 2 0.750 1.70909E-02 3.69689E-14 2.5689 
4 8 3 0.750 7.14858E+OO 1. 61745E-ll 2.6872 
4 8 4 0.750 1. 81455E+00 4.23722E-12 2.7733 
4 9 1 0.250 2.33310E-02 1.63365E-14 2.4948 
4 9 2 0.250 7.15900E+00 5.39919E-12 2.6871 
4 9 3 0.250 1.81767E+OO 1.41495E-12 2.7735 
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Because of our approximate treatment for computing the spectrum 

of H
2
0, an example of a detailed 1ine-by-1ine plot would not be 

realistic as individual line strengths and positions are approximate, 

and very weak transitions are neglected. However, because of the 

average way we handle lines, a smeared representation would be more 

realistic, and in the next section a plot of the "binned" 001 -E- 000 

band of H
2

0 is shown. 

Finally, as the fine structure of a band of a linear molecule, 

such as CO
2

, is the same as for a diatomic molecule, 

consider any examples. 

we do not 
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7.4 Some Tests and Timings of Computing Band Opacities with Bins 

Before we can compute with confidence band opacities with the 

TRIATOM program, it is necessary to consider some tests of the various 

methods discussed in chapter 6. 

With the three separate methods: the Independent Line Method 

(ILM) , which includes the treatment of the partial overlap of two 

Gaussian profiles, the Line Smear Method (LSM) and the Opacity 

Sampling Method (OSM), together with a total rectangular smear (TRS) 

and the total overlap of lines in a bin (TOL) , the four schemes are 

considered \vhich combine these methods in different ways, as some of 

these methods are inapplicable in certain circumstances on their mm, 

as mentioned in chapter 6 and below. 

as follows: 

(i) • LSM, 

(ii). ILM + LSM + (TRS + TOL), 

(iii). OSM, 

(iv). OSM + ILM + (LSM + TRS + TOL), 

The four schemes are summarized 

where the brackets indicate that the methods are held in reserve and 

are used as a last resort if the other methods are inapplicable. If 

11K is the reciprocal of the ~~O for an individual bin, it is 

convenient to define a ne"l quantity K, such that K = 11K, then the 

required K is obtained from K(ILM), K(LSM), K(OSM), K(TRS) and K(TOL) 
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acc.ording to the method, with the choice depending on the scheme 

adopted. We now consider in detail, each scheme in turn. 

For scheme (i) with K = K(LSM), the LSM on its own is not very 

useful for obtaining RMOs, due to the uncertainties in smearing lines 

in bins, as discussed in section 6.4. However, scheme (i) uses the 

least amount of computer time, because of the smaller amount of 

processing, and can give at least a rough idea of the RMO, 

particularly if there are large regions of the spectrum which are 

continuum alone, where of course none of the methods is applied, and 

where there is significant absorption, the congestion is so large that 

the LSM is not so approximate. In addition, scheme (i) can be used to 

obtain the PHOs more quickly than the other schemes, ,as the sum of the 

line strengths are still stored in bins. 

Scheme (ii) uses a combination of the ILM and LSM with the TRS 

and TOL held in reserve in the following way, where n is the number of 

lines in a bin, see also the end of section 6.3: 

(a). for n = 1 or 2 and K(ILM) > 0, then K = K(ILM) , 

(b). for n = 1 or 2 and K(ILM) ~ 0, then K min[K(ILM),K(TOL)], 

(c). for n> 2 and K(ILH) > 0, then K max[K(TRS),K(ILM)], 

(d). for n > 2 and K(ILH) ~ 0, then K min[K(LSM),K(TOL)]. 

Cases (a) and (c) apply when the ILH does not break do,m, with it 

nearly ahlays in case (c) giving a value for the upper limit of the 

opacity that is considerably less than the value for the TRS computed 

from (6.4.3). The maximum function takes care of the unlikely event 
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of 0 < K(ILM) < K(TRS) with the 11M giving a larger but finite value 

of the opacity than the TRS. The breakdown case (b) should never 

occur with the correct choice of bin size and can be regarded as an 

"emergency" case. For congested bins, case (d) is very common with 

the value c,omputed from the LSM far more likely to be chosen than the 

absolute lower bound to the opacity from the TOL. Because of the 

necessity of applying the ILM, scheme (ii) is more expensive in 

computer time than scheme (i); however, it would be expected to give 

much more reliable P~Os, particularly if there are large regions of 

the spectrum which have lines,'but which are not heavily congested. 

Scheme (iii) is just the OSM on its own, so K = K(OSM) 

unconditionally. This has the disadvantage of requiring large amounts 

of computer memory for sufficient sampling and is also expensive in 

computer time, but with sufficient sampling would give an accurate 

value of the RHO. With the expense of less reliable &~Os, a coarser 

grid could be used, thus saving memory and processing time. Examples 

with different grid sizes are discussed below. No matter how fine a 

grid is chosen, we are obliged to undersample in the limit of very 1m. 

frequency, as discussed in chapter 6, though with a fine enough grid, 

the region undersampled will be close to u = 0, which has a small 

weighting function and hence does not introduce much error into the 

final RMO. 

Finally, scheme (iv) is the most comprehensive ,and requires the 

greatest amount of computing resources. If ~u is the average width of 

the lines in a bin, i.e. ~u = (l/n)IAu., d is the separation of the 
• 1. 

1. 

fine grid intervals and k is some specified control parameter, 
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typically unity, then the following cases can be considered: 

(a). for n 1 or 2, Au ~ kd and K(ILM) > 0, then K 

(b). for n 1 or 2, ~u ~ kd and K(ILM) ~ 0, 

then K = min[K(OSM),K(TOL)], 

K(ILM) , 

(c). for n = 1 or 2 and Eu < kd, then take cases (a) or (b) of 

scheme (ii), 

(d). for n > 2 and .6u >,. kd, 

then K = min{max[K(ILM),K(OSM),K(TRS)],K(TOL)}, 

(e). for n> 2 and~u < kd, then take cases (c) or (d) of scheme (ii). 

In other words, if the grid is considered to be fine enough, the OSM 

is essentially used for n > 2, with the ILM used for n = 1 or 2, 

except in breakdmoffi cases, which there should not be. Hmvever, . if the 

grid is considered to be too coarse, the OSM is ignored and scheme 

(ii) is used in place. The purpose of the maximum and minimum 

functions is to ensure that the required value is within the possible 

bounds for each bin. In particular for case (d), if the sampling 

interval is sufficiently small, K = K(OSM) in practice, with K(OSM) 

lying well within the permitted bounds. However, if we choose to 

undersample with d large by setting k to a small value, there is no 

guarantee that K(OSM) will necessarily lie within the permitted 

bounds. Thus lines in a bin could be completely missed, in which case 

K(OSM) is just the continuum with K(TOL) likely to be a better value 

as the TOL is a true lower bound to the opacity, or upper bound to its 

reciprocal. On the other hand, it could just be that although the 

bins are relatively uncongested, all the grid points happen to lie 

near the maximum of the spectral lines, in which case the OSM will 
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overestimate the opacity, with the ILM likely to be a better value, or 

at worst if that has broken down, K(TRS) is always available as a last 

resort. 

In ord,er to investigate the various methods above in practice, a 

number of realistic numerical experiments were performed, with some of 

the examples discussed here. In all cases the vibration-rotation 

spectrum of co '0 and its isotopic variants were computed at 2000 K on 

top of the continuum produced in the usual way at that temperature and 

em -3 co was chosen simply because it is abundant and 

produces a simple spectrum, requiring less overheads in processor time 

than molecules which produce more complex spectra. However, by 

including the isotopic variants, a relatively complex ,spectrum can be 

produced cheaply. 

The spectrum was computed using 2500 bins in the region u = 1 to 

2, in order to cover the fundamental bands of CO, with the rest of the 

spectrum blanked off. The bins selected from this region in table 

(7.18) are all in the vicinity of u = 1.65, -6 as Au = 6.05X10 u for CO 

at 2000oK, L'lu = 10-5 in this part of the spectrum. Also, as the bin 

widths are 1/2500 = 4X10-4 , the bins are thus about 40 profiles wide. 

Table (7.17) lists the various sampling intervals used to compute the 

contribution in each bin by the OSM. In keeping with the rules 

discussed in section 6.1, there have to be an even number of sampling 

intervals per bin. From left to right for six different sampling 

intervals, table (7.17) lists the total number of sampling intervals 

in the region u 1 to 2, the number of sampling intervals per bin, 

the approximate number of sampling intervals per profile width and the 
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separation between sampling points in the fine grid, Le. the 

reciprocal of the total number of sampling intervals in the whole 

region. 

Table (7.17) of Different Sampling Intervals 

Total No. No. Per Bin Approx. No. Pre Width 

1 10000 4 0.1 10-4 

2 20000 8 0.2 SX10-S 

3 SOOOO 20 O.S 2X10-S 

4 100000 40 1 10-S 

S 200000 80 2 SX10-6 

6 SOOOOO 200 S 2X10-6 

For the 10 bins given in table (7.18), each identified by its 

number, the following IS entries are given: n the number of lines in 

the bin, u the value of u at the bin centre, Au the average width, 
o 

r = (l/n),j. the average relative strength of lines, .r being defined 
• l. 
l. 

in (6.3.14), then K(CON), K(LSM), K(TRS), K(TOL) and K(ILM) , where 

K(CON) refers to the continuum alone, finally K(OSM) for the six sizes 

of sampling intervals in the order of table (7.17). 
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Table (7.18) of Some Tests on a Sample of Bins 

1650 1651 1605 1664 1668 

n 0 1 1 2 2 
U 1. 6598 1. 6602 1. 6418 1. 6654 1. 6670 
-0 
LlU O.OOOOOE+OO 1.00493E-05 9.93828E-06 1.00816E-05 1. 00911E-05 -
r O.OOOOOE+OO 2.26526E+05 1.49893E+06 4.42163E+04 3. 16014E+04 
CON 2.04740E+I0 2.04887E+10 1. 98156E+10 2.06788E+10 2.07374E+I0 
LSM 2.04740E+I0 1.92413E+I0 1.86222E+I0 1. 82304E+I0 1.82798E+I0 
TRS 2.04740E+10 9.04470E+04 1.32199E+04 2.33835E+05 3.28104E+05 
TOL 2.04740E+I0 1.80242E+I0 1.73209E+10 1.82582E+I0 1. 83352E+10 
ILM 2.04740E+I0 1. 80242E+1 0 1.73209E+10 1.69848E+10 1. 83357E+10 
OSMI 1. 74926E+I0 1. 87819E+10 1.98156E+I0 1.39869E+10 1. 38261E+10 
08M2 1.89833E+10 1.96353E+10 1. 65140E+10 1. 55604E+10 1. 90096E+ 10 
OSM3 1. 97265E+10 1.87819E+I0 1.72058E+I0 1.70290E+I0 1. 86414E+I0 
OS1'14 1. 94494E+10 1.90271E+10 1.7Lf787E+I0 1.73252E+I0 1.85019E+I0 
OS1-15 1. 93997E+I0 1. 89724E+I0 1.73358E+10 1.69370E+10 1. 82978E+10 
081'16 1. 93950E+10 1.89736E+10 1. 73183E+I0 1. 69896E+10 1. 83434E+I0 

1608 1628 1625 1632 1634 

n 4 5 6 8 15 
U 1.6430 1. 6510 1.6498 1. 6526 1.6534 
-0 
bu 9.85960E-06 9.92536E-06 9.92932E-06 9.97639E-06 9.95133E-06 
r 3.50717E+05 1.36069E+05 1.28826E+05 5.74459E+02 3.51644E+04 
CON 1. 98595E+10 2.01521E+10 2.01083E+10 2.02107E+I0 2.02399E+10 
LS1'1 1.55209E+10 1. 477 80E+1 0 1. 38568E+1 0 1. 22992E+10 7.96234E+09 
TRS 1. 41564E+04 2.96205E+04 2.60146E+04 4.39681E+06 3.83720E+04 
TOL 1. 74039E+10 1. 77002E+ 10 1.76543E+10 1.81438E+10 1.77925£+10 
ILM 1. 35302E+10 1. 37724E+I0 1. 21183E+I0 1.02288E+I0 O.OOOOOE+OO 
OSMI 3.33124E+09 1. 3433 6E+1 0 1.96433E+10 1.96185E+10 5.14582E+09 
OSM2 1. 49000E+10 1.51252E+10 1. 36841E+10 1.27831E+10 9.24099E+09 
OSl13 1. 32837E+10 1. 57200E+I0 1. 33073E+I0 1.40405E+10 9.25021E+09 
OSH4 1. 36431E+I0 1. 56237E+I0 1.14954E+10 1.38238E+I0 8.17420£+09 
OSM5 1.35699£+10 1. 55080E+1 0 1.22490E+10 1.36921E+10 8.51596£+09 
OSM6 1. 35306E+10 1. 55155E+I0 1.22183E+10 1.37269E+I0 8.43988£+09 



Note that the Ks given in table (7.18) are reciprocal volume 

absorption in cm, and do not include the constant in the Rosseland 

weighting function, see the end of section 6.5. 
2 -1 

The RMO in cm gm 

for each bin obtained from any of the methods is found from: 

1 . 11 Lt 'd.. 6Q-+S'flx 10'1 
f( .~ (7.4.1) 

k 15(-> K 

in 2 -1 for p = 
-8 -3 cm gm 10 gm cm 

The bins selected for table (7.18) are chosen not only to be a 

representative sample in the runs performed, but also to show a number 

of interesting features. In all cases, the results converge to some 

value as the sampling interval becomes smaller for the OSM, indicating 

that for the finest grid, the results are quite accurate. In our 

general application of the OSM, we strive to sample at approximately 

intervals of profile widths, which in practice means about three fine 

grid points across a profile including its wings, so the values of 

K(OSM4) are of particular interest here. Although more accurate 

values are obtained from K(OSM5) and K(OSM6), insufficient memory is 

available at St.Andrews to cover the whole spectrum with such a fine 

grid, in addition to being more expensive in processing time, OSM5 and 

OSM6 can be regarded as oversampling. By saving memory and processing 

time, we could undersample with OSH3 with the further sacrifice of 

accuracy, with any lower sampling being of little value. 
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If we assume K(OSM6) to be the accurate value for each bin, then 

the percentage errors for K(OSM4) for bins 1650, 1651, 1605, 1664, 

1668, 1628, 1625, 1632 and 1634 are approximately 0.3, 0.3, 1, 2, 0.9, 

0.8, 0.7, -6, 0.7 and -3 respectively. This shows that even for the 

worst cases the errors are acceptable, and for most cases the errors 

are small. It is easy to see that the errors for the lower sampling 

cases will in general be larger. ~hen the spectrum is taken as a 

whole, the sampling errors \.,;rill tend to cancel out. Moreover, where 

there are large regions of continuum, no sampling errors occur, and 

where bins are very congested indeed, there being no examples in the 

cases here, the sampling errors will tend to be small. This is 

because heavy congestion tends to produce a pseudo-continuum, so even 

gross undersampling may not be too bad in some cases. 

We can briefly consider some of the features shovffi by these bins. 

Normally for bins that have only continuum, K(OSM) = K(CON), however, 

bin 1650 is chosen although there are no lines in the bin, 

K(OSM) < K(CON) which can be explained by the spillover of wings from 

lines in the neighbouring bins 1649 and 1651. This is easily shown by 

summing over 1649, 1650 and 1651, where 1649 and 1651 each have only 

one line. All figures must be multiplied by 10
10

• 

K(OSM6) 

K(ILH) 

1.96510 + 1.93950 + 1.89736 

1.95194 + 2.04740 + 1.80242 

5.80196, 

5.80176, 

which is very good agreement. As there is unlikely to be any overlap, 

the ILM is very good, and gives correct values. Except as stated in 
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chapter 6, all the contribution from any line is put into one bin. 

From the above discussion, it is immediately seen why 

K(ILM) < K(OSM6) for bin 1651. For bin 1605, K(ILM) ::: K(OSM6) 

indicating that the line is well within the bin. Bin 1664 has two 

lines which are obviously not overlapping to any great extent as it is 

clear that K(TOL) > K(ILM) ::: K(OSM6), however, in bin 1668 the t,vo 

lines are heavily overlapping, or one is relatively weak and they are 

partially overlapping (a cut-off is used to prevent any very weak 

lines from being generated), as K(TOL) ::: K(Iti1) ::: K(OSM6). (Note that 

on subsequent detailed examination of the bins, the above statements 

were confirmed, in particular for bin 1668, the two profiles were 

almost totally overlapping). With the remaining bins, the congestion 

is increased until for bin 1634, even though the sum of the profile 

widths is still much less than the bin width, the ILM breaks down and 

cannot be used as a guide. This is because the wings of the strong 

lines beyond the Doppler width can still be an important source of 

absorption, refer to (6.3~1). Note that when the ILM breaks down, the 

subsequent lines in that bin are no longer treated for the ILM, to 

save computer time, and for these bins K(ILM) is set to zero. 

From the theory in chapter 6, we know that 

K(TOL) ~ K(OSM) ~K(ILM), which is seen to be true here, save for 

those cases where edge effects occur. When there are two or more 

lines in a bin, one has a quantitative idea about the amount of 

overlap, by how K(OSM) is related to K(IIM) and K(TOL). Thus for bin 

1608 the agreement between K(OSM6) and K(ILH) is very good indeed, 

indicating no overlap, whereas for bin 1628, K(OSM6) lies comfortably 



345 

in between the other tvJO. For some of the undersampling cases, K(OSM) 

lies outside the permitted range and would clearly be incorrect; the 

treatment for scheme (iv) handles such cases. For comparison, K(LSM) 

and K(TRS) are also included; note that in all cases here 

K(TRS) «K(OSM), though for very heavy congestion this may no longer 

be the case. 

As stated in section 6.3, even for three or more lines in a bin, 

the partial overlap treatment for the first two lines can give a 

slightly better upper bound to the opacity. Thus in some earlier 

tests performed at the time the partial overlap treatment was 

implemented, in general there was found to be very little difference 

between bins with and without the partial overlap treatment, with more 

than one line, which is to be expected as the bins are very wide 

compared to profile widths for the cases handled. One notable 

exception was a particular bin with 15 lines, (not bin 1634) where 

K(ILM) increased from 2.34719XI09 to 2.76351Xl0
9 

with the partial 

overlap treatment, and represents an improvement in the upper bound of 

the RMO in that bin; 

K(OSM6) = 8.02109X10
9

• 

compare this to K(TOL) = 1.55136XI0
10 

and 

Finall~, a number of timing runs were performed, where in order 

to cut overheads, the least amount of output was generated. From left 

to right in table (7.19) are listed the scheme, the central processor 

unit (CPU) time in seconds, the number of sampling intervals across 

the region u = 1 to 2, if applicable and LK, the sums of the 

contributions over the bins by the various schemes, with all cases 

having 2500 bins. Note that scheme (iv) cases (c) or (e) '\vere never 
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invoked. For comparison, z.K is also given for the continuum alone, 

the ILM on its own, where for breakdown cases the contribution is zero 

and the TOL; the last two giving the bounds. 

Table (7.19) of CPU Timing Runs and Sums Over Bins 

Scheme CPU Time in sec No. Smpl. Intv. ZK 

(i) 35 3.44346E+13 

(ii) 41 3.35348E+13 

(iii) 37 10000 3.47964E+13 

(iii) 39 20000 3.51139E+13 

(iii) 46 50000 3.49957E+13 

(iii) 52 100000 3.50235E+13 

(iii) 60 200000 3.50246E+13 

(iii) 86 500000 3.50239E+13 

(iii) 97 600000 3.50236E+l3 

(iv) 47 10000 3.55513E+13 

(iv) 60 50000 3.50587E+13 

(iv) 111 600000 3.50368E+13 

CON 4. 11083E+13 

ILM 3.33915E+13 

TOL 3.96619E+13 

In the cases considered here, there is quite a lot of continuum 

over the range, vlhich "dilutes" the errors. Nevertheless, it is clear 

that though scheme (ii) is relatively fast, it gives a rather poor 

result compared to even scheme (iii) with 20,000 sampling intervals 
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which uses less CPU time. It can be seen that even gross 

undersampling can give quite a good result as the random errors tend 

to cancel, as stated earlier, though individual bins could be quite in 

error. Because of the extra processing time and edge effects when the 

11M is applied, there is no advantage in scheme (iv) unless there is a 

shortage of memory. It must be noted that these times are 

approximate; because of the properties of the operating system in a 

multi-user environment, identical runs can produce different CPU 

times. Moreover, for actual production runs, considerably more 

complex spectra, like that of H
2

0 are generated, and will have larger 

overheads. Thus the timings here act only as a rough guide. 

To complete this section; some graphical examples are shown, with 

o -8-3 
all computations performed at T = 2000 K and f = 10 gm cm Figure 

(7.12) is a plot of part of the fundamental sequence of bands of CO, 

including any isotopic variants abundant enough to produce a spectrum, 

covering the bins 1631 to 1635, which includes the last two bins in 

table (7.18). The bin sizes are 1/2500 = 4X10-4 and the separation of 

the sampling points of the fine grid is 1/600,000 = 1.6667X10-6 , 

corresponding to about 6 fine grid points per profile width, (600,000 

grid intervals is about the maximum that can be handled with the VAX 

in its usual configuration, after taking account of the memory 

required for other arrays and the program itself). The profiles are 

drawn using a supplied plotting subroutine that dra'.;rs smooth curves 

through a sequence of points. Since the runs for table (7.18) were 

performed, more molecules were added to the mixture, together with 

better data, so the opacities in the bins corresponding to those in 

table (7.18) are slightly different, but no qualitative changes have 
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occurred, with the opacities in figure (7.12) ranging from 

·these being the actual opacities 

at the grid points, not the means over the bins. 

With this linear plot, the spectrum looks deceptively empty, and 

it is hard to see how there can be a significant amount of absorption 

in bin 1634, where the ILM breaks down. However, we know from the 

theory in chapter 6, that once the relative strength of a profile is 

large compared to the continuum, say 100, increasing the strength of 

the profile by even many orders of magnitude will not cause a large 

increase of the RMO in that bin, with the quantity X, defined in 

(6.2.5), proportional to the square root of the log of the profile's 

strength. Thus in showing the strongest profiles correctly, the much 

weaker ones, which are still strong, are apparently lost. A much more 

realistic plot is figure (7.13), where the log of the opacities is 

plotted, and gives a much better representative idea of how much 

absorption there really is. In particular, it can be seen that bin 

1634 is really quite congested, and the 8 profiles visible in that bin 

could not be fitted in without some overlap, as indeed predicted by 

the ILM. 

Figures (7.14) and (7.15) show respectively a linear and log plot 

of the absorption in the bins 1684 to 1688 for a band head, with the 

same bin sizes and fine grid separations as before, and with the 

absorption 
-6 2 -1 2 -1 

ranging from 5.36X10 cm gm to 1.30 cm gm Again the 

log plot gives a more realistic impression of the absorption, 

particularly a.t the band head. 
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Having plotted examples of spectral lines belonging to bands, and 

the contents of individual bins, we now show in figure (7.16) a plot 

of the A-type 001 ~- 000 vibration-rotation band of H
2

0 sitting on top 

of the continuum, after it has been put into bins. Thus figure (7.16) 

is a smeared plot, with the individual lines not being shown, and with 

the connected points plotted at each bin centre. 

Rather than plotting simply the &~O for each bin, which contains 

the weighting function and bin width, it is much better to remove 

these factors by plotting the average opacities that give those RHOs 

when integrated over each bin. Thus plots with different bin sizes 

can be compared. 

Thus for bin i with width where the weighting function is 

assumed to be constant, we can write: 

1-
k. (RI1C) 
• 

thus: 

(..); t..}{Ui-) 

(1<.( Rj'1o) > 
l 

(7.4.2) 

(7.4.3) 

which is the average over the bin, and is the quantity plotted; it can 

be regarded as the reduced RMO. Likewise for the FHO, we can write: 

• £L~ + wiJ. 

i{YHO) = j B(t<) k[Ulk '" iJ,5(";)(K,iPMD» 

", - t..Ji~ 

(7.4.4) 
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(7.4.5) 

It is immediately seen that we can consider the reduced RMOs and PMOs 

for lines alone, by simply subtracting the continuum. Thus: 

&.J. \J (a-) R,. (RHO) - K (u.) 
... ~" c ... (7.4.6) 

and: 

K.~ (PMO) .. (7.4.7) 

which can be used for plotting bands without the underlying continuum. 

Figure (7.16 ) is in fact plotted with bin widths of 

1/250 = 4X10-3 and a fine grid separation of 1/200,000 = 5X10-6 , with 

the OSM on its own. Even though we have to make many approximations 

in order to compute the spectrum of the asymmetric top molecule, with 

the detailed individual line positions and strengths being very 

approximate, it is very gratifying indeed to see that the gross 

appearance of the band does correspond approximately to theory, with 

the P, Q and R-branches being clearly visible, though the prominent 

spike is due to one bin with an exceptional amount of absorption. 

Finally, figure (7.17) shm.Js in greater detail the Q-branch, which is 

of course several subbranches superimposed, and with the single 

prominent spike no longer present. The same fine grid is used, but 
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the bin sizes are ten times smaller than for the previous figure. For 

these and all the previous figures, the stimulated emission factor is 

not included. 

In actual production runs, the various tests performed, that are 

outlined in this section, are used as a guide. However, in order to 

find an optimum between CPU time and accuracy, together with the 

constraints of memory, parameters for specifying the cut-offs in 

abundances, bands, lines etc, have to be found by experience. 
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7.5 Results of Some Computed Total Opacities with Continuum and 

Molecular Bands 

In this section, we give some examples of total opacities due to 

molecular bands sitting on the continuum. Thus, these are the results 

of applying TRIATOH to compute the molecular bands, after having 

applied HIXOP to obtain the background continuum together with the 

abundances. Because a considerable amount of effort in this work has 

been devoted to handling isotopic variants of molecules, we consider 

this in detail first, and show that indeed in certain circumstances, 

isotopic variants are important when computing opacities. 

We examine in detail first the isotope effect for CO at 

log T = 3.3 and log p = -8. The continuum from u = 0 to 20 is 

computed using 4000 coarse grid intervals for all the species 

discussed in chapter 3, and the bands of CO are computed using the OSM 

on its own within the region u = 1 to 4, using a fine grid interval of 

1/200,000 = 5X10-6 , i.e. 600,000 fine grid intervals in all. This 

compares favourably with the line widths which increase 

to 2.4X10-s as u increases over the region. This 

-6 from 6.0X10 

covers the 

fundamental and first overtone systems of CO, and just the very 

tail-end of the second overtone system. In order to have as fine a 

sampling interval as possible over the region u = 1 to 4, the regions 

u = 0 to 1 and u = 4 to 20 are ignored in the band calculations, 

leaving just the continuwu. However, in the region u = 0 to 1 there 

is no absorption due to CO anyway, and in the region u 4 to 20, only 
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the second overtone system is effectively lost, as the higher order 

overtones are much weaker and occur where the background continuum is 

strong and the weighting functions are much smaller. 

The fine grid over the region studied is put into 7500 bins, all 

of equal width, -4 i.e. 1/2500 = 4XI0 , so there are 80 fine grid 

intervals per bin, and the bins are at least 17 profile widths wide. 

Note that although the separation of the coarse grid points is 12.5 

bin widths, which contradicts the rule stated in section 6.1 that this 

ratio must be an integer, this restriction only applies when the ILM 

is used, due to the particular way the bins are handled in the code. 

The bands are computed for a 20X20 matrix, so in theory there would be 

a maximum of 19 and 18 bands in the fundamental and first overtone 

progressions respectively, for each isotopic form, when isotopes are 

considered. However, a cut-off of 1% for the relative line strength, 

i.e. the area under the profile on its own compared to the area of a 

slab of continuum equal to the Gaussian width of the profile, would be 

expected to cut off most of the higher bands in the progression. 

In the examples here, we compare the absorption due to CO \vhen 

12 16 . all its isotopes are lumped into C 0 to the absorptlon due to the 

separate isotopic variants, hence the total abundance of CO is the 

same in both cases, and the differences in absorption are due entirely 

to the isotope effect. Table (7.20) lists the absolute and fracti~nal 

abundances of the isotopic variants of CO at log T = 3.3 and 

100- P = -8 
b I ' 

as computed by the HIXOP program \vi th a convergence 

criterion of £ = 10-6 . Note that the six figures of accuracy, are 

given here merely to show the results printed by the computer, as such 

true precision is of course quite meaningless. 
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Table (7.20) of the Isotopic Abundances of CO 

at Log T = 3.3 and Log? = -8 

Molecule Ab. Abundance Fr. Abundance 

C12016 1.68348E+12 9.86522E-01 

C12017 6.30445E+08 3.69442E-04 

C12018 3.43368E+09 2.01214E-03 

C13016 1.88962E+10 1.10732E-02 

C13017 7.07641E+06 4.14679E-06 

C13018 3.85415E+07 2.25854E-05 

All Forms 1. 70648E+12 

Table (7.21) to Show the Isotope Effect of CO 

Con. Alone Without Isp. With Isp. 

1'K for u = 1 to 2 4.09299E+13 3.85180E+13 3.49299E+13 

ZK for u = 2 to 3 1.54675E+14 1.39142E+14 1.20754E+14 

1:K for u = 3 to 4 1. 92847E+14 1.86551E+14 1.82655E+14 

PMO 1. 63802E-05 1.83269E-01 1.83103E-01 

RMO 5.13515E-06 5.39360E-06 5.69989E-06 
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CO is the second most abundant molecule in the mixture, and is to 

be compared to H2 with 
15 an abundance of 2.22668XI0 for all its 

isotopic forms, 15 and 2.69439XI0 for all particles, with the absolute 

-3 abundances being as usual in cm . 

Table (7.21) gives the sums of the contributions K in cm over the 

bins in the spectral regions u = 1 to 2, 2 to 3 and 3 to 4, for the 

continuum alone, and the continuum plus CO without and with isotopic 

forms respectively. The RMOs in these regions can be obtained by 

simply applying (7.4.1). The total PMO and p~o in the table are for 

the whole spectrum including the continuum in the regions not covered 

2 -1 by the fine grid, and are in cm gm 

It is clearly seen that the RHO in the region u = 2 to 3 

increases by about 13%, with the overall ill10 increasing by about 6%, 

whereas the PHO hardly changes at all, as expected. Thus the effect 

on the RMO is large compared to the fractional abundances of the 

isotopically substituted species, most being in the form of C130
16 • 

This effect can easily be explained by the filling in of the window?, 

and even though C13016 is only about 1% as abundant as C
12016 , because 

CO is such an abundant species, some of the isotopically substituted 

forms are still abundant, hence the isotope effect is important for 

CO. 
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Figures (7.18-29) show up the isotope effect much better, and are 

arranged in pairs with everything else being equal. The plotted RHOs 

and PMOs are obtained using the relations (7.4.3) arid (7.4.5) 

respectively. In figures (7.18-21), the smearing has been increased 

by a factor of ten, by effectively creating new bins with each 

consisting of ten computed bins. The remaining figures are all 

plotted as computed, with bin widths of 4X10-
4

• In all cases the 

values are plotted at bin centres and are joined to neighbouring bins 

by straight lines. 

For the sake of completeness, the PMO for the two cases is shown 

in figures (7.18) and (7.19), there being virtually no noticeable 

difference at this level of smearing. The fundamental and first 

overtone systems are centred at about u = 1.4 and 2.9, respectively, 

with the tail-end of the second overtone system at the extreme right, 

and for comparison, the continuum is drawn under the bands. The sharp 

band head of the first overtone system is quite marked here. However, 

the pair of figures (7.20) and (7.21) for the RHO show a very marked 

difference indeed, with the average values lifted considerably above 

the continuum due to the isotope effect. From these two plots, it is 

immediately obvious why the total RHOs for the two cases in the table 

above are substantially different. The remaining plots compare in 

greater detail this part of the spectrum with the full number of bins 

as computed, and the last pair of figures (7.28) and (7.29) show a 

further magnified view of the first overtone system with the 

underlying continuum again shown. Black areas are caused by 
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neighbouring bins that are rapidly alternating in strength, and cannot 

be resolved due to the thickness of the pen. 

Because the two stable isotopes of CI are of comparable 

abundance, it is worth briefly considering the isotope effect on HCI, 

the most abundant CI containing compound in the mixture. The 

computations were performed at the same temperature and density as 

before, with the spectrum computed using the same arrangements of grid 

points and bins. The coefficients M. in DR- i for the dipole moment 
1 

expansion used are: 

1. 0935, HI 0.925, M2 0.163, M3 -9.3, 

as obtained from Kaiser (112), and the constants for the ground 

electronic state needed for computing the vibration-rotation spectrum 

are: 

1~+ DO 37222, 2990.95, 52.819, 0.2244, X : (.) {;JX wy 
e e e e e e 

B 10.593416, 
-6 

0.307181, D 5.31936X10 , 0( 
e e e 

-6 
(3e = 7.51X10 , 

as obtained from Rosen (35). The tables giving the abundances and the 

effect on the opacity are given below. As before, the effect of all 

isotopic forms lumped into the most abundant species, i.e. HCl35 , are 

compared to the case where they are considered separately. 
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Table (7.22) of the Isotopic Abundances of HCI 

at Log T = 3.3 and Logl' = -8 

Molecule Ab. Abundance Fr. Abundance 

HCl35 5.93956E+08 7.55276E-OI 

HCl37 1. 92441E+08 2.44709E-Ol 

DCl35 9. 74004E+03 1.23855E-05 

DCl37 3.15580E+03 4.01292E-06 

All Forms 7.86409E+08 

Table (7.23) to Show the Isotope Effect of HCI 

Con. Alone Without Isp. With ISp. 

'i:K for u = 1 to 2 4.09299E+13 4.04035E+13 4.00348E+13 

ZK for u = 2 to 3 1. 54675E+14 1. 53117E+14 1. 52203E+14 

~K for u = 3 to 4 1. 92847E+14 1. 88870E+14 1.85878E+14 

PMO 1.63802E-05 7.13946E-05 7.13793E-05 

RHO 5.13515E-06 5.19740E-06 5. 24224E-06 

It is peen that the isotope effect is much smaller than for CO, 

which can be explained by the much lower abundances of HCI. However, 

the differential effect, i.e. the difference between the two cases 

compared to the continuum on its own, is large and is due entirely to 

HCl37 , the deuterated versions having quite negligible abundances. 

Because of th~ different vibrational constants, the region u = 1 to 4 

that is studied, covers only the fundamental and part of the first 
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overtone system. Plots were examined, but because of the much lower 

abundances, the differences between the two cases do not show up 

nearly so well as for CO, and are not shown here. 

Finally, for demonstrating the isotope effect of individual 

molecules, we consider the astrophysically important molecule TiO. 

These runs were done at the higher temperature of log T = 3.5, but at 

the same density of log f = -8. The electronic transitions considered 

occur at a considerably shorter wavelength than the bands of CO and 

HCl considered above, hence the weighting functions are much smaller. 

So this higher temperature increases the weighting functions for the 

band, but is not so high that the abundance of TiO becomes too small 

to be important. 

As there are five isotopes of Ti and three of 0 that are in the 

statistical mechanics calculations, there are fifteen isotopic 

variants of TiO in the mixture, which is the g~eatest number of 

variants for any diatomic molecule considered. However, in order to 

save CPU time, a cut-off for the abundances 
6 -3 of 10 cm ensures that 

those molecules containing 017 and 018 are neglected, as their 

abundances are very low, leaving the five variants with 0
16

• Three 

f T·· . h f of T1.·48 , quarters 0 1. 1.S 1.n t e orm with the remainder consisting 

of isotopes of comparable abundances. Thus in these examples, we 

compare the opacities with all forms of TiO lumped into Ti
48

0
16 

with 

the five variants containing 0
16

, neglecting the other ten. The 

abundances are given here in table (7.24). 
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Table (7.24) of the Isotopic Abundances of TiO 

a t La g T = 3. 5 and Lo g f> = -8 

Molecule Ab. Abundance Fr. Abundance 

Ti46016 2.90090E+06 7.91020E-02 

Ti47016 2.66325E+06 7.26217E-02 

Ti48016 2.70507E+07 7.37621E-01 

Ti49016 2.01590E+06 5.49697E-02 

Ti50016 1.95378E+06 5.32759E-02 

Remaining forms 8.84643E+04 2.41225E-03 

All Forms 3.66729E+07 

Table (7.25) to Show the Isotope Effect of the TiO o(-System 

Can. Alone Without Isp. With Isp. 

2:K for u = 5 to 6 6.95670E+10 6 . 9121 OE +-1 0 6.93354E+10 

2K for u = 6 to 7 5.09290E+10 4.49843E+10 4.56555E+10 

~K for u = 7 to 8 3.45094E+10 2. 11746E+10 1.98330E+10 

2:K for u = 8 to 9 2.12651E+10 9.49404E+09 7.25427E+09 

~K for u = 9 to 10 1.23194E+10 3.64956E+09 2. 52078E+09 

~K for u = 10 to 11 6.61716E+09 3.52894E+09 3.49121E+09 

2:K for u = 11 to 12 2.82051E+09 2.72639E+09 2.75736E+09 

PMO 2.92128E-03 4.20785E-03 4.18460E-03 

RMO 1.08995E-03 1.11014E-03 1.11196E-03 
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We c·onsider first the c3t ~-- X
3!J. system, i.e. the o(-system, on 

its own. The constants for the lower state are given in section 7.3, 

for the upper state, we have: 

c3J1: T' 19424.86, t.J' 838.26, t..,'x' 4.759, (.,)~y~ 0.0488, e e e e 

B' 0.489888, D' -7 
0<' 3.062X10-3 , ~~ 9.6X10-9 , 

e e 6.627X10 , 
e 

A' 48.599, 

0.18 from Feinberg and Davis (113). 

Table (7.25) shows the isotope effect over the part of the 

spectrum where the bands \occur, elsevlhere there is just continuum. 

Note that the regions u = 5 to 6 and 6 to 7 each have 1000 bins and 

30,000 sampling intervals, the remaining regions except the last each 

have 1000 bins and 20,000 sampling intervals, with the last region 

u = 11 to 12 having 800 bins and 14,400 sampling intervals. 

It is seen that the isotope effect is greatest in the fifth 

region, where it increases the opacity by 31%. However, the overall 

effect on the rufO is very small, as the bands occur well away from the 

maximum of the Rosseland weighting function. Note that the PHO 

noticeably decreases, which can be explained in part by the fact that 

h 1 d h · . . . h 017 d 018 b h we ave neg ecte t e lSOtOP1C varlants Wlt an ,ut t ey are 

included in the total abundance when not considering isotopes. This 

probably also partly explains why the PJ10s in the regions u = 5 to 6, 

6 to 7 and 11 to 12 on the fringes of the band system, actually 
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decrease when isotopes are allmved for. In these regions, the lines 

are very weak and differences between overlapping and non-overlapping 

lines are not great, so in splitting a very weak line into various 

isotopic components, its very small contribution to the &~O does not 

increase much, and is likely to decrease if some of the weaker 

components are neglected. Moreover, because we have a cut-off of 1% 

for the relative line strength, some lines just above the threshold 

could be ignored when split into their isotopic components. 

Figure (7.30) shows the TiO ~-system smeared to an effective bin 

width of 0.01, and shows very clearly indeed, that although TiO is an 

important monochromatic absorber, the effect on the RMO in this case 

is small because of the weighting function and the strong H 

continuum. Were these bands to occur in the region u 

effect on the RMO would be large. 

2 to 4, the 

Figure (7.31) shows the same again with the isotopic variants 

allowed for, and figures (7.32) and (7.33) show a part of the band 

system plotted to the full resolution of bins for the two cases, with 

the continuum drawn underneath for comparison. Notice that in 

allowing for isotopes, not only are the fluctuations of the bins 

reduced, but the peaks actually become higher. This can be explained 

by comparing figures (7.34) and (7.35) for the two cases, which are 

plots of the actual profiles in the vicinity of the peak at u = 8.8, 

and is identified as being the head of the 0-0 band. In these two 

figures, only those profiles belonging to the 0-0 band are plotted, 

together vlith the bins as drawn. Notice that in the case where 

isotopes are allowed for, the fluctuation of the absorption is less, 
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and although the peaks of the individual profiles are reduced, as we 

have redistributed one quarter of Ti480
16 

into the other isotopic 

forms, these other forms fill in the ~dndows very efficiently, hence 

increasing the opacity in each bin. Note that the continuum is at 

-3 2 -1 
5.06X10 cm gm and the top of the highest profile in figure (7.34) 

-1 2 -1 
has an absorption of 3.64X10 cm gIn ,with figure (7.35) being on the 

same scale. For the profile widths, at 

u = 8.8. 

Finally, figures (7.36) and (7.37) show the plots as for figures 

(7.30) and (7.31) ,-lith the addition of the 1~ 1 c ~ ~-- a b. system, 

i.e. the p-system, on the basis of the following constants: 

1 T" 577.22, . " 1016.30, t:." H 3.93, n" 0.53620, a lJ: we .' x 
e e e e 

D" -7 
e 

5.94X10 , 

1~ 
T' 18516.81, t.;' 917.55, lJ'x' 4.42, B' 0.52147, c <i: e e e e e 

D' -7 
e 

4.57X10 , 

together with the band oscillator strength fOO = 0.249 from Feinberg 

and Davis (114). It is seen that theB-system is entirely overlapped 

by the ~-system, and again there is a marked difference between the 

cases with and without isotopic variants. 

He noVl consider the importance of H20 as an opacity source in 

late-type stars. Table (7.26) lists the reduced band strengths for 

the various progressions together with the band types. As discussed 

in chapter 5, progressions of difference bands are also generated. 

Note that the first entry is for the pure rotation bands, the reduced 

band strengths being obtained from (5.2.9) and (5.3.18), hence: 
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(7.5.1) 

wi th JA-o = 1. 87D 
-18 1.87X10 esu-cgs from Ludwig et a1. (97). Being 

pure rotation, S and ~ are of course not individually defined 
o 0 

quantities. 

Table (7.26) of Reduced Band Strengths of Water 

/,\v1 !J,.v2 AV3 (So/~o) Type 

0 0 0 4.36400E-08 B 

0 0 1 6.39800E-ll A 

0 0 2 2.0S320E-14 B 

0 1 0 2.00080E-10 B 

0 1 1 S.10860E-12 A 

0 1 2 4.00800E-1S B 

0 2 0 6.27610E-13 B 

0 2 1 2.46730E-13 A 

0 3 0 1. 28830E-1S B 

0 3 1 1. 29230E-14 A 

0 4 1 1.46730E-16 A 

1 0 0 2.97S60E-12 B 

1 0 1 3.09730E-12 A 

1 1 0 1.0S080E-13 B 

1 1 1 1.69980E-13 A 

1 2 0 1.S6620E-14 B 

2 0 0 2.20820E-13 B 

2 1 0 1. 23510E-1S B 
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All computations were performed with 2000 bins and 100,000 

sampling intervals in each of the regions u = 0 to 1 and 1 to 2, 1600 

bins and 73,600 sampling intervals in the region u 2 to 3, 1000 bins 

and 50,000 sampling intervals in each of the regions u = 3 to 4 and 4 

to 5, 1000 bins and 30,000 sampling intervals in each of the regions 

u = 5 to 6 and 6 to 7, and thereafter to u = 11, 1000 bins and 20,000 

sampling intervals for each~u = 1 region. 

From table (7.5) at log T = 3.5 and log F = -8, H
2

0 has an 

abundance of 9 -3 6.9306SX10 cm , and is one of the more abundant 

species. The effect on the total RMO is to increase it from the 

continuum value of 1.08195X10-3 to 1.90432X10-3 , in cm2gm-1 which is 

an increase of nearly a factor of two. An examination of figure 

(7.38) clearly shows why this is, with the trough longer in wavelength 

than the H absorption threshold, being partially filled in. With the 

same density but a drop in temperature to log T = 3.4, the abundance 

of H
2

0 has increased to 8.41897X10
11 

(see table (7.4)), and the 

effect on the fu~O being an increase from 1.05120X10-4 to 3.39139XIO-3 , 

which is a very much larger change than before. Figure (7.39) shows 

this effect in a spectacular way, with the trough being completely 

filled in. Finally, at log T = 3.3 with the same density, the 

abundance has increased to 1.24538X1012 (see table (7.3)), and the 

-6 -4 
effect on the RHO is to increase it from S.1351SX10 to 4.90044X10 ; 

though figure (7.40) is not much different from the previous one. In 

the figures (7.38-40), the smearing has been increased to an effective 

bin width of 0.01. Figure (7.41) plotted to the full resolution of 
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bins, shows a part of the absorption of the first case, and it can be 

seen that even in that case, no bins go down to the continuum, 

indicating a great deal of absorption. Note that we have lumped all 

the isotopic forms of H
2

0 into the most abundant form, hm-lever, 

because there are no windows, isotopic effects are expected to be 

small. 

In dropping down in temperature, the CPU time increases 

substantially, being approximately 20 minutes, 2 hours and 2 hours 40 

minutes respectively for the three cases. 

The other triatomic molecule which we discuss in detail in this 

work is CO2 , and accordingly an example of its spectrum is given in 

figure (7.42) for log T = 3.4 and log F = -8, with the bins and 

sampling intervals set up in the same ,-lay as for the previous examples 

The reduced band strengths in 3 cm /sec/absorber calculated 

from the data given in McClatchey et al. (88) is given here in table 

(7.27). 

Table (7.27) of Reduced Band Strengths of Carbon Dioxide 

LlV1 lF2 fjv 3 (S/}o) 

0 0 1 1.360S0E-09 

0 0 3 7.13960E-1S 

0 1 0 4.287S0E-10 

0 1 2 2.49310E-16 

1 0 1 1. 34460E-ll 

0 2 1 9.S3930E-12 



<:) 
<:) 

a:i 
I 

11 
a. 
m 
0 
-' 
-U 
C 
QJ 

<:) 
..;t 

...-i 

" I-

m 
0 
-' 
... 
c:u 

d" 
u 
"-
0 

(Jl 
-u 
c 
OJ 

o:l 

o 
o 

l..fI 

o 
I 

o l..fI 0 

N 
I 

Log 

Fig. 

- 397 -

l..fI 0 l..fI . 
N 1'0 1'0 

I I I 

RMO In 
2 -1 

em gm 

7.42 

o . 
--:t 

I 

l..fI 

--1 
I 

o . 
Lf1 

I 

o 
C'J 

co 

N 

0 

CO 

N 

o 

>-. 
tl 
C 
m 
:J 
0-
el 
t. 

lL. 
c.1 
(~ 
(iI 
-' 
c 
a 
cr. 
c 
(Jj 
E 

0 



- 398 --

As seen from table (7.4), the abundance of CO
2 

is much lower than 

for H20, and this factor combined with the fact that CO2 absorbs over 

a more rest~icted region of the spectrum than H20 causes the total RHO 

to increase by a modest -4 2-1 amount from 1.0S120X10 cm gm to 

1.116S1X10-4 • Note that the total CPU time is about 28 minutes. 

Finally in this section, figure (7.43) is an example of a 

spectrum with many diatomic molecules, including their isotopic 

variants. The grid point with log T = 3.6 and logf = -8 was chosen 

because a large number of bands due to different molecules show up. 

Some of the features on this plot are identified by the molecule and 

its band system in parenthesis; the two states are identified for 

electronic transitions, with a single number indicating a progression 

of vibration-rotation bands. A full list of all the band systems of 

the diatomic molecules that are considered in our calculations is 

given in the appendices, though in practice the absorption due to many 

bands may not actually be computed because of molecules having low 

abundances, or initial excited electronic states having a small 

population. 

Note that the RMO is increased from 
-3 2 -1 7.2217x10 em gm to 

9.17911X10-3 with a total CPU time of about 18 minutes. The same 

sampling and bin configuration is used as for the previous examples of 

H
2

0 and CO2 , with the regions u = 11 to 17 having 800 bins and 14400 

sampling intervals for each L1u 1 region, and the ~.;rhole spectrum is 

plotted with an effective bin size of 0.01, i.e. 1700 effective bins 

across the whole spectrum. 
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Because of the excessive demands of processor time, it was not 

considered feasible to carry out any calculations with both diatomic 

and triatomic molecules together. However, in the next section, 

tables are given for the opacities of diatomic molecules with 

continuum covering many grid points in the T-p plane, and a few 

examples of H20 and continuum, and CO 2 and continuum, considered 

separately. In all cases the bin and grid configuration is the same 

as for the example just discussed, and the effect of pressure-induced 

To aid comparison with the work from other sources, the following 

table gives the conversions from dimensionless frequency u = hy/kT to 

wavelength ), in microns for several temperatures. To convert 

wavelength to dimensionless frequency, simply substitute A for u in 

the first column and read off the values in the other columns as u. 

Table (7.28 ) of Conversions between u and A in Hicrons 

Log T 3.2 3.3 3.4 3.5 3.6 3.7 3.8 
or u 

1 9.078 7.211 5.728 4.550 3.614 2.871 2.280 
2 4.539 3.606 2.864 2.275 1. 807 1.435 1.140 
3 3.026 2.404 1. 909 1.517 1.205 0.957 0.760 

u 4 2.270 1.803 1.432 1.137 0.904 0.718 0.570 
or 5 1.816 1.442 1.146 0.910 0.723 0.574 0.456 
}. 10 0.908 0.721 0.573 0.455 0.361 0.287 0.228 

15 0.605 0.481 0.382 0.303 0.241 0.191 0.152 
17 0.534 0.424 0.337 0.268 0.213 0.169 0.134 
20 0.454 0.361 0.286 0.227 0.181 0.144 0.114 

uA=hc/kT= 9.078 7.211 5.728 4.550 3.614 2.871 2.280 
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7.6 Comparisons of Abundances and Opacities and Tables of Thermodynamic 

Quantities 

In this final section of chapter 7, some further results are 

presented in the form of tables and diagrams, and discussion. 

Figure (7.44) is a plot of the log of the abundances of some of 

the molecules in tables (7.2-8) for the grid points log T = 3.2 to 3.8 

with log f = -8 in all cases. To prevent too much congestion, the 

figure is limited to the 15 molecules H
2

, 

CO, NO, SiO, SH, TiO, H
2

0 and CO
2

, 

C2 , N2 , O2 , OH, NH, CH, CN, 

Though the figure is only 

approximate, as smooth curves were drawn by eye through the tabulated 

points, it does give a good representation of how the abundances vary 

with temperature. Note in particular that as CO has a very high 

dissociation potential, its abundance stays essentially constant to a 

high temperature and then falls rapidly. On the other hand many 

molecules with fairly low dissociation potentials like OH, have low 

abundances at low temperatures but increase to a maximum at some 

intermediate temperature before falling again, due to the change in 

availability of the constituent atoms by the dissociation of some more 

abundant molecules. 

Figure (7.45) is a repeat of the continuous absorption plotted as 

for figure (7.1) at log T = 3.2 and log f = -8, drmm as a solid curve, 

with for comparison the same without pressure-induced H
2

-H
2 

and H
2

-He 

opacity drawn as the dash-dotted curve, and that computed by Nordlund 
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(llS) as the dotted curve with the pressure-induced opacity included. 

It is immediately seen how important the pressure-induced opacity can 

be at some grid points, as discussed at the end of section 7.2. 

Table (7.29) gives the log of the coraputed RHO and PMO in 2 -1 
cm gm 

for the grid points log T = 3.2 to 3.8 and log f = -14 to -2, for all 

the diatomic molecules considered in the band calculations, together 

with their isotopic variants and the continuum. Note that in 

comparing with table (7.1), the total effect of the diatomic molecules 

on the RMO is modest at most, though the PHO may be increased by many 

orders of magnitude. Because of the negligible molecular abundances 

towards the upper right hand corner of table (7.29), the values there 

are essentially for the continuum on its own. 

Table (7.30) gives the coraparisons of the log of the fu~O for a 

number of different cases covering a few grid points. For each grid 

point the four entries are respectively H
2

0 and continuum, CO
2 

and 

continuum, the diatomic molecules including their isotopic variants 

and continuum, and continuum alone. Note that for H
2

0 and CO
2

, the 

isotopic variants have been added to the most abundant form for each. 

It is seen that for some grid points, H2 has a far greater effect on 

the RMO than either CO
2 

or all the diatomic molecules together. Table 

(7.31) is arranged in the same vlay as before for the corresponding 

PHOse 
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Table (7.29) of Log RHO and Log PHO for Continuum + Diatomic Molecules 

T 1585 1995 2512 3162 3981 5012 6310 
Log T 3.2 3.3 3.4 3.5 3.6 3.7 3.8 

Log R 
-14 -5.1487 -4.5419 -3.7707 -3.4323 -2.4662 -0.7264 0.3991 

-0.5313 -0.7280 -0.9535 -2.4158 -2.4749 -0.7271 0.3988 

-13 -5.4057 -4.6578 -4.0151 -3.4102 -2.8682 -1. 2104 0.1431 
-0.5354 -0.7256 -0.9533 -1.6677 -2.8781 -1. 2126 0.1417 

-12 -5.6467 -4.7840 -4.2461 -3.4313 -3.1783 -1. 6894 -0.2527 
-0.5368 -0.7199 -0.9526 -1.2963 -3.1508 -1. 6949 -0.2561 

-11 -5.8100 -4.8872 -4.3339 -3.5201 -3.2962 -2.1400 -0.6804 
-0.5372 -0.7120 -0.9466 -1.2003 -2.9855 -2.1497 -0.6800 

-10 -5.9504 -5.0544 -4.2742 -3.5506 -3.1412 -2.4672 -1.0487 
-0.5373 -0.7182 -0.9244 -1.1863 -2.2735 -2.4744 -1.0176 

-9 -5.9727 -5.1888 -4.1179 -3.3718 -2.6676 -2.3747 -1.1573 
-0.5373 -0.7171 -0.8743 -1.1567 -1.6309 -2.3375 -1. 0960 

-8 -5.6329 -5.0250 -3.8521 -2.8722 -2.0372 -1.8314 -0.8887 
-0.5373 -0.7027 -0.7711 -0.9372 -1. 2594 -1.7415 -0.8384 

-7 -5.0161 -4.5248 -3.4914 -2.2624 -1.3985 -1.0273 -0.4461 
-0.5371 -0.6582 -0.5418 -0.3726 -0.6559 -0.9099 -0.3823 

-6 -4.4407 -3.9574 -2.9958 -1. 7728 -0.7916 -0.2120 0.1096 
-0.5366 -0.5471 -0.1863 0.2126 0.2361 -0.OLf06 0.1874 

-5 -3.9360 -3.3418 -2.3784 -1.2726 -0.2506 0.5124 0.7940 
-0.5346 -0.3450 0.2159 0.7113 0.9677 0.8621 0.8815 

-4 -2.6704 -2.0731 -1.1891 --0.2884 0.5213 1.3012 1. 5828 
-0.5127 -0.0952 0.5833 1.1283 1.4882 1.6591 1. 6882 

-3 -2.0611 -1. 2909 -0.4067 0.4511 1.1500 1.8468 2.2614 
-0.3953 0.1500 0.8695 1.4398 1. 8327 2.1180 2.3865 

-2 -1.4869 -0.8097 -0.0747 0.7120 1.3676 1.9036 2.5183 
0.1021 0.4524 1. 0709 1. 6280 2.0351 2.3296 2.7380 
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Table (7.30) of Comparison of Log RHO for some Grid Points 

Log T 3.3 3.4 3.5 
Log R 

-3.4605 -3.8462 -3.6429 
-10 -5.1192 -4.3723 -3.6430 

-5.0554 -4.2742 -3.5506 
-5.1980 -4.3981 -3.6430 

-3.3095 -2.4696 -2.7203 
-8 -5.0690 -3.9449 -2.9623 

-5.0250 -3.8521 -2.8722 
-5.1409 -3.9712 -2.9626 

-3.1970 -2.1694 -1. 3051 
-6 -4.0000 -3.0461 -1.8277 

-3.9574 -2.9958 -1.7728 
-4.0148 -3.0545 -1.8278 

Table (7.31) of Comparison of Log PHD for some Grid Points 

Log T 3.3 3.4 3.5 
Log R 

0.9710 -2.9801 -3.5825 
-10 -3.5192 -4.0882 -3.5826 

-0.7182 -0.9244 -1.1863 
-4.8986 -4.1499 -3.5826 

0.8141 0.5711 -2.4317 
-8 -3.5782 -3.1983 -2.5341 

-0.7027 -0.7711 -0.9372 
-4.7638 -3.2818 -2.5344 

-0.4609 -0.6516 -0.9009 
-6 -3.3979 -2.7278 -1.4600 

-0.5471 -0.1863 0.2126 
-3.7966 -2.7514 -1.4602 
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Table (7.32) of Pressure and Internal Energy 

T 1000 1259 1585 1995 2512 
Log T 3.0 3.1 3.2 3.3 3.4 

Log R 
-14 2.884E-03 6.795E-03 1.680E-02 4.132E-02 1.021E-01 

-8.115E+ll 3.790E+11 4.318E-i-12 1. 219E+13 3.037E+l3 

-13 6.142E-03 1.091E-02 2.306E-02 5.347E-02 1. 175E-01 
-1. 492E+l2 -1.347E+12 -5. 679E+ll 1. 383E+12 3.264E+12 

-12 3.873E-02 5.197E-02 7.829E-02 1.703E-01 2.711E-01 
-1.561E+12 -1.523E+12 -1. 301E+12 1.803E+l1 5. 533E+ll 

-11 3.646E-01 4.623E-01 6.061E-01 1.155E+00 1.804E+00 
-1.567E+12 -1. 542E+12 -1.455E+12 -4.254E+ll 2.755E+ll 

-10 3.623E+00 4.565E+OO 5.807E+OO 8.982E+00 1.685E+01 
-1.568E+l2 -1.544E+l2 -1.496E+l2 -1.019E+12 1. 878E+11 

-9 3.621E+01 4.559E+01 5.757E+01 7.833E+01 1. 510E+02 
-1.568E+l2 -1.545E+12 -1.509E+12 -1.314E+12 -1. 632E+ll 

-8 3.621E+02 4.558E+02 5.744E+02 7.423E+02 1. 210E+03 
-1. 568E+l2 -1.545E+l2 -1.513E+12 -1. 422E+12 -7. 912E+11 

-7 3.621E+03 4.558E+03 5.740E+03 7.288E+03 1.021E+04 
-1.568E+l2 -1. 545E+12 -1. 514E+12 -1.457E+l2 -1. 187E+12 

-6 3.621E+04 4.558E+04 5.739E+04 7.244E+04 9.466E+04 
-1.568E+12 -1. 545E+12 -1.514E+12 -1.469E+12 -1. 343E+12 

-5 3.621E+05 4.558E+05 5.739E+05 7.231E+05 9.214E+05 
-1.568E+12 -1. 545E+l2 -1. 514E+l2 -1. 472E+l2 -1.396E+12 

-4 3.621E+06 4.558E+06 5.738E+06 7.226E+06 9. 133E+06 
-1.568E+12 -1.545E+12 -1. 514E+12 -1.473E+12 -1. 413E+12 

-3 4.558E+07 5.738E+07 7.225E+07 9.106E+07 
-1. 545E+12 -1.514E+12 -1. 474E+l2 -1.418E+12 

-2 4.557E+08 5.738E+08 7. 223E+08 9.097E+08 
-1. 545E+12 -1.514E+12 -1.474E+12 -1.420E+12 
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Table (7.32) Continued 

T 3162 3981 5012 6310 7943 
Log T 3.5 3.6 3.7 3.8 3.9 

Log R 
-14 2.543E-Ol 6.361E-Ol 1. 595E+OO 4.004E+OO 1.005E+Ol 

7.597E+13 1.904E+l4 4.784E+14 1.208E+l5 3.023E+15 

-13 2.737E-Ol 6.605E-Ol 1. 626E+00 4.057E+00 1.014E+Ol 
7.887E+12 1.941E+13 4.845E+13 1. 253E+l4 3.126E+14 

-12 4.672E-Ol 9.042E-Ol 1. 934E+00 4.495E+00 1.104E+Ol 
1.077E+12 2.308E+12 5.351E+12 1. 447E+l3 4.070E+13 

-11 2.402E+00 3.341E+OO 5.006E+OO 8.523E+00 1.845E+Ol 
3.954E+ll 5.968E+ll 1.010E+12 2.465E+12 1.025E+13 

-10 2.174E+Ol 2.771E+Ol 3.570E+Ol 4.767E+Ol 7.699E+Ol 
3.260E+11 4. 253E+ll 5.660E+ll 9.655E+ll 3.874E+12 

-9 2.146E+02 2.713E+02 3.425E+02 4.356E+02 5.957E+02 
3.101E+11 4.066E+ll 5. 184E+ll 7.205E+ll 1. 811E+12 

-8 2.096E+03 2.705E+03 3.410E+03 4.303E+03 5.562E+03 
2.290E+ll 4.005E+ll 5. 124E+ll 6.657E+ll 1. 133E+12 

-7 1. 850E+04 2.682E+04 3.406E+04 4.294E+04 5.452E+04 
-1. 783E+11 3.704E+11 5.091E+ll 6.503E+ll 9.150E+11 

-6 1.479E+05 2.519E+05 3.386E+05 4.288E+05 5.417E+05 
-7.958E+ll 1. 562E+ll 4.870E+ll 6.431E+ll 8.441E+ll 

-5 1. 266E+06 2.069E+06 3. 228E+06 4.257E+06 5.399E+06 
-1.149E+l2 -4.348E+ll 3.227E+ll 6. 160E+ll 8. 165E+ll 

-4 1. 185E+07 1. 692E+07 2.701E+07 4.021E+07 5.319E+07 
-1. 284E+l2 -9.308E+ll -2.236E+ll 4. 234E+ll 7.609E+ll 

-3 1. 158E+08 1.527E+08 2.184E+08 3.324E+08 4.849E+08 
-1.329E+l2 -1. 148E+l2 -7.604E+ll -1.453E+ll 4.595E+ll 

-2 1. 149E+09 1. 469E+09 1~942E+09 2.705E+09 3.902E+09 
-1.34LfE+12 -1. 224E+12 -1.011E+l2 -6.500E+ll -1. 439E+ll 
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Table (7.33) of CP and CV 

T 1000 1259 1585 1995 2512 
Log T 3.0 3.1 3.2 3.3 3.4 

Log R 
-14 3.336E+10 1. 232E+1l 3.741E+1l 9.877E+11 3.854E+12 

3-. 121E+09 6.531E+09 1. 810E+10 2.419E+10 4.813E+10 

-13 9.125E+08 2.421E+09 1. 332E+10 1.416E+10 4.588E+10 
3.922E+08 8.216E+08 5.431E+09 2.717E+09 4.907E+09 

-12 1. 778E+08 2.827E+08 2.318E+09 2.547E+09 1. 357E+09 
1. 185E+08 1. 919E+08 1. 874E+09 1.886E+09 5.890E+08 

-11 1. 295E+08 1.514E+08 7.646E+08 4.744E+09 3.215E+08 
9.123E+07 1.104E+08 6.722E+08 3.896E+09 2.104E+08 

-10 1. 255E+08 1. 329E+08 3.290E+08 3.126E+09 7.541E+08 
8.913E+07 9.610E+07 2.794E+08 2.638E+09 6.224E+08 

-9 1. 251E+08 1. 291E+08 1. 939E+08 1.267E+09 2.637E+09 
8.887E+07 9.277E+07 1.539E+08 1.108E+09 2.178E+09 

-8 1.238E+08 1.281E+08 1.513E+08 5.1l1E+08 2.597E+09 
8.756E+07 9.183E+07 1.140E+08 4.426E+08 2.1l9E+09 

-7 1.246E+08 1. 276E+08 . 1.385E+08 2.566E+08 1. 189E+09 
8.834E+07 9.1Ll·1E+07 1.020E+08 2.1l1E+08 1. 007E+09 

-6 1. 250E+08 1. 279E+08 1.340E+08 1.751E+08 4.979E+08 
8.874E+07 9. 172E+07 9.767E+07 1.360E+08 4.224E+08 

-5 1. 242E+08 1. 280E+08 1. 325E+08 1.492E+08 2.567E+08 
8.795E+07 9.183E+07 9.626E+07 1. 121E+08 2.091E+08 

-4 1. 250E+08 1.275E+08 1.321E+08 1.403E+08 1.780E+08 
8.874E+07 9.131E+07 9.585E+07 1.038E+08 1.383E+08 

-3 1. 276E+08 1. 321E+08 1.381E+08 1.531E+08 
9.141E+07 9.585E+07 1.018E+08 1.158E+08 

-2 1. 274E+08 1. 321E+08 1. 374E+08 1.454E+08 
9.120E+07 9.593E+07 1.012E+08 1.089E+08 
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Table (7.33) Continued 

T 3162 39S1 5012 6310 7943 
Log T 3.5 3.6 3.7 3.S 3.9 

Log R 
-14 L520E+13 5.930E+13 2.275E+14 5.702E+l4 1. 9Lf3E+15 

9.593E+I0 1. 914E+ll 3.837E+ll 7.670E+ll 1. 519E+l2 

-13 1. 661E+ll 6.297E+ll 2.433E+12 7.773E+12 2.003E+13 
9.693E+09 1. 924E+l0 3.S93E+I0 S.339E+I0 1. 524E+ll 

-12 3.277E+09 9.337E+09 3.072E+I0 1. 134E+ll 2.49SE+ll 
1.067E+09 2.019E+09 4.136E+09 1. 124E+lO 1.761E+I0 

-11 3.4S3E+OS 5.500E+OS 1. 126E+09 4.132E+09 1.409E+I0 
2.010E+OS 2.946E+OS 5.535E+08 2.142E+09 6.647E+09 

-10 1. 935E+OS 2.053E+OS 2.600E+OS 7.7S7E+08 4.495E+09 
1.IS3E+OS 1.23SE+OS 1.625E+OS 6.008E+08 3.454E+09 

-9 2.297E+OS 1.805E+OS I.S39E+08 3.308E+08 1. 637E+09 
1.547E+08 1.107E+OS 1. 12SE+08 2.459E+08 1. 372E+09 

-8 6.529E+08 1. 865E+OS 1.736E+OS 2.187E+08 6.486E+OS 
5.232E+OS 1. 164E+OS 1.051E+08 1.466E+08 5.305E+OS 

-7 1. 890E+09 2.901E+OS 1. 7S3E+OS 1.S59E+08 3.254E+08 
1. 507E+09 2.055E+08 1.092E+OS 1. 166E+08 2.426E+08 

-6 1. 591E+09 S.969E+OS 2.2S3E+08 1. 797E+OS 2.215E+08 
1. 270E+09 6.995E+OS 1.509E+OS 1.104E+08 1.4S6E+OS 

-5 7.294E+08 1.323E+09 5.476E+08 2.156E+OS 1.932E+OS 
6.021E+08 1.011E+09 4.056E+08 1. 387E+OS 1.223E+08 

-4 3.417E+08 7.474E+08 9.286E+08 4.485E+OS 2.291E+OS 
2.797E+OS 5.900E+OS 6.S21E+OS 3. 15SE+OS 1. 475E+OS 

-3 2.088E+OS 3.610E+08 5.945E+08 6.473E+08 4.205E+08 
1.650E+08 2.889E+08 4.504E+08 4.559E+08 2.825E+08 

-2 1. 655E+08 2.175E+08 3.126E+08 4.145E+08 4.426E+08 
1. 269E+OS 1.707E+08 2.427E+OS 3.045E+OS 3.032E+OS 
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Table (7.34 ) of GammaO and Gamma1 

T 1000 1259 1585 1995 2512 
Log T 3.0 3.1 3.2 3.3 3.4 

Log R 
-14 10.6893 18.8596 20.6696 40.8254 80.0645 

1.3421 1. 2730 0.9921 1. 3398 1.3381 

-13 2.3269 2.9471 2.4532 5.2106 9.3509 
1. 3712 1. 2337 0.6981 1.3099 1.3595 

-12 1.5002 1.4734 1.2364 1. 3501 2.3030 
1.4025 1.2927 0.9475 0.9977 1. 4499 

-11 1.4196 1.3716 1.1375 1.2176 1.5280 
1.4099 1.3524 1.0922 1. 0613 1.4399 

-10 1.4085 1.3830 1.1773 1.1848 1.2115 
1.4074 1.3810 1.1686 1.0838 1.1831 

-9 1.4076 1.3914 1. 2601 1.1434 1. 2107 
1.4076 1.3910 1. 2579 1.1009 1.1140 

-8 1.4137 1.3946 1.3279 1.1548 1. 2258 
1.4145 1.3948 1. 3276 1.1395 1.1087 

-7 1.4100 1.3962 1.3584 1.2159 1.1803 
1. 4101 1.3963 1.3583 1. 2107 1.1207 

-6 1.4082 1. 3946 1.3718 1. 2871 1.1788 
1.4074 1.3948 1.3720 1.2853 1.1565 

-5 1.4120 1.3940 1. 3764 1. 3310 1. 2273 
1.4121 1. 3938 1. 3766 1.3303 1.2191 

-4 1.4081 1. 3966 1.3779 1.3518 1. 2868 
1.4082 1.3967 1.3777 1. 3519 1.2845 

-3 1. 3963 1.3777 1.3564 1.3220 
1.3962 1.3776 1.3564 1.3209 

-2 1.3973 1.3772 1. 3582 1. 3353 
1.3967 1.3771 1.3578 1.3349 
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Table (7.34) Continued 

T 3162 3981 5012 6310 7943 
Log T 3.5 3.6 3.7 3.8 3.9 

Log R 
-14 15.8.4220 309.8830 592.9410 743.3770 1279.2900 

1.3367 1. 3357 1.3298 1.3280 1.3355 

-13 17.1395 32.7326 62.4966 93.2134 131.4590 
1.3477 1.3411 1.3198 1.2489 1.3350 

-12 3.0709 4.6250 7.4284 10.0838 14.1836 
1.4133 1.3848 1. 3133 1.0473 1. 2318 

-11 1.7322 1.8668 2.0344 1. 9294 2.1191 
1.5502 1. 5128 1. 3866 1.0014 0.8757 

-10 1.6364 1.6585 1. 5999 1.2961 1. 3013 
1.6175 1. 6208 1.5282 1.1773 1.0381 

-9 1.4848 1.6308 1.6298 1.3450 1.1931 
1.4784 1. 6267 1. 6218 1. 3286 1.1298 

-8 1. 2479 1. 6020 1.6518 1.4916 1. 2227 
1.2187 1.6005 1.6510 1.4890 1.20!}5 

-7 1.2542 1.4120 1. 6331 1.5939 1. 3413 
1.1444 1.3997 1.6321 1.5932 1. 3351 

-6 1. 2526 1. 2822 1.5125 1.6278 1.4900 
1.1392 1.2114 1.5028 1.6259 1.4876 

-5 1.2114 1.3091 1. 3499 1.5550 1.5806 
1.1574 1.1762 1. 2902 1. 5431 1.5771 

-4 1.2213 1.2667 1. 3615 1.4201 1.5527 
1. 2010 1.1837 1.2244 1.3477 1.5290 

-3 1.2656 1. 2496 1. 3199 1.Lf 198 1.4885 
1.2582 1. 2162 1.2228 1. 2752 1. 3796 

-2 1.3038 1. 2744 1. 2879 1.3612 1.4596 
1.3013 1. 2629 1.2473 1.2676 1.3164 
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Table (7.35) of Gamma2 and Gamma3 

T 1000 1259 1585 1995 2512 
Log T 3.0 3.1 3.2 3.3 3.4 

Log R 
-14 1.3330 1.3297 1.3106 1.3327 1.3327 

1. 3353 1.3156 1. 2352 1.3345 1.3340 

-13 1.3427 1.3118 1.1776 1.3274 1. 3337 
1.3499 1. 2932 1.1053 1.3231 1.3401 

-12 1.3865 1.3008 1.0787 1.1216 1.3650 
1.3910 1. 2989 1.0691 1.1082 1. 3877 

-11 1.4074 1.3480 1.0862 1.0526 1.4010 
1.4081 1. 3492 1. 0867 1. 0531 1.4121 

-10 1. 4073 1.3794 1.1494 1.0521 1.1443 
1.4073 1.3799 1.1519 1. 0537 1.1492 

-9 1.4075 1.3908 1.2450 1.0678 1.0703 
1.4075 1.3908 1.2476 1. 0699 1.0731 

-8 1.4134 1.3944 1.3214 1.1104 1.0655 
1.4137 1.3945 1.3229 1.1133 1.0681 

-7 1.4098 1. 3961 1. 3562 1.1895 1.0801 
1.4099 1.3962 1.3568 1.1929 1. 0831 

-6 1.4082 1. 3947 1.3710 1.2742 1.1213 
1.4080 1.3947 1. 3713 1.2766 1.1251 

-5 1.4117 1.3942 1.3762 1.3260 1.1951 
1.4118 1.3941 1. 3763 1.3270 1.1990 

-4 1. 4080 1. 3965 1.3778 1. 3498 1.2716 
1.4081 1.3966 1.3778 1.3504 1.2743 

-3 1. 3962 1.3777 1.3559 1. 3162 
1.3962 1.3777 1.3560 1.3173 

-2 1.3972 1.3773 1.3580 1.3335 
1. 3970 1.3773 1.3580 1.3339 
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Table (7.35) Continued 

T 3162 3981 5012 6310 7943 
Log T 3.5 3.6 3.7 3.8 3.9 

Log R 
-14. 1. 3327 1. 3327 1.3325 1. 3323 1.3327 

1.3337 1.3334 1. 3318 1.3312 1. 3334 

-13 1. 3329 1.3328 1.3320 1. 3283 1. 3326 
1. 3366 1. 3348 1.3289 1.3087 1. 3332 

-12 1.3460 1.3375 1. 3297 1.3045 1. 3227 
1.3633 1.3494 1.3256 1.2445 1.3005 

-11 1.4727 1.4198 1.3463 1.2109 1.1698 
1.4976 1.4473 1.3567 1. 1744 1.1271 

-10 1.5972 1.5901 1. 4879 1.1851 1. 0859 
1.6048 1. 6015 1. 5011 1.1839 1.0821 

-9 1.4519 1. 6198 1.6126 1.3034 1.0971 
1.4602 1.6224 1. 6161 1. 3093 1.1000 

-8 1.1678 1.5877 1.6485 1.4725 1.1645 
1.1751 1.5924 1.M95 1.4778 1.1702 

-7 1.0904 1.3540 1.6248 1.5858 1.3024 
1.0949 1. 3659 1. 6276 1.5885 1.3100 

-6 1.0878 1.1471 1.4656 1. 6186 1.4673 
1.0920 1.1553 1.4774 1. 6214 1. 4738 

-5 1.11l3 1.1131 1.2175 1.5048 1.5621 
1.1159 1.1195 1.2304 1.5177 1. 5675 

-4 1.1657 1.1276 1.1506 1. 2666 1.4816 
1.1708 1.1340 1.1603 1. 2837 1. 4970 

·-3 1. 2382 1.1732 1.1607 1.1957 1. 2932 
1. 2420 1.1796 1.1693 1.2088 1. 3128 

-2 1.2927 1. 2376 1.2036 1. 2073 1. 2451 
1. 2946 1.2425 1.2110 1.2176 1. 2592 
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Table (7.36) of Chi T and Chi R 

T 1000 1259 1585 1995 2512 
Log T 3.0 3.1 3.2 3.3 3.4 

Log R 
-14 3.6287 3.8191 4.0149 3.9076 3.9558 

0.1256 0.0675 0.0480 0.0328 0.0167 

-13 2.2343 2.7798 3.9286 3.2763 3.5692 
0.5893 0.4186 0.2846 0.2514 0.1454 

-12 1.1961 1.3894 2.6221 2.3909 2.1159 
0.9349 0.8774 0.7664 0.7390 0.6296 

-11 1.0211 1.0493 1.5231 3.5733 1. 2073 
0.9932 0.9861 0.9603 0.8717 0.9424 

-10 1.0021 1.0067 1.1584 3.1476 1.3844 
0.9992 0.9986 0.9926 0.9147 0.9765 

-9 1.0002 1.0012 1.0490 1.9741 2.6502 
1.0000 0.9997 0.9982 0.9629 0.9201 

-8 1.0005 1.0005 1.0153 1.3480 2.9972 
1.0006 1.0002 0.9997 0.9867 0.9045 

-7 1.0002 1.0002 1.0045 1.1145 2.0597 
1.0001 1.0001 0.9999 0.9958 0.9495 

-6 0.9999 0.9999 1.0015 1.0365 1.4022 
0.9995 1.0001 1.0002 0.9986 0.9811 

-5 1.0004 0.9996 1.0005 1.0114 1.1346 
1.0001 0.9999 1.0001 0.9995 0.9933 

-4 1.0002 1.0001 1.0001 1.0041 1.0437 
1.0000 1.0001 0.9998 1.0001 0.9982 

-3 1.0003 0.9999 1. 0011 1. 0139 
0.9999 1.0000 1.0000 0.9992 

-2 1.0003 0.9998 1.0003 1.0040 
0.9995 0.9999 0.9998 0.9997 
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Table (7.36) Continued 

T 3162 3981 5012 6310 7943 
Log T 3.5 3.6 3.7 3.8 3.9 

Log R 
-14 3.9806 3.9931 4.00ll 4.0037 4.0029 

0.0084 0.00Lf3 0.0022 0.0018 0.0010 

-13 3.7701 3.8828 3.9481 4.0027 3.9764 
0.0786 0.0410 0.0211 0.0134 0.0102 

-12 2.6236 3.1062 3.4901 3.8589 3.8096 
0.4602 0.2994 0.1768 0.1039 0.0868 

-11 1.3169 1. 5704 1. 9766 2.7655 3.6382 
0.8949 0.8104 0.6816 0.5190 0.4132 

-10 1.0402 1.0699 1.1434 1.4625 2.9268 
0.9884 0.9773 0.9552 0.9083 0.7977 

-9 1.0490 1.0110 1.0172 1.1018 1.8293 
0.9957 0.9975 0.9951 0.9878 0.9469 

-8 1.3825 1.0152 1.0031 1.0271 1.2893 
0.9766 0.9990 0.9995 0.9982 0.9851 

-7 2.4441 1.1162 1.0082 1.0086 1.0958 
0.9125 0.9913 0.9994 0.9996 0.9954 

-6 2.4974 1.7169 1. 0666 1.0091 1.0325 
0.9095 0.9447 0.9936 0.9988 0.9984 

-5 1.7429 2.3241 1.4512 1.0640 1.0208 
0.9555 0.8985 0.9558 0.9924 0.9978 

-4 1.2747 1.8602 2.0284 1.4056 1.0950 
0.9834 0.9345 0.8993 0.9490 0.9848 

-3 1.0909 1. 3526 1. 7503 1.8064 1.4475 
0.9941 0.9733 0.9264 0.8982 0.9268 

-2 1.0293 1.1216 1.3217 1.5457 1. 5995 
0.9981 0.9909 0.9684 0.9312 0.9019 
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Finally, tables (7.32-36 ) give some values of computed 

thermodynamic quantities for the grid points log T = 3.0 to 3.9 and 

log f -14 to -2. As mentioned in section 7.2, the grid points for 

log F -2 and -3 with log T = 3.0 are omitted because of problems 

w'i th machine overflow and underflow. For each pair of entries in 

table (7.32), is given -2 the total pressure in dyne cm and the total 

internal energy in erg gm-1 respectively, with the contribution due to 

radiation included. The specific heats c and c (shm.;rn as CP and CV 
p v 

-1 -1 
respectively) in erg gm degree are given in the following table, 

wi th the remaining tables giving the adiabatic exponents Y, Ii. , '2 and 

'3' together with XT and Xp (shown respectively as GammaO, Gamma 1 , 

Gamma 2 , Gamma 3 , Chi T and Chi R). 

For a given grid point (T,p), the total pressure P and internal 

energy E are calculated, then in order to obtain the remaining 

quantities, P+SP and E+SE have to be calculated from the points 

(T ,f+~n and (T+~T ,r) , ",here in our calculations Sf = ,0/1000 and 

~T = T/1000. The expressions for these thermodynamic quantities are 

given in an appendix. Hith the zero point for the internal energy 

defined as neutral unbound atoms, at low temperatures and high 

densities the total internal energy is negative due to the formation 

of negative ions and molecules, and large and positive at high 

temperatures and low densities due to ionization and the contribution 

of radiation. Also at low densities due to the dominance of 

radiation, i tends to become large and r;., r2 and r; tend to approach 

4/3. However, note the abnormally small values of r
1 

for some of the 
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grid points with log T = 3.2 and 3.3. This appears to be a real 

effect, as in many of the columns the smallest values of ~ are found 

in the vicinity of where E changes sign, i.e. where many of the 

molecules are undergoing dissociation. 
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8 SUHHARY. 

As the title of this thesis suggests, we consider in some detail 

the theory necessary to calculate molecular opacities, and then 

illustrate this work with some results given in the previous chapter. 

Because of the restrictions of the computing resources at St.Andrews, 

it is unfortunately not possible to obtain exhaustive tabulations of 

opacities, particularly for triatomic molecules. 

In the discussion in this final chapter of the thesis, we first 

summarise very briefly the results presented in chapter 7. In section 

7.2, a table is given of the log RHO and log FHO for the continuous 

absorption alone for a number of grid points in the T-f plane, and for 

a few of these grid points the abundances of the atomic and molecular 

species are tabulated and the absorption coefficient is plotted 

against photon energy. A table is also given to show which atoms are 

important sources or sinks of electrons for three separate grid 

points. Section 7.3 gives some numerical examples of Honl-London 

factors and vibrational matrix elements based on the theory discussed 

earlier in the thesis, together with plots to illustrate the band 

structure. In section 7.4, some numerical examples of the LSM, ILM 

and OSM, as discussed in chapter 6, are given for comparisons, with a 

number of plots included to illustrate the discussion. The isotope 

effect of CO, HCI and TiO is discussed in some detail with 

illustrations in section 7.5, where examples of the results of the 

computed band spectra of H20, C02 and of many diatomic molecules 
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together are also included. Finally in section 7.6, one example is 

given of the comparison of the contiriuum obtained from this work and 

that of the work of Nordlund (115). Some of the abundances tabulated 

in section 7.2 are also illustrated in a plot in section 7.6. Tables 

of opacitie~ for many diatomic molecules, and H
2

0 and CO
2 

separately, 

are given for some of the grid points, and this final section is 

completed with tables of some thermodynamic quantities for 128 grid 

points. 

With the results given in chapter 7, a number of very important 

points can be made. We are quite justified in including isotopic 

molecules in the opacity calculations, as borne out by the detailed 

examination of the isotope effect of CO and TiO. For CO, even though 

th b d . . . C13016 • 1 b t 1%0 e next most a un ant 1SOtOP1C var1ant 1S on y a ou as 

abundant as C
12

0
16

, because CO is such an abundant molecule, the other 

isotopic variants are very efficient at filling in the windows and 

increasing the opacity, particularly in an important part of the 

spectrum. For TiO, it is clear that isotopes are important, as the 

dominant isotope Ti
48 

represents about 75% of all Ti, with the four 

other forms considered making up 25% and being of comparable 

abundance. Though TiO absorbs well away from the maximum of the 

Rosseland and Planck weighting functions, it is still clearly an 

important source of opacity. 

Though the theory of the isotopic shifts of the vibrational and 

rotational constants of triatomic molecules is considered in some 

detail in this thesis, because of the constraints of CPU time, no 

attempt is made to compute the spectra of isotopically substituted H
2

0 
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and CO
2

, However, as the bands due to these molecules consist of a 

very large number of overlapping lines, 

windows would be expected to be left, 

no appreciable number of 

so isotopic effects are not 

anticipated to be as important as for diatomic molecules, though as 

discussed, isotopically substituted triatomic molecules are still 

considered in the statistical mechanics calculations. 

More generally, the total effect of all diatomic molecules is to 

increase the R}ID by fairly modest amounts, the effect being greatest 

at the highest densities. For those grid points at which the opacity 

was computed with H
2

0 and CO
2

, it is clear that H
2

0 can have a very 

drastic effect indeed on the P~10, and can increase it by several 

orders of magnitude compared to that for the continuum alone, whereas 

CO
2 

has at most a modest effect due to its much lower abundance, and 

also to the fact that its bands do not spread so much over the 

spectrum. We can thus conclude that H
2

0 is likely to be a very 

important source of opacity at low temperatures, and could swamp other 

effects in the total contribution to the ~~O. From tables (7.2-9), it 

is clearly seen that H
2

0 is a close second in abundance to CO at 

log F = -8 and log T ~ 3.4, but for higher temperatures, H20 rapidly 

dissociates and becomes much less important. Thus the opacities 

computed for diatomic molecules but without triatomic molecules would 

be reasonably good at higher temperatures, but would be considerably 

in error at lower temperature. Because of the limited resources, no 

computations could be done with diatomic and triatomic molecules 

together, but this would be an obvious step in any later work in 

computing extensive tables of opacities, We can also make the point 

here that pressure-induced H
2

-H
2 

and H
2

-He absorption can be a very 



- 423 -

important source of continuous opacity for low temperatures and high 

pressures, though when molecular bands are included in the 

calculations, in particular those of H
2
0, the effect of 

pressure-induced opacity is likely to be very much less important. 

It must be pointed out that all the spectra given in this \vork 

are plots of absorption against frequency, for specified temperatures 

and densities with a fixed abundance of the chemical elements. To 

convert these into spectra that would be observed, would require using 

these computed opacities in solving the radiative transfer problem for 

a stellar atmosphere. Nevertheless, the plots do give an approximate 

qualitative idea of how the absorption by certain species, 

abundant, would appear in the spectra. 

when 

In addition to the importance of molecular opacity in the 

atmospheres of late-type stars, the presence of molecules in a gas can 

obviously influence the equation of state, and amongst the results 

given in chapter 7, are tables of the pressure, internal energy and 

the adiabatic exponents fi., r
2 

and r;. The latter are important 

respectively for dynamical instability, convective instability and 

pulsational instability. All red giants have extensive convective 

envelopes, and many are observed to be pulsating to various degrees or 

are otherwise irregular. As they exist well to the right of the 

cepheid pulsational instability strip in the H-R diagram, quite 

different mechanisms are responsible for their pulsation than in the 

case of cepheids, and clearly the presence of molecules in their 

atmospheres plays an important role. 
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Though the conditions in the interstellar medium are quite 

different from those in stellar atmospheres, in particular the 

molecules are not in equilibrium and their formation involves 

complicated reactions with interstellar grains, some of the basic 

theory discussed in this work is still relevant. Some aspects of this 

work are even more relevant to the study of planetary atmospheres, in 

particular when considering the importance of the greenhouse effect of 

H20 and CO
2 

in the terrestrial atmosphere. 

We can now briefly consider what improvements could be made to 

this work. The simplest and easiest to implement would be to extend 

the calculation of the opacity to cover more grid points, in 

particular for triatomic molecules as suggested above, and to sample 

the spectrum at finer intervals, ~ though these would all require a 

considerable amount of computer time. Although the most important 

molecules expected in stellar atmospheres are already included in the 

mixture we are dealing with, together with some other representative 

molecules which we have also included, nevertheless, further 

improvements could be made if more molecules were added. 

In computing the spectrum line-by-line, approximations have to be 

made because of the very large number of lines that have to be 

processed. Doktorov's method used in this thesis to obtain the 

vibrational matrix elements is very quick, as analytic expressions are 

used to obtain the necessary integrals. Those analytic expressions 

are only possible if a Morse potential function is assumed for the 

electronic states involved, while the possibly more accurate 
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Rydberg-Klein-Rees potential functions T.oJould require numerical 

integration. Also, we only conside~ the rotationless vibrational 

matrix elements, by assuming that the Honl-London factors can be 

simply factorized out, while more accurate band calculations would 

require this to be taken into account. However, we are also seriously 

limited by the available data for some molecules. For a simple 

molecule like CO whose spectroscopic constants are well known, an 

accurate calculation of the structure of its bands, with the suggested 

improvements above, would be quite feasible. This is clearly not the 

case for TiO, as it is such a complex system in comparison, and in 

addi tion there is the complication of A-doubling, which vle deal with 

in an approximate way, 

involved. 

as a detailed treatment ,,,ould be very 

One particularly important limitation on our calculations is the 

lack of convenient molecular oscillator strengths or electronic 

transition moments. Unfortunately, many authors give transition 

moments in different units, sometimes not even specifying their units, 

using different symbols in their notation and are sometimes ambiguous 

as to whether the electronic statistical weight factor is included. 

It would be a great aid to computations involving molecular spectra, 

if some convenient up-to-date compilation of the known or computed 

molecular transition moments and oscillator strengths could be made. 

As already stated in chapter 5, our treatment of triatomic 

molecules is very approximate, due to their much greater complexity 

compared to diatomic molecules, and to the need to save computer time 

in view of the millions of lines that may have to be calculated. One 
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obvious improvement for H
2
0, ",'ould be to calculate each band 

individually with its Ovlil rotational constants that include the 

effects of the vibration-rotation coupling, rather than using those of 

the first pair of levels in a progression in the way discussed. This 

would of course increase the CPU time considerably. Any other 

improvements would require still more CPU time and considerably more 

theory. Finally, improved tables of the cross-sections for bound-free 

and free-free absorption by atoms and molecules would improve the 

continuous spectrum; note the discussion on OH and CH in section 7.2. 

So far we have not considered the effect of turbulent velocity, 

nor in particular, the effect of different abundances, where there 

would be plenty of scope for future work. In carbon stars where there 

is a surplus of carbon over oxygen, the spectra would be heavily 

blanketed by C
2 

and CN, such as in stars like R Coronae Borealis, and 

it would be interesting to calculate opacities in such cases. 
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APPENDIX A 

Determination of the Principal Moments of Inertia for any Triatomic 

Molecule 

In section 2.13 formulae are given for calculating the rotational 

constants A, Band C for any triatomic molecule, given the atomic 

masses and bond lengths. 

here. 

The derivation of these formulae is given 

Let a triatomic molecule consist of the atoms with the masses mi~ 

m2 and m3 with the lengths of the corresponding opposite sides s23' 

s13 and s12 respectively, as shown in figure (A.l). Let ~ be the apex 

angle of the molecule at m
2

, with m
1 

and m3 representing the two end 

atoms. We also define the rectangular coordinate system with the 

origin at m
2

, s23 being directed along the x-axis and s12 being 

directed in the positive y-direction, as shown. Then if (x1 'Yl) are 

the coordinates for m1 , and likewise for m2 and m3: 

(:l.')d,J ( s 11. t-~ or;. 
1 

5;1. S~,,) 
(A.l) 

(?t~'d~) ( 0, 0) 

( :tj I i-h ) -:: ( S~~; D) 



y 
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.'i1---.x 

Fig. A.1 

Iq 

Fig. A.2 
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If (x,y) are the coordinates for the centre of mass of the 

system, then taking moments about this point: 

;. 

2.. ·m ~ ( ?l, l --?:.) -=- 0 
i::i 

and putting: 

then: 

'3 

_1 <:::; '/rl - :::t.­L ... <-

M '--A 
l. - • 

then from (A. 1): 

x 

M 

We need to find 

") 

2.·?11~(JL -~) =0 
i :- 1 

) 

M 

the three principal moments 

system, lA' IB and Ie' where by'convention IA is 

of 

the 

intermediate and Ie the largest moment of inertia. 

in section 2.10, the three atoms define a plane, so: 

::: T Co 

(A.2) 

(A.3) 

(A.4) 

(A.5) 

inertia of the 

smallest, IB the 

As already stated 

(A.6) 

where Ie is the moment of inertia about (x,y) perpendicular to the 

plane, then: 
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+ (A.7) 

where r. is the distance of atom m. from the centre of mass, so: 
1 1 

Y.~ - (A.8) 
\,. 

From (A.I) and (A.5) we can write: 

,~~ -:: (?rl,5,?t{rS", +~:, ?,~})1 + (-'1>1, S';Z<:;,.; c() ~ (A.IO) 

M~ M< 

+ (""', S,~ ~ ::< )?. (A.ll ) 

M'l. 

Then applying (A.9-I1) to (A.7), we obtain: 

-1 ='111 [( ~ t..~. c. I I~·' .... o\' 

(A.12) 

From vJhich it follows that on simplification, we obtain the result: 

(A.13 ) 
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or as s13 is the third side of the triangle, obtained from the cosine 

formula being the coefficient of m
1

m
3

: 

(A.14) 

from ~vhich (2.l3.1) and (2.l3.2) are obtained respectively using 

(2.10.2), for the largest of the principal moments of inertia. 

We now need to find IA and IE which lie in the plane of the 

molecule, and which for the most general case of the C point group, 
s 

will not be orientated in any special direction. 

Let us define the x' and y'-axes which pass through the centre of 

mass and parallel to the x and y-axes, such that x' x-x and 

y' y-y. Now by Hassey and Kestelman (116), but vlOrking only in two 

dimensions, we first consider the moment of inertia of m. about some 
1 

general axis passing through the centre of mass along the direction of 

the unit vector v = li+m) 

perpendicular distance of the 

2 2 (v.r.)2, where Pi r i 
r. 

-1 -1 

with m. 
1 

mass m. 
1 

located at 

from this 

is the radius vector 

axis 

of 

centre of mass. Then the moment of inertia for all the 

this axis is given by: 

3 

I - Lm;. fz. 

'3 

'd.1'17) 'i. ?r1~ x~ I j Z 
" ;; f 

The 

is given by 

m. from the 
1 

atoms about 

(A.1S) 



Writing the general equation of an ellipse, with the origin of the 

coordinates at its centre, in the same form: 

1 (A.16) 

where the radius vector of a point on this ellipse in the direction v 

from the centre of mass is r, and as x = rl and y = rm, then it is 

seen that I = 1/r2 , hence (A.16) is the ellipse that represents the 

moment of inertia in the plane, and where: 

(A.17 ) 
) 

with a and b being the moments of inertia about the x' and y'-axes 

respectively and h being the cross term. Then we need to rotate the 

coordinate system such that we have no cross term. 

If vIe define a new coordinate system (5."]) rotated by If relative 

to (x',y'), then: 

J 
'X ::: 

(A.18) 

then vle want to find the value of ¢ such that 'lye can write the 

equation of the ellipse in the standard form: 

+ 1 (A.19) 
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without a cross term, such that p and, q are now the principal moments 

of inertia in the plane, with: 

., 
f - '? --: z "1;"-

(A.20) 
) 

(. :; { 

Now if we apply (A.18) to (A.16), we obtain: 

(A.21) 

hence: 

(A.22) 

The coefficient of l'i must be zero as we have no cross term, hence: 

(A.23) 

and using the fact that: 

Q c.;,",:> ¢ ~ 4 -::: ~~¢ 
(A.24) 

Co-s ~q - ~'l¢ -:: Co??. rf 

then from (A.23) we obtain: 
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(A.25) 

which is the condition that the cross term vanishes. 

Re-writing (A.22) without the terms involving g °1 when the 

condition of (A.25) is valid: 

(A.26) 

on multiplying out, collecting the terms in 52 and 12, then using the 

trigonometric identities: 

(A.27) 

together with the first in (A.24), we can write: 

(A.28) 

which is the equation of the ellipse in the standard form, hence: 

(A.29) 

then IA will be the smaller of p and q, and IB the larger. 
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= 1 
jt~~ 1~ + l' 

:: 
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(t--a.)" 

/.ff~· +- (h.-Ct.)"). 

using (A.25), then substituting these into (A.29), we obtain: 

({J.. _ t.. ) ( t, -Q )~ 

4.A<l.-(~-aYJ. 

then combining the pair together, we can write: 

CA.30) 

(A.31) 

CA.32) 

where IA B means IA with the negative root and IB with the positive , 
root, as IA~ IB by definition: 

However, it is more convenient to express (A.32) in reciprocal 

form, hence on re-arranging: 

(tl t l-) ! j [ tt + t) 'J,. - 4- (IA t- -it 7.) 

'J. (Jir -h ,) 
CA.33) 

-1 where IA is now the positive root, and we need only determine the 



- 437 -

quantities (a+b) and (ab-h2). Hence applying the mass and coordinates 

of the atoms to (A.17): 

(A.34) 

then: 

+ "h1 ~ ~:{ + Jh1 J ~ ~ 1 [-;" I h, -~ ) '< + 111) ~ ~ 
(A.35) 

{ 

~ 'irl3 (?L?J -jd'\ - [//>t,l?'., -·fl.){d,-q) t- '1r!a?:5 - '?n~ ['?\.J~';)5) 

On multiplying this out and substituting for xi)Yi'x and y from (A.I) 

and (A.5), then (A.35) eventually simplifies right down to: 

Having determined 2 (ab-h ), 

M 
and as (a+b) 

already known earlier, and vlri ting: 

(A.36) 

Ie for a plane with Ie 

(A.37) 

all principal moments of inertia are now known directly in terms of 

the masses of the atoms, their separations and the apex angle of. the 

molecule. 
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Finally, in order to obtain the expressions for the rotational 

constants in section 2.13, lA' IB and IC are replaced by A, Band C 

respectively using (2.10.2), which gives the definitions of the 

rotational constants in terms of the moments of inertia. (A.37) can 

now be re-written as: 

1 + 
(A.38) 

putting: 

( a. i -J ? ) == l':Z 'f "iT -:( c < -Jry I <111 jl -'"1
3 

:> I ~ 5 < ~ cy';, 1 ~ (A. 39) 

~~ M 
and keeping to the convention that A ~ B ~ c, (A.38) can be written as 

(A.40) and (A.4l) for A and B respectively, and from (A.13) we can 

write (A.42) for C: 

A 1 (A.40) 

1 (A.4l) 

c ;: 11 
(A.42) 

and as a check, it is immediately seen from (A.40) and (A.4l) that 
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(2.10.3) is satisfied, i.e; l/A + l/B l/C. 

As already stated in section 2.13, if the bond angle of the 

molecule is opened up so that in the limit the molecule is linear, 

i.e. e{-7'- 1800
, then k -7 0 from (A.39) , and it is immediately seen 

that A -7 oCJ from (A.40) and B -7 C from (A.41) if we replace (l-2kC2 ) 

2 
by (l-kC ), the first two terms in the binomial expansion. 

Finally, we can consider briefly the special case of a molecule 

with the C
2v 

point group, where clearly from symmetry, the two 

principal moments of inertia in the plane must be respectively 

perpendicular to and parallel to the axis of symmetry. Let I and I p q 

be respectively these moments of inertia, see figure (A.2), then it is 

easy to show that their ratio is given by: 

= (A.43) 

and using data from Herzberg (34), we can tabulate this ratio for a 

few C
2v 

triatomic molecules in their ground electronic states: 
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Table (A.l) of lp/lq for some C2v Molecules 

in all cases 

NH2 0.55 

PH2 0.89 

H2O 0.52 

H2S 0.87 

N02 0.05 

S02 0.17 

°3 0.13 

I < I , p q hence I = I and p A so the 

intermediate moment of inertia lies along the symmetry axis. Thus as 

stated in section 5.3, the sign of u
4 

is determined by~ for all these 

molecules, so for r even, u4= +1 and for ~ odd u4= -1. No cases could 

be found for triatomic molecules for which Ip > lq' 

lq= lA' so the smallest moment of inertia lies along the symmetry 

axis, and the sign of u4 is determined by whether Ka is even or odd. 

If I = I q' P 
then He have an oblate symmetric top, which is accidental 

if m1:/- m2 , but clearly if m1= m2 then it is easy to see that ~ = 600 

and we have an equilateral triangle molecule of point group D3h like 

+ 
H3" 

Related to this are the selection rules for the v3 mode of 

vibration, where vibrational levels have the species Al and B1 : 



I < I 
P q 

A-Type Bands Al ~-? Bl for Llv3 odd, 

r ~Al B-Type Bands 1 1 for tlv3 even, 
. Bl ~-~ B 1 

I > I 
P q 

-A ~-? A J 
A-Type BandS! 1 Ifor Ll v3 even, 

Bl ~-~ B 1 

B-Type Bands Al ~-? B 1 for fjv3 odd, 

where apparently for triatomic molecules we need consider only the 

first case. 
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APPENDIX B 

Determination of Vibrational Partition Functions and some other 

Vibrational Properties 

As stated in section 2.6, we can use the method of Kassel (38) to 

obtain an analytic expression for the vibrational partition function 

of a diatomic molecule, and hence using the same method in section 

2.11, we can similarly obtain an expression for a triatomic molecule. 

Given the vibrational partition function (2.6.2) in terms of the 

dimensionless vibrational constants, and converting to dimensionless 

constants in terms of the zero point energy by (2.6.3), we can write: 

_ i e -ki, ,-e klo X,v' e -LJ" '1o ,,' 

v-;;:.o 

neglecting terms higher than W Y , o 0 

other than the first, we obtain: 

then expanding the 

,- ) 

(B.l) 

exponentials 

(B.2) 

then multiplying out the square brackets and neglecting terms O(v
7

) 



and higher: 

Now as in (2.6.4), if we let: 

then 

then (B.3) can be written as: 

d) 

klo X 0 L V-'"l 211" ·i 

Given that Z < 1 always, it is easy to see that: 

1 
(1 -2) 

and by Kassel we can define a function P (Z), such that: 
n 

00 

~"t (C) - L \t-" l'-
ir'::D 

as 

it follows that: 

(B.3) 

(B.4) 

(B.6) 

(B.7) 

(B.8) 
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(B.9) 

Together with the recurrence relation of (B.9) and the relation of 

(B.6), we can obtain P (Z) for any n by successive differentiation: 
n 

r-; ('l) --

Ps- (2: ) 

2:(1+42+2'<-) 
(1-"l)lr 

2(1 + 112 -t 112~ + 2» 
(1-l)S 

_ 2(1 +~~2 +bb'l{ t-~b2?·tZ't) 

(1-2)& 

_ i.(1 -/- 572 +3D~2~-+30~?:?-tS7lt{ +i s) 

(1-t:.)1-

then applying (B.IO-16) to (B.S) we obtain the final result: 

(B.lO) 

(B.ll) 

(B.12) 

(B.l3) 

(B.14) 

(B.IS) 

(B.16) 



1 .J- W",'xc 2-(1f~) -+- (\,JoXo)~ 2(1+1-12 t1-1l<-'f ;(!.) 
(1-£)":> ~(1-2)5 (';- 2) 

-+ r (~~xS?~ (we Yo)?'] '2 ('1 +571 t ~o1 21+ ')D~ 2-3 + S'7 1. ~ f ;Z5) 

l 0 ~ (1-lf) 
(B.17) 

':1 (.1 + I. '2 i' ':}~) 
- \,Jo Yo z;:; Y' L. 

(1-2)4 -

which is (2.6.5), except that the term for (W Y )2 is dropped as it is 
o 0 

found to be negligible. By using the same procedure for triatomic 

molecules, the expression (2.11.6) can similarly be obtained. 

For the sake of interest, we can also apply Kassel's method for 

obtaining an expression for the sum of relative band strengths in a 

progression for the harmonic oscillator. 

With the expressions (4.3.46-50) for the matrix elements, and as 

stated in section 5.2, if we neglect all transitions other than n =lJ.v 

for the th n order matrix element, wi th IJ. v being positive, so 

considering only <vlxnlv+n>, then the relative strength of a band in a 

progression v = n as given by (5.2.2) is: 

< lr I ')/.,i'l V" ~ n j1. 

<O/?L iI /n)1. 

Nm.;T if S (Z) is the sum of all 
n 

relative band strengths 

progression with the Boltzmann factor, it is given by: 

5 (2) 
II. 

in 

(B.18) 

th the n 

(B.19) 

from which we can write dovm the expressions for SO(Z), Sl (Z), S2(Z) 



etc. On applying Kassel's method as before by substituting P (Z) for 
n 

the summation in each of 8 (Z), we. obtain expressions for each of 
n 

8 (Z) which all simplify down to: 
n 

1 
(B.20) 

However, from the binomial expansion from Abramowitz and 8tegun (46): 

for Ixl < 1 (B.21) 

we can see at once that: 

1 (B.22) 

and if we start the summation from v = 0, we must replace v by v+n 

under the summation, giving the right hand side of (B.19). 

In (B.20), 81 (Z) is the sum of the progression for the first 

harmonic or fundamental, 82 (Z) for the second harmonic or first 

overtone etc.; 80 (Z) is the "zeroth harmonic" and represents the sum 

of strengths in pure rotational bands, assuming the permanent dipole 

moment does not change with vibrational energy (in reality of course 

it must, in order to produce vibration-rotation bands), and 80 (Z) is 

also of course the partition function. No such simple analytic 

technique could be used for the anharmonic oscillator, because the 

matrix elements can no longer be written in a simple analytic form. 

For emission, (B.20) still applies but with n still being positive and 

v now being the final vibrational level. 
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We can also for the sake of interest, determine how S (Z) behaves 
n 

if the molecule is isotopically substituted. Let ,P- and ft I be 

respectively the reduced mass of the initial molecule and isotopically 

substituted molecule, then by (2.8.1) and (2.8.2), i.e. respectively: 

and t..'e f - f iJe (B.23) 

and for the harmonic oscillator (4.3.45) and (5.2.1), 

i.e. respectively: 

(B.24) 

we can show that: 

(B.25) 

and: 

-= (B.26) 

Each band is shifted in frequency by ~I/9, and it is seen from 

(B.23) that this will give an additional factor to the band strength 

for absorption neglecting stimulated emission, and emission 

respectively by: 

and (B.27) 
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Hence applying (B.25-27) t~ (B.20), we obtain for absorption: 

1 
(B.28) 

and for emission: 

(B.29) 

where again n is positive and in the analysis, v is the final level. 

Both (B.28) and (B.29) are invalid for n = 0, i.e. pure rotation, but 

'ole can \vTite the shift of the vibrational partition function simply 

as: 

i 

( 1FiP)" 1 - 2: 
(B.30) 

As we are dealing with purely vibrational effects, we are of course 

neglecting the changes of the rotational constants. 

One can refer to the more extensive paper by Kassel (117) for the 

application of the function P (Z) 
n and its derivatives on the 

determination of various molecular thermodynamic functions. 

Finally, in the application of Doktorov's method as discussed in 

section 4.3, we have to assume a Morse potential function, where the 

terms in wyand beyond are assumed to be zero, and we use wand the 
e e e 

dissociation potential DO, or the first anharmonic term ~x if DO is 
e e e e 

not available; the two being related by (4.3.10). However, in a few 

rare cases, notably for the first excited electronic states of the 
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hydrides of the group r elements, the constant D x is negative, 
e e 

i.e. the first anharmonic term is positive, as this term is normally 

defined with a negative sign in the expression for the energy levels, 

causing the potential well to depart grossly from that of a Morse 

potential. In this case there will be no turnover in the levels if 

the higher order terms are neglected, and it is easy to see that 

Doktorov's method cannot be used if DO is not available. 
e 

We could of course assume a nearly harmonic potential with ~ 
e 

left unchanged but with a very small value of ~exe with a 

correspondingly 
o 

large value of D , 
e 

then apply Doktorov's method as 

usual. A possibly better alternative is to fit a Morse potential, 

provided that Q , D x and ~ yare known. e e e e e 

If the term values are as usual: 

(B.31) 

neglecting higher terms, we want to replace the last terms by ~fxf' an 

effective anharmonic constant. Differentiating and equating to zero 

for the turnover in levels corre~ponding to dissociation: 

(B.32) 

then solving for v, we can write: 

':l. tJe"?Le - '> 41e (J-e ~ ~ ) t,;e 
1 

:A. ~ - 3c,}..:- c"'e de. (B.33) 

6 4.J~ [Je. 
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Now letting: 

(B.34) 

then for dipsociation: 

(B.35) 

giving: 

(B.36) 

then equating (B.33) and (B.36) and simplifying, we obtain the result: 

(B.37) 

where the positive root should be taken. 

For example, 1 the A 2' state of NaH has the constants: 41 = 310.60, e 

CJexe -5.410 and iJ y = -0.1970, then applying (B.37), we obtain e e 

t.; fXf 4.589; then this together with '1 '-.:e enables us to apply 

Doktorov's ~ethod as usual. 

Note also that in this case the given value of the 

vibration-rotation coupling constant ~ is also negative, so that B 
e v 

increases with v to a maximum before decreasing, due to higher order 

coupling constants vlhich we neglect, rather than decreasing 

monotonically which is normally the case. The best way of dealing 
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with this is to make 0{ and A consistent with our assumed Morse e {-e 

potential, and calculate them from (4 .• 2.7) and (4.2.8) respectively, 

Although this method is very crude, we hope that in such 

breakdown cases, we can at least approximately represent the gross 

properties of the spectra. Though we could also use (B.37) to fit a 

Morse potential for the usual non-breakdovffi cases of () x if 41 Y is e e e e 

known, it is thought best not to apply this method in such cases. 
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APPENDIX "C 

Data for De.termining Sources of Continuous Opacity 

Tables of data that are used in chapter 3 for determining the 

continuous opacity are given here. 

For Rayleigh scattering, the coefficient BO' and for some 

elements up to neon and some molecules, Bl and B2 are given as defined 

in (3.2.4) and (3.2.5), the data being obtained from the various 

sources as stated in section 3.2. Note that many of these 

coefficients may be outside the range of floating point numbers in the 

machine used, in which case they have to be scaled. 
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Table (C.1) of Rayleigh Scattering Coefficients 

Z BO B1 B2 

H 1 5~813E-45 2.452E-10 f l-.801E-20 
He 2 5.616E-46 4.750E-ll 1.850E-21 
Li 3 5.223E-42 
Be 4 1. 129E-42 
B 5 2.236E-43 
C 6 4.42"6E-44 2.743E-10 6.960E-20 
N 7 2.275E-44 1. 922E-10 3.362E-20 
0 8 7.621E-45 1.008E-10 1.038E-20 
F 9 3.937E-45 
Ne 10 2.041E-45 4.480E-ll 2.120E-21 

Na 11 9.520E-42 Se 34 1. 526E-43 La 57 2.273E-41 
Mg 12 4.277E-42 Br 35 1.107E-43 Ce 58 1.896E-41 
Al 13 1. 922E-42 Kr 36 8.029E-44 Pr 59 1.582E-41 
Si 14 8.635E-43 Rb 37 3.265E-41 Nd 60 1.320E-41 
P 15 3.880E-43 Sr 38 2.429E-41 Pm 61 1.102E-41 
S 16 1. 743E-43 Y 39 1.807E-41 Sm 62 9.191E-42 
Cl 17 7.832E-44 Zr 40 1. 344E-41 Eu 63 7.669E-42 
Ar 18 3.519E-44 Nb 41 9.997E-42 Gd 64 6.399E-42 
K 19 1. 886E-41 Mo 42 7.436E-42 Tb 65 5.339E-42 
Ca 20 1. 368E-41 Tc 43 5.532E-42 Dy 66 4.455E-42 
Sc 21 9.920E-42 Ru 44 4.115E-42 Ho 67 3.717E-42 
Ti 22 7.196E-42 Rh 45 3.061E-42 Er 68 3.101E-42 
V 23 5.219E-42 Pd 46 2.277E-42 Tm 69 2.587E-42 
Cr 24 3.786E-42 Ag 47 1. 694E-Lf2 Yb 70 2.159E-42 
Mn 25 2.746E-42 Cd 48 1.260E-42 Lu 71 1.801E-42 
Fe 26 1.992E-42 In 49 9.374E-43 Hf 72 1.503E-42 
Co 27 1.445E-42 Sn 50 6.973E-43 Ta 73 1.254E-42 
Ni 28 1.048E-42 Sb 51 5.187E-43 W 74 1.046E-42 
Cu 29 7.601E-43 Te 52 3.859E-43 Re 75 8.731E-43 
Zn 30 5.513E-43 I 53 2.870E-43 Os 76 7.284E-43 
Ga 31 3.999E-43 Xe 54 2. 135E-43 Ir 77 6.078E-43 
Ge 32 2.901E-Ed Cs 55 3.265E-41 Pt 78 5.071E-43 
As 33 2.104E-43 Ba 56 2.724E-41 Au 79 4.231E-43 

Hg 80 3.531E-43 

H2 8.140E-45 1. 573E-10 1. 978E-20 
C2 4.605E-44 2.743E-10 6.960E-20 
N2 3.867E-44 1. 540E-10 5.929E-21 
02 3.247E-44 1.014E-10 2.571E-21 
CO 3.284E-44 
OH 2.011E-44 
SiO 9.107E-44 

H2O 2.570E-44 
CO2 1. 147E-43 
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The following tables (C.2-23) as used in section 3.3, are for the 

various sources of continuous absorption in the form of log absorption 

. 4 d 1n em per yne, 2 except for OHbf and CHbf which are in em, with the 

negative sign omitted in all cases for convenience. Because these 

tables come from different sources, as stated in section 3.3 and 

below, the tabulation intervals are different and in different units, 

which we retain. All rO\-lS are tabulated by wavelength or energy and 

columns by temperature or 8. Where we have the following conversion 

factors: 

A(R) = l/ER«) = 91l.26708/E, e = 5039.935/T (C.l) 

'vith E being the energy in Rydbergs and R ... the Rydberg constant for 

infinite mass. 

For He
ff 

from Somerville (51), H2ff from Somerville (56), Cff 

from Myerscough and McDowell (53) and C1~f from John and Horgan (52), 

the first row is used for extrapolation to low energies, performed by 

taking the number whose log 
2 is tabulated here and dividing by E , 

applying (3.3.9) if working in dimensionless energy units. For John 

(54) for wavelengths longer than 10~, apply his expression: 

or 

(C.2) 

with}. in /14... and kl0 the absorption at 10)\ or use (3.3.8) if working 

in dimensionless energy units. Note also, as stated in section 3.3, 
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that the table for CHbf is obtained by combining three tables as given 

by Tarafdar and Das (57), and that the extrapolation of OHbf and CHbf 

in tables (C.22) and (C.23) respectively, to longer wavelengths, is 

performed according to the method discussed in section 7.2. Finally, 

as stated in section 3.3, we have added the first row to table (C.S) 

for C;f' in order to apply the same extrapolation method as Somerville 

etc. 



Table (C.2) of Hff+bf in cm4/dyne from Tsuji (9) 

Theta 
H/L in 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 
Microns , 
100.0 22.488 22.361 22.268 22.195 22.l36 22.086 22.044 22.006 21.973 
80.0 22.682 22.555 22.462 22.389 22.330 22.280 22.238 22.200 22.167 
60.0 22.931 22.805 22.712 22.639 22.580 22.530 22.487 22.450 22.417 
40.0 23.284 23.157 23.064 22.991 22.932 22.882 22.839 22.802 22.769 
20.0 23.886 23.759 23.656 23.593 23.534 23.484 23.441 23.404 23.370 
16.0 24.079 23.953 23.860 23.787 23.728 23.678 23.635 23.597 23.564 
14.0 24.195 24.069 23.976 23.903 23.843 23.794 23.751 23.713 23.680 
12.0 24.329 24.203 24.109 24.037 23.977 23.927 23.884 23.847 23.8l3 
10.0 24.487 24.361 24.268 24.195 24.l35 24.086 24.043 24.005 23.972 
8.0 24.681 24.554 24.461 24.388 24.329 24.279 24.236 24.199 24.165 
6.5 24.861 24.735 24.641 24.569 24.509 24.459 24.416 24.379 24.346 
6.0 24.931 24.804 24.711 24.638 24.579 24.529 24.486 24.448 24.415 
5.5 25.006 24.880 24.786 24.714 24.654 24.604 24.562 24.524 24.491 
5.0 25.089 24.962 24.869 24.796 24.737 24.687 24.644 24.607 24.574 
4.5 25.180 25.054 24.961 24.888 24.829 24.779 24.736 24.699 24.665 
4.0 25.282 25.156 25.063 24.990 24.931 24.881 24.839 24.801 24.768 
3.8 25.327 25.200 25.107 25.035 24.976 24.926 24.883 24.846 24.813 
3.6 25.374 25.247 25.154 25.082 25.023 24.973 24.930 24.893 24.860 
3.4 25.423 25.297 25.204 25.131 25.072 25.023 24.980 24.943 24.910 
3.2 25.476 25.349 25.256 25.184 25.125 25.076 25.033 2Lf. 996 24.963 
3.0 25.531 25.405 25.312 25.240 25.181 25.132 25.090 250052 25.019 
2.8 25.591 25.465 25.372 25.300 25.241 25.192 25.150 25.113 25.079 
2.6 25.655 25.529 25.437 25.365 25.306 25.257 25.215 25.177 25.144 
2.4 25.725 25.598 25.506 25.434 25.376 25.327 25.284 25.247 25.214 
2.2 25.800 25.674 25.582 25.510 25.452 25.403 25.360 25.323 25.290 
2.0 25.882 25.756 25.665 25.593 25.535 25.486 25.443 25.406 25.372 
1.9 25.926 25.801 25.709 25.638 25.580 25.531 25.488 25.451 25.417 
1.8 25.973 25.848 25.756 25.685 25.627 25.578 25.535 25.497 25.463 
1.7 26.023 25.897 25.806 25.735 25.677 25.627 25.585 25.547 25.512 
1.6 26.056 25.907 25.770 25.625 25.460 25.273 25.067 24.848 24.623 
1.5 26.045 25.816 25.574 25.315 25.047 24.779 24.515 24.258 24.009 
1.4 26.010 25.709 25.400 25.093 24.794 24.508 24.234 23.971 23.719 
1.3 25.968 25.612 25.266 24.937 24.627 24.335 24.058 23.794 23.540 
1.2 25.928 25.534 25.167 24.828 24.514 24.219 23.941 23.677 23.423 
1.1 25.895 25.477 25.098 24.754 24.438 24.143 23.865 23.600 23.347 
1.0 25.873 25.439 25.054 24.708 24.391 24.096 23.818 23.554 23.300 
0.9 25.865 25.420 25.033 24.686 24.369 24.074 23.797 23.533 23.279 
0.8 25.871 25.421 25.033 24.686 24.370 24.076 23.798 23.534 23.281 
0.7 25.895 25.443 25.055 24.709 24.393 24.099 23.822 23.558 23.305 
0.6 25.939 25.488 25.100 24.755 24.440 24.146 23.869 23.605 23.352 
0.5 26.110 25.560 25.174 24.829 24.514 24.220 23.943 23.679 23.426 
0.4 26.118 25.669 25.283 24.939 24.623 24.329 24.052 23.788 23.535 
0.3 26.277 25.828 25.442 25.097 24.781 24.487 24.210 23.946 23.693 
0.2 26.519 26.068 25.681 25.336 25.020 24.726 24.449 24.185 23.931 
0.1 26.936 26.484 26.096 25.750 25.434 25.140 24.862 24.598 24.345 
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Table (C.2) Continued 

Theta 
H/L in 2.4 2.6 2.8 3.0 3.5 4.0 4.5 5.0 
Microns 
100.0 21.943 21. 916 21.892 21.869 21.819 21.776 21. 738 21.704 
80.0 22.137 22.110 22.086 22.063 22.012 21. 969 21. 932 21. 898 
60.0 22.387 22.360 22.335 22.312 22.262 22.219 22.181 22 • .148 
40.0 22.739 22.712 22.687 22.664 22.614 22.571 22.533 22.499 
20.0 23.341 23.313 23.288 23.265 23.215 23.171 23.133 23.098 
16.0 23.534 23.507 23.482 23. Lf59 23.408 23.364 23.326 23.291 
14· .0 23.650 23.623 23.598 23.575 23.523 23.480 23.441 23.407 
12.0 23.783 23.756 23.731 23.708 23.657 23.613 23.574 23.540 
10.0 23.942 23.914 23.889 23.866 23.815 23.771 23.732 23.697 
8.0 24.135 24.108 24.083 24.060 24.008 23.964 23.925 23.890 
6.5 24.315 24.288 24.263 24.240 24.189 24.144 24.105 24.070 
6.0 24.385 24.358 24.333 24.309 24.258 24.214 24.175 24.139 
5.5 24.461 24.433 24.408 24.385 24.334 24.289 24.250 24.215 
5.0 24.544 24.516 24.491 24.468 24.417 24.372 24.333 24.297 
4.5 24.635 24.608 24.583 24.560 24.508 24.464 24.424 24.388 
4.0 24.738 24.711 24.686 24.663 24.611 24.566 24.525 24.488 
3.8 24.783 24.756 24.731 24.707 24.655 24.610 24.569 24.532 
3.6 24.830 24.803 24.778 24.754 24.702 24.657 24.616 24.578 
3.4 24.880 24.853 24.827 24.804 24.752 24.706 24.665 24.627 
3.2 24.933 24.906 24.880 24.857 24.804 24.758 24.716 24.678 
3.0 24.989 24.962 24.936 24.913 24.860 24.813 24.877 24.732 
2.8 25.049 25.022 24.996 24.973 24.919 24.872 24.829 24.789 
2.6 25.114 25.086 25.061 25.037 24.983 24.935 24.891 24.850 
2.4 25.184 25.156 25.130 25.106 25.051 25.002 24.957 24.916 
2.2 25.259 25.231 25.205 25.180 25.125 25.075 25.029 24.986 
2.0 25.342 25.313 25.287 25.262 25.205 25.153 25.106 25.062 
1.9 25.386 25.357 25.330 25.305 25.247 25.195 25.147 25.103 
1.8 25.432 25.403 25.376 25.350 25.292 25.239 25.191 25.146 
1.7 25.481 25.452 25.424 25.398 25.389 25.285 25.236 25.190 
1.6 24.396 24.169 23.945 23.724 23.187 22.668 22.166 21.677 
1.5 23.767 23.531 23.301 23.077 22.535 22.015 21. 512 21.023 
1.4 23.474 23.238 23.007 22.782 22.240 21. 720 21.217 20.728 
1.3 23.296 23.059 22.828 22.603 22.061 21.541 21.038 20.549 
1.2 23.178 22.942 22.711 22.486 21.944 21.424 20.922 20.432 
1.1 23.102 22.865 22.635 22.410 21.868 21.348 20.845 20.356 
1.0 23.056 22.819 22.589 22.364 21.822 21.302 20.800 20.310 
0.9 23.035 22.798 22.568 22.343 21.800 21. 281 20.779 20.290 
0.8 23.037 22.800 22.570 22.345 21.803 21.283 20.780 20.291 
0.7 23.060 22.824 22.593 22.369 21.826 21.307 20.804 20.315 
0.6 23.107 22.871 22.640 22.416 21.873 21.354 20.851 20.362 
0.5 23.182 22.945 22.715 22.490 21. 948 21.428 20.925 20.436 
0.4 23.290 23.054 22.823 22.599 22.056 21. 537 21.034 20.545 
0.3 23.448 23.212 22.981 22.756 22.214 21.695 21.192 20.703 
0.2 23.687 23.450 23.220 22.995 22.453 21. 933 21.431 20.941 
0.1 24.101 23.864 23.634 23.409 22.867 22.347 21.844 21.355 
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Table (C.3) of He~f in cm
4

/dyne from Somerville (51) 

Theta 
Energy in 0.2 0.3 0.4 0.5 0.6 0.8 
Rydbergs 
0.000 29.351 29.198 29.105 29.039 27.149 28.907 
0.006 24.907 2if.754 24.662 24.595 24.542 24.463 
0.008 25.156 25.004 24.910 24.845 24.793 24.714 
0.010 25.350 25.198 25.106 25.039 24.987 24.907 
0.015 25.701 25.550 25.458 25.391 25.339 25.260 
0.020 25.951 25.801 25.708 25.642 25.590 25.511 
0.025 26.146 25.996 25.903 25.836 25.785 25.706 
0.030 26.304 26.152 26.061 25.996 25.943 25.866 
0.035 26.438 26.286 26.195 26.129 26.078 26.001 
0.040 26.553 26.402 26.312 26.246 26.194 26.119 
0.050 26.747 26.597 26.506 26.441 26.390 26.315 
0.060 26.907 26.757 26.666 26.600 26.551 26.478 
0.070 27.040 26.889 26.801 26.738 26.688 26.614 
0.080 27.156 27.007 26.917 26.854 26.807 26.733 
0.090 27.258 27.111 27.022 26.959 26.910 26.839 
0.100 27.350 27.203 27.115 27.052 27.004 26.932 
0.110 27.433 27.286 27.199 27.137 27.089 27.018 
0.120 27.509 27.364 27.276 27.214 27.167 27.095 
0.130 27.578 27.434 27.347 27.286 27.238 27.167 
0.140 27.644 27.499 27.413 27.352 27.305 27.232 
0.150 27.703 27.559 27.474 27.413 27.366 27.293 
0.160 27.759 27.616 27.532 27.471 27.424 27.350 
0.170 27.812 27.670 27.585 27.524 27.478 27.403 
0.180 27.863 27.721 27.636 27.575 27.527 27.453 
0.190 27.910 27.770 27.684 27.623 27.575 27.500 
0.200 27.955 27.815 27.730 27.670 27.622 27.544 
0.220 28.039 27.900 27.815 27.754 27.706 27.625 
0.240 28.115 27.975 27.893 27.830 27.780 27.699 
0.260 28.185 28.048 27.963 27.900 27.851 27.767 
0.280 28.250 28.114 28.029 27.967 27.914 27.827 
0.300 28.312 28.175 28.089 28.025 27.971 27.883 
0.400 28.564 28.428 28.338 28.268 28.210 28.113 
0.500 28.759 28.622 28.526 28.451 28.388 28.284 
0.600 28.917 28.775 28.676 28.595 28.529 28.420 
0.700 29.051 28.903 28.799 28.714 28.646 28.533 
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Table (C.3) Continued 

Theta 
Energy in 1.0 1.2 1.6 2.0 2.8 3.6 
Rydbergs· 
0.000 28.848 28.801 28.730 28.676 28.597 28.538 
0.006 24.406 24.359 24.287 24.234 24.156 24.099 
0.008 24.656 24.609 24.538 24.485 24.407 24.352 
0.010 24.851 24.804 24.733 24.680 24.602 24.548 
0.015 25.-203 25.157 25.087 25.036 24.963 24.910 
0.020 25.453 25.409 25.340 25.290 25.218 25.166 
0.025 25.650 25.604 25.538 25.488 25.417 25.367 
0.030 25.810 25.764 25.699 25.650 25.580 25.530 
0.035 25.947 25.903 25.836 25.788 25.719 25.666 
0.040 26.063 26.020 25.955 25.907 25.839 25.783 
0.050 26.261 26.218 26.155 26.107 26.034 25.975 
0.060 26.424 26.381 26.318 26.269 26.192 26.130 
0.070 26.561 26.519 26.455 26.404 26.323 26.256 
0.080 26.680 26.638 26.573 26.520 26.434 26.365 
0.090 26.785 26.742 26.676 26.622 26.532 26.457 
0.100 26.879 26.836 26.767 26.710 26.616 26.539 
0.110 26.963 26.921 26.851 26.790 26.693 26.613 
0.120 27.041 26.996 26.924 26.863 26.759 26.680 
0.130 27.112 27.067 26.991 26.928 26.824 26.740 
0.140 27.177 27.130 27.052 26.987 26.879 26.796 
0.150 27.237 27.189 27.108 27.041 26.932 26.845 
0.160 27.292 27.243 27.161 27.092 26.983 26.893 
0.170 27.345 27.294 27.210 27.140 27.026 26.939 
0.180 27.394 27.342 27.256 27.184 27.069 26.979 
0.190 27.439 27.386 27.298 27.225 27.109 27.018 
0.200 27.481 27.428 27.339 27.264 27.147 27.055 
0.220 27.561 27.506 27.413 27.336 27.216 27.123 
0.240 27.633 27.575 27.480 27.402 27.279 27.185 
0.260 27.697 27.638 27.541 27.L\61 27.337 27.241 
0.280 27.757 27.697 27.597 27.516 27.389 27.293 
0.300 27.812 27.750 27.648 27.565 27.439 27.342 
0.400 28.034 27.967 27.860 27.772 27.640 27.541 
0.500 28.201 28.131 28.019 27.928 27.793 27.693 
0.600 28.334 28.262 28.147 28.057 27.917 27.815 
0.700 28.445 28.372 28.254 28.162 28.023 27.921 
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4/ ' Table (C.4) of Li ff in em dyne from John (54) 

Temperature in oK 
W/L in 15000 12500 10000 7500 5000 2500 1000 500 100 
Hierons 
10.00 25.432 25.229 25.000 24.699 24.301 23.491 22.602 22.379 22.501 
5.00 25.921 25.745 25.509 25.1.43 24.699 24.041 23.187 23.019 23.141 
2.50 26.284 26.102 25.854 25.495 25.060 24.523 23.733 23.575 23.678 
1.50 26.,538 26.357 26.113 25.745 25.337 24.886 24.113 23.947 24.022 
1.00 26.745 26.553 26.319 25.959 25.569 25.187 24.398 24.229 24.292 
0.75 26.886 26.699 26.481 26.143 25.770 25.387 24.602 24.432 24.483 
0.50 27.097 26.921 26.721 26.398 26.027 25.678 24.886 24.699 24.750 

Table (C.5) of C;f in em4/dyne from Hyerseough and HeDowell (53) 

Temperature . OK 1.n 
Eng. in 10000 9000 8000 7000 6000 5000 4000 
Rydbergs 
0.000 27.724 27.927 28.098 28.244 28.373 28.486 28.592 
0.040 25.796 25.690 25.577 25.449 25.302 25.131 24.928 
0.050 25.979 25.873 25.762 25.633 25.485 25.315 25.110 
0.060 26.124· 26.020 25.910 25.783 25.629 25.462 25.248 
0.070 26.220 26.117 26.004 25.876 25.730 25.558 25.350 
0.080 26.310 26.213 26.092 25.971 25.824 25.648 25.462 
0.090 26.377 26.283 26.167 26.046 25.896 25.721 25.506 
0.100 26.432 26.328 26.215 26.086 25.943 25.770 25.565 
0.200 26.921 26.824 26.699 26.569 26.4·32 26.252 26.051 
0.300 27.337 27.229 27.113 27.000 26.824 26.658 26.456 
0.500 27.699 27.585 27.481 27.347 27.201 27.032 26.824 
0.700 28.027 27.921 27.824 27.678 27.538 27.367 27.167 
0.900 28.292 28.187 28.071 27.959 27.796 27.620 27.432 
1.000 28.444 28.347 28.229 28.097 27.959 27.770 27.569 
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Table (C.6) of N~f . 4 I' l.n cm oyne from John (54) 

Temperature in oK 
w/L in 15000 12500 10000 7500 5000 2500 1000 500 100 
Microns 
10.00 25.084 25.064 25.044 25.023 25.000 24.971 24.939 24.924 24.703 
5.00 25.686 25.668 25.646 25.627 25.606 25.582 25.567 25.545 25.212 
2.50 26.290 26.271 26.253 26.234 26.218 26.205 26.188 26.123 25.697 
1.50 26.738 26.721 26.703 26.688 26.678 26.670 26.620 26.517 26.045 
1.00 27.095 27.080 27.065 27.054 27.046 27.030 26.943 26.815 26.318 
0.75 27.352 27.338 27.326 27.316 27.310 27.277 27.162 27.022 26.510 
0.50 27.719 27.708 27.697 27.688 27.674 27.6l3 27.463 27.309 26.780 

Table (C.7) of Off in cm4/dyne from John (54) 

Temperature in OK 
w/L in 15000 12500 10000 7500 5000 2500 1000 500 100 
Microns 
10.00 25.224 25.206 25.184 25.161 25.l30 25.077 25.006 24.963 24.697 

5.00 25.827 25.810 25.788 25.764 25.735 25.688 25.635 25.583 25.203 
2.50 26.431 26.412 26.393 26.372 26.347 26.311 26.255 26.159 25.688 
1.50 26.876 26.860 26.842 26.8>24 26.804 26.772 26.684 26.551 26.034 
1.00 27.234 27.220 27.203 27.189 27.172 27.131 27.003 26.848 26.306 
0.75 27.491 27.478 27.463 27.Li·50 27.402 27.377 27.222 27.053 26.498 
0.50 27.857 27.845 27.833 27.818 27.796 27.708 27.520 27.336 26.767 

Table (C.8) of Neff in cm
4

/dyne from John (54) 

Temperature in OK 
W/L in 15000 12500 10000 7500 5000 2500 1000 500 100 
Microns 
10.00 25.530 25.516 25.484 25.442 25.388 25.318 25.271 25.259 25.066 
5.00 26.133 26.117 26.088 26.047 25.996 25.932 25.900 25.879 25.577 
2.50 26.735 26.721 26.692 26.654 26.607 26.558 26.526 26.460 26.063 
1.50 27.181 27.170 27.143 27.109 27.069 27.026 26.963 26.857 26.4l3 
1.00 27.535 27.529 27.50Lf 27.Li75 27.440 27.393 27.289 27.161 26.688 
0.75 27.785 27.785 27.764 27.738 27.703 27.642 27.513 27.370 26.879 
0.50 28.131 28.149 28.131 28.108 28.065 27.979 27.815 27.658 27.151 
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Table (C.9) of Na
ff 

in cm4/dyne from John (54) 

Tempera·ture in oK 
w/L in 15000 12500 10000 7500 5000 2500 1000 500 100 
Microns 
10.00 23.975 23.947 23.889 23.783 23.570 23.118 22.624 22.452 22.550 
5.00 24.569 24.538 24.481 24.367 24.161 23.721 23.257 23.128 23.219 
2.50 25.161 25.125 25.051 24.921 24.721 24.310 23.857 23.719 23.762 
1.50 25.585 25.538 25.456 25.319 25.125 24.721 24.260 24.108 24.120 
1.00 25.921 25.854 25.770 25.620 25.432 25.051 24.569 24.398 24.394 
0.75 26.149 26.081 25.959 25.824 25.658 25.268 24.770 24.602 24.585 
0.50 26.469 26.398 26.276 26.131 25.959 25.553 25.046 24.886 24.851 

Table (C.lO) of Cl~f in cm4/dyne from John and Morgan (52) 

Theta 
Eng. in 0.4 0.6 0.8 1.0 1.2 1.4 
Rydbergs 

0.00 28.226 28.105 28.017 27.947 27.886 27.836 
0.02 24.830 24.708 24.618 24.545 24.484 24· .429 
0.04 25.432 25.308 25.215 25.137 25.071 25.012 
0.06 25.783 25.654 25.554 25.471 25.399 25.333 
0.08 26.029 25.896 25.788 25.697 25.616 25.544 
0.10 26.218 26.075 25.959 25.860 25.770 25.690 
D.15 26.545 26.375 26.234 26.113 26.007 25.914 
0.20 26.752 26.554 26.390 26.251 26.131 26.026 
0.25 26.896 26.670 26.487 26.334 26.206 26.094 
0.30 27.000 26.750 26.553 26.394 26.259 26.143 
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Table (C.10) Continued 

Theta 
Eng. in 1.6 1.8 2.0 2.5 3.0 
Rydbergs 

0.00 27.790 27.750 27.712 27.631 27.559 
0.02 24.381 24.337 24.296 24.206 24.127 
0.04 24.959 24.910 24.866 24.770 24.684 
0.06 25.275 25.221 25.171 25.061 24.967 
0.08 25.479 25.418 25.363 25.240 25.134 
0.10 25.618 25.553 25.492 25.358 25.244 
0.15 25.827 25.752 25.682 25.532 25.408 
0.20 25.936 25.851 25.777 25.618 25.487 
0.25 25.996 25.910 25.833 25.670 25.536 
0.30 26.043 25.955 25.876 25.708 25.573 

Table (C.11) of Ar~f in cm4/dyne from John (54) 

Temperature in OK 
W/L in 15000 12500 10000 7500 5000 2500 1000 .500 100 
Microns 
10.00 25.102 25.145 25.206 25.298 25.417 25.652 25.559 25.000 23.967 
5.00 25.706 25.747 25.807 25.900 26.020 26.228 26.045 25.499 24.444 
2.50 26.307 26.352 26.412 26.500 26.627 26.785 26.530 25.983 24.907 
1.50 26.752 26.799 26.860 26.951 27.071 27.193 26.876 26.326 25.243 
1.00 27.107 27.152 27.218 27.309 27.427 27.517 27.153 26.595 25.510 
0.75 27.361 27.407 27.472 27.564 27.676 27.735 27.347 26.785 25.699 
0.50 27.724 27.767 27.833 27.921 28.018 28.027 27.614 27.053 25.963 

Table (C.12) of Krff in cm4/dyne from John (54) 

Temperature in OK 
W/L in 15000 12500 10000 7500 5000 2500 1000 500 100 
Microns 
10.00 24.979 25.052 25.138 25.268 25.453 25.382 24.682 24.203 23.351 
5.00 25.582 25.652 25.740 25.863 26.034 25.900 25.203 24.742 23.836 
2.50 26.183 26.253 26.338 26.455 26.590 26.389 25.710 25.245 24.301 
1.50 26.627 26.692 26.775 26.883 26.983 26.750 26.074 25.599 24.640 
1.00 26.983 27.045 27.121 27.215 27.291 27.032 26.354 25.873 24.907 
0.75 27.237 27.295 27.366 27.449 27.502 27.228 26.547 26.064 25.095 
0.50 27.648 27.652 27.712 27.775 27.790 27.495 26.815 26.333 25.361 
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Table (C.13) of Xeff in cm4/dyne from John (54) 

Temperature in oK 
W/L in 15000 12500 10000 7500 5000 2500 1000 500 100 
Microns 
10.00 24.542 24.562 24.629 24.726 24.879 24.845 24.142 23.638 22.692 
5.00 25.144 25.165 25.228 25.323 25.465 25.356 24.654 24.167 23.172 
2.50 25.747 25.767 25.827 25.917 26.029 25.836 25.154 24.664 23.636 
1.50 26.191 26.214 26.267 26.350 26.433 26.194 25.513 25.0l3 23.975 
1.00 26.544 26.570 26.620 26.690 26.747 26.479 25.790 25.286 24.241 
0.75 26.796 26.824 26.873 26.932 26.967 26.676 25.983 25.476 24.429 
0.50 27.167 27.186 27.232 27.277 27.275 26.947 26.253 25.745 24.695 

Table (C.14) of CSff in cm4/dyne from John (54) 

Temperature in oK 
W/L in 15000 12500 10000 7500 5000 2500 1000 500 100 
Microns 
10.00 23.578 23.640 23.606 23.527 23.387 22.733 22.168 21.849 20.904 

5.00 24.201 24.229 24.208 24.149 23.983 23.301 22.770 22.405 21.380 
2.50 24.745 24.796 24.796 24.745 24.569 23.821 23.325 22.925 21.849 
1.50 25.149 25.208 -25.208 25.187 24.959 24.201 23.697 23.274 22.187 
1.00 25.444 25.523 25.538 25.538 25.301 24.495 23.979 23.547 22.454 
0.75 25.638 25.745 25.770 25.796 25.538 24.699 24.180 23.738 22.643 
0.50 25.886 26.046 26.108 26.102 25.886 25.000 24.456 24.004 22.908 

Table (G.15) of Hgff in cm4/dyne from John (54) 

Temperature in OK , 
\v/L in 15000 12500 10000 7500 5000 2500 1000 500 100 
Microns 
10.00 24.244 24.143 24.0l3 23.857 23.708 23.511 23.833 24.470 24.793 
5.00 24.854 24.745 24.620 24.456 24.337 24.l37 24.417 24.821 25.073 
2.50 25.456 25.357 25.229 25.076 24.959 24.796 25.018 25.112 25.114 
1.50 25.886 25.824 25.678 25.523 25.456 25.319 25.638 25.767 25.635 
1.00 26.260 26.167 26.041 25.886 25.854 25.721 26.113 26.319 26.098 
0.75 26.509 26.420 26.292 26.137 26.108 26.000 26.432 26.692 26.385 
0.50 26.854 26.770 26.638 26.481 26.469 26.337 26.824 27.186 26.750 



Table (C.16) of H2ff in em4/dyne from Somerville (56) 

Theta 
Eng. in 0.8 1.0 1.2 1.6 2.0 2.8 3.6 
Rydbergs 
0.000 28.767 28.708 28.670 28.623 28.593 28.559 28.538 
0.006 24.323 24.264 24.227 24.181 24.152 24.118 24.100 
0.008 24.573 24.514 24.478 24.432 24.403 24.371 24.354 
0.010 24.767 24.710 24.672 24.627 24.599 24.567 24.551 
0.015 25.120 25.063 25.027 24.983 24.959 24.928 24.917 
0.020 25 c 371 25.315 25.281 25.239 25.215 25.189 25.178 
0.025 25.565 25.511 25.478 25.L,38 25.416 25.393 25.383 
0.030 25.726 25.674 25.640 25.602 25.582 25.561 25.551 
0.040 25.979 25.932 25.900 25.866 25.8t,5 25.827 25.815 
0.050 26.179 26.131 26.103 26.071 26.053 26.031 26.015 
0.060 26.343 26.297 26.270 26.239 26.220 26.197 26.177 
0.080 26.604 26.561 26.535 26.504 26.483 26.451 26.424 
0.100 26.807 26.764 26.740 26.708 26.682 26.642 26.609 
0.120 26.975 26.932 26.907 26.870 26.842 26.793 26.754 
0.140 27.114 27.073 27.045 27.003 26.971 26.921 26.876 
0.160 27.235 27.192 27.162 27.117 27.082 27.025 26.979 
0.180 27.341 27.297 27.265 27.216 27.178 27.117 27.071 
0.220 27.519 27.471 27.435 27.381 27.338 27.272 27.221 
0.260 27.664 27.613 27.573 27.514 27.469 27.398 27.344 
0.300 27.785 27.730 27.690 27.625 27.577 27.503 27.447 

- 4 . 
Table (C.17) of N2ff in em /dyne from John (54) 

Temperature in OK 
W/L in 15000 12500 10000 7500 5000 2500 1000 500 100 
Hierons 
10.00 24.706 24.530 24.452 24.536 24.435 24.455 24.362 24.346 24.269 
5.00 25.312 25.156 25.057 25.123 25.044 25.067 24.996 24.975 24.793 
2.50 25.910 25.777 25.672 25.697 25.664 25.695 25.633 25.570 25.295 
1.50 26.329 26.220 26.161 26.154 26.111 26.144 26.073 25.979 25.654 
1.00 26.686 26.567 26.511 26.536 26.467 26.475 26.389 26.277 25.928 
0.75 26.967 26.830 26.777 26.815 26.721 26.684 26.580 26.472 26.120 
0.50 27.358 27.231 27.181 27.235 27.148 27.051 26.863 26.730 26.377 
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Table (C.18) of 02ff in cm4/dyne from John (54) 

Temperature in oK 
W/L in 15000 12500 10000 7500 5000 2500 1000 500 100 
Microns 
10.00 25.036 24.996 24.936 24.860 24.770 24.684 24.592 24.517 24.211 
5.00 25.638 25.599 25.538 25.462 25.373 25.292 25.214 25.147 24.726 
2.50 26.242 26.202 26.144 26.071 25.987 25.914 25.815 25.712 25.208 
1.50 26.688 26.650 26.593 26.527 26.453 26.379 26.231 26.094 25.551 
1.00 27.045 27.008 26.955 26.896 26.833 26.752 26.554 26.393 25.821 
0.75 27.299 27.263 27.213 27.161 27.103 27.010 26.777 26.602 26.015 
0.50 27.654 27.620 27.573 27.526 27.470 27 .353 27.081 26.889 26.284 

Table (C.19) of CO
ff 

in cm4/dyne from John (54) 

Temperature in OK 
W/L in 15000 12500 10000 7500 5000 2500 1000 500 100 
Microns 
10.00 24.602 24.636 24.613 24.368 24.348 24.270 24.235 24.211 23.674 
5.00 25.207 25.209 25.205 25.000 24.914 24.866 24.863 24.821 24.157 
2.50 25.830 25.812 25.762 25.618 25.541 25.495 25.489 25.397 24.625 
1.50 26.291 26.301 26.229 26.042 26.038 25.939 25.914 25.790 24.967 
1.00 26.635 26.668 26.627 26.435 26.423 26.321 26.192 26.051 25.232 
0.75 26.879 26.921 26.889 26.708 26.717 26.627 26.462 26.281 25.423 
0.50 27.225 27.280 27.254 27. 071 27.081 26.975 26.793 26.593 25.692 

Table (C.20) of H20ff in cm4/dyne from John (54) 

Temperature in OK 
W/L in 15000 12500 10000 7500 5000 2500 1000 500 . 100 
Microns 
10.00 25.416 24.602 23.788 22.904 22.309 21.288 
5.00 25.896 25.086 24.276 23.404 22.813 21.702 
2.50 26.257 25.495 24.733 23.900 23.298 22 .164 
1.50 26.524 25.800 25.076 24.258 23.644 22.501 
1.00 26.760 26.045 25.330 24.535 23.914 22.768 
0.75 26.910 26.210 25.510 24.727 24.107 22.965 
0.50 27.130 26.440 25.750 24.985 24.372 23.240 
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Table (C.21) of CO;ff in cm4/dyne ·from John (54) 

Temperature in oK 
W/L in 15000 12500 10000 7500 5000 2500 1000 500 100 
Microns 
10.00 24.836 24.870 24.821 24.801 24.703 24.302 23.717 23.333 22.454 

5.00 25.427 25.466 25.419 25.391 25.281 24.866 24.280 23.889 22.933 
2.50 26.020 26.048 26.013 25.963 25.836 25.402 24.821 24.406 23.398 
1.50 26.465 26.463 26.440 26.376 26.230 25.793 25.197 24.762 23.735 
1.00 26.818 26.807 26.762 26.699 26.533 26.095 25.483 25.039 24.002 
0.75 27.076 27.056 26.991 26.921 26.747 26.304 25.680 25.231 24.190 
0.50 27.420 27.398 27.337 27.237 27.041 26.587 25.955 25.502 24.456 

Table (C.22) of OHbf in cm2 from Tarafdar and Das (57) 

Temperature in oK 
W/L in 6000 5000 4000 3000 2000 
Microns 

0.50 20.215 20.629 21.269 22.363 24.590 
0.45 20.539 20.893 21.442 22.387 24.330 
0.40 20.084 20.4L~1 20.991 21.928 23.812 
0.35 19.883 20.178 20.640 21.437 23.063 
0.30 19.730 19.959 20.316 20.947 22.244 
0.25 19.450 19.607 19.860 20.305 21.206 
0.20 19.111 19.180 19.298 19.504 19.910 
0.15 18.812 18.788 18.767 18.745 18.728 
0.10 19.105 19.088 19.076 19.071 19.072 
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2 Table (C.23) of CHbf in cm from T.arafdar and Das (57) 

Temperature in oK 
W/L in 6000 5000 4000 3000 2000 
Microns 

0.30 20.623 20.939 21.441 22.298 23.034 
0.28 20.547 20.812 21. 234 21. 963 23.457 
0.26 21.599 21. 943 22.467 23.335 25.007 
0.24 19.870 20.064 20.367 20.886 21. 947 
0.22 19.780 19.896 20.075 20.376 20.971 
0.20 18.394 18.355 18.310 18.263 18.216 
0.19 18.493 18.483 18.462 18.437 18.412 
0.18 18.599 18.611 18.613 18.611 18.609 
0.17 18.845 18.896 18.936 18.967 18.991 
0.16 18.815 18.963 19.134 19.286 19.373 
0.15 18.754 18.914 19.150 19.503 19.575 
0.14 18.480 18.587 18.910 19.074 19.699 
0.13 18.025 18.041 18.084 18.180 18.418 
0.12 17.750 17.695 17.638 17.575 17.513 
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For the bound-free absorption of the negative ions tabulated 

below from Robinson and Geltman (55), the absorption is given in the 

number in cm2 with a factor of 10-18 omitted from the second entry 

onwards, against the energy in Rydbergs relative to the 

photodetachment energy, with the first entry being the photodetachment 

energy in Rydbergs. Thus the actual energies are the sums of the 

first entries for each ion and the relative energies as tabulated. 

Table (C.24) of Bound-Free Absorption in lO-18cm2 from 
Robinson and Geltman (55) 

Engergy in C 0 F Si S Cl 
Rydbergs 

0.09188 0.1077 0.2534 0.1022 0.1521 0.2656 
0.000 0.00 0.00 0.00 0.00 0.00 0.00 
0.005 7.18 4.08 2.93 26.20 6.49 6.98 
0.010 8.82 5.37 4.29 27.40 9.27 10.90 
0.020 10.00 6.42 5.45 25.60 11.20 13.70 
0.030 10.50 6.84 6.16 24.90 11. 70 14.30 
0.050 11.40 7.27 6.76 27.10 12.40 14.80 
0.070 12.40 7.63 7.09 32.00 13.40 15.50 
0.090 13 .30 7.98 7.35 37.40 14.80 16.60 
0.110 14.10 8.31 7.61 42.20 25.80 18.00 
0.130 14.80 8.61 7.89 46.20 27.60 19.80 
0.150 15.40 14.50 8.19 49.20 29.50 21.60 
0.170 15.90 16.80 8.49 51.40 31.50 23.60 
0.190 16.20 17.00 8.80 53.00 33.70 25.60 
0.210 16.50 17.10 9.11 53.90 35.70 27.70 
0.230 16.70 17.20 9.41 54.40 37.70 29.70 
0.250 16.80 17.30 9.70 54.40 39.50 31.60 
0.300 16.90 17.50 10.40 52.60 46.00 36.30 
0.400 16.&0 19.60 11.40 42.80 52.00 4Lf.30 
0.500 16.00 18.90 12.10 30.40 54.40 50.30 
0.600 15.10 18.10 12.60 20.10 53.50 54.00 
0.700 14.10 17.30 12.80 12.80 49.80 54.60 
0.800 13 .10 16.40 12.80 7.82 43.60 51.60 
0.900 12.10 15.60 12.80 4.64 35.60 44.90 

Br I 

0.2472 0.2248 
0.00 0.00 

12.90 16.30 
13.80 16.60 
13.80 16.30 
13 .60 16.30 
21.50 17.50 
22.10 27.00 
23.70 34.60 
26.10 39.30 
29.00 45.20 
32.30 52.00 
35.60 59.10 
38.90 66.00 
42.00 72.50 
44.90 78.30 
47.60 83.50 
53.50 92.80 
61.50 97.70 
64.90 89.00 
63.60 73.30 
58.20 56.40 
50.10 41.60 
41.10 30.20 
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Finally as used in section 3.4, the log of the absorption of 

quasi-molecular hydrogen from Solomon (58) is given here in cubic 

centimetres per square dyne against wavenumber, again with the 

negative signs omitted. 

Table (e.25) of Quasi-H2 in cm3/dyne2 from Solomon (58) 

Theta 
W/NUH 0.4 0.8 1.2 1.6 

16000 20.086 21.770 23.658 25.638 
20000 19.602 21.036 22.699 24.444 
24000 19.215 20.387 21. 82 Lf 23.337 
30000 18.886 19.638 20.699 21. 886 
40000 18.444 18.770 19.357 20.000 
50000 18.143 18.092 18.310 18.620 
60000 18.076 17.638 17.509 17.495 
70000 17.796 17.114 16.770 16.509 

Note that as stated in chapter 3, all this data here is included 

in the coding even though some species may have negligible abundances, 

or we may not consider them at all, like the negative Hg ion for 

free-free absorption. 
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APPENDIX D 

Adopted Core Statistical Weights of Atoms and Ions 

As Stated in section 2.2, when computing partition functions, we 

must include in an approximate general way the effect of all the 

excited states up to the ionization potential. The ionization 

potential is reduced by collisions with the nearest neighbours, thus 

preventing the sum from being divergent. We can consider that for a 

single electron at a sufficient distance from the rest of the atom, 

the atom can be considered to be hydrogen-like, as discussed, but with 

an effective core statistical weight due to all the other 

electrons, in addition to the 2n2 factor. 

For the elements up to Ni, table (D.I) lists the adopted core 

statistical weights, the principal quantum number n from which the 

summation in (2.2.8) is started, the term value T in cm-l with which 

this corresponds to, where T = hcE , and the adopted configuration or 
n 

configurations from which g is obtained by simply adding up all 
c 

possible combinations of arranging the electrons in the specified 

orbi tals. The configuration of the core is given in brackets, \,;rhere 

from Li onwards, there is an inert gas structure contributing unity to 

gc' and the configuration of the remaining electrons but one, if there 

are any. The lowest adopted configuration of the remaining 

"hydrogen-like" electron is given outside the brackets. For positive 

ions, g and n are obtained from the atoms in the same isoelectronic 
c 
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sequences; for negative ions this whole treatment is not relevant. 

The> term values, given here only for the neutral atoms, are 

obtained from Moore (33) for the lowest level for which the outermost 

electron is in the ns orbital, with n as tabulated, except for the 

transition elements. Because the transition elements have a very much 

more complicated electronic structure due to the incompletely filled 

3d orbitals in our case, for Sc to Ni, T is approximately obtained 

from the mean of the first occurrence of ns and (n+1)s for the 

outermost electron, or if the term for (n+1)s is not available, the 

last level tabulated is used. Note that the values fo T given in the 

table, which are used as data for the computer program, are given to 

an accuracy which is really quite meaningless in most cases, and for 

the sake of completeness, values of T are given for those elements 

between Hand Ti that are not in the mixture. For the transition 

elements, two configurations appear to be most common, with 

obtained from the sum of the two; other configurations being 

neglected. 

The summation over the actual 
-1 

levels is stopped at 20,OOOcm , 

and technically when we deal with all the remaining levels in this 

average way, we should avoid counting levels twice or missing them 

altogether. Hm;1ever, over the temperatures that we are concerned 

with, 
-1 

because individual levels above 20,OOOcm contribute so little 

to the partition function, though the ensemble may be important, we do 

not have to worry about this additional complication, which for the 

transitions elements \;1ould be difficult to handle. This whole 

treatment is particularly for the transition elements a gross 
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simplification to a very complicated situation. However, as is 

discussed in section 7.2, this treatment makes no difference to the 

partition function of the ions, and of the neutral atoms, only Na, K 

and the transition elements are significantly affected over the 

temperatures within the range of interest. For our cases, the levels 

that contribute most to the partition function are the lowest and 

possibly the highest just below the ionization limit due to their very 

large number, with little contribution in between. 

Table (D.1) of Core Statistical Weights 

Z Element gc n T Configurations --- -
1 H 1 2 82258.94 2s 

2 He 2 2 163061.02 (ls)2s 

3 Li 1 3 27206.12 (He)3s 

4 Be 2 3 54677 .20 (He2s)3s 

5 B 1 3 40040.00 2 (He2s )3s 

6 C 6 3 60353.00 2 (He2s 2p)3s 

7 N 15 3 83319.30 2 2 (He2s 2p )3s 

8 0 20 3 75281. 25 2 3 (He2s 2p )3s 

9 F 15 3 102681.24 2 4 (He2s 2p )3s 

10 Ne 6 3 134252.52 2 5 (He2s 2p )3s 

11 Na 1 4 25739.86 (Ne)4s 

12 Mg 2 4 42350.19 (Ne3s)4s 

13 Al 1 4 25347.69 2 (Ne3s )4s 

14 Si 6 4 39760.20 2 (Ne3s 3p)4s 

15 p 15 4 56090.59 (Ne3s23p2)4s 
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Z Element gc n T Configurations - - -

16 S 20 4 53977 • 52 2 3 (Ne3s 3p )4s 

17 Cl 15 4 72484.20 2 4 (Ne3s 3p )4s 

18 Ar 6 4 93447.22 2 5 (Ne3s 3p )4s 

19 K 1 5 21026.80 (Ar)5s 

20 Ca 2 5 32428.38 (Ar4s)5s 

21 Sc 65 5 34451.45 2 (Ar3d4s & Ar3d )5s 

22 Ti 210 5 40994.87 (Ar3d24s & Ar3d3)5s 

23 V 250 5 37227.44 (Ar3d34s & Ar3d4)5s 

24 Cr 672 5 41269.56 4 (Ar3d 4s 
5 . 

& Ar3d )5s 

25 Mn 714 5 44794.47 (Ar3d54s & Ar3d6)5s 

26 Fe 540 5 48924.19 6 (Ar3d 4s 7 & Ar3d )5s 

27 Co 285 5 45491.09 7 (Ar3d 4s 8 
& Ar3d )5s 

28 Ni 100 5 47530.88 (Ar3d84s 9 
& Ar3d )5s 
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APPENDIX E 

Honl-London Factors for Doublets and Triplets 

As stated in chapter 4, section 2B, the Honl-London factors for 

doublets given by Kovacs (31) can be compressed into six different 

expressions, three for 1IJ\.= 0 and three for bA = +1. Given Kovacs's 

equations 6 on page 61: 

(E .1) 

and defining: 

k 4(2i-3)(2j-3) 

m 2i-3 (E.2) 

n 2j-3 

where i and j are the series to which the upper and lmver levels 

belong respectively, with each taking the values 1 or 2; then we can 

compress the expressions given for the doublet strengths. Let the 

function C,m be C,- or C'+ depending on the sign of m, i.e. for i 1 

2 '1 d' 'I 1 f Cnn ,m d un h f 1/\ ~ 0 or respect1ve y, an S1m1 ar y -or ,u an u ,t en or ~/L= 
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we can write: 

.) (J-1L-~)(J+A.·H) f 'J. 

1?:~t} :: 4JCi'l>1(J-i)C"I1(J) t i .... '·"'t(J_1)U
'1r1

(:» -\- kCJ-A+~)(J+A.-~)j 

4\; (J):: 1J(-:1 +~~c~~·~) (;'l1eJ)l (A i~) U I~ (J) u II/I(J) (E .3) 

+ k(A-{)(J-A ~~)(J-+A ~~)J~ 

R~3 (J) :: 5'J -A ~:){J ~.A t1) [4-:·"'(J'H)UU"(J) t. h(J-A.j.~)(3tAi .l-)J ~ 
4-[JH)C ""{~+1)C·'n(J) ~ ~ 

and for lJJL = +1, we can wri te: 

LLIL=+1 

QiS (J) - QA~ (J) - (:l- A -~)( ') ,t)( J·;A' f) [it'~ (i) ,,". (}) - - (E.4 ) 
4-'3'(:>t 1 )C ''''''(J)C ;'Y4(J') 

lk(J'-A +t)(J+.1.~~)j 
~ 

r..'j (J) ;: PJ~ ().~1) :: (1+.A +~) (J ... A ,~~) {I<.' ~(1+1)" <. OJ 
~tJH) {(.j;'{"}i1)C h{J) 

+1:t(j··.Jt+ ±)(Ji.{ +~) 1 ~ 

If either the coupling constants y' or y" for the two electronic 

states are negative, then in (E.3) or (E.4) as appropriate, the 

indices on the left hand side are changed, such that i -~ 3-i or 

j -~ 3-j respectively, according to the convention discussed in 

section 4.2B. IfJl'# Jl", the appropriate values are inserted into 

(E.1) for the two electronic states, but the smaller of the two must 

be' used in (E.4). Finally, as discussed in section 4.2B, in a fe\v 
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cases (E.3) or (E.4) may break down even for valid transitions. 

For the Honl-London factors of triplets, although there are many 

similarities between the 54 expressions given by Kovacs, which are 

used to ~dvantage in programming, these expressions cannot be 

compressed as for the doublets, so the full expressions given by 

Kovacs are reproduced here, with the correction as noted in section 

4.2C. 

Given Kovacs's equations 9 and ID on page 70: 

(E.5) 

and: 

(E.6) 

respectively, then the Honl-London factors are obtained from Kovacs's 

table 3.8 for niL= 0 and 3.10 for IJ..A.= ±1, which we will refer to here 

as (E.7) and (E.8) respectively. 
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____ ~:1~~t.1~·~~c!11~_ 
3.\':(int) - 3X(int) 

(.1 - .1)(.1 -+ ,1) 
l(\,jC~P =-')C;(.l){(.1 - .1 -f I) (.1\ .1 - 1)//;+ (.I. I)I(~+(.J) 1. (.T ·.1 I) (.1 -I .. [ -jl)//;-(.I- 1)//;-(.1)1 

-! X(.I . - . 1 -.. I) (.1. . I) (.I -I . 1 I) (.I -j . I) } ~ 

2J + I 
lij](.r~~lyc;(./jc;(.J) {(.f -- !)(./ -. ,I --t 1)(./ -I .1)//;+(./)11;+(,/)1 (.11 1)(,/ - .'1)(.1 + A + 1)11;-(.1)11;-(.1) 1-

-tR.I(J .1)'(./I.I)t}" 

(J - .' 1 + 1)(,/ -+ . 1 +- I) 
IO(.T~::-I)C;(J ~_ I) (!';(.7) {(.l--.I -1 2) (./.j .1)11;+(.1 !)I/~+(.J) -I- (./ -- .1) (.J -+.1 -+ 2)u;-(.l-t 1)/1';-(.1)+ 

-I' R(J .1)(.1 .1 1 1)(./'1 .1)(.1 -I .11 I)F 

(.' - ,I) (.I + .1) 
Q}'2'(.1) 2.JC~(./-::':'-1)6;(.i) {(.I - .1+ I)(.!-I .1- 1)//;+(.1) . (.1 - .1-- 1)(.1-1 .1-1 I)II~-(.I) --2.1(./ .1)(.I-j .I)(l"'- :lJ!' 

2.J + I 
NQ:M) 2.1(J TTfC~(.i)'(j7(;1) {(.I-- I) (.I .1·f I) (.I I .1)1<+(.1) (.1 -I I) (.I - .1) (.1 -+.1 -I- 1)11;-(.1)-

- 2. F(.1 .1) (.I -! .1)( }" - 2)f2 

(.l - ,I --t I) (./ + . I .j. I) 
2(.i+-I)dp-!--i)0';(J) {(.l- /I 12)('/·1.1)'1;+(.1) (./ .1) (./.-1 .1 + 2) 1/; -(.7) - 2.1(,/ - ,1) (.J -j . 1)( }" ~ 2) J' 

(.1 - ,1)(.1 + .1) 
Iti.lC:,(r~-~-ln7';(.T) {(.! . /1 -I 1)(,/ 1;1 1)//:'''(./ 

H(.! ;1)~ (.1 1 ;1)T 

2J -+ I 
lIi.1(J:t'-i)(!;p)r~i.ii f(/I 1)(.1 A I 1)(./ -1/1)//;,'(.1)//;+(./) -j (11'~ 1)(.1-11)(.1+ /1 + 1)J1~'(.1);r;-(.f)-· 

S.I(.I .1\) (./ - .1 -I I) (./ -I ,I) (./ -j 1·1 I) P 
(.1 .- .1 -I I) (.1 -I- .. , + I) 
r~OT ij-c;(J _1

1
)(';(.1) ((.1 -- ,1-12) (.1·1 .1)11;,--(.1-1 1)1/;+(./) -I (./ -- .1)(./ -1·1-/- 2)1/:'+(.1 -I- 1)1/;-(.1) 

- H(.! -- .1) U - .. 1 -1- 2) (./ -I- .1) (J -+.1 + 2)}' 

(E.7) 

o (./ - ,I) (.I + .1) 
1'12(.1) DO;!,J ':::'-I)C::(.1) {(.I -- .1·1 I) (.I -/- .1 - 1)11;+ (.I - I) - (./-.1 - I) (./ -\ .1 + \)1£;-(.1 -- 1)·-

. - 2.1(.1---.1--1)(,/1 .1-1)(I'''-2W 

p 2J + 1 
QI~(.J) 2J(.I-=i-1) c;f,J)C;(.I) {(.I - I) (.! - .1/ I) (./ -/ .1)//;+(,/)- (.11 I) (./ - .1) (./1 .1 + I)II;-(.!)_· 

- 2.F(./ - ,I) (./ + .1) (r" - 2W 

(.I - ,I + I) (.I -f . I f I) 
QHI~(J)2(J~j:.·lfc;(f-~j)C;(.I) {(.! - .1 + 2) (-I + .1)//; 1(./ + I) - (.J - .1) (./ + .1-+ 2)11;-(.14 1)-

- 2.1(.1-.1 + I) (./ + /I + 1).(1"'- 2)}" 

1\(J) ~(·L'-=-_.::.IL~·~-+ .1) /I ~" • ." .J JC;(.1 _ I) C;(.I) l 1:.1 (J- 2) (I - -) + U - .1 - I) (./ + .1 -I I) -I (.I - ,I -/ I) (.1./ .1- I)}~ 

.J(;.rj?~dt:ALJ.I){'/:.I:O(l·'_:!)(I"·-2)i (.111)(./-·1)(.1-1 .I·f 1)1(.1--1)(.1-.1./1)(.1'1-. 1))= 

4(J -- .:I -I-- 1)/(./ -I- .1 +1) ... , . '" 
--(]-=FT)o~p -::-i~ 1 )(;;(.i) {' 1 ~. I-(l - 2) ( 1 :! II (./ .1) (./ -j ,I·j :!) -I· (./ --.1 -I- 2) (./ ./. ,llF 

QPJ2(J) (.I - ,I) (.I + .1) 
2.10-;-(.]-=-1\0;;(7)- {(.I .1·j 1) (./ -I .1 - 1)//:'- (./ I) (J .1 - J) PI .1 + 1)1/;.+(.1- I) 1-

3 I ~ f 

.~ 2.1(,/ .. 1) (.I -j .1) ( r" 2»)' 

I?(J d.l) 2.1 + 1 2:-nr+l)C:.(JPr:O) (.1 -- 1) (.I - .1: I) (.I -j .1)/(;-(.1) (.1 + I) (./- .1) (.J -+.1 -j ])//;'+(.1) 

- - +2,1"(.7-· .1·;1)(,/-/ .I-Il)(l·"-:!)r 
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__ . ___ ~~() sLn'ngt.hfl ________ _ 

3X(int) -- 3S(int) 

-- --- -----_._----- --- --'J .-------- -- ---- -- --- -.- -- -.. 
Branchos 
AA = 0 ---- . --- --- -------. 

- ---" --- ---------
(.1 - A) (.1 + .'\) 

16.10;(.1 _ I) 0;(.1) {(.I - .1 + \) (.I -j- .1 - - \)11;+(.1)11;-(.1) ·1 (.1-- .1 -- 1) (.1 + /1 + 1)11;-(.1 - 1)11;+(.1) 

- - H(./ - .1 - I) (.I -. I + 1) (.1 + .1 - I) (./ + .1 + 1))2 

2.1 + I I!f.J(J--tI)O;(.ljc';iJ) {(.1 -- \) (./ -- .1 -I I) (./ + .1)/1.;+(.1)11;-(./) + (.1 -I I) (.1- ,I) (./ +.1 + l)u;-(J)I(;+(.1) 

- H.I(.1 - .1) (./- .1+ \) (.1 + A) (.1 +.11 + l)P 
(.J - A + 1) (.J -1- .1 + 1) 
iTi(J+iTC;(J-:F i)d;;(Jj {(./ -.1 + 2) (./ -1- ,I) 11;+(.1 + \)11;-(.1) -I- (./ -- .1) (./ + A + 2)1(;-(.1 + l)n;+(./)-

-- H(.1 -- .1 ·1 1)2 (.1 -I ,11- I)~P 

(.1 - .-1) (.1 + .1) 2.10;(.'-'=-1)(7;(:1)- {(.l -- .1 + I) (.1 -1- .1·-- 1)11;-(.1) -- (.1 -.1 --- I) (.1 -1- ,I + 1)u;+(.1) + 
-I 2.1(.1 .- .1 + I) (., + ,I + 1) (I" - 2)P 

2.1 + 1 Tif,r=t-j)c;(.ljc;(.l) {(.I -- 1) (./ - .1 -l I) (.1 -I .1)11;-(.1)- (A + I) (.1 - .1) (.1 + /1 + \)11;+(.1)+ 

-1-2.1:(.1--,1-1 \)(.11 .1-l1)(Y' --2)P 

(.I -- ,'\ + I) (./ -l . I + 1) 
2(.'-+-f)-c;(:l~-I)(J;(.l) U.! --.1 1 2)(.1 + .1)11;;-(./) - (.l - ',1)(.1 -I .1-1 2)//;+(.J) + 
- + 2.1(.1 -- .1-1 I) (.1 -1- .1-+ I) (I" -- 2)}' 
(.1 - .1) (.J + ,I) 

ifi.m~(:r:~-:-i)O;(.l) {(.1 -- ,I + I) (.I -I .1- I) 11;-(.1 -- 1)11;-(.1) -I- (.1 - .1 -- 1) (.1 + ,I -I- 1)11;.+(.1 - 1)1I~+(.J) 1 

-I- H(.1 -- .1)(.1 - .1-1 1)(.1-1.1)(.1 -1--.1 -I l)P 

(JAJ) 2.1 + 1 
lifJ(.l+ f)O;(.J)r;(.If {(.I- I) (.T - .1 -1- I) (.1 -I .1)11;-(.1)11;-(.1) -+ (.1 + I) (.1-.1) (.1 + .1 + J)lI~+(.T) 11;+(.1) 

-I R.I(.! --- .1 -I I)~ (.II .11 In1 

(.1 - ,I + I) (.1 + . I -I- t) , 
ItlP-:F:-iic~()-+ 1)(1;1.1)- (./ .. 1 -! 2) (.l I· ,1)ll~-(.l-ll)I/;-(.I) + (.J- .1) (.} -+ .-1 + 2)//~+(.J -+ 1)//;+(.7) I 

- +R(.T--.I+II(.J-.I, 2)(.1+.1-11)(.1+ .1+2»)1 

(E.7) Continued 
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Lim' fit 1'l'IIp:ths 

3X(illt) - 3Y(int) 

(J - 1--- J) (J- ,I) 
1'.(.1) R.(J-l) -:j2Jo;~r=-n-iJfO)- {(J .1-1 ])(.1-1.1)//;+(.1 -1)lI';+(J)-I(J--.1-2)(J+.I-\-J)a;-(.I-I)x 

X1I;-(J) + S(.! .1- 2) (J - .1) (.! + .1)2)2 

(.1 --- .1) (.! + .1 + I) (2.1'1 I) 
-·-·:EU(.i+-I)(J;())(f~(./)- {{.! .1,1 I) (J -1 .1) 11;+(,1) u;+(.I) + (J - .1 - I) (J -\ .1 + 2) X 

"11;-(./)/1~-(.J)';- S(.1 - .1- 1)(./ -- .1)(.1 + /1)(.1 +.1 + I)}" 

(.1 + .1 + 1) (.I -1 .1 + 2) , 
IlM) l'1(J+l) 32(J~lrO;(J+T)0;(./){(./ -,II 1)(.I-1. 1)1I;+(J+l)//;+(J)+(J--.l)(.J+.I+:J)u;-(J+l):.: 

/11;-(.1) -\ S(.J - .1)2 (.7 + .1) (.l -\ .1 -I- 2)P , 
Q Q (.I - .1- 1) (./ .1) 
P21(J) Hlz(J-J) -4-.J(jP--~l)0;(~j)- {(./ .1'1 1)(./1. 1)11;+(./) (./ --.1--2)(.1-\ .1+ I)u;-(J)-

. 2(.1 -! 1)(,/ .1) (J -I .1) 0" -. 2))2 

.11 I) (.J + .1) 11;+(.1) - (./ - .1 -·1) (./ -1 .1 + 2)//;-(.1)--~!~:_.I)J'Lj- _.1:1 J) (2·r J-'.) {(./ 
4.1(,/ + 1)0;(.1)0;(.1) 

-- 2(.1 -I I) (./ . - .1) (.J + .1) (r' -- 2)P 

S 0 (.7 + .1 -1- I) (.l·1 . I -I- 2) • . • 
R:M) l'dJ + 1) -4(.T-=-t Ij6;i.TTljc';(./i {(./ - .1,1 I) (./ -I .1)11 1 +(J) - (.I - .1) (.1 + .1 + .1)11 1 -(./)--

- 2(.1 + I) (.I - .1) (./ -\- ,I) (1" _. 2)P 
R p (J _.- 1- I) (.1- I) 
PaM) RIM -1) -:12:16(.1.7 -~-ljn;(.I) {(.J .11- 1)(./1' .1)1I;-(J--1)1I~+(J)-1 (.1-.. 1-2)(./·1.1 -1- I)//;+(J -1):< 

X 11;"(.1) ·H(./ ··.1 -- 1)(./- .1)(./ + .1)(.7 + .1-1- I»), 

(.l - ,I) (.I -I ,1 + I) (2./ -I I) 
--. :ii/(.rfliu~(./)(i;(~I)- {(.' ·.1·1 I) (./ -\ .I)/I~-(.l)//~+(.l) -I (.I '- .1 .- I) (.J\ .1/· 2)x 

>:II;+(./)ll';-(.J) .. S(.7- .'1}'(.1 -I- .1)(.1 1 .1-\ 2)}2 

T . N > (.J + . I -I I) (./ + . I '\ 2) 
Hal(.I) 113(J + 1) :J2(.T+ I)O'p+n U;(:Jj {(.I.l·\ I) (.J -I .I)II~-(.I + 1)//;+(.1) -I- (.I -- .1) (./ + ,1-/ :1)11;+(.1 + l)x 

I :< 1I~ - (.1). H(./. - . I) (./ - .1 + 1) (.l.\ .1) (.I -I .1 -1. :i) P 

(E.8) 

01' (I) 5/, (J 1) J{-=_:~:.::.._!lE~·1) \1(.1 -- ,1,11) (.I + .1)//1'+(./ -- 1)--(.1 _ ... 1 -- 2) (.] -1·1 + 1)11;-(.1 - I) ,-
I~' '~I' -- 00'(.] - 1)0::(.1) 

I - -.2.1(./ .. 1 - 2) (J'I .1) ()"" - 2)}~ 

~. ~- . t) (.1 :1..: 1+:. 1 )(~! :.L-') ((.I _ .14- I) (./.; .1)11; +(.)) (./ _ .1 - I) (.] -I- .1 + 2)//; -(-I) -
4./(.1 + I) O;(.J) U;(.I) 'n , • 

··2.1(,/ - .1 - I) (.f I .1 + I) (1 - 2)}-

Q}, (./) Q/, (I t I) (.J+ .1-\I~(:!_J:..:IJ: __ ~)I(.1 .1-1·1)(./ I .1)11'1 1(.1\1) (.J - .1)(.lI-.I+:I)u;-(.l'! 1)-·-
'IZ ~I' - - -4(.1-=-\ I) 0;(./ -I I) U:;(.I) I 

• 2.1(.]· .1)(.1 -j .I·j 2) (Y", 2)}" 

2('}- .1 -- J) (./ :11 {I/~.I(.II I) (l" Z) (1'" 2) -I- (./ - .1·1 I) (.J+ .1) I-
-.JC;(.i: I)G~(.J) 

·1 (./ ·.1 - Z) (.I; .1\ I)}" 
J'z(J) 

~E __ -,I)(.! + .1·I·l)(~.I·II){II.,.I(.1 _I 1) (I" 2) (1""- 2)·1 (./ -" .1 + I) (,I + .1) I-
.7 (J -\ 1)0:,(./ )(1;(-1) -

• ·1 (.J -. I . I) (.I ; . I 1 2))2 
QP) 

2P -\- .1 -\ 1)(,1\- :1.1- :n, J I I I \ I) ()" 2)( 1''' 2)1 (.1- .1 -1- I) (./ +- .1)+ 
-'(.1-\ Ij(!~(.1 -! I)(J::(J) \ I~. (. 

- i (.! .1) (.f \ . 1 -\ :\)}" 

J>p + I) 

Q J Q/, (J _ I) E-·I I) (.1-- .!) 1(./ .. 11 I) (.J : .1)11 .. ,'-(.1 1)· (.I .1 2) (.1.+ .1 + 1)11;'+(.1- 1)\ 
P,,() 'e"··· .UU:(.J _ - I )U:'(.l) I 

.1 - +2.1(.r.I-I)(.I.., .1.11)(1""'·--2)}" 

(J .. 1) (./ -I .1·1 I) (2./ -I I){(.J .1 \ I) (.I) .1)1/;-(.1) (./·.1· I) (./ -\ .I-t 2)/1;+(./) 
-- - 4.J(.I -r'· -J )C.:I(J)CJ:.:(:I) .' 

·f 2.1(,/ . I) (.I -; .1 -1 2)( 1''' .. 2)}" 

I) (.I + .1)11;'-(.1 -1- 1) - (./ - .1) (J -I _I + :1)1(;+(.1 -I 1) j 

.I·! 1) (.I .\ .. 1 + :1) (j'" - 2)}" 



panuT=IUOJ (8' 3.) 

, (IY,)II I d';)( I i- I'll!: 
)( \ 1:- rl + r Ii If: -}- V 1- rl ( V - r) + ({').:; 1/ (I -/- rl- ;- /I (I - -+ 1')( I -+- V .- rl, (;;-- -I- V t r) (f r I' t- r) 

d If: + ,. 1- J"l (I t V 1- r) ,( I t V - d:-\ + (r).;'11 X 

(I t- /"l':" (r)1 if 

(rllt) I (!'let) 

<,',l; __ t y ·1· tl (1+ I -I- t) (I -I- V - t) (V - tls + (rlt;;n(r), ~n X 

'"«;;'''"''+1")(1-1' -f")+(j'L~>l{f")_~nlr' {-r)(t +v -/'): 
{['J ,:, )( d,]1 I t r) /"ll: 

(I + /?.) (' -}- V -j- rl IV - 1") 

·'·(1 .)- V ~L r) (I -I' V - rl (I - V - /')'1\ + (j'l,;n X . I' 
,I.· ,. , (d;,)( t - r);;){'z,!: 

Xli -j")+~n(l t-V + 1") ((;-V-r) -1- (rJ.;;"{1 - I').~n(v + r){f + V - /"J, (,. _ !'l(1 _I' - r) (I - r)":1 (r)",{ 

,{((: ~ ,.il (I t y + rl (I tv - tl (I + V1r. ~ (d;,](J"'" d,) (I t- Or 
+ (1"lf "nU: +V -1-1")(v-r)-(rj··"n(v f-r)(1 tv - /'11 ~v 1-1'1(1 +v trl +- [")''',1() (1'lI:c.'ltJ 

/(~.- r){l+V '-/')(I+V-t'l(ltV)7..p • 
. 'I (. ,.1 1 , I: • _ • (d~;~)(r)':J(r + tltt" __ _ 

.J- (tl.:.n(c; + v .;- rl (I - V - rJ - {fl-.,II(V +./1 (I + V 0) (I + r(.) (I tv + tl IV - rl 

;,{(Z-,.!)(r+v -/-r)(I-j'v-rl(, tv)(:+-. . 

+ (/')+;'''(1 + V + r) (c; - v - r) - (r).~;n(v + rl (I + V - rJ: ( (d,))(I(I- /'~;)n ) !(I - tf','fpl {f')':'''o 
V-{, - -{", ., 

liP' (). I {f')'" () 

if I " 

{(,~ + v + 0 (I + V + (") (I 'r- v - rl tv - r)?I. -(f'}t~:r7 (I + rJ·!n x 
X(r'~ I' +- /·)(v - (.) + (/.)_1 11 (1 -' I')t I/I(V + /.) (I + V - A») ((.)~,)(( + lLli.L::!::....t.l1;.L It I -r' [.)1" I I V)"'" 

. " r , I ,-,., + r) (I + V + rl ' 1/. ' d 

,(,(( + V -I- L"l (I + V - rl (t - V - rh .. - (r), :>(rl->1 x 
- (;: .1. V -+ r) (I - V - rl _II... (tl-"n(c) , In (V + r) (I + V - /.):. U'):;,j(d,) (I t r)f"(,'C ! (1'1 11:(,).1 (i)1:1 n 

l ," • (I + fZ,) (I + V + tl (,. - rl i ~ I () 

Z ( (I + V + f'l (,. + r) (I + V - 1') ((. - V - r)t> - (rl t ~n "X. 
([)" )( I - tl' )f"-I' :«r -r)'~'''(1 + V + f'){(;-' V-{') + {f·)·-;;n(I-r)t~n(v +rll( + V - r)J >"", ", d. (" li(1 - 1')"'11 I (r)"l rI ( I - rl (I - I - rl . .1. I N 

(p'!l.[" . - ()ll!)X" ~ =·=-=r~:·:'!Lr·_.~~ yr 
[<ljl;1[1·I.I)S .Hi!' I S,11f"UH.1H 

-- 1:::;'7 -



It can be seen that for (E.8), the tro.l1sitions for itA = -1 are 

denoted in the same way as with (E.4). Note that for (E.7) and (E.8), 

the superscripts N. 0, P, Q, R, Sand T. which are often quoted in the 

literature, refer to the behaviour of the quantum number N, even if it 

is not a good quantum number, being the total angular momentum apart 

from spin, such that for a branch Hi th an N superscript!~ N = -3, for 

an ° superscript b, N = -2 etc.. the main symbol referring of course to 

J. the superscript is not vJritten by 

convention. Another convention is that if the indices are equal, one 

is often dropped, e.g. Pl(J) is written f~r P
11

(J) etc. 

As \'lith the doublets, vlhen)t'= A", the appropriate values are 

inserted into (E.5) and (E.6) for the two electronic states, but the 

smaller of the the two is inserted into (E.8). However, if Y < 0 for 

one or both electronic states, this negative value is inserted into 

(E.5), (E.6) and (E.7) or (E.8), andJl is replaced by -/t in (E.5) and 

(E.6) for the appropriate electronic state or states, but is left 

unchanged in (E.7) or (E.8). Also the indices on the left hand side 

of (E.7) or (E.8) are changed such that i -~ 4-i or j -~ 4-j as 

appropriate. As with the doublets, some breakdown cases occur even 

for valid transitions, these are discussed in section 4.2C. 
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APPENDIX 'F 

The Isotropic Plane Harmonic Oscillator 

Some of the matrix elements by Shaffer 2.nd Krohn (80) are given 

here beloy. In common with the discussion at the beginning of section 

5.2, we assume that the matrix elements <vllr
n

lv'l'> that contribute 

most to the total transition moment, are those for which n = I~vl, 

where the unprimed and primed qu.antum numbers denote the initial and 

final states respectively_ Other matrix elements, including those for 

,-Jhlch 1411 > 1 are neglected. 

If: 

v (v + v'+ 2)/2 and L (1 +1')/2 (F.I) 

then the follo\ving can be '(.,ritten: 

l 
V 

, L' < fi ill '/..'> il V.t r v 

1 v+1 i±l. (V+L)/2 (F.2) 

v+1 [+1 (V-L)/2 

2 v±2 (V-L) (V+L)/4 (F.3) 

3 v+3 (V-L) (V+L-l) (V+L+l)/8 CF.4) 

v+3 ft.l (V-L~l) (V~L+l) (V+L) /8 



4 v+4 " .{ (V~L-l) (V~j>H) ('J-i-l"'}) (V+L+l) /16 (F.5) 

5 v+5 t±l (V-L-1) (V-L+l) (V+L--2) (V+L) (V+L+2) /32 (F.6) 

v+5 {+l (V-L-'2) (V-L) (V-L+2) (V+L-1) (V+L+1) /32 

6 v+6 1 (V-L-2) (V-L) (V-L+2) (V+L~2) (V+L)(V+L+2) /6lj· (F.7) 

7 v+7 i±l (V--L-2) (V-L) (V-L+2) (V+L-3) eYE-l) (V+L+1) 

X(V+L+3)/128 (F.8) 

v+7 (+1 (V-L-3) (V-L-1) (V-L+l) (V-L+3) (V'+'L--2) (V+L) 

X(V+L+2)/l28 

The theory as supplied by Carson (3) of the isotropic plane 

harmonic oscillator is given in the following pages. 
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APPE1\TDI): G 

Line Strengths and Energy Level Diagram of the Asymmetric Top 

For transitions vlith the asymme.tric top for which mineJ' ,J") > 5, 

the line strengths are obtained approximately from the Honl-London 

factors of singlets, as stated in section 5.3. For smaller values of 

J, the following tables obtained from Cross et al. (92) are used. At 

the end of this appendix is a reproduction of an energy level diagram 

from Herzberg (30). 

For all tables, columns 1 to 5 list the strength for the 

asymmetry parameter f'l: = -1,-0.5,0,0.5 and I, follow'ed by the notation 

of the participating sublevels in the fOllll J1"(l : J
2

, '1:"2' \lith these 

subscripts being defined in terms of the initial and final sublevels, 

as stated in section 5.3. Using the same notation as Cross et al., if 

a transition takes place in the order 1 -~ 2 as above, this is defined 

as the primary transition, then the opposite transition 1 -(- 2 is the.n 

defined as the reverse. For an inverse transition, the order is 

1 -~ 2 but the signs of 1:
1

) r 2 and \'(. are all inverted, then an 

inverse-reverse transition has the order 1 -E- 2 with inverted signs. 

All the sublevels in table (5.3) are obtained as follows fro~ tables 

(G. I-G): 



T8.ble (G. 1) for A~Type Bands 

Primary: 1 and /}'( = 

Reverse: QO l' dT = -1 and Q~ l' ~T = -3. , , -
IHth all primary Q·-subbranc.hes ord8recl in increasing min('(l' '<::2) 

for this and (G.4). 

Table (G.l) for A-Type Bands 

Primary: RO I' !~ "(. -1, , 
Reverse: Po I' !.it: 1-, 
All primary R-subbranches are orc'ered in increasing 1.:1 for this 

and (G.3), (G.S) and (G.6). 

Table (G.3) for A-Type Bends 

Primary: R2 l' /:,'( = 3, 
• 

Reverse: P2 l' [1"( == -3. , 

Table (G.4) for B-Type Bands 

Primary and Inverse-Reverse: Ql,]> In: == 2, 

Reverse and Inverse: Q /l'c. = -2. 1, l' 
Hith the primary Q-subbranches listed uith maxCt"1'''(

2
) < 2, for 

max('r
1

,'[2) ?- 1 take the inverse transi tion. 

Table (G.S) for B-Type Bands 

Primary and Inverse: 0, 

Reverse and Inverse-~Reverse: p-- -
.... 1 ,1' 

/xc o. 

vJith the primary R-subbranches having 'tl~ 0, uri> 0 take 

inverse transition. 
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Primary: Rl Is fJ.x == 2 ar..Q R" I' /11:" == 4, 
> ..), 

Reverse: PI l' {j'( = -2 ar~_d PJ l' Ilt == --4 > , , 
Inverse: Rl l' [1"( == -2 and RI 3' I}t := -4· , , , 
Inverse-Reverse: PI I' bT == 2 ar-"d P3 I> Irr:= 4. , > 

vJith the primary R--subbranches listed "(-7i th Lit> 0, if -/j 1: is required, 

t2.ke the inverse transition. 
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Table (Go 1) for .A"-~Type I.2n(ls 

-·1.0 -0.5 0.0 0.5 LO 
1. 5000 1.5000 1.5000 1 c SOCCI 1»5COD 1 , 0 1 , 1 
0.0000 0.OLr8S 0.2233 0.5110 0.8333 2,-2 2, 1 
0.8333 0.8333 0.8333 0.8333 0.8333 2,-1 2, 0 
3.3333 3.284·5 3.1100 2.82.23 2.5000 2, 1 2, 2 
0.0000 0.1458 0.Lf522 0.7055 0.8750 3,-3 3, 0 
0.5833 0.5944 0.6406 0.7/.;,03 0.8750 3,-2 3,-1 
0.0000 0.0165 0.1328 0.5722 1. Lf583 3,-1 3, 2 
2.3333 2.1875 L8811 1.6278 1. 4583 35- 0 " .), 1 
5.2500 5.2155 5.0 L,31 L,.5104 3.5000 .., 

.), 2 3, 3 
0.0000 0.2547 0.5617 0.7558 0.9000 4,-4 ll,-l 
0.4500 0.48£17 0.6026 0.7587 0.9000 4,-3 4,-2 
0.0000 0.0638 0.4568 1.1214 1. 5750 If ,-2 if, 1 
1. 8000 1. 5598 1.3196 1.3221 1. 5750 LI , -1 4, 0 
0.0000 0.0078 0.0650 O,LT363 2.0250 4 , 0 4, 3 
4.0500 3.9363 3.4242 2.6168 2.0250 Lf, 1 4, 2 
7.2000 7.1708 7.02Lf /+ 6 G L:-L:-94 l:,,5000 [, 3 4· ) 4 . , 
0.0000 0.3368 0.6052 0.7775 0.9167 5,-5 5,-2 
0.3667 0.L,374 0.6127 0.7777 0.9167 5,-L, 5,-3 
0.0000 0.1599 0.7983 L32!j·2 l.. 6500 5,-3 5, 0 
1.4667 1.1750 1.1058 1.3l.;.6!~· 1.6500 5,-2 5,-1 
0.0000 0.027 LI 0.2754 1.2576 2.2000 5,-1 5, 2 
3.3000 3.0662 2.3397 1.9105 2.2000 5, 0 5, 1 
0.0000 0.005!, 0.0374 0.2359 2()S667 5 , 1 5, 4 
5.8667 5.7742 5.2949 3.9338 2.5667 " .J, 2 5, 3 
9.1667 9.1399 9.0073 8.4696 5.5000 5, 4 5, 5 
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Table (G.}) for A-Type B(;ncls 

-1.0 -0.5 0.0 0.5 LO 
1.0000 1.0000 1.0000 1.0000 :L,OOOO 0, 0 l,-1 
2.0000 1.9707 1.8660 1.6934 L5000 1,-1 2,-2 
1.5000 1.5000 1.5000 L5000 1.5000 1, 0 2,-1 
1.5000 1.5000 1.5000 1u5000 :. " 50::'') 1, 1 2, 0 
3.0000 2.9029 2.7201 2.5893 2.5000 2 -? " '\ , - J,-') 

2.6667 2.656lf 2.6243 2.S710 2.5000 2,-1 3, --2 
2.6667 2.6509 2.5581 2.2500 L6667 2, 0 3,-1 
1.6667 1.6667 1.6667 L6667 L6667 2, 1 ? 

J, 0 
1.6667 1.6726, 1.73L,S 1.8636 2.0000 2, 2 3, 1 
4.0000 3.8312 3.6728 3.5773 3.5000 3,-3 4,-4 
3.7500 3.7210 3.65/,0 3.5758 3.5000 3,-2 4-,-3 
3.7500 3.6902 3.3801 2.9261 2.6250 3,-1 4,-2 
3.0000 2.9882 2.9391 2.8258 2.6250 3, 0 4, --1 
3.0000 3.0230 3.0992 2.9055 1.8750 3, 1 4, 0 
1.7500 1.75M 1.7796 1. 8207 1.8750 3, 2 4- , 1 
1.7500 1. 7567 1. 8001 2.0331 2.5000 3, 3 4, 2 
5.0000 f,.7897 4.6619 b,.57L:5 L\.5000 4,-L, 5,~5 

4.8000 4.7478 4.6583 L,.57L,3 I~c< 5000 Lf ,-3 5,-4 
4.8000 4.6530 LI.1758 3.8400 3.6000 4,-2 5,-3 
4.2000 4.1637 4-.035 L:- 3.8290 3,6000 L: ,-1 5,-2 
4.2000 4.24·62 4.1441 3.4387 2.8000 4, 0 5,-1 
3.2000 3.2074, 3.2063 3.lJJ18 2.8000 4, '1 5, 0 
3.2000 3.2109 3.3475 3.L:848 2.1000 4, 2 5, 1 
1.8000 1. 8082 1.8449 1. 9363 2.1000 L:_ , 3 5, 2 
1.8000 1. 8082 1. 8L:78 2.0650 3.0000 L, , 4 5, 3 
6.0000 5.7727 5.6582 5.5730 5.5000 5, ~·5 6> --6 
5.8333 5.7578 5.6576 5.5730 5.5000 5,-4 6,-5 
5.8333 5.560L:- 5.0867 if.8106 4·.5833 5,-3 6,-4 
5,3333 5.2600 5.0537 4.809[:- 4.5833 5,-2 6,-3 
5.3333 5.3738 !,.9227 i,.1961 3.7500 5,-1 6,-2 
4.5000 Lf .5001 L,.4187 4.1486 3.7500 5, 0 6,-1 
4.5000 4.5219 4.7032 4.1218 3.0000 5, 1 6, 0 
3.3333 3.303 3.3934 3.3887 3.0000 5, 2 6, 1 
3.3333 3.3l175 3.4370 3.8686 2.3333 5, 3 6, 2 
1.8333 1. 8LI22 1.88L:3 2.0137 2.3333 5, 4 6, 3 
1.8333 1.8£1·22 1. 88lf7 2.0660 3.5000 5, 5 6, ii_ 



--1. 0 ~o, 5 
0.0000 0.0293 
0.0000 0.0776 
0.0000 0.0103 
0.0000 0.0157 
0.0000 0,1061 
0.0000 0.0213 
0.0000 0.0480 
0.0000 0.0118 
0.0000 0.0123 
0.0000 0.0963 
0.0000 0.0300 
0.0000 0.1032 
0.0000 0.0269 
0.0000 0.0310 
0.0000 0.0116 
0.0000 0.0117 
0.0000 0.0723 
0.0000 0.034·6 
0.0000 0.1677 
0.0000 O. OLJ,O 
0.0000 0.0613 
0.0000 0.0265 
0.0000 0.0268 
0.0000 0.0114 
0.0000 0.0114· 

-1.0 -0.5 
1.5000 1.5000 
2.5000 2.1289 
0.8333 
3.5000 
1.4583 
1.4583 
Lf.5000 
2.0250 
2.0250 
1.5750 
5.5000 
2.5667 
2.5667 
2.2000 
2.2000 

0.8333 
2.3196 
1. 3160 
2,4417 
2.2157 
1.6126 
3.6119 
1. 8280 
2.063L, 
1.7823 
4.3650 
2.4936 
3.2340 

0.0 
0.1340 
0,1905 
0.OL,23 
0,1086 
0.1316 
0.06!:3 
0.288L, 
0.0609 
0.0800 
0.08L,9 
0.0664 
0.3516 
0.1159 
0.2336 
0.0657 
0.0695 
0.0638 
0.0601 
0.2651 
0.1455 
0.lJ,48 
0.1389 
0.1768 
0.0661 
0.0667 

0.0 
1.5000 
1.6667 
0.8333 
1.4583 
1.1667 
2.8872 
1.3527 
1. 2886 
3.ll5!} 
1. 9208 
1. 3L,13 
1.3300 
2.8164 
2.3333 
4.4017 

0.5 
0<.3066 
Oe2062 
0.0955 
0.4167 
0.1176 
0,.1025 
0.5U./:· 
0.17L:2 

0,0882 
0.0869 
0.3165 
0.2317 
0.7788 
0.2228 
0.3385 
0.0730 
0.0729 
0.2272 
0.2.168 
0.6089 
0.3522 
0.8HS 
0.21,,80 
0.2976 

0.5 
1.5000 
L 20/{/1 
0.8333 
1.0583 
1.0173 
2.4L:17 
1.0617 
1.0584 
2.0622 
1. 8280 
1.0753 
1.0751 
2.0038 
1. 9781 
3.234·0 

1.0 
0.5000 1,-1 
0.1667 2,-2 
0.1667 2,-1 
1. (1)00 2, 0 
0,.1250 3,-3 
0.1250 3,-2 
0.3750 3,'~1 

0.3750 3, 0 
1.5000 3, 1 
0.1000 4,-L: 
0.1000 l,,-3 
0,3000 4,~2 

0.3000 4,-1 
0.6000 4, 0 
0.6000 L" 1 
2:. 0000 l~, 2 
0 •. 0833 5,-5 
0.0833 5,-'4 
0.2500 5,-3 
0.2500 5,-2 
0.5000 5,-1 
0.5000 5, 0 
0.8333 5, 1 
0.8333 5, 2 
2.5000 5, 3 

1.0 
1.5000 
0,8333 
0,8333 
0.8750 
0.8750 
1.L1583 
0.9000 
0.9000 
1.5750 
1. 5750 
0.9167 
0.9167 
1.6500 
1.6500 
2.2000 

1,-1 
2, --2 
2, -·1 
3,-3 
3, --2 
3,-1 
4,-4 
LI, -3 
4,-2 
4,-1 
5,-5 
5,-Ll. 
5,-3 
5, -·-2 
5,-1 

2, 2 
3, 1 
3, 2 
3, 3 
!~, 0 
4, 1 
L, > 2 
4, 3 
Lf, 4 
5,~1 

5, 0 
5, 1 
5, 2 
5, 3 
5, 4 
5, 5 
6,-2 
6,-1 
6, 0 
6, 1 
6, 2 
6, 3 
6, 4 
6, 5 
6, 6 

1, 1 
2, 0 
2, 1 
3,-1 
3, 0 
3, 1 
4,-2 
4,-1 
4, 0 
4, 1 
5,-3 
5,-2 
5,-1 
5, 0 
5, 1 



Table (G.5) for B-Tyoe Eends 

~1.0 ·~0.5 

1.,0000 1.0000 
1.5000 1,5000 
2.0000 2.1383 
1.6667 1.6667 
2.5000 2.958 LI 

1.8750 1.9563 
3.0000 3.9100 
2.1000 2.3919 
2.8000 2.3609 
3.5000 4.9126 
2.3333 3.0161 
3.0000 2.4633 

0.0 
1.0000 
1.5000 
2.284-7 
1.6667 
3.2533 
2.101'9 
4.2585 
2.8H8 
2.2028 
5.2653 
3.8409 
2.6305 

0.5 
1.0000 
1.5000 
2.4·086 
1.6667 
3.L:-033 

Lf. L,·ll7 
3.3165 
2.3609 
5. Lf14·0 

L,.3122 
3.2338 

LO 
LOOOO 0, 0 
L5000 1,-1 
2.5COO 2,-2 
L6G67 2, 0 
}.SO()O 3,-3 
2.6250 3,-1 
4.5000 4,-L} 
3.6000 4·,-2 
2.8000 4, 0 
5.5000 5,-5 
4.5833 5,-3 
3.7500 5,-1 

Table (G.G) for B-Type Bands 

-1.0 -0.5 
1.5000 1.2774 
0.0000 0.0101 
1. 6667 1. 0000 
2.5000 2.387/+ 
0.0000 O. OL,16 
1.8750 0.6%1 
0.0000 0.0032 
2.6250 2.2398 
3.5000 3,L,065 
0.0000 0.0855 
2.1000 0 J,522 
0.0000 0.0163 
2.8000 1.9900 
0.0000 0.001.6, 
3.6000 3.3039 
4.5000 4.4115 
0.0000 0.1186 
2.3333 0.2984 
0.0000 0.05H 
3.0000 1.6127 
0.0000 0,0062 
3.7500 3.1792 
0.0000 0.0009 
4.5833 L •• 3109 
5.5000 5. L,140 

0.0 
1.0000 
0.OLr86 
0.5168 
2.1498 
0.1091 
0.2692 
0.0297 
1.5000 
3.2266 
0.1259 
0,1666 
0.1252 
0.H877 
O.Ol L,O 
2.6797 
4.2535 
0.1l7L: 
0.1253 
0.2305 
0.5238 
0.0737 
1.9335 
0.0077 
3.7946 
5.2643 

0.5 
0.7226 
0.1097 
0.2792 
1.6667 
0.1323 
0.1537 
0.l L}S2 
0.7602 
2.7LI·06 
0.114/:-
0.1162 
0.2753 

LO 
0.5000 
0.1667 
0.1667 
1.0000 
0.1250 
0.1250 
0.3750 
0.3750 
1.5000 
0.1000 
0.1000 
0,3000 

0.4022 0.3000 
0.1159 0.6000 
1.L:796 0.6000 
3.8266 2.0000 
0.0965 0.0833 
0,0966 0.0833 
0.2771 0.2500 
0,2920 0.2500 
0.3538 0.5000 
0.7698 0.5000 
0,0758 6.8333 
2,4389 0.8333 
4.8829 2.5000 

1, 0 
2,-2 
2,-1 
2, 1 
3,-3 
3,-2 
3,-1 
3, 0 
3, 2 
4,-if 

Lf , -3 
4, -2 
4,-1 
4, 0 
4, 1 
Lf, 3 
5,-5 
5,-4 
5,-3 
5,-2 
5,-1 
5, 0 
5, 1 
5, 2 
5, 4 

1, 0 
2,-1 
3,-2 
3, 0 
4,-3 
4,-1 
5, -Lf 

5,-2 
5, 0 
6,-5 
6,-3 
6,-1 

2, 2 
3, 2 
3, 1 
3, 3 
4, 1 
4, 0 
4, 3 
4, 2 
LJ, LI_ 

5, 0 
5, --1 
5, 2 
5, 1 
5, 4 
5, 3 
5, 5 
6,-1 
6,-2 
6, 1 
6, 0 
6, 3 
6, 2 
6, 5 
6, 4 
6, 6 
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AS)'fliMWl'lUC 7'01' !lfOLECULR,s 

E'in[;le lovd of the n~yll\!l,dl'ic tOll i" rl':III1' d'l\dJI{~ Ull Ill',COUllt of t.h(] j!(J8e,jhjiily (Jf 
illVCr,-lilJll (illllcT"ion dOlildi"U) :l!{rlni.,',:ay,,-\ 11{,,: {'OI!{I'IHICnL i::; jJl)"ilin" tilu Utill'" HC[.;lt­

tiv(], F()r /)lui/al' ilSYlllllldl'ic \(11' ll1IJi'lCllk" (J 1,1), 
IbCO, CzII! .,,) tlllirc i'J Jill ~!!(:h lhLJLli!lI~' J L 
C:Hl be ~l;(Jw!l (sec Ch:lpil'l' IV, [ll'elio1l eLL) ti{"i; 
for thl'1ll in fl tutally f:lYII1!111'iJ'io vihml ion:!! lIlId 
01()(:tl'Ullio dille tho iJi:.dl('''t. il'vd .T.!.] "f (l;[ch ~d 
of 11 gi V,'Il J i,3 +, the two 1l1'\l hihllCot. artl -, tlltl 

two next +, lind 1i0 011 (>il.'U tl{c lirot UI,)lllllll or 
Eigns in Fig, 1 D), 

The ILiJOV{) classiftcllijOll :u'[;orilin,l!; to til(' HYIIl- J =5 
metr,:: pro]l(lrLic~ of tho {uL:li ei:'~I'Jlrllll('li(l!I~ 

[oper-1l1l sj)eci!;s classijicolio}i llcr:(I['(!ilI):; to ,\1111-
Jik(;n (li·j5)J i~ ]lot n,j fn:Cj\lcll(!Y 1I~\ld as n C):I:';-

sifie:lt,iO!l Il<:curding to the IiUl!lllidr!J !Ii'u/wrli,'" I!f 
the roilltio/inl eigenfullction only LH?(~ J)l'iilJi""Jit 
(27V)]. Fur t 1:0 HIlke of lm'vi t.y kt 1I~ call tho 
thn'o principal :EeS abo\lt whil'h tlie ]1l0111l'tll,; (jf 
incrtilt Itl'l: III, .111'1 Ie l'csjll'eiiYl'iy til" fl, iI, C itXI':" 

Tho rohtiolJlLi Cig('llil!llcLi<1I1 '.fIr j,'i II. flllll'liuli of 

tho urililltilti()ll of this "YKtCII({ ,,[ Il\W1 willi l'l'spc('l 
to it fixed coorclilllde By"llllli. !dVl':i till, 

pl'ui)[,\Jility of lindillg; tilll \'ilriull:i uric'lItlVlillllC! u[ 
tllO ,"XI'S, Bl'CIll!~ie uf tJlU s)'llllilctry uf t1J(1 !il(j~ 
mcn (,al dlijJ:1oid, Ull oril,,<ililioll 1 hId, differ,'i fJuiil 

J =~·1 11 g;\'('ll ono 1)), n )'ot.:1Lioll (111'''11);1; J:-;lJ" lIL,,,,G 
one of tho nXCd llI\!~t h:t'li) lilG 1':<.llle P!'lIIJlIl,ilily. 
Therefore if, must l'C:!Lilill HlH:IJ:1I1 h ,',J or lIlIly 
c.lllllq.:;e liif(n for ~l\('h :l ),(ltnti"ll, \\'c c:ill t111'~tl 

rotllLiollS C~il, C~h, alit! (}/ (t he I\.\l'" art) L\\'u-f<,Jd 
itXOs of ;;YlilIllct.ry ()f tilt, lIlllli!<'li(:iI cllip,,,,iri). 
Thwl the: ['(,/«liol/allc/'cis 0/ lIil !(SIjIl1 III ciric lo!) 1111/11 

oe distill{jlli8/iCr/ oy their /)"hUl'iu,. (-I- or - )I/'ilh 
rC8p~L't to the Ulrcc apI'rul/flJi": (.\", (.'~i', C:~', :-;;I1<.'() 

one of thliSO opl'J'lLtiuI10 i" (''lUil'ali:llt to the uti",), 

two el(rI'i(~d out in StlllCl";l'illll, it is :;ullicii:llt to 
dut!Jrlllille tile beli:lVi()[' \Iith 1'1:l'pcd [0 tlYU of 

them; llsu:dly C/ Illld C'~" 1i.1'<: C!,():'l'll, 'flu)!'ll /11'1) 

.J == 3 

J=2 

S :J t -1 ----.----_ - ...... ( ~I' () 

r 
o. !",' ---------·-+-(-1'·' 

l 
~ t-~ ---._--[, (+\< 

~.~ .-.. ------- r- - (- ~ il 

h 1'_, 
~ ~)~~ :--~:-=-~=i~~~~ 

r 

u ,J, ,I :::::::..-:::::::::.:::;;::::::=:: :" t ~ l) ; 

{1 4.1 
.'1 ·~.4 :::::::::,::-~-:::::::l!f+j!; 

~ ~ ~} ==-.--=----:.:::::=== ! = ( t ~ ij 

<13 11 H-j< 

ti ~~0 ------++(+)s 
u ;1-1_ ._---{ -(-)(j 

---~'---- - - (+) (} 

thus fou.r diljerc"! IUV8 (Sjl<:r:il's) uj 11'1'( 18, lni"fly 
dc:,cribcci hy + +, -I- ~, - +, :tilt! ~ ~, \\),,!n: tLu 
fir,;t sigll rdeI'S to thl) )JI'h:l\'i{ll' with 1'1;,;Plllll h> C'/, 
tho oceoild t.o tilC l)(~lt:t\'iur with re:~lJCd tl) C'/', a 2_ 

J =] { f 1:)1 =-,_ ~::.:.-- --~;\~~i:~ 
]j'l!d. H1. Syrl'!nH~try prop(;riics of t~~ f(liatiofwl levels 1 (/ 1~ 1 _".,. _______ ~ __ "t" 1.:...).\ 

of fl.3.'onmctric top lllo1eculc-~; for) ;:.··0 to S.-Tlw d{·;..:ij/,- I =0 ~ lJ u -------t--\.(.t)!. 
:natiun 1 I-i -1- --I •• , !~\ljl\il':-I to :tliy {'Jhl', t11d j)j'(ljJl'rtit':1 

:; (EYJrUl\I.tril') Hnd IL (Htlli.oIY111!;w!ril') l-:iV('1l :tl lll,' ri)..'_lll l'I,fl'!' til thl' l':\'';l~ that Ultl C;; li(,d in 1hu (t 
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APPE!':DlX H 

Sources of Molecular Oscillator Strengths and Transition Moments 

The data on various diatomic molecules that are used in obtaining 

the results in chapter 7, together with the sources, are listed below 

in table (H.l). This list includes some molecules, 

allowed for in the computations, may not actually contribute to the 

results, due to their lmJ abundanc.es or due to their bands lying in 

parts of the spec.truD that are beyond the range considered. 

Electronic transitions are specified by the two electronic states 

given, vibration-rotation transitions are indicated by the single 

electronic state concerned. The column for the transition moment, or 

oscillator strength, lists the values that are used to obtain the 

absolute band strengths, and hence the line strengths, in the 

follovling "lmy: (1) for electronic transitions, the values are the 

coefficients for the transition moment in (Lf.3.36) as a O' aI' a 2 

etc. in DR- i , for all vibration-rotation bands, the coefficients are 

. o-i 
M2 etc. in (4.3.52) also ln DA , (2) the value given is 

fel(~OO)' i.e. the electronic oscillator strength of the 0-0 band, (3) 

the value given is i. e. the band oscillator strength of the 0-0 

band. Note that cases (2) and (3) do not apply to vibration-rotation 

transitions. The final column lists the source of the data. 
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Though as stated in section 4.4, that is often given in the 

literature as (4.4.5) or (4.4.6), although r is the r-centroid, or 

more generally the r(N)-centroid. 

expressed in a.u., i. e. in units 
2 

of (ea ) • 
o 

\-711ic11 is an 

combination of units. Before applying Doktorov's method, 

unfortun8_te 

,-7e must 

convert the coefficients of the transition Eloment, as obtained from 

the various sources, 
. o-i 

into unlts of DA . iI_Iso, in most cases the 

electronic statistical ueight factor of (2S-H) (2-5
0 

j;'_ , .. ) is included 
, ~ I---I!. 

? 
in R--(r). and must be removed before computing the band strengths, as 

e 

this factor is already accounted for in the normalization of the 

R8nl-London factors with due regard to A-do~bling. 

Thus for some cases, 
2 

such as Schadee (118), R (r' is given in the e' , 

forrn: 

D <. (i') 
f" e 

- '.z 
- ) (H.I) 

in a.u. with r in R. We require the coefficients to be in the form of 

(4.3.36) with the electronic statistical weight factor divided out. 

,_ -18: . . 
Thus given that ea = 2.541oXIO esu-cgs, It 18 easy to show that: 

o 

0-1 
in DA • Likevis8, if: 

CH.2) 

(1-1.3) 



then it can tc shown that: -

(H.q 
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Table (11<-1) of 1\lo1ec.ular Oscillator Strengths and Transition Lfo1'12nts 

HoI. Transition D3.ta Used Source 
-

C
2 

ITT L+ 
A ,/ - xi (1) 1.078 (119) 

u g 

C
2 

] + x\:-+ (1) 0.916!. ( 119) D1 -, '-u '-g 

C
2 

b 3,,:- 3_ 
(1) 0.8365 (119) - a II. /.'g u 

C
2 

d
3Tf 3- (1) 0.1556, -0,7891 (112) - a I [ 

g u 

3·~ 
') 

C
2 

J'~ 
(1) 0.7337 ( :, ) e lio- - a r 

(" u 

C
2 

1.(1 - AlIT (1) 1.724· (119) C .1 
g u 

C
2 

1 + L-
(1) 2.702 (119 ) E2.o- - A II 

0 u 

N2 
3. __ 3.--+ (1) 2L,. 59, -7 L,.27, 112.1; -112.9, 85.23 (118) n ti - At:. 

g u 

N2 
C3.~· B3.-- (1) 1.039, --2.5 L:,2, 1.20!;, (120) 0 - Ii 

U 0 
0 

°2 
B3.-- - x 3-,-- (1) 1.365, --161. 1, 47.83 (118) 2-u - <'-

0-
0 

OB. X2--, II (1) 1.6777, O. 6L,306, -1. 1091 -1. 9508, 1.L,176 (121) 

OF[ A:L,-+ .e:- - v 2,l'T 
n II (1) 1.124, -0.8432 (122) 

CIT 11 
A2-Ij - X2-t\ (2) O.OOt,S (123) 

cn B2z- - X2~ II (2) 0.027 (123) 

cn C~+ - X21T (2) 0,003 (32) 

eN A2TI" 2 + (1) 0.7169, 0.1195 ( 118) - X ";--

CN /~-+ 
B2 - v 4-+ 

"'-2- (1) 0.6012, -1,550 ( llS) 

CO 
] -' X -~ r-l. (1) -0.1221 , 3.093, -0.199, -2.665, 0.26 (111) 

CO A1Tr - v 1z+ 
1\ (1) 1.L,02 (124 ) 

NO 
",,2 .. -,. 
h I). (1) -0.166, 2.21, -1.50 (125) 

? -{- ),2 ___ 
(1) 289.3, --750.4, 649.5, -187.4 (118) NO A-" -? , \ i 

NO B
2'i! - x2-11 (1) 0.2961, ··0.L,758 (118) 

NO c2..·:-+ 
1- - x2rr (2) 0,0017 (123) 

NO 2..+ v2.~- (2) 0.0137 (123) D 2- - A !i 



HoI. Transition Data Used Source 
---

? - 2 _L 

4.689 HgH A--rr - X -',-' (1) (12Lf) - ~ 

AIO A2z..+ - X2;:[+ (1) 1. 312 02[1 ) 

SiO 
1 _L 

X-Z' (1) 3.0575, 2.657 (26) 

SiO A1lr - v 1-;;.."'+ 
f\.. f-.. 0) 1.H3 024 ) 

Na2 
B1rr l~+ 

0) 6.15, 0.43 (27) - X 2. 0" 
U b 

1 '. 
NaR Az:"" - v 4:-,+ 

j\, 2.- (1) 6.23 (12Lf) 

SH t 2.,.+ 
-\. L.. - v2~ 

A II (1) 0.3139 (12Li) 

HgO B1,,+ c.. - v]~+ A _ (1) S.133 024 ) 

HCI ,\,lor.:.--{-
A .1_ (1) 1. 0935, 0.925, 0.163, -3.83, -9.3 (112) 

HF x1z+ (1) 1. 7982, 1.5220, -0.2335, -1.0958 (28) 

CIO X2'(T 0) L 2036, -1.3269, -1.7895, 3.0550, -1.0576 (129) 

CIO A2,,-
H - ,,2_ 

" II (1) 20.836, -48.512, LI S.71 t+, -21.911, 305940 (129) 

TiD 
') 

C.JL\ - v
31 L'':.. L (2) 0.18 (113) 

1 '" 1. 
(3) 0.249 014 ) TiO c c& - a Ii 

CO+ A2.IT 
2 .L 

- X-;;..:' 0) 30.53, 52.81 -22.59 (118) 

CO+ B21.+ - x2.;; -f- (2) 0.0166 (118) 

N+ B2Z+ - y2"._+ (1) 0.789, 1.42, -0.611 (118) -, /-2 II 0-
t:> 
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jlYPT:NDIX I 

Determination of the Internal Energies anrt Adiabatic Exponents of a Gas 

of Electrons, Atoms, Ions and lfolec.ules 

The total internal energies given in table (7.32) are obtained by 

summing over the individual species whose energies are obtained by the 

method discussed here. The zero point in energy corresponds to the 

state wit]} all atoms free, neutral and in their ground states. 

AtOC1S and Ions 

Let Ih h+1 be the ionization potential in , ergs of the 
th h ion of 

-12 
some element, Vlhere leV = 1.6021927XIO erg by Allen (32). If He 

also urite for generality the electron affinity as 1-10 , vhich is by 

convention positive if the negative ion is stable, then the internal 

Eh f h 11th energy < or tIe ion, apart from translation and ignoring any 

energy of excitation, is given by: 

-1 
E -1-10 

EO 0 

E1 101 (1.1) 

E2 101 + 112 

£3 101 + 112 + 123 

n-·l 
En )_l

h1
'
1 h=O ' 1-,-
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where n is the most positive ion consi~ered, with of course n ~ Z. If 

8
h -lS the fraction of the m.~.ccl·tbir'f:'~ E.leh12nt in question in 

th the h 

stage of ionization as given by (2.3.8), then the total average 

internal energy per atom in all stages of ionization, together with 

translation, is given by: 

-1 
n h-1 

L 
h ~--. 

3kT/2 E -3 I + S '-. I + 
-10 L_ 1- l--L 1 

h=l k=O '-,.'-' 

(1. 2) 

-1 
n 

ShEh E -S I 
-10 + 2" + 3kT/2 

h=l 

where if no stable negative ion exists, the first term is omitted. The 

contribution due to free electrons must also be added to the gas, this 

being just 3kT/2 per electron. 

Diatomic lfolecules 

From Herzberg (29), the following relations can be ",ritten per 

molecule in ergs: 

Rotation: E kT 
r 

Vibration: E 1 • // he,,) /kT_1) (1. 3) 
V 

,1C""'e I.e e 

Electronic: E -hcD
o 

e 0 

Translation: E
t 

3kT/2 

"There ,;..' and DO are in \Vavenuaher, and the latter is the dissociation 
e 0 

potential meastired from the lowest vibrational level (see (4.3.9) ). 

In these calculations, isotope effects are neglected, so the constants 
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are taken for l'lOS t abundant iSOtOP2, non·-rigidi ty 

consider the contribution of the ground electronic state to the 

energy. However, in most cases these approximations will be good. 

Because Ee is normally by far the largest in magnitude in Cr.3), 

molecules normally contribute negaU_ve values of energy to the gas, 

when the zero point is taken as stated earlier. 

Triatomic Molecules 

The relations for triatooic molecules given he}~e Clre obtained 

from the relations for polyatomic molecules given by Herzberg (30): 

Rotation: E 
r 

E 
r 

Vibration: E 
v 

Electronic: E 
e 

Translation: E
t 

kT (Linear Molecules) 

3kT/2 (Non-Linea!' l;oleclJles) 
3 

h ",- , -, Ie hc",./kT_-l ) .c L-. ([ .'-/ . e J_ 

i=l 1 1 

-heDo 
o 

3kT/1. 

"\\1here d. is the degeneracy of 
1 

tbe 
. th 

1 vibrational mode, 

d -~ 1- d = 
3 

1, and d = 
2 

1 or 2 depending on "hether the 

C1.4) 

sucl1 th2.t 

molecule is 

non-line3T or linear respectively. Also DO is the energy frol 11 the 
0 

lowest vibrational level for complete dissociation. The S2D.iC 

approxigations as used for diatomic molecules are applied. 
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Charged lIolecules 

Though generally of negligible abundance, for the sake of 

completeness, we can also consider molecular ions. For generality in 

(1.3), E is replaced by: 
e 

E 
e 

o 
-hcD 

o 
11 + Em. + E. 
l J 

and likewise for (1.4) \vi th 

(1. 5) 

an additional term 
n 

Ek for each of the 

dissociation products. However, only one of the dissociation products 

will be in general ionized, so will contribute a non-zero value to 

(1.5). 

The theory, as supplied by Carson (3), for calculating t~e 

average energy of a rotator and of an oscillator is given in the 

following pages. For any adrlitional discussion on the thermodynamic 

properties of molecules, one can refer to Herzberg (29) and (30). 

In order to calculate the adiabatic exponents Y, ,->'-' (1 
11' r 2 and. 3 

for a given grid point (T,P), the total internal energy E and total 

pressure P·are computed for that grid point, together with E+SE and 

P+'i,P computed from the grid points (T ,('+~i') and (T+'0T ,f), as discussed 

in section 7.6 vlhere tables of the adiabatic exponents are given. 

Note that the contribution of radiation must be included in the total 

pressure and internal energy. 
-2 

such that for P in dyne CD and E in 

-1 it ft 
erg gm the contribution is 0/3);:>3' and aT '/(' respectively. 
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The theory, also as supplied by Carson (3), for obtaining the 

adiabatic exponents in terms of t~2 known quantities is given further 

in this appendix. Cox and Giuli (1) can be referred to for further 

discussion, 
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APPENDIX .J 

Abundances qf Elements and Isotopes 

All the calculations on statistical mechanics are based on the 

abundances obtained from Cameron (4), Hhich are given here for those 

elements and isotopes used in this work. 

In table (J,l), the relative abundance by number normalized to 

10
6 

for Si is given for each element summed over all its isotopic 

forms. For each individual isotope, the flass number and percentage 

abundance by nurllDer of that isotope making up that element are given. 

Note that for H, He and K, Cameron (4) does not give the 

percentage abundance for the least abundant isotope of each of these 

elements, so \\le have recalculated the percentages of all the isotopes 

of these elements to four decimal places to show up the least abundant 

isotopes. Ar40 has a very small and uncertain abundance, so it is 

omitted an~ the remaining isotopic abundances are recalculated. 

Otherwise, all the figures in table (J.l) are exactly those obtained 

from Cameron, with all the isotopes of the 22 elements in the list 

being considered. 
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Table (J.l) of Ahundances of E12Dents 2nd Isotopes 

Z EleElent Ahundance A Abundance in % 

1 H 3.18 x 1010 

1 99.9984 

2 0.0016 

2 He 2.21 x 10 9 

3 0.0167 

4 99.9833 

6 C 1.18 x 10 7 

12 98.89" 

13 1.11 

7 N 3.7LI x 10 6 

14 99.634 

15 0.366 

8 0 2.15 x 10 7 

16 99.759 

17 0.0374 

18 0.2039 

9 F 2450 

19 100.0 

10 Ne 3. L,L, x 10 6 

20 88.89 

21 0.27 

22 10.84 

11 Na 6.0 x 10 4 

23 100.0 
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Z Element Abundance A Abundance in % 
- ----

12 Hg 1.061 x 106 

2LI 78.70 

25 10.13 

26 11.17 

13 Al 8.5 x 104 

27 100.0 

14 Si 1.00 x 106 

28 92 .21 

29 4.70 

30 3.09 

15 p 9600 

31 100.0 

16 S 5.0 x 105 

32 95.0 

33 0.760 

34 4.22 

36 0.0136 

17 Cl 5700 

35 75.529 

37 24.471 

18 Ar 1.172 x 105 

36 8/t.2150 

38 15.7850 

19 K 4200 

39 92.9899 

40 0.1370 

41 6.8732 
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Z Element Abundance A Abundance in % 
-

20 Ca 7.21 x 10lf 

40 96.97 

42 O.M 

43 0.145 

44 2.06 

46 0.0033 

48 0.185 

22 Ti 2775 

46 7.93 

47 7.28 

48 73.94 

49 5.51 

50 5.34 

24 Cr 1.27 x 104. 

50 4.31 

52 83.7 

53 9.55 

54 2.38 

25 Hn 9300 

55 100.0 

26 Fe 8.3 I;:: 105 

54 5.82 

56 91.66 

57 2.19 

58 0.33 
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Z Element Abundance A Ahundance in % 

28 Hi 4.80 x 104 

58 67.88 

60 26.23 

61 l.19 

62 3.66 

64 l.08 
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