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ABSTRACT

This work investigates molecular opacities wunder conditions
appropriate to the atmospheres of late—type stars. Given a specified
initial abundance of the chemical elements, the equations of atomic
ionization and molecular dissociation are solved by iteratiomn for
various temperatures and densities. With the abundances of the atomic
and molecular species so determined at a particular temperature and
density, the continuous absorption coefficient due to a number of
processes 1is first computed, then the molecular band absorption
coefficient is computed line-by-line superimposed for diatomic and
triatomic molecules considered separately. The band calculations for
the diatomic molecules include all possible disotopic variants, but
computing resources did not permit this degree of detail for triatomic
molecules, nor diatomic and triatomic molecules to be considered
together. These calculations are performed for a number of different

temperatures and densities.

The theory for calculating £he spectral lines due to moleéules is
discussed in some detail, with various methods being investigated for
computing opacities including the contributions from these spectral
lines. With the computing resources available, the best method for
the calculation of the opacity due to the molecular absorption is
found to be that of opacity sampling, provided the frequency of

sampling is adequate.



From the results presented in this thesis, a number of important
conclusions can be drawn. At low temperatures and high densities,
pressure;induced absorption due to molecular hydrogen is an important
source of continuous opacity. Isotopic variants of at 1least diatomic
molecules have to be considered in any calculations, as they can
significantly affect the contribution that diatomic molecules make to
the Rosseland mean opacities. Also at low temperatures, water is a
major source of absorption. Finally, tables of some thermodynamic
quantities for the iolgcular gas are given for a number of

temperatures and densities.
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1 INTRODUCTION

1.1 Introduction to Stellar Opacities

With the advent of modern high speed computers, it is now
possible to perform detailed numerical integrations of the equations
of stellar structure, enabling one to construct a large number of
stellar models. Given a specified mass and chemical composition, one
can determine the internal distribution of temperature, density and
pressure, as well as the observable quantities of luminosity and
effective temperature, leading to such important calculations as
stellar evolution, pulsation etc. However, discrepancies Dbetween
theory and observation are due to our approximations and lack of
understanding of the input physics, such as nuclear reaction rates,
equation of séate and the opacity of the stellar material to

radiation. It is the radiative opacity of stellar material which is

the subject of this work.

There are three basic modes of energy transport in stars,
radiation, conduction and convection, where respectively energy is
carried by photons, individual particles and 1large aggregates of
particles, such that the total energy flux at a radial distance r is
given by:

F(x) = Frad(r) + Fcond(r) + Fconv(r) (1'1’1)




where 1in each case the radial flow of energy is opposite to the

temperature gradient. The radiative flux is given by:

3

Fa() = “hee DD AT g 4T a2
3ok,  dr Todr

where‘0 is the density, Ky the radiative opacity and Kr the "radiative

conductivity”; a similar expression can also be written for the

conductive flux. The total conductivity is:

K = K +X (1.1.3)

1
— = - A 1.4
K (1.1.4)
where Kc is the thermal conductivity and X, the "conductive opacity”.

Normally in stars, radiation and convection are the main forms of
energy transport, with radiation in preference to convection if the
logarithmic derivative of temperature with respect to pressure is
subadiabatic, and convection 1in preference to radiation 1if the
temperature gradient is superadiabatic. Conduction is normally
unimportant except at high densities, particularly when electrons
become degenerate. However, because the energy ultimately escapes
into free space by radiation at the photosphere, whichever mechanisms
of energy transport operate in the stellar interior, there will always

be a region where the transport of radiation is important.



The opacity in equation (1.1.2), which from now on in this work
is understood to be just the radiative opacity, is the absorption per
unit mass, or mass absorption coefficient, which in the ¢gs units
generally used is in cmz per gm. However, it is often convenient to
work with the absorption per unit volume, or volume absorption
coefficient, which dis in cm2 per cm3 or cm—l. Given the volume
absorption coefficient, the mass absorption coefficient can simply be
found by dividing by the density in gm per cm3. The opacity here is
at a particular temperature and density, i.e. at some radial distance
in the star, but it is a mean value, as the opacity 1is generally
dependent on the frequency of the radiation. The mean which is used
is the Rosseland mean {see chapter 3 and for example Cox and Giuli
(1) ), which is a weighted harmonic mean opacity; another mean which
we also discuss 1is the Planck mean, which is a weighted arithmetic
mean opacity. It should be noted that the Rosseland mean opacities
that we calculate would be of limited use when the medium is optically
thin, so the diffusion approximation does mnot hold, and where
convection is important. Although one of these conditions is often
fulfilled for the cases we are considering, the monochromatic
opacities which we calculate in order to obtain the Rosseland mean

opacities, are important for radiative transfer calculations.

Over the vast range of temperatures and densities between the
centre and photosphere of a star, many processes can contribute to the
opacity, with many c¢alculations having been done on this, see for

example Cox and Stewart (2).



1.2 Summary of this Work

In this work, we consider opacities at various densities and
temperatures below about 60000K, which for photospheres corresponds to
stars of spectral type of the Sun and later. At these temperatures,
the formation of molecules 1is important, and in this thesis we
consider how we determine molecular abundances then how we attempt to
compute their opacities. This work at the University'of St.Andrews is
part of a larger project by Dr.Carson to compute opacities over a
greater range of conditions, for example Carson and Alexander (3) are
working on temperatures from about 6000°K upwards where molecules can

be neglected.

In this thesis, we discuss in chapter 2 how we obtain the
abundances of free atoms, iomns and molecules, by the iteration of the
simultaneous equations of atomic ionization ~and molecular
dissociation, having first to compute the various equilibrium
constants, given the initial abundances of the chemical elements. We
handle diatomic and triatomic molecules in quite a general wéy, and
allow for all possible isotopic variations by specifying the isotopic
abundances, when relevant, of the various elements. So far as is
known, no other work has been done in such detail. These calculations
are performed over a range of temperatures and densities, but with
fixed abundances of the elements and their isotopes obtained from
Cameron (&) from the Sun and meteorites, which should be

characteristic of the primitive solar nebula, and we consider to be a



typical population I mixture. In principle, we could very easily
consider different mixtures, but this possibility dis not explored

here.

Having: obtained the converged abundances for a specified
temperature and density, in chapter 3 we discuss how we compute
contributions from the various continuous sources of opacity: electron
scattering, Rayleigh scattering of atoms and some molecules, free-free
and bound-free absorption of some negative atomic and molecular ions
and some neutral atoms and molecules, and finally the pressure induced
opacity of molecular hydrogen and the opacity due to quasi-molecular
hydrogen. With these calculations, we establish the continuum as a
foundation onto which we put the bound-~bound absorption due to

molecular bands.

In chapters 4 and 5, we discuss the theory which we use to
compute the bands of diatomic and triatomic molecules respectively.
Unfortunately, though the vibrational and rotational constants are
often well known for diatomic molecules, the dipole moments or
oscillator strengths that we need for computing the absolute band
strengths, hence the strengths of individual spectral lines, are often
only known approximately or not at all. Though we have to make some
approximations in computing the line positions and strengths, in many
cases the ultimate accuracy is limited by the input data. It is hoped
that at worst we can obtain the gross properties of bands or band
systems. For triatomic molecules, the band spectra are much more
complex with mény millions of lines being present, and at least we

have to use very approximate techniques to calculate these bands.



Although we do individual line-by-line calculations, we would be
optimistic in hoping for anything much better than obtaining the

approximate properties of bands.

Once individual lines have been produced using the theory in the
previous two chapters, in chapter 6, on which this work hinges, we
discuss how we actually handle these lines in order to compute the
opacity. Because generally there are a very large number of lines to
handle, and they are very narrow, i.e. millions of lines could be
placed over the spectral regions that we deal with without
overlapping, we consider various techniques all based on splitting the
spectrum into a large number of bing, in which we lose information on
individual 1lines, but retain summed quantities such as line
strengths. Though the spectrum is split into many bins, of the order
of a few tens of thousands, it is manageable and we can sum over all
bins to obtain a total Rosseland and Planck mean épacity. In stellar
atmosphere calculations, the opacity is required at many frequency
points, rather than just the total mean, and we have the option of
storing the generated spectra on some medium such as disk or magnetic

tape.

In chapter 7 we put all the theory discussed previously into
practice, and display and discuss the results of some numerical
calculations. We consider not just final opacities at various
temperatures aﬁd densities, but also some abundances and examples of
some of the intermediate calculations, as well as some tests and
checks. In addition, some tables of the adiabatic exponents and some

other thermodynamic quantities are also given. Finally in this



thesis, some additional discussions and tables not included in the
main body of this work, are found in the appendices following the last
chapter, together with the listing and documentation of the computer
programs in the Molecular Stellar Opacity Program Volume, with further

examples of results.

We only consider spectral lines produced by molecules, though of
course there will also be atomic lines which we neglect. However,
particularly at the lower temperatures that we consider, the effect of
including atomic lines would be expected to be completely negligible,
as many of the atoms are combined into molecules, the spectrum can be
very heavily blanketed by molecular bands, many of which will be in
the infrared part of the spectrum where most of the energy lies, and
where relatively few atomic lines are found. Many bands of molecules
such as TiO, Zr0O, YO and VO are observed in M-type stars, where even
if a molecule has a relatively low abundance, 1if it absorbs in places
in the spectrum where there 1is 1little other absorpticn, then its
effect is all-important. 1In carbon stars, one would also observe
bands due to molecules such as C2 and CN. On the other hand in
early~type stars, molecules can be completely neglected from both the
statistical mechanics calculations and as sources of opacitf, the

bound-bound absorption being due only to atoms and ions, which then

have to be considered in opacity calculations.

Finally, mnote that we try to keep the notation as consistent as
possible. This is particularly important in chapter 2 where we have
to define unambiguously such items as different sorts of fractional

abundances of various species and different indices. On the printer



used in producing this thesis, because a lower case "L" 1looks very
much like the number "1", to prevent\ confusion we generally use the
letter "h" when considering indices, thus the indices representing the
isotopes in a triatomic molecules 1in chapter 2 are h, m and n,
however, for the vibronic quantum number in chapter 5, we instead use

the handwritten "{".



1.3 Brief Literature Survey

Before we discuss in detail the methods used in this work, we
give here a brief survey of other work on molecular opacities. For a
general review on opacities, refer in particular to Carson (5) and
also to Hack (6) for opacities and many other aspects of late-type
stars. Some examples of earlier work can be found by referring to

Yamashita (7) and Cox (8).

Tsuji (9) considers the vibration-rotation and pure rotation
bands of CO, OH and HZO in cool stellar atmospheres, these being.
normally the most abundant molecules in such atmospheres that produce
bands in the infrared where most of the flux is. These bands are
underlaid by a continuum due to a number of processes which are
discussed in chapter 3, and we adopt some of his data, in particular
the bound-free and free-free absorption coefficients of the negative
hydrogen ion, which is an important continuous source of opacity in

late—type stars.

Given several overlapping bands, Tsuji computes molecular
absorption on the basis of the Just-Overlapping Approximation (JOA}.
Here it is assumed that because there are so many lines in a region of
the spectrum, they are all overlapping with the windows between the
lines filled in, so that just part of the spectrum can be represented
by a pseudo—-continuum. Unfortunately as is stated, although the JOA

can be wused for HZO at high enough temperatures and turbulent
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velocities, because of the very large number of lines it produces, it
cannot be used for CO and OH, nor at lower temperatures, for HZO’ as
there will be windows between the lines through which flux can pass.
In this case the generalization of the JOA to the Partial Overlapping
Approximation (POA) is discussed, where the spectral region in
question is split wup into a number of meshes, where in each the
smeared absorption is redistributed so as to leave some continuum, yet
retain some overlap. Unfortunately, this method depends on a smearing
parameter which is difficult to determine, and we know from our own
work that the Rosseland mean can depend very critically on the number
and sizes of windows between lines in bands. Tsuji also gives some
useful spectra and other pleots for several temperatures and

pressures.

In later papers by Tsuji (10) and (11), the above work is taken
further by allowing for the fact that the bands will not in general be
completely smeared out. This 1is done by adopting Elsasser band
models, see Vardya (12) and Golden (13), where an ideal Elsasser band
consists of an infinite number of regularly spaced identical spectral
lines, and can be treated analytically. Tsuji also considers in some
detail the abundances of a large number of molecules in stellar

atmospheres in his paper (14).

Auman (15) computes the opacity of H20 for several temperatures

and turbulent velocities by a line-by-line calculation, and gives

extensive tabulations of such opacities. This work is subsequently
ébplied to models of late-type stars, see Auman and Bodenheimer (16).
i

3

PR T
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An important technique for calculating opacities is by the so
called Opacity Distribution Function (ODF). With this method, the
spectrum is split up into a large number of pickets or bins, where in
éach the details of the variation of the opacity across fhe bin is
lost, but the information about how the opacity is distributed 1is
retained, i.e. how much opacity there is covering a given fraction of
the bin. We have in effect re~arranged the absorption so that it
changes monotonically across the bin, either smoothly or in the form
of a histogram. This method is discussed by Strom and Kurucz (17),
who apply it to a model atmosphere of the F5IV star Procyon (xXCMi),
where virtually all spectral lines would be atomic in origin, and also
by Mihalas (18). Kunde (19) uses ODFs for computing CO opacities in
stellar atmospheres, and Querci et al. in such papers as (20), (21)
and (22) apply ODFs for cool carbon rich stellar atmospheres. Also
refer to for example Carbon (23) and Mould (24), the latter giving
tabulations of model atmospheres of M-type dwarfs, where of course the
densities are much higher than for red giants. Finally, Gustafsson et
al. (25) considers ODFs over a grid of atmospheres, with extensive

tables given in Bell et al. (26).

Another method of calculating opacities 1is by opacity sampling,
see chapters 6 and 7. In this method, the opacity is coﬁputed in
detail at a number of grid points across the spectrum, see for example
Sneden, Johnson and Krupp (27), and Johnson and Xrupp (28), rather
than having so many grid points that individual lines are profiled.
(27) and (28) wuse at most a few thousand grid points across the

spectrum to calculate model stellar atmospheres with molecular bands,




-12 -

this being a statistical method as the separation of the grid points
is very much larger than the widths of individual profiles, so most
spectral.lines are missed altogether. However, in our application of
opacity sampling to calculate Rosseland mean opacities, we use a very
much finer grid, so that in general individual spectral lines will be
at least approximately represented, by having one or two grid points
across the profile. If we apply a coarser grid so that undersampling
results, the contribution to the Rosseland mean from those parts of
the spectrum that are either pure continuum or are very heavily
congested by lines giving rise to a pseudo—continuum, are likely to be
fairly accurate, but the contribution from those regions of partial

congestion is likely to be more uncertain.

Finally, most of the basic theory on molecules 1is obtained from
Herzberg (29) and (30) and XKoviacs (31), the physical constants and
atomic ionization potentials from Allen (32), atomic energy levels
from Moore (33), and molecular data is obtained from many sources
including Herzberg (30) and (34), Rosen (35) and Mizushima (36).

These and other sources are quoted when required.
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2 DETERMINATION OF EQUILIBRIUM ABUNDANCES

2.1 Introduction

In order to determine the total opacity of a stellar atmosphere,
the individual contributions each opacity source makes over the
spectrum has to be known. Clearly, the contribution each species
makes to the opacity depends on its abundance; and it is this which is

considered in this chapter.

The equilibrium abundances of atomic and wmolecular species,
together with the populations of their excited electronic states are
calculated on the basis of the condition of local thermodynamic
equilibrium (LTE) being satisfied. Because the equations governing
the equilibrium abundances are all coupled, it is necessary to include
in these calculations those atomic and molecular species, which
although they may not necessarily contribute significantly to the
total opacity themselves, may nevertheless affect those species which
do. Unfortunately, it is often not possible to know whether the
inclusion of a particular molecule will significantly affect the
abundances of those important molecules, wuntil after the calculation
itself is performed. Then, after that, it is only known at those
particular conditions of temperature, density and specified mixtures
chosen. A similar problem arises when the opacity cf a species is
determined; it may not be known whether it can be neglected until

after it has been calculated.
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As the molecular opacities of late—type stars are considered, the
temperature range chosen is from about 1000°K to 6000°K, and densities
between 10—14 and 10_2 gm cm_3; Above 6OOOOK, molecule formation
becomes negligible, and already at 10000K, one is well to the right of
the " Hayashi forbidden =zone in the H-R diagram where no stable stars
are expected to exist with such photospheric temperatures, in addition
to which, opacities are dominated by solid particles that ére not
considered in this work. However, at IOOOOK, because of strong
negative ion formation, the iterative process tends to converge very
slowly, particularly at the earlier stages; though eventually
sufficient convergence is reached, giving confidence in the method at
higher temperatures. The density range includes the region in which
red giants lie, where pressure independent partition functions and
lines not dominated by pressure broadening could be assumed, though we
do have to handle atomic and ionic partition functions correctly (see

section 2.2).

Coding in FORTRAN is written by which diatomic and triatomic
molecules could be treated in quite a general way. Molecules are not
considered in this work that have more than three atoms, as to treat
them in quite a general way would be enormously complex, though they

could be easily included on an individual basis.

Furthermore, isotopically substituted molecules are included, as
they may be present in significant abundances, to affect both the
equilibrium abundances and in particular the opacity. The 1latter

being due to the fact that an abundant disotopically substituted
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molecule having a shifted spectrum with respect to its parent molecule
(i.e.~the molecule which normally has the most abundant isotopes) may
fill up windows in a part of the spectrum, thus radically altering the
opacity in that region; also the fine structure may be different,
depending on the identities of the nuclei. Unfortunately, as the
molecular partition functions depend on the rotational and vibrational
energy levels, which are shifted when isotopes are substituted, it is
necessary to calculate the dissociation equilibrium constants for each
isotopic molecule in turn, then ﬁo perform the iteration on each of
them. Thus 1isotopes rather than elements are considered in the
dissociation equilibria, and isotopic molecules are treated in quite a
general way. This is particularly complex for triatomic molecules, as
there can be up to five different point groups, and the symmetry of a

molecule can change completely when one isotope is substituted.

Inifially; the atomic abundances both bound and £free are
specified either by mass or by number, either in absolute form, or for
the metals (elements other than hydrogen and helium), relative to the
total metal abundance. In addition, one can specify for each element
the fractional abundance by number of each isotope that makes up that
element. Molecular abundances, 'however, are not specified, instead,
with the necessary data, molecules are allowed to form in the course

of iteration.

The iterative process for determining the abundances of free
atoms and molecules is subdivided dinto two equilibrium calculations.
First, with the molecular abundances set to zero, . iterations are

performed to determine equilibrium between atoms, their respective
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ions and electrons, where negative ion formation is allowed for in the
coding. Then, with the relative abundances of each element in
different stages of ionization held constant, iterations are performed
to find equilibrium between free atoms and molecules, yielding
abundances of diatomic and triatomic molecules, and the fractional
abundance of each element that is free. Once these quantities have
been calculated, the equilibrium between atoms and their respective
ions is redetermined with the molecular abundances held constant. The
molecules are then considered again, and the whole process is

repeated.

The sequence of ionization equilibrium followed by dissociation
equilibrium iterétions is considered as a grand iteratiom, and
particularly at low tempefatures where molecules and negative ions are
present in great abundance, many such iterations may have to be
executed until final convergence 1is reached. 1In the first grand
iteration, the convergence criterion for both the ionization and
dissociation iterations is quite loose, however, with the next few
grand iterations, the criterion is progressively made more stringent
until the maximum stringency required is reached, then with this
criterion, iterations are continued until final convergence is

attained.
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2.2 Determination of Atomic and Ionic Partition Functions and

Equilibrium Constants

~ Before we can proceed with the equilibrium calculations, we have
to find the equilibrium constants of the atoms, ions and molecules,
which in turn require the partition functions. The determination of
these quantities for atoms and ions is explained in this section; the

discussion for the molecules is deferred until later.

The partition function of any species is given quite generally

_E; /RT

Q = Z 9: C (2.2.1)

where 8; and Ei are the statistical weight and energy respectively of

th level. However, the sum in (2.2.1) if taken to the ionization

the i
limit 1is divergent, and we need a cut-off based on physical

arguments.

The most convenient way of dealing with this, 1is to evaluate
(2.2.1) with explicit values of g; and Ei from published sources up to
some appropriate limit. A convenient value is in the region of
20,000cm..1 above the ground state where the Boltzmann factor is less
than 0.01 at 6OOOOK, then continue the summation assuming the levels

are hydrogen-like until the final cut-off is reached.



If N is the total number of particles per cm3, then:

3 /4
YV =
(QTTN> (2.2.2)

where r is the mean distance from an atom or ion to the nearest
neighbour. Now if we take a wvalence electron (electron from the
outermost shell) to a sufficient distance from the rest of the atom,
we can assume the energy levels are hydrogen—like and the orbital
radius is given by:
3
Y, = 4.0 (2.2.3)
zoo
where a, is the first Bohr radius, =n is the principal quantum number
and Z_ is the effective nuclear charge as experienced by the electron

at a large distance, such that Z_ = 1 for neutral atoms, Z,= 2 for

singly ionized atoms etc. From (2.2.2) and (2.2.3), we can write:

if
n = w32 )

w R 2.2.4
TN (2.2.4)

where the int function takes the integer part and n, is the largest
value n can take as the nearest neighbour prevents further levels from

existing.

Let En be the energy in ergs of the nth hydrogen—-like level,

then:

il

E. £ — Rhe Z:e (n) - (2.2.5) -
n
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where Ze(n) is the effective nuclear charge as experienced by the
electron at an energy well above its ground state, R is the Rydberg

constant and E_, is the ionization potential in ergs, such that:
E, = hes I (2.2.6)

where I is the ionization potential in eV and S, is the conversion
factor of 8065.46cm for leV; and when n =>%2, En—> E,.

Except for the special cases of H, He+, Litt etc., (2.2.5) is
invalid for small values of n where the 1levels are mno longer
hydrogen—-1like or are completely filled, but as stated above, the lower
levels are handled explicitly. For H and H-like ions only, E1= 0 in

(2.2.5) has meaning.

In (2.2.5) the effective nuclear charge would vary with n, such
that as n =>02, Ze(n) ~> Z, Thus let n = oy be the lowest value of n
that we can assume a level is hydrogen-like, with the corresponding
energy En being specified, then inserting these into (2.2.5) and
solving for Ze(n), we obtain the effective nuclear charge Z, for the

1

level ;. We can then make up a simple formula that gives these

limiting values of Z:

2
Ze) = Z, - ng (2o = Z4) (2.2.7)

£

which can then be put into (2.2.5) for n z'n] with which we can

calculate E .
n
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Having obtained En this way for each value of n in the range, the

total partition function Q is given by:

En /RT

a
N 2
Q= Q +2Z *vge (2.2.8)
n=a, )

where Q” is that part of the partition function computed from (2.2.1)

using explicit values, 2n2 is the statistical weight of the

th

hydrogen—-like n level and 8. is the core statistical weight due to

all the other electrons, see the appendices.
When n = 0o, (2.2.5) gives a new ionization potential which will
be slightly less than the unpérturbed value, it is this new value that

we should really insert into the formulae below.

Technically N in (2.2.4) should be the total number of particles
per cm3 including electrons and molecules, but this would require an
"extra level of iteration. However, because of the relatively weak
dependence n has on N due to the sixth root, we can take N to be the
total number of atoms per cm3 which is a known and fixed quantity, see
the next section, regardless of their ionization or association iﬁto
molecules. _Over the temperature range of interest, the total number
of particles is unlikely to vary by much more than a factor of two on
either side of N, due to the presence of free electrons at higher
temperatures and association into molecules at lower temperatures.
Also, because the cut-off occurs at large values of r for realistic
densities, it is reasonable to use the effective nuclear charge at

large distances Z ,in (2.2.4).



- 22 -

In practice it is found that for most atoms and ions under the
conditions of interest, the sum in {2.2.8) contributes negligibly to
the partition function as computed from the lower explicit wvalues.
However, for atoms like Na and K with low ionization potentials, at
higher temperatures the upper levels do become important and the sum

in (2.2.8) is significant.

This method cannot be applied to negative ions as there are only
a finite number of states, and in principle we can only evaluate
(2.2.1) for those states, in practice usually only the ground state,
hence the partition function is just the statistical weight of that
state; and of course for completely ionized atoms the partition

functions are just unity.

The explicit wvalues of 8; and Ei are taken from Charlotte E.
Moore (33), giving tables of energy levels of atoms and ions, and Q is
computed from (2.2.1) and (2.2.8) rather than taking the tabulated

values of Allen (32) and interpolating.

In conditions of thermal equilibrium, the degree of ionization is

given by Saha”s equation:

. 3/ S
NN, 20, (ATm RT) 6-%,,,,,,/&1
A X 13

(2.2.9)

or more conveniently for computation in log form as:

NN, / e 93¢
&j( ’ L) = «-XAI’H"G-» -i é‘«(’}‘g + 3.0 :366 (2‘2.10)

N* ‘
()
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Where: Ne is the number density of electrons,

Nh is the number density of the hthion of a given element,

yh,h+l is the ionization potential of the n'" ion in eV,

,Qh is the partition function of the hth iom,

and ¢ = 5039.935/T.
So h = 0 for neutral atoms, h > 0 for positive ions and h < 0 for
negative ions. In fact, only h = -1 is allowed for negative ions, as
no stable bound ions of a larger negative charge exist in the gaseous
phase, and for many elements like the inert gases, no bound negative
ions exist at all. Where possible confusion may occur with other
indices, 1like 1labelling of different elements, h is wused as a

superscript.

The left hand side of (2.2.9) is the equilibrium constant, and is

defined as:

- NN

hohes pjﬁ (2.2.11)

In this work, intermediate calculations involving abundances, are
wherever possible, handled in the log rather than in magnitude, to

avoid problems with machine overflow or underflow.



2.3 Iterative Process for Determining Equilibrium Abundances of Atoms

and Ions

- It 1is initially assumed that all the atoms are free with mno
molecules present, and the early part of the iterations treat the
mixture as 1if it consisted purely of atoms with their associated

ions.

Before iterations can commence, a trial value for the electron
number density is required. The total number density of all atoms,

irrespective of their ionization states, is given by:

= Zi\/, = Mﬁ_ (2.3.1)
i)
p Z/’-\-m.
(2 Lo
4

where /3 and NA are the mass density and Avogadro”s number
respectively, and Ai’ N(i) and m, are the fractional abundance by
number, the total number density and the atomic mass in atomic mass
units (amu) of atom i respectively. In the analysis, the index i is
used to label different atoms, but does not in general correspond to
their atomic numbers. It is easy for the computer code to handle
elements in any order and the input data having elements of very low
abundances omitted. Indeed, using this scheme, deuterium can be
handled as if it were quite a separate element, rather than as an

isotope of hydrogen.
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Clearly:
I\/e < 2:— Z, Ntc) = )\)Z (2.3.2)

where Zi is the atomic number of element i, 7 is the average nuclear
charge per atom and Ne is the number density of free electrons, which
for total charge neutrality, cannot exceed the sum of all the nuclear

charges.

It is found empirically that a good initial trial value is given

by:

log (Newau) = Cog(W Z) + min { % (leg T-5Y, ol s

where the function min returns the minimum of the two arguments. As
logarithms are handled, a physically realistic initial trial value of
Ne> 0 1is chosen. Also, the formula assumes that the system is
completely ionized above about 105 K, which although being far beyond
the range of interest in this application, does allow generality. The
choice of a trial value of Ne is‘not too critical, but a poor initial
value will increase the number of iterations before final convergence

is reached.

For each 1ion, we can calculate the ionization equilibrium

constant, thus from equations (2.2.10) and (2.2.11) we have:

2 .
Z&jki‘ihé‘\ = ‘-Xh’h*,i@ *“'.._2. év‘()@ + Qo‘q‘séé (2‘3.4)

608)
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Let R? be the relative abundance of the hth ion of element i with

respect to the most negative i1on of that element, where the most
negative ion has a charge of -1 if a stable negative ion exists,
otherwise a charge of zero. At high enough temperatures, outside the
range of interest here, mneutral atoms may be practically absent, and
the minimum value h can take will in practice be positive.

Then given Ne and K from above, and setting log Rk= 0, where

h,ht+l

k here is the smallest value h can take as above, the expression:

é“? R;H - ('Hat R; * 4? K‘n“”,(i) - ZS? Ne (2.3.5)

can be evaluated successively for each ion belonging to each element,
where Kh,h+l,(i) is the equilibrium constant of ion h belonging to

element i.

Once all the values of log R? have been found for element i,
log Rmax,i can be obtained, and is just the maximum fraction R in the
list of ions belonging to a given element, i.e. the most abundant
ion.

Then for each element i:

%le = /”jR‘t - %R'Mo,a (2.3.6)

is evaluated, and expresses the relative abundance of each ion h of

element i with respect to the most abundant jon of that element.
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Writing:

¢)c = Z RIL-IL (2.3.7)
h

then after summing these relative abundances, we can calculate the
fractional abundances of each ion of element 1i:

ih

‘)’L — *

S, = = (2.3.8)

where by definition: ;;SE = 1. Then the average number of electrons

donated (+) or accepted (-) by atom i is:
h
h

Hence the number of electrons per cm3 donated or accepted on average

by atoms of element i is:
XL = N: =, (2.3.10)

where Ni is the number density of free atoms of element i in all
stages of ionization, and is quite distinct from the previously
defined N(i)’ the total number of atoms per cm3 in any state, combined
in molecules or free. As already stated, as molecular abundances are
‘initially set to zero, Ni= N(i) initially. It is extremely useful at
the end of all the iterations, when all the abundances have been
converged, to know X, and Xi for each element, as it is easily seen

which elements are important net sources or sinks of electrons.
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The total number density of free electrons present in the mixture

is given by:

E
No = 7 X, # M = 72 lvNJS';h +2 2 EM, (2.3.11)
< ¢ h s ¢t :
where Me is the number density of electrons contributed by pharged
molecules, derived from the last term where Mz is the actual abundance
of molecule of type s with charge t. Initially, as the molecular
abundances are set to zero, Me is also set to zero. Subsequently,
when molecules are treated, it is found that in practice Me << Ne’ as
abundances of charged molecules appear to be generally very small. As
will be discussed later, unlike atomic iomns, molecular ions are

treated as quite separate molecules.

To make the process of convergence as efficient as possible,
rather than simply taking the geometric mean of the output value of Ne
from (2.3.11) and the previous input wvalue in (2.3.5), and putting
this back into (2.3.5) as our new input value, the new input value is
found from the geometric mean of the smallest value so far found that
is larger, and the largest value so far found that is smaller than the
expected solution, which must lie between these two values. Using
these bounds, reduces the amount of "wander” in Ne in the iterations.
However, at low temperatures where mnegative ion formation is
important, it is frequently found that Ne(out) < 0. Invariably this
means that Ne(in) has been considerably overestimated, and if no
previous positive output was obtained in earlier iterations covering

the ions to act as a guide, then a new trial value is found simply by




reducing the previous input value, typically by a factor of 10. This
is done 1in subsequent iterations until Ne(out) > 0, after which
convergence is relatively rapid. At temperatures near the upper limit
of the region of interest, this difficulty is not encountered, and

convergence is quite rapid.

Iterations are terminated when either a suitable accuracy has
been reached, or failing that, after a maximum specified number of
iterations with positive outputs has been attained, mnegative outputs
not being counted. This technique allows computer time to be wused
more efficiently, as we do not attempt to converge the abundances of
the ions to the required accuracy in a given grand iteration, if the
convergence process is very slow, as the abundances of the ions tend
to converge to different values in the mnext grand iteration, due to

the altered molecular abundances.

Thus, in the program, if we define a quantity Alog Ne’ such that:

YA &7 N, = ’lbg N, (e<k) - ‘ogf\ic (5'0} (2.3.12)

Then the iterations are terminatéd if:
A [c/? Ne <\ & (2.3.13)

. -4
where £ is the convergence criterion, typically 10 or less, except
for the first few grand iterations when it is larger. Imn (2.3.12), if
Ne(out) < 0, then some large negative value for the lcg is assumed so

that (2.3.13) is not wvalid.



As the electronic structure of an atom 1is to a very high
approximation independent of the isctopic form of the atom, the
isotopic abundances making up a given element are ignored in these
ionization calculations. Thus if deuterium is present, hydrogen in

its various ionic forms contains the same fractions of deuterium.
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2.4 Introduction to Diatomic Molecules

Whereas the case of the atomic ionization equilibrium is quite
straightforward, the partition functions are simple to calculate and
independent of isotopes, and only one quantity, i.e. the number of
free electrons, 1is the "handle"” in the iterative process, the case of
molecular dissociation equilibrium is rather more difficult to deal
with. For molecules, the partition functions are often strongly
dependent on the isotopes substituted, so the equilibrium constants
have to be individually determined, also the quantities iterated are
the fraction of atoms of each element free in the mixture, defined as:

F. =

Aié (2.4.1)
Niey

where for each element i, as previously defined, N(i) is the total
number of atoms present per cm3, and Ni are those atoms that are free,
regardless of their states of ionization, or the fractions in various
isotopes. Clearly, it follows Fhat N(i)_ Ni are those atoms combined
in molecules. The aim is to iterate until the fractions for each
element have converged. This is rather more convenient than handling

the actual number of atoms that are free, as 0 ¢ Fig 1.

Unlike atoms, molecular ions are dealt with quite separately,
thus CO and CO+ are regarded as quite separate molecules, all the
properties being quite different, apart of course from their mass and

constituent atoms. Thus, although we could consider the molecular
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ionization equilibrium, as with the atoms in the previous section, as:
co <> coT+ e,

it is far more convenient to consider the dissociation equilibria:

CO <> C + 0,

cof <> ¢ + o,

together with the atomic ionization equilibrium:

0 <> ot + &,

which are all linked together automatically. Equally, one could

instead consider the dissociation equilibrium:
+
cot <> ¢ + o,

with the associated atomic ionization, but whichever path is

specified, the same results must be reached.

There  are two types of diatomic molecules, homonuclear, point

group Q”h i.e. ClZC12 and heteronuclear, point group Qov i.e. C12016

T ClZClB. As isotopes are considered, due account must be made of
. . s . . 12 13

the isotopic variations, thus if the two isotopes C and C are

specified to be present in the mixture, we must allow for the three
forms of the molecule C2 to be present, of which two will be

homonuclear and one heteronuclear. As the vibrational and rotational
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constants are slightly different as between these forms, their
partition functions will be different and the band spectrum of one
form will be shifted relative to another form. In addition, however,
there will be differences between the homonuclear and heteronuclear
forms. Apart from a constant factor, the Jth rotational level of a
molecule has a statistical weight of 2J+1, but if the molecule is
homonuclear, there will be an additional factor for even values of J,
and a different factor for odd values, dependent on the spins of the
nuclei; hence giving alternating intensities in the fine structure of
a band. If the three isotopes 016, O17 and O18 are also present,
clearly there will be six forms of CO present, though all will of

course be heteronuclear, and we do not have to worry about the spins

of the nuclei.

When the molecular data is read by the program, the dissociation
products are checked against the list of atoms previously read in. If
any of the 4dissociation products cannot be matched with the list of
atoms, then the molecule is ignored. As molecular ions have charged
dissociation products, the matching must take ions into account.
Likewise, for any of the excited electronic states of the molecule
considered, if there is insufficient data, then those states will be
ignored, with the whole molecule being ignored if the ground state is

not furnished with sufficient data.

The molecular constants read in as data for a particular
molecule, refer to only one isotopic form of that molecule, though
several isotopic forms may be present, and that form so referred to is

defined as being the parent molecule, briefly mentioned in section
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2.1. As explained latér, the constants for the isotopically
substituted forms have to be calculated, which can be quite an
involved process for some triatomic molecules. The parent molecule
would normally be the most abundant isotopic form present in a
mixture, unless abnormal isotopic abundances are specified, as the
data available refers usually to the most abundant isotopes of the

elements concerned making up the molecule.

Finally; the object of calculating the partition functions of
diatomic molecules is to determine the equilibrium constants, which
are then used for calculating the molecular equilibria by iteration.

The equilibrium constant for dissociation is defined as:

K:: = Ne Ni (2.4.2)
J N. -
“d

which is the ratio of the product of the abundances of the free atoms
i and j to the combined wmolecule ij, and is the Guldberg and Waage”s

law of mass action. In the limit of complete association, Kij= 0 and

complete dissociation Kij—>00. In the units we are working in,

K.. is
13

X -3 . . . . st

in em 7, and 1is analogous to the ionization equilibrium constant

defined in (2.2.1). The determination of the equilibrium constants is

discussed in section 2.7.
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2.5 Determination of Rotational Partition Functions of Diatomic

Molecules

. The total internal partition function of any molecule can be

approximated as:

Qz = QR @v &, @, (2.5.1)

Where: QR is the rotational partition function,

Qv " vibrational " s
QE " electronic " .
QS " symme try " .

and Qg= 1/¢” where ¢ is the symmetry number.
¢=1 for non-symmetric 1i.e. heteronuclear diatomic molecules, and
O = 2 for symmetric i.e. homonuclear diatomic molecules. (2.5.1) is
normally a good approximation, as the separation of the electronic
states is large compared to the vibrational levels, which is in turn
large compared to the rotational levels. It 1is the rotational levels

of diatomic molecules that are comsidered in this section.
. . -1
The rotational term values in cm = are expressed as:

F(3) = B.J(J3+1) - Dujl(jv“i)?«%---- (2.5.2)

where J is the  rotational quantum number and takes the integer values

0,1,2,3...(cases are discussed later where depending on the electronic
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state, there are restrictions on this, and J can also take half

integer values, Herzberg (29) ). Also:

v

B, = Be — X (v+14) 9, =0, + fe (v +3) (2.5.3)

whe?e Be and De are the rigid and first order non-rigid rotational
constants at the equilibrium separation of the atoms respectively, BV
and DV the corresponding constants corrected for vibrational
interaction, and “é andfge are the corresponding correction terms.
There will be 1in general higher order terms in the above three
expressions, however, due to their very small value, and the fact that

they are usually not available in the literature, they are neglected;

and v is the vibrational quantum unumber.

The rigid rotational constant Be is defined as:

-;éL~—f: (2.5.4)
BC) gTTD‘C J.e
where Ie is the moment of 1inertia at equilibrium separation in cgs,

and h and ¢ have there usual meanings. Finally, all the rotational

. . - -1
constants above are in units of cm .

The expressions (2.5.2) and (2.5.3) are required for calculating
the rotational energy levels, hence the rotational fine structure of a
molecular band, and are discussed again in the section dealing with
molecular band spectra. However, in order to find the partition
function, it is not necessary to sum laboriously over the levels

generated by (2.5.2) and (2.5.3), but wuse a far more efficient
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asymptotic expansion of QR’ see Kassel (37}.

Let b = Bhe/kT and d = Dhe/kT, where b and d are dimensionless,
and the corrections due to vibration are neglected. Then the

rotational partition fumction is:

' 3
2 CEI(331) # ATY(THD)
Q. = Z (RT41) ¢ (2.5.5)
i=zo v

where J = £(I), I = 0,1,2,3... and f£(I) can have one of four forms,
see below. This 1is the general expression for the rotational
partition function of a non-rigid diatomic, or linear polyatomic
molecule. As can be seen, particularly at fairly high temperatures,
many levels in (2.5.5) may have to be summed, but it can be replaced

by the four asymptotic expansions:

=L, @, = E+4o4 flg + 3—0—‘(1+€£f)+~-(2.5.6)

=T+4, - 1 Lo Q_é' D;."—l: b‘l
J 3 Gy - + ey eo E 14 2 e (2.5.7)

J:2142 Q) = L - 5 - 193k o (1+¢d

ToAI+, Qe = L o4 Z 4 e o (1+G__£1:)+-~ (2.5.8)
)«-(2.5.9)

(2.5.10)

Ges

i
nv'
2
w
[
4
U
N
0
Y
A

Where: QR(e) is the sum over levels with (J-1/2) even,
QR(o) is the sum over levels with (J-1/2) odd,

and S and Sy the respective statistical weights due to
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nuclear spin.

QRl is evaluated from (2.5.6) for odd multiplicities, i.e. the
molecule has an even number of electrons, and anyji, the electronic
orbital angular momentum, for either homonuclear or heteronuclear
molecules, with J taking integer values. Most of the diatomic
molecules fall into this category, as it must include all homonuclear
molecules, except those that are charged, as there are an even number
of electrons. Such examples include CO, C2’ NH, H

most of these molecules have a 7, ie. A=0 ground state, making the

2 etc. Moreover,
calculation of the band spectra relatively straightforward.

QR2 is evaluated from (2.5.7) for even multiplicities, i.e. an
odd number of electroms, and any.A for heteronuclear molecules, but is
restricted to values of A > 0 for homonuclear molecules, with J taking
half integer values. As there are an odd number of electrons, any
homonuclear molecules considered must have an odd charge, hence
neutral homonuclears are excluded. Also, the above mentioned
restriction is due to the alternation of the statistical weights of
the rotational levels when there are two identical nuclei, however,
when A > 0, there are very close pairs of levels of opposite symmetry
and the effects of the statistical weights cancel out, so (2.5.7) can
be applied. Such examples include, CaH, CH, CN, OH etc., and O; is a

valid example of a charged homonuclear molecule.
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QR3 is evaluated by summing separately alternate levels from
(2.5.8) and (2.5.9) and combining them together in (2.5.10), taking
account of nuclear spin. QR3 covers those molecules that are not
dealt with in the previous two cases, and is relevant for even
multiplicities with A= 0 for homonuclear molecules. Such molecules
with even multiplicities must have odd positive or mnegative charges,
and have a ¥ ground state, e.g. H; and O;. As QR2 = QR(e) + QR(o) and
Sl+ $y= 1, theh since, except for large b, QR(e) = QR(o) and hence
QR3 = QRZ’ we can calculate QR2 directly from (2.5.7). Because of the
above restrictions, the molecule in question would have very low
abundances and the increased complexity in the program for handling
QRB’ it was decided to omit the method of QR3 from the program, and

apply QR2 where relevant. The QR3 method is thus included in this

discussion for completeness.

It is found that even for the worst possible case, i.e. H2 at
1OOOOK, with b < 0.1, all higher order terms that are omitted from
(2.5.6) to (2.5.9) are negligible. Also, if non-rigidity is
neglected, and for reasonably small values of b, QRl’ QRZ and QR3

reduce to approximately 1/b, or kT/Bhc, the standard approximation for

the rotational partition function.

If Be is not known, it can be calculated from (2.5.4), where:

- RS

le = N,

(2.5.11)

where r, is the equilibrium internuclear separation in cm, M the
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reduced mass in amu and NA'Avogadro’s number, hence:

- _Mh
B, = e (2.5.12)
?ﬁC#E
Also, if De is not known, it can be found from:
!33
D, = &—f (2.5.13)
w’

where . is the harmonic vibrational constant of the molecule, see

next section.

The rotational statistical weight obtained by the above method is
strictly correct only forfz states, as for states with A > 0O there are
missing levels that have to be corrected for, in addition for
multiplet states there can be a very large separation of levels that
differ inZ, the projection of the electron spin on the internuclear
axis, but have the same total angular momentum apart from spin,

i.e. Hund”s case (a) for strong spin coupling.

For singlet states with /1 > 0, we evaluate (2.5.6) which includes
the contribution from the non—éxistent levels J = 0...A-1 which must
be removed by evaluating the sum of (2.5.5) only up toA-l then

_subtracting this from (2.5.6). The =zero point of energy must now be
moved wup to the first level that exists, i.e. J = A which is
accomplished by dividing by the Boltzmann factor for this level. We

thus calculate:
A1 -3(3+1) 4-cl'32(3+1)2]

=g, =2 (R3+nye”

(2.5.14)
QP ) L At |
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For multiplet states we have ‘the additional complication of
electron spin to consider. In Hund”s case (b) for weak spin coupling,
the splitting of levels due to spin that have the same total angular
momentum apart from spin is small; and the 2S+1 ladders in thevenergy
level diagram, with S being the electron spin, can be treated as a
single ladder with each level having an additional 2S+1 statistical
weight factor. 1In practice this factor is put into the electronic
statistical weight and (2.5.14) is evaluated in exactly the same way
as for the singlets, except that the quantum number N, the total
angular momentum quantum number apart from spin, is used in place of J
with N always taking integer values hence (2.5.6) is used. Hund"s

case (b) is always applicable‘to 2 states.

For Hund”s case (a) where the spin splitting is 1large, we have
25+1 separate ladders to consider with different Boltzmann factors so

the 2S+1 cannot be factorized out as before.

From Kovacs (31) a good approximation to the term values for

Hund”s case (a) is given by:
F(3) = MZ + 3[3(341) ~_(22+S(S+1) ~21] (2.5.15)

where A is the spin-orbit coupling constant such that the larger (Al
is the better is (2.5.15) as an approximation to case (a), with strict
case (b) occurring when A = 0 and (2.5.15) is in that case invalid.
F=5...-8, {l = |A+T| and there are 25+l ladders given by

[A+s]...

A-S| where J =0 ,f41..., hence putting J = 0 into (2.5.15)
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gives us the origin for each ladder even if that level does not
exist. The rotational partition function is then found by first
obtaining the relative partition function for each ladder from its
origin using (2.5.6) or (2.5.7) depending on J being integer or half
integer respectively, and subtracting off the contribution to the
series from any non—-existent levels for J < f]. like above for case
(b). Putting J = ()} into (2.5.15) gives us the lowest level that
actually exists for each ladder, hence the lowest energy level of all
is found by taking the minimum of (2.5.15) over all values of z.
Using this minimum as our new zero point in energy, the Boltzmann
factor for each ladder relative to this point is applied and weighted
functions are added together giving the final rotational partition

functions.

Because of spin uncoupling for large enough values of J, case (b)
is eventually approached, accordingly; even for non-zero values of A,
the case (b) partition function may be a better approximation if those
levels most heavily populated are better represented by case (b). 1If

the relative population of each level is given by:

NNt
P = (AN + j) e (2.5.16)

neglecting non-rigidity, the most populated 1level 1is given by

N _ = int(N,+0.5) where:

max
N, = /Lo _ L (2.5.17)
4 A A

and where Nmax is the nearest integer to N, ., Also with Y = A/B, if

|Y! >> N(N+1) case (a) is a good approximation (in which case N loses
1

i
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its meaning as a quantum number though we can still use it
notionally), and if |Y| << N(N+1) case (b) is a good approximatiom.

Thus, inserting this criterion in (2.5.17):

use case (a) if || > A
2 i

(2.5.18)
use case (b) if |y fzr “‘i

where either case will obviously be better the further from the

changeover we are.

If Y, is Y] at the changeover in (2.5.18), and if A=Y,B, we

can write:

B
Lz — = = (2.5.19)
Avs e %

such that interestingly A, is almost independent of B and dependent
only on the temperature, as kT/2hc >> B/4 for the temperatures of

interest.

However, in the temperature.range of interest, it is indeed found
that in practice the case (b) approximation is the better one on the
basis of the criterion above, even for relatively large values of |Y|,
due to the smallness of b. Only for some unusual molecules 1like SnH,
which we are unlikely ﬁo consider, would |Y| be large enough for case
(a) to be a better approximation for some of the temperatures we need

consider.
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Neglecting non-rigidity and other higher order terms, Koviacs (31)

gives an expression for the Hund”s case (b) approximation:

F(N) = B[N(MJ-’I) -/1*] e AL 3(34’4)_’\}("““)"’5(5”) (2.5.20)
AN (N+1)
which differs from (2.5.15) in that here |Y| << N(N+1) and case (b) is
a good approximation, with the second term representing the deviation
from pure case (b) if A # O. Unfortunately, the correction term
cannot be integrated analytically, in addition to which at small
values of N it is no longer valid, as we are in the case (a) regime
where (2.5.15) is a better approximation. However, except in unusual
cases, the maximum populated levels occur at large enough values of N
to be well into the case (b) regime and whére the correction term is

negligible, and accordingly we do not consider it.

Finally, it must be remembered that (2.5.15) and (2.5.20) as well
as more detailed expressions given by Kovacs in the case (a) and (b)
limits are only approximations. In section 4.2 where we discuss how
the rotational 1lines in the spectra of diatomic molecules are
computed, explicit formulae for general coupling cases between (a) and
(b) are u§ed for doublets and triplets. Unfortunately, mno formulae

exist for general multiplicities with general coupling.



- 45 -

2.6 Determination of Vibrational Partition Functions of Diatomic

Moleéules

The vibrational term values in <:m_l are expressed as:
R >
G(V) = e (v +4) =~ DeZe(V+4) + Wy (va ) 4 - (2.6.1)

where v is the vibrational quantum number that takes integer values
v = 0,1,2... unlike J, there are no complications with missing lower
levels or half integer values. Also:ue is the harmonic oscillator
constant and WX s WVgeee are terms in the anharmonicity with higher

order terms being neglected.

As with the rotational constants; for convenience we convert the
above constants into  dimensionless  form, hence We= hcA%/kT,
WX ="hegx /kT and W Y = hcw y /kT. Then the vibrational partition

e’e e'e e’e e’e

function, after allowing for the zero point energy, is:

Qo = 2 eapl = Wev + WeXer (v i) - Wedor (re 3 +2)] 26.2)

In common with finding the rotational partition function, an
efficient way of obtaining Qv is to replace the sum in (2.6.2) by a
series using the method of Kassel (38). Relative to the v = 0 level,
the term values can be expressed as a power series in v whose

coefficients in units of kT/hc are given by:

\/\/o = WC - Wexe + %Weye
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\'\}‘;Xo = \'\/c 7\@ ‘-% Wl? Ye (2.6.3)

W

i

W, \/e
Also let:

- Wo
Z=€ (2.6.4)

Then an analytic approximation to the partition function of the

anharmonic oscillator is:

o= W, %o 2 (1+2) | (1. %, Pz (14112 #1122 +2%)
—
&r (1-2) u*z)“_ ) 2A(1-2)°

1457 - .
+(WoXo) 2 (1 +S?2 + 3022 4730224572 + 2 )
6(1-2)7

(2.6.5)
— UaYoZ ( ’ +lf?;42:2>

(1-2)7
(W, x)(w \/J)Z” +262 + 6622 + 2622+ 2Y)
(1-2)°

where higher order terms in WOXO, WOYO and cross terms are neglected.
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2.7 Determination of the Electronic and Total Partition Functions and

Equilibrium Constants of Diatomic Molecules

th

- The electronic statistical weight of the i~ electronic level

neglecting spin splitting, by Tatum (39) is:

jfv = (ausoiAi)(a\Sé'{'j) (2.7.1)

where ZSi+l is the spin multiplicity and § the Xronecker delta,

0,4,

such that § 1 when”4i= 0 and 50’Ai= 0 when/ii# 0.

0,4,°

If the first excited electronic state in the molecule is very
high with a negligible population, and the substates of the ground
state, 1if there are any, are very close together with very similar
rotational and vibrational constants, as occurs in Hund”s case (b),
then indeed the electromnic partition function QE= gel, and if QR and

QV are known, QI is immediately found from (2.5.1); this situation is

realized for many molecules.

As already explained in section 2.5, if the spin splitting of the
electronic state 1s large, the spin multiplicity is imbedded in the
rotational partition function and the definition in (2.7.1) is
incorrect. However, for convenience we can retain the (2-50’A1)
factor in (2.7.1) as the definition of 8 Further, if this is the

i
ground state and excited electronic states are neglected, we can still

regard this as the electronic partition function. For any degree of
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spin coupling, the same vibrational and rotational constants are
assumed to apply in the different wmembers of a multiplet, as in

practice this would introduce at worst small errors.

However, if the excited electronic states are sufficiently
populated to alter the total partition function, then in general the
rotational and vibrational constants in these states will be different
and we mwust compute individually the partition functioms of each
electronic state weighted with the appropriate Boltzmann factor and

summed. Thus the total partition function is:

o e
OI - 03235;@({;0";6 hefkT (2.7.2)

where QR and QV are the rotational and wvibrational partition

i i th

functions respectively for the i electronic state, and T0 is the
i

energy of that state in cm.1 after allowing for the =zero point

energy.

By direct analogy to Saha”s equation of ionization equilibrium of
atoms, the dissociation equilibrium of diatomic molecules can be

written as:

- 3 _DYRT oo
Keg = &;\7&J = (MG RT/R) ‘e @0 (2.7.3)
‘) Cd

where Kij is the equilibrium constant as defined in section 2.4, or in

log form we can write:

7 N'tN _ o = "bg)f 2 -
- 3Y = Zobog L. 4 2
@3(!\/--)’20'“33+ R aéi)r

4.

")
- o3+ ()

(2.7.4)
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where Ni’Nj’Nij’Qi’Qj and Qij are the number densities and partition

functions of the atoms and molecules, and in (2'7'4)«ﬁ%j is the

reduced mass in amu defined as:

m. -
/u;a. - S (2.7.5)

@ = 5039.935/T and Dg is the dissociation energy in eV of the lowest
electronic state taken from the lowest vibrational level, with the
zero superscript being used to distinguish this from the non-rigidity
constant. Hence the equilibrium constants are known, and can be used

to calculate the abundances of diatomic molecules.
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2.8 Isotopic Shifts of Rotational and Vibrational Constants of Diatomic

Molecules

‘ When isotopes are substituted in a molecule, the force constants
remain the same between the constituent atoms but the masses are
changed, with the result that both the rotational and vibrational
constants, hence their energy levels, are changed. Also, the symmetry
can change, as already mentioned, and the statistical weights of the
rotational levels depend on the spins of the nuclei if the molecule is

homonuclear.

From Herzberg (29), let:

[32/;‘2 ' (2.8.1)

where M and /LI are the reduced masses of the original and the
isotopically substituted molecule respectively. Then for the various
rotational and vibrational constants:

2 , . 3
W' =P s wJal = P T, 01y = Py,
(2.8.2)

B = B, DS =p D

(o)

, Ofer = /’30(2 > (38{=fs-pc

With&ie and(Se not being needed wuntil the spectrum is computed, but
the other constants are used to obtain the isotopic partition

functions.
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Although the electronic potential wells are not affected by
isotopic substitution, as the dissociation potential wused in the
previous section is measured from the lowest vibrational level, which
is shifted, this must be allowed for; likewise this must be done for
the electronic energy of any excited states being considered. Thus we
make use of (4.3.7) and (4.3.9) for correcting the electronic energy
of an excited state and the dissociation potential respectively, where
by convention, the single and double primes refer to an upper and
lower state respectively, with the latter in this case being the

ground electronic state.

Hence for the original molecule, if DZ" and T; are given they are
converted to Dg" and T; respectively for wuse in the determination of
the partition function  and equilibrium constant. Then for

isotopically substituted molecules, (4.3.9) and if necessary (4.3.7)

O

are used with i etc. to obtain Dg"I and T;¥ If however, D0

, T" and
o}
T; are given for the original molecule, we must obtain the constants

from the equilibrium positions first wusing (4.3.7) and (4.3.9) before

proceeding as mentioned.

Finally, when dealing with a molecule that has two atoms of the
same charge, we have the additional complication of having to
distinguish between those molecules with identical nuclei for which
QS= 1/2, and those with different nuclei for which QS= 1. Of course,
only the latter can occur for the isotopic forms 1if the two nuclei
have different charges. As mentioned in section 2.5, for homonuclear

molecules, there is in addition an alternation of the statistical
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weights of the rotational levels due to the nuclear spin, however,
this has a negligible effect on the rotational partition function, but
is important when computing the band spectra, and 1is accordingly
discussed 1in that section. This is because at the temperatures of
interest, there is hardly any difference numerically between summing
the even and odd levels separately, then adding the sums together with

the appropriate weights, and summing all the levels in one.
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2.9 Introduction to Triatomic Molecules

The treatment of triatomic molecules is analogous to that of
dia;omic molecules, but there is much greater complexity, as the
molecules can have up to five different point groups and the
arrangement of the atoms has to be specified. Also, the isotopic
shifts are often non-trivial to' evaluate. The following table lists
the possible point groups that have to be considered for diatomic and

triatomic molecules.

Table (2.1) of Molecular Point Groups

Type of Molecule Point Group & Examples
Linear Symmetric th 2 'Hz, 002
Linear Non-Symmetric an 1 OH, HCN
Bent Symmetric sz 2 HZO
Bent Non-symmetric CS 1 HNO

. . +
Equilateral Triangle D3h 6 H3

As with diatomic molecules, for the symmetry type to be valid if

two atoms have the same charges, they must be identical isotopes, thus

016012016 belongs to D but as soon as the molecule is

o h?
. . . . 16 .12 17 .
unsymmetrically isotopically substituted e.g. 07 °C 707, then it

belongs to C . ILikewise C,_will go over to C_ if H,0 is substituted
ooV 2v s 2

to give HOD. However, any single substitution in a D3h moelecule will

make it go over to C and an additional substitution to give three

2v?
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different isotopes will put the molecule into the CS point group, see
the discussion on H; in section 5.4.

In the more detailed table below are shown the numbers and
symmetries of isotopically substituted diatomic and triatomic
molecules, where the substituted molecules include the initial
molecules that have the highest pogsible symmetry. Let x, y and z be
the number of isotopes belonging to elements X, Y and Z respectively,
N be the total number of different isotopic molecules and M be the
number belonging to some particular point group. When the point
groups are given in pairs, they refer to a non-linear and linear case

respectively.

Table (2.2) of Possible Isotopic Substitutions

A B Y N D M
X D c (x+1)/2 Pn :
: x(x
2 <h 2 oy x(x-1)/2
XY qvv Co Xy qov Xy
D3h X
+
X3 D3h H3 x(x+1)(x+2)/6 sz x(x-1)
CS x2(x-1)(x=2)/6
2
C D X
1Yeh
X3 Cpgrlp 03:C5 X (D)2 2v 2
c, C, x“(x=1)/2
§? ey
c, ,D Xy
2v? eh
XYX C,. ,D H.0,C0, xy(x+l)/2 M
2v?>e«h 2 2 xy(x=1)/2
g? “ov Yy
XXY C C S,0,N,0 2 C C Xzy
8’ ey 27272 xy 8’ Teov
XYZ CS’ Coav HCO,HCN Xyz CS’ C'°V Xyz
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Where column A gives the molecule type, B the highest symmetry point
group, C examples, D the vpossible point groups of the isotopic

variants and N and M have the meanings as stated above.

~ Any charged triatomic molecules are considered as quite separate,
as is the case with diatomic molecules, and triatomic molecules can
split up in a number of ways of which only one need be specified.
Thus considering the complete dissociation of HCN, we need only

consider the equilibrium:

HCN <—-> H + CN,

provided we have already specified for diatomic molecules the

equilibrium:
CN <> C + N,
so the system is complete.

Thus when treating the tfiatomic molecules,. the dissociation
products must match the species already in the 1list of atoms and
diatomic molecules to give a self contained system.

In many cases when isotopic substitution is considered, it is
necessary to know the central atom in order to identify the force
constants with the appropriate bonds, and to distinguish say HCN from

HNC which are regarded as quite separate molecules.



_56_

In keeping with the treatment ©o»f diatomic molecules, excited
states are also considered, and insufficient data in any state will
lead to that state being rejected, the whole molecule being rejected

if the ground state is insufficiently specified.

As with the diatomic molecules, the object of determining the
partition functions of triatomic molecules 1is to obtain the
equilibrium constants which are needed in computing the molecular
abundances by iteration. The equilibrium constant for complete
dissociation of a triatomic molecule is defined as:

K., = N; N;Ng' (2.9.1)

th Nio‘fz;
which is the ratio of the products of the abundances of the free atoms
i, j and k to the combined molecule ijk. Again, as for diatomic
molecules, in the limit of complete association, Kijk= 0 and complete
dissociation Kijk—>c0, with the wunits we are working in being in
cm—6. Because the equilibrium constants for diatomic and particularly
triatomic molecules can have values ranging over many orders of
magnitude, care has to be exercised in programming to avoid

excessively large or small floating point numbers. The determination

of the equilibrium constants is discussed in section 2.12.



- 57 -

2.10 Determination of Rotational Partition Functions of Triatomic

Molecules

- If the molecule is linear, the rotational partition function is
calculated in the same way as for diatomic molecules in section 2.5,
neglecting the coupling between rotation and vibration and in addition
vibronic motion. If there is also electronic orbital angular momentum
or spin, this interacts with the vibronic motion in a complex manner
considered beyond the scope of this work, see Herzberg (34), and
accordingly we just assume Hund”s case (b) as treated in section 2.5.
In most cases this does not arise, as for most linear molecules of

interest, the ground vibrational level is a 12{state.

For non-linear molecules, an approximation to the rotational

partition function by Herzberg (30) is:

(2.10.1)

where:

h h h
= - B = ol C = 2.10.2
A grel, SMly smrr, G0

such that IA’ IB and 1C are the principal moments of inertia. By

convention: I ,{ I 1

A$ I hence A B > C. As the three atoms define 2

C’

plane, the identities:



_58_
or /A + 1/B = 1/C (2.10.3)
are always valid.

For non-linear molecules, there appears to be no simple way of
incqrporating non-rigidity into the calculation of the rotational
partition function, which is calculated simply on the basis of a rigid
molecule. VIn fact, the constants for non-rigidity are generally not

readily available for such molecules.

If A, B and C are not known, they can be calculated from
molecular geometry, see section 2.13. In fact, it is convenient to do
this anyway as such calculations are necessary when isotopic versions

are considered.
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2.11 Determination of Vibrational Partition Functions of Triatomic

Molecules

As with section 2.6 in the case of diatomic molecules, we can
find an analytic expression that gives the vibrational partition
functions for triatomic molecules, taking into account some of the

anharmonic terms.

A triatomic molecule will have three different modes of
vibration, of which one 1is doubly degenerate if the molecule is
linear. The vibrational term values in cm—l with first order

anharmonicity, are given by the expression:

- 4 . ; _ .
[)-(V':)\rzi,vg):k)A(f,i-;).,'..[JQ(VQ_,_%l;) +AD3(V'3 -f"i)

. o R R L3
Fau oY e (i Y g (e ) (2.11.1)

+ (M DIE) b X e+ Xy (i + )+ )

Where: v, are the vibrational quantum numbers,
lo; are the harmonic constants,
Xij are the lowest anharmonic constants,
l2 and 899 the vibronic quantum number and associated
coupling constant which are only defined for linear molecules,

see section 5.2.
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In order to obtain a reasonable analytic expression, the cross
terms involving X195 X3 and X514 together with higher order terms are
neglected. Numerical tests show this approximation to be acceptable.
Also, becagse of the relative smallness of the 8y, term when defined,
this can be neglected, leaving for linear moleculeé a vibrational
statistical weight factor gv2 of v2+1. Thus:

1 for non—-linear molecules,

d = 1; g

d = 2, g v, + 1 for linear molecules,

2

where d is the degeneracy of the v, mode appearing in (2.11.1).

As in section 2.6; the term values can be expressed relative to

the lowest vibrational level, giving:

i

W, = (w, + ’%.)%f—r

\/\/1= (‘J 1_',(,122)
| (2.11.2)
Xio= %y he (=123
tch-] ) T
Then the vibrational partition function is given by:
Q. Z}_Z dv, ['W1V."WQV2‘WJV3
V2o 40 Vizp (2.11.3)
ES . -2
,.x” v, qu . X33 3]

7. =€ - (2.11.4)
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the same treatment can be applied as before. Because we have neglected

the cross terms, the vibrational partition function can be written as:

C)V = G)v) Q"a Q"a (2.11.5)

The complete analytic approximation to the vibrational partition

function of a triatomic molecule is given by:

= A _ .. (11“______2_'_}
QV‘ W (1-2) X"“ZL(MZ;)S

2 1+12 4+ 11224+ 2
+><¢L-ZL( + 11 _.+114,;+ZL)
3\(1‘253
._._Xi Z,; (1 + SF2, +3022: + 3023';3 +S?zf+ Zég)
6(1-2.)
A 2. (1 +i2, + 22
FAD8 ] = o = Xy it 2)
FE (1-233:( QD‘ZQ ('i’ZQ)Lf
pX3 2, U620 4 ezl 163l 4 2))
&(Z"Zg)é

(2.11.6)

where (d—l)gi 9= 1 when i = 2 and the molecule is linear, otherwise
3

(d—1)5i ,= 0 and the last set of terms is not evaluated.

For the special case of a molecule with a D3h point group, there

are only two modes of vibrationm, vy and v, with v, being doubly

2

degenerate, thus all terms involving vy are drepped and (2.11.6) is

evaluated as for a linear molecule with (d-—l)gi o= 1 but i=1or2

s &

only. Thus the above expression can be wused for all triatomic

molecules.
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2.12 Determination of Total Partition Functions and Equilibrium

Constants of Triatomic Molecules

. The total partition function for a triatomic molecule can be
computed from the general formula (2.7.2) in exactly the same way as
in the case of diatomic molecules. If the molecule is non-linear,
(2.7.1) has no meaning but the electronic statistical weight can be

obtained from the electronic species of the state considered.

The dissociation equilibrium equation of a triatomic molecule
splitting up into an atom and diatomic molecule can be very easily
obtained from (2.7.4) by replacing one of the atoms by a diatomic

molecule.

Thus for ijk €——> ij + k:

N-'"Nh - a
— ) = A0.2135 4 3. a2
K&?( Nc(;h) = 0315 4 *Zag/u‘m“ﬂ' QZ’“}“}T (2.12.1)
—_ Y. Qi'Q}\
QD“),R + *Zég ( (?&CJ'R )

where D,. , is the dissociation potential from the lowest vibrational

ijsk

level of the triatomic molecule ijk into atom k and diatomic molecule

ij, and:

Hijin = (7 m ) my (2.12.2)

the reduced mass of the molecule for the specific dissociation in



- 63 -

amu. The associated equilibrium constant is:

N N,

N,
IR

(2.12.3)

Howeﬁer, it 1is the total dissociation equilibrium which 1is
requ;réd, i.e. ijk €-—> 1 + j + k. Provided that the dissociation
equilibrium ij €-——>» i + j has already been dealt with under the
diatomic molecules, then with the partial dissociation

ijk €~-> ij + k, the complete dissociation follows:

N:N-N, | |
: — 2 R} = .SULIO 4 3 -
('73( Nejh ) O SLFO + 3/-’93/%% + 34? [ (2.12.4)

oD %3 O

— ok + —_8 7R
§ ' Qdd'k

where Dijk is the total dissociation potential of the molecule, such

that:
‘D:.\\th = :Dc)' + ng’;k (2.12.5)

. o ... .
where Dij is D0 from (2.7.4), and /uijk in amu can be thought of as

another reduced mass, such that:

2 m-m-
Mo =i P = il (2:12.6)

Finally, as we actually deal with the dissociation in two steps,

given Kij and K as computed from (2.7.4) and (2.12.1)

ijzk

respectively, the complete dissociation equilibrium constant K,

ijk> 2%

defined in section 2.9, is given by:
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. AL

K.. = Kik..., = MLN_’” (2.12.7)
Ly R b TSk "

“9

which is used in the iteration calculations.
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2.13 Rotational Isotopic Shifts of Triatomic Molecules

If a molecule is isotopically substituted, then new rotational
constants used to find the rotatiomal partition function <can be
computed from the geometry of the molecule, rather than actually
calculating the shifts in the constants, as is the case for diatomic
molecules. There are wusually small discrepancies between  the
rotational constants listed in the literature and those constants
obtained from geometrical data in the same source, and are presumably
due to effects of non-rigidity etc. and insufficiently accurate

molecular data.

Let a triatomic molecule consist of the atoms with masses o, o,
and o, with m, being the middle atom at which is located the bond
angle ¢, . such that for linear molecules X = 180°. Let 1 and So3 be
the bond lengths joining the respective atoms, and the third side of
the triangle 13 opposite m, being in some special cases also a bond;
see figure (2.1), where the other quantities are the force constants,

as discussed in the next section.

If the masses are given in grams and length in centimetres, then

the rotational constants in cm_1 can be computed from the formulae:

C = h (m, ¢y v m) (2.13.1)

2 . - 2 ; . -2 R .
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or if 13 is given instead:

C l\('m' t o, om,)

= o3 (2.13.2)
QTI Clm-'mzsa: +mm sl o4 'm}”m352"3]

]

A,»B = ] f/1 ~ AR (2.13.3)
k(

with the larger root being A, and where:

i .
k: 1Q?TT CQ. ’Yf),'QO35‘:S;; ‘5«{413‘0(

: (2.13.4)
h ('m + My o+ ’m3>

which satisfy (2.10.3). If the masses are in amu and lengths in R then

(2.13.1) and (2.13.2) must be multiplied by 1016NA and (2.13.4) by

=32
10 /NA'

Thus given any isotopic masses, values of A, B and C can be
obtained and substituted into (2.10.1) to obtain the rotational

partition function if the molecule is non-linear.

If the bond angle is opemned up so that 1in the limit the molecule
becomes linear, then as X-> 1800, k => 0 from (2.13.4) and it can be
shown that A => 99, and B -> C from (2.13.3) giving the simple rotator,
whose partition function is discussed in section 2.5. If the
non-rigidity constant D 1is known for the original molecule, then by
analogy with the isotopic shifts in (2.8.2), we can write the
isotopically shifted constant:

T B

D =D = ' (2.13.5)
B
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For a linear or bent triatomic molecule whose end atoms have the
same chérge, we have the same situation as discussed with diatomic
molecules, needing to consider the statistical weights of the
rotational levels due to nuclear'spin only for the calculation of the
spectrum, and using the appropriate value of QS. This also applies
when all three nuclei are identical and equivalent 1i.e. Day, point

group.

The mathematics for deriving the expressions for the principal
moments of inertia, hence the rotational constants in this section, is

given in the appendices.
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2.14 Vibrational Isotopic Shifts of Triatomic Molecules

The determination of isotopic shifts of triztomic molecules is a
rather complex affair compared to the case of diatomic molecules,
particularly in the most general case of a non-linear ncn—-symmetric

molecule i.e. point group CS.

Using the same scheme as the previous section for designating the

atoms and bonds, we include the force constants such that fl and £

2 23
are the stretching constants for the bonds 19 and $53 respectively
and f6/512323 is the bending constant at m,; in some cases the
coupling constant f13 between the atoums my and mq is also used (see
figure (2.1) ). All force constants are in dyne cm-l, & is a
vibrational frequency in cm-l and A)I is an 1isotopically shifted

frequency.

The assumption of valence forces 1is used, and for symmetric
molecules the coupling constant f13 is also employed as this allows
for a more general force field (see  Herzberg (30) ). For
non—-symmetric molecules, f13 cannot be included in the , equations as

there would be too many unknowns with the method used.

It is assumed that isotopic substitution does not alter the
molecular force constants, thus having solved for the force constants
using the initial frequencies and atomic masses, we replace these

masses by isotopes and using the force constants to obtain the
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isotopically shifted vibrational frequencies. It is further assumed,
without loss of generality, that if the two end atoms of the initial
molecule belong to the same element, they will also be of the same
. . . 16 .12 16 . R

isotopic form i.e. 07 °C 70 hence the molecule 1is symmetric. Thus
isotopic substitution will cause a lowering or at best no change in
symmetry. The somewhat artificial case of beginning with a molecule

18 .12 16

like 0°°C™70 would be considered only as a means of checking, but we

do allow for this possibility.

As the treatment in determining isotopic shifts depends strongly
on the symmetry of the initial and substituted molecules, it has to be
divided up into five subsections A, B and C being for cases where as a
result of substitution there is no lowering of symmetry, and D and E
where the symmetry is lowered. The special case of the D3h point
group is considered as a subclass of sz and is accordingly handled as
a symmetric bent molecule with all force constants and bond lengths
equal. However, it is convenient here to depart from what is stated
at the end of section 2.11 and consider the v, mode to be split into
two vibrations such thathz= w3. Then if the isotopic substitution
lowers the symmetry to sz or Cs’ the degeneracy is removed, £J2#4J3,
and in calculating the vibrational partition function, equation

(2.11.6) is used for the general non—-linear molecule. WhenLJ2= &w it

3,

follows that X1,= X3 and Xpo= Kpg™ Xgge Hirschfelder (40) discusses

+
the vibrational frequencies and force comstants of H3.
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2.14A Symmetric Linear to Symmetric Linear or Symmetric Bent to

Symmetric Bent

Point Groups Examples
16,12 .16 18,12 18
D,y > Doy, 0°°C™70"" =» 0°°C™ 0
16 16
sz -> sz HZO > D20
+ +
D3n = D3y Hy = Dy
+ +
D3h —? sz H3 -> H2D
Then W= Wy,  $;,% Syq, f12= f23 and as the following equations

are general in «, for linear molecules we solve with K= 180°.

(i) Determination of the Force Constants

9 3 o 3 Y

T ¢ mm 2 1 2,51 4 2

g, = AT ¢ ™M™ o2 4w, +/(Q —w}) - e m s X (2.14.1)
™+ Gsx)imy My (2m, +m,)
uTricﬁw;m.m

ﬁk.‘7",(i~¢¢5x)+9n2

2 (2.14.2)

Yo, 3., 3,12
8]_“ c lJ. wl m> /)'ﬂ-)‘

ja, (D\m‘ + ’mz)

Is = (2.14.3)

Then:

fu= =%, 4= $e2d, ffv/sza = Y (2.1@.4)
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Equation (2.14.1) is in fact - ambiguous, as there exists a
negative root giving a second pair of values (ga,gs). However, it is
found Fhat the smallest Iga— gsl is obtained by taking the positive
root shown,lalso in practice ga> gé; the values so obtained agree with

Hergberg (30).

Another difficulty may occasionally arise when the argument of
the square root in (2.14.1) is negative, indicating that in that case
the Vtheory is insufficient as the force constants must be real
quantities. In such cases there is no alternative but to set the
quantity under the square root to zero and solve, since the negativity
must be due to small inaccuracies in a quantity which is very small in

any case.
(ii) Determination of the Isotopic Frequencies

Having obtained 8,s and gs from above, it is then possible to

&p

find the shift in vibrational frequencies when one or more atoms are

substituted by isotopes, such that the molecule remains symmetric.

v

ST AR PO e a——"r
Wia =37 m; > G‘\/G 83‘33(""”’ ! 2)m* (2.14.5)

) ' | N . Q) 2.14.6
QHC f)ﬂ(l)m(;) '
¢ 2

Where:

), (5” . i) .
G = [m: )(1 + onX) smn; 9. + A m“ 7(1_ c;&:’;m)—i—’mg ]Jb (2.14.7)
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where the two roots of (2.14.5) give A)i and lb; and the superscripts

(i) and (j) denote isotopically substituted atoms.

The constant g, can always be eliminated between (2.14.2) and
(2.14.6), and if in addition 8,= 8> i.e. f13= 0, we can completely

eliminate the force constants and express the shifts in frequencies as

a function of atomic masses and the bond angle. Hence:

- e 2, 3 {32

1. A a, () A}
W] wa> = mim, |dm T+ My (2.14.8)
w8, 'h’)““z’m;"‘) 9\”". + M,

-2 W), Y. (4
(U:) - fm.‘ '7/).,‘ mz (1 - é.)*jo\) + ,m-'l (2.14.9)
w, mOmP | M, (1§ - wsx) + My

However; these last two equations are not used, as the individual

I ! .
values oftdl andzaz cannot be obtained, and the force constants are
needed for non-symmetric substitutions of bent molecules (see

subsection E); however, it could be a good check to determine them.

A useful check to see that the equations of part (ii) are the
inverse of part (i), is to put the original masses into equations
(2.14.5~7). If the square root in (2.14.1) has had to be dropped, as
mentioned above, there will no longer of course be perfect agreement
with the original frequencies, the amount of disagreement indicating

the goodness of the approximation.
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Finally, note that at no place do the bond lengths enter into the

calculation.

2.14B Non-Symmetric Linear to Non-Symmetric Linear

Point Group Examples

12,14 12,14
q”v -> Qﬂv HC""N"" -=> DC™'N

14 16 14.15.16
Qwv -> qu N2 0 > NT N0

£ and o= 180°.

Then ml# m,, #

5197 8535 £157 53

(i) Determination of the Force Constants

23, . . AR R
fo= Aemm | ot fwRl) S MNP (2.14.10)
(7, + ™) ”H(m-*mz*”Hh
by 2,2 .
%%: {61l ¢'W &, mm,m, (2.14.11)
/;x(7n.‘*0ﬂz + 7n3>
— 2
és - (-f“ ¢ (")215-’232’3

_ ‘ (2.14.12)
5'1523 Sl:/?ﬂ} + S;‘b/mx + (SA.Q + 573)1/7"1 ‘ '

The two—-fold ambiguity of equation (2.14.10) leading to two
possible values of the pair (f12’f23) is analogous to equation
(2.14.1), only in this case the two signs have been left as there

appears to be no particular preference to one sign. This is no doubt

due to both f and £

12 23 being similar quantities, i.e. both stretching

constants, unlike g, and g and often not being of dissimilar

S’

magnitude. However, it is still found that the root taken is the one
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that gives the smaller |f12- f23|, in agreement with Herzberg (30).
As -with (2.14.1) only more likely, is the possibility of a

complex solution of (2.14.10), which indeed happens for N,0. The

2
explanatiog is clearly that f12= f23 as the two bonds are similar, so
the argument of the square root should be close to =zero, however,
because the valence bond theory is an approximation, the argument can
go slightly negative, giving the above problem. AAs with the previous

subsection, the only alternative 1is to set the square root term to

zero.
(ii) Determination of the Isotopic Frequencies

From the force constants obtained above, the new vibrational

frequencies can be found when one or more atoms are isotopically

substituted.
2 R R
4 S S S., + 9
LJQI - 9\)1_{ 2/5 . i:’) + 22 4 (__3.__()?;) (2.14.13)
C 2 iy ) i
Sll 523 71')3 ?Y\’ m

1

~

| - & /=3 m' o, fm“‘," (2.14.14)
U‘)3 N m e [- "'/F - l’i’/nfq3( t * )

Q/2T¢ m2m 8 an

Where:

_ 1 1 i il
F '/n . + + /[23 — + = (2.14.15)

(0 mud /. m® m &>
2 2 3

1
where the roots of (2.14.14) givezwi and 03.
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The constant f3/512523 can be eliminated at once between

(2.14.12) and (2.14.13) giving:

LI 2 . N .
&)} _ Sas /m,“) + S, /m;“’ + (S *523)/?711”)
e )T (2.14.16)

kS
W, Son/m. o+ S5 /M (S 450) /m,

As before, a useful check is to put the original masses into
equations (2.14.13-15), and again for a case like NZO where a real

solution has to be ‘"patched up”, disagreement between the calculated

and original frequencies give an idea of the approximation.

2.14C Non-Symmetric Bent to Non—-Symmetric Bent

Point Group Examples
c, > C, nct2ot® —» pcl?ol®
c, -> ¢, Nt *o0 > pyléol®

o .
Then ml% my, 512¢ 539 flz# f23 and (< 180°. This is for the
case where triatomic molecules have the lowest possible symmetry, thus

the most general method has to be adopted.

Unlike the other <cases discussed, it is unfortunately not
possible to separate out the force constants and express them in terms
”bﬁ the known molecular properties. Instead, a set of three

2 o
imultaneous equations has to be solved by iteration, starting with
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trial wvalues of the force constants. Having obtained a converged
solution for the force constants, it is possible to do the reverse and
calculate the isotopic vibrational frequencies. As the method for the
latter is essentially the same, with the equations of a similar
structure, it is relatively easy to use the same coding for both

tasks. We use here the method from Lechner (41).

(i) Determination of the Force Constants

Let:
Mz m, 2 M3 ", M (2.14.17)
1 — 4 ’-{éo—s:\' . 1
— = -—-——--2 — ——————— T - 2 -
/40 /'(qsu m23:2s25 #23523
’{( - Mz Aoy b5 3 [ = {1 - Ay My 503
' m 3 » T T mrs
s A 502 T (2.14.18)
° “a1 ¢
63 = 1 A — % y €, = 1 - ﬁilu_?s}_ .
mi Siq m:}

and also let the scaled force constants be:

F = 11'1 F=‘ ,Zu F /%

= - ) —_ = e (2.14.19)
l (_‘_n’lck 12 ? 11"”261/“73 i ('i‘Tr?Cq/’{o

Then the general equations relating the force constants to the

vibrational frequencies are:

Tt + F + F =

\ 2 3

P
6‘.F. F, + (QFFE + (,}FaFa =  (2.14.20)
R
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where:
P = Ot + AN + tog:
- LR /32 4 2
¢ = SR bILy F Wy (2.14.21)

2,2 5.8
Qxblws

o)
il

Clearly, equations (2.14.21) for the squares of the frequencies have a

similar structure to equations (2.14.20) for the force constants.

Given & & and «

12 %o 3 P, Q and R are immediately found from

(2.14.21), also given trial values of the force constants Fi, Fé and
Fé, P, Q7 and R” can be found from (2.14.20), then the differences,
AP = P-P” etc. have to be made as small as possible. The trial

values can be obtained from sources 1like Herzberg (30), or estimated

from bonds of similar properties.

Equations (2.14.20) can be written in differential form:

AR+ AR+ AR = AP
AR(CROE) + AR(CGF+HE) +A5(LE+LE) = 4% (o140
C(FRBAF + FRAF, + FFRAE) = AR
Then by writing:

K 1 | [ar ] ap |

Da Daa Pes Afy | = 4Q (2.14.23)
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where:
Dai = L?F; + ['z Fs, Dz; = CoF;F3)
by = LR + &R, D, = cff (2.14.24)
1)% = baF; t 03’::2, Dss = CoFaF;z
and the determinant D is given by:
D = DQQ.DH - DQ~, D;u + D:u])s: - ‘Du~D3;
(2.14.25)

+ ‘Dsu Dsa . :DQQDS1

Then (2.14.23) can be inverted directly giving:
AF=[0P(D,,D,,-D, D)+ 00(D,,-0,) 40 R(D,y -D:0] /D
A F:z: [d P(‘DQBD';F DQ‘ D33) +4 Q(Daf D;) 'MR(D&‘.“ D‘i})} /D (2.14.26)

A= 8P(9, Dy Dy D11) 4 40(D, - D,)) 48R (5.~ D)) /D

Hence new trial values F; = F’i+AFi are obtained, leading to
P", Q" and R” from (2.14.20), and the whole process is repeated until
convergence 1s reached. On convergence, Fl’ F2 and F3 are obtained,

from which the force constants f12’ f23 and fé can be found from

(2.14.19).



- 80 -

Convergence is assumed to have been reached when:

[ e F

AT + (8 Fi v (8F) <€ (2.14.27)
F, Fa Fs

where typically, ¢ = 3X10-6, i.e. the average change in thé force

constants from one iteration to the next is 1less than one part in a

million.
(ii) Determination of the Isotopic Frequencies

Having obtained the force constants above, the isotopic

vibrational frequencies can be obtained by inverting the whole

I I I (1) (3 (k) _ .
problem. /A12,1p23 and/io are found from m 7, m, and my using
equations (2.14.17), hence b{, b;, b; and cé are found from

(2.14.18). Equations (2.14.19) can be used to write:

1../“’2‘ -1 _ Moo I__ Mo
Fr=%F, F -—;z—;l‘z, Fs";}_rs (2.14.28)

expressing the isotopic scaled force constants in terms of the scaled

force constants of the initial molecule.

Equations (2.14.20) and (2.14.21) are used again, only with
superscripts I to indicate isotopic shifts, and the whole problem is

dealt with as before only in reverse.
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Given F{, FI and FI PI, QI and RI can immediately be found from

2 3
(2.14.20), and trial wvalues L)iI,éJEI and A)g can be inserted into
(2.14.21) to give P’I, Q’I and R’I, whereby the differences
API = PI+P’I etc. are obtained. Obviously we can simply. use the

frequencies of the initial molecule as trial values for the isotopic

molecule.

Equations (2.14.21) can be written in differential form, leading
to a form like (2.14.22), only with F and AF, replaced by (wi)z and

i
I.2 . .
A(wi) respectively, and putting bl— b2— b3— <o
1.2

written as (2.14.23) and solved for A(wi) .

= 1; then it can be

Hence new trial values for the next iteration are

'II 2

CH

)

= GUEI)2+-A(U§)2, with the same convergence criterion being
applied as before. Thus on convergence, &)i,lb; and w; are obtained.

As before, the method can be checked by inserting the original masses

into part (ii).

The method described above for the point group Cs can certainly
be applied for at least some of the cases described earlier, but is
unnecessarily general as the much simpler formulae already discussed

can be used.
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2.14D Symmetric Linear to Non-Symmetric Linear

Point Groups Example
161216 16,1217
Qoh -> vi 0 C0 > 07 C 70
Then after substitution, ml% m,, $19= Sy35 £,,= f23 and
«= 180°.

(i) Determination of the Force Constants

As the initial molecule is linear and symmetric, this has already
been discussed in A(i), with §(= 180°. However, f13 has to be ignored

as it cannot be used in cases of non-symmetric substitution.
(ii) Determination of the Isotopic Frequencies

The method wused in B(ii) 1is applied, where (2.14.13) and

(2.14.14) become:

pl- L /610 L1
.2 — . -
ATTe [ S} .m;‘o m“" ,mﬁ\’ (2.14.29)
' ~ D) G &Yy
nf o= F 2 F*- lr;“(m‘ PVt M) (2.14.30)
¢ 2 3
Where:

i g 1
F = /.‘2 (W + :h_%ﬁ') -+ 7’]3"&)) (2.14.31)
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2.14E Symmetric Bent to Non-Symmetric Bent

Point Groups Examples

sz -> CS HZO -> HOD
+ +

D3h f> CS H3 —> HDT

Then after substitution, ml# o5, $19= S93» f12= f23 and

=< 180°.
(i) Determination of the Force Constants

As with the previous subsection, this has already been discussed

in A(i), only with &< 180° in this case, and as before, f has to be

13

ignored.
(ii) Determination of the Isotopic Frequencies

With the force constants, C(ii) is used to find the isotopic

frequencies for the non-symmetrically substituted molecule.

If the isotopic frequencies calculated in subsections D and E for
non-symmetric substitution of the initially symmetric molecules are
used as starting values, together with the isotopic masses, and if we
solve for the force constants and substitute back our original masses,
we would not expect to recover exactly our original frequencies, as
the force constant f is not determined, because we are starting with

13

the non-symmetric cases. This is the artificial case mentioned



earlier.

The methods described in the above subsections can be summarised
in the following table, where the first entry of each pair represents
part (i) of the subsection indicated, to determine the force
constants; the second entry indicating part (ii) of the subsection
shown, to find the isotopic frequencies. Quantities in parentheses

indicate the unlikely applications of the methods.

Table (2.3) of Methods for Obtaining Isotopic Frequencies

Substituted Molecule

D3h Don CzOv Coy Cq
D A,A - - AA A,C

Initial Qﬂh - AA A,B - - -
Molecule q”v - (B,A) B,B - -
Cory (A,A) - - ALA A,C
Cs (C,4) - - (C,A) c,C

As Herzberg (30) gives data on D,0 and HOD as well as H,0, some

2 2

of the methods above could be tested, in addition to the checks
already mentioned. It is found that there 1is some disagreement in
frequencies, particularly as these substitutions involve large iass
changes, but it is considered that these are acceptable, particularly
as deuterium has such a low abundance in stellar atmospheres.

Disagreements for isotopes of other atoms are 1likely to be much

smaller.
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Regardless of the type of molecule being considered, we can use a
simple aﬁproximation given by Herzberg (30) to calculate the isotopic

shift of the anharmonic constants:

f
1 _ o L Lﬁf
%i S T I (2.14.32)
J w0

Herzberg (30) and Lechner (41), from which our expressions are
derived, use the observed fundamental frequencies 91 in place of the
harmonic constants L5, the classical vibrational frequencies for
infinitesimal amplitudes that we wuse. Given 91, we should strictly
speaking convert to LJi using the following expressions, if the

anharmonic constants are known:

] R

Vo = &, 4 %, 4 oA +
2
V, = 0y + (1ad)ny, + é—xn ¥ Jiaa23 (2.14.33)

Yy 7 Ly 4+ %y, + L 4 odx

—

2 3 3 e

where d is the degeneracy of the v, vibrational mode.

After computing the isotopic shifts of the vibrational constants,
we have to convert the dissociation potential and the energies of any

excited electronic states being considered, in the same way as is done

O

e (o
for diatomic molecules. Thus defining De s Do

, T7 and T7 in the same
e o
way as section 4.3, where the dissociation may be complete or only
partial, we can write:
7 O ¢ ’ i o u i “ ]
-0, = (0 vdwy e 07) g (] el
° (2.14.34)

it ., q “« LA
+ 9('3} + d %iq. +‘ x,} “i‘ Ol 7"33)
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and:

{

/ H ; §
Te "‘T :'i(‘u,”“’/,{’é)qu+U3/“w,l"éllﬁ.‘,/"03)

o

¥/ Q" 'y " /] 7 9 ”
+ -;;(’.)1“’4-&[ Ngy o+ gy kg + ) 4y, (2.14.35)

‘ E ) ! 1, ot ¢ .
-%, - o Kra = Xy ""(j‘lz “7‘13'0( 9‘23)

where we distinguish between d” and d" as the molecule may be linear

in one electronic state but non-linear in the other.
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2.15 Molecular and Grand Iteration Scheme for Determining Equilibrium

Abundances

. As already mentioned in section 2.3, approximate initial atomic
ionization equilibrium abundances are found in the absence of molecule
formation, and these now have to be used for starting values for the
molecglar dissociation equilibrium calculations together with the
diatomic and triatomic dissociation equilibrium constants discussed

above.

For performing the dissociation equilibrium iteratiomns, in
addition to the requirements already mentioned, it is necessary to
give some initial trial values for Fi’ the fraction of atoms of
element i free, as defined in (2.4.1) for each element. Of course,
the initial state Fi= 1 for all i, as is the case with the first set
of atomic ionization iterations, can be used. Indeed, for
temperatures above typically 3OOOOK, although molecule formation may
still be fairly important from the point of view of opacity, the gas
is predominantly monatomic, henée the initial trial wvalues Fi= 1 can
conveniently be applied. However, at lower temperatures where
molecules dominate the mixture, convérgence in the earlier stages of

iteration can be speeded up by calculating some approximate trial

values of F.; at least to obtain upper limits.
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At low temperatures, it may appear to be better to assume
complete molecular association before we execute the atomic ionization
iterations for the first time. However, even at the lowest
temperature of 1000°K that we are>like1y to consider, which is already
unrealistically low, there are usually still plenty of free atoms,
besides which we have to break into the cycles of ionization and
dissoqiation iterations at some point. It is convenient always to
start with the ionization iterations, initially neglecting any
molecular association, then do the molecular dissociationkiterations

using appropriate starting values.

Neglecting the formation of triatomic and charged molecules, and
considering at any one time a particular diatomic molecule and its
constituent atoms in equilibrium and in isolation from other species,
we can then write for a hetercelement molecule, (where we wuse the
terms hetercelement and homoelement with reference to atomic numbers
only, isotopes not being considered), with i # j:

N(‘L')": MC + ch
(2.15.1)

N(a') = Md + '\/;d'

Where the symbols have their meanings as described in earlier
sections, 1i.e. Ni and Nj are the number of free atoms of type i and j
respectively, Nij the number of diatomic molecules consisting of i and
j and N, and N, .
I (1) (3

respectively, free and combined; only here they do not include other

are the total number of atoms of type 1 and j

molecules.
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Using the definitions for Fi and Kij’ (2.4.1) and (2.4.2)

respectively, (2.15.1) becomes:

“

(2.15.2)
Fo F Moo
ot ———— =1
ke
which on being combined and solving for Fi becomes:
. . ] —

F: = ’(Ria' + Ny = Neoy) T/(Kfis“t N - Mo) *LN‘«WK‘J (2.15.3)

1 M(\')

and likewise for Fj if the indices are interchanged.

For a homoelement molecule i = j, and we write in place of

(2.15.1):
Ney = Nio + QAN (2.15.4)

Hence using (2.4.1) and (2.7.6) again:

QF‘QN(Q
F. oo 2
< K‘

i

(2.15.5)

i
—

which becomes:

i 2 o
- K '*‘/Rca + ?A/u‘) Ree
L Ny

E =

A (2.15.6)
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Equations (2.15.3) and (2.15.6) can be combined together and

expressed neatly as:

i . VRS : 4 .
Fo = 24X, /(FXi #X)) F hag X, - (1-X.+X)| @157

v

a5y = 1 if i # j
where: (2.15.8)
i3 =2 if i=j
N, N
X, = T’l—') and XJ = 4 (2.15.9)
\(0' KL‘-

Equation (2.15.7) can be evaluated to find a wvalue of Fi for a
particular molecule considered. If i # j, Fj can of course be found

by interchanging the indices.

Unfortunately, (2.15.7) 1is not always suitable for handling
numerically,' owing to the very large range the variables can take, it
is found that machine overflow can occur at an intermediate step in

the evaluation, or loss of significance. Let:

x= 1-X X and Y = Lr“zanL (2.15.10)
Also let>V and L. be the overflow and loss of significance criterion
respectively, such that V is a large real number within the range of
the machine and L = 30 say. Then (2.15.7) can be re-written in four

possible ways, subject to the specified restrictions:
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F = 2 73+«j - x
¢ J : (2.15.11)

for - Jv <x <min(L/y,/V)

1 (2.15.12)

¢ )
ﬂ > (2.15.13)

2 -
- i - i N fﬁ. _ &3‘3
% x ((,1.‘2> 8715 élfﬂ? +
(2.15.14)
for X > l.v/?
Thus for each molecule in turn, the fractions of constituent

atoms which are free are calculated on the assumption that the
molecule is in equilibrium with its constituent atoms in isolation
from other molecules, and the minimum is then taken of the values of
Fi so calculated and the previous minimum of Fi obtainéd from

molecules already considered. For heteroelement molecules, the other

fraction Fj is identically treated.

After all molecules have been considered, approximate trial
values for the fraction of atoms free for each element are thus
obtained. Naturally, the fraction of atoms free of - those elements

that have no molecules associated with them in the specified mixture,



always remain unity.

With the starting values of Fi so obtained, together with other
necessary data already mentioned, it is now possible to consider the

equilibrium dissociation of both diatomic and triatomic molecules.

For element i to be in equilibrium with diatomic molecules ij and
triatomic molecules ijk, where for any particular element the index i
is fixed, but j and k represent other elements which i can combine

with, we can write:
No = N, “‘“chgNg 4-2%4;5& N‘o’* (2.15.15)
] 3

where aij are as before and:

a:.ij =1 if i# j and i# k
34k = 2 if i=3 or i=%k but j#k (2.%5.16)
aijk =3 if i=j=k

Using the definitions for Fi’ Kij and Ki. and simplifying:

jk
A F N a. 4 F.F.NoN,
1=F11 ¥Z(~—G—L—£) '{'22( i1 FiFi Nep Ny (2.15.17)
j v R i Kijx

which can be written as:

(2.15.18)

L A
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where qg>is the expression in the square brackets of (2.15.17).

Hence, with the initial term of ?& as 1 and trial values of F,
for all i, for each molecule ij or ijk considered in turn, q}i is
incremented by the terms in (2.15.17) aiijN(j)/Kij or
aiijijN(j)N(k)/Kijk respectively. When the summation is completed
after all molecules have been considered, (2.15.18) gives mnew values
of Fi from the computed ‘F&. For those elements that do not form
specified molecules, the terms in (2.15.17) beyond the first never
occur, hence ?i= 1 always, thus Fi= 1. Furthermore, since all the
terms in the sum beyond the first are >, 0, it follows that Fig 1 for

all i.

With the output values of Fi so obtained, we can form the
geometric mean of those with the input values of Fi to give new values
that can be used as 1input for the next iteration, as this is rather

more satisfactory than simply using the output values as new input.

So far in our discussion in this section, we have omitted to
consider the presence of atomic and moleculér ions, and the formation
of isotopic molecules. It is now our job to consider in a much more
general way molecular equilibrium dissociation with ions and isotopes
taken into account. The equations already considered have to be
generalized, and considerable care has to be used with the definitions

and particularly the indices.
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Let i, j and k index the elements as before, h, m and n be the
charges of the respective atoms and p, q and r index the isotopes

belonging respectively to each element.

As before, i, j and k are merely indices that do not necessarily
correspond to the atomic numbers. The indices p, q and 1r index
isotopes in such a way that a particular isotope p, 1is an isotope of
element i and no other, and likewise for q and r. Thus these indices
can be wused without explicitly mnaming the element and remain
unambiguous. In other words, we can consider a common list of
isotopes of all elements arranged such that those belonging to each
element are grouped together. Then if for example element i has three
isotopes with the first being tenth in the list of isotopes, then p
can only take the values 10 to 12, if j happens to be the next element
in the sequence, then r = 13 to whatever its upper limit is, and so
on. Thus it follows that if p = q then i = j, but the converse is not

necessarily true, and i # j means p # q for all isotopes of i and j.

The indices h, m and n are the actual charges of the specified
dissociated atoms that make ub the molecule. Thus h = 1 indicates
that the atom of element i (or more correctly, to be consistent any
isotope of element i) has a single positive charge, h = 0 indicates a
neutral atom, and likewise for m and n. Unlike the isotopic indices,
h = m says nothing about the equality or otherwise of i and j.
Actually, for computational convenience, these indices in the coding
are not charges but indices of ions in a common list, as is done above

for isotopes, but it is much easier to treat them directly as charges,
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as we can define quantities like htmtn.

In order to proceed further,

it is necessary to state carefully

the following additional definitions:

N(p) —— The total number of isotopes of type p belonging to element i

in the mixture that are free or combined.

Np ——- The number of isotopes of type p that are free.

Nh+m and Nh+?+n

——— The abundances of molecules consisting of isotopes

p and q, and p, q and r, with charges htm and htmtn respectively.

ng and K;i: —-—— The equilibrium constants of molecules dissociating

completely into isotopes with charges indicated.

And also define:

Np
(2.15.19)
!
huif)

Fo =

The fraction of atoms of isotope p that are free, 1i.e. the isotope
analogy of the atomic fractions Fi.

(2.15.20)
N -

Of those atoms of element i that are free, fP is the fraction of

isotope p.
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3;» = "\i@ (2.15.21)
NM.')

The fraction of all atoms of element i in the mixture, free and

combined, that consist of isotope p, and is constant.

~ The definitions of the equilibrium constants in (2.4.2) and
(2.9.1) can be generalized to include isotopes and ions, and are

determined from Saha”s equation by substituting in the appropriate

isotopic quantities. Thus for diatomic molecules:

I/‘\fm _ S“S”‘ N(A Nq’
\"”b R —F (2.15.22)
Py
and for triatomic molecules:
hm NNy N
K™= 5 3 S ey (2.15.23)
¥ i th‘nm
eV

where S? etc. as defined in (2.3.8) is the fraction of Ni that is in
the hth stage of ionization. Thus Sl.llNp is the number of free atoms of

isotope p in the hth stage of ionization. As:
ff Fl PJ;() (2.15.24)

ete., and (2.15.22) and (2.15.23) can be re-written as:

}\ S 5 F. d/"’/‘} N'”:};“ (2.15.25)
Neq

and
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hm N N

— S S S F F f / / i) (|)I 2 i 2.

k<ﬁ% p[4 W (2.15.26)
mv'

The indices i, j and k in equation (2.15.15) can be replaced by

P, ¢q and r respectively, so that isotopes rather than just elements

are indexed, thus (2.15.15) is generalized and becomes:

N(fr)v = Np ﬁ'iz a(”i/ N(,% +22§a—'g l,y f,::,m (2.15.27)
t 9 € 9 v

where apr and apqr have the same meanings, apart from the indices, as
equation (2.15.15) and we also sum over molecular iomns, such that
t = htm or t = htmin for diatomic and triatomic molecules
respectively, with t = 0 for neutral molecules, t =1 for singly

ionized positive molecules, etc.

As with (2.15.15), we wish to replace quantities by number by
quantities by fraction, apart from the total number of atoms for each
element, to make the problem suitable for computation. 1f the
definitions (2.15.21) and (2.15.24-26) are substituted into (2.15.27),

then after simplification, (2.15.27) becomes:

fefel 4 L+ 28 2 enS A N

F

‘1/ (2.15.28)

+ZS EZ“WS NANYS N}ﬁﬁ'i)

P

which can be written as:

1 - fPFc qu _ (2.15.29)
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whereq:)is the expression in the brackets of (2.15.28).

Hence, as before when neglecting isotopes and ion formation,
after having set the initial term of ?b as 1 for all isotopes, then
the summations in (2.15.28) are evaluated for all isotopic molecules
yielding values of ?5. Although FP= 1/?;,' it is more convenient to
find output values of fp and Fi’ however, these cannot be found

directly from (2.15.29).

From the definitions of F,, F_ and 3 , the fractions F, can be
i P P i

found from the expression:

-0

T
Foo= 7 = (2.15.30)
¢ e Y :
P

where the summation is over only those isotopes belonging to element
i. Once (2.15.30) has been evaluated for element i, the fractions f
can be obtained from the expression similarly derived from the above

mentioned definitions:

i}
)l = —£ (2.15.31)
e Ry,

After gvaluating (2.15.30) and (2.15.31) for 1isotopes of all
elements, we have the output values of Fi and fp from (2.15.28). As
mentioned earlier, the new input values of Fi for the next iteration
are obtained from the geometric means of the previous input and output
values calculated above. The calculated values of fp, however, are
put directly in as new input values, without taking geometric means,

as they are not expected to change very much, and are not the "handle”
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of the iterative process.

On the very first entry dinto the molecular dissociation
iterations, in addition to initializing the values of Fi to some trial
values as discussed at the beginning of this section, the values of f

are set equal to Bb for all isotopes.

As expected, it is found that fp= 3b in general, exact equality
being the case, except at initialization, only when a particular
element i forms no molecules, in which case N.= N,., and N

i (1) Yp)

etc., or when only one isotope. of a particular element i is present in

the mixture, in which case fp= 9b= 1 and both (2.15.30) and (2.15.31)

reduce down to (2.15.18).

After performing each iteration, it is necessary to test for
convergence. As mentioned much earlier when dealing with ionization,
a test is performed on each iteration on the change in the one
quantity N;, the number of free electrons present. However, for
molecular dissociation,‘ it is necessary to incorporate in a test in

some way, the changes of all the fractioms Fi for all N elements.

One such method that could be chosen is to define a quantity SF’

such that:

)
, 1
:Z; F (o&f) (2.15.32)

where Fi(new) is the geometric mean of the previous input and output

values of the iteration just performed, and Fi(old) is the input
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value. As convergence 1is approached, SF—> 0, hence the test for

convergence would be:

2.15.33
S, <€ (2.15.39)

where # is, as before, the convergence criterion, typically 10_4 or
smaller, except for the first few grand iterations when it is larger.
With single precision programming used here, however, there is no

point having ¢ less than 10_6.

Unfortunately, it is found in practice that this simple test for
convergence is not suitable, because although SF might converge fairly
rapidly, some of the individual ratios Fi(new)/Fi(old) may converge
much more slowly. This is found to be particularly troublesome in the
case of carbon and oxygen, where the predominant molecule formed is
carbon monoxide, which is tightly bonded. Here it often noticed that
the convergence of the fractions of the atoms is slow, and if there
are a large number of fractions of other atoms that have converged,
then the above test is insensitive. This may often be the case if all

but a few of the fractions have converged.

A much better method is to define a quantity Fmax’ such that:

= mac 1 - -F.;—(iwz 2.15.34
AP A Fo et ¢ )

over all i. Then with the test:
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AF... £¢ (2.15.35)

each individual fraction has to converge to the required degree before
(2.15.35) is satisfied, hence completing the dissociation iteration
loop in that particular grand  iteration. It 1is mnevertheless
conyenient still to find S as a monitor to the progress of the

F

iterations.

As is stated right at the beginning of this chapter, like the
ionization iteration loop, the iteration criterion for molecular
dissociation is quite loose in the first grand iteration, but becomes
progressively more stringent for each grand iteration, until the
maximum specified stringency, as said typically 10-4 or less, is
reached. If after a specified number of iterations, (2.15.35) is not
satisfied, then like the ionization iterationmns, the dissociation
iterations belonging to that particular grand iteration, are

terminated.

Having left the dissociation iteration loop by whichever method,
it is necessary to complete the current grand iteration by computing
the number of free electrons contributed by ionized molecules,
(including if necessary any electrons absorbed by mnegative molecular

ions), hence completing all the equations in the iterative process.

Re-writing the part of the expression (2.3.11) that is relevant

to molecular ions:

Me :ZZ& Mf (2.15.36)
s €



where M, is the number of electrons contributed by charged molecules,
t
and MS the actual abundance of a diatomic or triatomic molecule of

type s with charge t. Then (2.15.36) can be expressed as:

M= Z2Z0emM 422 2 (hemd N cason
cog ot é

£ j R

htm htmt
where Nij and N. n are the abundances of diatomic and triatomic

ijk
molecules for the indicated elements, with charges t = him and

t = htmtn, where we sum over t.

Making the substitution (2.15.46) and (2.15.47), see below,

gives:
Me=22 2 (him)SSTEF, N Ny,
¢y & J f<;5~m
’ (2.15.38)
-, b o N, N., N,
+Z§21(L’ +4~s+n> Shb Sh F F. th _1:____1______)
(5 ko€ . ¢ o b
ok

=hm =hmn . . e
where Kij and Kijk are the mean dissociation constants of the

molecules with the indicated elements, averaged over all isotopes
belonging to those elements, that split up into atoms with the

appropriate charges.

Having obtained Me from (2.15.38), it is added to the number of
electrons obtained from the last execution of the jionization iteration
loop, giving the total ngmber of free electrons Ne' It is then
possible to begin a new grand iteration, starting again with the

ionization iterations, and using the value of Ne incorporating Me'
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The whole process of performing ionization iterations followed by
dissociation iterations that constitute a grand iteration, is
performed until total convergence is reached, or failing that, until a
specified maximum number of allowed grand iterations is attained. As
expected, at low temperatures there are a large number of iterations
due to abundant molecule and negative ion formation, but at

progressively higher temperatures, convergence becomes rapid.

To test for overall convergence of the grand iterations, it is

convenieﬁt to do the test:
/_\éj/\ie + AF,, K€ (2.15.39)

where fAlog Ne and stmax are defined respectively in (2.3.12) and
(2.15.34), and ¢, the convergence criterion, has our usual value of

typically 10—4 or less.

In the way the equations in the iterative process are arranged,
it dis not necessary to know directly the abundances of the various
molecules, the fractions of theﬁ in various isotopic forms, or except
for calculating Me’ the mean equilibrium constants. However, as the
whole object of performing these calculations is to determine the
molecular abundances, which are then used as inputs to the process of

determining the opacity, it is necessary to find them together with

the other quantities mentioned, at the completion of all iterations.



- 104 -

Taking the definition for the Kij and Kijk from (2.7.6) and

(2.12.7) ‘respectively, and allowing for the formation of ions, these

equations can be re-written as:

hm

» ~ N: N;
kics fi ‘5 Vhfm (2.15.40)

|

and

R o shomgr Melily

iéP\ ‘ Nhfm{-n

LJR

i

(2.15.41)

Where now several isotopic variants of a molecule ij or ijk exist, so
we now consider these equilibrium constants to be some kind of mean of
the actual equilibrium constants for the individual isotopic variants,
as distinct from the definitions (2.4.2) and (2.9.1) where each
element is assumed to have only one isotope, and Kij and Kijk are

found directly from Guldberg and Waage”s equation.

Using the fact that:

)

:EZ jz; FJ;;;‘ = Pd?fmq (2.15.42)
K

and

" ¢n h¢vin
:Ei ZE.:E; PJ:;,, = Fdigkf (2.15.43)

£ 1T
together with the definitions (2.15.20), (2.15.22) and (2.15.23), it

is easy to show that:
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{

— hm ’ (2.15.44)
K .. = S %_P[éi
AN

v

and 1-
RM’" ZZZ f /‘v | (2.15.45)

hmd

Fg N Ko

where the fractions S? etc. cancel.

Thus (2.15.44) and (2.15.45) are evaluated whenever it is
required to determine Me, and the molecular abundances at the end of
the iterations; in addition, the mean equilibrium constants are a
useful check. It is immediately obvious that if elements i and j have
one specified isotope each, then there will be only one molecule of

L Fhm . . hm cr s
the type ij, hence Kij is just qu from (2.15.44), and likewise for
(2.15.45).

It is worth noting that whereas the equilibrium coustants ng and

Khmn are determined at the very beginning and remain fixed, the mean

pqr
eq e =hm ~hmn .
equilibrium constants Kij and X,.. are not known accurately until

ijk
convergence 1s reached, as they depend on the isotopic fractions f

etc.

Once the mean equilibrium constants are known, then the molecular

abundances can be found directly from:

Nhf.';ﬂ = S:\SM FoF ~————-—“-.,\ W (2.15.46)
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and

haman h ,men — N[ N, - M

Nchh =9; 5, 5, F: FF == _i’:w & (2.15.47)
4 Fii- n
ok

where the abundances so determined are the sums of the abundances of
the individual isotopic molecules making up ij and ijk.

Rather than determining the abundances N;:m and Nh+m+n of

pqr
isotopic molecules directly, it is far more convenient, as is the case
. . . . hm
with isotopes, to determine the fractional abundances. Thus let gpq

be the fraction of the molecules ij with charge him that consist of

the isotopic form pq, and likewise for ggzg, then:

Gea, = o (2.15.48)
“)
and \
‘)-f’hh
hmy _ N{Hyr
ear — N (2.15.49)
{4k

Where by definition:

27_ ‘(j:; =] (2.15.50)
¢ 4

and

. hon
7723”“* =] (2.15.51)

P ar

Then, these fractions can be determined from:
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~h»
hom K. .
- 4

‘3(,% /F h l/ o (2.;5.52)
\{"}

and

- ‘\’hn

hma K::n
jf"P’ - %P}Z% /’r —= (2.15.53)
Koo
This discussion should be completed by briefly considering

several extra quantities that are useful to determine, together with

important checks.

The total number of particles per cm3 is obtained by adding to
the number of free electrons, the sum of all free atoms in any stage
of ionization, together with the sum of all diatomic and triatomic

molecules, thus:
: . t
NT = N, + Z Ne + zz_ Ms (2.15.54)

which in full is:

W. = ZZ RSN 42 22 (e
© ok ¢y € 3

(2.15.55)

hasn R '
¢ ) : -5

A 4 in
+2222 N,

L 4 R E
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As the number of atoms of element i combined in diatomic

. + -
molecules isifaijN?jm and in triatomic molecules isZ Z Za Nh+m+n

T4 2T Kk

we can easily check to see how well each element has converged from

b

the expression:

~

| 1 )A*” hiv tn |
RC - -/\7- Nu‘) - N{ ~22 a.‘-.d‘i\l(d' ‘Z Z ia‘;&.h Nc’d’k (2.15.36)
0 o € y R E
where ]%i is the residual abundance of element i, that is free and
combined in molecules, expressed as a fraction that does not agree

with the total number of atoms of element i. If convergence has

occurred properly, then:

'Rbl L€ | (2.15.57)

The whole iterative process discussed in this chapter can be
repeated for a variety of temperatures, densities and chemical
compositions, enabling one to determine molecular abundances under
many different conditions. Also, if any of the above number densities

are multiplied by kT, we obtain a pressure in dynes per cmz.
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2.16 The Inclusion of Molecules with more than Three Atoms and Solid

Particles

- A detailed treatment of the properties of molecules with more
than three atoms and of solid particles, is considered to be well
beyond the scope of this work. However, in order to help to put this

work into perspective, a very brief discussion is given.

All computations in this work neglect the possible formation of
solid particles and tetra—atomic and more complex molecules, as this
should be a good approximation, except at the very 1lowest
temperatures. However, at such low photospheric temperatures, where
by our calculations diatomic and triatomic molecules are very
abundant, one could reasonably expect more cémplex molecules like NH3
and CH4 to form, and even solid particles like graphite and silicate
to condense out when the partial‘pressure of the appropriate species

in the gas phase rises above the saturated vapour pressure of the

solid particles.

To calculate ab initio the partition functions and equilibrium
constants of these more complex molecules, 1in the same general way as
is done for diatomic and triatomic molecules. would be very
complicated, particularly 1if the isotopic variations are to be
included in the same way. The only solution would be to include
molecules on an individual Dbasis, whose equilibrium’ constants are

already known at the relevant temperatures, or can be found from
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simple empirical formulae.

Neglecting the presence of isotopes and ioms, (2.15.15)

generalizes to:

N, = N “'Z N “"ZZ LJkNLh“i'Zii w”f!NaH“" . (2.16.1)

;g k£

Hence (2.15.17) can be written as:

{ = F 42( > ) zz(tdw;zp?\)m)

} 7_22 (iima Fe b N N N\
5 R

Kid‘hl

(2.16.2)

where i,j,k,l... are the indices of the atoms, and a; 3k1 gives the

number of atoms in a molecule belonging to type 1i.

Then (2.16.2) can be iterated in the same way as before, yielding
abundances which could be wused in any opacity calculations. of

course, (2.16.2) could be generalized to include isotopic variants.

If solid particles are to be allowed to form in the mixture, then
we can say qualitatively, that the right hand side of (2.16.1) must
include terms for the conservation of atoms that do not contribute any
pressure in the gas when condensation occurs. The net result of
condensation is to reduce the overall pressure and density of the gas
phase, and alter the molecular equilibria. The formation of solid
particles would affect the opacity both directly, and indirectly by

changing the abundances of the species in the gas phase important for
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opacity, and would be an exceedingly complex problem to handle.
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3 DETERMINATION OF SCATTERING AND CONTINUOUS OPACITY

3.1 Introduction

Having obtained the atomic and molecular abundances from the
methods in the previous chapter, these abundances are then used to

calculate the opacities, which is the whole object of this work.

We can split wup the types of opacity into two components, a
background continuous opacity due to electron scattering, Rayleigh
scattering, free-free and bound-free absorption, and discrete opacity
due to bound-bound absorption. In this chapter, we consider the
various forms of continuocus opacity, deferring to the following
chapters the nuch more extensive discussion of the determination of

bound-bound absorption.

It is convenient to express frequency in a dimensionless form
when determining the opacity, thus 1let u be the reduced frequency,

such that:
U= — (3.1.1)

We can write the total opacity corrected for stimulated emission,

see Carson (42) and (43):

K'(w) = Ko ()i =€) + /(@ (3.1.2)
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where Ka(u) and Ks(u) are respectively the absorption and scattering
opacity, and (l-e V) is the stimulated emission factor. The main aim
is to obtain the Rosseland mean opacity (RMO) &, which is given by:

)
15 w‘*(z“cla.
T | (e - i} (3.1.3)

[«

—

=il

where the Rosseland weighting function:

gt 15 wte®
W) = e feoy? (3.1.4)

normalizes to unity, and has its maximum at u = 3.830016..., hence

giving the greatest weight to & (u) at that value.

However, it is more convenient and computationally more efficient
to factorize out the stimulated emission factor from (3.1.2), and

incorporate it into the weighting function. Writing:

7/ -l -1
Kiad = K'((i-e™7) (3.1.5)

(3.1.2) can be re-written as:

Kia) = K (&) + ks(u)("h-@‘“)"i (3.1.6)

Hence the RMO is now given by:

. o “w
L. i wt et ols (3.1.7
K 7 g4 | kieo(e4-1)? \ P17

[}

where the weighting function:
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1-5 0vs(£2u.

GT (e™-1)?

W) = (3.1.8)

no longer normalizes to unity, but to the value 1.055313..., and now

has its maximum at the value u = 3.724...

. Because the RMO is an harmonic mean, it is not directly additive,
thus the RMO of all opacity sources together is not the sum of the
individual RMOs of each opacity source on its own. Thus the
integration in (3.1.7) cannot be performed until all the absorption

has been accounted for.

As useful additional information, we can also find the Planck

mean opacity (PMO), which is given by:

I

od
15 | K0P d

, . (3.1.9)
T« (e*-1)
o
where the Planck weighting function:
3
4 U
Bluy= £ (3.1.10)

-ﬁ'«e (eu_1)

has its maximum at u = 2.821439..., which is also the same value as
the Planck function itself, which in dimensionless frequency units is
given by:

L AkT W
B[“)T) - A)‘OQ (cu_‘D

(3.1.11)
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As before, it is more convenient to incorporate the stimulated
emission factor in the weighting function, and accordingly the PMO can

be written as:

15 K(u)ufa[u

I

el . (3.1.12)
i €
-]
where the new weighting function:
— 3
—_ ) L
Blw) = 2= = (3.1.13)

v e

has its maximum at u = 3 exactly.

Because the PMO is a straight mean, it is directly additive, thus
the PMO of all opacity sources together is also the sum of the

individual PMOs of each opacity source on its own.

Although we ultimately want the RMO and PMO as mass absorption,

i.e. cm2 per gm, it is much more convenient to determine the volume
. . . -1 . 2 3

absorption opac1ty/u(u) inem °, i.e. cm” per cm”, as abundances are

expressed by number. Thus the total volume absorption at frequency u

is given by:
M) :Z N o7 () (3.1.14)
¢

. 3
where N.1 and J&(u) are respectively the abundance by number per cm
and cross—section in cm2 for species i. To convert’ to the mass

absorption coefficient K(u), we divide by the density, thus:
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Kla) = M(/P (3.1.15)

where (3 is the demsity in gm per cm3. We can accordingly replace K(u)

byj&(u) in (3.1.7) and (3.1.12), and take [ outside the integrals.

In order to determine the RMO for the continuum, it is necessary
to determine the opacity at a large number of grid points by adding on
each newly calculated spectrum on top of the previous ones,
effectively evaluating (3.1.14) for a large number of values of u,
then integrating (3.1.7) numerically between u =0 and some
appropriately large upper value, say u = ZC, as W(20) = 1.27)(10_5
which is small compared to W(3.724) = 1.92)(10'-l the maximum value.

It is simplest to make the grid points equally spaced, defining
an interval du, then after evaluating the integrand of (3.1.7) at each
value of u, integrate using Simpson”s rule. Because the continuum is
generally changing slowly, the grid does not have to be too fine, but

fine enough to allow for sudden changes in the continuum at absorption

edges. No more than a few thousand grid points would be adequate.

As there would in general be many species, each producing a
spectrum by several different processes, we can build up the total
spectrum by considering each process in turn, and within each process
deal in turn with each species that contributes to that process. In
fact, we can put in a vector for containing }L’(u) the electron
scattering, then accumulate the Rayleigh scattering for the various

species and also any continucus absorption processes where the
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stimulated emission has already been taken into account. Into another
vector for/u(u), we can accumulate the-absorption from those processes
for whiéh stimulated emission has not been included, then after
applying (3.1.5) and (3.1.6) as appropriate, we can integrate

(3.1.7).



- 119 -

3.2 Electron and Rayleigh Scattering

We consider electron scattering first, which for conditions of

interest here is quite straightforward, see Carson (42) and (43).

As at the frequencies of interest here, the photon energies are
highly "non-relativistic” i.e. h?/mec2<< 1, we simply have coherent

Thomson scattering which is frequency independent. Thus:

R
EXIRE

ogu) = 0r = 3 (3.2.1)

where 0& = 6.65246)(10—'25 cm2 is the Thomson electron cross-section,

2 13

and re = ezlmec = 2.81794X10 is the classical electron radius.

1f electron scattering is the only source of opacity, then:

Jg(ad
r

K'(w) = Ne (3.2.2)
where Ne is the number density of electroms. 1t is at once seen that
on integrating (3.1.3) for the RMO, or (3.1.9) for the PMO, K = K (u)

for any u.

In practice, it is found that at very low temperatures like
10000K, as expected, electron scattering is totally negligible as
there are very few free electrons. Even at temperatures in the upper

end of our range of interest, other processes still dominate, hence in
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our context, this particularly simple RMO is never realised on its

Oowil.

The other source of scattering opacity considered here is

Rayleigh scattering.

Ifch(}) is the Rayleigh scattering cross—section in cm2 per
particle, then from Tarafdar and Vardya (44), we can write:
s 6 27 7
1'2?17 (’(ax Ai AQ

0, (2 = 3% 1+ X + T + - (3.2.3)

where X is the polarizability in units of a, (the first Bohr radius),
>\ is the wavelength in cm, and the coefficients Al’ AZ"' are
corrections to the }TA law. 1In many cases, these correction terms are
not available, so we have to assume the simple }74 law, and assume
‘ that we are considering frequencies 1less than the characteristic

transition frequency of that species, which would in practice be

nearly always the case.

Re-writing (3.2.3) as:

1 . B N
o (\) = T B, + X + -3\3; oo (3.2.4)

where:

g 6
129 T “de 2 @
B, = A, = 2 ]3 » B o= BA,, 82: B,A, .. (3.2.5

we can at once express the total Rayleigh scattering at any wavelength
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due to many species by putting in sums in (3.2.4), hence giving:
i\ = A Z 1 ;A
M (V) * | £ Bo V. & XQZB‘LN‘ + —Y?_Bh_f\)ﬁm (3.2.6)
¢ [

. , -1 - . . :
in units of cm ~; where Ni is the number density of species i, and BOi
etc. are the coefficients for each species. Thus we obtain at once

the whole contribution to the opacity of Rayleigh scattering, without

having to compute individual spectra.

Putting (3.2.6) into dimensionless frequency units gives:

Hel)) = wf(hT> ig N. ‘*"’B(AT)ZB

(3.2.7)

i aq(%)“zguwa Goeee

~ and neglecting the higher order terms, we can put this straight into

(3.1.3), yielding for the RMO:

, & M
L = 15 [he) P e du
K Wi RT) 28N, | (¢-1)

(3.2.8)
o
which is clearly divergent when ghe lower 1limit is zero, see Vardya
(45), implying that the RMO is zero even though the opacity is finite
everywhere (at zero frequency it vanishes, but so also does the
flux). The RMO will however be usually non-zero when account is taken
of the other forms of opacity, of which in practice there will always
be, and which do not vanish at zero frequency; in fact, free-free
opacity becomes infinite. Indeed, as stated earlier, as electromn

scattering, no matter how small it may be, is included when Rayleigh
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scattering 1is calculated, we mnever allow the opacity to vanish
anywhere. However, if the lower bound in (3.2.8) is a, with a > O,

(3.2.8) can be integrated analytically, yielding:

— o0 T Ty 60
K. = L—f—'g— (:c‘); s (6"~ ) | (3.2.9)

. -1 . . .

in cngm , to which could be added the contribution between u = 0 and
u = a where other forms of opacity will be important. In practice,
other forms of opacity cannot be neglected elsewhere in the spectrum

for our purposes.

If (3.2.7) is substituted into (3.1.9) with the higher order

terms to obtain the PMO' we can write:

- 15 RTA\ w“-;‘/Lu'
K::. TT—-‘*(TZ ZB" N (e _‘)

”oLL (3.2.10) -

KTV} T uda ( .
+(‘i:) ZB%NL 0(6“-1) EC)ZBQ‘ - “")

o

where these integrals can be evaluated analytically from:

I = 182, (2W§2n
-1 Ln : (3.2.11)

c

see Abramowitz and Stegun (46), where an is a Bernoulli number. Hence

we obtain the result:

- S0 () R 2 et

" (,L(TTQ(%)QZ 81;‘\}; 4 88ui¥ TT““(

237, 1565

hT)"‘Z-B N (3.2.12)
N
he ) &7 v
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which, wunlike the RMO, gives a non-zero result even though the lower
bound is zero. Taking the first term, and writing the PMO in terms of

o(for an individual absorber, we can write:

[/ Y
- ' T 6
R = wagﬁ (};\,c) a; «* (3.2.13)

. 2
in cm” per absorber.

Unfortunately, the polarizabilities of most elements are not well
known except for hydrogen and helium, the first row in the periodic
table, and the remaining inert gases and group 1 elements. As in the
first period for Li to Ne, 1log~ is approximately proportional to Z
with « decreasing from Li to WNe, this result can be wused to
interpolate for the other elements in the periodic table lying between -
their respective alkali and inert gas; if the polarizabilities are

otherwise unavailable.

In addition to neutral atoms, the polarizabilities of negative
and positive ions could be obtained from a simple empirical formula
given by Tarafdar and Vardya (47), if they are otherwise unavailable:

(34D
A = KX, (3.2.14)

& 6

where ol is 8.1x10%, 2.4X10* and 4.7x10° with h=-1, © and 1
respectively for negative ions, mneutral atoms and positive ions, with

Aon being in units of a, and I being the ionization/detachment energy

in eV.
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The Rayleigh scattering coefficients of molecules, except in a
few cases 1like HZ’ are little known or no experimental values are
available at all. BHowever, Tarafdar and Vardya (47) gives formulae by
which polarizabilities of diatomic molecules could approximately be

computed, and gives a very simple semi-empirical relationship for

polyatomic molecules:
oK = %io(; (3.2.15)
¢

where(xi is the polarizability of atom i, with the summation being
over all atoms in the molecule; clearly, this could also be used to
estimate & for diatomic molecules if no other source of data is

available.

The Rayleigh scattering coefficients for H and Ne are obtained

from Dalgarno and Kingston (48), who give expressions of the form:

A4 _ ¢ Ca . 5
-1 = (] 4+ X X X 4+ - (3.2.16)

vhere n is the refractive index at atmospheric pressure and C C

0> C15 C

etc. are coefficients. These coefficients must be converted into the
forms suitable for our use by:
3 R
T1° Co

A, = EXTER A, =32C,, AQ=CQ+D\C1,,.,(3.2.17)

LPY

where NL is the Loschmidt number.
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The coefficients for He, C, N and O are given directly by
Tarafdar =~ and Vardya (44), (length formalism used). For all the
remaining elements we have only the coefficient AO obtained from the
polarizabilities given by Carson (3) using the interpolation method
desqribed earlier, though (48) could be used for the other inert
gases, but their abundances are much lower. Also, the Rayleigh
scattering by ions is neglected, and accordingly no use 1is made of

(3.2.14) or of Dalgarno (49) who 1lists polarizabilities of specific

atoms and ions.

For the diatomic molecules, the coefficients for H2 are obtained

from Daléarno and Williams (50), and for C,, N, and 0, from Carson
3, the polarizabilities for OH, CO and Si0 are obtained from
Tarafdar and Vardya (47). Of the triatomic molecules, the calculated
value of the polarizability of HZO is used from (47) given by
(3.2.15), and this formula is also used to obtain the polarizability
of C02. As the molecules considered here are amongst the most

abundant, it is not considered worthwhile to include data for other

molecules.

All the Rayleigh coefficients used in this section are tabulated

in the appendices.
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3.3 Free-Free and Bound-Free Sources of Opacity

Free—free and bound-free absorption are particularly important
sources of continuous opacity, with free—freé absorption being
smoothly varying over the whole spectrum due to electronic transitions
between two continuous electronic states, and bound-free absorption
for atoms has a sharp cut-off in frequency, i.e. an absorption edge,
below which no absorption occurs due to the minimum energy needed to
remove a bound electron to infinity. However, unlike other quantities
that are computed for atoms and molecules in a general way in this
work, here we have to handle the various species responsible for the
free-free and bound-free opacity on an individual basis, as we have to
interpolate from tables and evaluate empirical formulae supplied by

different authors for the various species considered.

In the temperature regime of interest, a very important source of
free-free and bound-free absorption is due to H . The photodetachment

energy of the H ion is 0.7551 eV corresponding to A= 16,419&, at

wavelengths longer than this there is no Hbf

absorption, but we still
have H;f absorption, due to an electron moving in the field of a
neutral H-atom. Tsuji (9) gives both tables and analytic formulae for
H absorption, however, by comparing both, an error was found in his
formula 6, or (3.3.4) here, such that the coefficient of 92 in the
expression for G(§) should read 2.8914X10—2, and the next term in G(Q)

should have 93, not 62 again, these corrections are noted in Tsuji

(11). 1In this work, the aBsorption is in fact obtained by linear
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interpolation of the tables, the values being in logs. As the units

are in cm4 per dyne, on multiplying by the electron pressure in dynes

per cm2 and the density of neutral H in particles per cm3, gives wus
. . . 2 3 -1

the volume absorption opacity in cm™ per cm” or cm ~. One would

expect that H as a source of opacity will be strongly dependent on

the abundances of Na and K, as they are major sources of electromns at

low temperatures due to their low ionization potentials, even though

these elements have relatively low abundances.

The formulae given by Tsuji for H as an alternative to
interpolating from the tables are given here, where &= 5040/T and )
is in microns (}Q. For the range 0= 0.6 to 6.0 (T = 840°K to 8400°K)

and \ = 1.6 to 100 for H__:

£f
Kee(M0) = (AN + B(8) + C(ON + DO + E@N (3.3.1)
+ F(&))F]X10-26 e’ dyne-'1
where:
-3 -2 -2,2
A(@) = 2.8613X107° - 1.7104X107%@ + 1.9241X10° 28
- 3.8625%10736° + 2.0673x10 %9*
-3 -2 -2,2
B(g) = - 5.2107X10 ~ + 7.2695%10 9 - 9.4204%10 8
+ 2.0739X10°28° - 1.1541x10 9%
-4 -3, —2,2
C@) = 7.5533%107" - 4.1764%X107°§ + 1.0863%10 20
+ 1.4533%10729° - 1.1748x10 %" (3.3.2)
-2 -1 -1,2
D(@) = - 4.1964X10 ° + 6.6949X10 4 - 1.0139xX10 ©
+1.3046x10°20° - 6.8082x107 %"
"7 "'7 r "64\2
E(P) = - 3.7419X10 " - 6.3651X10 ¢ + 6.0644X10 ¢
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- 2.5328%10°%9° + 1.1071x10” 0%

9 2

- 1.6028X107% - 2.5083X10°%

+ 1.2852%10°99° - 6.3522x10 1%

F(B) = 3.5121X10

which is formula 5 by Tsuji. For wavelengths in the range \ = 0 to

1.65u4, it is better to use formula 6 by Tsuji for Hff:

KeeOn®) = [6(0N + H@A® + 1@)X + 3N (3.3.3)

26 1

+ K(@))S]Xlo— cma dyne_

where:
_ -2 =1, -2,2
G(@) = - 4.9072X10 © + 1.2953%X10 @ - 2.8914X10 ¥
+ 7.8357%107°9° - 6.1838x10 %"
-1 -1 -1,2
H(@) = 2.4013X10 = - 1.3996X10 @ + 3.7506X10 @
- 7.7846%10°29° + 6.0802x10 9%
I(0) = - 2.9875X10° " + 1.0503¢- 8.1111X107 92 (3.3.4)

+ 1.8419x107%93 - 1.4761x107 %%

J(0) = 9.6893X10 2 - 4.6764X10° 10 + 4.3440X10 92
- 1.0808X10 12> + 9.1163x10 2%
-3 -2 —2.2
K(®) = - 6.7575%10 ~ + 6.9126X10 “@ - 7.7600X10 O

+ 2.0616X10°293 - 1.8098x10739%

in the same temperature range as before, and with the corrections as

stated earlier.
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For H;f, we could use Tsuji”s formula 7:

—26§5/2e1'7269

be(A,Q) = 0.4158X10 [2.0275) + 15.6235)2

~ 20.4140% + 8.15240% ~ 2.2916%° + 0.66391%) (3.3.5)

- =] -
285419/ 4o -1

X(1
with the stimulated emission factor incorporated. (3.3.5) can be used

at any temperature, but with A< 1.64194.

At higher temperatures, another important source of opacity is
Hbf and Hff, i.e. the absorption due to the ionization of neutral
hydrogen, and an electron moving in the field of a proton
respectively. We evaluate formula 10 of Tsuji (9) but omit the
stimulated emission factor; which is dincluded at the end of all
calculations associated with this section, as discussed in section
3.1. On multiplying by the abundance of H in cm_3, we again obtain

the required volume absorption.

Tsuii”s formula 10 which we do use, but without the stimulated

emission factor is given here for H

bE+EE*
~Léy3 w3 31.30364(1-n %)@
iy erpp(N28) = 1.045K10 52; n exp[-31. (1-n"2)8]

© (3.3.6)

+ (60.60729 ) texp[~31.30364(1-n,2)8] cm’

with A and @ as for (3.3.1-5), n, = 7 and n, is the lowest quantum

state which contributes to the absorption at A. As stated by Tsuji,
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the bound—-free and free-free Gaunt factors are assumed to be unity, as
n, =7, so for states with n 3, n,, the sum is approximated by an
integral, and the partition function of H is taken as the statistical
weight of the ground state i.e. 2. n, can be found from the

expression:
n, = ok (J107RY + 1) (3.3.7)

which rounds up to the nearest integer by including 1 in the bracket,

and where R is the Rydberg constant.

As helium is the next most abundant element, we must include it
as a source of continuous opacity, there being no bound-free
absorption of He as no stable negative ion of any importance exists.
The absorption is obtained by interpolating the log of the absorption

of He;f as tabulated by Somerville (51). John and Morgan (52) gives

tables for Cl;f absorption for both the velocity and length

formalisms, the former being used in this work, and for C;f we use the
tabulation given by Myerscough and McDowell (53). The free—free
absorption due to Ne , Ar , Kr_, Xe , Li—, Na—, Cs-, Hg , N .and O
are obtained from tables by John (54), though some have negligible
abundances even if included in the mixture.

The bound-free absorption for C, 0, F , Si , S, C1 , Br and
1~ are obtained from Robinson and Geltman (55), where the energies are
given relative to the photodetachment energy of the negative ion,

below which no absorption occurs. All interpolation/extrapolation of

tables of cross—-sections at energies above the absorption threshold



- 131 -
are performed in the number, rather than the log, as done elsewhere.

For the molecules, we obtain the free-free absorption for the

species NZ’

O;, co , CO; and HZO— from tables also by John (54),

though H; is also given, Somerville (56) gives a more detailed table

which we wuse; Tsuji (9) also gives an analytic approximation for H2

Because of its large abundance at low temperatures, can be an

Hgff
important source of opacity. The bound—free absorption for OH and CH
are obtained from Tarafdar and Das (57), where the transitions are
from bound ground states to repulsive excited states, and there is no
absorption threshold. For OH we simply interpolate the log of the
tabulated values as wusual, but for CH we must first make up a new
table by combining the three tables for the separate upper states by

adding together the corresponding tabulated, OY WwWhen necessary,

interpolated values, then proceed as before.

The tables that we use from the various sources for obtaining the
continuous opacity in this section, cover the regions of the T-) plane
that is of the greatest interest to us reasonably well, so any
extrapolation is likely to be at temperatures or wavelengths where the
species in question will not be important. Of course, extrapolating
too far beyend the range of the tables 1is dangerous, however, the
alternative is to cut off at the limit of the tables, or extrapolate
then cut off at some arbitrary value of T or ), which éould produce
spurious effects if the species in question 1is still important. It
was decided that extrapolation without cut off is the lesser cf the
two evils. Uﬁfortunately, one can never know how important various

species are in different parts of the spectrum, wuntil after they have
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all been computed.

Fortunately, (51), (52), (54) and (56) give simple expressions
which enable us to compute the absorption at lower energies than those
tabulated. Re-writing expression 2 of (54) for dimensionless energy:

. b)
. . 9/he 1 -
K, (T) = 10 (—Er " i (T) (3.3.8)
. 4 -1 i . . .
in cm dyne ©, where KiO(T) is the absorption at 10 microns. For the
other references, if KO(T) is the tabulated value of the scaled

absorption, being the first entries in the tables, then:

2

K. (T = E-CIR:‘? —,::Q K, (T (3.3.9)

in cmAdyne‘l, where R _, is the Rydberg constant for infinite mass in

cmfl. We can also apply the same treatment to C;f

not give the scaled absorption, by calculating the scaled absorption,

from (53), who does
then applying (3.3.9).

All the tables for the cross—sections used in this work are given

in the appendices.
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3.4 Other Sources of Continuous Opacity

Although of apparently negligible importance in our context, for
the sake of completeness, the contribution due to quasi-molecular
hydrogen is also included by interpolating from tables given by
Solomon (58). 1In this case the absorption is free-bound, i.e. from H2
in a repulsive state to HZ in an excited bound state. The units given
are in cm3 per dyne, so on multiplying by the square of the pressure

of H, we obtain the correct volume absorption in cm_l. The tables are

given in the appendices.

Of possibly more significance, is the pressure-induced opacity of
H2 due to HZ—H2 and HZ—He collisions, where Linsky (59) gives
expressions which we wuse to compute the opacity. The absorption
consists of three components which are added together: translational,
rotation—translational and vibration-rotation—translational; these
consist of highly broadened overlapping bands which for our purposes

can simply be regarded as other sources of continuous opacity and

added to the continuum already computed.

The expressions given by ZLinsky are 1least square fits over
specified temperature and spectral ranges, with stimulated emission

included. Considering first the translational opacity, let k; T be
’

the translational opacity dependent on the wavenumber ¥ in cm ~ and

the temperature, then for HZ—H induced opacity:

2
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=2 -7/b S ¢35

kg’T = av¥ f for v < Qé (3.4.1)
-3/d - -

ks’T = ce for v > VC

where for 600° £ T £ 3000°K:

log (1/a) = 7.02391 + 1.3380 log T
b = 91.67 + 0.1033T
¢ = [15.57906 - 2.06152 log T - 0.477352(log T)%]X1077 (3.4.2)
log d = 2.31317 + 3.8856%10 T
V. = 274.3 + 0.2762T

which are expressions 1 and 2 by Linsky.

For the rotation—-translational opacity of H,-H Linsky”s 11 and

2 72

12 are respectively (3.4.3) and (3.4.4):

= 5.2

o
|
|

or ¥ < 1.59° (3.4.3)

ks . = ce &Y for 7 > 1.57°

where for 600° { T £ 4000°K:

6

= 4.2432%10°°% - 2.8854x10 710 T

1.2171X10° + 258.28T

4

[
§

o
il

— 4.3429%10 37 (3.4.4)

3

= 2.5830X10

0
|

2

1.1332X107° - 1.1943X10°

[N
i

In T

<
\
fl

~ 2973.3 + 600.73 1In T
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For the vibration-rotation—-translational opacity of H.-H we

write down Linsky”s expressions 18 and 19:

(7—50)/0.6952T

a$ve 1
k= = for v <y = 4161.1 cm
v — —
,VRT G - 90)2 + 52 o
a”$v
ks = for v £ v {9 + 3%/2 (3.4.5)
1% - - N N
»VRT < - 90)2 + 52 o o
_ _ = ==Y )/p 58S
kV,VRT = avVe o for v > 90 + 3%/2
where for 600° & T £ 3000°K:
2 5
® = 1.2750X10° + 437.50T
log a” = =7.0659 + 0.2825 log T (3.4.6)
1/a = 1.6288X10° + 1.4904%10°T
log b = 0.9376 + 0.5668 log T

However, Linsky gives all absorption in wunits of cm—'lamagat—2
with the pressure assumed to be in amagat, where 1 amagat is the
volume of 1 mole of an ideal gas at 1 atmosphere at 0°C = 22.4136X103

cm3; but we require the absorption to be in cm—1 or cngm"1 given the

abundances of H2 and He in cm-3. Using the constants from Allen (32):

P(amagat) = 273.150P(atm)/T (3.4.7)

[l

273.15P(dyne em 2)/(1.013250x10%T)
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where 0°C = 273.150°K and 1 atmosphere = 1.013250x10° dyne cm 2.

Because helium is also present, we have to include the absorption
due to Hz-He induced opacity; for translational opacity we can combine

HZ—H2 and Hz—He from expression 21 of Linsky:

— l .
K3,y = k;,T(HZ—Hz)PHZ(PHZ + 1.78P, ) cnm (3.4.8)

. . . . . -1
where K3 T is the total volume translational opacity in c¢m due to
3

HZ—H2 and Hz—He collisions, k§’T(H2—H2) is the opacity for HZ—HZ in

cnm 1 amagat—2 computed from (3.4.1) and (3.4.2) and P and PHe are

Hy

the partial pressures of the gases in amagat. As we have the

abundances of HZ and He in cm_3. using (3.4.7) we can convert (3.4.8)

to:
-1
€5 0 = qu,T(H2~H2)NH2(NH2 £ 1.788, ) cn (3.4.9)
where:
q = [273.15k/(1.01325x10%y1% = 1.38523x10737 = 1/Ni en® (3.4.10)

where k and NL are Boltzmann”s constant and Loschmidt”s number

respectively, and NH and NHe are the abundances of the gases in

-3 2
cm .
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The combined HZ-HZ and Hz—He induced rotation-translational

opacity can similarly be obtained from Linsky”s expression 22, which

in the form we require is:

-1
K qk;’RT(Hz—Hz)NH (NH + O.IONHe) cm (3.4.11)

?,RT 5 H,

-—

where k- (HZ_HZ) is the opacity for H,-H, in cm amagat—2 computed

7,RT 272
from (3.4.3) and (3.4.4).

For the vibration-rotation-translational opacity of HZ-HZ alone,
we can simply write:
K5 gor(H,=1,) = qks o (K -H N> -1
v, VRT "2 72 Y,VRT 2 72 Hz cm (3.4.12)

with ks

7 VRT calculated from (3.4.5) and (3.4.6).

The vibration-rotation-translational opacity of Hz—He is computed
separately using the expression (3.4.5) but with different

coefficients:

§2 = - 4.033x10" + 263.93T

log a” = = 7.7245 + 0.4246 log T (3.4.13)
1/a = 1.125%10% + 1.5866X10%T + 24.267T2

log b = 1.2044 + 0.4956 log T

giving ks (31,-He) in cm—lamagat_z. The required opacity is thus
7, VRT "2 .

obtained from:
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1

K;,VRT(HZ—H@ = qk= (H,~He)N cm (3.4.14)

vV, VRT HZNHe

The total mass absorption coefficient in cngm due to all
processes, working in dimensionless energy units, is simply obtained

by adding (3.4.9), (3.4.11), (3.4.12) and (3.4.14) and dividing by the
density:
K(u) =[Kqp +ipp + Kypp(Hy=Hy) + K pr(H,-He) 1 /p (3.4.15)

with stimulated emission included.

Other sources of continuous absorption or diffuse molecular

spectra like pre-dissociation or pre-ionization are not considered.
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4 COMPUTING THE BAND SPECTRA OF DIATOMIC MOLECULES

4.1 Introduction

So far we have only considered how the continuous opacity is
obtained. It is the purpose of this chapter and the next to discuss
the theory by which molecular bands are computed, then in chapter 6 we
discuss how the corresponding bound-bound opacity is calculated. 1In

this chapter, it is convenient to refer consistently to "states” in an
electronic context, i.e. electronic states, hence also singlet states,

7 states etc., but to refer to “"levels" in a vibrational or rotational

context, i.e. vibrational levels etc.

As far as this work is concerned, there are two types of bands
that have to be considered, vibration-rotation (VR) and
electronic-vibration-rotation (EVR). 1In the first case, transitions
involve different vibrational and rotational 1levels within the same
electronic state, usually the ground state, whereas in the other case,
the transitions involve in addition a change in the electronic state,
where again for our purposes, the initial state is normally the ground
electronic state; one mnotable exception being 02 where there are
several low lying electronic states giving rise to many bands. There
is in addition a third type of band, pure rotation, which involves a
change in rotational energy only. However, although.they have the
simplest structure of all three types, the bands are not considered as

they normally occur in the far infrared where a very small proportion
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of the flux occurs, the Rosseland and Planck weighting funcpions are
small, and the background continuum die to free-free transitions, as
discussed in the previous chapter, tends to infinity as the wavelength
tends to infinity, making the contribution due to lines relatively

less important still.

As the VR bands can be considered a subset of the more general
EVR Dbands, the same coding is used to handle the rotational fine
structure of both types. In this work, it is convenient to discuss
first the properties of the EVR bands in general, mentioning

restrictions and differences for VR bands where relevant.

For EVR bands, the follo&ing general selection rules for electric
dipole radiation have to be observed, see Herzberg (29): 8J = 0 or fl,‘
except that J =0 —4>J =0, 4A=0or +1, All=0 or +1 if Q1 is
defined, see sections 2.5 and 4.2, AS =0 i.e. no change in
multiplicity; we also have the selection rules of parity for
transitions between individual rotational levels, such that + <-> -
but + <> + and - <> -, where + or - means respectively the total
eigenfunction does not or does change sign with feflection. In
addition, for the overall selection rules of the electronic states, we
have: 2+<—-}Z+,2-<—>Z_, TT<->Zi—, and A“<->A " for any other values
of A subject to the above selection rules. Here "<->" means these
transitions are allowed, but “"€4>" means these transitions are
forbidden. If din addition the molecule has two identical nuclei,

]
e.g. Clzc12 (but not C12C~3

), the additional selection rules for
transitions between individual rotational 1levels are s €-> s and

a €-> a but s €> a, where s or a means respectively the total
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eigenfunction is symmetric and does not change sign with respect to
the exchange of nuclei, or 1s antisymmetric and does change sign with
respect to this exchange. This leads to the overall selection rules
for electronic states, such that g €-> u but g <> g and u <> u,
e.g.Z; é-—}i: applies, and the rotatiomal 1levels have alternating
statistical weights (see section 4.2). For cases where some of these
rules do not apply, e.g. electric quadrupole radiation, the
transitions are wusually very weak and hence are ignored. This also
applies for cases where 8S # 0 for electric dipole radiation, so

intercombination bands are also ignored.

Also, for transitions to be considered; the following points must

be observed:

(i). the molecule is sufficiently abundant,

(ii). the initial electronic state must be sufficiently populated,
i.e. the ground state or low lying excited state,

(iii). the fotational and vibrational constants are known or assumed
for both electronic states,

(iv). the electronic transition moment or band oscillator strength is
known or assumed,

(v). the transition is in the spectral region of interest, i.e.

precluding transitions in the far ultraviolet.

For VR bands, as always the same rule for J applies, as the same
electronic state applies to Dboth upper and lower levels, the
conditions AA =0, AS =0 and if A = 0L 337 0r$7¢-->S "~ are of

course automatically satisfied. If the molecule has nuclei of the
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same charge,' e.g. C]‘ZC12 or C12C13, there is no net dipole moment so
no transitions occur. (Actually this 1s not strictly true for the
latter molecule. The molecule HD is known to have a very small dipole
moment, see for example Mizushima (36), so it would be reasonable to
assume that all diatomic molecules consisting of atoms with like

charges but unlike isotopes would have very small dipole moments.

However, for our purposes, such effects are completely negligible).

As before, for transitions to be considered, the following

additional conditions must be satisfied:

(i). the molecule is sufficiently abundant,

(ii). the electronic state must be sufficiently populated, in
practice the ground state,

(iii). the rotational and vibrational constants for that state are
known or assumed,

(iv). the dipole moment expansion is known or assumed,

(v). the atoms have different charges.

If these conditions are met, there will automatically be some VR bands
in the spectral region of interest, mnotably in the near infrared, as

there is no change in electronic energy.

As a result of the above restrictions, some molecules will be
inactive in the spectral region of interest. The best example is Hz,
although it is usually by far the most abundant molecule, as the
nuclei have the same charge there is no electric dipole VR spectrum in

the near infrared (or pure rotation in the far infrared), the first
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excited electronic state is at such a high energy that the resonance
band system lies well into the wultraviolet where the flux is
unimportant, and closer lying excited.electronic states that would
give rise to transitions at longer wavelengths are negligibly
populated. However, as discussed in the4previous chapter, because H

2

can be so abundant, other processes are considered.

The types of electronic states dealt with are restricted to
multiplicities between one and three, as this covers the overwhelming
majority. Moreover, Kovacs (31) gives general formulae for
Honl-London factors and term values only up to triplets, which are
complicated enough, and even specific HSnl-London factors for higher

multiplicities become very complicated, see the next section.
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4.2 Rotational Fine Structure of Bands.

In this section we explain ﬁow the detailed rotational fine
structure of VR and EVR bands is computed for diatomic molecules. For
both diatomic and triatomic molecules, we need to compute individual
lines that make up a band, as this 1is required by our methods of
determining opacity in chapter 6. The relative line positions are
calculated from appropriate term formulae and relative line strengths
from HOnl-London factors, then from this we can subsequently obtain

absolute line positions and strengths in the spectrum.

The formulae wused to determine term values and intensities are
based on coupling cases intermediate between Hund”s cases (a) and (b),
see Herzberg (29) and Kovacs (31). Where for case (a), the electron
spin is strongly coupled to the internuclear axis, but for case (b) it
is very weakly coupled, or not at all, as is the case with Z states.
By using general intensity formulae, selection rules that are specific
to the limiting cases are automatically taken into account. Although
a few examples of other coupling cases exist, most states conform to
either cases (a) or (b) or intermediate; accordingly, this is used as
an approximation to all states considered. Likewise, any
perturbations between energy 1levels are neglected throughout this
work, where perturbations are caused by two or more levels at nearly
the same energy, such that these levels are displaced from their
unperturbed positions and the wave functions of each of the perturbed

levels are now a linear combination of all wave functions of these
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levels if unperturbed, see Herzberg (29). However, for most purposes,
these approximations are good, and computed bands should agree
reasonably well with observation. Even in poor cases, particularly if
the spectroscopic constants are not well determined, it is hoped that
the gross features of the spectrum are reproduced, hence accounting
apprpximately for all the absorption even if the details are

incorrect.

The three multiplicities considered are handled in detail in the
following subsections, where under singlets, some aspects common to

all multiplicities are considered.

4.2A Singlets

Most electronic states of interest belonging to molecules with an
even number of electrons, including of course all neutral homonuclear
molecules, ére singlet states where Hund”s cases (a) and (b) are the
same, and are the simplest to handle.

The rotational term values in cm are given by, (see also
section 2.5):

B X

FO = 8 (3050 -] - 2349 L e

where J = A A+1,A+2... and B, and D are the rigid and non-rigid
rotational constants respectively, given in cm—l, and are dependent on

the vibrational levels by:
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+B(red)+ - (4.2.2)

where Be and De are the rotational constants at equilibrium
separation, oy and pe are the coupling constants between vibration and
rotation, and v is the vibrational quantum number with v = 0,1,2...,
and higher order terms in these expressions are neglected as they are

generally very small.

As stated earlier,

h

B, F = (4.2.3)
¢ 8“2613

where Ie is the equilibrium moment of imertia in cgs units, or we can

write:

= 4.2.4
B. = awe (4-2.4)
where the reduced mass_/Lis:
- m, m :
/xi — ——-——L——-L—. (4.2.5)
m,o4+ M, : .

and r, the equilibrium separation of the nuclei.

If the constants De’ X and f3e are not available in the
literature, as is often the case, they can be found from the following

relations:
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, |
D, = BL—B; : (4.2.6)
L‘)tf
3 2
X = 5“[ Wexe By - BeJ (4.2.7)
c
- oo 2
G = D, Boexe _ 5% _ olh (4.2.8)

Ve B, 2 Be

where at Jleast Be’ and the harmonic and anharmonic constants A)e and
WX respectively must be known, and where a Morse potential function
is assumed, from which these expressions are derived. The Morse

potential function, see Herzberg (29), is defined as:

X (Y -1%)

V(r) = Dco {-e¢ (4.2.9)

where DZ is the dissociation potential measured from the bottom of the
potential well, r, is the -equilibrium separation of the nuclei as
stated above, and & 1is a constant. We can assume that the Morse
potential is a reasonably good approximation to the actual potential
function; the minimum V(r) = 0 occurs when r = r, and V(r) -> DZ as
r —=>o0., However, V(r) does not-approach infinity at r = 0 by (4.2.9)
as it would do for a correct potential, but this region is of little
importance. Because the Morse function is an approximation, (4.2.6-8)

are approximate relations.
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In some cases, B0 and DO are given, expressed for the ground
vibrational level, (4.2.2) is then used in reverse to obtain Be and De

provided «_ and 3, are known, hence:
e e
/3,
B, = B, + =, D, = D, - L (4.2.10)
2
then B, and D, are found in the usual way.

In some electronic states where the spectroscopic constants are
poorly known, only BO may be given, together with some vibrational
constants. Unfortunately, Be cannot then be obtained directly from
(4.2.7) and (4.2.10), without resort to some form of iteration.
However, as these equations are only approximations anche<< Be, it is

not considered worthwhile to solve for Be’ so we just put Be= B

o’
solve for(xe from (4.2.7), hence also De’ “then apply (4.2.2) as

required.

The H8nl-London factors by Kovacs (31) for AA= 0 are:

P(J) = (JHA)T-N)/JI
Q) = AZ(23+1)/J(J+1) (4.2.11)
R(J) = (JHAHL)(J-A+1)Y/(J+L)

and for AA = +1 are:
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LA=+ AA= -1

P(J) = R@JI-1) = U-A-1)J-A)/2J
Q) = QI = (J=-A) (J+A+L) (23+1) /23 (3+1) (4.2.12)
R(J) = PU+l) = (J+A+L)(J+A+2)/2(I+1)

where the HOnl-London factors give the relative line strengths in a
given band due only to rotation, neglecting the frequency and
Boltzmann factors, and assuming the rotational wave functions can be
separated completely from the vibrational and electronic wave
functions according to Borm and Oppenheimer (60). The HOnl-London
factor appears in (4.4.1), the expression for the total 1line

strength.

In (4.2.11) and (4.2.12), P, Q and R refer to the branches
according to whether 83 = -1, O or +1 respectively, there being no
Q-branch in (4.2.11) if M= 0, and all H8nl-London factors given are
expressed in terms of the initial level, which for absorption is the
lower 1level J". Tn (4.2.12), when AA= -1, if we require R(J),
replace J by J+1 on the right hand side of the corresponding
expression, for Q(J) no change is needed, and for P(J), replace J by

J-1. These are normalized such that:
24 ['
Z 5:1"5" = 297 4+ 1 (4.2.13)
I3’

where S,

Joq" is P(J), Q(J) or R(J) depending if J7= J"-1, J" or J"+1
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respectively and A for the two 1levels is kept constant. Hence
equations (4.2.12) differ from those for AA = +1 on page 208 of

Herzberg (29), which are normalized such that:

zz Syige = AT" 41 (h.2.18)
AT

which are half those of (4.2.12)

If A > 0 for any multiplicity, all levels are split into two,
i.e. A-doubled, however, because of selection rules, we will not get
splitting of lines unless both participating electronic states have
A> 0. As the theory of A-doubling is considered beyond the scope of
this work, when required, we split a computed line into two components
separated by lcm—l, a typical value forJQ—doubling, and the sum of the
strengths of the two lines taken to be twice that of the original
line, with each component equal in strength to the original 1line if
the nuclei are not identical. In the conditions of interest, a
separation of lcm.l is much greater than the line”s Doppler width, so

the components are assumed not to overlap.

For all multiplicities, if we have an EVR band from a molecule
with identiéal isotopes, then in addition to the HSnl-London factor
and Boltzmann factor due to the population of the levels, there is an
alternation of the intensities of the spectral lines due to the
nuclear spins. If I is the nuclear spin quantum number and N the
total molecular angular momentum quantum number apart from electron
spin (for singlets J=N), then 81 is the nuclear spin statistical

weight factor which must multiply the HOnl-London factor, and 81 is
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calculated according to the method below. We adopt the conventional
notation for transitions between molecular electronic states, where
for example Tl €~ 7 means absorption from a lower 2 state to an upper
T state, then T ==>Z is emission from the upperTT state to the lower
Z state. Though we deal only with abserption in this work, this
method below is exactly the same for emission, but the initial and

final states are interchanged.

S<¢-7 and <2

+
u, =+l for Zg oriu,

u = -1 forz: orZ;

b

u,= +1 for I-integral,

u,= -1 for I-1/2-integral,

ug= +1 for N-even,

u,= =1 for N-odd.

If U = Ujuyuyg, then:
9, = AT 4 U + 1 (4.2.15)
t 2 (2T 1)

i.e. gy = (1+1)/(21+41) for U =+l and gy = I/(21+1) for U = -1, if
I =0, as is the case for ClzClz, alternate lines are missing. U and

gy are here expressed in terms of the initial state.

2«11

We do the same analysis as above, only U and gy are now expressed in
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terms of the final state.

A>0<—-4">0

Each 1line is split into two components with intensities in the ratio
of the statistical weight factors 2(I+1)/(2I+1l) and 21/(2I+1), which
add up to 2 taking account of Jq—doubling. If I =0, only one line
will occur, and for singlet states the spectrum may mimic

TT<~>2:transitions for a heteronuclear molecule.

4.2B Doublets

A doublet is the lowest possible multiplicity of an electronic
state of a molecule with an odd number of electrons, and is

accordingly a very common species.

The general rotational term values for the two spin components

are given approximately by:

B =F0) = B[(3433- A= § /e (3+3) ¢ V-]

-0, [(3-9)(3+4) - A

(4.2.16)

Fran(3) = £ (3)= B, | (34344 5 JL (57 5 e v (-]

- 0 [(3+ (3 - A

where Y = A/Bv’ with A being the spin—orbit coupling constant, such
that when Y = 0, we have Hund”s case (b), with ¥ —-> +26we approach

regular Hund”s case (a), and when Y -> —o¢we approach inverted Hund"s
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case (a).

However, in (4.2.16) obtained from Kovics (31), we are neglecting
spin-rotation coupling due to the single wunpaired electron, and
A-doubling, as both these quantities are small, involve fairly complex
terms and the constants are frequently unavailable; qArdOubling is in
fact handled crudely as stated in 4.2A. 1In addition, the centrifugal
or non-rigidity terms are taken to be in the case (b) limit, i.e. with
Y = 0, rather than the more general form as given by Kovics (31) page
62 equation 10, (where there is a misprint, as the very 1last term
should be preceded by a positive sign). Except for strict case (b),
the centrifugal terms given in (4.2.16) are -expected to be a poor
approximation when J is small; however, as these terms ave very small
compared to the rigid terms in such cases, their errors are
unimportant. By the time J becomes large enough for the centrifugal
terms to contribute significantly to the total rotational term values,
spin uncoupling occurs and case (b) is a good approximation. This was
checked numerically by experimenting with realistic values. ©Note that
the expressions for the centrifugal terms given by Herzberg (29) page
232 are incorrect, the corrected form being given in (4.2.16) in the

case (b) limit as stated.

For states, Y = 0 so we have strict case (b), and (4.2.16)

reduces to:

F., (N) = F (M) = B N(N+1) - DN NIO 5 YN

it

- I,z
(4.2.17)

Foang (N) = F (NY = BN (N+1) ~ D, NQ(N¢?)? - éy{,«uﬂ)

i



- 155 -

where the spin-rotational coupling constant ¥ is included for this
special dase, as it is often known for 2 states, and N is the angular

momentum quantum number apart from spin.

" Quite generally, in (4.2.16), FZ(J) > Fl(J) for any value of Y

and/t, also for the series F N = J-1/2 and for F

1> N = J+1/2, even

2’
in the case (a) 1limit when N is no longer defined as a meaningful

quantum number, with the rule N =_A,ﬂ#1,ﬂ+2... still applying.

Considerable care has to be taken in the correct assignment of
levels, in order to ensure that the correct formulae are selected when
the Hbnl-London factors ' are computed. For :Z states,
J =1/2,3/2,5/2..., each level of J is split into components F, and
F2’ such that FZ(J) = Fl(J+l) associated with a given value of N as
stated above. Thus except when N = 0 where there is only a single
level of J = 1/2 belonging to the Fl series, each value of N splits

into two J—components as given by (4.2.17), such that the splitting is

Y(N+1/2).

When A> 0, we can define a new quantity{)], such that 1= +2Z s
so {1 =_Ajj/2 giving two series of levels with
J =0,041/2 043/2... where in the case (a) limit, fl is the total
electronic angular momentum quantum number. As with N,fl is used as a
convenient index even when it is not a good quantum number. There is
only one level for which J =4X~1/2, and particular care must be taken

to index it correctly. The assignments are as follows:
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Y > 2 Fl(J) belongs to the series with {1 =A-1/2 for all J,

F,(J) belongs to the series with 1 =A+41/2 for all J,

0 <Y < 2 same as above, except the single level J =A-1/2 now

belongs to F2, i.e. F1(A—l/2) is renamed cmd—l/Z),

Y <0 F1(J) belongs to the series with {l=A+1/2 for all J,

F,(J) belongs to the series with N=A-1/2 for all J.

Thus, when Y changes sign, with the exception of the level J =/A-1/2,
for a level specified by a given(), Fl(J) is renamed FZ(J> and FZ(J)

is renamed Fl(J)’ see also Mulliken (61).

The rotational constants Be and De and the vibration—-rotation
coupling constants o{e and B are defined in the same way as for

singlets, except that when A is large, we can write:

5# = B, (1 I ;%{ ) (4.2.18)

as given by Herzberg (29) page 233, such that for some electronic
states, Beff is given for the two fl ladders, 1in which case Be is

recovered by simply taking the mean.

The  HOnl-London factors for doublets for any intermediate

.coupling cases are obtained from Kovacs (31), see the appendices.

There are in general twelve branches for Sjji" = Xn’n"(J")’ where X is

P, Qor R and n is an index 1 or 2 accordirg to the series. In fact

the 24 equations given, allowing for Al= 0,1, can be compressed into
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6 different equations.

In addition to the general selection rules, it is only necessary
to ensure that transitions occur between levels that actually exist,
as the selection rules specific to the Hund”s limiting cases are
automatically taken care of by the Hbnl-London factors. However,
these formulae often break down when a transition involves a level
with i =A-1/2 for A > 0, but it is often found in this case that if
such a level is assumed to have strict case (a) “"character”, quite
regardless of Y, the value computed is consistent with the sum rule.

Accordingly, the following additional rules are employed:

22:(-—223 There is no problem as the general formulae can
be applied, but the HOnl-London factors for 6 of the 12

possible branches are zero, i.e. forbidden transitions.

2 2., _ _ _
1< Z: Qll(1/2) Q12(1/2) = 2/3 and P ,(3/2) = P12(3/2)
= 1/3, as J7= 1/2 in these cases, otherwise the general

formulae are applied when levels exist.

2 20, _ _ _
7 <—“T: Q11(1/2) = Q21(1/2) = 2/3 and Ry;(1/2) = R,,(1/2)
= 1/3, as J"= 1/2 in these cases, otherwise the general

formulae are applied as above.

N<-—-A": with min(A",A") > O, then if either J"=A"-1/2 or
J=A"-1/2 or both, strict case (a) is applied by using
(4.2.11) or (4.2.12) as appropriate, with ) inserted instead

oqu, and the other transitions invelving these levels being
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forbidden. As the case (a) selection rule AZ =0 is
applied, transitions beginning or ending on a J =A-1/2

level can only be "vertical” in the energy level diagram.

The above rules are consistent with Schadee (62) after allowing
for his different normalization. KXovics”s normalization 1is adopted
throughout this work, such that the sum of all transitions for any
level, neglecting any A-doubling but including spin splitting, is
2J+1l. Thus for doublets, except for J =A-1/2 for A> 0, the sum of
all branches for a given J is 2(2J+1), with 2J+1 being the sum from

the odd level, if it exists.

From the discussion earlier, if Y < 0 the indices that refer to
the state in question are changed such that 1 =-> 2 and 2 => 1 with the
complication that this switchover occurs for Y < 2 with J =J{~1/2.
That negative value of Y is substituted into the appropriate formulae
of KovAcs, vyielding both the term values and H6nl-London factors. It
must also be pointed out that the smaller of A~ and A" is substituted
into his 12 expressions for the branches when Ji’#[l", but the
respective values of A for the appropriate states are substituted in

his equations 6 on page 61, as well as for the term values.

For identical nuclei, the statistical weight factors follow
exactly those rules for the singlets, except that N = J-1/2 for Fl and
N = J+1/2 for Fz regardless of whether N is a well defined quantum
nunber. However, this is of somewhat academic interest, as only
charged homonuclear molecgles fulfil this condition, and the

equilibrium abundances of charged molecules are usually negligible.
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4.2C Triplets

Triplet electronic states can only belong to molecules with an
even number of electroms, many such states are highly excited and are
of no importance here. However, there are a number of mclecules which
can = be of great importance that have a ground or low 1lying triplet
states like C2’ 02 and TiO. Unfortunately, the general expressions
for the term values and H6nl-London factors are considerably more

complicated than the doublets.

The general rotational term values for the three spin components

are given approximately by:

i 2 . P
D F(3)= B [3(5)-A+2 - /2, -22,] - 0,[(3-03 - ]
Fs (307 B(3)=8,]3(3:40-A%43 2] - ‘Dy[j(j,{.q)u/l?j{ (4.2.19)

K. F {3) = Birb 3+ A % “’/2. - 22)} - DV[(J +1)(JT4?) --/'LQJ2

where 2 = AT (Y-L) + 4 + 3 (940

5 (4.2.20)
Wz s 4 A1) - b s (9]

32, 9

where —A?+2/3 in (4.2.19) from Kovacs (31) page 69 has been omitted by
Herzberg (29) page 235, bwhich is inconsistent with the latter”s
treatment of doublets. As before, Herzberg also gives the incorrect
expressions for the centrifugal correction terms, which are corrected

here for the case (b) limit. As with the doublets, it is assumed that
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by the time J becomes large enough for the centrifugal terms to
contribute appreciably to the term values, case (b) 1is a good
approximation, as the general expressions for the centrifugal terms

are extremely complex.

“In the above, Fl(J) is invalid when J =/4-1 and 0 < Y < 4, in

which case by Budd (63), 22 is re-written as

Z, :3.%[/1*(‘/%)(\/&) - g - 23(2+41)] (4.2.21)

and J = A is put into Zy» Z, and F,.

As with the doublets, the general spin-rotation coupling and
f-doubling are neglected, as well as the additional spin-spin coupling
due to the two unpaired electrons. However as before, for 2 states we
can include these coupling terms as they are simpler, the constants

often being available.

Accordingly, from Herzberg (29), where we include the centrifugal

terms:

F;—i (V) Fa“\D N B;;(MQ43N +3) “DVN'?“(Ufi)Q, \

”\[(Q’\/‘f'ﬁjz‘g: +)~1_Q{>,B:‘ 4 X(N_{_.i’)

[

Fo(v) = Bz BoN(N+1) - DL NA(NH4)? (4.2.22)

Fawm) = F3(-N) = B.(N¥*-Ni1) - D, NQ(M'T")Q“ P

+/@N-1R8,) 43238, - YN
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where ¥ and ') are the spin-rotation and spin-spin coupling constants
respectively, and & in Kovacs (31) is 2M/3 in Herzberg (29) or
Mizushima (36), the latter giving extensive tabulations of Y for
2Zstates and ¥ and A for 3Zfétates. For F3(N=l) with J = 0, the

sign in front of the square root must be inverted.

Quite generally, F3(J) > F2(J) > Fl(J), and for the series Fl,
N =J-1, for F2’ N = J and for F3, N = J+1 for any coupling case even
if N 1is not a good quantum number., £ N> 0, 1like the doublets, we

can define {l = |A+Z], so fl =A-1,/Aand A+l. Also care must be taken

in the assignment of the levels such that:

Y>O0 Fl(J) belongs to the series with fl=)1—1,
FZ(J) belongs to the series with 0} =/,

F3(J) belongs to the series with {1 =N+1.

When Y < O, Fl and F3 are interchanged. This rule is applied to all

values of J even when |Y| is small, as the lowest levels behave in a
very complicated way, see for example Challacombe and Almy (64). When
A is large and Beff is given for the three levels separately, the

middle one can be used as Be.

As with the doublets, the Hbénl-London factors for triplets are

found from Kovacs (31l), see the appendices, with 27 branches in

Z’Z "

general in the form SJ,J"

= Xn,n"(J") where n is an index 1, 2 or 3.
There are 54 equations for AA = 0,+¥1 which cannot unfortunately be

compressed to 6 like the doublets.
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Considerably greater problems were encountered, when attempts
were made to determine the H6nl-London factors for the lowest levels,
than the doublets. It was decided to treat the J =A-1 and
J = A levels belonging to the {1l = A-1 ladder as strict case (a)
regardless of Y when A > 0. Accordingly, the following rules are

employed:

32:4——32& There is no problem as the general formulae can
be applied, but the HO6nl-London factors for 15 of the 27

possible branches are zero.

M35 Q500 = Ri4(0) = 0, 0 (1) =P ,(1) = 1/2,

P12

1/4,

9/20, P12(2) = 3/4, P13(2) 3/10, with all other
transitions being obtained from the general formulae when

the relevant levels exist.

T -MT R (0) = 1/3, Ry (0) = 1/2, Rqy(0) = 1/6, Qq,(0)

=0, Q,(1) =1/2, R{;(1) = 9/20, Q,y(1) = Ry (1) = 3/4,
Q31(1) = 1/4, R31(1) = 3/10, P31(1) = 0, otherwise as

before, apply the general formulae.

A<—A": wWith min(A",A") > 0, if{l =A-1 and J =0 or I+
for the upper or lower states or both, then apply strict
case (a) with (4.2.11) or (4.2.12) as appropriate, using
1 in place of and "diagonal” transitions involving these

levels are forbidden, i.e. 42 = 0.
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As with the doublets, these rules are consistent with Schadee
(62) after correcting his normalization. When J > A, the sum of all
branches is 3(2J+1) from a given J, but is not true for the lowest
values of J which are not tripled. Thus for Z states, there is only
onerievel for J = 0, however, the sum rule of 2J+1 from a given level

should always apply.

Unlike the doublets, where the sum rule is always recovered when

the transitions from the lowest levels are “patched up”, for the
triplets this 1is only approximately the case wusing the above
prescription, as for some small values of Y for some transitions, the
sum rule does break down for the lowest levels. At worst, this would
only affect the first few lines in a complex band, with typically many
hundreds or thousands of lines, and would thus be expected to have a

negligible effect. In view of this, it was unfortunately not

considered worth while pursuing this matter further.

It is also found that for the most intermediate case when
J(J+1) = |Y| with Y # 0, the sum rule is out by a few percent, but as
this affects only a limited range of values of J for a given vaiue of
Y, it is again considered that the treatment is sufficient. Far
greater uncertainties would be due to the input data, particularly
oscillator strengths or transition moments, and in practice omne would
only expect in many cases at best to reproduce the gross properties of

bands.
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When Y < 0, the indices that refer to the state in question are
changed such that 1 => 3, 2 ~>2 and 3 -> 1. Great care must be used
with Kovacs”™s formulae, Y is substituted with a negative value in all
the relevant expressions, but in édditionuA must be replaced by —J\in
equation 10 page 70 only. This is in addition to the same rule as for
the doublets concerning the values of A to be inserted into the

appropriate expressions.

The following misprints were noted in Kovacs”s formulae: page
132, Q4,(J) in the last term, for -8A(J-1)(J-A+1)... read
-8A(J-A)(J=-A+1)... and page 133, R32(J) in the second term, for

...ug(J+1)+... read ...ug+(J}l)+...

For identical nuclei, the statistical weights follow the same

rules as before, only now N = J-1 for F., N =J for F, and N = J+1 for

1’ 2
F

3°

Tatum (39) gives some very useful energy level diagrams for
singlet, doublet and triplet electronic states for Hund”s cases (a)
and (b), together with some of the possible rotational transitions.
Also, note that although we neglect transitions between different
multiplicities, as stated in section 4.1 because they are very weak, a
good example of such transitions observed both in absorption and
emission in the ultraviolet are the Cameron bands of CO, a3TT<—> XLZ+,
i.e. transitions between the lowest excited electronic state which is
a triplet, and the ground electronic state. Kovacs (31) and (65) give

Honl-London factors for transitions involving different
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multiplicities, also when |[8A| > 1 which we also neglect. Finally,
although we consider  states to be strictly Hund”s case (b), Tatum
and Watson (66) gives HOnl-London factors for 32_<—> %i transitions
when spin-spin and spin-orbit interactions do cause these states to

approach case (a).

Having discussed the multiplicities in detail, we now make some
general points about bands, neglecting the effects of centrifugal

stretching and spin splitting.

When BV,> Bv"’ a band head forms on the P-branch at a longer

wavelength than the band origin, such that:

- Ty 3
V=Y, - (By' + By) (4.2.23)
e (Bu'- By~)

when:

b
(B'v-" -~ 6;/")

so the band appears shaded towards the blue, and where ;0 is the

N = .‘% + (4.2.24)

position of the band origin in wavenumber. When Bv’< Bv"’ a band head
forms on the R-branch at a shorter wavelength than the band origin,

such that:

2
v=3% + 28, - (3Bu-8.) (4.2.25)
Lf(&,!‘- ﬁu)

when:
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N=-3 - B (4.2.26)

& (5v“’5w0
so the band appears shaded towards the red. The latter is always the
state of affairs for VR bands, as Bv’ is always smaller than Bv"’

except possibly in some very rare cases.

If the relative population of the energy levels is given by (see

also section 2.5):

_@n vt he /AT
P- (Anie (4.2.27)

then:
Bhe _L>
kT \&hT 2/
= (4.2.28
E%” Bhe ¢ )
when:
N = EI -4 4.2.29
“/ Aphe A (4.2.29)

which corresponds approximately to the maxima in the P and R branches.
Finally, because higher order terms in the centrifugal stretching

are neglected, for sufficiently large N, the levels will turn over in

our approximation and become meaningless. This occurs when:

BN(NGD) =~ DINNCEES . (4.2.30)
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i.e. when:

~

N .

As N is of course always an integer in

we must round to the nearest integer.

energy level ladder, if N or J reaches

computation of the band is stopped,

potential well is reached.

band to be cut off long Dbefore

diminishing Boltzmann factor.

In practice one would

these

1
- (4.2.31)
A

these expressions given here,
So in ascending the rotational

the value in (4.2.31), the

likewise if the top of the

normally expect the

safeguards, due to the
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4.3 Vibrational Energy Levels and Matrix Elements

The vibrational term values measured from the bottom of the

potential well, see section 2.6, is again:
- f : , , ? N
G(V) = Qe (V+4) ~ DeXe(v ) + Uc@)g(v*i) +ee (4.3.1)

where.«')e is the harmonic constant, Lgx WY are anharmonic

e’

constants, and v = 0,1,2... is the vibrational quantum number.

As the =zero point for calculating the vibrational partition
function is the lowest vibrational level of the ground electronic
state, the Boltzmann factor for this level, mneglecting the effect of
rotation, must be unity, hence we must refer all other vibrational
levels to this. The zero—-point energy of the v = 0 levels is:

G(o) = —‘%KJ@ - L Wpze 4 ifa)cge £ (4.3.2)

1
i
hence:

G () = G(v) - G(0) (4.3.3)

Frequently the vibrational constants Ly wx, and @.Y,> Wwhich

refer to the v = 0 level, are given such that:

Go(e) = Qo = G, 9,0 & DoV e oo (4.3.4)
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It is, however, convenient always to work with the same quantities and
convert these with the following relations, which are the inverse of
those given in section 2.6, terms higher than 255, being omitted:
Oy = o + Lo, + 2 Loy

e , © ¢ e d°
L1, = Oyx, + %Uogo | (4.3.5)

bege: Lgvo

When the electronic state in question is an excited state, great
care must be exercised in correctly calculating the term values
consistently. If Te and To are electronic energies of an electronic
state measured respectively tb the bottom of the potential well and

the lowest vibrational level, then for the ground electronic state, by

definition:

To = or [ = 0 (4.3.6)

which respectively define the zero-point energy in whichever system we
are working in. For an excited electronic state, T; is the energy of
the bottom of the potential well of the excited state above the bottom
of the potential well of the ground state, and T; is similarly

measured with respect to the lowest vibrational levels. It follows

that:
1 o ) ‘ _ o
T =T = g(a-o0) - L(an -

(4.3.7) .

+. -é;: (Ueije‘ - ‘Jc"'(’je”) o
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which is wuseful if we consistently want to work with Te when To is
given. Except for the ground state, by definition, TO is subject to

isotopic shift, unlike Te which is constant.

If H(v) is the term value for the vibrational level in an excited
electronic state, then neglecting rotation and spin etc., we can

write:

i — - I /
HD = G+ T = 6e) =G (v + T, (4.3.8)
which ensures that the Boltzmann factor is correctly set.

. . o . . . .
Finally, if DZ and DO are respectively the dissociation
potentials, distinct from De and DO the non-rigid rotational
constants, measured from the bottom of the potential well and the

v = 0 level, we can write:

o o - - - i i ) [ )
De - Do - G(D) - :10‘3 B Z}Qﬁaf + g»"/eyef'*-- (4.3.9)
where again, DZ is constant but DZ is subject to isotopic shift. 1If

either of these two constants is not available, it can be found from

the Morse approximation, thus:

2 2
D° = Yo', D’ = e (4.3.10)
e Lt 2 e L O, x,
¢ te &

which will in general not agree with the empirical value, if
available. The Morse potential approximation, see later, allows only

for the constants Oe and Qéxé in the expansion for the wibrational
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term values; in practice there are higher order terms of which only
VoY is usually known. 1In rare cases oeze is also given, however, it
is so small in such cases, that it is neglected in calculating the

vibrational term values.

As in ascending the rotational ladder for a band, so in ascending
the vibrational ladder for a band system, if the Boltzmann factor does
not cut off the band system, we stop on reaching the top of the
potential well, or when the levels turn over and become meaningless,
or indeed when the maximum specified number of levels has been
reached. The turnover is not found from a simple quadratic equation,
as is done with the rotational levels, due to the presence of the
cubic‘neye term. Instead a test is done for each vibrational level in

turn, to see if it has turned over.

We now come the the considerably more difficult problem of
calculating the vibrational matrix elements. Originally, it was
decided to find the overlap integral Jf%,VQHdr, the square of which is
known as the Franck-Condon factor, by calculating the harmonic overlap
integral from Manneback (67), then applying Hutchisson II (68) to
determine the anharmonic overlap integrals. Harmonic overlap
integrals evaluated from recurrence relations by (67) were found to
agree with the more cumbersome method by Hutchisson I (69) after
correcting some errors in the latter. 1In (68), the Morse function is
only expanded to three terms in the exponential, then perturbation
analysis is used to obtain the anharmonic wave functions and oveflap
integrals. Unfortunately, a large number of errors were also found in

this paper. Bates (70) giveé formulae and also tables for determining
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harmonic overlap integrals -together with anharmonic corrections.

Most fortunately indeed, a recent method by Doktorov et al. (71)
was found subsequently to be far superior to the Manneback-Hutchisson
method mentioned above. The Schrddinger equation is solved éexplicitly
with the Morse potential, rather than a truncated series, the computer
code is far more efficient and there are a number of other important
advantages discussed below. Accordingly, the Manneback-Hutchisson
method was abandoned in favour of Doktorov”™s, except that the harmonic
overlap integrals by Manneback, together with work from other

references could be used as a check.

In addition to EVR bands, Doktorov”s method is adapted here for
calculating the vibrational transition moments of VR bands, hence
tying together two separate branches of spectroscopy, and replacing
the many long and complex formulae published in several papers by
Bouanich e.g. (72), if the Morse potential is accepted as a good

enough approximation.

These analytic techniques are adopted, as detailed numerical
integration of wave functions of éeneral Rydberg-Klein—-Rees pdtential
functions are considered beyond the scope of this work. For the same
reason, it is assumed that the rotational contribution to the matrix
elements can be factorized out as the H6nl-London factors, hence they
are the rotationless vibrational matrix elements that are determined;
This is expected to be a reasonably good approximation except for

large J, by which time other uncertainties increase.
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Doktorov™s equations are taken .-and recast in a form found
suitable for numerical work, as explained below. The Morse potential

is again:

X7 -1e)

Viry= D, |1 - ¢ (4.3.12)

where DZ is, as before, the dissociation potential in cm—l, r, the
equilibrium internuclear separation and « a constant. To avoid
excessively large or small numbers, it is convenient to express r, in
Xngstr6ms, and hence adjust o accordingly. We can write the following

relations:

3T\ L : ST Wl f
o(llz 10.. ol -/'L QL)“ A b 0(’: 10' —:l “ C//L UEI A-j (4 3 13)
D, h Dc A o
o ol ~ o/
= o i gERRSY
S 2D, -4 s’z A -4 (4.3.14)
Op" e’
x4«
o = 5 (4.3.15)
and:
i - (1. ‘i 1 ")
. As g (e
/ﬂo gm__é e (4.3.16)

287+ 4
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where M is the reduced mass in grams and s is the number of
vibrational energy levels, such that the vibrational quantum numbers

are restricted to the ranges 0 L v'{ s" and 0 £ v s7. s will lie
very roughly between say 20 and 100, and will not in general be an
integer by (4.3.14), though of course actually there can only be an
intggral number of vibrational levels. However, to make the treatment
easier and more realistic, s is rounded to the nearest integer, as
this is considered a minor approximation, in view of the fact that the
Morse potential function is itself only an approximation. Indeed for
safety, we restrict v  s-l. We also have the additional
approximation of the ®-averaging method, where we have to use the mean
value of & from (4.3.15) for both of the electronic states, this being
a compromise as Doktorov”s equations can only be written in closed
form when« "= ™. Fraser (73) uses this approximation in calculating
the overlap integrals with Morse potentials using earlier methods, see
for example Fraser and Jarmain (74) and Jarmain and Fraser (75).
Clearly the further apart the two values of &« are, the poorer is the
approximatién, at worst we can at least hope to obtain trends of the
band strengths. (It is noted thaﬁ there is an error in Doktorov’s

expression for the energy levels, as his De’ the dissociation

potential, in the anharmonic term must not be squared).

With the above information, we can now calculate the required

vibrational matrix elements, defining:

= VM v = 1PN Y, A (4.3.17)

vign

giving the normal overlap integrals when N = 0. In order to find each
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required value of etc., then

() (0) () L(2)
Tv’v"’ we must obtain TOO s 00 s OO cee

use recurrence relations. Because of the limitation of the available
molecular data, the highest value of N wused is 4. Re-writing

(N)

Doktorov’s expressions for TOO in a form suitable for numerical

evaluation:
o -1 " (E-D(E-) ... (&- 3-
T = (ﬂ) - 4.3.18
o0 X/ | (ar- 1) (=7) --~---(1Y—q,) ( -3 )
—.(N)
X7 ) X
where: *
1= [s”~s’] , T o= Wo:(s’,s”)) E = s" ¢+ 9" (4.3.19)

and X(N)(t) are the following functions whose complexity increases

X1 = 1 (o320
X ) = fa + V(O 4321
Xm( = bl s VO ua + ) + [wie)] (4.3.22)
X0 = bie 239040 43[40 +{20] ba s

e VOO + {Y(Ee)

X“‘ APEER Iy APENA L CYSIICTE o s
LY 3OO+ (¢ [ha + 200
Fp0 PO 319 fv Ol v + o]
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where:

..o('sé”
a = - '9\6 ' (4.3.25)
(As™+ D1+ )

\{’(t) = 0[’ Alr(t) and ‘{’(m(é) = ff‘bn li/(k) (4.3.26)

At

Numerical values of‘f(N)(t), not to be confused with the symbols
for wave functions in (4.3.17), are found by evaluating the asymptotic
expansions as given by Abramowitz and Stegun (46), which are rapidly

convergent even for fairly small arguments. The expansions used are:

.\I’,(t);_%(;__i_1 + _ 4 oA _ A

- - . e —— —_— ..
26 128 Aott 28EE T 2t i3 (4.3.27)

;. = 1 1 1 " l { 1
\‘J ([) A e —_ 30{:9 +£:Q63 —r{gt‘l (4.3.28)

q,lDa_) - -

L L N R (4.3.29)

L .3, 10 (4.3.30)

(= 2 R 1
‘f) ( t‘( 65’ é?’ 3{,‘" éu 633

63

Direct summation of the recurrence relations given by Abramowitz

and Stegun (46) agree well with (4.3.27-30) even for an
unrealistically small value of t = 5, however, for large values of t,

the direct summation becomes useless due to loss of significance.
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(W)

With the required values of T00 » the recurrence relations given
by Doktorov can be used to generate (§3" in a three dimensional

array, which has to be in double precision to limit the accumulation

of round-off errors. For the v" progression, i.e. v'—=> v"+l:

() . , A
vavzz = [AS P Av¥ 41 e } st -5ty pvieg
s/ +s* o vivelivi(as v 4 ) AS“-AvT 3

o Y AN
(v;._i)(.is.i_ vi/+;\)J T. o 4+ 2 [v (5’ v’) (257-v +1)i
Xl S v Vo= e SVl fi

b o i ) Y a NI
Sy 2 'v‘—1v’11 + (s _v‘4.;)%[(3.5'“)(15‘4\"-1)

(3s5°-v* *) G {s"-viri) o g (4.3.31)
Y
) Cou g
~ Mo (gg 1) l..)..;, + N 1 (v -1)Qs” v i) TUM)
VRIEAY s Ly
(23 ~Avi 1) ! oK \ (35243 S“v e Vo

o [ 2y R

+ . . /
(3s7-Av7r 1) Sy o

(8 -v 1) *[25 +1) TiN#:),d)
i (57-v+1)? -1 ’

For the v~ progression, interchange single and double primes and
replace Mo by léub. Coefficients of array elements that are
impossible, e.g. N-1 = -1 or v'-1 = -1 are zero, and care is taken in

the computer code to avoid accessing such non-existent elements.

Having computed Tég), éé)a.. we set v'=1 and compute T( )
(1) . — ; 0y (1) i
01 ... then increment v" by 1 and compute TO2 ’ 02 .. etc. until

either a specified upper limit of v" is reached, or the Boltzmann
factor is used as a criterion; failing that, v" is ultimately stopped

when either the top of the potential well is reached or the levels

turn over, as stated earlier. Having computed all the required values
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in the Nv"-plane, we set v"=0 and v’=1 then compute Tig),
Tié)... and increment v" as before. This process is repeated for each
value of v7 until the maximum allowed value is reached, this being
from similar tests to v" except for mno Boltzmann factor. For

computing efficiency, the order of increasing rate of change of the

indices is chosen to be v7, v" and N.

In developing the coding, a large number of tests were performed

to check for errors and consistency. Quite generally, Tioi" satisfies

the normalization:

2 o 4R g oy A%
Z[ !Wn] = Z [ T.,fw] =1 (4.3.32)
v'zo v'so

for any v~ and v" respectively for any Morse potential in the two
states. As DZ’—>°0 and DZ"—>a>, the two potential wells approach the
harmonic limit, Tégzu approach the values computed by Manneback (67)

and Tg}in apprcach those by Manneback and Rahman (76), after errors

were corrected in (76).

We also introduce here the concept of the r-centroid, as defined
by Fraser (73), see also for example Nicholls and Jarmain (77) and

Nicholls (78), where the r—-centroid is defined as:

= _ v'lrl v

Y.. = e (4.3.33)
vy {vifvy

and can be considered as the characteristic internuclear separation
for the electronic-vibration transition, but need not necessarily be

close to the average of the internuclear separatiocns of the two
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electronic states. In computing the r—centroid for transitions by
some appropriate method, e.g. an earlier method for Morse potentials
by Nicholls and Jarmain (77), we allow to first order at least the
electronic transition moment to vary with vibrational transitions, see
the next section. However, in computing higher order matrix elements,

r—centroids are only an approximation, as generally:

N
- i L4 st
Y v .
Erv’v") F " [v'> (4.3.34)
<V'! v/l>
but the matrix elements of all orders can be computed directly by

Doktorov”s method, so we do not have to compute r-centroids as such.

However, 1if we set Lé =07 =07 but ry # r , a very simple quick
check to Doktorov's method is to compute r—centroids by Schamps (79)

for two harmonic states with equal frequencies:

— , fe o
Ty = (06 +0%) = 10 NJ [vi-v (4.3.35)
LrTf)‘C/»(lJe Yo -1

"

where rv'v"’ r; and r, are the r-centroid and the internuclear

separation in the two states respectively, all in RngstrSms, Qe is the

. . . -1 .
vibrational frequency of the two states in cm > f1s the reduced mass

(

in amu and NA is Avogadro”s number. Then the ratios Tv}z"/ngi" agree

with ;v’v" by Schamps, if Doktorov’s method is applied with very large

values of DZ' and DZ" to approach the harmonic limit, and we do not

NON

consider matrix elements where | oyl are very small as residual

anharmonicity and numerical round-off errors become important.



- 180 -

Although the formula (4.3.35) can only be strictly applied for
equal frequency harmonic oscillators, it 1is a very quick and easy
approximate check for more general cases ifabe is taken as the mean of
the harmonic frequencies of the two electronic states, as often these
are not too different and anharmonic effects are generally small for

the lowest wvibrational levels.

When applying these cross checks to Doktorov™s method in the
harmonic limit, they are invalid well away from the Condon parabola,
(in the v'v"-plane with N = 0, the matrix elements with the largest
magnitude usually follow a parabolic curve), where |T§9i"| << 1 due to
the residual anharmonicity affecting the wave functions. Also, there
is unfortunately no easy way of checking general Tsyi" with N > 1, but
there is confidence in them, as a result of applying Doktorov's method
to VR bands, discussed later.

Finally, if ays ap... are coefficients, then:

(e ( — (2
Ryw = a1, s oa | e ag Lo .- (4.3.36)

o Veige ) Vige

where Rv’v" is the electronic transition moment. If Rv’v" is in

- . . -3
Debyes, where 1D = 10 18esu—cgs, then a, is in units of D& , Wwhen
T(y)“ are computed in Xngstr&ms. It is most convenient to work
v'v

consistently in gngstrams and Debyes.
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In the discussion so far, Doktorov™s method is applied, as
originally intended, to transitions between two different electronic
states giving rise to EVR bands, however, Doktorov”s method can be
used with some modifications to transitions within the same electronic

state, giving rise to VR bands.

N . .
For VR bands, Té,i" is computed in exactly the same way as
before, except that as both electronic states are the same state, we

have identical constants, and hence no ok—-averaging approximation.

. . 1 1Ny
However, the matrix elements obtained are <v”|r |v">, but the elements

required are <v’lxN[v"> where x = r-r . Expanding ngi"'

(v

T =<V ) v = < vy + N1 ot v (4.3.37)

FNW- R D b e VR vy
2

and defining:

(M

- P M M . (4.3.38)
SV‘V" - <V ‘ x l v > - v/ 7L k{}vd CQL
then rearranging (4.3.37) for each value of N, we can write:

5(0) = T"’) (4.3.39)

viya Vige

(1

Svau

(}]

(o (o>
TV.,,,, - T SM” (4.3.40)

V“/" e

D —12) 2 (o) (13
Sewe T Ty = 122§ - ST 4 (4.3.41)
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3 _ ) 3 o () e i (E3)

Sv'u-- = T\,:v,\ . Sv'w - 3% ‘Sv'a« - 37 SU,W (4.3.42)
1q) wy ¢ (0) i 3¢ 0 (2) ()

Sv‘./" - Tu’v" - IC Sv‘vn . Lf' ‘VC Sv‘u" - 6 7%25h..,v“ - l-(*“lc SV’V" (4'3'43)

where (4.3.39-43) are evaluated in this order for given v~ and +v" and

T(Q)" = S cgms ieee T(g)" =1 if v7'= v" otherwise T(Q)" = 0.
vV vy vV vV

N)

m_

It is 1indeed found that on calculating the matrix elements Ts

by Doktorov, then finding Sé?in from (4.3.39-43) with large DZ, the
harmonic oscillator result is approached. For the harmonic

oscillator, the dimensionless length variable:

-
(> (4.3.44)
where x = r-r_ as already defined, and where:

}Q

3 = _h - (4.3.45)
G 3pe b,

by Hutchisson (68) after an error was corrected. From the expressions
in (68), derived from the recurrence relations of the Hermite
polynomials, we can write down the matrix elements for the harmonic
oscillator, agreeing with those given by Shaffer and Krohn (80), given

here for those elements up to fourth order that are non-zero:

I
H

< v forpv = 0 (4.3.46)

. 3
< xlv™ —@(v+1)1/2a' for Av

1 (4.3.47)
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-(52(2V+1)/2 forAv =0
& g vy = (4.3.48)
2 ‘a
B [(v+1)(v2)] /2 for Av = 2
“ --3(3.3(\74-].)3/1/23/1 forav=1
<l vy = (4.3.49)
—,f’[(v+1)(v+z)(v+3)]"/z”2 for Av = 3
)
36 (2vTH2v+l) /4 for Av = 0
&It v = 4 pt vy () (vi2)] %2 for Av = 2 (4.3.50)
AL (w1 (v42) (v3) (vH4) ] /4 for Av = 4

where v is the initial state, to express these in terms of the final

state, we replace v by v—Av in all these expressions.

Each matrix element above has an arbitrary sign, however, it is
found that in applying Doktorov's method for computing the matrix
elements <v’lxN|v"> with largé DZ to approach the harmonic limit,
alternate off-diagonal elements alternate in sign, thus if we adopt
v |lv"> =41 for pv = 0 in (4.3.46), the signs for all other matrix

elements in (4.3.47-50) follow, and are given by (~1)dv. Thus in
()

keeping to this sign convention, the values of Sv’v"

obtained from
(4.3.35-43) by Doktorov”s method in approaching the harmonic limit,
agree well with (4.3.46-50), hence this is another good check on

Doktorov™s method. Elements that are zero in the harmonic case, have
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by Doktorov, values of small magnitude. Exactly as expected, as DZ is
reduced and the potential becomes more anharmonic, the agreement with
the harmonic case becomes poorer, in particular, elements that are
zero in the harmonic limit become larger in magnitude, except the
()

v

elements S
v

« which are always given by Sv’v"'
Finally, we can write the dipole moment expansion in terms of x,

the same x as previously defined, as:

M = M, ¢+ M= + Mio® + ... (4.3.51)

where the most convenient wunits are DR - as before. Similar to
(4.3.36), we can write the transition moment as a linear combination

of the matrix elements:
. (0) AR )
Rowe = MDSW“ t M‘S_ .t 1‘115 + - (4.3.52)

MO is the permanent dipole moment of the molecule, but unless we are

dealing with pure rotational bands when dv = 0, the first term of

(0)

(4.3.52) is of no interest as Sv’v" = 0 when Av # O.

s§§3“ ‘and Rv’v" are all symmetric matrices about the main
diagonal, wunlike transitions between different electronic states. It
is however, a convenient check to calculate the full matrices,
although only half of each is used. Although the signs of Rv’v" in
(4.3.36) and (4.3.52) are of no interest, as Ri’v" are used in

computing the' band strengths, the relative signs of the individual

terms in the two expressions are of course important.
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4.4 Determination of Absolute Line Strengths

The HOnl-London factors in section 4.2 can be used to obtain the
relative rotational strengths within a given band, and the squares of
the vibrational transition moments in section 4.3 can be wused to
obtain the relative band strengths within a given band system. Here,
all the factors are put together to obtain the required absolute line
strengths, ensuring in particular that the various statistical weight

factors are correctly accounted for.

Quite generally for the strength of an individual line:

s b /‘(nu v,. Z'"jl')hc/}zT
3_ Q zzl ._l' 7 . ]
¢ = ey R, 9...C (4.4.1)

v

3h Q

in units of cm2/sec/molecu1e, for VR or EVR bands. Then y is the
wavenumber of the line in cm , Rv'v" is the transition moment between
the two vibrational levels in esu-cgs, éi:i: is the HOnl-London
factor, F(n",v",2",J") is the term value in cm--1 for the initial
state, where n" represents the electronic state, and Q is the total
partition function. From section 4.2, the electron spin statistical
weight of 2S+1 is included in the normalization of the HOnl~London
factors, and the factor of two for A-doubling, when relevant, is
accounted for by splitting the line into two components, as discussed
in section 4.2, whose strengths are equal to the original line,

neglecting any complication of nuclear spin, and it is one of these

components that is given here. If the nuclei are identical, we have



- 186 -

the additional nuclear spin statistical weight of g1 which 1is only

relevant for EVR bands.

Dropping the Boltzmann factor and partition function, we can

write the total band strength as:

' 3 R ,,
Sv‘vu = ?_________ﬁ Vi Rv'w (25 +1)(Q~%0,A'LA“')

, (4.4.2
Sh )

in units of cmz/sec/absorber, where vv’v" is the wavenumber of the

-

PP 1
band origin in em ~.

Note that for the last term in (4.4.2), the factor of two for
A-doubling 1is applied if A > 0 for at least one of the electronic
states, and is quite distinct from the electronic statistical weight
factor in (2.7.1), . which is included in the total partition function,
see Whiting and Nicholls (81) and Schadee (82). However, for the
transitions T14=> Z, even though the rotational levels of the ! state
are A-doubled, the spectral lines will not be A-doubled due to the
selection rules of the parity of the rotational levels, i.e. + <~> —,
see section 4.1. This is because each rotational level of theTU
electronic state is split into a pair of sublevels of opposite parity,
in addition to any spin splitting, with only one transition of each P,
Q and R-type between any pair and the appropriate levels in the 2

state, see the diagrams in Herzberg (29).
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For VR bands, Ri’v" is obtained directly from (4.3.52), but for
EVR bands, the total transition moment can be factorized into two

parts:

Ry = 1. R (+) (4.4.3)

where I is the Franck—-Condon factor, and is the vibrational part

of the tranmsition moment, defined as:

w0 A}
%w - {v‘lv"f _ [TW.] (h.b.b)

which is a number between O and 1 and can be calculated by Doktorov's
method. Rz(r) is the electronic part of the transition moment, which
will in general depend on the r-centroid for the transition, so we
cannot in general completely separate out the  vibrational and
electronic parts of the transition moment.

%

2 . . . . .
Re(r) is often given in the literature in forms like:

1
1}

(4 + a» + a,r*+ -»-)Q (445

R (1)

or:

(-
R:(}/) T Ae” " (4.4.6)

where to first order at least, r is the r-centroid and.aO,al... and a

and b are coefficients. For higher orders, if we generalize the
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r-centroid concept to the r(N)-centroid defined as:
7‘[N)‘
-“(M) i Ny e
Tooos LV P> o Lo (4.4.7)
” i it l)
Lvvey T
vr

as opposed to (4.3.35), and divide both sides of (4.4.5) by Qg -yms W
‘end up with the square of (4.3.36), hence Doktorov’'s method can be
applied directly. The same can be done for (4.4.6) after expanding
the exponential, though Doktorov does give a method, which we do not

use, that enables the exponential form to be treated directly.

. . . 2 . .
In some cases in the literature, instead of Re(r) being given, we
have a band oscillator strength fv’v" or an electronic oscillator

strength fel(gv’v")’ such that:

fe (3. = fbw (4.4.8)

If one of these is given for the 0-0 band, we can write:

. T - e -
sv’vn < ”_e /Oo }7:!;!,- M" (25 +j) (2 Su’d(_'.;./(” (4.4.9)
Me(’ Yoo Ol,oo

in units of cmz/sec/absorber, assuming that Rz(r) is constant over the
whole band system in the absence of further information. Also, we can
relate the band oscillator strength and transition moment by the
expression:

2

T 3m, ¢ 9y
/[V.,,,. - ¥ e ¢ Verye Ry, (4.4.10)

3 her

where me is the mass of the electron.
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For EVR bands, if two electronic states are close together, it
may happen that a vibrational level in the upper electronic state is
actuallyi at a lower energy than a particular level in the lower
electronic state, giving rise to a reversed band and detected by a
negative Vaiue of y. In this case, the absolute value of 7 is taken,
and. the Boltzmann factor is applied to the 1level in the upper

electronic state.
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5 COMPUTING THE BAND SPECTRA OF TRIATOMIC MOLECULES

5.1 Introduction

Whereas the VR and EVR band spectra of diatomic molecules are
calculated ab initio from dipole moments, rotational and vibrational
constants etc., this is not followed through to triatomic molecules
because of the very much greater complexity in their spectra,
particularly mnon-linear molecules like HZO' Thus instead of
calculating vibrational band strengths from a dipole moment expansion,
band strengths are calculated in sequences of fixed Avi, AVQ and AVS,
as mentioned by Auman (15), with the strength of the first member of
the sequence being known. An important additional simplification is
to assume that all transitions occur within the ground electronic
state, and that electronic transitions can be neglected. The lowest
of the excited electronic states of HZO and C02, usually the two most
abundant triatomic molecules, are at high energies, so any electronic
transitions occur at short wavelengths where there is little flux and
the effect on the overall opacity is small. Molecules that do have
electronic transitions at longer wavelengths, 1like NOZ’ have lower
abundances, so again the effect on the opacity is expected to be
small. In view of this, together with the fact that the general
theory of triatomic overlap integrals becomes extremely complex, it is
considered beyond the scope of this work to deal with triatomic EVR

bands. However, for restricted cases, overlap integrals could be

calculated by Doktorov et al. {(71) and (83).
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For diatomic molecules, it’ is assumed that to a good
approximation, the dipole moment expansion is independent of isotopic
substitution, and for atoms of equal charge, remains zero even if the
nuclei are not identical. This is unfortunately not generally true,
particularly with a change in syﬁmetry, for triatomic molecules. Thus
for normal COZ’ being symmetric there is no net dipole moment, S0
vibrational transitions involving changes in Vi, the classical
symmetric stretch with the carbon atom remaining stationary, are
inactive in the infrared. 1If we mnow 1isotopically substitute one

oxygen atom, giving say 016C12018, on the face of it we would appear

to have a situation similar to C12C13, as discussed in the previous
chapter, and the dipole moment  would remain =zero. For the
non-vibrating molecule, to a good approximation this would indeed be
expected to be the case, however, the carbon atom is no longer at the
centre of gravity so moves in the classical symmetric vibration, which
is now no longer strictly symmetric; thus quantum mechanically, there
is a vibrational transition moment associated with a change in Vi
hence vy is active in the infrared. Selection rules connected with
the bending mode v, and the antisymmetric stretch vy are also
affected, as described in the next section.

The situation for a bent molecule is more complicated. In theory
we could apply the method of Secroun et al. (84), 1if the coefficients
of the dipole moment expansion are known for a bent XY2 molecule like
water, where the permanent dipole moment lies along the symmetry axis,

which is also the intermediate moment of inertia axis for water, and

the transition dipole moment associated with vibrational transitions
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will be either perpendicular or parallel to this axis, depending on
the change of the vibrational quantum number, discussed later.
However, Secroun”s method is not applicable to non-symmetric molecules
like HOD, as the vibrational transition moment will be at some general
angle to the bisector of the BOD angle (no longer an axis of
symmetry), which will now also be different from the intermediate
moment of inertia. In addition, the permanent dipole moment of the
non-vibrating molecule will not in general be aligned with any of the

principal moments of inertia.

Additional to VR bands of water vapour, pure rotational bands are
also considered, unlike diatomic and linear triatomic molecules, due
to the large number of 1lines at sufficiently short wavelengths in the
infrared where the weighting function, for the temperatures of
interest, is large -enough for these bands possibly to have a
significant effect on the total RMO. Most molecules have their pure
rotational bands in the far infrared, where the weighting function and
the radiative flux are small enough for the bands to be expected to

have a negligible effect on the RMO.

Because three atoms can only be collinear or coplanar, there are
restrictions on the ranges of the rotational constants A, B and C,

where by definition for general polyatomic molecules A 2> B 3 C:

(i). A = B = C Spherical Top Molecule: This cannot occur
with triatomic molecules, so is of no interest here. The

best example is CH,, point group T

42 a’



- 194 -

(ii). A =3B > C Oblate Symmetric Top Molecule: This will
occur with three identical atoms arranged in an equilateral

or C

triangle, point group D3h’ or special cases of C2v s

A . +
where a symmetric top occurs accidentally. H3 is one of the

few examples known.

(iii). A > B = C Prolate Symmetric Top Molecule: This cannot
occur for any planar molecules, but linear molecules like
CO2 and HCN, point groups Qéh and Qﬂv respectively, can be
regarded as special cases of a prolate symmetric top.

However, 1t 1is convenient to treat linear molecules quite

separately.

(iv). A > B > C Asymmetric Top Molecule: This will occur
for all molecules in general of point group sz e.g. HZO

and HZS’ and CS e.g. HCO radical.

Although (ii) is only realized in a few cases, and (iii) 1is
impossible, discounting linear molecules, they are - useful
approximations to (iv) under suitable conditions when considering

selection rules, line strengths and energy levels.

Because of the approximations that have to be made in computing
the bands of triatomic molecules, it is likely that individual lines
and even whole bands will correspond very poorly to those in the
observed spectra. However, due to the large number of overlapping

bands that are characteristic of triatomic molecules at the
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temperatures of interest, details of individual bands are lost, and it
is hoped that at least the gross properties of the spectra are
reproduced. Only with the lower temperatures in a planetary
atmosphere, where the lowest vibrational levels are significantly
populated, would it be feasible to carry out an accurate line by line

calculation for each band.
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5.2 Vibration-Rotation Spectra of Linear Molecules

Although the work here deals with linear triatomic molecules in
general, in practice it would mostly be applied to 002 and its
isotopic variants, as CO2 is normally expected to be the most abundant

linear triatomic molecule in stellar atmospheres, and more data is

available on it than other linear molecules.

For a given transition v -—> v+Av of the harmonic oscillator,
from section 4.3, it is seen that the matrix element ol vrav> is
zero except for n = Av,Av+2,Avt4..., where the matrix element with
n = Av contributes most to the total transition moment. Neglecting
the effects of the higher order matrix elements, the transition moment
is:

Jh
av (v nn)|

av D\AV v !

(5.2.1)

. 4y, .
R = v jveavy = M

V) Viav

where MAV is a coefficient in the dipole moment expansion defined in

(4.3.51) and f3is defined in (4.3.45).

1f Rg,av is obtained from observation, then Ri,v+4v can be found

easily from:

1 FAYP 2 :
Rv,wav - vl , V 4 [iv\}' — (v v ‘ (5.2.2)
R, av Lo x| av> vl Avl

neglecting anharmonicity and higher order matrix elements. Thus, for
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general polyatomic molecules with non-degenerate vibrations, the total
transition moment can be approximated to a product of the transition
moments of the individual vibrations:

x

R(V.,\/l,\/.,...;vA+/.\vUv4+Av2,vH[\v).,7 = | (‘/‘ii‘l\*fﬁ-)g

—

R(0,0,0.. 54v, = av, | By, ... ) { V}‘AV;{

(5.2.3)

where for triatomic molecules, i =1, 2 and 3, giving the formula

quoted by Auman (15).

Thus given the first member of a progression of bands with
constant Avl, Avy and Av3, we can calculate the other bands in the
progression using (5.2.3). Although the anharmonicity is neglected in
obtaining the approximate band strengths, it is of course included in

the calculation of the energy levels, see section 2.1ll.

As we can write:

“l B
R (V‘Jvl)\/};‘ Vl+ﬂvi/ v2+ ['\UJ/ \/3+AV3\) (5.2.4)

. i . -
= RV, vyetiv,, ¥ vpav, vy v +4v,)

]

and likewise for any other vibrational quantum number, then given a
progression of sum bands with say‘Avi = 0, sz =1 and.Av3 = 1, we can
immediately obtain the difference bands ﬁvl = 0, sz = -1 and‘Av3 =1,
provided this transition still corresponds to an increase in energy,
which is normally the case here a5t32<£)3 for triatomic molecules in

general.
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For linear molecules, we have the additional complication that
the vy mode of vibration is doubly degenerate, giving rise to angular
momentum about the internuclear axis specified by.[, the vibronic
quantum number, such that /€= vz,vz—z,vz—é... 1 or O. For.COZ, and
any other linear molecules we are 1likely to consider, the ground
electronic state has no electron spin or orbital angular momentum, so
we do not have to consider any coupling between [,Jland S, which is

described in Herzberg (34).

We can consider /[ to occupy the same rdle as /L for diatomic
molecules, giving rise to the same HOnl-London factors, selection
rules and restrictions on J. By Herzberg (30), AL =0 and Al = +1
give rise to parallel and perpendicular bands respectively, and are
analogous to the corresponding transitions in A for diatomic
molecules, except that for them perpendiculér bands must involve an
electronicitransition. It can thus be seen that if Iszl is even then
Al = 0 and lAv2| odd then OA= +1, see Dennison (85), hence a given
band with specified vi ivg <= v{v£v§ consists 1in fact of several

i o o

bands vive T vy <—- ViVyT Vg with’f and (" taking allowed values, and

with the number of bands increasing with v, and VE'

2

Because of the degeneracy of the v,y bending vibration, the
product in (5.2.3) is incorrect for i = 2, and has to be replaced by
the square of the radial matrix element (RME) of the isotropic plane
harmonic oscillator, with the expressions for i =1 and i = 3 being
retained. With ﬂvz = 0, there is mo problem as Af= 0 and the square

of the RME <v£("lv§["> is unity for each substate of f, where for
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L =0 there is one substate and for £ > 0 the levels are,é-dOubled,
exactly the same as J ~doubled for diatomic molecules, with two

substates. Thus:

|
<
1

- gt v, R I ) 5.2.5
7 < LAy +1 (32:3)
él/

which is also the degeneracy if the splitting in.( is neglected, and
is the total strength that would be put into (5.2.3) if we wished to

consider this as one transition and neglected the splitting.

However, in keeping with our treatment for diatomic molecules,
each line 1is computed separately with any degeneracy being "resolved™
except for the fundamental 2J+1 rotational degeneracy. Thus each band
with different £ is computed separately, and for those levels with
[ > 0, [Ldoubling of the lines is treated in exactly the same way as
Ardoubling for diatomic molecules by using thé same coding. Not every
rotational line consists of v2+1 components, however. This is true
for the P, Q and R-branches for v, odd and P and R-branches for v,

even, but there are only v, components in the Q-branch for v, even, as

2
there is no Q-branch with £== 0 =——>» 0. Moreover, there are fewer

components in all cases if J"< VE as J cannot be smaller than A.

When Av, = 1, then Af = 41 or ¥1 subject to allowed values of
f. The RMEs in these cases can be obtained from the rather cumbersome
formulae quoted by Penner (86) page 155 obtained from Schrddinger
(87). 1If the definition of the binomial coefficient 1is extended to

include negative values, as is the case in Schrdédinger”s formula, then

it is found that the formula agrees with the far simpler expressions
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given by Shaffer and Krohn (80) which are used here. From Shaffer and

Krohn, we can write the expressions:

Av, B <L e ATy

1 ! T+ 4749)

1 -{ L£(v,"={" 42) (5.2.6)
1 1 50467

-1 -1 $(v,"+ L)

It can be shown that:

;Z; <Vf)i/{‘{7)l \/’?I’/[“>Q = é(\/’Q 1 j‘)(\}a +;—\,) (5.2.7)

which is the sum over all v2+1 possible bands, where the other
vibrational quantum numbers are kept constant and v, is the smaller of

v2 and Vo

When |AV2| > 1, we use further formulae given by (80) for M=o
or +1 depending on Zlvz. However, Shaffer also gives RMEs of
transitions for |A{] > 1 due to higher order effects of Coriolis
interactions, McClatchey et al.‘(88), that contradict the' simple
selection rules of,[. Unfortunately, there are no general Hénl-London
factors for A4l > 1 available, though one could in principle "fudge"
intensities in the P, Q and R-branches by simply putting (2J+1)/3 into
each. However, .this complication does not arise for most of the

strong bands, and in view of this and the additional complexity, all

transitions for which |44] > 1 are neglected.
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In order to compute the band strengths in a progression, we need
to obtain the strength of the first member of the progression and put
it into a convenient form. McClatchey et al. (88) gives extensive
tabulations of band strengths of several molecules including 002 and
H20 as 83(296), the band absorption coefficient in cm.ll(molecule

cm—z) at 296°K. 53(296) contains several factors that are convenient

to multiply out to obtain the "reduced” band strength (Svlﬁo) using:

(5.2.8)

Sv - S: (T) Qv- (T) C
_'5— Fﬁo e—(}viqc/'h’l' (‘1~ e-hcﬂ,/fﬂ')

[

in cm3 per sec per absorber. Where SS(T) is the band absorption
coefficient in cm_l/(molecule cm—z) at TOK, QV(T) is the vibrational
partition function at TOK, F is the fraction of molecules in the
isotopic form being considered, GV .is the term value in cm—1 of the
lower vibrational level, where Gv = (0 for the first member of a
progression, and 50 is the band origin in cm—l; all other symbols have
their usual meanings. In practice, the stimulated emission factor
which is taken out in (5.2.8) makes 1little difference, and when
computing individual line strengths, 1is included in the weighting

function.

The line strengths are calculated from:

, - 2% e G+ Fv(:’%)}kc/’é—r
§ = (_8;_ VYR, .Ss5 L (5.2.9)
% @(T)

in cm2 per sec per isotopic molecule. Where (80/50),15 the reduced

band strength of the first member of the progression,]{i is the square

of the relative vibrational transition matrix element, obtained from
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(5.2.3) but modified for  the vibronic quantum number, w is the

S3°3
Hénl-London factor, ¥ is the spectral line”s wavenumber in cm_l, Q(T)
is the total partition function at T°K and GV+FV(J") is the total term
value of the 1lower rotational energy level in cm-l. If (5.2.9) is
multiplied by the number of molecules of the required isotopic form
3

3 . . < s . 2
per cm~, we obtain an absorption coefficient in cm”/sec/cm” or (cm

sec)—l, which are the actual units handled.

An additional problem, particularly for coz, is due to the
accidental degeneracy of the different vibrational levels, giving rise
to Fermi résonances that cause a perturbation of the energy levels
when permitted by selection rules, see Herzberg (30) and (34). The
effect for two levels is to cause them to "repel” each other so they
no longer agree with (2.11.1), and a mixing of the vibrational
eigenfunctions so that the strengths of the corresponding bands are
redistributed. This becomes even more compiicated when more levels
are 1involved, and accordingly this problem is considered beyond the
scope of this work, but we must discuss it here qualitatively.

For CO Q.= 2@2 and there is a Fermi resonance between the

2? 1

states 1000 and 0200 which cauges them no longer to agree with the
simple formula, however, 0220 is not affected, causing an anomalously
large splitting between £=0and ¢=2. As we are neglecting the
shifts on the perturbed levels, this strengthens our argument earlier

of treating independently bands that differ only in /¢~ and [", as any

overlapping of lines is likely to be accidental.
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Because of the mixing of the eigenfunctions of the levels in a
Fermi polyad, each level assumes some of the properties of the other
levels, in addition to being shifted, and some of the vibrational
quantum numbers lose their proper meanings and cannot unambiguously
designate the members of the polyad. Thus, if one of these levels is
in a band at the beginning of some progression, we have a problem as
to how to label this band and follow the quantum numbers through the
progression. Thus suppose 0200 is at a slightly higher energy than
1000 if no perturbation takes place, which according to McClatchey et
al. 1is the case for COZ’ the Fermi resonance causes the two states to
be moved apart and mixed so that vy and v, are mno longer good quantum
nunbers. However, for convenience, we can continue to label the upper

state as 0200 with notional quantum numbers.

More generally, let kmlnr designate the level of a polyad from

McClatchey et al., where k = Vi max? m =V, oo n = v, and
r =1,2,3... the rank in order of decreasing energy with V3 and £
remaining constant. Then as (Vl’VZ’VB)’ (v{=1,v,+2,v3),

(vl—2,v2+4,v3)‘.. have all approximately the same energy, we can write

in order of decreasing energy:
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L
k,mfn,l h (0,m+2k,n
£ 2
k,m,n,2 1,m+2k-2,n

L
k,mfn,3 M J 2,m+2k~4 ,n

- - - B

kodn, k) | ,mn

where on the right, the notional quantum numbers we use for labelling
bands, are associated with the ranks in a Fermi polyad with ki+l
members on the left. Because of anharmonicity which is only
approximated in (2.11.1), the order may in many cases be reversed or
even rearranged differently according to the simple formula, so im
practice our notional designation is somewhat arbitrary. When CO2 is
isotopically substituted, the orders in a polyéd may also be
rearranged. For different triatomic molecules, including non—linear
ones, other such relationships between Vs vz and vy can occur in
Fermi resonances. Even though the first band of a progression may be
perturbed, for continuity with the other members of the progression,
we put in (5.2.9) the unperturbed vibrational energy, though ;0 is the

actual observed wavenumber of the band origin.

For molecules with a Qﬁh point group like COZ’ v, cannot change
without an accompanying permitted change in v, and V3, and vy and vy
can only change according to when lAV2+Av3| is odd. When the molecule
is isotopically substituted so that it is no longer symmetric, or for
molecules like HCN which can never be symmetric, these selection rules

do not apply and many more transitions can occur. However, because of

the way we generate the transitions, we .do not have to consider these
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selection rules.

The rotational energy levels are calculated in exactly the same
way as for the diatomic molecules, except that now B and D depend on
the three vibrational quantum numbers, and A is used in place of.A,

see Herzberg (30). Thus:

Bm = Be S (v, 4y) - (V1) - =g (v ) (5.2.10)

where each oft%i contains several terms including Coriolis interaction

factors which we do not consider separately.

McClatchey et al. (88) gives vibration—rotation intensity factors
for several bands of COZ’ with which we should obtain the correct line
intensities on multiplying by the HOnl-London factors etc., also in a
series of papers mostly by Valero and Suarez, see for example Valero
et al. (89), these factors are given in greater detail together with
band strengths and transition moments for a few specific bands.
However, because these factors are not available for higher members in
a progression, and because we would not expect these factors ﬁo alter
the gross appearance of the spectrum due to .the many overlapping
bands, we. assume that we can factorize out the rotational Iline
strengths as simple HO6nl-London factors in the same way as for
diatomic molecules. Thus the rotational fine structure is computed
exactly as before wusing the same coding. Also, when the two end
nuclei are identicail, the effect of nuclear spin on the statistical

weights of the rotational levels, hence line strengths, 1is identical

with that in diatomic molecules, so the same procedure is used. For
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normal CO as the two oxygen atoms have zero nuclear spin, alternate

2!

rotational lines are missing.

In computing a given progression of Avl, sz and,AvB, bands are
computed by‘varying vy, vé and vg'and allowed values of £" and £ in
nested loops, climbing wup the ladders of wvibrational 1levels and
cutting off at dissociation, turnover or when bands become too weak.
This is repeated for any possible difference bands by taking negative

values of 4v,, Av, or Avs-
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5.3 Vibration-Rotation and Pure Rotation Spectra of Non-Linear

Molecules

‘ We consider here in general non-linear triatomic molecules whose
three principal moments of inertia are different, and are thus
asymmetric tops with point groups C2V and Cs' As with the previous
section, in practice our discussion deals with one specific molecule,
in this case HZO’ which 1is normally expected to be the most abundant
by far of all triatomic molecules, in view of its stability and the

abundances of hydrogen and oxygen.

For bent molecules, there is no problem with any vibronic quantum
numbers as all three modes of vibration are non-degenerate, hence
(5.2.3) can be used with i = 1, 2 and 3 to obtain the intensities in
the progressions. Although the vibrational transitions are easier to
deal with in these molecules, this is more than outweighed by the very
complicated rotational fine structure of bands that must be computed
by making appropriate approximations. Accordingly, we deal below
entirely with the rotational fine structure of vibration-rotation and

pure rotation bands.

For the oblate or prolate symmetric top molecule, each value of J
has J+1 sublevels specified by the quantum number K which takes values
K =0,1,2...J, such that all sublevels with X > 0 are doubly
degenerate making 2J+1 sublevels in all. If the molecule is now made

into an asymmetric top, this degeneracy is removed and each value of J
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has 2J+1 different energy sublevels in addition to the ever present
2J+1 statistical weight. Except for a few special cases, the general
evaluation of the rotational term values for each of the 2J+1
sublevels of J is very involved, see Herzberg (30), Wang (90) and King
et al. (91), and likewise for the rotational line strengths, see Cross
et Aal. (92) and Wacker and Pratto (93) who both give tabulations of
line strengths. Because of this complexity and the expense in
computer time of having to process millions of spectral lines, we have

to resort to approximate means of calculation.

The 2J+1 degree secular determinant whose roots give the required
sublevel energies, breaks down into several algebraic equations whose
degrees increase with J; for the smaller values of J, these equations
are linear or quadratic and can be solved explicitly. Derived from
Herzberg (30), these solutions are given below, where F(Jy) is the
rotational term value in cm'—1 of the T sublevel of J with

= =J,=J+1...J-1,J in order of increasing energy; ¢ being an index

not a quantum number.

F(0p) =0 (5.3.1)
F(1_;) =B +C

F(ly) =A+C (5.3.2)
F(l,;) = A+B

F(2_,) = 2o+ 2B + 2C - (2A~B-—C)(l+3b2)l/2

F(2_;) = A+ B+ 4C

F(2p) = A+ 48+ C - (5.3.3)
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F(2,;) =4A+ B+ C
F(2,,) = 24+ 2B + 20 + (2a-B-C) (1432 172
F(3_3) = 2A + 5B + 5C - (2A—B-C)(l+15b2)1/2

- 2.1/2
F(3_2) = 5A + 2B + 5C - (2A-B-C) (4-6b+6b")

- 2,1/2
F(3_;) = 5A + 5B + 2C — (2A-B-C) (4+6b+6b")
F(3,) = 4A + 4B + 4C (5.3.4)

- 2.1/2
F(3+1) = 2A + 5B + 5C + (2A=-B-C)(1+15b°)

- 2.1/2
F(3,,) = 5A + 2B + 5C + (2A-B—C) (4-6b+6b")
F(3+3) = 5A + 5B + 2C + (2A—B—C)(4+6b+6b2)1/2

7(A=B)b (L+b 2/4)/3 — F(4

F(4_,) = 4A+ 4B + 32C - )
_ 2.1/2
F(4_5) = 5A+ 5B + 10C - (2A-B-C)(4-10b+22b")
F(4_,) = SA+ 10B+ 5C - (2A-B-C) (4+10b+22p2)1/2
F(4_) = 108+ 5B+ 5C - (24-B-C) (947592
F(45) = 20A + 20B + 20C = F(4_,) - F(4,) (5.3.5)
F(4+l) = 5A+ 5B + 10C + (2ArB—C)(4-lOb+22b2)l/2
F(4,,) = SA+ 108+ 5C+ (24-B-C)(4+10b+226%)/2
F(hy) = 108+ 5B+ 5C+ (24-B-C)(9+767)/
2
F(4,,) = 324+ 4B + 4C - 7(B-C?b(l+b 1613 = F(4y)
*
where: b = (C-B)/(2A-B~C) and b = (B-A)/(2C-A-B) (5.3.6)

All but F(é_a), F(4o) and F(4+4) are exact; however, although the
latter three can only be obtained exactly by numerically solving a
cubic equatiocn, they can be obtained to a good approximation given

F(4_3) and F(4 The approximate means of the F(&_A),F(4_3) pair

\'
+37

and the F(4+4),F(4+3) pair are obtained from Mecke”s (94) equations,
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from which we obtain F(ﬁ_a) and F(4+4), hence F(40) follows from

Mecke”s sum rule.

For J = 5, only the sublevels for which T= 42 can be solved
explicitly, and for J » 6 no further analytic solutions exist, as all
the algebraic equations from the determinant are cubic or higher in
degree. Consequently, in order to calculate the sublevels for J 2> 5,

we need to resort to approximate means.

In common with other workers, in order to calculate the
approximate energy levels and 1line strengths, we have to associate
each sublevel T to the K quantum number of either the corresponding
prolate or oblate symmetric top as the situation demands. Thus let Ka
and Kc be the corresponding prolate and oblate notional quantum
numnbers respectively, with the angular momentum taken accordingly
about the A and B-axes. The correspondence bétween T, n, Ka and Kc is

indicated here for J = 5:

Table (5.1) of Rotational Sublevels of Asymmetric Top with J = 5

T -5 =4 -3 -2 -1 0 +1 +2 +3 +4& 45

where n is an additional index such that n = 0,1,2...2J with:

=4 (5.3.7)
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and more generally:

Ka is the nearest integer ) (J+7%)/2

. (5.3.8)

Kc is the nearest integer > (J-Y¥)/2

J, when J+K +K is even

a ¢
K +K =
c

J+1, when J+Ka+Kc is odd (5.3.9)

K, =K, = T

Even though at best only either Ka or KC can be a good quantum
number, the symmetry propertiés of both are preserved rigorously, such
that we have + for K even and - for K odd, hence the selection rules,

see Herzberg (30) and further in this section.

Except for the smallest values of J, whose sublevels we can
compute exactly anyway, it is seen than in an energy level diagram for
an asymmetric top with given J, the sublevels in the ﬁpper part of the
diagram tend to pair wup such that we  have (rt=J,3-1),
(t=J-2,J-3)... and likewise in the Jlower part of the diagram giving
(t=-J,-J+1), (t==J+2,-J+3)... with a small odd number of unpaired
sublevels near the middle. We can approximate the upper pairs by
prolate sublevels with Ka being a good quantum number, and the lower
pairs being oblate sublevels with Kc being a good quantum number, with
a simple interpolation for the odd sublevels in the middle that are
not satisfactorily represented by either the prolate or oblate

approximations, by using the method of Badger and Zumwalt (95).



I1f we write:

F(J) = BI(I+L) (5.3.10)

then for sublevels with F(J,) > FB(J) can be approximated by the

prolate symmetric top:

.11)

) ) r(5-31)(i+ )] 2, (17 - gk +14)
F(OO,R) = 57(34')[1 IR EEETS +BK‘LF(§(3—H+) e

where F(J,Ka) is the mean term value of the pair of sublevels:
T= 2Ka—J, 2Ka—J—1 (5.3.12)

For sublevels with F(Jy) < FB(J), we can use the approximation for the

oblate symmetric top:

/)(543)‘{)“{'!‘;) _BK_I (i:}'f'i(.fi(-}-ﬁ-“)
E(3+10 ¢ Q(3ek) O:3:13)

FI3,K.) = ﬁs(:\'u)[z +
where F(J,Kc) is the mean term value of the pair of sublevels:

T = J—ZKC, J-ZKC+1 (5.3.14)
and Where:
P= (A-C)/B and K = (2B-A-C)/(4-C) (5.3.15)

with K being the asymmetry parameter, such that for the prolate



symmetric top K = -1, the most asymmetric top K = 0 and the oblate

symmetric top K = 1.

Thus in computing these sublevels, we start from say the top with
Ka= J and compute pairs of sublevels downwards with decreasing Ka
until we leave the valid prolate region, then repeat from the bottom
upwards with Kc= J, calculating the oblate pairs of sublevels with
decreasing Kc until we leave the valid oblate region. There are then
an odd number of sublevels left over in the intermediate region, which
for simplicity are put equally spaced between the lowest and highest

oblate pairs of sublevels.

Most sublevels are fairly well represented by prolate or oblate
pairs with a small intermediate region, and as J increases, this
pairing improves for sublevels well away from the intermediate
region. Also, if we consider a smooth transition from a prolate to an
oblate symmetric top, the number of prolate pairs decreases as ‘the
nunber of oblate pairs increases, with the intermediate region moving
up across the diagram, and with any individual sublevels changing
rapidly from having prolate to oblate character as the intermediate
region passes through. For the mgst asymmetric top, the intefmediate
region is at the centre at F(JO), with all the sublevels above being a

mirror image of those below.

In computing the energy levels by the method of Badger and
Zunwalt (95), of the 2J+1 sublevels for a given value of J, there will
be at least one odd sublevel leaving at most J pairs. As the

splitting within the pairs of sublevels cannot be computed by any
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convenient method, it follows that on neglecting this splitting,
artificial degeneracy is introduced, and in many cases there will be
pairs of spectral lines that overlap exactly, which may cause
systematic errors in computing the opacity. As with_A—doubling, we

must resolve this splitting artificially.

For a given value of J, let F+(J) be the highest pair of

sublevels F(JJ) and F(J given by the prolate approximation, and

3-17>

F (J) be the lowest pair of sublevels F(J_J) and F(J_J+1),
1

the oblate approximation, all in cm ~. Then if we let there be J

given by

pairs, even if the actual number of pairs by the above method is less,

then the average spacing between any pair is given by:

FUI) - F7(3)
J

(5.3.16)

In the actual pairs produced by Badger and Zumwalt”s method, we want
to split the sublevels by an amount that is smali compared to (5.3.16)
but large enough to separate most spectral lines for realistic Doppler
widths. However, if we apply the same splitting to all pairs
computed, there can still be many transitions that cause spectral
lines to overlap artificially. Thus we want the splitting to vary in
a simple way that corresponds qualitatively to the actual case,
i.e. least splitting for the highest and lowest pairs of sublevels,

with the splitting increasing until we reach the intermediate region

where neither the prolate nor oblate approximations are valid. The.

simplest expressicn that we use is:

AF = }Q[F%(3> ) F-éj)j (5.3.17)
TK
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where OF is half the required splitting, K is Ka or KC depending on
whether we are in the prolate or oblate region respectively, and k is
a constant. Thus in computing the term values of a pair from (5.3.11)
or (5.3.13), AF is the amount the‘upper menber must be shifted up and
the lower member shifted down. It is found +that k = 0.01 is an
optimum value for HZO’ as the splitting of the pairs is generally less

than about 1cm_l.

Having obtained at least approximately the energy levels of the
asymmetric top, we have to find the selection rules, hence calculate
the approximate line strengths. The selection rules for J are as
always 4J = 0,+1 with J = 0 —4> J = 0, but the selection rules for 7,
which is not a quantum number, depend on the symmetry of the sublevels
and the type of band considered, as discussed below. See also

Herzberg (30) for more details.

As stated earlier, the symmetry of a sublevel can be obtained
from the notional quantum numbers of the corresponding prolate and
oblate symmetric tops. The rotational eigenfunction may either remain
unchanged or change sign with respect to rotation about the A-axis,
the axis of least moment of inertia, with behaviour + or -
respectively. The eigenfunction may also either remain unchanged or
change sign with respect to rotation about the B-axis, the axis of
intermediate moment of inertia, and likewise for the C-axis, the axis
of greatest moment of inertia. Because rotation about any two axes in
succession is equivalent to rotation about the third, we need consider

only two, by convention the C and A-axes in that order. If the
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eigenfunction has a "+" character for the C-axis, Kc is even,
otherwise KC is odd, and likewise for Ka with the A-axis. Thus a
sublevel with KC even and Ka odd has a symmetry of +4—. Thus, A-type
bands occur when the permanent dipole moment in pure rotation or the
vibrational'transitional moment in vibration-rotation is aligned along
the A-axis, with only the transitions between the sublevels with the
symmetries ++ €-> —+ and +— <> -- allowed. B-type bands occur when
the dipole moment or vibrational transition moment, as above, is
aligned along the B-axis, with only the transitions ++ €->» — and
+- €-> —+ being allowed. Finally, C-type bands occur then the dipole
moment or vibrational transition moment is aligned along the C-axis,

with only the transitions ++ €-> +— and —+ <-> -— being allowed.

For polyatomic molecules 1in general, the dipole moment or
vibrational transition moment need not necessarily be aligned along
one of the principal moments of inertia, and can thus have non-zero
components along any two or all three axes, giving in relation to
these components two or three types of bands superimposed on one
another. However, for triatomic molecules, C-type bands cannot occur
as the dipole moment or vibrational transition moment must be in the
plane defined by the three atoms containing the A and B—axes. For
triatomic mglecules with the sz point group like HZO’ we will have
either pure A or B-type bands, but for the CS point group, the dipole
moment or vibrational transition moment will in general have
components along both A and B-axes giving both types of bands
superimposed like HOD. By superimposed bands, we mean here bands due
to the same vibrational and rotational energy levels but different

sublevels from the selection rules above, whereas overlapping bands
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are different bands due to different vibrational and rotational energy
levels whose frequencies just happen to occur in about the same part

of the spectrum.
Cross et al. (92) expresses the above mentioned selection rules
in the form of a table for the three types of bands, however, we can

express this table in the compressed form of table (5.2).

Table (5.2) of Rotational Selection Rules of Asymmetric Top

Where for:

P/R-Branches, J,= J,+l with J,= smaller of J",J7,

1 1

J2= larger of J",J7,
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Q-Branches, J2= J1 and for the sake of argument taking J1 as the

initial level.

Then n, = 0,1,2...2J1, n,= 0,1,2...2J2 and from the definition (5.3.7),
= g and Ty= ny=J,.

For a given value of J1 and J2, all possible transitions of
sublevels are bounded in columns by 0= 2Jl and rows by n,= 2J2, and

the allowed transitions for the three types of bands are indicated as

follows:
W A-Type Band, P/R-Branches
X A-Type Band, Q-Branch
B~-Type Band, P/R-Branches
Y
C-Type Band, Q=Branch
Z

{;B-Type Band, Q-Branch

C-Type Band, P/R-Branches

It can be seen that the whole table is a repetition of a basic 4%X4

matrix.

It can be shown that for one of the three types of bands with J
being the initial 1level, there are for P, Q and R-branches
respectively JZ, J(J+1) and (J-H)2 possible transitions, giving a
total of 3J2+3J+1 for all three branches for a given value of J, which
on éumming this over the many initial values of J in a typical band,
will give many tens or hundreds of thousands of possible spectral

lines. However, most of these lines are very weak and even their
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approximate strengths cannot be obtained by our method. Because of
the selection rules for the symmetric top, AK = 0,+1, those
transitions for which either Ka or Kc or both satisfy these rules,
give rise to the strong branches whose intensities we can find, at
least approximately, and are within a few elements on either side of

the main diagonal in the above table.

As stated by Hinkle and Barnes (96), the most important branches
are those for which both IAKaI and IAKCI are £ 1, followed by the
"semiforbidden” branches for which one of these is > 1, with finally
the weak "forbidden"” branches where both are > 1 that are the branches

that are neglected.

Accordingly, we can write the subbranches that can be handled

using the notation of Cross et al.(92), where for example Pf | means
3

A = -1, AKa= -2 and AKC= 1, see table (5.3).
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Table (5.3) of Subbranches Considered of Asymmetric Top

A-Type Bands B-Type Bands
Subbranch An A Subbranch An At

Pz,l -4 -3 P§,1 -5 ~4 o

PO,T 0 1 PI,l -3 -2 e
PI,T -1 0 o

Qf,l -3 -3 o Pl,I 1 2 e

QO,l -1 -1 e P1,§ 3 4 o

QO,l 1 1l o

QZ,I 3 3 e QT,l -2 -2
Ql,T 2 2

RO,l 0 -1

RZ,T 4 3 RI,S -3 -4 e
RI,l -1 -2 o
Rl,l 1 0 e
Rl,i 3 2 o
RB,T 5 4 e

Where e or o means that the transition is only possible if the initial
value of n is even or odd respectively, otherwise the transitiom is
always possible provided both imitial and final states exist; this

additional notation is in fact the same as that of Cross et al. (92).
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For small values of J for which Badger and Zumwalt”s (95) method
is invalid as the sublevels do not pair up properly, but are obtained
from (5.3.1-5), we have to find the relative intensities by
interpolating from tables; those by Wacker and Pratto (93) are very
extensive, and it is considered sufficient to use the earlier dnes of

Cross et al. (92).

Accordingly, we determine the mean of the asymmetry parameters K"
and &7 from (5.3.15) for the two vibrational 1levels, then use linear
interpolation to obtain an approximate relative rotational line
strength for the transition considered. The tabulated intensities are
the squares of the direction-cosine matrix elements, normalized such
that the sum of all (say) upward transitions from a given T sublevel
is 2J+1. 1In the process of interpolation, and as any "forbidden"
branches are ignored, the sum rule will not in general be preserved,
so we have to renormalize the line strengths after having calculated
all possible transitions (maximum of seven) from a given sublevel.
This renormalization process ensures that all the line strengths are
accounted for, even 1if the strengths are not absolutely correctly

distributed.

The number of subbranches we need actually consider is very much
reduced by the fact that all P~subbranches are considered as reversed
R-subbranches, and half the Q—subbranches are reverses of the other
half. Additionally, for B-type bands, many subbranches are inverses
of other subbranches, obtained by changing the sign of K. Thus for

and R

A-type bands, we need actually only handle QO,i’ QZ,T’ RO,l 2,1°
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and for B-type bands, Ql,T’ Rl,l’ Rl,T and R3,I°

For safety, the above method is used up to when the smaller of J”
and J" is £ 5, even though the pairing is fairly good by then. For
larger wvalues of J, the rotational line strengths are calculated

according to three possible situations:

(i). 1f F(J"t") and F(J'z,) are well represented by the
prolate symmetric top, the relative infensity is calculated
from the appropriate HOnl-London factor (4.2.11) or (4.2.12)
with K in place of A, 1f IAKal > 1 the transition has zero

intensity.

(ii). 1If F(J",.) and F(J7p-) are well represented by the
oblate symmetric top, the same procedure is used as above

but with Kc'

(iii). For any other possibility, such as one sublevel
having good oblate character with the other having prolate
character, or a transition involving one of the intermediate
sublevels, the relative strength is calculated from the méan

of (i) and (ii).

Unless the asymmetry parameter K is very much different in the
two states, because most sublevels are well paired for reasonably
large values of J, and 47| { & for our purposes, most transitions
will fit into cases (i) or (ii) which are reasonably fair

approximations. Unfortunately, case (iii) 1is a very crude
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approximation, as the intensities vary as a very complicated and often
non—-monotonic function of i, thus the intensities so calculated are as
likely fo be gross overestimates as underestimates. Accordingly,
within the framework of our level of sophistication, the treatment for

case (iii) transitions is not much better than a guess.

As before, all possible transitions that we are comnsidering, are
calculated first from a given ¢ sublevel so that the strengths are
renormalized such that their sum is 2J+1. Within the approximations
made, we account for all the intensity in the band, though we have
neglected the weak "forbidden” branches. Although individual 1line
positions and strengths are approximate, hopefully the gross

properties of VR bands of asymmetric top molecules can be reprcduced.

The total VR band strengths are computed in exactly the same way
as for 002 in the previous section, wusing the data from McClatchey et

al. (88), except that the HOnl-London factor S in (5.2.9) is

J°J"
replaced by Sg:g:, the approximate rotational matrix element squared
computed by one of the above methods, and FV(J") is replaced by
FV(J"T")° Also, there is no vibronic quantum number, so the relative
vibrational matrix element squared is obtained from (5.2.3) with
i=1, 2 and 3, and the "data given by (88) does not have the

complication of Fermi resonances included, though of course there

still will be Fermi resonances.
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For pure rotatiomnal bands, exactly the same method is used as
described, except that the vibrational quantum numbers are the same in
the two levels, hence the 1line positions are due only to the
differences, in the rotational ferm values of the two levels, the
rotational constants and asymmetry parameters are the same, and only
half the 1lines are produced, as the other half are in emission.
However, (5.2.9) is replaced by:

Tt

. _[¢ #F, (3% ] ke/iT
<= 8T°F u} 355 C

. — (5.3.18)
3h QT
in units of cmz/sec/isotopic molecule, where /ab is the permanent
dipole moment of the grOund.vibrational level. Strictly speaking,/u
is dependent on the vibrational quantum numbers, such that (5.3.18) is
incorrect for excited vibrational levels. However, the dependence of
Mon the vibrational quantum numbers could not be found in the
literature, but AL would be expected to change relatively slowly with
vibrations, making this error relatively small. Indeed, as the
strongest bands come from the lower wvibrational levels due to the
Boltzmann factor, the overall effect on the spectra should be small.

By Ludwig et al. (97),'/% for H,0 is 1.87 Debye.

2

For any molecule of point group C because of the identical

2v?
nuclei, there will be an additional factor to the statistical weight

due to nuclear spin. Using a similar notation as for the diatomic

molecules, we can set out the following rules:
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u, = +1 for symmetric electronic states),

u,= -1 for antisymmetric electronic states,

u,= +1 for I-integral,

u,= -1 for I-1/2-integral,

uy= +1 for vy even (Al—state),
ug= -1 for odd (Bl—state),

u,= +1 for K_ or T even as appropriate,
u,= -1 for K_ or v odd as appropriate.
Then as for diatomic molecules, if U= Ujuyuau,,  we can put U into
(4.2.15) to obtain the nuclear spin statistical weight factor g1>
which 1is included in the formula for calculating the line strength.

For the ground electronic state of H,0, uy= +1, = -1, and the

2 %2
product ugu,= 1 determines whether the rotational sublevel in

question has an overall symmetry of species A or B respectively. When
the C2 axis (axis of symmetry) coincides with the A-axis, X

a

determines the sign of u in the more usual situation, as for H,0,

4° 2

the C2 axis coincides with the B—-axis, with T determining the sign of

u,, see the appendices.

Because there are many more lines to compute in the bands of
asymmetric top molecules than linear molecules, considerably more
computer time has to be used to calculate individual bands, and this

becomes prohibitive when a large number of bands has to be handled.
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Accordingly, rather than calculating each band individually, we
calculate the frequencies of the band origins and the total band
strengths, including the Boltzmann factor, in a given progression,
then sort the bands into the order of decreasing band strength. When
each rotational line is computed for the first, and because of the
Boltzmann factor, the strongest band in a progression, images of this
line shifted and weaker due to the higher members, are immediately

obtained without having to recalculate and renormalize each line.

The rotational constants A, B and C used in this section which
are dependent on the vibrational quantum numbers, should be given as

A[v]’ B[v] and C[v]’ obtained from:

/\

A A i A
vl "‘Ae -, (V.+§)~ oxq("ﬁs) - o (Y + &)
Blv, +4 Biy 44 By 3.
Bly = Be = By, +5) = &Py, ) - &7 (V54 ) (5.3.19)
[ L '
Cin = Com %700 48) = (Ve b4 = XS0 49)

see Herzberg. (30), where c{? etc. are coupling constants and Ae
etc. are the rotational constants at equilibrium, as with the diatomic
molecules. Thus rather than using the appropriate values of A[v]
etc. for both wvibrational levels in a given band, computed from
(5.3.19), we use those constants applicable to the first member of a
progression; so in the progression beginning with the band
001 <-— 000, the rotational constants for this band are wused
throughout the progression. As the turnovers in the bands are due to
the differences in the constants between the two vibrational levels,

and as these differences do not change much in general in a

progression; this would seem a reasonable approximation. Thus, with
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this method, all higher members of a progression are just images of
the first member, but shifted.in frequency and intensity, and the
method is very much more efficient in computer time, and more than
offsets the approximation of having to assume the same set of

rotational constants for all bands in a given progression.

The general theory on the asymmetric top molecule can also be
found in Dennison (98). As with COZ’ detailed work has been carried
out on a number of specific bands of HZO’ this time mostly by Toth,
Flaud and Camy-Peyret, see for example Camy-Peyret et al. (99) and
Toth et al. (100); because we have to handle so many bands, their
detailed .calculations are considered to be beyond the scope of this

work. One can also refer to Luh and Lie (101) for theoretical matrix

elements and Ludwig et al. (97) for pure rotational spectra.

In the appendices are reproduced the relevant parts of the tables
that we use from Cross et al. (92) of the relative rotational line
strengths of asymmetric top molecules, and also an energy level

diagram from Herzberg (30).
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5.4 Equilateral Triangle Molecules

As mentioned in sections 2.10 and 5.1, we must consider briefly
in principle triatomic molecules with an equilateral triangular

structure, 1i.e. point group D the theory of which 1is covered in

3n’
detail in Herzberg (30).

+ . i
As H3 and its isotopic forms are amongst the few examples of this

type of molecule known so far; for which there is apparently
insufficient spectroscopic data for computing a spectrum, together
with expected low abundances in most cases, it is considered beyond
the scope of this work to attempt a detailed treatment. For very
+ +

recent (1980) work on H3 and D3, see Oka (102), Shy et al. (103) and

Carney and Porter (104).

The vl‘symmetric "breathing” vibrational mode of H; is inactive
in the infrared due to symmetry, hence all VR bands are due to
transitions involving the doubly degenerate v, vibrational mode. As
H; is a symmetric top, for fixed J, k = -J,-J+1...J-1,J with 2J levels
paired in energy for each K = |k| with k # 0, which for an oblate top
are oraered in decreasing energy for increasing K, see section 5.3.
Because of the degeneracy of the v, mode, there is an additional
vibronic quantum number Xi with which there is associated angular
momentum in the same way as for linear triatomic molecules. The {
used by Oka (102) includes sign, i.e. [ = —v2,~v2+2...v2~2,v2, such

that |£l gives the quantum'nﬁmber in the same form we use for linear
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triatomic molecules, and levels that differ only in the sign of { are
paired. The form of the equation for the unperturbed vibrational term
values is exactly the same as for linear triatomic molecules, except
for the absence of terms involving V3.

~In addition to the selection rules on K and f as discussed in
earlier sections, by Oka (102) we have the rule A(k-{) = 0, and a
further complication for H; are the {-resonance dyads such that the
two levels (J,k,{) and (J,k+2,{+2) have the same k~-{ and are
completely mixed. Due to identical nuclei, the rotational fine
structure will be affected by nuclear spin, as is the case for any D

3h

molecule.

If we consider H D+ which is of the lower symmetry C or in

2 2v?

principle HDT+ which has the lowest symmetry Cs’ clearly we have an
asymmetric top with the degeneracy in the v, vibrational mode removed,
giving us ghree different vibrational modes. The spectrum of H2D+
will thus be more complicated, all three vibrational modes will be
active in the infrared, and like H20 there will be A-type and B-type
bands. HDT+ would give an even more complicated spectrum as the
transition moment for any vibrational transition would not in general
be aligned along any principal moment of inertia, giving superimposed
AB-type bands.

Though H; is stable in an equilateral triangular configuration,
neutral H3 is apparently not so in its ground state if stable, see

Hirschfelder (40), with a linear configuration having a lower energy,

so any stable equilateral triangular state that exists, would be an
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excited state.

. + . . .
Finally, although H3 may not be an important opacity source in
the T-p domain of our interest, it appears to be important in the
chemistry of the early stages of collapse of interstellar clouds, see

for example the very recent paper (1981l) by Adams and Smith (105).
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6 METHODS OF COMPUTING OPACITIES DUE TO MANY LINES

6.1 Introduction

In the previous two chapters, the discussion is based on how
molecular lines are computed without saying anything about how these
lines affect the opacity. It is the purpose of this chapter to
discuss the various methods that can be used to compute opacities when
‘large numbers of spectral lines are present. Accordingly, this is the

most important chapter in this thesis.

Three separate methods are discussed: the Independent Line Method
(ILM); the Line Smear Method (LSM); and the Opacity Sampling Method
(0SM) with a fine grid. Each has its own advantages and disadvantages
in terms of computer time, memory and accuracy, but all are based on
splitting the spectrum wup into a large number of bins into which
individual lines fall, whose frequencies, strengths and widths are

computed.

In principle, the RMO with molecular lines can be obtained by
having a very fine grid on which first the continuum, then all the
spectral lines are computed. However, because typicél line widths are
very narrow, e.g. the Doppler width of CO at 2000°K  is 6.05X1O-6u,
where again wu = hV/kT our dimensionless frequency unit, several

million grid points would be required to cover the spectrum. Until

recently, computing resources were quite inadequate even to consider
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this method, however, with the acquisition of a VAX 11/780 computer by
the University of St. Andrews in 1980, a restricted form of this
method in the shape of the OSM can be used, due to the large virtual

memory of the computer; the OSM being discussed later.

In computing the opacity by the various methods, the spectrum is
divided up in four different ways which have to be compatible. We
have a uniform coarse grid from u =0 to say u = 20 of a few thousand
grid points with which the continuum, as discussed in chapter 3, is
computed. The spectrum is also divided into regiomns, with each region
being of width fu = 1, so we have region 1 with u =0 to 1, region 2
with u =1 to 2 etc., there being 20 such regions, and there must be
an exact number of coarse grid intervals in each region, with coarse
grid points at u = 0,1,2 etc. as well as intermediate places. The
idea of having these different regions is to enable us to specify
different bin sizes and fine grid intervals depending on the line
widths in different parts of the spectrum, and blank out if necessary
parts of thé spectrum where we may wish to ignore lines and only leave
the continuum. These regions also act as giant bins, with which we

can have opacities in sections of the spectrum.

When bins are specified in a region, the number of bins must be
equal to or an exact multiple of the number of ccarse grid,intervals,
so that each coarse grid point is on the boundary between two bins,
making the interpolation of the continuum in the bins much easier. If
a fine grid is also specified for the OSM, then the number of fine
grid intervals must be an even multiple of the number of bins in a

region, so that we can apply Simpson”s rule of integration for a fine
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grid in each bin. 1In this case, there must be a fine grid point at

each bin boundary and at least one in the middle.

Thus 1if we have say 2001 coarse grid points across the whole
spectrum, then we can consider how a particular region can be set up.
In a specified region, say 2 with u =1 to 2 inclusive, there will be
101 coarse grid points including ones at u =1 and 2. Then we can
have say 1000 bins, which is an exact multiple of 100, the number of
coarse grid intervals, and 10,001 fine grid points, giving 10,000 fine
grid intervals which is an even multiple of the number of bins, so
that for each bin we have 10 fine grid intervals with a fine grid
point at each end and shared by neighbouring bins, and 9 across the

bin.

Throughout this chapter for all methods of determining the RMO,
the line profiles are assumed to be purely Gaussian with widths
dependent only on thermal broadening, turbulent velocity and line

position, given by the expression:

Du, = Qu/(QN/;hT + .70”@2)[}&2 A(6.1.1)

& m

where m is the molecular weight in amu and § is the turbulent velocity
in km/sec. However, because the Lorentzian profile is easily handled
analytically in the ILM, it is included in the mnext section for the

sake of completeness.
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6.2 The Independent Line Method

The very narrowness of a spectral 1line that makes it such a
problem to compute the contribution it makes to the RMO using a grid,

is a positive asset wusing the ILM in uncongested parts of the

spectrum.

Let Ezq and qube the RMOs in the bin u=p to u=q of the
continuum alone, and the continuum plus a single spectral line

respectively, then the definitions are:

. rwmuu

(6.2.1)
o K )
9
g
L . Win) s (6.2.2)
KL v KL(“) + K‘_(‘t)

Where W(u), ﬁé(u) and Kl(u) are the weighting function, continuous
opacity and line opacity respectively, with U, being the line centre

located within the bin.

Using the above definition, we can write:

e\l
Wi da | Wi® Jy

L i
Rev e K, + R (D K, («)
£ < P e c

(6.2.3)

As the line is narrow, it is reasonable to assume that W(u) and Hé(u)
are constant over the profile, hence they can be replaced by W(uo) and

Ké(uo) respectively. Hence (6.2.3) can be re-written as:
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: "
i A WD i, 14 da

. = L : 6.2.4
K}(P{’L ’{ofuf} ‘){’C{qo) H[ /LL) % KC ‘ ‘(a) ( )
£

If the bin u = p to u = q 1is wide compared to a line width, and
the line is located comfortably within the bin so that its wings are
also included, then the integral in (6.2.4) can be taken over the
limits u = 0 to u =99, hence we can define:

}Z = W(d”? Kl du (6.2.5)
= Kc[ua) Hetwd + K, (e

o)

so that (6.2.4) can conveniently be written as:

e 6.2.6)
Kov © R 2
where X can be regarded as effectively a measure of the amount of flux
in the bin removed by the spectral line. This definition can be
applied even if the line 1is mnear the edge of the bin so that one of
its wings spills over into a neighbouring bin; it just means we teke
all the contribution in one bin. The definition (6.2.5) can be
integrated analytically for a pure Lorentzian profile and an analytic
expression exists for a pure Gaﬁssian profile. Unfortunateiy, no
convenient approximation is known to exist for a general Voigt
profile. It is this analytic treatment that enables the lines to be

handled by the ILM.
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The Lorentzian profile in dimensionless frequency units is:

Au, /3T
(a-u)? + (au/3)?

Flu) (6.2.7)

where AUL is the Lorentzian full width at half maximum, and F(u) is

the profile normalized such that:

ij(“)&éli = 1 (6.2.8)

0

Also let:

. u
K @) = hs Fl) (6.2.9)
RT
where the factor h/kT has to be included as we are working in
dimensionless frequency units, such that if k;(u) and Ki(u) are mass

. . . . 2 . . .
absorption coefficients in cm*/gn, s 1is the 1line strength in

cmz/sec/gm.

After substituting (6.2.7) and (6.2.9) into (6.2.5) and

simplifying, we get:

:Xi = E;é .élﬁf. EZQEE? 641&

) - - ) (6.2.10)
RT AT K, (d) cho)[(a-ao)u (B 2)'] + hs det
o RT 21T
Using the fact that:
o0
R T (6.2.11)
/Y '
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(6.2.10) can be integrated to give:

X = hs Wia)) TTAU, (6.2.12)
; E . e
RT S [T g + ‘1.%;:_]

If ap is defined as the ratio of the absorption in the centre of
the Lorentzian profile alone, to the absorption of the continuum

alone, then:

- K145 _ Ahs 1
a, = K - 2Ans ‘ (6.2.13)
Ko(w) — TTRT ke ds,
Then (6.2.12) simplifies to:
. a
Y = T WY Buy,  *o (6.2.14)

l}tb[up) [k, ¢4

Hence, it is immediately seen that in the weak line limit
a K1, X aCaL and in the strong line limit ar > 1, X« ap where
the line becomes saturated, and increasing the line strength further,
causes a correspondingly smaller increase in the RMO. Although the
integral in (6.2.10) can be evaluated between the finite limits p and
q, to correct for the effects of the wings if the bin is not wide

enough a rather cumbersome expression involvin arctangents is
s P

obtained, but is generally of little practical use.

In the rest of this discussion, we deal with the Gaussian

profile, given by:

_fu=dy et
e (6.2.15)

A

1

Fley = 77
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g - klauat 2/ 0
- L
or F[u) = . /,\ac,e (6.2.16)

where A‘ﬂ, = 2 /Q:an o (6.2.17)

and F(u) is normalized to unity as before. Although (6.2.16) is more

cumbersome, it is found more convenient to work withlﬂuG than O

On substituting (6.2.9) and (6.2.16) into (6.2.5), we obtain:

X - W(“o')/ ‘7[““

(1) | 1+ 5/ KT ) pu, p < R0
o

(6.2.18)
2 hS

If a, is defined as the ratio of the absorption in the centre of

G

the Gaussian profile alone, to the absorption of the continuum alone,

then:
lao) ; i

a";_, = HZ = 2 tig . _"L_S____i_._:_____ (6.2.19)

K, (a,) T RT K (v) ga,
If we also make the substitutions

= A (u-ay 0 e = 2/ du (6.2.20)

Du, Au,
together with (6.2.19) into (6.2.18), we obtain:
N

<7 L l«/(“o
X = A & - >CL T o (6.2.21)

1ma Koo | oa, + e

"
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Unfortunately, there exists no simple analytic solution to the
integral in (6.2.21). However, using the fact that:
TR
Fkl;j) = Jec‘? A (6.2.22)
o
is the complete Fermi~Dirac integral of order k, and can be expressed
as functions involving rational Chebyshev Polynomials depending on k
and the range of y, see Cody and Thacher (106), and also making the

substitutions:
J/{
x= € and do = 1€ A (6.2.23)

it can be shown that:

-

. =2 By TTE -l
a. + e” A, e(é @) +1 A4
o 2]

J"” o L[ ERME R, (fads)

(6.2.24)

which on substituting into (6.2.21) gives:

X = w(ﬁf) A Fou (n2) (6.2.25)
A/l W, ) .

after allowing for a factor of two, as we are integrating over half

the range, and the integrand in (6.2.21) is an even function.

As a quick check, an approximate value for (6.2.25) can be found

from the expression:

W/do.)ﬂf/(a aé_/."{:"l/db %Q)

SR W, (45) (do +1)

X - A ['d;,) (6.2.26)
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where the function A(aG) is a correction that does not differ much

from unity, and is given by the integral:

(A, 4 4) ”(‘?
O+ (a,02)

Ala) = (6.2.27)
such that A(O) =-§Jﬁ71n 2 = 1.0645 which is a maximum, A(2.6) =1,

A(21.7) = 0.9802 which is a minimum, and thereafter as aG—>co,
A(aG) -> 1. As A(aG) has its maximum deviation from unity in the
limit of vanishing line strength, it follows that this simple analytic
approximation is for all practical purposes rarely less accurate than

2%.

From (6.2.26), it is easy to see how X varies with line strength,
in the weak line limit ag K1, X a, as is the case with the
Lorentzian profile, but in the strong 1ihe limit with a, >> 1,
Xeo< fE;—;g, i.e. the 1line becomes effectively more completely
saturated than in the Lorentzian case, and any further increase in
strength results in a very small increase in the opacity. This is due

to the fact that the absorption in the wings drops off much more

rapidly than in the Lorentzian case.

The ILM discussed so far is exact, provided that: (i) there is no
more than one line in a bin, (ii) the weighting function and continuum
are assumed to be constant over the profile, and (iii) edge effects
are neglected, so a line centre that is just inside a bin is assumed
to contribute all its opacity to that bin and nomne to the neighbouring

bin.
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Unless lines are very broad or lie close to an absorption edge,
(ii) is a very good approximation, and provided bins are wide compared
to line widths, (iii) is also a good approximation. The problem in
the practical application of the ILM is that (i) is oftemn not wvalid,

and great care must be taken in the use of the ILM.

Suppose there are n lines in the bin, each producing its own

contribution Xi’ then (6.2.6) can be written as:

n
J.—m - L -3 X, (6.2.28)
h; C=4

}{,f"v
<

where R{qis the RMO for n lines and continuum, provided the lines do

not overlap, and:

X, = W) ba: Fy (dne;) (6.2.29)
CT A R -

2 /R, 'li_——i-——— (6.2.30)
T RT Kc["’l;)/_li/{"

As soon as there is any overlap between lines, the ILM no longer

il

where 6(;

gives the correct opacity, as the contribution to the RMO of the
overlapping lines is less than if the 1lines are separate, which is
discussed more fully in the case of only two 1lines in the next

section. Thus for m > 1, the ILM gives at best an upper bound to the

opacity. If, however, E;ﬂui<< w where w is the bin width, there is a
i

good chance the lines do not overlap and the ILM gives the correct

opacity if any information about the line positions is retained.
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However, it is assumed that no information about individual lines
is retained, so after each line is put in the bin with its own value
of X subtracted from the right hand side of (6.2.28), all information
about its strength, width and frequency is lost, so nothing can be
said about any overlap. Thus as the number of 1lines in a bin
increases, the likelihood of overlap increases so the value of the RMO

given by the IIM becomes more likely to be simply an upper bound.

In very congested parts of the spectrun, where the number of
lines in a bin can be large, the right hand side of (6.2.28) can
easily be negative, which means that the TILM has broken down
completely as there is a great deal of overlap, and we are trying to
remove more flux from the bin than there actually is. In this case,

all we can say is that the upper bound to the RMO is infinity.

The ILM can be used to obtain a lower bound to the opacity when
n>l, by lumping all the lines together in the centre of the bin to
obtain a single line whose strength is the sum of the strengths of all
the individual lines, and whose width is the minimum of all the line
widths. Thus the contribution given by the total overlap is ekpressed

as:

X = Wid,) Ba, F_,/l (fn &)
) S i, (4)

A E
where é’ = a ™ ;a_?%; .EZ7Z:37§;5 (6.2.32)

and where W(uo) and Kc(uo) are the weighting function and continuum

(6.2.31)
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respectively at the bin centre, and ﬁuo is the minimum of all profile

widths.

For the sum in (6.2.28), writing XS to mean the contribution of

the lines if they are assumed to be separate, it can be seen that for

n > 1l:

Xo < X < Xs (6.2.33)

where X 1is obtained by profiling the lines, then integrating

numerically to obtain the actual value.

If the spectrum is divided into m bins, then by the ILM we can

write:

)

m
_L _ g
7 'fnﬁﬂi ,E(_A. %55)10} (6.2.34)

1

"

1

.{ mn 1
= Z [ ‘;fc - Xﬁ] (6.2.35)

where the maximum function in (6.2.34) ensures zero 1is returned in
breakdown c;ses. Because in practice there will always be parts of
the spectrum where there is not heavy congestion, (6.2.34) will always
give a finite value for X . For those bins with no lines, of

max

course:

(6.2.36)

X, =X

V2]
i
S
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and for those with one line:

Xod' - Xs(-) > 0 (6.2.37)

If the whole spectrum has lines that are well separated, then by
choosing bin sizes appropriately, the ILM can give good results. In
practice, however, at places like band heads, there may be heavy

congestion even if the the spectrum is otherwise uncluttered.

It is also possible to treat the whole spectrum as one giant bin,
so that in (6.2.28) p = 0 and q =<, a finite value for the RMO will
be obtained, avoiding the summation in (6.2.34). Unfortunately this
suffers from loss of significance in a computer, all information about
the variation of the opaciﬁy over the spectrum is lost, and no account
is taken when lines are so congested that the ILM breaks down in those
parts.of the spectrum. It can nevertheless be done as a simple check

against the bin method.

In applying the ILM on a computer, five arrays are needed to
store five separate quantities associated with each bin, they are: (i)
the total number of lines in that bin, (1i) the right hand side of
(6.2.28), ‘which is initialized with the reciprocal of the RMO of the
continuum, then for every line, the contribution Xi is subtracted off,
(iii) the sum of the line strengths used in computing X0 at the end,
and also for obtaining an opacity by the LSM, discussed in section
6.4, (iv) the minimum of all line widths used in finding Xo and (v)

the sum of all line widths, only used for the LSH.
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We can also use the sum of the line strengths in (iii) to

calculate the PMO in each bin. Then:

n

v K (e 4 k 3¢ 6.2.38
SR CLTORS S (6:2:39)

where Eiqis the PMO of the continuum and n lines in the bin p to q of
width w = q-p and ug is the frequency of the bin centre, and we assume
the continuum and Planck weighting function do not change over the
bin. The total PMO for the whole spectrum is simply obtained by
summing (6.2.38) over all bins. This is clearly much more efficient
than computing the contribution to the PMO for every line individually

when the lines are computed.

As discussed in section 6.1, we can vary the bin sizes over the
spectrum taking the best compromise, so that bins are wide compared to
the Gaussian widths of the lines, but not too wide, using (6.1.1) with

a typical value of m as a guide.

Finally for interest, we can derive expressions for the
equivalent infinite opacity rectangle (EIOR) and the equivalent equal
area rectangle (EEAR) of a profile. The first is a rectangle cof
infinite opacity but whose contribution to the RMO is the same as the
profile, where to be meaningful, the bin width must of course be wider
than both. Because the rectangle has an infinite area, the PMO‘due to
it is infinite, hence also for the whole spectrum, and 1is thus
meaningless. However, this rectangle can be regarded in a sense as

the "equivalent width" of the profile. The EEAR 1is that rectangle
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whose contribution to the RMC is not only the same as the profile, but
whose area is also the same, thus the PMO is also the same as that of

the profile.

Let 4u, be the full width of the EIOR, then re-writing (6.2.3):

U, t At f2 o + Bu oy,
L = 4 | _wimd _ | wiwds (6.2.39)
Ke K. i€, ) + (0 K, (2> o
Uy ~ B0 (2 U= Bus/y

where again uy is the dimensionless frequency at the bin centre, and

we assume that W(u) and ké(u) are constants over the bin. As:

K (4) = o0 when [ a-d,| £ Auw

2 .
and: (6.2.40)
K (2 = 0 vhen | u - d | pay

X

it can at once be seen that:

- 4 W,
i = & - Wiy du, (6.2.41)
1% R kK e
therefore from (6.2.6), we can see that:
oy -
A, = R (4o X (6.2.42)

W (4e)

So for the Lorentzian profile, from (6.2.14) we can write:

™ Aﬂc4 CZL
N, = = : (6.2.43)
* A JA, 4 4

and for the Gaussian profile, from (6.2.25) we can write:
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Nu, = Aag F"ll('&%a&)

(6.2.44)

with ap and a, being defined in (6.2.13) and (6.2.19) respectively.
If the sum of the EIORs over several profiles in a bin equals or

exceeds the bin width, then this indicates that the ILM has broken

down for that bin.

If we now define Aur as being the full width of the EEAR, and

replace Au_, by Aur in (6.2.39), then we can write:

K11u) = when [aa- | € B,
and: & (6.2.45)
Kytwy = 0 when fa-d | > Ay

2

where d is the height of the rectangle above the continuum. For area

to be conserved:

= hs |
v d o= (6.2.46)
A kT

where s is the strength, see (6.2.9). On integration:

'IF*

=
L

= .1. - kj[aa . -~——1———— - _z__
5 ) s TN e (6.2.47)

<

then on substituting for d, and as before from (6.2.6) after some

algebra, we obtain the result:

hs e (a)) X
Z}Li}, = - ki . :
hs Wia) — it (u) X
kT

(6.2.48)
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Then for the Lorentzian profile, using (6.2.14) again, we obtain:

AR = . hT (6.2.49)
o 2 hs Ja 41 ok ()

and for the Gaussian profile, using (6.2.25) again, we obtain:

hs
S - (6.2.50)
VS hs 1 B
" kT Qitg Py, (£na,) K (a)

Note that the weighting function drops out of (6.2.43), (6.2.44),

(6.2.49) and (6.2.50), and the continuum also out of the first two.
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6.3 The Partial Overlap of Two Gaussian Profiles

An analytic approximation 1is discussed below that enables the
contribution to the RMO in a bin to be computed from two Gaussian
profiles that have any degree of overlap, and represents an

improvement to the ILM.

In conducting numerical experiments by integrating overlapping
Gaussian profiles, the remarkable result is found that as two strong
profiles which are completely overlapping are separated, the
contribution they make to the'bin increases linearly over a large part
of the range. This can be explained by the fact that the integrand in
(6.2.18) for strong lines, has the form approaching that of a
rectangle, with a flat top centred at u and very steep sides, and
represents, 1in a sense, a measure of the flux removed at each
frequency point. With two partially overlapping profiles, the
integrand is not additive, as in the region of overlap, the height is
hardly altered and we effectively have a rectangle of greater width.
As the two profiles are separated, the width hence area of the
effective rectangle incréases linearly wuntil the profiles no longer

overlap, giving two separate rectangles.

In (6.2.18), substituting for ags and finding u-u that gives

half the value at the maximum when u = u,, we can show that

£ = Aa, [ Ao (4, +2) (6.3.1)
4n 2
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where t is the full width to half maximum of the integrand, which is
effectively the width of the rectangle in the strong line limit. Thus

if two profiles with Aul, a, and Auz, a, are centred respectively at

1

u. and Uy s and if:

1

Vsl > 6+ by (6.3-2)

Y

then the profiles do not overlap. Then defining:

Vo= kYN o A gy
/ m)ﬁ s Aea) (6.3.3)

it can be seen from (6.2.26) that in the strong line limit, Y/t =1

for a single profile.

From the above, we can obtain simple approximate relationships
that enable us to calculate the contribution from two overlapping
profiles. Let Yo be the contribution from the two profiles that are
completely overlapping, YS be the sum of the contributions for two
separate profiles and Yp be the contribution from two partiaily

overlapping profiles. Then for the separations Vv and v2 with

1
vy < Vol
v, = YO - YS/Z
(6.3.4)
v, = YS/Z

Then for:
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1° P o
vy < v < Vo5 YP = v - v1+ Yo (6.3.5)
v > Vs Yp = Y
so that:
(j,\[ {0 for v < \ (6.3.6)
P =
p{vf 1 for Vl( v < v,

which holds well in the strong line limit if Yp is obtained by direct
numerical integration, with a long 1linear portion in the range
v1< v < Vo with a rapid change to a horizontal slope in the vicinity
of v=v, and v =

1 Vo Because Yo> YS/Z, v, will always be non-zero.

1

Because the integrand in (6.2.18) is not well represented by a
rectangle for weak lines, the approximate rules given above are poor,

but can still be applied as the contributions are much smaller.
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Y=2v

Yp(v)
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e
L

Fig. 6.1
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Figure (6.1) represents the idealized behaviour of the function
Yp(v) such that it increases linearly from v = vy to v = Vs where vy
is on the line Y = 2v, otherwise Yp(v) is constant. Figures.(6.2) and
(6.3) represent the actual behaviour of Yp(v) for a number of profiles
of different strengths in reduced units. In all cases, the bin width,
the height of the continuum and the weighting function are taken as
unity; hence the area under the continuum is also unity. All profile
widths are taken as 1/20 of the bin width, and it is convenient to
scale v and Y by dividing by this factor, so that the abscissae is in
terms of the width of one of the profiles, the maximum separation of

the profiles being here six times the width of one profile.

In figure (6.2); curves A to I show the behaviour of the function

for the case where both profiles are of equal strength for

s.= s.= 10°,10°

1 9 ...10-2 respectively, where o is the area under

profile 1. It can be clearly seen that for strong lines, the
behaviour of Yp(v) is very close to the idealized case, with curvature

over ouly a small portion of the function in the vicinity of v, and

1
Vo with vy being very close to the Y-axis in this figure. For curves
G, H and I, with 8= s,= 1, 1()--l and 10“2 respectively, the curves
level out progressively further to the right of the line Y = 2v and

our approximation becomes progressively worse, but as the

contributions become smaller and the differences between total overlap
and non-overlap also become less, the errors remain small; the extreme

case here being for curve I. So we can still apply ‘the approximate

method as stated above.
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Figure (6.3) shows the effect of keeping one profile constant and
progressively weakening the other. Curves A to G represent the case
4 .3

for s.= 104 and s,= 10,10

1 9 ...10"2 respectively. Again it is seen

that for the lowest curves, the 'deviation from the idealized case is
largest, but the errors will still be small as the differences between
the total overlap and non—-overlap cases are small, though the total
contribution may be large, this being due to the dominant profile. 1In
this family of curves, it is seen that as the differences in $4 and Sy
increase, the distance of vy from the Y-axis increases, and the
smaller is the effect of the weaker profile on the total overlap, this
not being perceptible here for curves C to G. Other families of
curves produced in a similar way with slz o will be similar but
shifted, except that if both profiles are weak, the effect of the

weaker of the two on the total contribution for total overlap will be

greater, this causing a larger spread on the left hand side.

Though Ys can always be obtained from the two separate profiles,
Yo can only be found directly if both profiles have the same width,

in which case:

il

yo Q..l.’.(._'_‘F-ill[-’&h [5(, -fvdl):\ (6.3.7)

W

otherwise Yo has to be found by an appreximation.
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If the two profiles have different widths, Zlul and Auz, then let

Auzgﬁdul, let a; be defined from (6.2.30) with i = 1 or 2, but also

define aé for the mnarrower profile that is broadened to the same

width as profile 1, such that:

a . - 9 /,ZAZI_ A S, 1
2 p- = ey -.NC Au, (6.3.8)

so that a£ L a

2 and strictly speaking K. in (6.2.30) and (6.3.8) 1is

taken at the mid point between the two profiles. Then Ya is the total

overlap with broadened line 2:

ya = é“:.E,/[Z,L/A, +42’)} (6.3.9)
Ve

Yo is restricted to the range Yl< YO$ Y , where Yl is obtained from

(6.3.3) for line 1, such that for Auz -> 0, YO -> Yl’ line 2 becomes a

® function and causes no absorption and Au2=,dul, Y=Y line 2 has

o a’
the same width as line 1.

Now if we let:

Da,

d = - (6.3.10)
TATZ
and:
‘3 B \/o - \/-4 :
- — (6.3.11)
\/a = \/ '

such that both x and y can lie between 0 and 1 only, then for any line



- 259 -

strengths y = f(x), such that by definition y = O when x = 0 and y = 1

when x = 1.

1f Auz is wvaried from O to .Aul and YO is obtained by direct
numerical integration over the profiles, then x and y from (6.3.10)
and (6.3.11) respectively are obtained, and on plotting for given

strengths, it is seen that the curve is approximately of the form:
y=xP with p>0 (6.3.12)

where p should be a constant, given by:

Log 9

l) - (6-3-13)
459 %

for any point on the curve. In practice, it is found that p does vary

over the curve, so the most representative value taken is that where

the line y + x = 1 intersects the curve, the line being the principal

diagonal in the unit square for the range covered by x and y.
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Figure (6.4) illustrates this very well for 10 curves with the
strengths in the same dimensionless units as for figures (6.2) and
(6.3), with 8;= 8, 10—3,10—2..0106, intersecting the main diagonal
progressively from upper left to lower right. Most other families of
curves produced by profiles of different strengths are found to behave
in a similar way. If the contribution produced by two profiles of
different widths and strengths is plotted as a function of their
separation, a curve similar to one of those in figures (6.2) and (6.3)
results. Moreover, 1if a family of curves is produced by keeping both

profiles of fixed and equal strengths, but with various values ofziuz,

withgﬂuzg Aul, the family is very similar to that in figure (6.3).

We can tabulate p for the various values of the relative 1line

strengths ry and ré, such that:

=2 (6.3.14)
‘ RT k, Dd;
and:
f _ ks 1
Y, o= 2 (6.3.15)

hT =, Au,

where ré is the relative strength of the second line if broadened to

that of the first line.
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Table (6.1) of Overlap Parameters for Different Relative Line Strengths

Logrr
-2 0.032 0.14
-1 0.046 0.15
0 0.30 0.37
1 2.14 2.22
2 6.18 6.92

3 - 13.09

The rows of

log ri.

approximate.

0.46

0.48

0.68

2.30

7.006

12.22

17.12

this table are labelled by log

0.78

0.81

1.08

2.57

6.97

12.53

18.05

20.21

0.89

0.93

1.22

2.64

6.60

12.52

18.23

20.92

27.23

0.93

0.96

1.23

2.41

5.45

11.36

17.78

23.23

25.19

44,30

0.95
0.98
1.22
2.17
4.31
8.67
15.99
22.79

27.98

31.12

Note that values of. p below the

Thus given parameters for the two lines,

ré from the formulae above,

given p, Yy is

(6.3.11), then Yp

found

from

obtain p from the table by interpolation;

(6.3.

12)

0.96

0.99

1.21

2.00

3.55

6.41

11.92

20.49

27.66

32.51

39.92

r, and

1

main diagonal

we can calculate r

can be found as already described.

0.97

0.99

1.19

1.87

3.07

5.03

8.57

15.19

24.92

32.40

38.22

43.73

the

0.97

1.00

1.18

1.78

2.74

4.19

6.57

10.81

18.55

29.29

37.25

41.39

columns

0.98

1.00

1.17

1.70

2.51

3.64

5.34

8.16

13.12

21.75 15,

33.56 25.

41.85 37.

are very

1

from which YO is obtained from

by

and

6.

9.

.98

.00

.16

.64

.34

.26

.55

54

79

36

26

98
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1f ri <L £ this corresponds to a weak narrow line overlapping
with a strong broader line, with the result that there is practically
no difference between Yl’ the strong line on its own, and Ya the
overlap of ;he two lines with line 2 being broadened to line 1. 1In

this case, the value of p is essentially meaningless, as in (6.3.11)

we are interpolating between two values which are practically the

same.

In computing X for the case of two lines in a bin, the strength,
width and frequency of the first line are retained until the second
line falls into the bin, then X can be computed. If the bin never has
more than one line, then after all spectral lines have been generated,

X is computed at the end.

If the bin has more than two lines, then for every additional
line, its own value of X is computed and subtracted off the right hand

side of (6.2.28) as before, where X, and X2 are already covered by the

1
two line case. For bins with many lines, the effect of the two line
treatment is at best to lower the value of the RMO for the ILM, giving

a slightly better upper bound to the opacity. Unfortunately, there is

no easy way of handling the overlap of three or more lines.

So to summarize, there are five possibilities that can occur with

the I1M:

(i). 0 lines, empty bin with continuum on its own,

(ii). 1 line, ILM gives an exact value,
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(iii). 2 lines, ILM gives an exact value if there is no overlap, or
a good approximate value if there is overlap,

(iv). 3 or more lines with a positive value in (6.2.28), ILM gives an
upper bound to the opacity, but the more congestion there is in
the bin, the further the true opacity is to be from this bound,

(v). 3 or more lines with a zero or negative value in (6.2.28), ILM
breaks down completely, and other methods must be used to

obtain even an estimate of the opacity.

The case of breakdown for only one or two lines in a bin

indicates that the bin is simply too small.
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6.4 The Line Smear Method

If we do not wish to apply the ILM, or in cases where it is
unreliable or breaks down completely, the LSM discussed below enables
us to at least obtain an approximate estimate of the RMO in a bin. At
the end of the computation of all spectral 1lines, because the
individual information about lines in a bin is lost, all we have to
work on is the number of lines, the sum of their widths, the sum of
their strengths and the upper and lower bounds cf the opacity given by

the ILM if applied.

Let us consider the case of extreme congestion, i.e. there are so
many lines in a bin that we can replace the continuum by a level
pseudo-continuum due to the effects of all the profiles combined
together, see figure (6.5). Let W and C be constant over the bin, and
represent the average weighting function and continuum respectively, w

the bin width and S the sum of all line strengths, given by:

n |
= h 75 ’ (6.4.1)
T

(=4

=

so that S and C have the same units. Also let K be understood to

represent the RMO of that bin on its own here.
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If the height of the new pseudo—-continuum above the true
continuum is h, then its total height is clearly h+C, and it is easily

seen that the RMO over the bin is given by:

w W

C +h

——
——

(6.4.2)

x|~

If we conserve area, so as h = S/w, we can write:

il

(6.4.3)

=
s
(%
+
w

which is an absolute upper bound to the RMO in a bin, and corresponds
to completely smearing all the lines, this bound being otherwise
unobtainable in breakdown cases of the ILM. However, when the ILM
gives a positive value in (6.2.28), generally it gives a better upper

bound than (6.4.3)

If the congestion is less extreme, then although there will still
be a lot of absorption, there will also be windows in the bin through
which radiation can pass. The crudest way of representing this 1is to
put the absorption in the form of a triangle of height h sitting on
top of the continuum, so that at one extreme end there is no
absorption corresponding to the windows, and at the other there is
absorption by an amount h, see figure (6.6). This can be regarded as

a very crude Opacity Distribution Function (ODF).
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Let u, be the frequency of the bin centre and Kl(u) be the
distribution of smeared absorption, such that ﬁi(uo-w/Z) = 0 and

Kl(u0+w/2) = h, then:

K (4) = ho(a -t 00) (6.4.4)
~

Again conserving area, as h = 25/w, we can write:

Kola) = A3 (U~ u, o) (6.4.5)
W2

then the RMO is obtained from:

Uo-v&lv"/-;_
i W e
o 3 (n-t 10 (6.4.6)
>2, ( SHUID) 4 C
“0’4’/2
which on integration gives:
i = Eﬁiig “Z% gjé o 1
T 23 LC " (6.4.7)
If S is zero in this or (6.4.3), then we get:
L= wW (6.4.8)
K C

which is just the continuum on its own.
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If the RMO from (6.4.3) is Rr for rectangular smear, Ei from

(6.4.7) is the triangular smear and Rc from (6.4.8) is the continuum
alone, then we can show that for S > 0O:

K. < K < K, (6.4.9)
which we would intuitively expect to be the case.
From Abramowitz and Stegun (46):
2% ~1\ 1/xn-~1 > A -t 2
Ihx = 3 i) T ‘3(%1‘1 oS \aer) 0 (6.4.10)
which is valid for x > 0. Then substituting:
1S (6.4.11)
intc only the first term in (6.4.10) and neglecting higher order
terms, then (6.4.7) becomes:
| AW | S ___._________./1 S ‘
}:(c = __._S oC 25/« C +2 (6.4.12)
which gives:
R
L W (6.4.13)
ke wC+S
which gives

the result in (6.4.3) if the higher order
dropped.

terms
Including these terms causes 1/?}t > 1/Er,

are

therefore
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K, > ﬁt. If we put S = 0 to obtain Kc’ it is seen that Kc < Kt < .

In addition to comsidering the two forms of smearing discussed so
far, we could also distribute the line strengths in the form of the
part of some giant profile, which is more 1like an ODF. However,
unlike an ODF, we have no information about the distribution of the
opacity across the bin, but only the sum of the line strengths and
widths, so nothing more useful could be extracted from this concept

than what is discussed below.

Suppose we wish to consider a degree of smearing intermediate
between the triangular smear and complete rectangular smear. Let us
split the sum of the total line strength S into components S1 and 82,

then:

S = Si + S1 S = PS , S = (1-(>)5 (6.4.14)

2 =

where 0 { p < 1 is a smearing parameter, S1 is a rectangle on top of

the continuum of height hl and 82 is a triangle on top of Sl with

height h2, see figure (6.7). Then as h1= SI/w, if we replace C by

C+Sllw in (6.4.7), we get:

L, 2
= W é"(g—g—z—— + 1) (6.4.15)

4
K s 5C+8,

»
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then using (6.4.14) we can write:

Lo W i fwC -pS +138
R 20,5 oC +pS

(6.4.16)

where if p = 0 we have (6.4.7), the least amount of smearing, and as

p —> 1 we approach (6.4.3) the greatest amount of smearing.

If we want to deal with smearing that is less than the triangular
smear given by p = 0, then we can consider a triangular wedge of area
S with width v, with w-v being just continuum, see figure (6.8). This
would correspond to a relatively uncongested bin with quite a lot of
continuum. Replacing w by v in (6.4.7) to correspond to integration
over just that part of the bin with the wedge, then adding the
contribution of the remainder of the bin containing just continuum, we

get:

= wé’l(-l—-s- + ﬂ) £ (W (6.4.17)
C |

Letting:

v o= (pHi) e (6.4.18)

where p+l 1is the fraction of the bin covered by the wedge, with

-1 < p £ 0, we can substitute this into (6.4.17) giving:

Tl

= oW b2 | 25 - 2
= 0% {(p N C by Fioot + 1 pS (6.4.19)
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As p=-> 0 from the negative side, the last portion of the
continuum on its own vanishes and the opacity increases rapidly, hence
by choosing pt+l as the fraction rather than another vériable like q
say, we avoid the problenm of 1loss of significance, and hence

continuity between the two smearing methods.

Thus given a specified sum of line strengths S in a bin, so that
the area S is fixed, and taking equations (6.4.19) and. (6.4.16)
together, we can vary the smearing hence opacity in a bin, such that
in the range -1 < p £ 0 we apply (6.4.19) to obtain smearing from a
triangular wedge increasing from the limit of a § function with no
opacity, to a triangle across the bin. Then increasing p further so
that it is in the range 0K p <1, we apply (6.4.16) with S
partitioned between a triangle and rectangle, with the opacity
continuing to increase as the smearing approaches that of just a
rectangle. However, the most difficult part of this work is to find
some way of pinning down the smearing parameter with the limited
amount of information available, ‘as we know nothing about .the
distribution of line strengths or how the lines overlap. We want to
correlate p in some way with the sum of the line widths, which is a

measure of the congestion.

Originally it was thought that we could relate p in a simple way
to tﬁe sum of the line widths expressed as a fraction of the bin
width, however, very extensive numerical experiments indicated that mno
simple relationship exists. In these experiments, a bin is created

into which a specified number of lines are placed, whose widths are a
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specified fraction of the bin width but line positions within the bin
and strengths are chosen by random numbers, to simulate actual cases

where many possibilities of line strengths and overlaps can occur.

Working in dimensionless scaled wunits, let the weighting
function, continuum and bin width all be unity, =x be the relative
frequency of the centre of a profile, chosen by a random number such
that 0 £ x £ 1, and y be another random number in the same range, such

that:
s=ae” by (6.4.20)

where s is the line strength and a and b are constants. The expression
(6.4.20) is chosen to simulate actual cases where lines come from
different 1levels where there will be the effect of the Boltzmann

factor.

In (6.4.20), a and b are chosen so that when y = 0, s = a is the
strongest possible 1line, and s = a exp(~b) is the weakest possible
line when y = 1. To simulate realistic cases, line strengths are
chosen to range from about 0.01ldx to lO%ﬂx, where Ax is the line width
as a fraction of bin width, and the lower limit corresponds to the

typical cut—-off when generating actual lines.

In handling these artificial bins, we have a grid fine enough to
profile the generated lines correctly, so that the opacity in the bin
can be obtained by direct numerical integration of the grid once all

the required lines have been produced. These bins are wrap-around, so
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that with a line near one- edge of the bin, the part of the profile
that would otherwise be lost is put in at the other edge, which would
simulate the actual case of parts of profiles that would spill over

into neighbouring bins.

7 If n is the number of lines in a bin, then with the four fixed
parameters n, a, b and Ax, we can produce many bins then find the
value of p, which if inserted into (6.4.16) or (6.4.19) as
appropriate, fits best. Naturally, those bins that have by chance
more overlap than average would be expected to have a smaller opacity
than given by p, and vice versa for those with less overlap than
average. Hence p 1is determined by some sort of amn average bin. The
most efficient way is to find the average opacity and total strength
for many bins, then given K and S, solve for p in (6.4.16) and
(6.4.19) by iteration. This can be done for varicus values of the
four parameters, in particular n, to see what correlation can be

obtained.

It is indeed found that no simple correlation exists, accordingly
we take the simplest empirical rule that gives the best fit by
assuming that p depends only on the sum of the line widths. Hence,

for p < 0:
(6.4.21)
and for p > O:

p=1 - @""'M’"[) (6.4.22)
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where | = 4 A : .4.23
.1 WZ : (6.4.23)
and k, 1 and m are comnstants. It is found that the best fit is given
by having the approximate values k = 2.5, 1=5.0 and m = 0.012.
Hence for q < 5, p is obtained from (6.4.21) which together with § is
substituted into (6.4.19) to give smearing over part of the bin, and
for q > 5, p is found from (6.4.22) which on putting into (6.4.16)

will give us smearing over the whole bin.

If the opacity in many bins is computed by direct integration of
a grid and by this empirical smearing method, it is found that when p
is well away from zero, i.e.Aunder—congestion or over-congestion, the
agreement is often not too bad, but in cases when p is close to zero,
i.e. complete triangular smear, the smearing technique can produce an

opacity out by often more than an order of magnitude either way.

However, if the opacity by this LSM is computed in tandem with
the ILM, then if a value is obtained that is outside the bounds given
by the ILM, the appropriate bound is chosen as the opacity in that
bin. For cases of omne or two lines in a bin, only the ILM should be

used.
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6.5 The Opacity Sampling Method

Ideally we require a grid that is fine enough so that each
spectral line on being profiled can be represented properly. However,
as already stated in section 6.1, this could not be done in practice
for the whole spectrum with realistic line widths, due to the
limitation of the available computer memory. So we have to compromise
by using a fine grid that 1is fine enough to represent each line,
bearing in mind computer memory and execution time on the one hand,
yet not too coarse so that our accuracy 1is low and lines can be
missed. We thus aim if possible to have about one fine grid point per
Doppler width, so that on average about three grid points will cover a
profile. This is quite distinct from say Johnson and Krupp (28), who
use a very much coarser grid for the calculation of model stellar

atmospheres, the finest grid being used having a spacing of 12.5cm"1,

which corresponds to 4.5)(10—3 in the dimensionless frequency units

used by us at their Te £ AOOOOK, and is large compared to the Doppler

width of say CO at u = 1, which is 8.6X10-6 at that temperature.

f

Thus if a spectral line is given by:

(o R
(6.5.1)

Kl{&x,) = 9\ _
. 2 -1 . . ) . 2 -1 -1 . .

in cm gm and with the strength s in cm"sec "gm = with stimulated
emission not being included, we find the grid point closest to the

line centre at uss then evaluate (6.5.1) for each value of u computed
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from the grid in one direction, until the ratio Hi(u)/hé(u) is less
than some specified value, say 0.0l, then repeat this in the other
direction for the other side of the profile, so the whole profile is
represented. Kl(u) is accumulated in an array for the fine grid
points in exactly the same way as the continuum Kc(u) is accunulated
earlier, with the fine grid initialized with the continuum obtained by
interpolation from the coarse grid. The above test for cutting off a
profile is done with respect to the background continuum, rather than
what has already been accumulated in the fine grid, so as to make this

test independent of the order that lines are computed.

Having computed all 1lines, a spectrum with many hundreds of
thousands, or computer memory permitting, millions of data points is
obtained, and the RMO could be found directly by integrating across
the whole spectrum using (3.1.7) with an appropriate upper limit, as
can be done with the coarse grid for the continuum. However, the
spectrum in this form is rather unwieldy and inconvenient to store on
some mediumllike magnetic tape for future use, and 1is not directly
comparable to the spectrum produced by the ILM and LSM. So instead,
by an appropriate choice of bin sizes and fine grid intervals, as
discussed in section 6.1, we can integrate (6.2.1) with KX(u) for all
sources of opacity using Simpson”s rule over the bin. The spectrum is
then in a form directly comparable to the ILM and LSM, as we now have

it in the form of 1/12i for each bin i.
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If the OSM is computed in tandem with the ILM, then for bins that
have one or two lines, the ILM gives a better result because the OSM
is only approximate. However, if there are more 1lines, and
particularly for congested bins, the 0SM is much more reliable, and we
never have the problem of infinite or negative opacity that can occur
with the ILM. Having obtained the reciprocal opacity for each bin, by

whichever method, the total RMO is found simply from:

n
(::4

|~

(6.5.2)

X

.

i~

for n bins.

In deciding the separation of the fine grid points, we can use

(6.1.1) with a typical molecule like CO, then neglecting turbulent
5

b

velocity, at 1000°K, Au/u = 4.28%10°° and at 6000°K, Lu/u = 1.05X10"
which covers the temperature range of greatest interest to us. I1f we
do not have enough computer memory to put a fine grid all the way from
u=0 to 20, as is the case with this work, we can stop at u = 15
where the weighting function is already quite small, leaving just the
coptinuum at higher energies. Even so, 1if we are still short of
memory, we can still compromise by not having the grid quite as fine
as one grid point per Doppler width near the limits of the range
covered where the weighting function is small, so errors are less
important. In practice, becauseflu -> 0 as u -> 0, we are compelled
to under—sample in our first region of u= 0 to 1, so we can choose a
sampling interval to match at u = 0.5 or u = 1. If turbulent velocity

is included, then we can of course use a coarser grid, or have better
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sampling.

Although we obtain the final RMO K for the whole spectrum as mass
absorption in cngmf , it is in fact much more convenient to work in
volume absorption U(u) in c:m.1 for individual species, be they sources
of continuous opacity or profiled lines; in the latter case a line

strength s 1is in cm‘lsec-l. Thus all equations in chapter 3 and 6

involving K (u) in cngm.1 that are used numerically in this work, are
in fact used with/u(u), where the two are related by (3.1.15). Also,
it 1is more convenient when computing 1/Ei for each bin by whichever
method, to omit the constant 15/4W4. Thus in evaluating the sum
(6.5.2) over all bins to obtain the required RMO in cngmel, we apply
a constant factor of 15f/l:,'ﬂ'4 to the right hand side, and this factor

must actually be applied to the computed wvalues of every bin to obtain

the correct RMO in each bin.

So far in this thesis we have discussed all the required theory,
it is the purpose of the next chapter to discuss the results and tests
performed using the theory. The programming methods . employed in
obtaining our results are rather involved, and any discussion beyond
mentioning brief points where relevant, is considered beyond the scope

of this thesis.
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7 PRESENTATION AND DISCUSSION OF RESULTS

7.1 Introduction

In this final chapter, all the theory discussed in the previous
chapters is put into practice, and the results of calculations based
on this theory are considered. A 10X13 grid of continuous opacities
in the T—f>plane is computed, with the results in the next section.
Subsequently, some examples of opacities for a few grid points with
the contribution of diatomic and triatomic molecular bands calculated
in detail, are considered, together with examples of some intermediate

calculations necessary in determining opacities, and some tests.

All calculations presented here have been performed on a VAX
11/780 computer acquired by the University of St.Andrews in the first
half of 1980. As the VAX is fast and interactive, code could rapidly
be developed and tested. Prior to this, while working in St.Andrews,
use was made of an IBM 360/44, which could only be effectively used in
batch mode. However, while working in Dublin, development was
performed on the 1IBMs 370/148 and 158 at the Central Data Processing
Services of the Irish government, which, although they could only be
used in batch mode, were powerful machines. In addition, use was made
at Dunsink Observatory of a Data General Nova minicomputer, which
could be used interactively for testing small sections of cocde, and an

Apple II microcomputer for graphics.
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The opacities are calculated using the two computer programs
MIXOP and TRIATOM. The latest versions of these are listed in the
program volume of this thesis, together with some documentation and
examples of actual output. An attémpt has been made to adhere as much
as possible to the conventions of standard FORTRAN IV, this being a
subset of FORTRAN 77 used by the VAX, in order to make the programs as
compatible as possible with compilers on other machines. However, we
have had to depart from FORTRAN IV for such features as file

manipulation, this being discussed more fully in the program volume.

The MIXOP program calculates the abundances and continuous
opacities using the theory Adiscussed in chapters 2 and 3. This
program can generate files that are subsequently used by TRIATOM which
calculates spectral lines for diatomic and triatomic molecules, based
on the theory discussed in chapters 4 and 5 respectively, and the
opacities due to these lines by chapter 6. We consider first the

results of applying MIXOP.
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7.2 Abundances and Continuous Opacities

In this section, the results of calculating the abundances and
continuous opacities due to various species over a  range of

temperatures and densities are considered.

The following sources of data were used as the input for the
statistical mechanics calculations: abundances of elements and
isotopes from Cameron (4), atomic masses and spins of nuclei from the
American Institute of Physics Handbook (107), atomic ionization
potentials and electron affinities from Allen (32), atomic energy
levels from Moore (33), most diatomic molecular rotational and
vibrational constants from Rosen (35) and Mizushima (36), except for
Ti0 from Phillips (108) and Cl10 from Cooper (109); and triatomic
molecular data from Herzberg (30) and (34). With (30) also used as a
source of the trial values for the force constants of the bonds of the
two non—linear non-symmetric molecules considered, i.e. HCO and HNO.
The sources of the data for continuous opacities are given in chapter
3, with the data given in the appendices. Finally, some sections of
the coding in the MIXOP program were cbtained f£from Carson (3),
together with the subroutine for computing Fermi-Dirac integrals used

by the ILM in the program TRIATOM.



- 285 -~

In the mixture, we have the 22 most abundant elements: H, He, C,
N, 0, F, Ne, Na, Mg, Al, Si, P, S, Cl, Ar, K, Ca, Ti, Cr, Mn, Fe and
Ni, of which we allow for the formation of the stable negative ions of
H, ¢, 0, F, Na, Al, Si, P, S and Cl, and two positive ibns of all
elements from He onwards. In the molecular equilibrium calculations,
we allow for the formation of the 36 diatomic molecules: HZ’ C2, Nos
0,, OH, NH, CH, CN, CO, NO, SO, CaH, MgH, AlH, SiH, SiN, AlO, SiO,

NaCl, MgCl, KCl, CaCl, Na,, NaH, SH, Mg0, HCL, HF, Cl0, TiO, Hy, ci’,
+ 4+ + i .
co , NZ’ O2 and OH , and the 9 triatomic molecules: Hzo, HCN, HCO,

HNO, NZO’ C02, NOZ’ O3 and SOZ’ together with their isotopic
variations, there being 202 and 119 possible wvariations of diatomic
and triatomic molecules respectively; due to the presence of 60
different isotopes. Though this list appears formidable, there would
be plenty of scope for including many more atoms and molecules.
However, the object of this work is to dévise a method to compute

opacities and illustrate it with a number of examples.

Many of the molecules in this list are chosen because their
abundances are likely to be very high at low temperatufes, such as
obviously H2 as its constituent atoms are very abundant, or CO as it
is tightly bound, or because they are 1likely to be important sources
of opacity even for relatively low abundances, like TiO. Also, in
order to calculate the contribution to the opacity due to bands,
discussed later in this chapter, we have to know the oscillator
strengths or dipole moments, which are not always readily available,
and some of these molecules are chosen because such quantities are

known. However, some of these molecules tend to have low abundances
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for any set of conditions, such as the molecular ions, and would be of
essentially no importance in the statistical mechanics or opacity
calculations, but at least illustrate that the computer program can

handle abundances over a very great range of values.

~ The abundances of some molecules are very sensitive to the
initial abundances of the elements, the most spectacular example of-
this being C2. As CO 1is the most tightly bound of all diatomic
molecules, and as the elements C and O tend to have comparable
abundances, most of the C and O is bound wup in CO at lower
temperatures, with the surplus of either C or O combining with other
elements as well as itself. 1In our mixture, as O is more abundant
than C by a factor of 1.8, okygen containing compounds predominate by
far over carbon containing compounds, with C2 in particular tending to
have a negligible abundance. In carbon stars, C is in surplus, the
reverse 1is true, and in particular C2 is abundant and an important
source of opacity, as it has a large number of bands across the
spectrum. Thus one can see qualitatively, that the opacity can be
very sensitive to the initial abundances of the elements. Because all
the equations governing molecular dissociation are coupled, in many
cases it is impossible to say even qualitatively whether a particular
species will be abundant or mnot at a particular temperature and
density, before actually performing the calculations, this problem
having been stated at the beginning of chapter 2. In reality, omne
should allow for the formation of many more molecules, but it 1is

believed that the sample here is representative.
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The RMOs and PMOs due to the Gtcontinuum, together with the
abundances of the various species were calculated over 128 grid points
in the T-p plane in a 10X13 matrix, with the iteration convergence
criterion € = 10_6. Because the densities are considered in log form,
it was decided also to handle the temperatures in the log. The
densities‘chosen are logpP = -14 to -2 in steps of 1 and temperatures
of log T = 3.0 to 3.9 in steps of 0.1, thus covering the range
T = 1000°K to 7943°K. The grid points with log © = -2 and -3 for
log T = 3.0 are not computed because of problems with floating point
numbers exceeding the machine”s range, and it is not considered worth
while to handle specially these highly unlikely cases. This grid thus
embraces very. well, with a substantial overkill, the domain in the
H-R diagram for late-type stars. Table (7.1) gives the RMO and PMO in
that order in the log to four figures of accuracy for each grid point,
by integrating the spectrum computed with 4001 data points, the first
point being the dummy point at zero energy. All the opacities are in

cngm_l, and logfﬁ is written as log R.

It is seen that generally the opacities increase with increasing
temperature or density, but not necessarily monotonically in any
orthogonal direction in the table. It would, however, require the
computation of many hundreds, if not thousands, of grid points to
investigate the detailed behaviour of the opacities with temperature

and density.
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Table (7.1) of Log RMO and Log PMO for Continuum
T . 1000 1259 1585 1995 2512
Log T 3.0 3.1 3.2 3.3 3.4

Log R

-14 -7.5588 -6.2429 -5.2485 -4.5990 -3.7880

-6.4344  -5.9364 -5.1839 -4.5777 -3.7975

-13 —7.7640 -6.4774 -5.5177 -4.7351 ~4.0474

~6.4356 -5.9920 ~5.3732 -4.6874 ~4.0440

-12 -7.9016 -6.7287 ~5.7731 -4.8909 ~4.2942

-6.4360 -6.0203 -5.5030 -4.7957 ~4.2543

-11 ~7.6665 -6.9406 -5.9472 -5.0183 -4.4140

-6.4353 ~6.0304 -5.5608 -4.8580 -4.3236

-10 -7.1920 -6.9024 -6.0980 -5.1980 -4.3981

-6.4270 -6.0301 ~-5.5920 -4.8986 -4.1499

-9 ~-6.7696 -6.5590 -6.1168 -5.3362 -4.2628

-6.3504 -5.9946 -5.5924 -4.8883 -3.6953

-8 -6.2885 -6.0497 -5.7300 ~5.1409 -3.9712

-5.9315 -5.7365 -5.4552 -4.7638 -3.2818

-7 -5.5153 -5.2696 -5.0651 ~4.5988 -3.5754

-5.0758 -~5.0008 -4.9044 -4.4275 -3.0079

-6 ~4.6066 -4.4825 ~4.4612 -4.0148 -3.0545

-4.0932 -4.0390 -4.0011 -3.7966 -2.7514

-5 -3.7514 -3.8323 -3.9537 -3.4230 -2.4335

-3.0950 -3.0430 -3.0133 -2.9048 ~2.2792

-4 -3.0036 -3.1284 -2.6911 -2.1198 ~1.2273

-2.0940 -2.0185 -1.7948 -1.5407 ~0.9664

-3 - -2.5290 -2.0904 ~1.3455 -0.4539

—— -1.0350 ~0.9219 -0.5728 -0.0196

-2 - -1.9319 -1.5238 -0.8906 -0.1577

- -0.0413 0.0099 0.1667 0.5223



T 3162
Log T 3.5

Log R

~14 ~3.4375

-3.4460

-13 ~3.4507

~3.4588

-12 -3.5043

-3.5109

-11 -3.6095

-3.6098

-10 -3.6430

-3.5826

-9 ~3.4735

-3.1831

-8 ~2.9626

-2.5344

-7 -2.3350

-1.9025

-6 -1.8278

~1.4602

-5 -1.3201

-1.0768

-4 -0.3301

-0.1730

-3 0.4017

0.5935

-2 0.6296

1.0052
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Table (7.1) Continued

3981
3.6

-2.4662
-2.4749

-2.8683
-2.879%4

-3.1819
-3.1843

-3.3212
-3.3125

~3.2137
-3.2074

-2.7840
~2.7048

-2.1414
-1.9853

-1.4741
-1.3041

-0.8564
~0.6894

-0.3171
-0.1693

0.4605
0.5739

1.0879
1.1913

1.2838
1.4812

5012
3.7

-0.7264
-0.7271

~-1.2104
-1.2126

-1.6894
-1.6949

-2.1401
-2.1498

~2.4687

-2.4767

-2.4079
-2.3925

~1.88C5
~1.8270

-1.0890
-1.0173

-0.2871
-0.2121

0.4291
0.5039

1.2333
1.3142

1.7938
1.8864

1.8290
1.9740

6310
308

0.3991
0.3988

0.1431
0.1417

-0.2527
-0.2561

-0.6805
-0.6800

~1.0487
-1.0176

-1.1585
-1.0966

-0.8938
-0.8414

-0.4620
-0.3907

0.0709
0.1650

0.7288
0.8280

1.5178
1.6225

2.2125
2.3360

2.4748
2.6365

7943
3.9

0.4862
0.4864

0.4855
0.4871

0.4773
0.4928

0.4140
0.5146

0.2754
0.5422

0.1970
0.5731

0.3045
0.6380

0.5694
0.7946

0.9239
1.0971

1.3728
1.5468

1.9473
2.1282

2.6751
2.8673

3.2579
3.4846



It is interesting to éee what the continuum looks like at some
grid points, and accordingly we show in figures (7.1-7) the continuum
for log r= -8 at log T = 3.2 to 3.8 without stimulated emission.
Note that the scale in opacity is doubled for the last three figures
to illustrate the features better. A number of interesting features
can be pointed out, where in all cases the opacity increases to
infinity at u = 0 due to free-free absorption. At log T = 3.2, the
continuum is dominated by Rayleigh scattering at high frequencies and
free—free absorption at very low frequencies, the minimum in between
is filled by pressure—~induced HZ—H2 and H2—He opacity causing the
marked behaviour between about u = 0.5 and u = 6. At log T = 3.3 the
pressure—~induced opacity has become less important, and at log T = 3.4

it no longer shows up on the plot; the Hbf absorption threshold at

about u = 3.3 being obvious. At log T = 3.5, a very small bump at
u = 13 is visible, and can be identified with'Clgf. Although Cl has a
relatively small abundance, it has the largest electron affinity of
all elements, so is a very efficient sink of electrons, and it is not
surprising that the effect of the negative ion can just be seen.

However at log T = 3.6, this has vanished, but at log T = 3.7, in

addition to the absorption threshold of Hbf’

an absorption edge of
neutral Hbf is clearly wvisible; this is in fact the Balmer jump.
Finally, at log T = 3.8, this jump has become much more pronounced,

and has been joined by the Paschen jump to the left, and left of the

H;f edge is a very weak "glitch”, which is attributed to the Brackett

Jump.
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The noticeable bump at u = 18 for log T = 3.6, and visible again
for log T = 3.7, but shifted, corresponds to a wavelength of 20008 and
turns out to be due to OH . as given by Tarafdar and Das (57), the
cross—section being tabulated at rather coarse intervals. Although OH
is a relatively abundant species at these grid points, and is an
important source of opacity, it is expected that such a feature will
have a very small effect on the total PMO and RMO, particularly as it
occurs where the weighting functions are very small. However, in
investigating OHbf further, it was found that anomalies can occur when
extrapolating the table to very long wavelengths. So it was decided
to let the cross—section fall off beyond the table according to a
power law as determined approximately by the tabulated points at the
limits of 1000 and 5000R. This was also applied to CH from the

bt
.limits 1200 and 30008. Refer to chapter 3 and the appendices.

Thus if &g‘T) is the cross—section per particle at a wavelength
for a particular temperature, then we can write:

n(T)
K, (T) = (*) K, (T (7.2.1)

where )o is the wavelength at the last tabulated point, KO(T) is the
interpolated or extrapolated cross—section for that temperature at }b
and n(T) is an exponent dependent on temperature, obtained from the

empirical formula:

- TN :
n(T) = - k ( ((»ooo> (7.2.2)
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where for OH . ) = 50008, k = 3.14 and m = -1.33, and for CH

bf
A0= 30008, k = 9.56 and m = -0.54, which give a good fit. In
dimensionless frequency units, if )Ois in Rngsters, we can write in
place of (7.2.1):

' n(T)
9
K (T) = (L& he 4 K, (T (7.2.3)

VAT, W

It 1is not considered feasible in this thesis to givé extensive
tabulations of the abundances of all the various species for all grid
points computed. However, for the seven grid points discussed in
detail above, tables (7.2-8) give the abundances in cm-'3 for the
various species, being a restricted version of the output produced by
the program. Some examples of more detailed tables of abundances are
found in the program volume. In the tables, ENN is the number density
of free eleqtrons, and the columns headed ANF, FAF, AM2 and AM3 are
the abundances of the free atoms, the fraction of atoms free, the

abundances of the diatomic molecules and triatomic molecules

respectively.

It is immediately seen that with increasing temperature, of those
atomic species combined into molecules, their fractions free approach
unity with the abundances of all the molecules decreasing due to
dissociation, exactly as expected. At the lowest temperature, the
four most abundant molecules in order of decreasing abundance are HZ’
CO, NZ’ and 5i0, the abundances of the last three being high due to

their large dissociation potentials. Although as the temperature is

increased the abundances of all individual molecules eventually fall,



- 300 -

because CO is very stable, it does not appreciably dissociate until at
quite high temperatures, whilst the abundances of, for example, CH and
CN actually increase considerably to a maximum before decreasing.
This behaviour 1is presumably due to the fact that as CO dissociates
even slightly, because it is so¢ abundant, a considerable amount of
carbon, which is in short supply, is released and is free to combine
with other atoms. This illustrates very well indeed how difficult it
is to predict abundances before performing the calculations of

statistical mechanics.

Because H is such an important source of opacity, it 1is
interesting to <consider it Dbriefly. In table (7.9) for the grid
points with log T = 3.2, 3.5 and 3.8 with log P = -8, H fr is the
fractional abundance of H as a fraction of all free H atoms, H ab is
the absolute abundance of the ion in cm—3, and ENI is the number of
electrons contributed (+) or absorbed (=) in tm_3 due to the tabulated
element. It is seen that at log T = 3.2, H has a very low abundance,
with most of the electrons responsible for its formation coming from
Na and K, due to their low ionization potentials, with H being a
strong sink of electroms. At log T = 3.5, the abundance of H  is
considerably higher, with H beiﬂg a large sink of electrons and many
other elements now contributing electrons. Finally at the last grid
point, from being the largest sink of electrons, H now becomes the
largest source, this is due to a significant fraction of protons
forming, yet H is higher still, i.e. many of the electrons needed to

form H come from H itself.



Log T =,

3.20

ANF
4.81098E+12
3.19665E+14
1.44024E-03
5.26609E+02
1.48390E+05
3.63813E+01
4,97576E+11
8.67390E+09
1.51862E+11
1.21134E+10

i 6.70740E+05

1.38859E+09
2.17614E+06
1.37220E+06
1.69523E+10
6.04843E+08
1.04262E+10

i 1.22033E+05

1.83699E+09
1.34519E+09
1.20055E+11

i 6.94292E+09
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Table (7.2) of Abundances

Log R = =-8.00

FAF
1.04593E-03
1.00000E+00
8.43823E~16
9.73449E-10
4.77159E-08
1.04355E-07
1.00000E+0CO
9.99452E-01
9.89535E-01
9.85247E-01
4.63716E-06
1.00000E+00
3.00896E-05
1.66433E-03
1.00000E+00
9.95618E~01
9.99743E-01
3.04027E~04
1.00000E+00
1.00000E+00
1.00000E+0C
1.00000E+00

H2
Cc2
N2
02
OH
NH
CH
CN
co
NO
SO
CaH
MgH
AlH
SiH
SiN
Al0
5i0
NaCl
MgCl
KC1
CaCl
Na2
NaH

SH’

MgO
HC1
HF
Cclo
TiO
"H2+
CcH+
Co+
N2+
02+
OH+-

ENN = 4.06350E+07

AM2
2.29615E+15
2.84850E-11
2.70486E+11
3.27750E+01
1.61334E+08
6.09529E+03
2.66803E-03
1.02344E+00
1.70637E+12
2.80069E+04
6.64134E+05
9.99027E+04
1.60599E+09
1.75261E+08
1.29676E+05
3.20437E-02
6.12554E+06
1.44644E+11
1.38868E+06
3.48611E+04
2.66182E+06
2.58553E+06
2.69890E-01
3.36689E+06
7.23192E+10
4.90133E+03
8.16432E+08
3.54379E+08
1.49010E~04
4.01266E+08
8.03421E-21
4.91579E-25
2.63763E-27
1.58311E-25
1.41410E-24
3.59162E-23

H20
HCN
HCO
HNO
N20
Cco2
NO2

03
S02

AM3
<25742E+12
.31695E+05
-48L63E+05
.59186E-01
.28365E~04
.31538E+08
.82174E-07
8.85927E-16
3.86927E+01

Oy B W BN



Log T =

= O =20

Ne
Na
Mg
Al
Si

Ccl
Ar

Ca
Ti
Cr
Mn
Fe
Ni

3.30

ANF
1.43765E+14
3.19665E+14
1.36253E+01
8.33677E+05
2.95449E+08
9.30670E+03
4.97576E+11
8.67490E+09
1.52338E+11
1.22219E+10
5.28357E+07
1.38859E+09
9.87040E+07
3.78313E+07
1.69523E+10
6.07488E+08
1.04284E+10
2.48026E+06
1.83699E+09
1.34519E+09
1.20055E+11
6.94292E+09
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Table (7.3) of Abundances

Log R = =-8.00

FAF
3.12552E-02
1.00000E+00
7.98295E-12
1.54107E-06
9.50038E~05
2.62620E-05
1.00000E+00
9.99567E-01
9.92636E-01
9.94074E-01
3.65280E-04
1.00000E+00
1.36478E-03
4.58853E-02
1.00000E+00
9.99973E-01
9.99955E-01
6.17921E-03
1.00000E+00
1.00000E+00
1.00000E+00
1.00000E+00

. H2
Cc2
N2
02
OH
NH
CH
CN
Cco
NO
SO
CaH
MgH
AlH
SiH
SiN
AlO
Sio
NaCl
MgCl

KC1
CaCl

Na2

NaH
SH

MgO

HC1
HF

Clo

Tio0

H2+

CH+

Co+t+

N2+

02+

OH+

ENN = 7.58397E+08

AM2
2.22668E+L5
2.64770E-07
2.70483E+11
5.73242E+04
1.20416E+10
9.42726E+05
3.86734E+00
1.17510E+02
1.70648E+12
4.83166E+06
2.84832E+07
3.20970E+05
1.12999E+09
6.64825E+07
2.94826E+06
4.54235E+00
6.37276E+06
1.44589E+11
6.37633E+04
7.82266E+03
1.63511E+04
1.46477E+05
9.70672E-02
3.69584E+06
7.21949E+10
5.60671E+04
7.86409E+08
3.54370E+08
1.35301E-01
3.98908E+08
7.55134E-12
4.62337E-16
9.75202E~-18
1.78215E-16
1.56734E~14
1.56199E-13

H20
HCN
HCO
HNO
N20
co2
NO2

03
S02

AM3
«24538E+12
.02438E+05
-19682E+06
.66151E+01
«22951E-02
.135G6E+08
2.67833E-03
8.41013E~-10
5.81905E+02

WNWwh Oy~



Log T =

Ni

3.40

ANF
1.73078E+15
3.19665E+14
1.97263E+04
2.87739E+08
1.20769E+11
9.24133E+05
4.97576E+11
8.67754E+09
1.52755E+11
1.22632E+10

i 1.68525E+09

1.38859E+09
2.38954E+09
3.78802E+08
1.69523E+10
6.07505E+08
1.04283E+10

i 2.61877E+07

1.83699E+09
1.34519E+09
1.20055E+11
6.94292E4+09
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Table (7.4) of Abundances

Log R = -8.00

FAF
3.76281E~01
1.00000E+00
1.15574E-08
5.31893E~04
3.88341E-02
2.60775E-03
1.00000E+00
9.99871E-01
9.95357E-01
9.97432E-01
1.16510E-02
1.00000E+00
3.30403E-02
4.59446E~01
1.00000E+00
1.00000E+00
9.99940E-01
6.52428E-02
1.00000E+00
1.00000E+00
1.00000E+00
1.00000E+00

H2
Cc2
N2
02
OH
NH
CH
CN
Cco
NO
SO
CaH
MgH
AlH
SiH
SiN
AlO
Sio
NaCl
MgCl
KC1
CaCl
Na2
NaH
SH
MgO
HCl
HF
Clo0
Tio
H2+
CH+
Ccot
N2+
02+
OH+

ENN = 7.62530E+09

AM2
1.43344E+15
3.88781E-04
2.70178E+11
2.12131E+07
2.95750E+11
4.21283E+07
1.03658E+03
5.23698E+03
1.70652E+12
2.85958E+08
7.24947E+08
6.16812E+05
7.12233E+08
2.50948E+07
2.88176E+07
2.33087E+02
6.47947E+06
1.42931E+11
1.36296E+03
1.74673E+03
3.37067E+01
1.00015E+04
5.17061E-03
1.12234E+06
6.92076E+10
4.08054E+05
4.45660E+08
3.53455E+08
2.16555E+01
3.75201E+08
7.45611E~05
5.58662E-09
4.23737E-10
3.05845E-09
1.59178E-06
6.20808E-06

H20
HCN
HCO
HNO
N20
co2
NO2

03
S02

AM3
8.41897E+11
4.80824E+05
6.80897E+06
2.36259E+03
5.90707E+00
2.74047E+08
2.03024E+00
4.90311E-05
6.26007E4+03



Log T =

Na
Mg
Al
Si

cl
Ar

Ca
Ti
Cr
Mn
Fe
Ni

3.50

ANF
4.35106E+15
3.19665E+14
7 .30509E+07
2.87944E+10
1.23393E+12
7.90625E+07
4.97576E+11
8.67865E+09
1.53296E+11
1.22927E+10
9.83737E+10
1.38859E+09
3.97617E+10
7.90850E+08
1.69523E+10
6.07505E+08
1.04288E+10
3.64716E+08
1.83699E+09
1.34519E+09
1.20055E+11
6.94292E+09
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Table (7.5) of Abundances

Log R = -8.00

FAF
9.45946E-01
1.00000E+00
4,27998E-05
5.32271E-02
3.96781E-01
2.23101E-01
1.00000E+00
9.99998E-01
9.98879E~-01
9.99834E~01
6.80106E-01
1.00000E+00
5.49787E-01
9.59216E-01
1.00000E+00
1.00000E+00
9.59996E-01
9.08635E-01
1.00000E+00
1.00000E+00
1.00000E+00
1.00000E+00

H2
Cc2
N2
02
OH
NH
CH
CN
co
NO
S0
CaH
MgH
AlH
SiH
SiN
AlO
Sio
NaCl
MgCl
KC1l
CaCl
Na2
NaH
SH
MgO
HC1
HF
Clo
Tio
H2+
CH+
Co+
N2+
02+
on+

ENN = 3.35211E+10

AM2
1.24237E+14
1.70228E+01
2.55630E+11
1.77737E+07
1.14300E+11
2.95352E+08
3.56515E+05
1.23999E+06
1.70670E+12
6.19806E+08
1.21354E+09
3.96499E+04
1.71777E+08
1.79337E+06
2.32237E+08
1.93971E+04
2.50796E+05
4.60387E+10
1.86379E+00
1.76519F+02
4.67125E-02
4.32789E+01
3.82118E-06
1.32438E+04
3.13468E+10
1.75402E+05
3.36249E+07
2.75316E+08
3.60722E+01
3.66729E+07
5.14350E+00
1.45609E-02
7.55379E-04
2.55688E-03
4.21559E~02
3.15180E-01

H20
HCN
HCO
HNO
N20
Cco2
NO2

03
502

AM3
6.93065E+09
1.81066E+06
6.34065E+06
2.06046E+03
1.83797E+01
2.45219E+07
3.14110E+00
2.16697E-04
4.51612E+02



Log T =

3.60

ANF
4.59033E+15
3.19665E+14
2.09719E+11
4,57066E+11
1.60695E+12
3.39774E+08
4.97576E+11
8.67866E+09
1.53459E+11
1.22947E+10

i 1.44419E+11

1.38859E+09
7.06021E+10
8.23178E+08
1.69523E+10
6.07505E+08
1.04289E+10

i 4.01373E+08

1.83699E+09
1.34519E+09
1.20055E+11

i 6.94292E+09
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Table (7.6) of Abundances

Log R = =-8.00

FAF
9.97963E~01
1.00000E+00
1.22872E-01
8.44898E~01
5.16727E-01
9.58788E-01
1.00000E+00
1.00000E+00
9.99940E~-01
9.99998E-01
9.98443E~01
1.000C0E+00
9.76218E-01
9.98427E-01
1.00000E+00
1.00000E+00
1.00000E+00
9.99561E-01
1.00000E+00
1.00000E+00
1.00000E+00
1.00000E+00

H2
Cc2
N2
02
OH
NH
CH
CN
Cco
NO
SO
CaH
MgH
AlH
SiH
SiN
AlO
Si0
NaCl
MgCl
KC1l
CaCl
Na2
NaH
SH
MgO
HC1
HF
Clo
Tio
H2+
CH+
Co+
N2+
02+
OB+

ENN = 2.25574E+11

AM2
4.68073E+12
1.49138E+06
4.16657E+10
6.76401E+05
5.70574E4+09
2.95019E+08
8.02061E+07
1.75906E+08
1.49682E+12
9.83578E+07
8.02274E+07
7.70785E+02
9.19881E+06
2.00390E+04
3.12959E+07
1.34030E+04
6.93841E+02
1.93854E+08
8.59027E~-03
5.36009E+00
2.88078E~04
1.10760E-01
2.86401E-08
2.98687E+02
1.63977E+09
6.12927E+03
1.29695E+06
1.46046E+07
6.62707E+00
1.57927E+04
4.98008E+03
2.03633E+03
3.16380E+01
1.20611E+01
3.06980E+00
9.52063E+01

H20
HCN
HCO
HNO
N20
Cco2
NO2

03
502

AM3
8.78000E+06
5.37686E+06
2.91524E+06
8.66986E+01
1.83314E+00
7.53704E+05
8.49735E-02
6.81415E-06
4.99146E-01



Log T =

3.70

ANF
4.59904E+15
3.19665E+14
1.67660E+12
5.40566E+11
3.07894E+12
3.53924E+08
4.,97576E+11
8.67866E+09
1.53468E+11
1.22948E+10

i 1.44644E+11

1.38859E+09
7.22174E+10
8.24382E+08
1.69523E+10
6.07505E+08
1.04289E+10

i 4.01388E+08

1.83699E+09
1.34519E+09
1.20055E+11

i 6.94292E4+09
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Table (7.7) of Abundances

Log R = -§.00

FAF
9.99857E-01
1.00000E+00
9.82304E-01
9.99249E~-01
9.90059E-01
9.98716E-01
1.00000E+00
1.00000E+00
1.00000E+00
1.00000E+00
3.99994E-01
1.00000E+00
9.98552E-01
9.99887E~01
1.00000E+00
1.00000E+00
1.00000E+00
1.00000E+00
1.00000E+00
1.00000E+00
1.00000E+00
1.00000E+00

H2
C2
N2
02
OH
NH
CH
CN
Co
NO
SO
CaH
MgH
AlH
SiH
SiN
AlQ
Sio
NaCl
MgCl
KC1
CaCl
Na2
NaH
SH
MgO
HCLl
HF
Cio
TiO
H2+
CH+
Co+
N2+
02+
OH+

ENN =

AM2
3.28467E+11
2.57844E4+06
1.72642E+08
1.26433E+05
8.04222E+08
3.82313E+07
8.24998E+07
1.81672E+07
3.00973E+10
4.73471E+06
9.95804E+06
1.72372E+01
6.47681E+04
2.14899E+02
4.95356E+05
1.05260E+02
3.93054E+00
3.13260E+05
6.57678E~-05
2.38067E-02
2.81178E-06
4.81378E-04
1.98691E-10
8.10146E+00
9.47427E+07
4.95934E+01
9.33138E+04
4.55093E+05
2.67244E+00
1.49881E+01
2.06114E+06
6.24386E+05
6.00118E+03
3.39219E+02
4.12513E+02
2.46767E+04

H20
HCN
HCO
HNO
N20
€02
NO2

03
502

6.07987E+11

AM3
6.89872E+04
2.73907E+04
3.70355E+04
1.53502E+00
9.14373E-03
1.90553E+G3
1.72718E-03
1.82191E-06
3.68272E-03



Log T = 3.

HOoO=Z O

Ne
Na
Mg
Al
Si

Ccl
Ar

Ca
Ti
Cr
Mn
Fe
Ni

80

ANF
4.59961E+15
3.19665E+14
1.70665E+12
5.40962E+11
3.10961E+12
3.54350E+08
4.97576E+11
8.67866E+09
1.53468E+11
1.22948E+10
1.44645E+11
1.38859E+09
7.23148E+10
8.24463E+08
1.69523E+10
6.07505E+08
1.04289E+10
4.01388E+08
1.83699E+09
1.34519E+09
1.20055E+11
6.94292E+09
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Table (7.8) of Abundances

Log R = =8.00

FAF
9.99982E-01
1.00000E+00
9.99909E-01
9.99980E-01
9.99921E-01
.99919E~-01
.00000E+00
.00000E+00
.00000E+00
.00000E+00
.00000E+00
1.00000E+00
5.99900E-01
9.99986E-01
1.00000E+00
1.00000E+00
1.00000E+00
1.00000E+0C
1.00000E+00
1.00000E+00
1.00000E+00
1.00000E+00

el =)

H2
Cc2
N2
02
OH
NH
CH
CN
Cco
NO
SO
CaH
MgH
AlH
SiH
SiN
AlO
Sio
NaCl
MgCl
KC1
CaCl
Na2
NaH
SH
Mg0
HC1
HF
clo
Tio
H2+
CH+
Co+
N2+
02+
OH+

ENN = 9.28295E+12

AM2
4.10317E+10
1.15694E+05
1.68355E+06
1.25374E+04
1.04160E+08
6.74059E+06
1.45813E+07
4.72006E+05
1.38715E+08
2.25273E+05
8.23914E+05
5.44957E+00
6.73436E+03
3.83915E+01
3.03334E+04
3.16520E+00
2.50960E-01
1.85899E+03
9.02739E-06
1.62894E-03
4.71838E-07
3.83972E-05
1.87787E-10
3.14231E+00
6.43556E+06
3.37553E+00
1.16259E+04
2.87232E+04
7.89728E-01
2.30235E-01
4 .04343E+07
1.56214E+06
6.14085E+03
6.03478E+02
1.15014E+03
1.94992E+05

H20
HCN
HCO
HNO
N20
co2
NO2

03
502

AM3
9.61026E+02
7.20718E+01
1.30836E+02
3.56449E-02
7.29061E-05
1.15742E+00
2.69137E-05
1.53712E-07
1.90408E-05
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Table (7.9) of Sources and Sinks of Electrons

log T = 3.2
1.666E~-11

8.015E+01

. ENI
-8.01569E+01
0.00000E+00
-7.69260E-13
5.76927E-31
-6.20094E-04
-9.88856E-02
0.00000E+00
1.72067E+06
1.28637E+00
1.73809E+03
-1.48525E~03
~6.30568E~-01
-4 .66691E+00
-1.20247E+04
5.20125E-27
3.89180E+07
6.66073E+03
4.25266E~04
4.19389E4+00
3.13122E-02
1.35685E-01
1.08719E-02

Log T = 3.5

3.105E-10

1.351E+06

ENI
-1.33842E+06
1.14931E-14
1.38541E+00
1.17869E-02
-7.05069E+03
-1.84780E+02
3.18175E-12
8.58221E+09
5.33218E+09
7.11520E+09
1.75830E+08
1.44804E+03
1.11269E+04
-3.39993E+03
1.81213E-04
6.07137E+08
9.48428E+09
1.60970E+08
4.84168E+08
5.94433E+07
1.48004E+09
4.09378E+07

Log T = 3.8
7.661E-09

3.524E+07

ENI
8.53856E+12
3.96740E+03
2.51569E+11
7.81864E+08
4.96293E+09
1.59384E+03
4.55510E+03
8.67731E+09
1.53117E+11
1.22777E+10
1.41705E+11
9.45333E+08
2.91580E+10
1.487858+07
6.45913E+06
6.07455E+08
1.08077E+10
4.01624E+08
1.82600E+09
1.33526E+09
1.19414E+11
6.85840E+09
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The fraction of a molecular species in a particular isotopic form
is not expected to change much over the variocus grid points, and is- of
no importance for the continuous opacity, though isotopic variations
of molecules can be important when band spectra are considered.
However, as an example for CO at log T = 3.5 and log{D = -8, the

fractional abundances of C12016, 012017, C12018, Cl3016, C13O17 a

C13018

nd

3

1 ,  2.018%107°,

are respectively 9.865X10 , 3.700X10"

1.107%1072,  4.153%10°° and 2.265%107°, given that the fractional

abundances of C'2 and C'3 are respectively 9.889x107 ! 2

and for 016, O17 18

2.039X10_3. It can be seen that the figures for the isotopic variants

4

and 1.110X10°
and 0'8 are respectively 9.976X10™%, 3.740X10°% and
of CO do not agree exactly with the products of the figures for the
individual isotopes. This 1is to be expected, as the 1isotopic
molecules have slightly different dissociation potentials, meaéured
from the lowest vibrational level, and different partition functions.
In the mixture, there are also 15 different isotopic versions of TiO
and as many as 24 of SO

X and examples of these and many other

molecules are found in the program volume.

Before the discussion in this section can be completed, we must
consider how accurate and reliable are the results presented here.
For the grid point with log T = 3.8 and log po = -8, where the
continuum has the sharp jumps; see figure (7.7), tests were performed
on integrating across the spectrum with 1001, 2001, 4001 and 10001
points. It was found that for the last three cases, the PMO and RMO

changed only in the fifth significant digit, with even the first case
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giving quite a good agreement. These differences are presumably due
to the effect of the absorption edgeé, which are very pronounced at
this temﬁerature. It is thus considered that 4001 coarse grid points
were good enough for the integration, and accordingly, all the
opacities in table (7.1) were geﬁerated with that number of points.
At least as far as these integrations are concerned, these opacities
are reliable. As a matter of interest, the spectra for the run of
temperatures at the extremes of log 2 = -14 and -2 were examined and
found to be rather uninteresting, with no appreciable sharp absorption

edges.

When the approximate general treatment of higher electronic
states of atoms and ions was included in the work in order to obtain
better partition functions, see section 2.2 and the appendices, it was
important to <check this against cases where this treatment was
neglected. It was found that the partition functions of the positive
ions were unaffected, (this treatment does not apply to the negative
ions) and above about 4OOOOK, only the partition functions of the
group I elements Na and K and the transition elements Ti, Cr, Mn, Fe
and Ni were affected appreciably. This behaviour of the group I
elements is expected because of their low ionization and first
excitation potentials, and the transition elements have a very large
number of levels due to the partially filled 3d orbitals. When this
effect, together with the attendant depression of the ionization
potentials, is included in the statistical mechanics, no appreciable
changes occur in the abundances of any of the species, including the
molecules which have a small abundance at these temperatures. Even

the abundance of KCl, which is negligibly small, is not much affected
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by the partition function of X increasing by more than a factor cof two
at 6000°K with this approximate general treatment included. We can
thus conciude that errors due to this treatment do not significantly
affect the statistical mechanics over the range of interest, however,
they will be important at much higher temperatures where many of the

highly excited electronic states are appreciable populated.

Probably a greater source of uncertainty are errors in computing
the partition functions of molecules, but here again, the errors are
likely to be greatest at the higher temperatures where the molecules
have low abundances. These errors would be due to neglecting higher
order terms in the anharmonicity and non-rigidity, which are usually
unavailable, and which may bé important for highly excited rotational
and vibrational levels, these being significantly populated at higher

temperatures.

Whereas the partition functions enter Saha”s equation linearly,
so errors propagate linearly, the dissociation potential of a molecule
enters exponentially, so an uncertainty in the dissociation potential
can result in possibly a large uncertainty in the abundance of not
only the molecule in question, but of many other molecules, as their
equilibria .are all coupled. Unfortunately, dissociation potentials
are often known only approximately, so they would be expected to be
the greatest sources of uncertainty in the statistical mechanics
calculations. We consistently take the dissociation potentials from
the lowest vibrational level, not the bottom of the potential well,
and allow for isotopic shifts, as discussed earlier in this work. The

abundances given in tables (7.2-8) for each molecule, are the sums of

e
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the individual isotopic forms computed separately, and would be
expected to be better than neglecting isotopes or computing with
"average” molecules. Finally, as we have neglected the effects of
pressure on dissociation and partition functions, this approximation

is liable to cause uncertainties at the higher densities.

Note that the continua calculated for the examples in sections

7.4 and 7.5 do not take account of the pressure-induced H and

27y
Hz—He opacity, which is however included in table (7.1) and the
accompanying graphs. If this source of opacity were included, it
would have at worst a fairly modest effect on the figures given in
these sections; but would not alter the discussion qualitatively in
any way. However, the tables of opacities for diatomic and triatomic
molecules in section 7.6 do include the pressure-induced opacity. At
very low temperatures; pressure—induced opacity can be very important,
as is shown when some of the entries in table (7.1) are compared with
their values when pressure-induced opacity is neglected. Thus for
logp = -8 and log T = 3.0, 3.1, 3.2, 3.3 and 3.4, log RMO without
pressure-induced opacity reduces to -7.9651, -7.0444, -6.1505, ~5.2894
and -3.9783 respectively, with the corresponding values for log PMO

being -6.4347, -6.0315, -5.5922, -4.7857 and -3.2821. At  higher

temperatures at this density the effect is negligible.

Within the framework of our computations and data available, it
is hoped that the abundances and continuous opacities produced by the

MIXOP program are reliable.
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7.3 Some Examples of Computing Band Absorption

The purpose of this section is to give a few examples of
compu?ing band absorption cross-sections using Franck-Condon factors,
H6nl-London factors etc., in order to illustrate some of the theory
discussed in this thesis, rather than giving exhaustive tabulations.
This, and the remaining sections of chapter 7 are mostly concerned

with various aspects of the TRIATOM program.

Table (7.10) below gives a comparison of the Franck-Condon
factors SE defined in (4.4.4), by various methods for the Swan
system of C2, d3ﬂé<—> a3ﬁ;. Although C2 is not likely to be important
in our mixture, as discussed in the previous section, the Swan system
of 02 is well known and has been used as an example in some of the
development work on the coding. For each value of v and v", the
first entry is the Franck-Condon factor we have computed for a Morse
potential using Doktorov”s method (71), the values given by Jain (110)
using a Rydberg-Klein—-Rees potential (R-K-R) are given second, with
for comparison, the Franck-Condon factor for a harmonic potential
computed using Manneback”s (67) method. Our computed band origins in
cm_1 are the last entry for each v~ and v". The following data used

in our calculations are obtained from Rosen (35):

adl : T" = 714.24, " = 1641.35, o x" = 11.67,
u e e e e
AT+ T7 = 20022.50, &7 = 1788.22, & x" = 16.44, w°y” = ~0.5067,
e e e e e’ e

e o L
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with the values for DZ" and DZ' calculated from (4.3.10).

Tt can immediately be seen that in many cases Jain“s values lie
in between the wvalues we have calculated wusing Doktorov’s and
Manneback”s methods, giving us confidence in these methods. In
par;icular, the agreement for the strong bands is often good, and that
for the 0-0 band, the strongest of the system, is excellent. In most
cases the agreement for the weaker bands is poor, which is to be
expected as the effects of anharmonicity are greatest for them, and
will be sensitive to the type of potential function adopted. In many
cases the values computed by Doktorov’s method for weaker bands
overestimate the band strengths relative to Jain”s values, but this
would be at the expense of some of the stronger bands, in order to

satisfy the normalization of the Franck—~Condon factors.

The r-centroids in table (7.11) for the Swan bands of C2 are
again obtained from several methods. The first entry for each band is
computed using Doktorov”s method for calculating the first and zero
order matrix elements, <v”|r|v"™> and <v’lv"> respectively, from which
the r-centroid is obtained from their ratio, as defined in (4.3.33).
The second entry is taken from Jain as before, with the values
obtained wusing an R-K-R potential function. For an additional

comparison, the values computed using Schamps”s (79) formula, see

(4.3.35), are also given, where L, = 1714.79, the mean of w; and w;,

and I, = 1.31198 and r; = 1.26608 from Rosen. The values tabulated

are in Rngstrams, scaled by 104.
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Table (7.10) of Franck—Condon Factors of the Swan System

v' 0 1 2 3 4 5 6 7 8
V’ -
0 0.732 0.166 0.065 0.023 0.009 0.003 0.001 0.001
0.733 0.212 0.043 0.008 0.001
0.726 0.242 0.031 0.002 0.000

19380 17762 16168 14596 13048 11524 10022 8545 7090

1 0.262 0.381 0.157 0.106 0.050 0.024 0.011 0.005 0.002
0.240 0.364 0.278 0.092 0.022 0.004
0.222 0.336 0.358 0.078 0.006 0.000
21134 19516 17921 16350 14802 13277 11776 10298 8844

2 0.003 0.434 0.199 0.098 0.113 0.067 0.040 0.021 0.011
0.022 0.372 0.168 0.267 0.120 0.037
0.044 0.296 0.123 0.389 0.133 0.014
22850 21232 19638 18066 16518 14994 13492 12014 10560

3 0.003 0.008 0.542 0.108 0.044 0.099 0.070 0.051 0.032
0.001 0.056 0.425 0.075 0.225 0.137 0.059
0.007 0.099 0.286 0.026 0.367 0.187 0.027 0.001
24526 22908 21313 19742 18194 16670 15168 13690 12236

4 0.010 0.011 0.604 0.064 0.011 0.077 0.062 0.055
0.000 0.001 0.091 0.451 0.027 0.176 0.149 0.070

0.001 0.022 0.147 0.234 0.000 0.315 0.235 0.043 0.002
26158 24540 22946 21374 19826 18302 16800 15322 13868

5 0.025 0.012 0.629 0.044 0.000 0.055 0.048
0.002 0.117 0.471 0.010 0.129 0.157 0.074

0.004 0.044 0.179 0.169 0.013 0.251 0.274 0.063

27744 26126 24531 22960 21412 19887 18386 16908 15454
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Table (7.11) of r-Centroids of the Swan System

X =

"0

12979

12940

12890
13644
13710
13514
17433
14690
14139
12842
14764
22054
15389
13339

16013

1
12116
12230
12265
13211
13074
12890
13683
13847
13514
17433
14878
14139
13012
14764
27174

15389

-334217

2

12010
11663
11640

11974
12300
12230

13642
13251
12890

13743
13951
13514
17555
15209
14139
13189

14764

3

11728

11015

12020
11721
11640

11716
12378
12265

14365
13608
12890

13823
140738
13514

17839
15236
14139

4
11566
10390
11696
11015
12060
11773
11640
11142
12415
12265
15428
14262
12890
13918

14217
13514

5

11407

9766
11552
10390
11657
11297
11015
12149
11738
11640

9256
12442
12265
16723

12890

6
11273
9141
11391
9766
11542
10390
11605
11377
11015
12321
11855
11640

X

12382
12265

7
11153
8516
11262
9141
11376
9766
11536
10390
11526
11331
11015
12634

12016
11640

11045
7891
11143
8516
11250
9141
11359
9766
11541
10390
1£396

11283
11015
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Again notice that in many cases, the values from Jain lie in
between those values we have computed by the two methods, and again
the agreement is best for the strongest bands, the ones that matter
most. Although Schamps”s method is a crude approximation, with the
r-centroids constant for any fixed Av, it is very simple to apply and
givés at worst an estimate of the r-centroids; indeed There, the
agreement is often better than Doktorov”s method, which is remarkable
in view of its simplicity. For very weak bands, Doktorov’s method is
unreliable, as one is taking the ratio of two quantities which are
small, and due to the approximations of the method, have a large
uncertainty. The spurious value of =-33.4217 wusing Doktorov”s method
for v" =6 and v =5 occurs as <vir|v" = -3.866X10">  and
<v’|v"$ = 1.157X10—3, both being anomalous compared to neighbouring
matrix elements: the Franck-Condon factor for this, being the square
of the latter figure, is 1.338X10-6. In spite of such problems, as
Doktorov™s method is used to compute the =zero order matrix elements,
to be consistent, it is best to use the same method for the higher
order elements. Besides, as discussed in chapter 4, in applying

Doktorov”s method, we are not required to compute the r-centroids as

such.
We now consider examples of H6nl-London factors. Table (7.12)

lists computed Hdnl-London factors for J"K 3 for the 0-0 Swan band of

. . -1
CZ' The constants needed for the two states, all being in cm =, are:



SM: B = 1.63246, " = 0.01661, A" = -15.25,
u e e

S B = 1.7527, o7 =.0.01608, A" = =16.48,
g e e

from which BO and Y for v’= v"= 0 are obtained for the two electronic

states, see chapter 4.

The first column is the type of branch, where the first digit 1,
2 or 3, indicates a P, Q or R-branch respectively, and the second and
third digits indicate the series to which the lower and upper levels
of the branch belong respectively, this notation being the reverse of
the normal molecular spectroscopic notation where the upper level is
given first. The last two indices are the same as those defined in
section 4.2C for the triplets. As Y € 0 for both states, they are

both reversed states, and as A”=A"= 1, for the series F,, F, and F

1> 72 3

Q=2 1 and O respectively for the three ladders, hence also the

lowest values of J. The remaining columns are clear, with AQ=07-q"

P

and with SJ,J" computed wusing Koviecs”s (31) formulae, see the

appendices, except where breakdown cases occur, see then section
4.2C. As.A_) 0 for both states, there is in addition‘Ardoubling which
we do not consider here, however for 012012, as the spins of the

nuclei are zero, one component has zero strength so there is only one

line for each transition considered anyway.
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Table (7.12) of HSnl-London Factors
of the 0-0 Swan Band

" " z°z"
Branch J N AL SJ,J..

332 0.0 0.0 1 0.00000E+00
333 0.0 0.0 0 1.00000E+00
123 1.0 1.0 -1 0.00000E+00
133 1.0 0.0 0 1.00000E+-00
222 1.0 1.0 0 1.41202E+00
223 1.0 1.0 -1 0.00000E+00
232 1.0 0.0 1 0.00000E+00
233 1.0 0.0 0  0.00000E+00
321 1.0 1.0 1 4.89192E-02
322 1.0 1.0 0 1.42210E+00
323 1.0 1.0 -1 4.08000E~-02
331 1.0 0.0 2 0.00000E~+00
332 1.0 0.0 1 0.00000E+00
333 1.0 0.0 0 2.00000E+00
112 2.0 2.0 -1 4.93814E-02
113 2.0 2.0 =2 0.00000E+00
122 2.0 1.0 0 1.42065E+00
123 2.0 1.0 -1 0.00000E+00
132 2.0 0.0 1 4.20051E-02
133 2.0 0.0 0 2.00000E+00
211 2.0 2.0 0  3.20185E+00
212 2.0 2.0 -1 6.78814E~-02
213 2.0 2.0 =2 2.72060E-04
221 2.0 1.0 1 6.92617E~02
222 2.0 1.0 0 7.89584F~01
223 2.0 1.0 -1 1.03240E-01
231 2.0 0.0 2 2.94859E-04
232 2.0 0.0 1 1.04174E-01
233 2.0 0.0 0 1.44646E-02
311 2.0 2.0 0 1.67950E+00
312 2.0 2.0 -1 2.52111E-02
313 2.0 2.0 =2 1.42453E-04
321 2.0 1.0 1 2.95956E-02
322 2.0 1.0 0  2.55232E+00
323 2.0 1.0 -1 5.99546E-02
331 2.0 0.0 2 4,35025E-04
332 2.0 0.0 1 5.66260E-03
333 2.0 0.0 0 2.95656E+00
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Table (7.12) Continued

" " "
Branch J Q Al SJ,J"
111 3.0 2.0 0 1.67866E+00
112 3.0 2.0 =1  3.08006E-02
113 3.0 2.0 -2  4.20000E~04
121 3.0 1.0 1 2.62440E-02
122 3.0 1.0 0  2.54931E+00
123 3.0 1.0 -1 6.47790E-03
131 3.0 0.0 2 1.54327E-04
132 3.0 0.0 1  6.23952E-02
133 3.0 0.0 0 2.95476E+00
211 3.0 2.0 0 2.11581E+00
212 3.0 2.0 -1  9.35136E-02
213 3.0 2.0 -2 3.30923E-04
221 3.0 1.0 1 9.53644E~02
222 3.0 1.0 0 5.56874E-01
223 3.0 1.0 =1 1.07563E-01
231 3.0 0.0 2 3.66389E-04
232 3.0 0.0 1 1.08520E-01
233 3.0 0.0 0 2.40353E-02
311 3.0 2.0 0 3.02479E+00
312 3.0 2.0 =1 4.09808E-02
313 3.0 2.0 =2 1.73950E-04
321 3.0 1.0 1 1.87548E-02
322 3.0 1.0 0 3.62169E+00
323 3.0 1.0 =1 6.32329E-02
331 3.0 0.0 2 4.33808E-04
332 3.0 0.0 1  3.61640E-03
333 3.0 0.0 0  3.96054E+00

Table (7.13) of Comparison Between Computed and Expected Sums of

HOnl-London Factors

J SUM SUM J" SUM SUM
t [ t c
0 1 1.00000 10 63 63.0392
1 6 5.92384 11 69 69.0317
2 15 15.1725 12 . 75 75.0258
3 21 21.1458 13 81 81.0212
4 27 27.1362 14 87 87.0175
5 33 33.1168 15 93 93.0146
6 39 39.0958 16 99 99.0123
7 45 45.0769 17 105 105.010
8 51 51.0613 18 111 111.009
9 57 57.0489 19 117 117.008
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For J"> 3 all 27 ©branches are Possible, 9 for each P, Q and
R-branches due to the three ladders in both electronic states. For
J"< 3, not only are there fewer branches, due to impossible
transitions that would involve non-existent levels with J <.ﬂ, but
some transitions have zero strengths due to the selection rules
discussed in section 4.2C. As |Y| =9 for both states, the
HOnl-London factors eventually approach those for Hund”s case (b) for

J >> 3 for both states.

The values of the computed sums of the strengths from a given J"
are compared to the theoretical values in the table (7.13) for J"E 19,
on the basis of the adopted normalization, where SUMt and SUMc are

respectively the theoretical and computed sums.

For the transitions considered here, the coﬁputed values agree
very well with the sum rule, where for the smallest values of J, the
special treatment, as discussed in chapter 4, has to be applied.
Notice that the normalization of 3(2J+1) applies only for J > 1. As
discussed generally in chapter 4, for J = 0, there is only one level,
that belonging to the ladder with f1= 0, so the normalization is
(23+1), for J =1, there are two levels belonging to the ladders with
=0 and 1; so the normalization is 2(2J+1l), thereafter there are
three levels for each value of J. It is thus technically incorrect to
state generally that the sum is always (25+1)(2J+1). However, when
considering an electronic state as a whole, at the temperatures that

we are interested in, the effect on the total partition function is
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negligible, and the factor e¢f (28+1) in (2.7.1) is not inconsistent
with this discussion. As J increases, the agreement between the
calculated and theoretical values improves considerably as we approach
the case (b) limit, as Kovacs”s formulae for triplets agree best with
the normalization in one or other of the limiting spin coupling

cases.

An example of a triplet system is shown in figures (7.8) and
(7.9), and is the 0-0 band of the AS@ <-—- X3A system of TiO, known as
the Y ~-system, plotted at 2000°K. This turns out to be more
picturesque than the Swan system above. The constants for the two

electronic states are:

XA T = 0.00, @7 = 1009.02, ©'xl = 4.498, @Iyl = -0.0107,
BY = 0.535412, D! = 6.029%107, & = 3.011X107>, @} = 3.4%107,
A" = 50.61,

A3p: T, = 14163.32, ] = 867.78, ulx] = 3.942,
B, = 0.507390, D] = 6.918x10 ",

A' = 570
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Notice that the structure is very complicated indeed, with many
overlapping branches visible; yet this is just one band. It is easy
to see from this, that when TiO is abundant, it can be an important
source of opacity, as there will be many overlapping bands, each as
complex as this one shown. However, it must be pointed out that such
detail would never actually be observed in practice in real stellar
spectra, after various broadening mechanisms, including instrumental
broadening, have taken their toll. Moreover, the spectrum shown is
idealized, with the line positions and strengths computed using the
theory in chapter 4 with the above constants, with Jl—doubling not
shown and various higher order effects, that may in practice also be
important, also being neglected. Nevertheless, this should at least

give a general impression of the band.

An example of the band strengths in absorpticn for the
vibration—ro£ation transitions of CO are given in tables (7.14) and
(7.15) for values of v~ and v" from O to 11. Table (7.14) lists the
band strengths in cmz/sec/absorber computed from (4.4.2) using the

constants for the dipole moment expansion:

W

My = ~0.1221, ¥

= 3.093, M, = -0.199, M, = ~2.665, M, = 0.26,

1 2 3

where Mi is in Dg_l, obtained from Bouanich (111). On dividing by the
total partition function and multiplying by the Boltzmann factor for
the v" vibrational level and by the abundance of CO in cm—3, we obtain

table (7.15) for the band strengths in the form of volume absorption,
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i.e. cmz/sec/cm3 or cm 1sec—l, at T = 2000°K and L= 1078 gm e for
the standard mixture. Striétly speaking, these band strengths are in
fact the strengths of the fictitious J"= 0 -=> J7= 0 transitions with
unit Hénl-London factor, as the rotational partition function has not
been removed as it is included in the total partition function; on
nultiplying by the rotational partition function, the frue band
strengths would be recovered. Note that as stated in chapter 4, MO
does not enter the calculations, also as no higher terms than M4 are
used, band strengths with Av > 4 will not be strictly correct, as
contributions due to MS’ M6 etc. are neglected, and should in reality

be allowed for, however, such bands are usually very weak.

With the band strengths as computed above, the detailed structure
of individual bands can be computed, with the line strengths obtained
from (4.4.1). Figures (7.10) and (7.11) show at ZOOOOK, the second
overtone system of the vibration-rotation bands of CO, i.e. Av = 3.
Unlike the example for TiO which is a single Qery complex band, the
figures here show seven overlapping bands, each being very simple,
with one P and R-branch each. Because the differences of the
rotational constants for each pair of participating vibrational levels
are larger than for the fundamentgl and first overtone systems, the
turnovers in the R-branches are more marked, giving é more
aesthetically pleasing picture. 1In order of decreasing frequency and
strength, the bands are: 3-0, 4-1, 5-2, 6-3, 7-4, 8-5 and 9-6, the
upper level being given first by convention. The constants for the

ground electronic state that are used are:

1., o _ _ - . _
XZ: D = 90543, b, = 2169.82, @x, = 13.294, &y = 0.0115,
B, = 1.931271, D = 6.1198}(10_6, X = 1.7513%10 2.
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Strengths in cmz/sec/absorber

=
HOWoONOOUESNEWNDHOC

= O WO

el

-0
0.000E+00
2.892E-07
2.017E-09
8.487E~12
9.486E-15
8.328E~16
1.503E-16
1.332E-17
1.024E-18
7.776E-20
6.100E-21
5.036E-22

6
0.000E+00
1.831E-06
6.285E~08
1.016E-09
7.871E~-12
7.789E~-14

1

0.000E+00
5.700E-07
6.165E-09
3.615E-11
6.369E-14
4.170E-15
9.848E-16
1.031E-16
9.081E-18
7.763E-19
6.772E-20

7

0.000E+00
2.052E~-06
8.214E-08
1.532E-09
1.461E-11

Table (7.15) of CO Band

"

v

0.000E+00

8.418E~07 0.000E+00
1.256E-08 1.104E-06
9.607E~11 2.132E-08
2.479E-13 2.039E-10
1.190E~14 7.306E-13
3.671E-15 2.516E-14
4.476E-16 1.021E-14
4.467E~17 1.437E-15
4.258E-18 1.609E-16

8 9

0.000E+0C0

2.262E-06 0.000E+00
1.043E~07 2.460E-06
2.221E-09 1.295E-07

0.000E+C0
1.357E-06
3.255E-08
3.783E-10
1.806E~-12
4.322E-14
2.353E-14
3.793E~15

10

0.COOE+00
2.645E~06

0.000E+00
1.599E-06
4.636E-08
6.406E-10
3.947E-12
6.278E-14
4.742E~14

11

0.000E+00

Strengths in (cm sec)‘l at 2000°K

=
- OWOSNOULSWNDHOCG

= O W0~

o

0
0.000E+00
5.283E+02
3.683E+00
1.550E-02
1.733E-05
1.521E-06
2.745E-07
2.433E-08
1.871E-09
1.420E-10
1.114E-11
9.198E~-13

6
0.000E+00
4.269E-01
1.465E-02
2.368E-04
1.835E~06
1.815E-08

1

0.000E+00
2.228E+02
2.410E+00
1.413E-02
2.489E-05
1.630E-06
3.849E-07
4.028E-08
3.549E-09
3.034E-10
2.647E~-11

7

0.000E+00
1.147E-01
4.589E-03
8.559E-05
8.165E-07

v

0.000E+00

7.175E+01 0.000E+00
1.071E+00 2.092E+01
8.189E~03 4.039E-01
2.113E-05 3.864E~03
1.015E-06 1.384E-05
3.129E-07 4.766E-07
3.816E-08 1.934E-07
3.808E-09 2.722E-08
3.630E-10 3.048E-09

8 9

0.000E+0Q0

3.087E-02 0.000E+00
1.424E~03 8.353E-03
3.031E~05 4.397E-04

0.000E+00
5.824E+00
1.397E~01
1.624E-03
7.751E-06
.855E-07
.010E-07
.628E-08

o

10

.000E+00
. 277E-03

N O

0.000E+00
1.585E+00
4.593E-02
6.347E-04
3.911E-06
6.221E-08
4.698E-08

11

0.CO0E+00
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Note that because the constants for CO are well known, and we are
dealing with simple singlet bands without the complications of spin
coupling etec., various higher order effects that are neglected are
unlikely to be very important, and figures (7.10) and (7.11) are
likely to represent quite accurately the true spectrum of CO, unlike

the case for TiO.

Finally, an example of a part of a gand of HZO is given. Table
(7.16) 1lists the transitions of the 001 <- 000 band of H20 up to
J"= 4, this being an A-type band. From left to right the qolumns are:
J" the initial rotational level, mn" the initial sublevel, where
m"= n"+1 = T"+I"+1l, see (5.3.7), t which is simply the number of the
transition, though a maximum of 7 is allowed for, in the cases here
t £ 6, 81 the nuclear spin statistical weight factor, see the
discussion near the end of section 5.3, S the line strength in the

form of volume absorption in cm-'l and u the dimensionless frequency of

the line.

The strength S is computed from (5.2.9) for the case with the
asymmetric top, as discussed in section 5.3. On multiplying by the
abundance of the molecule in cm s an integrated absorption in the
form of cm_lsec_1 is obtained, then to be consistent with the units in
our handling of lines and continuum in bins, as discussed in chapter

6, an additional factor of h/kT is included, giving the final strength

as cm 1, with the factor gy also included. As stated in chapter 5,

"‘C’T" . - -
the quantities SJ,J" are normalized so that the sum from an initial
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sublevel over all transitions is 2J+1, as there are also 2J+1
sublevels, the sum over all transitions over all sublevels from a
given J 1is (2J+l)2. From each initial sublevel, transitions are
considered in turn to the final subleveig of increasing energy, for
the P, Q and R-branches in turn. With the aid of table (5.2) of the
rotaticnal selection rules, it is possible to identify the upper

sublevels involved, hence the subbranches.

The calculations are again performed with the standard mixture,
at T = 2000°K and = 10'.8 sm cm.3. The constants for H,0 as obtained

from Herzberg (30) are:

G =3825.32, &, = 1653.91, i, = 3935.59,
g, = —43.89, x,, = =-19.50, x5, = =46.37,
Xy, = -20.02, Xy = -155.06, Xyg = -19.81,
A, = 27.210, B_ = 14.59, C, = 9.507,
«‘i = 0.747, aﬁ_‘ = -3.323, :xé‘ = 1.241,
o(? = 0.222, o<]23 = -0.167,o<1§ = 0.112,
« = 0.180, X = 0.135, & = 0.129,

together with the reduced band strength (50/50) = 6.398X10'll

cm3/sec/absorber, calculated from data from McClatchey et al. (88).
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Table (7.16) of Some Transitiomns of Water 001 <—- 000 Band

"

(@]

e e

RN NN

WWWWWWWWWWwWwLbwLwwbwwwwwuww

o .

[

WwNhdN - -

LS EEWWLWWNDRNNNDEE

Lunu USSR WWWWWNENDNDND

N =N W

t

Pt

W WNDHENLONDEHEDLWNDE LD

PO OO OUOUSRELOLNDEERBOLONDEEBSWND -

81
0.250

0.750
0.750
0.750
0.250
0.250
0.750
0.750

0.250
0.250
0.250
0.250
0.750
0.750
0.750
0.750
0.250
0.250
0.250
0.250
0.750
0.750
0.750
0.250
0.250
0.250

0.750
0.750
0.750
0.750
0.250
0.250
0.250
0.250
0.750
0.750
0.750
0.750
0.750
0.250
0.250
0.250
0.250
0.250
0.750
0.750
0.750
0.750

e A
JIJII
1.00000E+00

S

1.00000E4+00
1.95370E+00
4.62995E-02
1.50000E+00
1.50000E+00
1.50000E+00
1.50000E+00

1.95371E+00
7.71327E-02
2.87323E+00
9.59312E-02
1.50000E+00
8.33303E-01
2.65120E+00
1.54957E-02
1.50003E+00
8.33314E-01
2.63588E+00
3.07841E~02
7.71324E-02
3.25617E+00
1.66670E+00
4.64393E-02
3.26600E+00
1.68756E+00

2.87960E+00
1.95982E-01
3.81393E+00
1.10485E-01
2.65441E+00
6.02634E-01
3.71464E4+00
2.83160E-02
2.63583E+00
6.01901E-01
3.53829E-02
3.63985E+00
8.70322E-02
1.66670E+00
1.95548E~01
2.13775E+00
2.98023E+00
1.897721E-02
1.68855E+00
9.62770E-02
2.14547E+00
3.04633E+00

S

1.08916E~-12

3.17176E~12
6.31177E-12
1.52024E-13
1.58235E-12
1.59777E-12
4.71607E-12
4.78853E-12

1.98565E-12
8.06457E~14
3.00800E-12
1.02323E~13
4.54625E-12
2.56479E~-12
8.26026E~12
5.00019E~-14
1.49422E-12
8.38304E~-13
2.71783E-12
3.26121E-14
2.23233E-13
9.58259E-12
4.99556E-12
4.41899E-14
3.19871E~12
1.68672E-12

8.32077E~-12
5.86490E-13
1.14690E-11
3.40096E-13
2.54867E-12
5.93251E-13
3.70544E-12
2.93579E~14

7.39308E-12

1.70951E-12
1.04169E-13
1.07058E~-11
2.62732E~-13
1.52301E-12
1.78930E~-13
1.99431E~-12
2.84456E-12
1.97582E-14
4.60376E-12
2.58055E~-13
5.959885E~-12
8.70942E~12

u

2.7186

2.6846
2.7344
2.7792
2.7045
2.7308
2.6970
2.7384

2.6682
2.7448
2.7484
2.8002
2.6702
2.7117
2.7450
2.8429
2.6627
2.6891
2.7562
2.8318
2.6542
2.6989
2.7488
2.6204
2.6971
2.7524

2.6531
2.7476
2.7610
2.8263
2.6551
2.7223
2.7585
2.8671
2.6440
2.6774
2.7753
2.7727
2.8457
2.6466
2.6502
2.7020
2.7645
2.8943
2.6433
2.5986
2.6932
2.7719



Table (7.16) Continued

J"

WwWwwwwww

B I R T~ S R e I i S S R S S e T Al B P R o B S R S B T S Sl S R S S R R S T SR S R S S S R

B-

NN OY O

LWWOWOWRewdINYII OO OOV NP0 WLWWWNINNDDNDE -

W A;FRNNHFOUREWNHOUSEWNHFOUESEWNNHOUMEWNFUREWNNEDWNE WD -

t

WNHHBLNDEHE WL

g1

0.750
0.250
0.250
0.250
0.250
0.750
0.750
0.750

0.250
0.250
0.250
0.250
0.750
0.750
0.750
0.750
0.250
0.250
0.250
0.250
0.250
0.750
0.750
0.750
0.750
0.750
0.250
0.250
0.250
0.250
0.250
0.250
0.750
0.750
0.750
0.750
0.750
0.750
0.250
0.250
0.250
0.250
0.250
0.750
0.750
0.750
0.750
0.250
0.250
0.250
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7"

J°J"

2.33761E-02
1.54988E~02
3.53902E-02
5.18858E+00
1.76053E+00
3.08628E~-02
5.20085E+00
1.76828E+00

-S

3.81675E+00
3.05447E-01
4.78307E+00
9.47288E-02
3.71708E+00
5.04788E-01
4.74215E+00
3.59774E-02
3.64376E+00
5.04383E~01
1.27746E-01
4.58043E+00
1.43685E~01
2.98361E+00
3.04891E-01
1.52253E+00
4.14757E+00
4.13973E-02
3.04314E+00
1.10522E-01
1.52469E+00
1.71309E-02
4.24045E+00
6.40584E~02
1.76079E+00
2.82916E-02
1.27654E-01
3.85452E+00
3.20836E+00
2.03911E-02
1.77199E+00
8.74391E-02
3.87117E+00
3.24820E+00
2.11995E-02
1.97763E-02
1.70909E-02
7.14858E+00
1.81455E+00
2.33310E-02
7.15900E+00
1.81767E+00

S

6.96822E-14
1.28814E-14
3.01873E-14
4.55361E~12
1.58476E~-12
7.72782E~14
1.36897E-11
4.77622E-12

3.43731E-12
2.86996E~13
4.52812E-12
9.26689E-14
1.00321E~-11
1.41156E-12
1.34402E-11
1.06412E-13
3.14311E-12
4.41081E-13
1.16270E-13
4.21016E~12
1.34851E-13
7.59436E~12
7.80008E~13
3.99126E-12
1.11645E-11
1.16710E-13
2.54761E~-12
9.06987E~14
1.30683E-12
1.53928E-14
3.78782E~12
5.93259E~14
4.21023E~12
6.51231E-14
3.04929E~-13
9.46404E-12
8.12556E-12
5.47734E~14
1.41057E-12
6.75979E-14
3.16288E-12
2.73899E-12
1.89590E-14
4.14683E-14
3.69689E~14
1.61745E-11
4.23722E-12
1.63365E~14
5.39919E~12
1.41495E-12

u

2.8901
2.5509
2.6180
2.6936
.7628
.5621
.6933
.7638

NN DN

.6386
.7529
7737
2.8662
2.6403
2.7356
2.7726
2.8935
2.6261
2.6623
2.7709
2.7983
2.8572
2.6297
2.6431
2.7083
2.7810
2.9126
2.6232
2.5715
2.6857
2.8156
2.7990
2.9020
2.6235
2.5256
2.6209
2.6939
2.7788
2.9472
2.6227
2.5471
2.6919
2.7782
2.9465
2.4903
2.5689
2.6872
2.7733
2.4948
2.6871
2.7735

NN
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Because of our approximate treatment for computing the spectrum
of HZO’ an example of a detailed line-by-line plot would not be
realistic as individual line strengths and positions are approximate,
and very weak transitions are neglected. However, because of the
average way we handle lines, a smeared representation would be more
realistic, and in the next section a plot of the "binmed” 001 <= 000
band of HZO is showﬁ.

Finally, as the fine structure of a band of a linear molecule,
such as COZ’ is the same as for a diatomic molecule, ~we do not

consider any examples.
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7.4 Some Tests and Timings of Computing Band Opacities with Bins

Before we can compute with confidence band opacities with the
TRIATOM program, it is necessary to consider some tests of the various

methods discussed in chapter 6.

With the three separate methods: the Independent Line Method
(ILM), which includes the treatment of the partial overlap of two
Gaussian profiles, the Line Smear Method (LSM) and the Opacity
Sampling Method (OSM), together with a total rectangular smear (TRS)
and the total overlap of lines in a bin (TOL), the four schemes are
congsidered which combine these methods in different ways, as some of
these methods are inapplicable in certain circumstances on their own,
as mentioned in chapter 6 and below. The four schemes are summarized

as follows:

(i).  LSM,
(ii). ILM + LSM + (TRS + TOL),
(iii). OSM,

(iv). OSM + ILM + (LSM + TRS + TOL),

where the brackets indicate that the methods are held in reserve and
are used as a last resort if the other methods are inapplicable. If
1/K is the reciprocal of the RMO for an individual bin, it is
convenient to define a new quantity X, such that K = 1/&, then the

required K is obtained from K(ILM), K(LSM), K(OSM), K(TRS) and K(TOL)
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according to the method, with the choice depending on the scheme

adopted. We now consider in detail, each scheme in turn.

For scheme (i) with K = K(LSM), the LSM on its own is not very
useful for obtaining RMOs, due to the uncertainties in smearing lines
ia bins, as discussed in section 6.4. However, scheme (i) uses the
least amount of computer time, because of the smaller amount of
processing, and can give at least a rough idea of the RMO,
particularly if there are large regions of the spectrum which are
continuum alone, where of course none of the methods is applied, and
where there is significant absorption, the congestion is so large that
the LSM is not so approximate. In addition, scheme (i) can be used to
obtain the PMOs more quickly than the other schemes, as the sum of the

line strengths are still stored in bimns.

Scheme (ii) uses a combination of the IIM and LSM with the TRS
and TOL held in reserve in the following way, where n is the number of

lines in a bin, see also the end of section 6.3:

]

(a). for n =1 or 2 and K(ILM) > 0, then K = K(ILM),

(b). for n=1 or 2 and K(ILM) £ O, then K = min[K(IIM),K(TOL)],

(¢). for n > 2 and K(ILM) > 0, then K

Il

max[K(TRS),K(ILM)],

(d). for n > 2 and K(ILM) £ 0, then K = min[K(LSM),K(TOL)].

Cases (a) and (c) apply when the ILM does not break down, with it
nearly always in case (c¢) giving a value for the upper 1limit of the
opacity that is considerably less than the value for the TRS computed

from (6.4.3). The maximum function takes care of the unlikely event
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of 0 < K(ILM) < K(TRS) with the IIM giving a larger but finite wvalue
of the opacity than the TRS. The breakdown case (b) should never
occur with the correct choice of bin size and can be regarded as an
“"emergency" case. For congested bins, case (d) is very common with
the value computed from the LSM far more likely to be chosen than the
absolute lower bound to the opacity from the TOL. Because of the
necessity of applying the ILM, scheme (ii) is more expensive in
computer time than scheme (i); however, it would be expected to give
much more reliable RMOs, particularly if there are large regions of

the spectrum which have lines, but which are not heavily congested.

Scheme (iii) is just the OSM on its own, so K = K(0OSM)
unconditionally. This has thé disadvantage of requiring large amounts
of computer memory for sufficient sampling and is also expensive in
computer time, but with sufficient sampling would give an accurate
value of the RMO. With the expense of less reliable RMOs, a coarser
grid éould be used, thus saving memory and processing time. Examples
with different grid sizes are discussed below. No matter how fine a
grid is chosen, we ére obliged to undersample in the limit of very low
frequency, as discussed in chapter 6, though with a fine enough grid,
the region undersampled will be close to u = 0, which has a small
weighting function and hence does not introduce much error into the

final RMO.

Finally, scheme (iv) is the most comprehensive .and requires the
greatest amount of computing resources. If Au is the average width of
the lines in a bin, i.e. fu = (1/n)2dui, d is the separation of the

i

fine grid intervals and k 1is some specified control parameter,
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typically unity, then the following cases can be considered:

i

(a). for n = 1 or 2, Au  kd and K(ILM) > 0, then K = K(ILM),

(b). for n =1 or 2, Au 3 kd and K(ILM) £ O,

then K = min[K(0SM),K(TOL)],
(¢). for n =1 or 2 and Au < kd, then take cases (a) or (b) of
| scheme (ii),
(d). for n > 2 and Au 3 kd,
then K = min{max{K(ILM),K(0SM),K(TRS)],K(TOL)},

(e). for n > 2 and Au < kd, then take cases (c) or (d) of scheme (ii).

In other words, if the grid is comnsidered to be fine enough, the 0SM
is essentially used for n > 2, with the ILM used for n=1 or 2,
except in breakdown cases, which there should not be. However, if the
grid is considered to be too coarse, the OSM is ignored and scheme
(ii) is used 1in place. The purpose of the maximum and minimum
functions is to ensﬁre that the required value is within the possible
bounds for each bin. 1In particular for case (d), if the sampling
interval 1is sufficiently small, K = K(OSM) in practice, with K(OSM)
lying well within the permitted bounds. However, if we choose to
undersample with d large by setting k to a small value, there is no
guarantee that K(0SM) will necessarily lie within the permitted

bounds. Thus lines in a bin could be completely missed, in which case
K(0SM) is just the continuum with K(TOL) likely to be a better value
as the TOL is a true lower bound to the opacity, or upper bound to its
reciprocal. On the other hand, it could just be that although the
bins are relatively uncongested, all the grid points happen to lie

near the maximum of the spectral lines, 1in which case the OSM will
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overestimate the opacity, with the ILM likely to be a better value, or
at worst if that has broken down, K(TRS) is always available as a last

resort.

In order to investigate the various methods above in practice, a
number of realistic numerical experiments were performed, with some of
the examples discussed here. 1In all cases the vibration-rotation
spectrum of CO and its isotopic variants were computed at 2000°K on
top of the continuum produced in the usual way at that temperature and
P = 10—8gm cm-3. CO was chosen simply because it is abundant and
preduces a simple spectrum, requiring less overheads in processor time
than molecules which produce more complex spectra. However, by

including the isotopic variants, a relatively complex spectrum can be

produced cheaply.

The spectrum was computed using 2500 bins in the regionu =1 to
2, in order to cover the fundamental bands of CO, with the rest of the
spectrum blanked off. The bins selected from this region in table
(7.18) are 2all in the vicinity of u = 1.65, as Au = 6.05X10-6u for CO
at ZOOOOK, Au = 10.5 in this part of the spectrum. Also, as the bin
widths are 1/2500 = 4x1o’4, the bins are thus about 40 profiles wide.
Table (7.17) lists the various sampling intervals used to compute the
contribution in each bin by the OSM. In keeping with the rules
discussed in section 6.1, there have to be an even number of sampling
intervals per bin. From left to right for six different sampling
intervals, table (7.17) 1lists the total number of sampling intervals

in the region u =1 to 2, the number of sampling intervals per bin,

the approximate number of sampling intervals per profile width and the
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separation between sampling points in the fine grid, i.e. the
reciprocal of the total number of sampling intervals in the whole

region.

Table (7.17) of Different Sampling Intervals

Total No. No. Per Bin Approx. No. Pr. Width Sep.

1 10000 4 0.1 ' 107
2 20000 8 0.2 5%10™°
3 50000 20 0.5 2%X107°
4 100000 40 1 107
5 200000 80 2 5x107°
6 500000 200 5 2x107°

For the 10 bins given in table (7.18), each identified by its
number, the following 15 entries are given: un the number of lines in
the bin, ug the value of u at the bin centre, Au the average width,
r = (I/nXZ;i the average relative strength of lines, .r being defined
in (6.3.1Z), then K(CON), K(LSM), K(TRS), K(TOL) and K(IIM), where
K(CON) refers to the continuum alone, finally K(OSM) for the six sizes

of sampling intervals in the order of table (7.17).




u
Au

CON
LSM
TRS
TOL
ILM

OSM1

osM2
0SM3
0SM4
OSM5
0sM6

Table (7.18) of Some Tests on a
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Sample of Bins

1650
0

1.6598
0.00000E+00
0.00000E+00
2.04740E+10
2.04740E+10
2.04740E+10
2.04740E+10
2.04740E+10
1.74926E+10
1.89833E+10
1.97265E+10
1.94494E+10
1.93997E+10
1.93950E+10

1608
4

1.6430
9.85%60E~06
3.50717E+05
1.98595E+10
1.55209E+10
1.41564E+04
1.74039E+4+10
1.35302E+10
3.33124E4+09
1.49000E+10
1.32837E+10
1.36431E+10
1.35699E+10
1.35306E+10

1651
1

1.6602
1.00493E-05
2.26526E+05
2.04887E+10
1.92413E+10
9.04470E+04
1.80242E+10
1.80242E+10
1.87819E+10
1.96353E+10
1.87819E+10
1.90271E+10
1.89724E+10
1.89736E+10

1628
5

1.6510
9.92536E-06
1.36069E+05
2.01521E+10
1.47780E+10
2.96205E+04
1.77002E+10
1.37724E+10
1.34336E+10
1.51252E+10
1.57200E+10
1.56237E+10
1.55080E+10
1.55155E+10

1605

1
1.6418
9.93828E-06
1.49893E+06
1.98156E+10
1.86222E+10
1.32199E+04
1.73209E+10
1.73209E+10
1.98156E+10
1.65140E+10
1.72058E+10
1.74787E+10
1.73358E+10
1.73183E+10

1625
6

1.6498
9.92932E-06
1.28826E+05
2.01083E+10
1.38568E+10
2.60146E+04
1.76543E+10
1.21183E+10
1.96433E+10
1.36841E+10
1.33073E+10
1.14954E+10
1.22490E+10
1.22183E+10

1664
2

1.6654
1.00816E-05
4.42163E+04
2.06788E+10
1.82304E+10
2.33835E+05
1.82582E+10
1.69848E+10
1.39869E+10
1.55604E+10
1.70290E+10
1.73252E+10
1.69370E+10
1.69896E+10

1632
8

1.6526

9.97639E-06
5.74459E+02
2.02107E+10
1.22992E+10
4.39681E+06
1.81438E+10
1.02288E+10
1.96185E+10
1.27831E+10
1.40405E+10
1.38238E+10
1.36921E+10
1.37269E+10

1668
2

1.6670
1.00911E-05
3.16014E+04
2.07374E+10
1.82798E+10
3.28104E+05
1.83352E+10
1.83357E+10
1.38261E+10
1.90096E+10
1.86414E+10
1.85019E+10
1.82978E+10
1.83434E+10

1634
15

1.6534
9.95133E-06
3.51644E+04
2.02399E+10
7.96234E+09
3.83720E+04
1.77925E+10
0.0C000E+00
5.14582E+09
9.24099E+09
9.25021E+09
8.17420E+09
8.51596E+09
8.43988E+09
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Note that the Ks given in table (7.18) are reciprocal volume
absorption in cm, and do not include the constant in the Rosseland
weighting function, see the end of section 6.5. The RMO in cngm—l

for each bin obtained from any of the methods is found from:

Roo Lo&mt | as9rsexiof
K 15p 7 K

(7.4.1)

W

in cngm—l, for 7 = 10—8gm cmn3.

The bins selected for table (7.18) are chosen not only to be a
representative sample in the runs performed, but also to show a number
of interesting features. 1In all cases, the results converge to some
value as the sampling interval becomes smaller for the OSM, indicating
that for the finest grid, the results are quite accurate. In our
general application of the OSM, we strive to sample at approximately
intervals of profile widths, which in practice means about three fine
grid points -across a profile including its wings, so the values of
K(OSM4) are of particular interest here. Although more accurate
values are obtained from K(OSM5) and K(0SM6), insufficient memory is
available at St.Andrews to cover the whole spectrum with such a fine
grid, in addition to being more expensive in processing time, OSM5 ahd
0SM6 can be regarded as oversampling. By saving memory and processing
time, we could undersample with OSM3 with the further sacrifice of

accuracy, with any lower sampling being of little value.
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If we assume K(0OSM6) to be the accurate value for each bin, then
the percentage errors for K(0SM4) for bins 1650, 1651, 1605, 1664,
1668, 1628, 1625, 1632 and 1634 are approximately 0.3, 0.3, 1, 2, 0.9,
0.8, 0.7, -6, 0.7 and -3 respectively. This shows that even for the
worst cases the errors are acceptable, and for most cases the errors
are small. It is easy to see that the errors for the lower sampling
cases will in general be larger. When the spectrum is taken as a
wheole, the sampling errors will tend to cancel out. Moreover, where
there are large regions of continuum, no sampling errors occur, and
where bins are very congested indeed, there being no examples in the
cases here, the sampling errors will tend to be small. This is
because heavy congestion tends to produce a pseudo-continuum, so even

gross undersampling may not be too bad in some cases.

We can briefly consider some of the features shown by these bins.
Normally for bins that have only continuum, K(OSM) = K(CON), however,
bin 1650 ié chosen although there are no lines in the bin,.
K(0SM) < K(CON) which can be explained by the spillover of wings from
lines in the neighbouring bins 1649 and 1651. This is easily shown by
summing over 1649, 1650 and 1651, where 1649 and 1651 each have only
one line. All figures must be multiplied by 1010.

K(0SM6) 1.96510 + 1.93950 + 1.89736

5.80196,

i}

K(ILM) 1.95194 + 2.04740 + 1.80242

5.80176,

which is very good agreement. As there is unlikely to be any overlap,

the ILM is very good, and gives correct values. Except as stated in
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chapter 6, all the contribution from any line is put into one bin.

From the above discussion, it is immediately seen why
K(ILM) < K(0SM6) for bin 1651. For bin 1605, K(ILM) = K(OSM6)
indicating that the 1line is well within the bin. Bin 1664 has two
lines which are obviously not overlapping to any great extent as it is
clear that K(TOL) > K(ILM) = K(OSM6), however, in bin 1668 the two
lines are heavily overlapping, or one is relatively weak and they are
partially overlapping (a cut-off is wused to prevent any very weak
lines from being generated), as K(TOL) = K(ILM) = K(0OSM6). (Note that
on subsequent detailed examination of the bins, the above statements
were confirmed, in particular for bin 1668, the two profiles were
almost totally overlapping). With the remaining bins, the congestion
is increased wuntil for bin 1634, even though the sum of the profile
widths is still much less than the bin width, the ILM breaks down and
cannot be used as a guide. This is because fhe wihgs of the strong
lines beyond the Doppler width can still be an important source of
absorption, refer to (6.3.1). Note that when the ILM breaks down, the
subsequent lines in that bin are no longer treated for the ILM, to

save computer time, and for these bins K(ILM) is set to zero.

From the theory in chapter 6, we know that
K(TOL) > K(OSM) > K(ILM), which is seen to be true here, save for
those cases where edge effects occur. When there are two or more
lines in a bin, one has a quantitative idea about the amount of
overlap, by how K(0SM) is related to K(ILM) and K(TOL). Thus for bin
1608 the agreement between K(0SM6) and K(ILM) is very good indeed,

indicating no overlap, whereas for bin 1628, K(0OSM6) lies comfortably



in between the other two. TFor some of the undersampling cases, K(OSM)
lies outside the permitted range and would clearly be incorrect; the
treatmenf for scheme (iv) handles such cases. For comparison, KXK(LSM)
and K(TRS) are also included; note that in all cases here
K(TRS) << K(0SM), though for verf heavy congestion this may no longer

be the case.

As stated in section 6.3, even for three or more lines in a bin,
the partial overlap treatment for the first two 1lines can give &
slightly better upper bound to the opacity. Thus in some earlier
tests performed at the time the partial overlap treatment was
implemented, in general there was found to be very little difference
between bins with and withoutlthe partial overlap treatment, with more
than one line, which is to be expected as the bins are very wide
compared to profile widths for the cases handled. One notable
exception was a particular bin with 15 lines, (not bin 1634) where
K(ILM) increased from 2.34719%10° to 2.76351X10° with the partial
overlap treatment, and represents an improvement in the upper bound of

the RMO in that bin; compare this to K(TOL) = 1.55136x10'° and

K(OSM6) = 8.02109X10°.

Finally, a number of timing runs were performed, where in order
to cut overheads, the least amount of output was generated. Trom left
to right in table (7.19) are listed the scheme, the central processor
unit (CPU) time in seconds, the number of sampling intervals across
the region u=1 to 2, if applicable and ZK, the sums of the
contributions over the bins by the various schemes, with all cases

having 2500 bins. Note that scheme (iv) cases (c) or (e) were never
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invoked. For comparison, Z.X is also given for the continuum alone,
the ILM on its own, where for breakdown cases the contribution is zero

and the TOL; the last two giving the bounds.

Table (7.19) of CPU Timing Runs and Sums Over Bins

Scheme CPU Time in sec  No. Smpl. Intv. zZK
(i) 35 3.44346E+13
(ii) 41 3.35348E+13
(iii) 37 10000 3.47964E+13
(iii) 39 20000 3.51139E+13
(iii) 46 50000 3.49957E+13
(iii) 52 100000 3.50235E+13
(iii) 60 200000 3.50246E+13
(iii) 86 500000 3.50239E+13
(iii) 97 600000 3.50236E+13
(iv) 47 10000 3.55513E+13
(iv) 60 50000 3.50587E+13
(iv) 111 600000 3.50368E+13
CON 4.11083E+13
ILM 3.33915E+13
TOL ) 3.96619E+13

In the cases considered here, there is quite a lot of continuum

over the range, which "dilutes"” the errors. Nevertheless, it is clear
that though scheme (ii) is relatively fast, it gives a rather poor

result compared to even scheme (iii) with 20,000 sampling intervals
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which wuses less CPU tinme. It can be seen  that even gross
undersampling can give quite a good result as the random errors tend
to cancel, as stated earlier, though individual bins could be quite in
error. Because of the extra processing time and edge effects when the
IIM is applied, there is no advantage in scheme (iv) unless there is a
shortage of Memory. It must be noted that these times are
appréximate; because of the properties of the operating system in a
multi-user environment, identical runs can produce different CPU
times. Moreover, for actual production runs, considerably more
complex spectra, like that of Héo are generated, and will have larger

overheads. Thus the timings here act only as a rough guide.

To complete this section; some graphical examples are shown, with
all computations performed at T = 2000°K and p = lO—ng cm_3. Figure
(7.12) is a plot of part of the fundamental sequence of bands of CO,
including any isotopic variants abundant enough to produce a spectrum,
covering the bins 1631 to 1635, which includes the 1last two bins in

table (7.18). The bin sizes are 1/2500 = 4X10—4 and the separation of

6

3

the sampling points of the fine grid is 1/600,000 = 1.6667X10
corresponding to about 6 fine grid points per profile width, (600,000
grid intervals is about the maximum that can be handled with the VAX
in its wusual configuration, after taking account of the memory
required fo£ other arrays and the program itself). The profiles are
drawvn using a supplied plotting subroutine that draws smooth curves
through a sequence of points. Since the runs for table (7.18) were
pefformed, more molecules were added to the mixture, together with
better data, so the opacities in the bins corresponding to those in

table (7.18) are slightly different, but no qualitative changes have
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occurred, with the opacities in figure (7.12) ranging from

1

5.51X10-6cm2gm— to 1.18X102cm2gm_1, these being the actual opacities

at the grid points, not the means over the bins.

With this linear plot, the sSpectrum looks deceptively empty, and
it is hard to see how there can be a significant amount of absorption
in bin 1634, where the ILM breaks down. However, we know from the
theory in chapter 6, that once the relative strength of a profile is
large compared to the continuum, say 100, increasing the strength of
the profile by even many ofders of magnitude will not cause a large
increase of the RMO in that bin, with the quantity X, defined in
(6.2.5), proportional to the square root of the log of the profile’s
strength. Thus in showing the strongest profiles correctly, the much
weaker ones, which are still strong, are apparently lost. A much more
realistic plot is figure (7.13), where the log of the opacities is
plotted, and gives a much better representative idea of how much
absorption there really is. 1In particular, it can be seen that bin
1634 is really quite congested, and the 8 profiles visible in that bin
could not be fitted in without some overlap, as indeed predicted by

the ILM.

Figures (7.14) and (7.15) show respectively a linear and log plot
of the absorption in the bins 1684 to 1688 for a band head, with the
same bin sizes and fine grid separations as before, and‘ with the

. . -6 2 -1 2 -1 .
absorption ranging from 5.36X10 "cm gm ~ to 1.30 ecm"gm ~. Again the
log plot gives a more realistic impression of the absorption,

particularly at the band head.
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Having plotted examples of spectral lines belonging to bands, and
the contents of individual bins, we now show in figure (7.16) a plot
of the A-type 001 <- 000 vibration~rotation band of H20 sitting on top
of the continuum, after it has been put into bins. Thus figure (7.16)
is a smeared plot, with the individual lines not being shown, and with

the connected points plotted at each bin centre.

Rather than plotting simply the RMO for each bin, which contains
the weighting function and bin width, it is much better to remove
these factors by plotting the average opacities that give those RMOs
when integrated over each bin. Thus plots with different bin sizes

can be compared.

Thus for bin i with width Vs where the weighting function is

assumed to be constant, we can write:

U, + &2/2
1 v e W) (7.4.2)
ic. (ame) Kiw) <KARMEYY
L.LL "“)Il ‘
thus:
<K, (RHO)Y = W, W) EC(RMO) (7.4.3)

which is the average over the bin, and is the quantity pletted; it cam

be regarded as the reduced RMO. Likewise for the PMO, we can write:
-l Wi

i.(PHOY = Bl KD Ju = t, Bluy i, (o) > (7.4.4)

W, - Wi
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thus:

$

<K, (PiO)> = R (TMO) (7.4.5)

It is immediately seen that we can consider the reduced RMOs and PMOs

for lines alone, by simply subtracting the continuum. Thus:

KK ARMO)Y = w, W(w) K, (RHOY = K, (u;) (7.4.6)

and:

KK;ipropd> = K (PMOY ey (7.4.7)
W, B () ‘

which can be used for plotting bands without the underlying continuum.

Figure (7.16) is in fact plotted with bin widths of
1/250 = 4X10-3 and a fine grid separation of 1/200,000 = 5X10—6, with
the OSM on its own. Even though we have to make many approximations
in order to compute the spectrum of the asymmetric top molecule, with
the detailed individual 1line ‘positions and strengths beihg very
approximate, it 1is very gratifying indeed to see that the gross
appearance of the band does correspond approximately to theory, with
the P, Q and R-branches being clearly visible; though the prominent
spike 1is due to one bin with an exceptional amount of absorption.
Finally, figure (7.17) shows in greater detail the Q~branch, which is
of course several subbranches superimpesed, and with the single

prominent spike no longer present. The same fine grid is used, but
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the bin sizes are ten times smaller than for the previous figure. For
these and all the previous figures, the stimulated emission factor is

not included.

In actual production runs, the various tests performed, that are
outlined in this section, are used as a guide. However, in order to
find an optimum between CPU time and accuracy, together with the
constraints of wmemory, parameters for specifying the cut—offs in

abundances, bands, lines etc, have to be found by experience.
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7.5 Results of Some Computed Total Opacities with Continuum and

Molecular Bands

In this section, we give some examples of total opacities due to
molecular bands sitting on the continuum. Thus, these are the results
of applying TRIATOM to compute the molecular bands, after having
applied MIXOP to obtain the background continuum together with the
abundances. Because a considerable amount of effort in this work has
been devoted to handling isotopic variants of molecules, we consider
this in detail first, and show that indeed in certain circumstances,

isotopic variants are important when computing opacities.

We examine in detail first the isotope effect for CO at
log T = 3.3 and log £ = -8. The continuum from u =0 to 20 is
computed wusing 4000 coarse grid intervals for all the species
discussed in chapter 3, and the bands of CO are computed using the OSM

on its own within the region u = 1 to 4, using a fine grid interval of

6

1/200,000 = 5%10° , 1.e. 600,000 fine grid intervals in all. This
compares favourably with the line widths which increase from 6.0X10—6
to 2.4X10_5 as u increases over the region. This covers the

fundamental and first overtone systems of CO, and just the very
tail-end §f the second overtone system. In order to have as fine a
sampling interval as possible over the region u =1 to 4, the regions
u=0toland u=4 to 20 are ignored in the band calculations,
leaving just the continuum. However, in the region u = 0 to 1 there

is no absorption due to CO anyway, and in the region u = 4 to 20, only
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the second overtone system is effectively lost, as the higher order
overtones are much weaker and occur where the background continuum is

strong and the weighting functions are much smaller.

The fine grid over the region studied is put into 7500 Bins, all

4, so there are 80 fine grid

of equal width, i.e. 1/2500 = 4X10
intervals per bin, and the bins are at least 17 profile widths wide.
Note that although the separation of the coarse grid points is 12.5
bin widths, which contradicts the rule stated in section 6.1 that this
ratio must be an integer, this restriction only applies when the ILM
is used, due to the particular way the bins are handled in the code.
The bands are computed for a 20X20 matrix, so in theory there would be
a maximum of 19 and 18 bands in the fundamental and first overtone
progressions respectively, for each isotopic form, when isotopes are
considered. However, a cut—-off of 17 for the relative line strength,
i.e. the area under the profile on its own coﬁpared to the area of a

slab of continuum equal to the Gaussian width of the profile, would be

expected to cut off most of the higher bands in the progression.

In the examples here, we compare the absorption due to CO when
all its isotopes are lumped into C12016 to the absorption due ‘to the
separate isotopic variants, hence the total abundance of CO is the
same in both cases, and the differences in absorption are due entirely
to the isotope effect. Table (7.20) lists the absolute and fractional
abundances of the disotopic  variants of CO at log T = 3.3 and
log = -8, as computed by the MIXOP program with a convergence
criterion of £ = 10—6. Note that the six figures of accuracy, are

given here merely to show the results printed by the computer, as such

true precision is of course quite meaningless.
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Table (7.20) of the Isotopic Abundances of CO

Molecule
C12016
C12017
C12018
C13016
C13017
C13018

All Forms

at Log T = 3.3 and Logp = -8
Ab. Abundance Fr. Abundance
1.68348E+12 9.86522E-01
6.30445E4+08 3.69442E-04
3.43368E+09 2.01214E-03
1.88962E+10 1.10732E-02
7.07641E+06 4.14679E-06
3.85415E+07 2.25854E-05

1.70648E+12

Table (7.21) to Show the Isotope Effect of CO

2K for u
2K for u
ZK for u
PMO

RMO -

1 to 2

2 to 3

3 to 4

Con. Alone

Without Isp. With Isp.

4.09299E+13
1.54675E+14
1.92847E+14
1.63802E-05

5.13515E-06

3.85180E+13

1.39142E+14

1.86551E+14

1.83269E-01

5.39360E-06

3.49299E+13
1.20754E+14
1.82655E+14
1.83103E-01

5.69989E-06
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CO is the second most abundant molecule in the mixture, and is to

be compared to HZ with an abundance of 2.22668X1015 for all its
isotopic forms, and 2.69439X1015 for all particles, with the absolute
3

abundances being as usual in cm ~.

Table (7.21) gives the sums of the contributions K in cm over the
bins in the spectral regions u =1 to 2, 2 to 3 and 3 to 4, for the
continuum alone, and the continuum plus CO without and with isotopic
forms respectively. The RMOs in these regions can be obtained by
simply applying (7.4.1). The total PMO and RMO in the table are for
the whole spectrum including the continuum in the regions not covered

by the fine grid, and are in cngm—l.

It is clearly seen that the RMO in the region u=2 to 3
increases by about 13%, with the overall RMO increasing by about 6%,
whereas the PMO hardly changes at all, as expected. Thus the effect
on the RMO is large compared to the fractional abundances of the
. . . ; . . . 13.16
isotopically substituted species, most being in the form of C70 .
This effect can easily be explained by the filling in of the windows,

and even though C13O16 is only about 1% as abundant as 012016, because

CO is such an abundant species, some of the isotopically substituted

forms are still abundant, hence the isotope effect is important for

co.
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Figures (7.18-29) show up the isotope effect much better, and are
arranged in pairs with everything else being equal. The plotted RMOs
and PMOs are obtained wusing the relations (7.4.3) and (7.4.5)
respectively. In figures (7.18-21), the smearing has been increased
by a factor of ten, by effectively creating new bins with each
consisting of ten computed bins. The remaining figures are all
plotted as computed, with bin widths of 4X10_4. In all cases the

values are plotted at bin centres and are joined to neighbouring bins

by straight lines.

For the sake of completeness, the PMO for the two cases is shown
in figures (7.18) and (7.19), there being virtually no noticeable
difference at this level of smearing. The fundamental and first
overtone systems are centred at about u = 1.4 and 2.9 respectively,
with the tail-end of the second overtone system at the extreme right,
and for comparison, the continuum is drawn under the bands. The sharp
band head of the first overtone system is quite marked here. However,
the pair of figures (7.20) and (7.21) for the RMO show é very marked
difference indeed, with the avefage values lifted considerabiy above
the continuum due to the isotope effect. From these two plots, it is
immediately obvious why the total RMOs for the two cases in the table
above are substantially different. The remaining plots compare in
greater detail this part of the spectrum with the full number of bins
as computed, and the last pair of figures (7.28) and (7.29) show a
further magnified view of the first overtone system with the

underlying continuum again shown. Black areas are caused by
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neighbouring bins that are rapidly alternating in strength, and cannot

be resolved due to the thickness of the pen.

Because the two stable isotopes of Cl are of comparable
abundance, it is worth briefly considering the isotope effect on HCI,
the most abundant Cl containing compound in the mixture. The
computations were performed at the same temperature and density as
before, with the spectrum computed using the same arrangements of grid
points and bins. The coefficients Mi in Dg_i for the dipole moment

expansion used are:

M. = 1.0935, M

0 = 0.925, M

= 0.163, M, = —-3.83, M

3 = —9-3,

1 2 4

as obtained from Kaiser (112), and the constants for the ground

electronic state needed for computing the vibration-rotation spectrum

are: .
xist: 00 = 37222 6 = 2990.95 box = 52.819, wy = 0.2244
: e > e e ee : > Tele : >
B_ = 10.593416, D_ = 5.31936X10 °, & = 0.307181,
By = 7.51x107°,

as obtained from Rosen (35). The tables giving the abundances and the
effect on the opacity are given below. As before, the effect of all
35

isotopic forms lumped into the most abundant species, di.e. HC1”7, are

compared to the case where they are considered separately.
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Table (7.22) of the Isotopic Abundances of HCI

at Log T = 3.3 and LogpP = -8

Molecule Ab. Abundance. Fr. Abundance
nc1>? 5.93956E+08 7.55276E-01
c13’ 1.92441E+08 2.44709E-01
pc13d 9.74004E+03 1.23855E-05
pc13’ 3.15580E+03 4.01292E-06
All Forms 7.86409E+08

Table (7.23) to Show the Isotope Effect of HCI

Con. Alone

Without Isp. With Isp.

2K for u=1 to 2 4.09299E+13 4.04035E+13 4.00348E+13
ZK for u= 2 to 3 1.54675E+14 1.53117E+14 1.52203E+14
ZK for u= 3 to 4 1.92847E+14 1.88870E+14 1.85878E+14
PMO 1.63802E~05 7.13946E-05 7.13793E-05
RMO 5.13515E~06 5.19740E-06 5.24224E-06

It is seen that the isotope

effect

is much smaller than for CO,

which can be explained by the much lower abundances of HCI.

the differential effect,

compared to the continuum on its own,

rc13’,

i.e. the

difference

the deuterated versions having quite

Because of the different vibrational constants,

that is studied,

covers only

the

fundamental

between

negligible

is large and is due entirely to

the region u

and part of the first

the two cases

abundances.
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overtone system. Plots were examined, but because of the much lower
abundances, the differences between the two cases do not show up

nearly so well as for CO, and are not shown here.

Finally, for demonstrating the isotope effect of individual
molecules, we consider the astrophysically important molecule TiO.
These runs were done at the higher temperature of log T = 3.5, but at
the same density of log f>= -8. The electronic transitions considered
occur at a comnsiderably shorter wavelength than the bands of CO and
HCl1l considered above, hence the weighting functions are much smaller.
So this higher temperature increases the weighting functions for the
band, but is not so high that the abundance of TiO becomes too small

to be important.

As there are five isotopes of Ti and three of O that are in the
statistical mechanics calculations, there are fifteen 1isotopic
variants of Ti0 in the mixture, which is the greatest number of
variants for any diatomic molecule considered. However, 1in order to
save CPU time, a cut—off for the abundances of 106cm.—3 ensures that

those molecules containing O17 and O18 are neglected, as their

. . . . 1
abundances are very low, leaving the five variants with O 6. Three
. e s .48 . . R
quarters of Ti is in the form of Ti ~, with the remainder consisting
of isotopes of comparable abundances. Thus in these examples, we

compare the opacities with all forms of TiO lumped into T148016

with
. . .. 16 .
the five wvariants containing 0  , neglecting the other ten. The

abundances are given here in table (7.24).



Table (7.24) of the Isotopic Abundances of TiO

at Log T = 3.5 and Logp = -8

Molecule

246,16
2147416
1148516
149,16

Ti50016

Remaining forms

All Forms

Ab. Abundance

2.90090E+06
2.66325E+06
2.70507E+07
2.01590E+06
1.95378E+06
8.84643E+04

3.66729E+07

Fr. Abundance

7.91020E~02
7.26217E~02
7.37621E-01
5.49697E-02
5.32759E-02

2.41225E-03

Table (7.25) to Show the Isotope Effect of the Ti0O x—System

ZX
ZK
ZK
2K
2K
ZK
ZK
PMO

RMO

for

for

for

for

for

for

for

7 to 8

9 to 10

10 to 11

11 to 12

Con. Alone

Without Isp.

6.95670E+10
5.09290E+10
3.45094E+10
2.12651E+10
1.23194E+10
6.61716E+09
2.82051E+09
2.92128E-03

1.08995E-03

6.91210E+10

4.49843E+10

2.11746E+10

9.49404E+09

3.64956E+09

3.52894E+09

2.72639E+09

4 .20785E~03

1.11014E-03

With Isp.

6.93354E+10
4.56555E+10
1.98330E+10
7.25427E+09
2.52078E+09
3.49121E+09
2.75736E+09
4.18460E-03

1.11196E-03
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: . . 3 .
We consider first the CBA-é—- X"A system, 1i.e. the«-gystem, on
its own. The constants for the lower state are given in section 7.3,

for the upper state, we have:

3 ’—. ’— - T - R
cA: T, = 19424.86, w7 = 838.26, w_x = 4.759, eyg = 0.0488,
B” = 0.489888, D7 = 6.627x1o"7,cx' = 3.062x1o”3, Bl = 9.6x10"9,
e e e e
A" = 48.599,

together with fe = 0.18 from Feinberg and Davis (113).

100

Table (7.25) shows the'iSotope effect over the part of the
spectrum where the bands \occur, elsewhere there is just continuum.
Note that the regions u = 5 to 6 and 6 to 7 each have 1000 bins and
30,000 sampling intervals, the remaining regions except the last each
have 1000 bins and 20,000 sampling intervals, with the last region

u = 11 to 12 having 800 bins and 14,400 sampling intervals.

It is seen that the isotope effect is greatest in the fifth
region, where it increases the opacity by 31%Z. However, the overall
effect on the RMO is very small, as the bands occur well away from the
maximum of the Rosseland weighting function. Note that the PMO
noticeably decreases, which can be explained in part by the fact that

. . . . 17 18
we have neglected the isotopic variants with O and 0", but they are
included in the total abundance when not considering isotopes. This

probably also partly explains why the RMOs in the regions u =5 to 6,

6 to 7 and 11 to 12 on the fringes of the band system, actually
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decrease when isotopes are allowed for. 1In these regions, the lines
are very weak and differences between overlapping and non—-overlapping
lines are not great, so in splitting a very weak line into various
isotopic components, its very small contribution to the RMO does not
increase much, and is likely to decrease if some of the ~weaker
components are neglected. Moreover, because we have a cut-off of 1%
for the relative line strength, some lines just above the threshold

could be ignored when split into their isotopic components.

Figure (7.30) shows the Ti0O x-system smeared to an effective bin
width of 0.01, and shows very clearly indeed, that although TiO is an
important monochromatic absorber, the effect on the RMO in this case
is small because of the weighting function and the strong H
continuum. Were these bands to occur in the region u =2 to 4, the

effect on the RMO would be large.

Figure (7.31) shows the same again with the 1isotopic variants
allowed for, and figures (7.32) and (7.33) show a part of the band
system plotted to the full resolution of bins for the two cases, with
the continuum drawn underneath for comparison. Notice that in
allowing for isotopes, not only are the fluctuations of the bins
reduced, but the peaks actually become higher. This can be explained
by comparing figures (7.34) and (7.35) for the two cases, which are
plots of the actual profiles in the vicinity of the peak at u = 8.8,
and is identified as being the head of the 0-0 band. In these two
figures, only those profiles belonging to the 0-0 band are plotted,
together with the bins as _drawn. Notice that in the case where

isotopes are allowed for, the fluctuation of the absorption is less,
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and although the peaks of the individual profiles are reduced, as we

have redistributed one quarter of Ti48016

into the other isotopic
forms, these other forms fill in the windows very efficiently, hence
increasing the opacity in each bin. Note that the continuum is at
5.06)(10_3cngm_1 and the top of the highest profile in figure (7.34)
has an absorption of 3.64X10-1cm2gm_1, with figure (7.35) being on the

6 5

same scale. For the profile widths, Au =5.0%10 “u = 4.4X10 ~ at

u = 8.8.

Finally, figures (7.36) and (7.37) show the plots as for figures
(7.30) and (7.31) with the addition of the c'§ <— a'fy system,

i.e. the p-system, on the basis of the following constants:

1,. .

ah: T =577.22, 0 o= 1016.30, &7"x" = 3.93, B = 0.53620,
e e e’e e
D" = 5.94x1077,
e
B T = 18516.81, o7 = 917.55, a7x” = 4.42, BZ = 0.52147,
e e e’e e
D = 4.57%107,
e .
together with the band oscillator strength fOO = 0.249 from Feinberg

and Davis (114). It is seen that the B3-system is entirely overlapped
by the x-system, and again there is a marked difference between the

cases with and without isotopic variants.

We mnow consider the importance of HZO as an opacity source in
late-type stars. Table (7.26) lists the reduced band strengths for
the various progressions together with the band types. As discussed
in chapter 5, progressions of difference bands are also generated. .
Note that the first entry ié.for the pure rotation bands, the reduced

band strengths being obtained from (5.2.9) and (5.3.18), hence:



5
Ve

with = 1.87D = 1.87x10 18

pure

quantities.

Table (7.26) of Reduced Band Strengths of Water

rotation,

P> 2

——— &

24
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esu-cgs from Ludwig et

4vqy sz
0 0
0 0
0 0
0 1
0 1
0 1
0 2
0 2
0 3
0 3
0 4
1 0
1 0
1 1
1 1
1 2
2 0
2 1

Avs
0

(8,/7,)

4.36400E-08
6.39800E~11
2.05320E-14
2.00080E-10
5.10860E~12
4.00800E~15
6.27610E-13
2.46730E-13
1.28830E-15
1.29230E-14
1.46730E-16
2.97560E-12
3.09730E~12
1.05080E~13
1.69980E-13

1.56620E-14

2.20820E-13

1.23510E-15

Type

al.

(97).

(7.5.1)

Being

S0 and 50 are of course not individually defined
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All computations were performed with 2000 bins and 100,000
sampling intervals in each of the regions u =0 to 1 and 1 to 2, 1600
bins and 73,600 sampling intervals in the region u = 2 to 3, 1000 bins
and 50,000 sampling intervals in each of the regions u= 3 to 4 and 4
to 5, 1000 bins and 30,000 sampling intervals in each of the regions
u=>5¢to 6 and 6 to 7, and thereafter to u = 11, 1000 bins and 20,000

sampling intervals for each Au = 1 region.

From table (7.5) at 1log T = 3.5 and 1og(3 = -8, H,0 has an

2
abundance of 6.93065X109cm_3, and is one of the more abundant

species. The effect on the total RMO is to increase it from the

3 tec 1.90432X10_3, in cngm-l, which is

continuum value of 1.08195%10
an increase of nearly a factor of two. An examination of figure
(7.38) cleafly shows why this is, with the trough longer in wavelength
than the H absorption threshold, being partially filled in. With the
same density but a drop in temperature to log T = 3.4, the abundance
of HZO has increased to 8.41897}(1011 (see table (7.4) ), and the
effect on the RMO being an increase from 1.05120}(10"4 to 3.39139X10—3,
which is a very much larger change than before. Figure (7.39) shows
this effect in a spectacular way, with the trough being completely
filled in. Finally, at log T = 3.3 with the same density, the
abundance has dincreased to 1.24538X1012 (see table (7.3) ), and the

% o 4.90044x1o'4;

effect on the RMO is to increase it from 5.13515%X10
though figure (7.40) is not much different from the previous one. In

the figures (7.38-40), the smearing has been increased to an effective

bin width of 0.01. Figure (7.41) plotted to the full resolution of
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bins, shows a part of the absorption of the first case, and it can be
seen that even in that case, no bins go down to the continuum,
indicating a great deal of absorption. Note that we have lumped all
the isotopic forms of HZO into the most abundant form, however,

because there are no windows, isotopic effects are expected to be

small.

In dropping down in temperature, the CPU time increases
substantially, being approximately 20 minutes, 2 hours and 2 hours 40

minutes respectively for the three cases.

The other triatomic molecule which we discuss in detail in this
work is C02, and accordingly an example of its spectrum is given in
figure (7.42) for log T = 3.4 and log 7 = -8, with the bins and
sampling intervals set up in the same way as for the previous examples
of HZO' The reduced band strengths in cm3/sec/absorber calculated

from the data given in McClatchey et al. (88) is given here in table

(7.27).

Table (7.27) of Reduced Band Strengths of Carbon Dioxide

INA g AVq (80/50)
0 0 1 1.36050E-09
0] 0 3 7.13960E~15
0 1 0 4.28750E-10
0 1 2 ’2.49310E—16
1 0 1 1.34460E-11

0 2 1 9.53930E~-12
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As seen from table (7.4), the abundance of CO2 is much lower than
for HZO’ and this factor combined with the fact that CO2 absorbs over

a more restricted region of the spectrum than H,0 causes the total RMO

2
to increase by a modest amount from 1.05120X10_4 <:ngm“l to

1.11651X1O_4. Note that the total CPU time is about 28 minutes.

Finally in this section, figure (7.43) 1is an example of a
spectrum with many diatomic molecules, including their isotopic
variants. The grid point with log T = 3.6 and log[? = -8 was chosen
because a large number of bands due to different molecules show up.
Some of the features on this 'plot are identified by the molecule and
its band system in parenthesis; the two states are identified for
electronic transitions, with a single number indicating a progression
of vibration-rotation bands. A full 1list of all the band systems of
the diatomic molecules that are considered in our calculations is
given in the appendices, though in practice the absorption due to many
bands may not actually be computed because of molecules having low
abundances, or dinitial excited electronic states having a small
population.

Note that the RMO is increased from 7.2217X10_3cm2gm_l to

9.17911}(10_3 with a total CPU time of about 18 minutes. The same

sampling and bin configuration is used as for the previous examples of

H,O0 and CO

2 93 with the regions u = 11 to 17 having 800 bins and 14400

sampling intervals for each Au = 1 region, and the whole spectrum is
plotted with an effective bin size of 0.01, i.e. 1700 effective bins

across the whole spectrum.
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Because of the excessive demands of processor time, it was not
considered feasible to carry out any calculations with both diatomic
and triatomic molecules togéther. However, in the next section,
tables are given for the opacities of diatomic molecules with
continuum covering many grid points in the T-p plane, and a few
examples of HZO and continuum, and CO2 and continuum, considered
separately. In all cases the bin and grid configuration is the same
as for the example just discussed, and the effect of pressure—induced

HZ_HZ and H2—He opacity is included.

To aid comparison with the work from other sources, the following
table gives the conversions from dimensionless frequency u = hy/kT to
wavelength A in microns for several temperatures. To convert
wavelength to dimensionless frequency, simply substitute A for u in

the first column and read off the wvalues in the other columns as u.

Table (7.28) of Conversions between u and A in Microns

Log T 3.2 3.3 3.4 3.5 3.6 3.7 3.8
or u
1 9.078 7.211 5.728 4.550 3.6l4 2.871 2.280
2 4.539 3.606 2.864  2.275 1.807 1.435 1.140
3 3.026 2.404 1.90¢ 1.517 1.205 0.957 0.760
u 4 2.270 1.803 1.432 1.137 0.904 0.718 0.570
or 5 1.816 1.442 1.146 0.910 0.723 0.574  0.456
A 10 0.%08 0.721 0.573 0.455 0.30l 0.287 0.228
15 0.605 0.481 0.382 0.303 0.241 0.191 0.152
17 0.534  0.424  0.337 0.268 0.213 0.169 0.134
20 0.454  0.361 0.286 0.227 0.181 0.144  0.114

uk=hc/kT= 9.078 7.211 5.728 4.550 3.614 2.871 2.280
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7.6 Comparisons of Abundances and Opacities and Tables of Thermodynamic
Quantities
In this final section of chapter 7, some further results are

presented in the form of tables and diagrams, and discussion.

Figure (7.44) is a plot of the log of the abundances of some of

the molecules in tables (7.2-8) for the grid points log T = 3.2 to 3.8

with log @ = -8 in all cases. To prevent too much congestion, the
figure is limited to the 15 molecules HZ’ CZ’ N,, 02, OH, NH, CH, CN,
co, NO, SiO, SH, TioO, HZO and COZ' Though the figure 1is only

approximate, as smooth curves were drawn by eye through the tabulated
points, it does give a good representation of how the abundances vary
with temperature. Note in particular that as CO has a very high
dissociation potential, its abundance stays essentially constant to a
high temperature and then falls rapidly. On the other hand many
molecules with fairly low dissociation potentials like OH, have low
abundances at low temperatures but increase to a maximum at some
intermediate temperature before falling again, due to the change in
availability of the constituent atoms by the dissociation of some more

abundant molecules.

Figure (7.45) is a repeat of the continuous absorption plotted as
for figure (7.1) at log T = 3.2 and log = -8 drawn as a solid curve,

with for comparison the same without pressure-induced H and H,-He

27Hy 2

opacity drawn as the dash~dotted curve, and that computed by Nordlund
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(115) as the dotted curve with the pressure-induced opacity included.
It is immediately seen how important the pressure-induced opacity can

be at some grid points, as discussad at the end of section 7.2.

Table (7.29) gives the log of the computed RMO and PMO in cngm_-1
for the grid points log T = 3.2 to 3.8 and log!O = =14 to -2, for all
the diatomic molecules considered in the band calculations, together
with their isotopic wvariants and the continuum. Note that in
comparing with table (7.1), the total effect of the diatomic molecules
on the RMO is modest at most, though the PMO may be increased by many
orders of magnitude. Because of the negligible molecular abundances
towards the upper right hand corner of table (7.29), the values there

are essentially for the continuum on its own.

Table (7.30) gives the comparisons of the log of the RMO for a
number of different cases covering a few grid points. For each grid

point the four entries are respectively H,0 and continuum, CO, and

2 2

continuum, the diatomic molecules including their isotopic variants

and continuum, and continuum alone. Note that for H,0 and CO

2 95 the

isotopic variants have been added to the most abundant form for each.
It is seen that for some grid points, H2 has a far greater effect on
the RMO thaq either CO2 or all the diatomic molecules together. Table
(7.31) is arranged in the same way as before for the corresponding

PMOs.
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Table (7.29) of Log RMO and Log PMO for Continuum + Diatomic Molecules

T 1585 1995 2512 3162 3981 5012 6310

Log T 3.2 3.3 3.4 3.5 3.6 3.7 3.8
Log R

-14 -5.1487 -=4.5419 -=3.7707 -3.4323 -2.4662 -0.7264 0.3991

-0.5313 -0.7280 -0.9535 -2.4158 -=-2.4749 -0.7271 0.3988

-13 ~5.4057 -4.6578 -4.0151 -3.4102 -2.8682 -1.2104 0.1431

-0.5354 -0.7256 -0.9533 -1.6677 -2.8781 -1.2126 0.1417

-12 -5.6467 -4.7840 -4.2461 -3.4313 -3.1783 -1.6894 -0.2527

-0.5368 -0.7199 -0.9526 -1.2963 -3.1508 -~1.6949 -0.2561

-11 -5.8100 -4.8872 -4.3339 -3.5201 -3.2962 -2.1400 -0.6804

-0.5372 -0.7120 -0.9466 -1.2003 -2.9855 -2.1497 -0.6800

-10 -5.9504 -5.0544 -4.2742 -3.5506 -3.1412 -2.4672 -1.0487

-0.5373 -0.7182 -0.9244 -1.1863 =-2.2735 =-2.4744 -1.0176

-9 -5.9727 -=5.1888 -4.1179 -3.3718 -2.6676 -2.3747 -1.1573

-0.5373 -0.7171 -0.8743 -1.1567 -1.6309 -2.3375 =1.0960

-8 ~-5.6329 -5.0250 -3.8521 -2.8722 -2.0372 -1.8314 -0.8887

-0.5373 -0.7027 -0.7711 -0.9372 -1.2594 -1.7415 -0.8384

-7 -5.0161 ~4.5248 -3.4914 -2.2624 -1.3985 ~1.0273 -0.4461

-0.5371 -0.6582 -0.5418 -0.3726 -0.6559 -0.9099 -0.3823

-6 -4.4407 -3.9574 -2.9958 -1.7728 -0.7916 -0.2120 0.1096

-0.5366 -0.5471 -0.1863 0.2126 0.2361 -0.0406 0.1874

-5 -3.9360 -3.3418 -2.3784 -1.2726 -0.2506 0.5124 0.7940

-0.5346 -0.3450 0.2159 0.7113 0.9677 0.8621 0.8815

-4 -2.6704 -2.0731 -1.1891 -0.2884 0.5213 1.3012 L5828

-0.5127 -0.0952 0.5833 1.1283 1.4882 1.6591 .6882

-3 -2.0611 =1.2909 =-0.4067 0.4511 1.1500 1.8468 2.2614

-0.3953  0.1500 0.8695 1.4398 1.8327 2.1180  2.3865

-2 -1.4869 -0.8097 -0.0747 0.7120 1.3676 1.9036 2.5183
0.1021  0.4524 1.0709 1.6280 2.0351 2.3296 2.7380
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Table (7.30) of Comparison of Log RMO for some Grid Points
Log T 3.3 3.4 3.5
Log R

-3.4605 -3.8462 ~3.6429
-10 -5.1192 ~4.3723 -3.6430
-5.0554 -4.2742 -3.55006
-5.1980 -4.3981 ~3.6430
-3.3095 -2.4696 -2.7203
-8 ~5.0690 ~3.9449 -2.9623
~ =5.0250 -3.8521 -2.8722
-5.1409 -3.9712 -2.9626
-3.1970 -2.1694 -1.3051
-6 -4.0000 -3.0461 -1.8277
-3.9574 ~2.9958 -1.7728
~4.0148 -3.0545 -1.8278

Table (7.31) of Comparison of Log PMO for some Grid Points

Log T 3.3 3.4 3.5
Log R

0.9710 -2.9801 ~-3.5825
-10 -3.5192 -4.0882 -3.5826
-0.7182 -0.9244 -1.1863
-4.8986 -4.1499 -3.5826
0.8141 0.5711 -2.4317
-8 -3.5782 -3.1983 -2.5341
-0.7027 -0.7711 ~0.9372
-4.7638 -3.2818 -2.5344
-0.4609 -0.6516 -0.9009
-6 -3.3979 -2.7278 -1.4600
-0.5471 -0.1863 0.2126
-3.7966 -2.7514 -1.4602
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Table (7.32) of Pressure and Internal Energy

T 1000
Log T 3.0
Log R
~14 2.884E-03
-8.115E+11
-~13 6.142E~03
-1.492E+12
-12 3.873E-02
-1.561E+12
-11 3.646E-01
-1.567E+12
-10 3.623E+00
-1.568E+12
-9 3.621E+01
-1.568E+12
-8 3.621E+02
-1.568E+12
-7 3.621E+03
-1.568E+12
-6 3.621E+04
-1.568E+12
-5 3.621E+05
~1.568E+12
-4 3.621E+06
-1.568E+12
-3 —_—
-9 _

1259
3.1

6.795E-03
3.790E+11

1.091E-02
-1.347E+12

5.197E-02
-1.523E+12

4.623E-01
-1.542E+12

4.565E+00
-1.544E+12

4.559F+01
-1.545E+12

4.558E+02
-1.545E+12

4.558E+03
-1.545E+12

4.558E+04
-1.545E+12

4.558E+05
-1.545E+12

4 .558E+06
~1.545E+12

4.558E+07
-1.545E+12

4,557E+08
~1.545E+12

1.680E-02
4,318E+12

2.306E-02
-5.679E+11

7.829E-02
-1.301E+12

6.061E-01
-1.455E+12

5.807E+00
-1.496E+12

5.757E+01
-1.509E+12

5.744E+02

5.740E+03
-1.514E+12

5.739E+04
~1.514FE+12

5.739E+05
-1.514E+12

5.738E+06
~1.514E+12

5.738E+07
-1.514E+12

5.738E+08
-1.514E+12

1995
3.3

4.132E-02
1.219E+13

5.347E-02
1.383E+12

1.703E-01
1.803E+11

1.155E+00
-4 .254E+11

8.982E+00
-1.019E+12

7.833E+01
~1.314E+12

7.423E+02
-1.422E+12

7.288E+03
-1.457E+12

7.244F+04
-1.469E+12

7.231E+05
-1.472E+12

7.226E+06
-1.473E+12

7.225E+07
-1.474E+12

7.223E+08
-1 474E+12

2512
3.4

1.021E-01
3.037E+13

1.175E-01
3.264E+12

2.711E-01
5.533E+11

1.804E+00
2.755E+11

1.685E+01
1.878E+11

1.510E+02
-1.632E+11

1.210E+03
-7.912E+11

1.021E+04
-1.187E+12

9.466E+04
~1.343E+12

9.214E+05
-1.396E+12

9.133E+06
~1.413E+12

9.106E+07
-1.418E+12

9.097E+08
~1.420E+12



T 3162
Log T 3.5

Log R

~14 2.543E-01

7.597E4+13

-13 2.737E-01

7.887E+12

-12 4.672E-01

1.077E+12

-11 2.402E4+00

3.954E+11

-10 2.174E4+01

3.260E411

-9 2.146E+02

3.101E+11

-8 2.096E4+03

2.290E+11

-7 1.850E+04

-1.783E+11

-6 1.479E+05

-7.958E+11

-5 1.266E+06

-1.149E+12

4 1.1855+07

~1.284E+12

-3 1.158E+08

-1.329E+12

-2 1.149E+09

-1.344E+4+12

Table (7.
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32) Continued

3981
3.6

6.361E-01
1.904E+14

6.605E-01
1.941E+13

9.042E-01
2.308F+12

3.341E+00
5.968E+11

2.771E+01
4.253E+11

2.713E+02
4.066E+11

2.705E+03
4.005E+11

2.682E+04
3.704E+11

2.519E+05
1.562E+11

2.06%E+06
-4 .348E+]1

1.692E+07
-9.308E+11

1.527E+08
-1.148E+12

1.469E+09
-1.224E+12

5012
3.7

1.595E+00
4.784E+14

1.626E400
4,.845E+13

1.934E+00
5.351E+12

5.006E+00
1.010E+12

3.570E+01
5.660E+11

3.425E+02
5.184F+11

3.410E+03
5.124E+11

3.406E+04
5.091E+11

3.386E+05
4.870E+11

3.228E+06
3.227E+11

2.701E+07
-2.236E+11

2.184E+08
~7.604E+11

1.942E+09
~1.011E+12

6310
3.8

4 .004E+00
1.208E+15

4.057E+00
1.253E+14

4. 495F+00
1.447E+13

8.523E4+00
2.465E+12

4.767E+01
9.655E+11

4.356E+02
7.205E+11

4.303E+03
6.657E+11

4.294E+04
6.503E+11

4.288E+05
6.431E+11

4 .257E+06
6.160E+11

4.021E+07
4.234E+11

3.324E+08
~1.453E+11

2.705E+09
-6.500E+11

7943
3.9

1.005E+01
3.023E+15

1.014E+01
3.126E+14

1.104E+01
4.070E+13

1.8458+01
1.025E+13

7.699E+01
3.874E+12

5.957E+02
1.811E+12

5.562E+03
1.133E+12

5.452E+04
9.150E+11

5.417E+05
8.441E+11

5.399E+06
8.165E+11

5.319E+07
7.609E+11

4 .849E+08
4.595E+11

3.902E+09
-1.439E+11



T 1000
Log T 3.0
Log R
-14 3.336E+10
3.121E+09
-13 9.125E+08
3.922E+08
-12 1.778E+08
1.185E+08
-11 1.295E4+08
9.123E+07
-10 1.255E+08
8.913E+07
-9 1.251E+08
8.887E+07
-8 1.238E+08
8.756E+07
-7 1.246E+08
8.834E+07
-6 1.250E+08
8.874E+07
-5 1.242E+08
8.795E+07
-4 1.250E+08
8.874E+07
-3 —_—
-2 ——

Table (7.
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33) of CP and CV

1259
3.1

1.232E+11
6.531E+09

2.421E+09
8.216E+08

2.827E+08
1.919E+08

1.514E+08
1.104E+08

1.329E+08
9.610E+07

1.291E+08
9.2778+07

1.281E+08
9.183E+07

1.276E+08 -

9.141E+07

1.279E+08
9.172E+07

1.280E+08
9.183E+07

1.275E+08
9.131E+07

1.276E+08
9.141E+07

1.274E+08
9.120E+07

1585
3.2

3.741E+11
1.810E+10

1.332E410

5.431E+09

2.318E+09
1.874E+09

7.646E+08
6.722E+08

3.290E+08
2.794E+08

1.939E+08
1.539E+08

1.513E+08
1.140E+08

1.385E+08
1.020E+08

1.340E+08
8.767E+07

1.325E+08
9.626E+07

1.321E+08
9.585E+07

1.321E+08
9.585E+07

1.321E+08
9.593E+07

1995
3.3

9.877E+11
2.419E+10

1.416E+10
2.717E+09

2.547E+09
1.886E+09

4.744E+09
3.896E+09

3.126E+09
2.638E+09

1.267E+09
1.108E+09

5.111E+08
4.426E+08

2.566E+08
2.111E+08

1.751E+08
1.360E+08

1.492E+08
1.121E+08

1.403E+08
1.038E+08

1.381E+08
1.018E+08

1.374E+08
1.012E+08

2512
3.4

3.854E+12
4 .813E+10

4.588E+10
4 .907E+09

1.357E+09
5.890E+08

3.215E+08
2.104E+08

7.541E+08
6.224E+08

2.637E+09
2.178E+09

2.597E+09
2.119E+09

1.189E+09
1.007E+09

4.,979E408
4.224E+08

2.567E+08
2.091E+08

1.780E+08
1.383E+08

1.531E+08
1.158E+08

1.454E+08
1.089E+08



T 3162
Log T 3.5
Log R
-14 1.520E+13
9.5935+10
~13 1.661E+11
9.693E+09
~12 3.277E+09
1.067E+09
“11 3. 483E408
2.010E+08
~10 1.935E408
1.183E408
-9 2.297E+08
1.547E+08
-8 6.529E+08
5.232E+08
-7 1.890E+09
1.507E+09
-6 1.591E+09
1.270E409
-5 7.294E+08
6.021E+08
-4 3.417E+08
2.797E+08
-3 2.088E+08
1.650E408
-2 1.655E+08
1.269E+08

Table (7.
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33) Continued

3981
3.6

5.930E+13
1.914E+11

6.297E+11
1.924E+10

9.337E+09
2.019E+09

5.500E+08
2.946E+08

2.053E+08
1.238E+08

1.805E+08
1.107E+08

1.865E+08
1.164E+08

2.901E+08

2.055E+08

8.369E+08
6.995E+08

1.323E+09
1.011E+09

7.474E408
5.900E+08

3.610E+08
2.889E+08

2.175E+08
1.707E+08

5012
3.7

2.275E+14
3.837E+11

2.433E+12
3.893E+10

3.072E+10
4.136E+09

1.126E+09
5.535E+08

2.600E+08
1.625E+08

1.839E+08
1.128E+08

1.736E+08
1.051E+08

1.783E+08
1.092E+08

2.283E+08
1.509E+08

5.476E+08
4.056E+08

9.286E+08
6.821E+08

5.945E+08
4.504E+08

3.126E+08
2.427E+08

6310
3.8

5.702E+14
7.670E+11

7.773E+12
8.339E+10

1.134E+11
1.124E+10

4.132E+09
2.142E+09

7.787E+08
6.008E+08

3.308E+08
2.459E+08

2.187E+08
1.466FE+08

1.859E+08
1.166E+08

1.797E+08
1.104E+08

2.156E+08
1.387E+08

4.485E+08
3.158E+08

6.473E+08
4.559E+08

4.145E+08
3.045E+08

7943
3.9

1.943E+15
1.519E+12

2.003E+13
1.524E+11

2.498E+11
1.761E+10

1.409E410
6.647E+09

4.495E+09
3.454E+09

1.637E+09
1.372E+09

6.486E+08
5.305E+08

3.254E+08
2.426E+08

2.215E+08
1.486E+08

1.932E+08
1.223E+08

2.291E+08
1.475E+08

4.205E+08
2.825E+08

4. 426E+08
3.032E+08
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Table (7.34) of GammaO and Gammal

T 1000 1259 1585 1995 2512
Log T 3.0 3.1 3.2 3.3 3.4
Log R .
-14 10.6893 18.8596 20.6696 40.8254 80.0645

1.3421 1.2730 0.9921 1.3398 1.3381

-13 2.3269 2.9471 2.4532 5.2106 9.3509
1.3712 1.2337 0.6981 1.3099 1.3595

-12 1.5002 1.4734 1.2364 1.3501 2.3030
1.4025 1.2927 0.9475 0.9977 1.4499

-11 1.4196 1.3716 1.1375 1.2176 1.5280
1.4099 1.3524 1.0922 1.0613 1.4399

-10 1.4085 1.3830 1.1773 1.1848 1.2115
1.4074 1.3810 1.1686 1.0838 1.1831

-9 1.4076 1.3914 1.2601 1.1434 1.2107
1.4076 1.3910 1.2579 1.1009 1.1140

-8 1.4137 1.3946 1.3279 1.1548 1.2258
1.4145 1.3948 1.3276 1.1395 1.1087

-7 1.4100 1.3962 1.3584 1.2159 1.1803
1.4101 1.3963 1.3583 1.2107 1.1207

-6 1.4082 1.3946 1.3718 1.2871 1.1788
1.4074 1.3948 1.3720 1.2853 1.1565

=5 1.4120 1.3940 1.3764 1.3310 1.2273
1.4121 1.3938 1.3766 1.3303 1.2191

-4 1.4081 1.3966 1.3779 1.3518 1.2868
1.4082 1.3967 1.3777 1.3519 1.2845

-3 - 1.3963 1.3777 1.3564 1.3220
- 1.3962 1.3776 1.3564 1.3209

-2 - 1.3973 1.3772 1.3582 1.3353
- 1.3967 1.3771 1.3578 1.3349
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Table (7.34) Coéontinued

T 3162 3981 5012 6310 7943
Log T 3.5 3.6 3.7 . 3.8 3.9
Log R

-14 158.4220 309.8830 592.9410 743.3770 1279.2900
1.3367 1.3357 1.3298 1.3280 1.3355

-13 17.1395  32.7326 62.4966 93.2134 131.4590
1.3477 1.3411 1.3198 1.2489 1.3350

-12 3.0709 4.6250 7.4284 10.0838 14,1836
- 1.4133 1.3848 1.3133 1.0473 1.2318

-11 1.7322 1.8668 2.0344 1.9294 2.1191
1.5502 1.5128 1.3866 1.0014 0.8757

-10 1.6364 1.6585 1.5999 1.2961 1.3013
1.6175 1.6208 1.5282 1.1773 1.0381

-9 1.4848 1.6308 1.6298 1.3450 1.1931
1.4784 1.6267 1.6218 1.3286 1.1298

-8 1.2479 1.6020 1.6518 1.4916 1.2227
1.2187 1.6005 1.6510 1.4890 1.2045

1.1444 1.3997 1.6321 1.5932 1.3351

-6 1.2526 1.2822 1.5125 1.6278 1.4900
1.1392 1.2114 1.5028 1.6259 1.4876

-5 1.2114 1.3091 1.3499 1.5550 1.5806
1.1574 1.1762 1.2902 1.5431 1.5771

-4 1.2213 1.2667 1.3615 1.4201 1.5527
1.2010 1.1837 1.2244 1.3477 1.5290

-3 1.2656 1.2496 1.3199 1.4198 1.4885
1.2582 1.2162 1.2228 1.2752 1.3796

-2 1.3038 1.2744 1.2879 1.3612 1.4596
1.3013 1.2629 1.2473 1.2676 1.3164



T
Log T
Log R
-14

-13

~-12

-11

-10

Table (7.35) of Gamma2 and Gamma3
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1000
3.0

1.3330
1.3353

1.3427
1.3499

1.3865
1.3910

1.4074
1.4081

1.4073
1.4073

1.4075
1.4075

1.4134
1.4137

1.4098
1.4099

1.4082
1.4080

1.4117
1.4118

1.4080
1.4081

1259
3.1

1.3297
1.3156

1.3118
1.2932

1.3008
1.2989

1.3480
1.3492

1.3794
1.3799

1.3908
1.3908

1.3944
1.3945

1.3961
1.3962

1.3947
1.3947

1.3942
1.3941

1.3965
1.3966

1.3962
1.3962

1.3972
1.3970

1585
3.2

1.3106
1.2352

1.1776
1.1053

1.0787
1.0691

1.0862
1.0867

1.1494
1.1519

1.2450
1.2476

1.3214
1.3229

1.3562
1.3568

1.3710
1.3713

1.3762
1.3763

1.3778
1.3778

1.3777
1.3777

1.3773
1.3773

1995
3.3

1.3327
1.3345

1.3274
1.3231

1.1216
1.1082

1.0526
1.0531

1.0521
1.0537

1.0678
1.0699

1.1104
1.1133

1.1895
1.1929

1.2742
1.2766

1.3260
1.3270

1.3498
1.3504

1.3559
1.3560

1.3580
1.3580

2512
3.4

1.3327
1.3340

1.3337
1.3401

1.3650
1.3877

1.4010
1.4121

1.1443
1.1492

1.0703
1.0731

1.0655
1.0681

1.0801
1.0831

1.1213
1.1251

1.1951
1.1990

1.2716
1.2743

1.3162
1.3173

1.3335
1.3339



T

Log T
Log R
-14

-13

-12

-11

-10

3162
3.5

1.3327
1.3337

1.3329
1.3366

1.3460
1.3633

1.4727
1.4976

1.5972
1.6048

1.4519
1.4602

1.1678
1.1751

1.0904
1.0949

1.0878
1.0920

1.1113
1.1159

1.1657
1.1708

1.2382
1.2420

1.2927
1.2946
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Table (7.35) Continued

3981
3.6

1.3327
1.3334

1.3328
1.3348

1.3375
1.3494

1.4198
1.4473

1.5901
1.6015

1.6198
1.6224

1.5877.

1.5924

1.3540
1.3659

1.1471
1.1553

1.1131
1.1195

1.1276
1.1340

1.1732
1.1796

1.2376
1.2425

5012
3.7

1.3325
1.3318

1.3320
1.3289

1.3297
1.3256

1.3463
1.3567

1.4879
1.5011

1.6126
1.6161

1.6485
1.6495

1.6248
1.6276

1.4656
1.4774

1.2175
1.2304

1.1506
1.1603

1.1607
1.1693

1.2036
1.2110

6310
3.8

1.3323
1.3312

1.3283
1.3087

1.3045
1.2445

1.2109
1.1744

1.1851
1.1839

1.3034
1.3093

1.4725
1.4778

1.5858
1.5885

1.6186
1.6214

1.5048
1.5177

1.2666
1.2837

1.1957
1.2088

1.2073
1.2176

7943
3.9

1.3327
1.3334

1.3326
1.3332

1.3227
1.3005

1.1698
1.1271

1.0859
1.0821

1.0971
1.1000

1.1645
1.1702

1.3024
1.3100

1.4673
1.4738

1.5621
1.5675

1.4816
1.4970

1.2932
1.3128

1.2451
1.2592



Log T
Log R
_14

Table (7.36) of Chi T and Chi R
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1000
3.0

3.6287
0.1256

2.2343
0.5893

1.1961
0.9349

1.0211
0.9932

1.0021
0.9992

1.0002
1.0000

1.0005
1.0006

1.0002
1.0001

0.9999
0.9995

1.0004
1.0001

1.0002
1.0000

1259
3.1

3.8191
0.0675

2.7798
0.4186

1.3894
0.8774

1.0493
0.9861

1.0067
0.9986

1.0012
0.9997

1.0005
1.0002

1.0002
1.0001

0.9999
1.0001

0.9996
0.9999

1.0001
1.0001

1.0003
0.9999

1.0003
0.9995

1585
3.2

4.0149
0.0480

3.9286
0.2846

2.6221
0.7664

1.5231
0.9603

1.1584
0.9926

1.0490
0.9982

1.0153
0.9997

1.0045
0.9999

1.0015
1.0002

1.0005
1.0001

1.0001
0.9998

0.9999
1.0000

0.9998
0.9999

1995
3.3

3.9076
0.0328

3.2763
0.2514

2.3909
0.7390

3.5733
0.8717

3.1476
0.9147

1.9741
0.9629

1.3480
0.9867

1.1145
0.9958

1.0365
0.9986

1.0114
0.9995

1.0041
1.0001

1.0011
1.0000

1.0003
0.9998

2512
3.4

3.9558
0.0167

3.5692
0.1454

2.1159
0.6296

1.2073
0.9424

1.3844
0.9765

2.6502
0.9201

2.0597
0.9495

1.4022
0.9811

1.1346
0.9933

1.0437
0.9982

1.0139
0.9992

1.0040
0.9997

“““““““““““““““



T

Log T
Log R
-14

~-13

-12

-11

-10

3162
3.5

3.9806
0.0084

3.7701
0.0786

2.6236
0.4602

1.3169
0.8949

1.0402
0.9884

1.0490
0.9957

1.3825
0.9766

2.4441
0.9125

2.4974
0.9095

1.7429
0.9555

1.2747
0.9834

1.0909
0.9941

1.0293
0.9981
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Table (7.36) Continued

3981
3.6

3.9931
0.0043

3.8828
0.0410

3.1062
0.2994

1.5704
0.8104

1.0699
0.9773

1.0110
0.9975

1.0152
0.9990

1.1162
0.9913

1.7169
0.9447

2.3241
0.8985

1.8602
0.9345

1.3526
0.9733

1.1216
0.9909

5012
3.7

4.0011
0.0022

3.9481
0.0211

3.4901
0.1768

1.9766
0.6816

1.1434
0.9552

1.0172
0.9951

1.0031
0.9995

1.0082
0.9994

1.0666
0.9936

1.4512
0.9558

2.0284
0.8993

1.7503
0.9264

1.3217
0.9684

4.0037
0.0018

4.0027
0.0134

3.8589
0.1039

2.7655
0.5190

1.4625
0.9083

1.1018
0.9878

1.0271
0.9982

1.0086
0.9996

1.0091
0.9988

1.0640
0.9924

1.4056
0.9490

1.8064
0.8982

1.5457
0.9312

4.0029
0.0010

3.9764
0.0102

3.8096
0.0868

3.6382
0.4132

2.9268
0.7977

1.8293
0.9469

1.2893
0.9851

1.0958
0.9954

1.0325
0.9984

1.0208
0.9978

1.0950
0.9848

1.4475
0.9268

1.5995
0.9019
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Finally, tables (7.32-26) give some values of computed

thérmodynamic quantities for the grid points log T = 3.0 to 3.9 and

logf = =14 to -2. As mentioned in section 7.2, the grid points for
logf? = -2 and -3 with log T = 3.0 are omitted because of problems
with machine overflow and underflow. For each pair of entries in

table (7.32), 1is given the total pressure in dyne cm-z and the total
internal energy in erg gm_l respectively, with the contribution due to
radiation included. The specific heats cp and c, (shown as CP and CV
respectively) in erg gm_ldegree—l are given in the following table,
with the remaining tables giving the adiabatic exponents y, fi, Fé and
Fé, together with XT and Xb (shown respectively as GammaO, Gammal,

Gamma?2, Gamma3, Chi T and Chi R).

For a given grid point (T,p), the total pressure P and internal
energy E are calculated, then in order to obtain the remaining
quantities, | P+$P and E+SE have to be calculated from the points
(T,P+%p) and (T+$T,p), where in our calculations $f>=,0/1000 and
9T = T/1000. The expressions for these thermodynamic quantities are
given in an appendix. With the =zero point for the internal energy
defined as neutral unbound atoms, at low temperatures and high
densities the total internal energy is negative due to the formation
of negative ions and molecules, and large and positive at high
temperatures and low densities due to ionization and the contribution
of radiation. Also at low densities due to the dominance of

3

radiation, ¥ tends to become large and fi, Fé and (. tend to approach

4/3. However, mnote the abnormally small values of f1 for some of the
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grid points with log T = 3.2 and 3.3. This appears to be a real
effect, as in many of the columns the smallest values of r1 are found

in the vicinity of where E changes sign, i.e. where many of the

molecules are undergoing dissociation.
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8 SUMMARY.

As the title of this thesis suggests, we consider in some detail
the theory necessary to calculate molecular opacities, and then
illustrate this work with some results given in the previous chapter.
Because of the restrictions of the computing resources at St.Andrews,
it is unfortunately not possible to obtain exhaustive tabulations of

opacities, particularly for triatomic molecules.

In the discussion in this final chapter of the thesis, we first
summarise very briefly the results presented in chapter 7. In section
7.2, a table is given of the log RMO and log PMO for the continuous
absorption alone for a number of grid points in the T-/ plane, and for
a few of these grid points the abundances of the atomic and molecular
species are tabulated and the absorption coefficient is plotted
against photon energy. A table is also given to show which atoms are
important sources or sinks of electrons for three separate grid
points. Section 7.3 gives some numerical examples of HOnl-London
factors and vibrational matrix elements based on the theory discussed
earlier in' the thesis, together with plots to illustrate the band
structure. In section 7.4, somé numerical examples of the LSM, ILM
and OSM, as discussed in chapter 6, are given for comparisons, with a
number of plots included to illustrate the discussion. The isotope
effect of CO, HC1I and Ti0 1is discussed in some detail with

illustrations in section 7.5, where examples of the results of the

computed band spectra of H,0, COp and of many diatomic molecules
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together are also included. Finally in section 7.6, one example is
given of the comparison of the contiduum obtained from this work and
that of the work of Nordlund (115). Some of the abundances tabulated
in section 7.2 are also illustrated in a plot in section 7.6. Tables
of opacities for many diatomic molécules, and HZO and CO2 separately,
are given for some of the grid points, and this final section is

completed with tables of some thermodynamic quantities for 128 grid

points.

With the results given in chapter 7, a number of very important
points can be made. We are quite Jjustified 1in including isotopic
molecules in the opacity calculations, as borne out by the detailed
examination of the isotope effect of CO and Ti0O. For CO, even though

the next most abundant isotopic variant 013016 is only about 1% as

abundant as 012016, because CO is such an abundant molecule, the other
isotopic variants are very efficient at filling in the windows and
increasing the opacity, particularly in an important part of the
spectrum. For TiO, it is clear that disotopes are important, as the
dominant isotope Ti48 represents about 75% of all Ti, with the four
other forms considered making up 25% and being of comparable
abundance. Though Ti0 absorbs well away from the maximum of the

Rosseland and Planck weighting functions, it is still clearly an

important source of opacity.

Though the theory of the isotopic shifts of the wvibrational and
rotational constants of triatomic molecules is considered in some
detail in this thesis, because of the constraints of CPU time, no

attempt is made to compute the spectra of isotopically substituted HZO
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and CO2° However, as the bands due to these molecules consist of a
very large number of overlapping lines, no appreciable number of
windows would be expected to be left, so isotopic effects are not
anticipated to be as important as for diatomic molecules, though as
discussed, isotopically substituted triatomic molecules are still

considered in the statistical mechanics calculations.

More generally, the total effect of all diatomic molecules is to
increase the RMO by fairly modest amounts, the effect being greatest
at the highest densities. For those grid points at which the opacity
was computed with H20 and COZ’ it is clear that H20 can have a very
drastic effect indeed on the RMO, and can increase it by several
orders of magnitude compared to that for the continuum alone, whereas
CO2 has at most a modest effect due to its much lower abundance, and
also to the fact that its bands do not spread so much over the
spectrum. We can thus conclude that H20 is 1likely to be a very
important source of opacity at low temperatures, and could swamp other
effects in the total contribution to the RMO. From tables (7.2-9), it
is clearly seen that HZO is a close second in abundance to CO at
log P = -8 and log T £ 3.4, but for higher temperatures, HZO rapidly
dissociates and Dbecomes much less important. Thus the opacities
computed for diatomic molecules but without triatomic molecules would
be reasonably good at higher temperatures, but would be considerably
in error at lower temperature. Because of the Ilimited resources, no
computations could be done with diatomic and triatomic molecules
together, but this would be an obvious step in any later work in

computing extensive tables of opacities. We can also make the point

here that pressure—-induced'Hz—H2 and H2—He absorption can be a very
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important source of continuous opacity for low temperatures and high
pressures, though when molecular bands are included in the
calculations, in  particular those of HZO’ the effect of

pressure—induced opacity is likely to be very much less important.

It mnust be pointed out that all the spectra given in this work
are plots of absorption against frequency, for specified temperatures
and densities with a fixed abundance of the chemical elements. To
convert these into spectra that would be observed, would require using
these computed opacities in solving the radiative transfer problem for
a stellar atmosphere. Nevertheless, the plots do give an approximate
qualitative idea of how the absorption by certain species, when

abundant, would appear in the spectra.

In addition to the importance of molecular opacity in the
atmospheres of late-type stars, the presence of molecules in a gas can
obviously influence the equation of state, and amongst the results
given in chapter 7, are tables of the pressure, internal energy and
the adiabatic exponents fz, f& and r;. The latter are important
respectively for dynamical instability, convective instability and
pulsational instability. All red giants have extensive con&ective
envelopes, and many are observed to be pulsating to various degrees or
are otherwise irregular. As they exist well to the right of the
cepheid pulsational instability strip in the H-R diagram, quite
different mechanisms are responsible for their pulsation than in the

case of cepheids, and clearly the presence of molecules in theixr

atmospheres plays an important rdle.
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Though the conditions in the interstellar medium are quite
different from those in stellar atmospheres, in particular the
molecules are not in equilibrium and their formation involves
complicated reactions with interstellar grains, some of the basic
theory discussed in this work is still relevant. Some aspects of this
work are even more relevant to the study of planetary atmospheres, in
particular when considering the Iimportance of the greenhouse effect of

HZO and CO2 in the terrestrial atmosphere.

We can now briefly consider what improvements could be made to
this work. The simplest and easiest to implement would be to extend
the calculation of the opacity to cover more grid points, in
particular for triatomic molecules as suggested above, and to sample
the spectrum at finer intervals, though these would all require a
considerable amount of computer time. Althoﬁgh the most important
molecules expected in stellar atmospheres are already included in the
mixture we are dealing with, together with some other representative
molecules which we have also included, nevertheless, further

improvements could be made if more molecules were added.

In computing the spectrum line-by-line, approximations have to be
made because of the very large number of lines that have to be
processed. Doktorov’s method used in this thesis to obtain the
vibrational matrix elements is very quick, as analytic expressions are
used to obtain the necessary integrals. Those analytic expressions
are only possible if a Morse potential funcfion is assumed for the

electronic states 1involved, while the possibly more accurate
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Rydberg-Klein-Rees potential functions would require numerical
integration. Also, we only consider the rotationless vibrational
matrix elements, by assuming that the HOnl-London factors can be
simply factorized out, while more accurate band calculations would
require this to be taken into account. However, we are also seriously
1imited by the available data for some molecules. For a simple
molecule like CO whose spectroscopic constants are well known, an
accurate calculation of the structure of its bands, with the suggested
improvements above, would be quite feasible. This is clearly not the
case for TiO, as it is such a complex system in comparison, and in
addition there is the complication of A-doubling, which we deal with
in an approximate way, as a detailed treatment would be very

involved.

One particularly important limitation on our calculations is the
lack of convenient molecular oscillator strengths or electronic
transition moments. Unfortunately, many authors give transition
moments in different units, sometimes not even specifying their units,
using different symbols in their notation and are sometimes ambiguous
as to whether the electronic statistical weight factor is included.
It would be a great aid to computations involving molecular spectra,
if some convenient up-to-date compilation of the known or computed

molecular transition moments and oscillator strengths could be made.

As already stated din chapter 5, our treatment of triatomic
molecules is very approximate, due to their much greater coumplexity
compared to diatomic molecules, and to the need to save computer time

in view of the millions of lines that may have to be calculated. One
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obvious improvement for HZO’ would be to calculate each band
individually with its own vrotational constants that include the
effects of the vibration-rotation coupling, rather than using those of
the first pair of levels in a progression in the way discussed. This
would of course increase the CPU time considerably. Any other
improvements would require still more CPU time and considerably more
theory. Finally, improved tables of the cross—sections for bound-free

and free—free absorption by atoms and molecules would improve the

continuous spectrum; note the discussion on OH and CH in section 7.2.

So far we have not considered the effect of turbulent velocity,
nor in particular, the effect of different abundances, where there
would be plenty of scope for future work. In carbon stars where there
is a surplus of carbon over oxygen, the spectra would be heavily
blanketed by C2 and CN, such as in stars like R Coronae Borealis, and

it would be interesting to calculate opacities in such cases.
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APPENDIX ‘A

Determination of the Principal Moments of Inertia for any Triatomic

Molecule

In section 2.13 formulae are given for calculating the rotational
constants A, B and C for any triatomic molecule, given the atomic
masses and bond lengths. The derivation of these formulae is given

here.

Let a triatomic molecule consist of the atoms with the masses oy,
o, and mg with the lengths of the corresponding opposite sides $93s
13 and $15 respectively, as shown in figure (A.l). Let o be the apex
angle of the molecule at o, with my and my representing the two end
atoms. We also define the rectangular coordinate system with the

origin at m being directed along the x-axis and S19 being

2> S23

directed in the positive y-direction, as shown. Then if (Xl’yl) are

the coordinates for o, and likewise for n, and my:

i

(Sn&bf)(?i H 5:1 Sin “)

(>, 40

(A.1)

[}

(%, 9) (0, 0d

(1}(?3) = ' (SQ}} 03
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If (§,§) are the coordinates for the centre of mass of the

system, then taking moments about this point:

3 q :
27’”;(%[ -n) =0 ) ZML[?L .-L")) =0 (A.2)

L=1 (-1

and putting:
(A.3)
then:
32 3
; - 1

’»’l*:)(,. . = e P . (A-4)
Z v L4 3 j HZ L‘gl
then from (A.1):

(A.5)

X = "",5,15&5:«' + ’)"”3323 ) (2 = /m45.2 Yen 4

M M

We need to find the three principal moments of inertia of the

system, 1 I, and T

A Ip c? where by convention I

is the smaliest, I, the

A B

intermediate and IC the largest moment of inertia. As already stated

in section 2.10, the three atoms define a plane, so:

T - T (A.6)
I, + I, = 1

where IC is the moment of inertia about (§,§) perpendicular to the

plane, then:
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I = 7”: A

K R
‘ LG A

(A7)

where r, is the distance of atom my from the centre of mass, so:
o 5032 i - a\R (A.8)
Yoo= (k-0 + (9 g)

From (A.l1) and (A.5) we can write:

Py »

Y, = (Sl.z@{;o( - MG EER § myS

‘z;) + 3;2 %1“(1 - "_’1:_)9‘ (A.9)
M I

(A.10)
MR

CS
? Q 3 ~
‘ifj = (.‘)% T M| S, 5K+ '»13523> + (”",9,2%&)?
M M2

(A.11)

Then applying (A.9-11) to (A.7), we obtain:

pes

&
. .2
M. f

!
- [(’"‘15.2 arsx + My Sy 4 ('mlg'i%o{):\]

) > 5 ’ r < Q ¢ S oy 2
+ ’6’13“)23 - 73,5 F '4’735”) : (’"-ﬁ” ’ i>)
M M

From which it follows that on simplification, we obtain the result:

(A.12)

- Az
L. = M

; e 2 2 . c R 2 . 3 ) (A.13)
&mg(m‘&,; +M3So ) momy (St Sy, -qusz;%q)} |



Or as s;, is the third side of the triangle, obtained from the cosine

formula being the coefficient of mymy:
I = = |mom,s S :
Y N MaSa + MM S, + Mymy Sy, . (A.14)

from which (2.13.1) and (2.13.2) are obtained respectively using

(2.10.2), for the largest of the principal moments of inertia.

We mnow need to find IA and IB which lie in the plane of the

molecule, and which for the most general case of the Cs point group,

will not be orientated in any special direction.

Let us define the x” and y —axes which pass through the centre of

-

mass and parallel to the x and y-axes, such that x7 = x-x and

vy~ o= y—§. Now by Massey and Kestelman (116), - but working only in two

dimensions, we first consider the moment of inertia of o, about some

general axis passing through the centre of mass along the direction of
the unit vector ¥ = 1i+mj with m, located at (xi,yg). The

perpendicular distance of the mass o, from this axis 1is given by
2 2 N 2 . .

p; =T - (V'Ei) , Where r, is the radius wvector of o, from the

centre of mass. Then the moment of inertia for all the atoms about

this axis is given by:

3
T
oo
i
N
3
A
2

I JQQ"'* ‘jlézl){{f?‘*‘rml) —(f‘lf&—mgf)}

i
&~
x
3
+
§
»
M)
3
R
i
Q0
oy
3
3
¢
¥

(A.15)
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3
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Writing the general equation of an ellipse, with the origin of the

coordinates at its centre, in the same form:

ar'" + 49'2 - 241‘9' = 1 (4.16)

where the radius vector of a point on this ellipse in the direction ¥
from the centre of mass is r, and as x = rl and y = rm, then it is
seen that I = 1/r2, hence (A.16) is the ellipse that represents the

moment of inertia in the plane, and where:

Ed

3 3
p : - ik i
a = 7: NI R b - Z””L’% , 44 = Z””; %Y. (A:10)
4 ]

c1
with a and b being the moments of inertia about the x” and y -axes

respectively and h being the cross term. Then we need to rotate the

coordinate system such that we have no cross term.

If we define a new coordinate system.(?,ﬁ) rotated by’¢ relative

to (x7,y”), then:

fcl = 5 A ﬂ‘ - 47 941§5
gi = g ?intf + 7 4?5'¢

(A.18)

then we want to find the value of ¢ such that we <can write the

equation of the ellipse in the standard form:

(A.19)

SRR
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without a cross term, such that p and q are now the principal moments
of inertia in the plane, with:

5] 3
g 2
PN AR

(A.20)
wa if we apply (A.18) to (A.16), we obtain:
oL(E%t}f““]%Lf))q* é"(gg‘;"‘/ﬁ*"ﬂc’s{ﬁ)? (A.21)
—_ QA{ (g 4f5g5 "7§%1¢{)(§ 9%‘¢ é’vlﬁﬁéﬁ) = j
hence:
a(Festd = Aoy esfsad + misag)
(830 + 257 wsg e d + 72 es¢) (A.22)

A (€ wnf s d - € 5rd 4 Tyasid ~ntesd sag) < o

The coefficient of Eﬂ must be zero as we have no cross term, hence:
&

~asd sad + Wendsad 1Uhsard - U e’ =0

(A.23)
and using the fact that:
Qwsqf%q/ = s
(A.24)
(o5 - serd = s

then from (A.23) we obtain:



- 435 -

God = Ak (A.25)
S

which is the condition that the cross term vanishes.

Re-writing (A.22) without the terms involving E’q when the

condition of (A.25) is valid:

a‘(§?%251¢ " 4113@1n¢) i é.(§2$%15ﬂ + 7?5b516#)

(A.26)

U (§es d3ag - Terfond ) = 1

on multiplying out, collecting the terms in §2 and ﬁz, then using the

trigonometric ijidentities:

Aot = 1 + as 2
(A.27)
Q%wqd - 1 - &—5Q¢
together with the first in (A.24), we can write:
gl[';(ll+aéo-‘5?\¢-ir L-L%Q:ﬁ)~é%2¢]
| (A.28)

N .,,Il[é(a-a ws?d +bilcsrd) thsa1d) <=
which is the equation of the ellipse in the standard form, hence:

(atﬁ(a+L+(wJJ@ﬂ¢l~A%2¢

(A.29)
g 7 Ala tb - (ab) esnd] ( hennd

then IA will be the smaller of p and g, and IB the larger.
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(A.30)
P = - A __L{/l.”:__.__
GAY & (L-a R

(A.31)

(L-aR
GAY L fload?

then combining the pair together, we can write:

IA,& = '3[6\ ¢ b f/ﬂe/f‘% [b-a )Q] | (A.32)

where IA p means IA with the negative root and IB with the positive
3

root, as IAS IB by definition:

However, it is more convenient to express (A.32) 1in reciprocal

form, hence on re-arranging:

I‘i = (atly S D) (a -4 (A.33)

"o Al ar =A%)

where I;} is now the positive root;, and we need only determine the
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quantities (atb) and (ab~h2). Hence applying the mass and coordinates

of the atoms to (A.17):

a ;'m‘(ﬂlmﬁ)Q-F'm1%2 +’M3ﬁ2

C‘.\
3]

- 2 _ 52 ‘ A.34
m‘(@ %) 4 ma +.w3(w) %) ( )

o

A

then:

m, (o, =309, -3) + mARG - my (%, -7)F

aLé"//LQ = lﬂnl[rg‘-a)q +%262 1 IM3ZJQ]{%\(°“"5)Q +””lg?-2
(A.35)

?\

On multiplying this out and substituting for xi,yi,§ and y from (A.1l)

and (A.5), then (A.35) eventually simplifies right down to:

2 .
a,C’ ‘,/\ = 4’\!.7112/»73 5.3 S;} %20{ (A.36)
M

Having determined (ab—hz), and as (at+b) = IC for a plane with I

C

already known earlier, and writing:

I;L = Tf * /_742 A (A.37)
2( el -4

all principal moments of inertia are now known directly in terms of

the masses of the atoms, their separations and the apex angle of, the

molecule.
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Finally, in order to obtain the expressions for the rotational
constants in section 2.13, IA’ IB and IC are replaced by A, B and C
respectively wusing (2.10.2), which gives the definitions of the

rotational constants in terms of the moments of inertia. (A.37) can

now be re-written as:

Lo/ () ety

?2 ) Qlab-A)C

(A.38)

AD =

putting:

R = 1297 % (ab-A?) = 19T 7 o, m, 375,72 52 (A:39)
. A M

and keeping to the convention that A » B % C, (A.38) can be written as

(A.40) and (A.41) for A and B respectively, and from (A.13) we can

write (A.42) for C:

A

T+ /J1-2ke? (4.40)

i

B=1-/1- 2k (a-t1)

- LM

2 - - (A.42)
FTe [ ma(m,5.] ¢ my50y )+ m (85457, = 25,9, ©5 ')J

and as a check, it is immediately seen from (A.40) and (A.41) that
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(2.10.3) is satisfied, i.e; 1/A + 1/B = 1/C.

As already stated in section 2.13, if the bond angle of the
molecule is opened up so that in the 1limit the molecule is linear,
i.e.o<-> 1800, then k -» 0 from (A.39), and it is immediately seen
that A -> 20 from (A.40) and B => C from (A.41) if we replace (1—2kC2)

by (1—kC2), the first two terms in the binomial expansion.

Finally, we can consider briefly the special case of a molecule
with the C2V point group, where clearly from symmetry, the two
principal moments of inertia in the plane must be respectively
perpendicular to and parallel to the axis of symmetry. Let Ip and Iq
be respectively these moments of inertia, see figure (A.2), then it is
easy to show that their ratio is given by:

%E Ma ' (A.43)

) B (R, 17

and using data from Herzberg (34), we can tabulate this ratio for a

few sz triatomic molecules in their ground electronic states:
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Table (4.1) of Ip/Iq for some C v Molecules

2

NH2 0.55
PH2 0.89
H20 0.52
HZS 0.87
NO2 0.05
802 0.17
O3 0.13

hence I =1 and 1 =1 so the

where in all cases Ip( Iq, p- Ia < s

intermediate moment of inertia lies along the symmetry axis. Thus as

stated in section 5.3, the sign of uy, is determined by ¢ for all these

L ad

molecules, so for T even, u,= +1 and for ¥ odd U= -1. ©No cases could

q’ i.e. Ip= IB and

Iq= IA’ so the smallest moment of inertia lies along the symmetry

be found for triatomic molecules for which Ip > 1

axis, and the sign of u, is determined by whether Ka is even or odd.

If Ip= Iq’ then we have an oblate symmetric top, which is accidental

if ml¢ m, , but clearly if = m, then it is easy to see that o = 60°

3h like

and we have an equilateral triangle molecule of point group D

+

H3.

Related to this are the selection rules for the V3 mode of

-
.

vibration, where vibrational levels have the species A1 and B

1
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I <1
P q

A-Type Bands A €> B, for Av3 odd,
A, €—> Al

B-Type Bands for Av3 even,

B1 <> Bl

Ay €=> A

A-Type Bands ]for Av3 even,

B1 <> Bl

B-Type Bands A; <-> B, for [\v3 odd,

where apparently for triatomic molecules we need consider only the

first case.
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APPENDIX B

Determination of Vibrational Partition Functions and some other

Vibrational Properties

As stated in section 2.6, we can use the method of Kassel (38) to
obtain an analytic expression for the vibrational partition function
of a diatomic molecule, and hence using the same method in section

2.11, we can similarly obtain an expression for a triatomic molecule.

Given the vibrational partition function (2.6.2) in terms of the
dimensionless vibrational constants, and converting to dimensiomnless

constants in terms of the zero point energy by (2.6.3), we can write:
oD

i
Z C“Ww bW Xt o e v

(B.1)
- Wo\(o U}

2 LWer WYt
s e e e

V-0
neglecting terms higher than ono’ then expanding the exponentials

other than the first, we obtain:
[

~ Wy 3
Q - 'Z 6 ’ [ 1 + L"fﬁxci’? 4(1»}&?&0)?1»:‘ 4+ (UOXI.)):L_};(:,{, .
Ve A i (B.2)

X[l “WO\/olJ‘B ‘3‘ (l/r/o\/p’)q_t,:, - ..-.,}
)

then wmultiplying out the'SQuare brackets and neglecting terms O(v7)
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and higher:

o .
W R 9
Q=2 €[4 vt e ek v
[t

2 &
(B.3)

. g

— L\/c \/O V’g - ( L/()XO)[L}Q\{G) ‘/’3‘ T + (‘ﬂ‘/b Y0) .Q—L"“;I
d
Now as in (2.6.4), if we let:
-Uc > - Whetv

Z = C then Zi = @ - (B.4)

then (B.3) can be written as:

= = 2 & > =
Qv - 22‘"+ WOXOZ 20 ’u,,yo)ez 2L (%X0>3Zb'62v-
2 G Vo

o oo Ve
- . o - - (B.5)
. [ U
- Y 22 - (Ve UA)D FT2T 4+ [144)) vep
Ve V=0 2 Vo
Given that Z < 1 always, it is easy to see that:
o0 v 1
(Z_Z = (—1:—2') (B.6)
V=0

and by Kassel we can define a function Pn(z), such that:
w *
. h v
- ': B.7
P(zy=2v"2 (8.7)
=0
ac -1 = o
, - R T R At o
o APE) =202 s L2 3-8)

1
0{,2 ir=o N Z Lo

it follows that:
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F;‘(Zi> = Zi‘jézfi[zz)

(B.9)

Together with the recurrence relation of (B.%) and the relation

(B.6), we can obtain Pn(Z) for any n by

oy . L
o2 (1-2)

P(2) = —Z

o~ . 2(142)
h(2>- (1-2)

L]

P[z)., 2:(1‘}(_924*21)
’ (1-2)*

P (2) - 201+ 112 414??4-23)
(1-2)°

successive differentiation:

(B.

(B.

(B.

(B.

(B.

&l2>::‘2(1-4?42-&6621ﬁ2623+2*)

(1-2)°

FI, (2) T 2(1 ¢+ 572 +‘}D§22Q430‘.2}2f3 15225 1 75) -
(1-2)

then applying (B.10-16) to (B.5) we obtain the final result:

(B.

of

10)

11)

12)

13)

14)

15)

.16)
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G = A btk ZUHE) (0 200112 40270 2%)
(-2 (1-2)° ; 2 (1-2)°

+[ (h"iXoY 4 (wc“/f} 2 (14572 +3022%4 3022245725 427) .0

2 2 (1-2Y

2 (140242° ‘ 142624 66 2R 42 62342
oy, ZURLEAZD) (1) y i) BLHRZECOZ 4200742
(1-2) (1-2)°
which is (2.6.5), except that the term for (WOYO)2 is dropped as it is
found to be negligible. By wusing the same procedure for triatomic

molecules, the expression (2.11.6) can similarly be obtained.

For the sake of interest, we can also apply Kassel”s methed for
obtaining an expression for the sum of relative band strengths in a

progression for the harmonic oscillator.

With the expressions (4.3.46-50) for the matrix elements, and as
stated in section 5.2, if we neglect all transitions other than n =A4v
for the nth order matrix element, with 4dv being positive, s0

considering only <v|xn|v+n>, then the relative strength of a band in a

progression v = n as given by (5.2.2) is:

‘RQV’W.LA - Cv |2 venD - (lr-{—h){

" - T (B.18)
R, <ofrrla? vlnl

Now if Sn(Z) is the sum of all relative band strengths in the nth

progression with the Boltzmann factor, it is given by:

S.( %é’vwwfwn)i w% 5% (ran)]

2) = : - Z .19

" ) e vl Al (3-19)
=0 - * V=0

vinl

from which we can write down the expressions for So(z), Sl(z), S,(2)
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etc. On applying Kassel”s method as before by substituting Pn(Z) for
the summation in each of Sn(Z), we_obtain expressions for each of

Sn(Z) which all simplify down to:

. 1
5?(2) = '(1_"—Z>n+1 : (B.20)

However, from the binomial expansion from Abramowitz and Stegun (46):

Nak

(1" miffm”iz

(;)ixénm for [x] <1 (B.21)

3
W

m

we can see at once that:

1

1 T v-a v

L = _— B.22

(1~ 2)"! ZZ L onl(r-ml (5-22)
VZh .

and if we start the summation from v = O, we must replace v by vin

under the summation, giving the right hand side of (B.19).

In (B.20), Sl(Z) is the sum of the progression for the first
harmonic or fundamental, SZ(Z) for the second harmonic or first
overtone etc.; SO(Z) is the "zeroth harmonic” and represents the sum
of strengths in pure rotational bands, assuming the permanent dipole
moment does not change with vibrational energy (in reality of course
it must, iﬁ order to produce vibration-rotation bands), and SO(Z) is
also of course the partition function. No such simple analytic
technique could be wused for the anharmonic oscillator, because the
matrix elements can no longer be written in a simple analytic form.
For emission, (B.20) still applies but with n still being positive and

v now being the final vibrational level.
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We can also for the sake of interest, determine how Sn(Z) behaves

if the molecule is isotopically

substituted.

Let A and /!I be

respectively the reduced mass of the initial molecule and isotopically

substituted molecule, then by (2.8.1) and (2.8.2), i.e. respectively:

_ A S
/3 - //221 and 4% = (Oh%
and for the harmonic oscillator (4.3.45) and

i.e. respectively:

we can show that:

/£
Vs

(A A

LT S cesg

-t}
"

Z

and:
1% . 2
R ¢, ren <'v~l 2" tn>
Qv-, wan <\/‘ ‘ ?VAI V- +a >Q

and Rv,v4éu - P4OV

O (V' ("13"‘.) i \i/l
9oy

h/z

y
/‘1)

(B.23)

(5.2.1),

(B.24)

(B.25)

(B.26)

Each band is shifted in frequency by QI/Q, and it 1is seen from

(B.23) that this will give an additional

for absorption neglecting stimulated

respectively by:

TY
’0 i <
and . =
“

factor to the

emissicn, and

band strength

emission

(B.27)
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Hence applying (B.25-27) to. (B.20), we obtain for absorption:

PR 1
o1 AEW m—
S.(2 ) = (;{i) (j ) 2/"/#‘)"*1 (B.28)

and for emission:

/& nty 1

S, (-Zz) = | T’(i B ZW)F‘H{ (B.29)

/%Z
where again n is positive and in the analysis, v is the final level.
Both (B.28) and (B.29) are invalid for n = 0, i.e. pure rotation, but

we can write the shift of the vibrational partition function simply

as:

SO(ZI) = (1 - ;//777‘7) (B.30)

As we are dealing with purely vibrational effects, we are of course

neglecting the changes of the rotational constants.

One can refer to the more extensive paper by Kassel (117) for the
application of the function Pn(z) and its derivatives on the

determination of various molecular thermodynamic functions.

Finally, in the application of Doktorov”s method as discussed in
section 4.3, we have to assume a Morse potential function, where the
terms in aéye and beyond are assumed to be zero, and we use A% and the
dissociation potential DZ, or the first anharmonic term agxe if DZ is
not available; the two being related by (4.3.10). However, in a few

rare cases, notably for the first excited electronic states of the
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hydrides of the group 1 elements, the constant Qexe is negative,
i.e. the first anharmonic term is positive, as this term is normally
defined with a negative sign in the expression for the energy levels,
causing the potential well to depart grossly from that of a Morse
potential. In this case there will be no turnover in the levels if
the higher order terms are neglected, and it is easy to see that

Doktorov”s method cannot be used if DZ is not available.

We could of course assume a nearly harmonic potential with Dy
left wunchanged but with a very small value of Xy with a
correspondingly large value of DZ, then apply Doktorov's method as
usual. A possibly better alternative is to fit a Morse potential,

provided that Oe, B X and oY, are known.

e

If the term values are as usual:

C:C&) - we[ifn\é) ~ e, (Y G, 36(1’*%)3 PR (B.31)

neglecting higher terms, we want to replace the last terms by Lexe, an

f!
effective anharmonic constant. Differentiating and equating to zero

for the turnover in levels corresponding to dissociation:

_f(_‘c”["’) = & - Q&Jeqe[bw{) +t 3, j{((m %)1 -5 (B.32)
Av

then solving for v, we can write:

P ) 0 Jurgr Ly Y

ééjécfﬁ
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Now letting:

C) = w, (r+ %) - TEICEEIL O (B.34)
then for dissociation:

é;ﬂ[w)

=l - Rwyny - Wy = O (B.35)
-, /%7 /7
giving:
&y
e (B.36)
2&74»; 2

then equating (B.33) and (B.36) and simplifying, we obtain the result:

— l— b L4 . B.37
O N s Ty @

where the positive root should be taken.

For example, the A1§'state of NaH has the constants: Qe = 310.60,

1l

RN -5.410 and WY = -0.1970, then applying (B.37), we obtain

LeXe = 4.589; then this together with &, enables us to apply

Doktorov”s method as usual.

Note also that in this case the iven value of the
vibration-rotation coupling constant o, is also negative, so that Bv
increases with v to a maximum before decreasing, due to higher order
coupling constants which we neglect, rather than decreasing

monotonically which is normally the case. The best way of dealing
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with this is to make X and/ge consistent with our assumed Morse
potential, and calculate them from (4.2.7) and (4.2.8) respectively,
using &.x..

Although this method 1is +very crude, we hope that in such
breakdown cases, we <can at least approximately represent the gross
properties of the spectra. Though we could also use (B.37) to fit a

Morse potential for the usual non-breakdown cases of bexe if ©DoYe is

known, it is thought best not to apply this method in such cases.
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APPENDIX C

Data for Determining Sources of Continuous Opacity

Tables of data that are used in chapter 3 for determining the

continuous opacity are given here.

For Rayleigh scattering, the coefficient BO, and for some

elements up to neon and some molecules, Bl and B2 are given as defined
in (3.2.4) and (3.2.5), the data being obtained from the various
sources as stated in section 3.2. Note that many of these

coefficients may be outside the range of floating point numbers imn the

machine used, in which case they have to be scaled.



Table (C.1) of Rayleigh Scattering Coefficients

H2
Cc2
N2
02
co
OH
Sio

H20
Cco2

Z

O WO ~NONU SN -

Bo
5:813E-45
5.616E-46
5.223E~42
1.129E-42
2.236E-43
b 426E~44
2.275E~44
7.621E-45
3.937E-45
2.041E~45

9.520E-42
4.277E~42
1.922E~42
8.635E-43
3.880E-43
1.743E-43
7.832E-44
3.519E-44
1.886E~41
1.368E-41
9.920E-42
7.196E~-42
5.219E-42
3.786E-42
2.746E-42
1.992E-42
1.445E-42
1.048E-42
7.601E-43
5.513E~-43
3.999E-43
2.901E-43
2.104E~43

8.140E-45
4.605E-44
3.867E-44
3.247E-44
3.284E~44
2.011E~44
9.107E-44

2.570E~44
1.147E-43

B B

1 2

2.4528-10 4.801E~20
4.750E-11 1.850E-21

2.743E-10 6.960E-20
1.922E-10 3.362E-20
1.008E-10 1.038E~20

4.480E-11 2.120E~21
34

35
36

1.526E~43
1.107E-43
8.029E~44
3.265E-41
2.429E-41
1.807E~41
1.344E-41
9.997E-42
7.436E-42
5.532E-42
4.115E-42
3.061E~42
2.277E~42
1.694E~42
1.260E~42
9.374E-43
6.973E-43
5.187E~43
3.859E~43
2.870E~43
Xe 54 2.135E-43
Cs 55 3.265E=41
Ba 56 2.724E-41

Se
Br
Kr
Rb 37
Sr 38
Y 39
Zr 40
Nb 41
Mo 42
Tc 43
Ru 44
Rh 45
Pd 46
Ag 47
Cd 48
In 49
Sn 50
Sb 51
Te 52
I 53

1.573E-10 1.978E-20
2.743E-10 6.960E-20
1.540E-10 5.929E-21
1.014E-10 2.571E-21

57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80

2.273E~41
1.896E-41
1.582E-41
1.320E-41
1.102E-41
9.191E-42
7.669E-42
6.399E-42
5.339E~42
4,455E-42
3.717E~42
3.101E-42
2.587E-42
2.159E-42
1.801E-42
1.503E-42
1.254E~42
1.046E~-42
8.731E~43
7.284E-43
6.078E~43
5.071E-43
4.231E-43
3.531E-43
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The following tables (C.2-23) as used in section 3.3, are for the
various sources of continuous absorption in the form of log absorption
in cm4 per dyne, except for OHbf and CHbf which are in cmz, with the
negative sign omitted in all cases for convenience. Because these
tables come from different sources, as stated in section 3.3 and
below, the tabulation intervals are different and in different units,
which we retain. All rows are tabulated by wavelength or energy and
columns by temperature or €. Where we have the following conversion

factors:
WR) = 1/ER_ = 911.26708/E, €= 5039.935/T (c.1)

with E being the energy in Rydbergs and R_, the Rydberg constant for

infinite mass.

For Heff from Somerville (51), Hsz from Somerville (56), Cff

from Myerscough and McDowell (53) and Cl;f from John and Morgan (52),

the first row is used for extrapolation to low energies, performed by
taking the number whose log 1is tabulated here and dividing by E2, or
applying (3.3.9) if working in dimensionless energy units. For Jchn
(54) for wavelengths longer than 104, apply his expression:

= 107333 .
ky(T) = 10~ Xk, o(T) (C.2)
with N in/q,and klO the absorption at 104, or wuse (3.3.8) if working

in dimensionless energy units. Note also, as stated in section 3.3,
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that the table for CHbf is obtained by combining three tables as given
by Tarafdar and Das (57), and that the extrapolation of OHbf and CHy .
in tables (C.22) and (C.23) respectively, to longer wavelengths, 1is
performed according to the methed discussed in section 7.2. Finally,
as stated in section 3.3, we have added the first row to table (C.5)
for C;f, in order to apply the same extrapolation method as Somerville

etc.



Table (C.2) of

W/L in
Microns

100.0
80.0
60.0
40.0
20.0

s
o
oo

!—-‘;\>w—l-\U'lG\\IOO\QOb—‘I\Jw-DM@\IOO\OON-&O‘\@ONJ—‘C‘\OOOU!OU’!OU‘OOO

. : =
OO0 00O O0OQCOORKMEKHEFHFHMEHEFEFRENNNNNMNWWWWWERAOVUULOAONWON
. - - . . L3 . .

.

. .

. .« . .

. - .

0.6

22.488
22.682
22.931
23.284
23.886
24,079
24.195
24.329
24.487
24.681
24.861
24.931
25.006
25.089
25.180
25.282
25.327
25.374
25.423
25.476
25.531
25.591
25.655
25.725
25.800
25.882
25.926
25.973
26.023
26.056
26.045
26.010
25.968
25.928
25.895
25.873
25.865
25.871
25.895
25.939
26.110
26.118
26.277
26.519
26.936

Heerbe

0.8

22.361
22.555
22.805
23.157
23.759
23.953
24.069
24.203
24.361
24.554
24.735
24.804
24.880
24.962
25.054
25.156
25.200
25.247
25.297
25.349
25.405
25.465
25.529
25.598
25.674
25.756
25.801
25.848
25.897
25.907
25.816
25.709
25.612
25.534
25.477
25.439
25.420
25.421
25.443
25.488
25.560
25.669
25.828
26.068
26.484
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in cma/dyne from Tsuji (9)

1.0

22.268
22.462
22.712
23.064
23.656
23.860
23.976
24.109
24,268
24.461
24.641
24,711
24.786
24.869
24.961
25.063
25.107
25.154
25.204
25.256
25.312
25.372
25.437
25.506
25.582
25.665
25.709
25.756
25.806
25.770
25.574
25.400
25.266
25.167
25.098
25.054
25.033
25.033
25.055
25.100
25.174
25.283
25.442
25.681
26.096

1.2

22.195
22.389
22.639
22.991
23.593
23.787
23.903
24.037
24.195
24.388
24.569
24.638
24.714
24.796
24.888
24.990
25.035
25.082
25.131
25.184
25.240
25.300
25.365
25.434
25.510
25.593
25.638
25.685
25.735
25.625
25.315
25.093
24.937
24,828
24.754
24.708
24.686
24.686
24,709
24.755
24.829
24,939
25.097
25.336
25.750

Theta
1.4

22.136
22.330
22.580
22.932
23.534
23.728
23.843
23.977
24,135
24.329
24.509
24.579
24.654
24.737
24.829
24.931
24.976
25.023
25.072
25.125
25.181
25.241
25.306
25.376
25.452
25.535
25.580
25.627
25.677
25.460
25.047
24.79%
24.627
24.514
24,438
24.391
24.369
24.370
24.393
24,440
24.514
24.623
24.781
25.020
25.434

l.6

22.086
22.280
22.530
22.882
23.484
23.678
23.794
23.927
24.086
24.279
24.459
24.529
24.604
24.687
24.779
24,881
24.926
24.973
25.023
25.076
25.132
25.192
25.257
25.327
25.403
25.486
25.531
25.578
25.627
25.273
24.775
24.508
24.335
24.219
24.143
24.096
24.074
24.076
24.099
24.146
24,220
24.329
24.487
24.726
25.140

1.8

22.044
22.238
22.487
22.839
23.441
23.635
23.751
23.884
24.043
24.236
24.416
24.486
24.562
24.644
24.736
24.839
24.883
24.930
24.980
25.033
25.090
25.150
25.215
25.284
25.360
25.443
25.488
25.535
25.585
25.067
24.515
24.234
24.058
23.941
23.865
23.818
23.797
23.798
23.822
23.869
23.943
24.052
24.210
24.449
24.862

2.0

22.006
22.200
22 .450
22.802
23.404
23.597
23.713
23.847
24.005
24.199
24.379
24,448
24.524
24.607
24.699
24.801
24 .846
24.893
24.943
24.996
25.052
25.113
25.177
25.247
25.323
25.406
25.451
25.497
25.547
24.848
24.258
23.971
23.794
23.677
23.600
23.554
23.533
23.534
23.558
23.605
23.679
23.788
23.946
24.185
24.598

2.2

21.973
22.167
22.417
22.769
23.370
23.564
23.680
23.813
23.972
24.165
24.346
24,415
24.491
24.574
24.665
24.768
24.813
24.860
24.910
24.963
25.019
25.079
25.144
25.214
25.290
25.372
25.417
25.463
25.512
24.623
24.009
23.719
23.540
23.423
23.347
23.300
23.279
23.281
23.305
23.352
23.426
23.535
23.693
23.931
24.345



Table (C.2) Continued

W/L in

Microns

100.0
80.0
60.0
40.0
20.0
16.0
14.0
12.0

.

. .

-

FNWSAEUNOAONODOWOHNWPFRUANOOLDONEROCONP,POTODOWUWMOWULOWULOO

. . .

-t
OO O0OOCOOOCOQOHMIPI P IPEMEHEEHNDNMNNNDNDWWLWLWLWEEEOULOOO O
- [ . [ e & 8 L[] [

2.4

21.943
22.137
22.387
22.739
23.341
23.534
23.650
23.783
23.942
24.135
24.315
24.385
24.461
24,544
24.635
24.738
24.783
24.830
24.880
24.933
24.989
25.049
25.114
25.184
25.259
25.342
25.386
25.432
25.481
24.396
23.767
23.474
23.29%6
23.178
23.102
23.056
23.035
23.037
23.060
23.107
23.182
23.290
23.448
23.687
24.101

2.6

21.
22.
22.
22.
23.
23.
23.
23.
23.
24.
24,
24,
24,
24,
24.
24,
24.
24.
24.
24,
24,
25.
25.
25.
25.
25.
25.
25.
25.
24,
23.
23.
23.
22,
22.
22.
22,
.800
22.
22.
22.
23.
23.
23.
23.

22

916
110
360
712
313
507
623
756
914
108
288
358
433
516
608
711
756
803
853
906
962
022
086
156
231
313
357
403
452
169
531
238
059
942
865
819
798

824
871
945
054
212
450
864

2.8

21.892
22.086
22.335
22.687
23.288
23.482
23.598
23.731
23.889
24.083
24.263
24,333
24.408
24.491
24.583
24,686
24.731
24.778
24.827
24.880
24.936
24.996
25.061
25.130
25.205
25.287
25.330
25.376
25.424
23.945
23.301
23.007
22.828
22.711
22.635
22.589
22.568
22.570
22.593
22.640
22.715
22.823
22.981
23.220
23.634
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Theta
3.0

21.869
22.063
22.312
22.664
23.265
23.459
23.575
23.708
23.866
24.060
24.240
24.309
24.385
24.468
24.560
24.663
24.707
24,754
24.804
24.857
24.913
24.973
25.037
25.106
25.180
25.262
25.305
25.350
25.398
23.724
23.077
22.782
22.603
22.486
22.410
22.364
22.343
22.345
22.369
22.416
22.490
22.599
22.756
22.995
23.409

3.5

21.819
22.012
22.262
22.614
23.215
23.408
23.523
23.657
23.815
24.008
24.189
24,258
24.334
24.417
24,508
24.611
24.655
24.702
24.752
24.804
24.860
24.919
24.983
25.051
25.125
25.205
25.247
25.292
25.389
23.187
22.535
22.240
22.061
21.844
21.868
21.822
21.800
21.803
21.826
21.873
21.948
22.056
22.214
22.453
22.867

4.0

21.776
21.969
22.219
22.571
23.171
23.364
23.480
23.613
23.771
23.964
24.144
24.214
24.289
24.372
24.464
24.566
24.610
24.657
24.706
24.758
24.813
24.872
24.935
25.002
25.075
25.153
25.195
25.239
25.285
22.668
22.015
21.720
21.541
21.424
21.348
21.302
21.281
21.283
21.307
21.354
21.428
21.537
21.695
21.933
22.347

4.5

21.738
21.932
22.181
22.533
23.133
23.326
23.441
23.574
23.732
23.925
24.105
24.175
24.250
24.333
24.424
24.525
24.569
24.616
24.665
24.716
24.877
24.829
24.891
24.957
25.029
25.106
25.147
25.191
25.236
22.166
21.512
21.217
21.038
20.922
20.845
20.800
20.779
20.780
20.804
20.851
20.925
21.034
21.192
21.431
21.844

5.0

21.704
21.898
22.148
22.499
23.098
23.291
23.407
23.540
23.697
23.890
24.070
24,139
24.215
24.297
24.388
24.488
24.532
24.578
24.627
24.678
24.732
24.789
24.850
24.916
24.986
25.062
25.103
25.146
25.190
21.677
21.023
20.728
20.549
20.432
20.356
20.310
20.290
20.291
20.315
20.362
20.436
20.545
20.703
20.941
21.355
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Table (C.3) of He;f in cmA/dyne from Somerville (51)

Theta

Energy in 0.2 0.3 0.4 0.5 0.6 0.8

Rydbergs

0.000 29.351 29.198 29.105 29.039 27.149 28.907
0.006 24.907 24.754 24.662 24.595 24.542 24,463
0.008 25.156 25.004 24.910 24.845 24,793 24,714
0.010 25.350 25.198 25.106 25.039 24.987 24.907
0.015 25.701 25.550 25.458 25.391 25.339 25.260
0.020 25.951 25.801 25.708 25.642 25.590 25.511
0.025 26.146 25.996 25.903 25.836 25.785 25.706
0.030 26.304 26.152 26.061 25.996 25.943 25.866
0.035 26.438 26.286 26,195 26.129 26.078 26.001
0.040 26.553 26.402 26.312 26.246 26.194 26.119
0.050 26.747 26.597 26.506 26.441 26.390 26.315
0.060 26.907 26.757 26.666 26.600 26.551 26.478
6.070 27.040 26.889 26.801 26.738 26.688 26.614
0.080 27.156 27.007 26.917 26.854 26.807 26.733
0.0%0 27.258 27.111 27.022 26.959 26.910 26.839
0.100 27.350 27.203 27.115 27.052 27.004 26.932
0.110 27.433 27.286 27.199 27.137 27.089 27.018
0.120 27.509 27.364 27.276 27.214 27.167 27.095
0.130 27.578 27.434 27.347 27.286 27.238 27.167
0.140 27.644 27.499 27.413 27.352 27.305 27.232
0.150 27.703 27.559 27.474 27.413 27.366 27.293
0.160 27.759 27.616 27.532 27.471 27.424 27.350
0.170 27.812 27.670 27.585 27.524 27.478 27.403
0.180 27.863 27.721 27.636 27.575 27.527 27.453
0.190 27.910 27.770 27.684 27.623 27.575 27.500
0.200 27.955 27.815 27.730 27.670 27.622 27.544
0.220 28.039 27.900 27.815 27.754 27.706 27.625
0.240 28.115 27.975 27.893 27.830 27.780 27.699
0.260 28.185 28.048 27.963 27.900 27.851 27.767
0.280 28.250 28.114 28.029 27.967 27.914 27.827
0.300 28.312 28.175 28.089 28.025 27.971 27.883
0.400 28.564 28.428 28.338 28.268 28.210 28.113
0.500 28.759 28.622 28.526 28.451 28.388 28.284
0.600 28.917 28.775 28.676 28.595 28.529 28.420
0.700 29.051 28.903 28.799 28.714 28.646 28.533



Table (C.3) Continued

Energy in 1.0
Rydbergs -

0.000
0.006
0.008
0.010
0.015
0.020
0.025
0.030
0.035
0.040
0.050
0.060
0.070
0.080
0.090
0.100
0.110
0.120
0.130
0.140
0.150
0.160
0.170
0.180
0.190
0.200
0.220
0.240
0.260
0.280
0.300
0.400
0.500
0.600
0.700

28.848
24,406
24.656
24.851
25.203
25.453
25.650
25.810
25.947
26.063
26.261
26.424
26.561
26.680
26.785
26.879
26.963
27.041
27.112
27.177
27.237
27.292
27.345
27.39%4
27.439
27.481
27.561
27.633
27.697
27.757
27.812
28.034
28.201
28.334
28.445

1.2

28.801
24.359
24.609
24.804
25.157
25.409
25.604
25.764
25.903
26.020
26.218
26.381
26.519
26.638
26.742
26.836
26.921
26.996
27.067
27.130
27.189
27 .243
27.2%4
27.342
27.386
27.428
27.506
27.575
27 .638
27.697
27.750
27.967
28.131
28.262
28.372
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Theta

1.6

28.730
24.287
24.538
24.733
25.087
25.340
25.538
25.699
25.836
25.955
26.155
26.318
26.455
26.573
26.676
26.767
26.851
26.924
26.991
27.052
27.108
27.161
27.210
27.256
27.298
27.339
27.413
27.480
27.541
27.597
27.648
27.860
28.019
28.147
28.254

2.0

28.676
24,234
24.485
24.680
25.036
25.290
25.488
25.650
25.788
25.907
26.107
26.269
26.404
26.520
26.622
26.710
26.790
26.863
26.928
26.987
27.041
27.092
27.140
27.184
27.225
27.264
27.336
27.402
27.461
27.516
27.565
27.772
27.928
28.057
28.162

2.8

28.597
24.156
24.407
24.602
24.963
25.218
25.417
25.580
25.719
25.839
26.034
26.192
26.323
26.434
26.532
26.616
26.693
26.759
26.824
26.879
26.932
26.983
27.026
27.069
27.109
27.147
27.216
27.279
27.337
27.389
27.439
27.640
27.793
27.917
28.023

3.6

28.538
24.099
24.352
24.548
24.910
25.166
25.367
25.530
25.666
25.783
25.975
26.130
26.256
26.365
26.457
26.539
26.613
26.680
26.740
26.796
26.845
26.893
26.939
26.979
27.018
27.055
27.123
27.185
27.241
27.293
27.342
27.541
27.693
27.815
27.921



Table (C.4) of

W/L in 15000

Microns

10.00 25.432
5.00 25.921
2.50 26.284
1.50 26.538
1.00 26.745
0.75 26.886
0.50 27 .097

Table (C.3) of

Eng. in 10000
Rydbergs

0.000 27.724
0.040 25.796
0.050 25.979
0.060 26.124
0.070  26.220
0.080  26.310
0.090 26.377
0.100 26.432
0.200 26.921
0.300 27.337
0.500 27.699
0.700  28.027
0.900 28.292
1.000 28.444
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Li__ in cma/dyne from John (54)

ff

12500

25.229
25.745
26.102
26.357
26.553
26.699
26.921

££f

9000

27.927
25.690
25.873
26.020
26.117
26.213
26.283
26.328
26.824
27.229
27.585
27.921
28.187
28.347

Temperature

10000 7500

25.000 24.699
25.509 25.143
25.854 25.485
26.113 25.745
26.319 25.959
26.481 26.143
26.721 26.398

cmé/dyne from

Temperature
8000 7000

28.098 28.244
25.577 25.449
25.762 25.633
25.910 25.783
26.004 25.876
26.092 25.971
26.167 26.046
26.215 26.086
26.699 26.569
27.113 27.000
27.481 27.347
27.824 27.678
28.071 27.959
28.229 28.097

5000

24.301
24.699
25.060
25.337
25.569
25.770
26.027

Myerscough and McDowell (53)

in OK
6000

28.373
25.302
25.485
25.629
25.730
25.824
25.896
25.943
26.432
26.824
27.201
27.538
27.796
27.959

in %K
2500

23.491

24,041

24.523
24.886
25.187
25.387
25.678

5000

28.486
25.131
25.315
25.462
25.558
25.648
25.721
25.770
26.252
26.658
27.032
27.367
27.620
27.770

1000

22,
23.
.733
24,

23

24

602
187

113

.398
24.
24,

602
886

4000

28.
24,
25.
25.
25.
25.
25.
25.
.051
456
.824

26
26
26

27.
<432
.569

27
27

592
928
110
248
350
462
506
565

167

500

22.379
23.019
23.575
23.947
24.229
24.432
24.699

160

22.501
23.141
23.678
24.022
24.292
24.483
24.750



Table (C.6) of

W/L in

Microns
10.00
5.00
2.50
1.50
1.00
0.75
0.50

15000

25.084
25.686
26.290
26.738
27.095
27.352
27.719

Table (C.7) of

W/L in

Microns
10.00
5.00
2.50
1.50
1.00
0.75
0.50

15000

25.224
25.827
26.431
26.876
27.234
27 .491
27.857

Table (C.8) of

W/L in
Microns
10.00

5.00

2.50

1.50

1.00

0.75

0.50

15000

25.530
26.133
26.735
27.181
27.535
27.785
28.131

ff

12500

25.064
25.668
26.271
26.721
27.080
27.338
27.708

ff

12500

25.206
25.810
26.412
26.860
27.220
27.478
27.845
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cma/dyne from John (54)

10000

25.044
25.646
26.253
26.703
27.065
27.326
27.697

Temperature

7500

25.023
25.627
26.234
26.688
27.054
27.316
27.688

cma/dyne from

10000

25.184
25.788
26.393
26.842
27.203
27.463
27.833

5000

25.000
25.606
26.218
26.678
27.046
27.310
27.674

in %K
2500

24.971
25.582
26.205
26.670
27.030
27.277
27.613

John (54)

Temperature

7500

25.161
25.764
26.372
26.824
27.189
27.450
27.818

5000

25.130
25.735
26.347
26.804
27.172
27.402
27.796

in °x
2500

25.077
25.688
26.311
26.772
27.131
27.377
27.708

Ne__. in cm4/dyne from John (54)

ff

12500

25.516
26.117
26.721
27.170
27.529
27.785
28.149

10000

25.484
26.088
26.692
27.143
27 .504
27.764
28.131

Temperature

7500

25.442
26.047
26.654
27.109
27.475
27.738
28.108

5000

25.388
25.996
26.607
27.069
27.440
27.703
28.065

in ok
2500

25.318
25.932
26.558
27.026
27.393
27.642
27.979

1000

24.939
25.567
26.188
26.620
26.943
27.162
27.463

1000

25.006
25.635
26.255
26.684
27.003
27.222
27.520

1000

25.271
25.900
26.526
26.963
27.289
27.513
27.815

500

24.924
25.545
26.123
26.517
26.815
27.022
27.309

500

24.963
25.583
26.159
26.551
26.848
27.053
27.336

500

25.259
25.879
26.460
26.857
27.161
27.370
27.658

24
25
25
26
26
26
26

24
25
25
26
26
26
26

25

26

27.

100

.703
.212
.697
.045
.318
.510
.780

100

697
.203
.688
034
.306
.498
.767

100

.066
25.
26.
26.
26.

577
063
413
688
.879
151



Table (C

W/L in
Microns
10.00
5.00
2.50
1.50
1.00
0.75
0.50

Table (C.10) of Cl.

Eng. in
Rydbergs
0.00
0.02
0.04
0.06
0.08
0.10
0.15
0.20
0.25
0.30

.9) of

15000

23.975
24.569
25.161
25.585
25.921
26.149
26.469

0.4

28.226
24.830
25.432
25.783
26.029
26.218
26.545
26.752
26.896
27.000
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Na_. in cma/dyne from John (54)

ff

12500

23.947
24.538
25.125
25.538
25.854
26.081
26.398

ff

0.6

28.105
24.708
25.308
25.654
25.896
26.075
26.375
26.554
26.670
26.750

10000

23.889
24.481
25.051
25.456
25.770
25.959
26.276

Temperature

7500

23.783
24.367
24.921
25.319
25.620
25.824
26.131

5000

23.570
24.161
24.721
25.125
25.432
25.658
25.959

in cm4/dyne from John

Theta

0.8

28.017
24,618
25.215
25.554
25.788
25.959
26.234
26.390
26.487
26.553

1.0

27.947
24.545
25.137
25.471
25.697
25.860
26.113
26.251
26.334
26.394

1.2

27.886
24.484
25.071
25.399
25.616
25.770
26.007
26.131
26.206
26.259

in °k
2500

23.118
23.721
24.310
24.721
25.051
25.268
25.553

1600

22.
23.
.857
24,
.569
24.
25.

23

24

624
257

260

770
046

22

23.
23.
24.

24

24,

24

and Morgan (52)

1.4

27.836
24,429
25.012
25.333
25.544
25.690
25.914
26.026
26.0%4
26.143

500

+452
128
719
108
.398
602
.886

100

22.550
23.219
23.762
24.120
24.394
24.585
24.851



Table (C.10) Continued

Eng. in
Rydbergs
0.00
0.02
0.04
0.06
0.08
0.10
0.15
0.20
0.25
06.30

Table (C.11) of Ar.

W/L in

Microns
10.00
5.00
2.50
1.50
1.00
0.75
0.50

"Table (C.12) of Kr

W/L in

Microns
10.00
5.00
2.50
1.50
1.00
0.75
0.50

1.6

27.790
24.381
24.959
25.275
25.479
25.618
25.827
25.936
25.996
26.043

15000

25.102
25.706
26.307
26.752
27.107
27.361
27.724

15000

24.979
25.582
26.183
26.627
26.983
27.237
27.648

108

27.750
24.337
24.910
25.221
25.418
25.553
25.752
25.851
25.910
25.955

ff

12500

25.145
25.747
26.352
26.799
27.152
27.407
27.767

ff

12500

25.052
25.652
26.253
26.692
27.045
27.295
27.652

Theta
2.0

27.712
24.296
24.866
25.171
25.363
25.492
25.682
25.777
25.833
25.876

10000

25.206
25.807
26.412
26.860
27.218
27.472
27.833

10000

25.138
25.740
26.33

26.775
27.121
27.366
27.712
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2.5

27.631
24.206
24.770
25.061
25.240
25.358
25.532
25.618
25.670
25.708

3.0

27.559
24,127
24.684
24.967
25.134
25.244
25.408
25.487
25.536
25.573

in cm4/dyne from John

Temperature

7500

25.298
25.900
26.500
26.951
27.309
27.564
27.921

5000

25.417
26.020
26.627
27.071
27.427
27.676
28.018

in cm4/dyne from John

Temperature

7500

25.268
25.863
26.455
26.883
27.215
27 .44
27.775

5000

25.453
26.034
26.590
26.983
27.291
27.502
27.790

(54)

in og
2500

25.652
26.228
26.785
27.193
27.517
27.735
28.027

(54)

in °K
2500

25.382
25.900
26.389
26.750
27.032
27.228
27.495

1000

25.559
26.045
26.530
26.876
27.153
27.347
27.614

1000

24.682
25.203
25.710
26.074
26.354
26.547
26.815

500

25.000
25.499
25.983
26.326
26.595
26.785
27.053

500

24.203
24.742
25.245
25.599
25.873
26.064
26.333

23
24
24
25
25
25
25

23

23.
24,
24,
24.

25
25

160

.967
Lab4
.07
.243
.510
.699
.963

100

.351
836
301
640
907
.095
.361



Table (C.13) of Xe

W/L in
Microns
10.00
5.00
2.50
1.50
1.00
0.75
0.50

Table (C.14) of Cs.

W/L in

Microns
10.00
5.00
2.50
1.50
1.00
0.75
0.50

15000

24.542
25.144
25.747
26.191
26.544
26.7%96
27.167

15000

23.578
24.201
24.745
25.149
25.444
25.638
25.886

ff

12500

24.562
25.165
25.767
26.214
26.570
26.824
27.186

£ff

12500

23.640
24.229
24.796
25.208
25.523
25.745
26.046

10000

24.629
25.228
25.827
26.267
26.620
26.873
27.232

10000

23.606
24.208
24,796

-25.208

25.538
25.770
26.108

- 4h4 ~

in cma/dyne from John

Temperature
5000

7500

24.726
25.323
25.917
26.350
26.690
26.932
27.277

24,

25
26
26

879

<465
.029
.433
26.
26.
27.

747
967
275

in cma/dyne from John

Temperature

5000

7500

23.527
24.149
24.745
25.187
25.538
25.796
26.102

23.
23.
24,
24,
25.
25.
25.

387
383
569
959
301
538
886

Table (C.15) of Hg;f in cm4/dyne from John

W/L in

Microns
10.00
5.00
2.50
1.50
1.00
0.75
0.50

15000

24,244
24.854
25.456
25.886
26.260
26.509
26.854

12500

24.143

24,745
25.357
25.824
26.167
26.420
26.770

10000

24.013
24,620
25.229
25.678
26.041
26.292
26.638

Temperature
5000

7500

23.857
24,456
25.076
25.523
25.886
26.137
26.481

23.
24.
24,
25.

708
337
959
456

25.854

26.
26.

108
469

(54)

in OK
2500

24.845
25.356
25.836
26.194
26.479
26.676
26.947

(54)

in OK
2500

22.733
23.301
23.821
24.201
24.495
24.699
25.000

(54)

in OK
2500

23.511
24.137
24.796
25.319
25.721
26.000
26.337

1000

24.142
24.654
25.154
25.513
25.790
25.983
26.253

1000

22.168
22.770
23.325
23.697
23.979
24.180
24,456

1000

23.833
24.417
25.018
25.638
26.113
26.432
26.824

500

23.638
24.167
24.664
25.013
25.286
25.476
25.745

500

21.849
22.405
22.925
23.274
23.547
23.738
24.004

500

24,470
24.821
25.112
25.767
26.319
26.692
27.186

100

22.692
23.172
23.636
23.975
24.241
24.429
24.695

100

20.904
21.380
21.849
22.187
22.454
22.643
22.908

100

24.783
25.073
25.114
25.635
26.098
26.385
26.750



Table (C.16) of H

Eng. in
Rydbergs
0.000
0.006
0.008
0.010
0.015
0.020
0.025
0.030
0.040
0.050
0.060
0.080
0.100
0.120
0.140
0.160
0.180
0.220
0.260
0.300

Table (C.17) of N

W/L in

Microns
10.00
5.00
2.50
1.50
1.00
0.75
0.50

0.8

28.767
24,323
24.573
24.767
25.120
25.371
25.565
25.726
25.979
26.179
26.343
26.604
26.807
26.975
27.114
27.235
27.341
27.519
27.664
27.785

15000

24,706
25.312
25.910
26.329
26.686
26.967
27.358

2f£

1.0

28.708
24.264
24.514
24.710
25.063
25.315
25.511
25.674
25.932
26.131
26.297
26.561
26.764
26.932
27.073
27.192
27.297
27.471
27.613
27.730

2ff

12500

24.530
25.156
25.777
26.220
26.567
26.830
27.231

1.2

28.670
24,227
24.478
24.672
25.027
25.281
25.478
25.640
25.900
26.103
26.270
26.535
26.740
26.907
27.045
27.162
27.265
27.435
27.573
27.690

100060

24,452
25.057
25.672
26.161
26.511
26.777
27.181
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Theta
1.6

28.623
24,181
24,432
24.627
24.983
25.239
25.438
25.602
25.866
26.071
26.239
26.504
26.708
26.870
27.003
27.117
27.216
27.381
27.514
27.625

2.0

28.593
24,152
24.403
24.599
24.959
25.215
25.416
25.582
25.845
26.053
26.220
26.483
26.682
26.842
26.971
27.082
27.178
27.338
27.469
27.577

in cm4/dyne from John

Temperature

7500

24,536
25.123
25.697
26.154
26.536
26.815
27.235

5000

24,435
25.044
25.664
26.111
26.467
26.721
27.148

2.8

28.559
24.118
24.371
24.567
24.928
25.189
25.393
25.561
25.827
26.031
26.197
26.451
26.642
26.793
26.921
27.025
27.117
27.272
27.398
27.503

(54)

in °K
2500

24.455
25.067
25.695
26.144
26.475
26.684
27.051

in cm4/dyne from Somerville (56)

3.6

28.538
24.100
24.354
24.551
24.917
25.178
25.383
25.551
25.815
26.015
26.177
26.424
26.609
26.754
26.876
26.979
27.071
27.221
27.344
27.447

1000

24.362
24.996
25.633
26.073
26.389
26.580
26.863

500

24.346
24.975
25.570
25.979
26.277
26.472
26.730

100
24,269
24.793
25.295
25.654
25.928

26.120
26.377



Table (C.18) of ©

W/L in
Microns
10.00
5.00
2.50
1.50
1.00
0.75
0.50

15000

25.036
25.638
26.242
26.688
27.045
27.299
27.654

2£f

12500

24.996
25.599
26.202
26.650
27.008
27.263
27.620

10000

24,936
25.538
26.144
26.593
26.955
27.213
27.573
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in cma/dyne from John

Temperature

7500

24.860
25.462
26.071
26.527
26.896
27.161
27.526

5000

24.770
25.373
25.987
26.453
26.833
27.103
27.470

Table (C.19) of CO.. in cm4/dyne from John

W/L in

Microns
10.00
5.00
2.50
1.50
1.00
0.75
0.50

15000

24.602
25.207
25.830
26.291
26.635
26.879
27.225

ff

12500

24.636
25.209
25.812
26.301
26.668
26.921
27.280

Table (C.20) of H,O.

W/L in

Microns
10.00
5.00
2.50
1.50
1.00
0.75
0.50

15000

27ff

12500

10000

24,613
25.205
25.762
26.229
26.627
26.889
27.254

Temperature

7500

24.368
25.000
25.618
26.042
26.435
26.708
27.071

5000

24,348
24.914
25.541
26.038
26.423
26.717
27.081

(54)

in °K
2500

24.684
25.292
25.914
26.379
26.752
27.010
27.353

(54)

in K
2500

24,270
24,866
25.495
25.939
26.321
26.627
26.975

in cm4/dyne from John (54)

10000

Temperature

7500

25.416
25.896
26.257
26.524
26.760
26.910
27.130

5000

24,602
25.086
25.495
25.800
26.045
26.210
26.440

in oK
2500

23.788
24.276
24.733
25.076
25.330
25.510

1000

24.592

25.

214

25.815

26.

231

26.554
26.777
27.081

1000

24,

235

24.863
25.489

25.
26.
26.
26.

914
192
462
793

1000

22.
23.
23.
24,
24,
24.

904
404
900
258
535
727

25.750 24.985

500

24.517
25.147
25.712
26.094
26.393
26.602
26.889

500

24.211
24.821
25.397
25.790
26.051
26.281
26.593

500

22.309
22.813
23.298
23.644
23.914
24.107
24.372

100

24.211
24.726
25.208
25.551
25.821
26.015
26.284

100

23.674
24.157
24.625
24.967
25.232
25.423
25.692

“100

21.288
21.702
22.164
22.501
22.768
22.965
23.240



Table (C.21) of CO

W/L in

Microns
10.00
5.00
2.50
1.50
1.00
0.75
0.50

Table (C.22) of OH

W/L in
Microns
0.50
0.45
0.40
0.35
0.30
0.25
0.20
0.15
0.10

15000

24.836
25.427
26.020
26.465
26.818
27.076
27.420

6000

20.215
20.539
20.084
19.883
19.730
19.450
19.111
18.812
19.105

2ff£

12500

24.870
25.466
26.048
26.463
26.807
27.056
27.398

bf
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in cmq/dyne from John (54)

10000

24.821
25.419
26.013
26.440
26.762
26.991
27.337

Temperature

7500

24.801
25.391
25.963
26.376
26.699
26.921
27.237

5000

24,703
25.281
25.8306
26.230
26.533
26.747
27.041

in OK
2500

24.302
24.866
25.402
25.793
26.095
26.304
26.587

in cm2 from Tarafdar and Das

Temperature in °x

5000

20.629
20.893
20.441
20.178
19.959
19.607
19.180
18.788
19.088

4000

21.269
21.442
20.991
20.640
20.316
19.860
19.298
18.767
19.076

3000

22.363
22.387
21.928
21.437
20.947
20.305
19.504
18.745
19.071

2000

24.590
24.330
23.812
23.063
22.244
21.206
19.910
18.728
19.072

1000

23.717
24,280
24,821
25.197
25.483
25.680
25.955

(57)

500

23.333
23.889
24.406
24.762
25.039
25.231
25.502

100

22.454
22.933
23.398
23.735
24.002
24.190
24.456



Table (C.23) of CHbf in cm2 from Tarafdar and Das (57)

W/L in
Microns
0.30
0.28
0.26
0.24
0.22
0.20
0.19
0.18
0.17
0.16
0.15
0.14
0.13
0.12

6000

20.623
20.547
21.599
19.870
19.780
18.394
18.493
18.599
18.845
18.815
18.754
18.480
18.025
17.750

- 46

Temperature in °r

5000

20.939
20.812
21.943
20.064
19.896
18.355
18.483
18.611
18.896
18.963
18.914
18.587
18.041
17.695

4000

21.441
21.234
22.467
20.367
20.075
18.310
18.462
18.613
18.936
19.134
15.150
18.910
18.084
17.638

3000

22.298
21.963
23.335
20.886
20.376
18.263
18.437
18.611
18.967
19.286
19.503
19.074
18.180
17.575

8 -

2000

23.034
23.457
25.007
21.947
20.971
18.216
18.412
18.609
18.991
19.373
19.575
19.699
18.418
17.513
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For the bound-free absorption of the negative ions tabulated
below from Robinson and Geltman (55), Ehe absorption 1is given in the
number iﬁ cm2 with a factor of 10_18 omitted from the second entry
onwards, against the energy in  Rydbergs relative to the
photodetachment energy, with the first entry being the photodetachment

energy in Rydbergs. Thus the actual energies are the sums of the

first entries for each ion and the relative energies as tabulated.

Table (C.24) of Bound-Free Absorption in 10—18cm2 from

Robinson and Geltman (55)

Engergy in C 0 F Si S Cl Br I
Rydbergs :

0.09188 0.1077 0.2534 0.1022 0.1521 0.2656 0.2472 0.2248
0.000 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
0.005 7.18 4.08 2.93 26.20 6.49 6.98 12.90 16.30
0.010 8.82 5.37 4.29 27 .40 9.27 10.90 13.80 16.60

0.020 10.00 6.42 5.45 25.60 11.20 13.70 13.80 16.30
0.030 10.50 6.84 6.16 24.90 11.70 14.30 13.60 16 .30
0.050 11.40 7.27 6.76 27.10 12.40 14.80 21.50 17.50
0.070 12.40 7.63 7.09 32.00 13.40 15.50 22.10 27.00
0.090 13.30 7.98 7.35 37.40 14.80 16.60 23.70 34.60
0.110 14.10 8.31 7.61 42.20 25.80 18.00 26.10 39.30
0.130 14.80 8.61 7.89 46.20 27.60 19.80 29.00 45.20
0.150 15.40 14.50 8.19 49.20 29.50 21.60 32.30 52.00
0.170 15.90 16.80 8.49 51.40 31.50 23.60 35.60 59.10
0.190 16.20 17.00 8.80 53.00 33.70 25.60 38.90 66.00
0.210 16.50 17.10 9.11 53.90 35.70 27.70  42.00 72.50
0.230 16.70 17.20 9.41 54.40 37.70 29.70 44.90 78.30
0.250 16.80 17.30 9.70 54.40 39.50 31.60 47.60 83.50
0.300 16.90 17.50 10.40 52.60 46.00 36.30 53.50 92.80
0.400 16.60 19.60 11.40 42.80 52.00 44.30 61.50 97.70
0.500 16.00 18.90 12.10 30.40 54.40 50.30 64.90 89.00
0.600 15.10 18.10 12.60 20.10 53.50 54.00 63.60 73.30
0.700 14.10 17.30 12.80 12.80 49.80 54 .60 58.20 56.40
0.800 13.10 16.40 12.80 7.82 43.60 51.60 50.10 41.60
- 0.900 12.10 15.60 12.80 4.64 35.60 44.90 41.10 30.20
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Finally as wused in section 3.4, the log of the absorption of
quasi-molecular hydrogen from Solomon (58) is given here in cubic
centimetres per square dyne against wavenumber, again with the

negative signs omitted.
Table (C.25) of Quasi—H2 in cm3/dyne2 from Solomon (58)

Theta
W/NUM 0.4 0.8 1.2 1.6

16000  20.086 21.770 23.658 25.638
20000 19.602 21.036 22.699 24.444
24000  19.215 20.387 21.824 23.337
30000 18.886 19.638 20.699 21.886
40000  18.444 18.770 19.357 20.000
50000 18.143 18.092 18.310 18.620
60000 18.076 17.638 17.509 17.495
70000 17.796 17.114 16.770 16.509

Note that as stated in chapter 3, all this data here is included
in the coding even though some species may have negligible abundances,
or we may not consider them at all, 1like the negative Hg ion for

free—free absorptiomn.
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APPENDIX D

Adopted Core Statistical Weights of Atoms and Ions

As Stated in section 2.2, when computing partition functions, we
must include in an approximate general way the effect of -all the
excited states wup to the ionization potential. The ionization
potential is reduced by collisions with the nearest neighbours, thus
preventing the sum from being divergent. We can consider that for a
single electron at a sufficient distance from the rest of the aton,
the atom can be considered to be hydrogen—like, as discussed, but with
an effective core statistical weight 8 due to all the other

electrons, in addition to the 2n2 factor.

For the elements up to Ni, table (D.1) 1lists the adopted core
statistical weights, the principal quantum number n from which the
summation in (2.2.8) is started, the term value T in cm-l with which
this corresponds to, where T = thn, and the adopted configuration or
configurations from which 8¢ is obtained by simply adding wup all
possible combinations of arranging the electrons 1in the specified
orbitals. The configuration of the core is given in brackets, where
from Li onwards, there is an inert gas structure contributing unity to
8cos and the configuration of the remaining electrons but one, if there
are any. The lowest adopted configuration of the remaining

"hydrogen—-like" electron is given outside the brackets. For positive

ions, g, and n are obtained from the atoms in the same isoelectronic
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sequences; for negative ions this whole treatment is not relevant.

The term values, given here only for the neutral atoms, are
obtained from Moore (33) for the lowest level for which the outermost
electron is'in the ns orbital, with n as tabulated, except for the
transition elements. Because the transition elements have a very much
more complicated electronic structure due to the incompletely filled
3d orbitals in our case, for Sc to Ni, T 1is approximately obtained
from the mean of the first occurrence of ns and (nt+l)s for the
outermost electron, or if the term for (ntl)s is not available, the
last level tabulated is used. Note that the values fo T given in the
table, which are used as data for the computer program, are given to
an accuracy which 1is really Quite meaningless in most cases, and for
the sake of completeness, values of T are given for those elements
between H and Ti that are not in the mixture. For the transition
elements, two configurations appear to be most common, with 8.
obtained from the sum of the two; other configurations being
neglected.

The summation over the actual 1levels is stopped at 20,000cm~1,
and technically when we deal with all the remaining levels in this
average way, we should avoid counting levels twice or missing them
altogether. However, over the temperatures that we are concerned
with, because individual levels above 20,000cm..1 contribute so little
to the partition function, though the ensemble may be important, we do
not have to worry about this additional complication, which for the
transitions elements would be difficult to handle. This whole

treatment is particularly for the tramsition elements a gross
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simplification to a very complicated situation. However, as is
discussed in section 7.2, this treatment makes no difference to the
partition function of the ions, and of the neutral atoms, only Na, K
and the transition elements are significantly affected over the
temperatures within the range of interest. For our cases, the levels
that contribute most to the partition function are the lowest and
possibly the highest just below the ionization limit due to their very

large number, with little contribution in between.

Table (D.l) of Core Statistical Weights

Z Element g. 1 T Configurations
1 H 1 2 82258.94 25

2 He 2 2 163061.02 (1s)2s

3 Li 1 3 27206.12 (He)3s

4 Be 2 3 54677.20 (He2s)3s

5 B 1 3 40040.00 (He2s?)3s

6 c 6 3  60353.00 (He2s22p)3s
7 N 15 3 83319.30 (He2s22p?)3s
8 0 20 3 75281.25 (He2s22p>)3s
9 F 15 3 102681.24 (He2522p™)3s
10 Ne 6 3 134252.52 (He2s22p°)3s
11 Na 1 4 25739.86 (Ne)bs
12 Mg 2 4 42350.19 (Ne3s)bs

13 Al 1 4 25347.69 (Ne3s?)4s

14 si 6 4 39760.20 (Ne3s23p)és
15 P 15 4  56090.59 (Ne3s23p?)és




Z Element
16 S
17 Cl
18 Ar
19 K
20 Ca
21 Sc
22 Ti
23 v
24 Cr
25 Mn
26 Fe
27 Co
28 Ni

20

15

65

210

250

672

714

540

285

100

J=]

T
53977.52
72484.20
93447.22
21026.80
32428.38
34451.45
40994 .87
37227.44
41269.56
44794 .47
48924.19
45491.09

47530.88
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Configurations

(Ne3s23p )hs

(Ne3523p4)4s

(Ne3sz3p5)4s

(Ar)5s

(Ar4s)5s

(Ar3dhs & Ar3d?)5s

(Ar3d24s

(Ar3d345

(Ar3d®4s

(Ar3d 4s

(ar3a®4s

(Ar3d74s

(Ar3dSas

&

&

Ar3d>)ss
Ar3d*)ss
ArBdS)Ss
ar3d®)ss
Ar3d’)ss
ar3a®)ss

Ar3d?)5s
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APPENDIX E

HOnl-London Factors for Doublets and Triplets

As stated in chapter 4, section 2B, the HOnl-London factors for
doublets given by Kovacs (31) can be compressed into six different
expressions, three for AA= 0 and three for AA= +1. Given Kovécs”s

equations 6 on page 61:

w3 = [V + w3 1) ] A=)
(E.1)
) :}zgai(ij‘ F LT ) /f]}
and defining:
k = 4(2i~3)(23-3)
m = 2i-3 (E.2)
n=2j-3

where 1 and j are the series to which the upper and lower levels
belong respectively, with each taking the values 1 or 2; then we can
compress the expressions given for the doublet strengths. Let the

function ¢"™ be € or C’+ depending on the sign of m, i.e. for i =1

nIl -

or 2 respectively, and similarly for C" ', u T

and uv" , then for AL=0
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we can write:

R;(3) - CA Ay

I}
LIc(3-Dc™ ) | © (3-0«70) + k(3-4 *EXJ‘-/L—‘:)}

S = (3+%5) TIRZ
04133 Famnemisyrms, (A D« ") u"(3) L@
FRA-D3-A64)(3:444)]

R

Ro:(3) = (34 E0NS3A +3) [, omiy N oon e
5( ) i.r[‘ﬁfﬂ)C :4,,{3“’1)6“-,,(3) 22 (3&4)[& (.5) i }Q(j A 2)(31‘«4? %)3

and for AAL= +1, we can write:

AA=+1 AA=-1

el
o
-/
1H

- 3Yyy L
R..(3-1) = B-ADGAE) [ om 5y, (5
27 8350 (3) | SRR )

+ R(3-4 Li)(j%Aé’é)}z

& (3

]
L3
G
o~
“
h—
H

(3«-/]‘{;)(3 *‘?‘)(j'iﬂ"! %){wﬂ» (S’)u"n(j> (E.4)
ES(354C™ () ™ (3D

Q
FR(D-A +(> +/14-g)3

"
0

o~
<A
-
-

R;‘; (3

INivad 5 (.
i M (SMJ”)D%L?) {a'”bﬂ)a""(ﬂ
D344) (3D

ey
th(3-A+ D (344 +5) |

If either the coupling constants Y~ or Y" for the two electromnic
states are negative, then in (E.3) or (E.4) as appropriate, the
indices on the left hand side are changed, such that i -> 3-1i or
j =» 3-j respectively, according to the convention discussed in-
section 4.2B. If/{’#_ﬁf, the appropriate values are inserted into
(E.1) for the two electronic states, but the smaller of the two must

be-used in (E.4). Finally, as discussed in section 4.2B, in a few
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cases (E.3) or (E.4) may break down even for valid transitions.

For the H8nl-London factors of triplets, although there are many
similarities between the 54 expressions given by Kovdcs, which are
used to advantage in programming, these expressions cannot be
compressed as for the doublets, so the full expressions given by
Kovacs are reproduced here, with the correction as noted in section

4.2C.

Given Kovics”s equations 9 and 10 on page 70:

i/-l
af(3) = [AY(-8) + w3 E A (Y-2)

(5.5)
a.} (3 =[AY(Y-4) + 1&-(3’%‘1’)2]% TA(Y-R)
and:
C, () = AY(-W(3-A ) (344) + 2(2360(3-4) 3 (I +4)
CQ(S):.AQY(Y“Q>‘¥1+3(3+O

(E.6)

C,3) = A0 (3-AD(T4A+ 1) + 223D (I-A +1)
AG+D(D+ AL

respectively, then the HSnl-London factors are obtained from Kovédcs”s
table 3.8 for AA= 0 and 3.10 for AA= 41, which we will refer to here

as (E.7) and (E.8) respectively.
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Tt can be seen that for (E.8), the transitions for A4 = ~1 are
denoted in the same way as with (E.4). Note that for (E.7) and (E.8),
the superscripts N, 0, P, Q, R, S and T, which are often quoted in the
literature, refer to the behaviour of the quantum number N, even if it

is not a good quantum number, Dbeing the total angular momentum apart

from spin, such that for a branch with an N superscript 4N = =3, for
an O superscript AN = -2 etc., the main symbol referring of course to
J. However, if AJ = AN, the superscript is not writtem by

convention. Another convention is that if the indices are equal, one

is often dropped; e.g- Pl(J) is written for Pll(J) etc.

As with the doublets, when A”= A", the appropriate values are
inserted into (E.5) and (E.6) for the two electronic states, but the
smaller of the the two is inserted into (E.8). WHowever, if Y < 0 for
one or both electronic states, this negative value is inserted into
(E.3), (E.6) and (E.7) or (E.8), and /. is replaced by -4 in (E.5) and
(E.6) for the appropriate electronic state or states, but 1is left
unchanged in (E.7) or (E.8). Aleo the indices on the left hand side
of (E.7) or (E.8) are changéd such that i =-» 4=i or j =>» 4-j as
appropriate. As with the doublets, some breakdown cases occur even

for valid transitions, these are discussed in section 4.2C.
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APPENDIX F

The Isotropic Plane Harmeonic Oscillator

Some of the matrix elements by Shaffer and Krohn (80) are given

here below. In common with the discussion at the beginning of section
. . . Wy S Sy i

5.2, we assume that the matrix elements S ZAN by { > that contribute

most to the total transition moment, are those for which n = |4v],

wvhere the unprimed and primed quantum numbers denote the 1nitial and

final states respectively. Other matrix elements, including those for

which 14£] > 1 are neglected.

1f:

V = (v+v+2)/2 and L = (Ll+f7)/2 (F.1)

then the following can be written:

. 2
n v _é; e v Lo
1 vl 41 (V-+LY/2 (F.2)
vil ¥ (V-L)/2
2 vz (V-L) (F+L) /4 (F.3)
3 w3 4 © (V=LY (VHL-1) (VHLAEL) /8 (F.4)

vi3 [+l (V-1~1) (V=14+1) (V+L)/8
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b o vth o} (V=L=L) (V413 (V-1 (VHL4+1) /16 (F.5)
5 vi5 (41 (V=L=1) (V=L1) (V+L~-2 3 (VL) (VHLA+2) /32 (F.6)
vt5  {F1 (V=1-2) (V=LY (V=142 ) (V+L=1) (V+L+1) /32
6 vi6 f (V~L=2) (V=LY {(V~L42 ) (V+L~2 ) (VFLY (V+L+2) /64 (F.7)
7 vt7 41 (VeL=2) (VL) (V=142) (V+L~3 ) (VHL-1) (V+L4+1)
X(V+L+3)/128 (F.8)
vi7 (¥ (V=L~3) (V=1~1) (V=141 ) (V-1+3) (V+1~2) (V+L)
X(V+L+2)/128

The theory as supplied by Carson (3) of the isotropic plane

harmonic oscillator is given in the following pzages.
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Line Strengths and Energy Level Diagram of the Asymmetric Top

For transitions with the asymmetric top for which min(J7,J") > 5,
the 1line strengths are obtained approximately froem the H&nl-London
factors of singlets, as stated in section 5.3. For smaller values of
J, the following tables obtained from Cross et al. (92) are used. AL
the end of this appendix is a reproduction of an energy level diagrem

from Herzberg (30).

For all tables, columns 1 to 5 list the strength for the

asymmetry parameter K= -~1,-0.5,0,0.5 and 1, followed by the notation

of the participating sublevels in the form J1 : J with these

5'22‘1 25 rZ}r
subscripts being defined in terms of the initial and final sublevels,
as stated in section 5.3. Using the same notation as Cross et al., if
a transition takes place in the order 1 ->» 2 as zbove, this is defined
as the primary transition, then the opposite tranmsition 1 <4~ 2 is then
defined as the reverse. For an inverse transition, the order 1is

1 -> 2 but the signs of 7T T, and ¥4 are all inverted, then an

15

4

inverse~reverse transition has the order 1 €~ 2 with inverte

o

signs.
All the sublevels in table (5.3) are obtained as follows from tables

(G.1~G):
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Table (G.1) for A=Type Bands

Primary: QO,T5 AT = 1 and QZ,T’ AT = 3,
Reverse: QO,l’ 4T = -1 and Qf,l’ AT = ~3.

With all primary Q-subbranches ordered in increasing min(tl,t

9)
for this and (G 4).

Table (G.2) for A=-Type Bands

imarv: AT = -]
Primary RO,I’ 4 1,
Reverse: PO,T’ av = 1.

All primary R—subbranches ave ordered in increasing ¥, for this

1
and (G.3), (G.5) and (G.6).

Table (G.3) for A-Type Bands
Primary: RZ,T’ At= 3,

. . ~ :{!M= -3
Reverse P2,15 L 3

Table (G.4) for B=Type Bands

Primary and Inverse-Reverse: Q, s AT = 2,

Reverse and Inverse: Q= AT = ~2.
With the primary Q—subbranches listed with max(fi,fz) <2, for

max(fl,Tz) > 1 take the inverse transition.

Table (G.5) for B-Type Bands

Primary and Inverse: R, .. At =0

b
Reverse and Inverse—Reverse: P -, 4T = 0.

With the primary Resubbranches having T.¢ 0, if'f1> 0 take

1

inverse transition.



Table (G.6) for B-Type Bands

Primary: Rl,f’ At = 2 and RS,T’ AT= 4,
Reverse: Pf,l’ DT = -2 and ?ﬁ,l’ AT = =4
Inverse: Rf,ls AT = =2 and RT,B’ AT = =4,
Inverse~Reverse: Pl,f’ AT = 2 and P3,Tﬁ AT = &,

With the primary R-subbranches listed with AT > 0, if ~4% is required,

take the inverse transition.
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0.0000 0.1599 1.3242  1.6500

Table (G.1) for A-Type Bands

~1.0 -0.5 0.0 0.5 1.0
1.5000 1.5000 1.5000 1.5CC0 1.Z20G00
0.0040 0.0483 0.2233 0.5110 0.8333
0.8333 0.8333 0.8333 0.8333 0.8333
3.3333 3.2845 3.1100 2.8223 2.5000
0.0000 0.1458 0.4522 0.7055 0.8750
0.5833 0.5844 0.6406 0.7403 0.8750
0.0000 0.0165 0.1323 0.5722 1.4583
2.3333 2.1875 1.8811 1.6278 1.4583
5.2500 5.2155% 5.0431 4.5104 3.5000
0.0000 0.2547 0.5617 0.7558 0.9000
0.4500 0.4847 0.6026 0.7587 0.90C0
0.0000 0.0638 0.4568 1.1214 1.5750
1.800C 1.55%8 1.3196 1.3221L 1.5750
0.0000 0.0078 0.05650 0.4363 2.0250
4.0500 3.9363 3.4242 2.6168 2.0250
7.2000 7.1708 7.0244 6.44%4  4.5000

0.6052

0.6127

0.7983
1.4667 1.1750 1.1058 1.3464 1.6500
0.0000 0.0274 0.2754 1.2576 Z2.2000
3.3000 3.0662 2.3397 1.9105 2.2000
0.0000 0.0054 0.0374 0.2359 2.5667
5.8667 5.7742 5.2949 3.9338 2.5667
9.1667 9.1399 9.0073 8.4696 5.5000
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.0000
.0000
.5000
5000
-0000
6667
6667
6667
<6667
.0000
L7500
. 7500
0000
0000
.7500
7500
.0000
8000
.8000
.2000
<2000
.2000
.2000
8000
.8000
0000
.8333
.8333
<3333
.3333
5000
.5000
<3333
.3333
L8333

Table (G.2) for A-Type Bands

-0.5 0.0 0.5 1.0

1.0000 1.0000 1.0000 1.0000
1.6707 1.8660 1.6934 1.5000
1.5000 1.5000 1.5000 1.5CC0
1.5000 1.5000 1.8C00 1.35000
2.902% 2.7201 2.5893 2.5000
2.6564 2.6243 2.5710 2.5000
2.6509 2.5581 2.2500 1.6667
1.6667 1.6667 1.6667 1.6667
1.6724  1.7345 1.863¢ 2.000

3.8312 3.6728 3.5773 3.5000
3.7210 3.6540 3.5758 3.5000
3.6902 3.3801 2.8261 2.6250
2.9882 2.9391 2.8258 2.6250
3.0230 3.0%92 2.9055 1.8750
1.7564 1.7796 1.8207 1.8750
1.7567 1.8001 2.0331 2.5000
4.7897  4.6619 4.5745 4.5000
4.7478  4£.6583  4.5743  4.5000
4.6530 4.1758 3.8400 3.6000
4.,1637 4.0354 3.82%0 3.6000
4.2462  4.1441  3.4387  2.8000
3.2074 3.2063 3.1148 2.8000
3.2109 3.3475 3.4848 2.105

1.8082 1.8449 1.9363 2.1000
1.8082 1.8478 2.0650 3.0000
5.7727 5.6582 5.5730 5.5000
5.7578 5.6576 5.5730 5.5000
5.5604  5.0867 4.8106 &.5833
5.2600 5.0537 4.8094 4,5833
5.3738 4.9227 £4.1961 3.7500
4.5001  4.4187 4£.1486 3.7500
4.5219 4.7032 4.1218 3.0000
3.3473  3.3934 3.3887 3.0000
3.3475 3.4370 3.8686 2.3333
1.8422 1.8843 2.0137 2.3333
1.8422 1.8847 2.0660 3.5000
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Table (G.3) for A-Type Rands

~1.0 ~0.5 0.0 0.5 1.0

0.0000 0.0293 0.1340 0.3066 90.5000
0.0000 0.0776 0.1905 0.2082 0.1667
0.0000 0.0103 0.0423 (€.0956 0.1667
0.0000 0.0157 0.1086 0.4167 1.0000
0.0000 0.1061 0.13156 0.1176 0.1250
0.0000 0.0213 0.0643 0.1025 0.1250
0.0000 0.0480 0.2884 Q.53114 (.3750
0.0000 0.0118 0.0609 0.1742 0.3750
0.0000 0.0123 0.0800 0.3944 1.5000
0.0000 0.0863 0.0849 0.0832 0.1000
0.0000 0.0300 0.06564 0.0862 0.1000
0.0000 0.1032 0.3516 0.31656 0.3000
0.00006 0.0269 0.1159 0.2317 0.3000
0.0600 0.0310 0.2336 0.7788 0.6000
0.0000 0.0116 0.0657 0.2228 0.6000
0.0000 0.0117 0.0686 0.33856 2.0000
0.0000 0.0723 0.0638 0.0730 0.0833
0.0000 0.0346 0.0601 0.0722 0.0833
0.0000 0.1677 0.2651 0.2272 0.2500
0.0000 0.0440 0.1455 0.2168 0.2500
0.0000 0.0613 0.4448 0.6089 (©.5000
0.0000 0.0265 0.138% 0.3252Z2 0.5000
0.0000 0.0268 0.1768 0.8748 0.8333
0.0000 0.0114 0.0661 0.2430 0.8333
0.0000 0.0L14 0.0667 0.2976 2.5000

Table (G.4) for B-Type Bandg

-1.0 -0.5 0.0 0.5 1.0

1.500C 1.5000 1.5000 1.5000 1.5000
2.5000 2.1289 1.6667 1.2044 0.8333
0.8333 0.8333 0.8333 0.8333 0.8333
3.5000 2.3196 1.4583 1.0583 0.8750
1.4583 1.3160 1.1667 1.0173 0.8750
1.4583 2.4417 2.8872 2.4417 1.4583
4.5000 2.2157 1.3527 1.0617 0.2000
2.0250 1.6126 1.2886 1.0584 0.9000
2.0250 3.6119 3.1154 2.0622 1.5750
1.5750 1.8280 1.9208 1.8280 1.5750
5.5000 2.0634 1.3413 1.0753 0.9167
2.5667 1.7823 1.3300 1.0751 0.9167
2.5667 4.3650 2.8164 2.0038 1.6500
2.2000 2.4936 2.3333 1.8781L 1.6500
2.2000 3.2340 4.4017 3.2340 2.2000
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Table (¢.5) for B-Tvpe Ban
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6) for B~Type Bands

-1.0

1.5000
0.0000
1.6667
2.5000
0.0000
1.8750
0.00060
2.6250
3.5C00
0.0000
2.1000
0.0000
2.8000
0.0000
3.6000
4.5000
0.0000
2.3333
0.0000
3.0000
0.0000
3.7500
0.0000
4.5833
5.5000

-0.5
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single lovel of the asymmetric ((1;)
inversion (Lnpersion doubling) and o
tive, Ior planar asymmetric top molecules (1t
H.CO, Colly «v-) there is no such doubling. H
can be shown (sec Chaptler 1V, section 41) that
for them in o totally symmetrio vibrational and
clectronie state the highest tevel J 5 of cach set
of a given J is <, the two nest bighest are —, tho
two next -, and so on (see the firsh o Imml of
signg in g, 10),

The above classifieation according to the ny-
mebry  propertics of the tolal cigenfuuctions
Cover-all specics cessification weeording to Muls
liken (645)7] is not na frequently used ax o clos-
sifiention necording to the symniciry propertivs of
the rotational cib/cnl'u;’c(iun only [see Deanison
(279)]. For {ho sake of brevity Iet us call the
three privcipal axes about which the moments of
inertin are La, Ip, Lo respeelively tho a, by ¢ axes.
Tho rotationn] eigenfunction Wy iv 0 funcetion of
the orientation of this syxton of nxes with respect
to o fixed coordinute wystony, [|* pives the
probability of finding the various orientalions of
the axes, DBeeause of the symmetry of the no«
mental ellipsoid, an orfentation that J[if \1‘ froim
g given one by a rotation through 1507 ahout
one of the axes must have the sume probability,
Therefore ¢, must rewmain unchanged or onty
chnnge sign for such o rotation, We eall these
rotutions Cu®, CuP, and Oy (the axey are bwo-fold
gxes of symmetry of the momental  ellipsoid).
Thus the rolational levels of an asymomcleic lop iy
be distinguished by their behavior (- or =) with
respect to the three operalivis, Ca*, Cyfy (' Sinee
one of theso operations is ulm\’:\h,nt to the other
two carried vut in succession, it iy zullicient to
determine the behavior swith respect Lo two of
thenr; usually Cof and Oy ore chusen, There arg
thus four different lypes (V/Hlua) of levels, hriefly
described by -+ -+, 4 —, — -~ , where tho
fivst sigu refers to the lwlmnm with rospout to €48,
the second to the behavior with res pLLL fo Y,
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APPENDIX H

Sources of lMolecular Oscillator Strengths and Transition Moments

The data on various diatomic molecules that azre used in obtaining
the results in chapter 7, together with the sources, are listed below
in table (H.1). Thig list dincludes some molecules, which though
allowed for in the computaticns, may not actually contribute to the
results, due to their low abundances or due to their bands lying in

parts of the spectrum that are beyond the range considered.

Electronic transitions ave specified by the two electronic states
given, vibration-rotation transitions are indicated by the single

electronic state concerned. The column for the transition moment, or

oscillator strength, lists the wvalues that are used to obtain the
absolute band strengths, and Thence the line strengths, in the
following way: (1) for electronic transitions, the wvalues are the

coefficiente for the transition moment in (4.3.36) as 3g> 315 3y

etc. in DK~L, for all wibration-rotation bands, the coefficients are

MO’ Ml’ M2 ete. in (4.3.52) also in Dg—l, (2) the value given is

fel(§00), ji.e. the electronic oscillator strength of the 0-0 band, (3)

the value given is 00° i.e. the band oscillator strength of the 0-0

=t

band. Note that cases (2) and (3) do not apply to vibration-rotation

transitions. The final column lists the source of the data.



2
Though as stated in section 4.4, that R (r) is often given in the
e

literature as (4.4.5) or (4.4.4), although v is the r-centroid, or

()

more generally the x —centrold, in gngstréms, Re(r) is itself often
o . . . 2 e P

expressed in a.u., 1.e. in units of (eao} , which is an unfortunate

combination of units. Before applying Doktorov’s method, wve must

convert the coefficients of the transition moment, as obtained from
. . . Rmi . _

the wvarious sources, into units of D . Alsc, in most cases the

electronic statistical weight factor of (2S+1)(2 is included

o
5] cm am
0,A7FA )
o nly I hef .
in Re&r), and must be removed before computing the band strengths, as

this factor is already accounted for 1in the normalization of the

Hénl~Londen factors with due regard to A-doubling
<2

15 -

2 . . . ;
Thus for some cases, such zs Schadee (118), Re(r) is given in the

form:
2 ~ — p % RO 4 o oNPV B
Relr) = ,€<<ifv P e G ) (H.1)

, . .0 . - .
in a.u. with r in A. We require the coefficients to be in the form of

(4.3.36) with the electronic statistical weight factor divided out.

, X I 8 s -
Thus given that ea = 2.5416X10 ~° esu—cgs, it is easy to show that:
ASG1e /P 9;
: ‘ e d M [
{’/5/ ) et : (H o 2)
& fim e Sy 7 < 5
AT ~ e L, el
o [}\ E {/‘E S \0»‘)} R I
in D3 7. Likewise, if:

2, N o
Ry vy = pe (H.3)



(H.4)




ilar Oscillator Strengths and Transition Moments

Mol.

Transition

CH

CN

CN

Co

Co

NO

NO

NO

1+

- Xy

(L)
(1)
(L)

1.078

0.9164

0.8365

0.1556, -0.7891

0.7337

1.724

2.702

24.59, ~74.27, 112.1; -112.9, 85.23
1.089, -2.542, 1.204

1.265, ~161.1, 47.83

1.6777, 0.64306, -1.1091 -1.9508, 1.4176

2

L

1.124, -0.84
0.004%

0.027

0.003
0.716S, 0.1195

0.6012, -1.550

~0.1221, 3.093, =0.199, -2.665, 0.26

1.402

0.2961, -0.4758
0.0017

0.0137

(111)
(124)
(125)
(118)
(118)
(122)

(123)



Mol. Transition Data Used ) Source
S g

Mgl AZTT ~ X7 (1) 4.689 (124)

a0 A%t - x%T () 1012 (124)

sio xst (1) 3.0575, 2.657 (126)
T olot . .

sio Al - iyt (1) 1.743 (124)
1. 1+ ] }

Na2 B -~ Xz, (1) 6.15, 0.43 (127)
A N

NeH A% - X5 (1) 6.23 (124)

s A%t - X (1) 0.3139 (124)

Mgo BT - 3T (1) 8.133 (124)

el et (1) 1.0935, 0.925, 0.163, ~3.83, =9.3 (112)
I+ 7 '

BT X (1) 1.7982, 1.5220, -0.2335, ~1.0958 (128)

clo X°7 (1) 1.2036, ~1.3269, -1.7895, 3.0550, -1.0576 (129)

C10 AT - YAT (1) 20.836, -48.512, 48.714, ~21.911, 3.5040 (129)

Y 3,

Ti0 G4 - X4 (2) 0.18 (113)

e I)F\ 1', 2

Ti0 ¢ @ - a™i (3) 0.249 (114)

T T s

cot afm - ¥%ET (1) 30.53, 52.81 ~22.59 (118)

cot %t - x&T (2 0.0166 (118)

Ny B%Zj - Y27 (1) 0.789, 1.42, -0.611 (118)
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APPUNDIY I

Determination of the Internal Energies and Adiabatic Exponents of a Gas

of Electrons, Atcms, Ions and Holecules

The total internal energies given in table (7.32) are obtained by
summing over the individual species whose energies are obtained by the
method discussed here. The zero point in energy corresponds to the

state with all atoms free, neutral and in their ground states.

Atoms and Tons

- . . - th .
Let Ih b1 be the ionization potential in ergs of the h = ion of
b

some element, where leV = 1,6021927X10“12 erg by Allen (32). If we

also write for generality the electron affinity as I which is by

~10°
convention positive if the negative ion is stable, then the internal

h th . . . .
energy B for the h iomn, apart from translation and ignoring any

energy of excitation, is given hy:

_1 _ .
E = I*lO
0 = o0

1 .
EL o= I, v (I.1)
?2 — I
BT = Ig t I,

3 - - fm
BT o= Iy I, T,

n ol
O



}
i
(o
Co

i

tive ion consideved, with of course n £ Z. If

[

where n is the mest pos
h - 4 e - £ i~ R A S A B PR : . - th
S is the fraction of the unconbined slement in gquestion dn the h

stage of ionization as given by (2.3.8), then the total average
internal energy per atom in all stages o

translation, is given by:

-] o h}l:.l
E =-5 1,5+ 28 > T F 3kT/2
h=1 k=
(1.2)
n
-1 - h.h |
I o=-5 1,4+ 3"“—”18 ET 4+ 3kT/2

where if no stable negative ion exists, the first term is omitted. The
contribution due to free electrons must also be added to the gas, this

being just 3kT/2 per electron.

Diatomic Molecules

From Herzberg (29), the following relations can be written per

molecule in ergs:

Rotation: E = kT

. . hew /KT
Vibration: | E_ = hcaé/(e e/ -

1) (1.3)
. o}
Electronic: E = -heD
e 0
Translation: E = 3kT/2
o} . N . . . s
where & and DO are in wavenumber, and the latter is the dissociation
e

potential measiured from the Jowest vibrational level (see (4.3.9) ).

In these calculations, isctope effects are neglected, so the constants



are taken for the most abundant isoto

anharmonicity are neglected in Er and E_ respectively, and we only
v

consider - the contributicn of the ground electronic state to the
energy. However, in most cases these approximations will be good.

=

Because Ee is normally by far the largest in

=
1]
9
jor?
F,.h
r
o
[a 3
o]
ot

o (1.3),
molecules normmally contribute negative values of energy to the gas,

s taken as stated earlier.

[N

when the zero point

w

Triatomic Molecules

The relations for triatomic molecules given here are obtained

from the relation

w
Fh
O
3
o
o
P
<
o))
cr
o
3
=t
o

molecules- given by Herzberg (30):

Rotation: Er = kT (Lingar Molecules)
Er = 3kT/2 (Non-Linear lolecules)
. . 3 .. hews, [RT . )
Vibration: E = hcx d.&./(e i -1) (I.4)
v ; ii
i=1
. o
Electronic: Ee = ~hch
Translation: E, = 3kT/2
. \ .th . - . . s
where di is the degeneracy of the 1 vibrational mode, such that
d.=d,= 1, and d4d,= 1 or 2 depending on vhether the molecule is

non~linear or linear respectively. Also D

o
is the energy from the
o

lowest wvibrational Ilevel for conplete dissociation. The same

ed.

[
v

approximations as used for diatomic molecules are appl
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Charged lolecules

i~

Though generally of negligible abundance, for the sake of
completeness, we can also consider molecular lons. For generality in

(1.3), Ee is replaced by:
o)
E = -heDd + E, + E, (I.5)
e o 3

. . . A n
and likewise for (I.4) with an additional term Ek for each of the
dissociation products. However, only one of the dissociation products

will be in general ionized, so will contribute a non-zero value o

(I.5)-

The theory, as supplied by Carson (3), for calculating the
average energy of a rotator and of an oscillator is given in the

following pages. TFor any additional discussion on the thermodynamic

properties of molecules, one can refer to Herzberg (29) and (30).

. . . Fant'] 3 -~
In order to calculate the adiabatic exponents }c s !2 and !;

for a given grid point (T,/), the total internal energy E and total

.

pressure P-are computed for that grid point, together with E+(E and

P+3P computed from the grid points (T,p+22) and (T+5T,0), as discussed

£

in section 7.6 where tables of the adiabatic exponents are given.

Note that the contribution of radiation must be included in the total

. . . -2 .
pressure and internal energy, such that for P in dyne cn and E in

-1 ' I . s A .
erg gm the contribution is (1/3)aT  and aTl 40 regpectively.




i
18]
iy
ju

I

The theory, also as supplied by Carson (3), for obtaining the

abatic exponents in terms of the known quantities is given further
n this appendix. Cox and Giuli (1) can be referred to for further
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APPENDIX J

Abundances ¢f Elements and Isotopes

All the calculations on statistical mechanics are based on the
abundances obtained from Cameron (4), which are given here for those

elements and isotopes used in this work.

In table (J.1), the relative abundance by number normalized to
6 o . ' . . .
107 for Si is given for each element summed over all its isctopic

forms. For each individual isotope, the mass number and percentage

abundance by number of that isotope making up that element are given.

Note that for H, He and XK, Cameron (4) does not give the
vercentage abundance for the least abundant isotope of each of these
elements, so we have recalculated the percentages of all the isotopes
pf these elements to four decimal places to show up the least abundant
isotopes. Aréo has a very small and uncertain abundance, so it is
omitted and the remaining disotopic abundances are recalculated.
Otherwise, all the figures in table (J.1) are exactly those obtained
from Cameron, with all the isotopes of the 22 elements in the list

being considered.



Table (J.1) of Abundances of Elements and Isotopes

Z Element Abundance .é Abundance in %
1 1 3.18 x 100
1 92.9984
2 0.0016
9
2 He 2.21 x 10
3 0.0167
4 99.9833
7
6 C 1.18 x 10
12 98.89"
13 1.11
6
7 N 3.74 x 10
14 99.634
15 0.356
7
8 0 2.15 x 10
16 99.759
17 0.0374
18 0.2039
9 F 2450
1% 100.0
6
10 . Ne 3.44 x 10
20 83.89
21 0.27
22 10.84
4
11 Na 6.0 x 10

23 100.0



12

13

14

15

16

17

18

19

Flement Abundance
Mg 1.061 % 10
Al 8.5 x lO4
Si 1.00 % 106
P 8600
S 5.0 x 10°
Cl 5700
Ar 1.172 x 10
e 4200

6

5

A Abundance in %

32

33

34

36

35

37

(&)
o

39

40

41

[ S]

el

78.70

10.13

11.17

160.0

100.0

85.0

0.760

4.22

0.0136

75.529

24,471

84.2150

15.7850

92.9899

0.1370

G.8732



]

20

22

24

25

26

Element

Abundance

Ca

Ti

Mn

Fe

- 4
7.21 x 10

2775

1.27 x 10%
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A

44

46

48

46

47

48

49

50

50

52

53

54

55

56

57

58

Abundance in 7

96.

83.

el

100.

87

64

145

.06

«55

.38

.66

.18

.33
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Z  Element Abundance A Abundance in %
s 4
28 Ni 4L.80 % 10
58 67 .88
60 26.23
61 1.19
62 3.66

64 1.08
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