
TOWARDS A HOLISTIC FRAMEWORK FOR SOFTWARE

ARTEFACT CONSISTENCY MANAGEMENT

Ildiko Pete

A Thesis Submitted for the Degree of PhD
at the

University of St Andrews

2017

Full metadata for this item is available in

St Andrews Research Repository
at:

http://research-repository.st-andrews.ac.uk/

Please use this identifier to cite or link to this item:
http://hdl.handle.net/10023/11032

This item is protected by original copyright

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by St Andrews Research Repository

https://core.ac.uk/display/83960089?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://research-repository.st-andrews.ac.uk/
http://hdl.handle.net/10023/11032

Towards a Holistic Framework for
Software Artefact Consistency

Management

Ildiko Pete

This thesis is submitted in partial fulfilment for the degree of

Doctor of Philosophy

at the University of St Andrews

October 2016

Abstract

A software system is represented by different software artefacts ranging from
requirements specifications to source code. As the system evolves, artefacts are often
modified at different rates and times resulting in inconsistencies, which in turn can
hinder effective communication between stakeholders, and the understanding and
maintenance of systems. The problem of the differential evolution of heterogeneous
software artefacts has not been sufficiently addressed to date as current solutions
focus on specific sets of artefacts and aspects of consistency management and are
not fully automated. This thesis presents the concept of holistic artefact consistency
management and a proof-of-concept framework, ACM, which aim to support the
consistent evolution of heterogeneous software artefacts while minimising the impact
on user choices and practices and maximising automation. The ACM framework
incorporates traceability, change impact analysis, change detection, consistency
checking and change propagation mechanisms and is designed to be extensible. The
thesis describes the design, implementation and evaluation of the framework, and an
approach to automate trace link creation using machine learning techniques. The
framework evaluation uses six open source systems and suggests that managing the
consistency of heterogeneous artefacts may be feasible in practical scenarios.

Acknowledgements

Firstly, I would like to express my sincere gratitude to my supervisor, Dharini
Balasubramaniam. You gave me the opportunity to challenge and improve myself,
to focus my attention on exploring a problem, through which I did not only develop
professional and technical skills; it has also shaped my world view and how I
approach things in life. This has been one of the most valuable lessons. Thank
you for your support and for providing me guidance throughout my time working
with you. I would also like to say thank you to my secondary supervisor Juliana
Bowles, and John Thomson, Alex Voss, Özgür Akgün, and Peter Nightingale, for
their invaluable help.

I am fortunate to be surrounded by the most precious and supportive friends who have
closely followed my work and helped me overcome obstacles by being there, giving
me advice, and sharing their thoughts. My deepest thanks to Lakshitha de Silva,
Chris Schneider, Percy Perez, Erőss Andrea, Bíró Dániel, Catherine Hollebrandse,
Wagner da Silveira, Farnaz Ghajeri, Juan Mendoza Santana and Marco Caminati.

I would not be who I am and where I am without my parents’ support, to whom I
am eternally grateful. Szüleimnek: Hálásan köszönöm a sok segítséget, támogatást,
iránymutatást, és a belém vetett fáradhatatlan hitet.

Declaration

Candidate’s Declarations
I, Ildiko Pete, hereby certify that this thesis, which is approximately 55000 words in
length, has been written by me, that it is the record of work carried out by me and
that it has not been submitted in any previous application for a higher degree.

I was admitted as a research student and as a candidate for the degree of Doctor of
Philosophy in October, 2012; the higher study for which this is a record was carried
out in the University of St Andrews between 2012 and 2016.

Date:

Signature of candidate:

Supervisor’s Declaration
I hereby certify that the candidate has fulfilled the conditions of the Resolution and
Regulations appropriate for the degree of Doctor of Philosophy in the University of
St Andrews and that the candidate is qualified to submit this thesis in application for
that degree.

Date:

Signature of supervisor:

Permission for Electronic Publication

In submitting this thesis to the University of St Andrews I understand that I am giving
permission for it to be made available for use in accordance with the regulations of
the University Library for the time being in force, subject to any copyright vested in
the work not being affected thereby. I also understand that the title and the abstract
will be published, and that a copy of the work may be made and supplied to any
bona fide library or research worker, that my thesis will be electronically accessible
for personal or research use unless exempt by award of an embargo as requested
below, and that the library has the right to migrate my thesis into new electronic
forms as required to ensure continued access to the thesis. I have obtained any
third-party copyright permissions that may be required in order to allow such access
and migration, or have requested the appropriate embargo below.

The following is an agreed request by candidate and supervisor regarding the
electronic publication of this thesis:

Access to printed copy and electronic publication of thesis through the
University of St Andrews.

Date:

Signature of candidate:

Signature of supervisor:

CONTENTS

Contents i

List of Figures vii

List of Tables ix

Listings xi

1 Introduction 1
1.1 Problem Statement . 1
1.2 Motivation . 2
1.3 Scope . 4
1.4 Research Question and Hypotheses . 5
1.5 Novel Contributions . 6
1.6 Thesis Organisation . 7
1.7 Publications . 8

2 Background 9
2.1 Software Artefacts . 9

2.1.1 Definition . 9
2.1.2 Artefact Classification . 10

2.2 Traceability . 11
2.2.1 Definition, Significance and Terminology 11
2.2.2 Trace Link Classification . 14

2.2.2.1 Existing Classifications . 14
2.2.2.2 Trace Link Classification of Heterogeneous Artefacts 15

2.3 Change Impact Analysis . 16
2.3.1 Definition and Terminology . 16
2.3.2 Categorisation of Change Impact Analysis Techniques 17

2.4 Consistency, Consistency Management, Consistency Checking and Change
Propagation . 18
2.4.1 Consistency . 18
2.4.2 Consistency Management . 18
2.4.3 Artefact Consistency Management . 19
2.4.4 Consistency Checking . 19
2.4.5 Change Propagation . 19

i

II CONTENTS

2.5 Conclusion . 20

3 Literature Review 21
3.1 Introduction . 21
3.2 Methodology . 22

3.2.1 Planning . 22
3.2.1.1 Research Questions . 22
3.2.1.2 Search Process . 22

3.2.2 Execution . 23
3.2.3 Results Analysis . 24
3.2.4 Related Surveys . 24

3.3 Classification . 25
3.4 Review of State-of-the-art Solutions . 25

3.4.1 Holistic Solutions . 26
3.4.1.1 Maintaining Separate Artefacts 26
3.4.1.2 Combining Artefacts . 34

3.4.2 Solutions Addressing Specific Aspects of Consistency Management . . 36
3.4.2.1 Traceability Techniques . 36
3.4.2.2 Change Impact Analysis (IA) Approaches 41
3.4.2.3 Consistency Checking and Change Propagation Approaches . 42

3.5 Evaluation . 44
3.6 Conclusions . 45

4 Holistic Artefact Consistency Management Framework 47
4.1 Challenges of Artefact Consistency Management 47
4.2 An Ideal Consistency Management Framework 49
4.3 Proposed Approach: Concept of a Holistic Artefact Consistency Management

Framework . 50
4.3.1 Definition . 50
4.3.2 Illustrative Example . 52
4.3.3 Real World Applicability of the Holistic Approach 54

4.4 Data Representation . 54
4.4.1 Conceptual Data Model . 55

4.4.1.1 Property Graph Structure . 55
4.4.1.2 Alternative Artefact and Trace Link Representations 57
4.4.1.3 Evaluation of the Property Graph Model 58

4.4.2 Bridging the Gap Between Heterogeneous Artefacts and the Property
Graph Model . 58

4.5 Framework Stages . 59
4.5.1 Change Detection . 60

4.5.1.1 Artefact Change Classification 60
4.5.1.2 Change Detection Output: Change Data 62

4.5.2 Rule-based Traceability Maintenance 62
4.5.3 Change Impact Analysis . 63
4.5.4 Consistency Checking . 64

CONTENTS III

4.5.5 Change Propagation . 65
4.6 Conclusions . 65

5 Architecture and Design 69
5.1 Design Strategy . 69

5.1.1 Functional Requirements . 69
5.1.2 Design Constraints . 70
5.1.3 Architectural Tactics . 70

5.2 Framework Architecture . 71
5.3 Detailed Design of Architectural Components 73

5.3.1 Data Access Layer and Data Store components 73
5.3.1.1 Data Store . 73
5.3.1.2 Data Access Layer . 73

5.3.2 External Repository and Corresponding API Component 74
5.3.3 Logic layer and its Components . 75

5.3.3.1 Interaction Manager . 75
5.3.3.2 Traceability Manager . 75
5.3.3.3 Setup Manager . 75
5.3.3.4 Consistency Manager . 76

5.4 Design Evaluation . 78

6 Implementation of the ACM Framework: Data Representation 81
6.1 Introduction . 81
6.2 Artefact Selection . 82
6.3 Property Graph Representation . 82

6.3.1 Specification of Graph Nodes and Properties 84
6.3.1.1 Requirement Specification 84
6.3.1.2 UML Design Diagram: Use Case diagram 85
6.3.1.3 Software Architecture: Conceptual view 86
6.3.1.4 Software Architecture: Module view 86
6.3.1.5 UML Design Diagram: Class diagram 87
6.3.1.6 UML Design Diagram: Sequence diagram 88
6.3.1.7 Java source code . 90
6.3.1.8 JUnit test . 90
6.3.1.9 Element Hierarchy: Container and Member Elements 90

6.3.2 Specification of Graph Edges and Properties 90
6.3.3 Conclusions . 91

6.4 Bridging the Gap between Heterogeneous Artefacts and the Property Graph Model 92
6.4.1 Artefact Data Extraction . 92

6.4.1.1 Tools . 92
6.4.1.2 Extraction . 93

6.4.2 Transformation . 94
6.4.2.1 Transformation: GraphML 94
6.4.2.2 Transformation: XSLT . 96
6.4.2.3 Transformation Output . 97

IV CONTENTS

6.4.2.4 Extracting and Transforming Trace Links 97
6.4.2.5 Transformation Summary 101

6.4.3 Graph Data Persistence . 101
6.4.3.1 Graph Databases . 102
6.4.3.2 Alternative Strategies . 103
6.4.3.3 Neo4j . 104

6.5 Conclusions . 105

7 Implementation of the ACM Framework: Framework Stages 109
7.1 Introduction . 109
7.2 Change Detection . 109

7.2.1 Specifics of Changes . 111
7.2.2 Identification of the File Level Change Type 112
7.2.3 Identification of the Artefact Element Level Change Type 113

7.2.3.1 Change Identification and Representation: XML 113
7.2.3.2 Change Identification and Representation: Graph-based Ap-

proach . 114
7.2.4 Change Detection Output: Change Data object 119
7.2.5 Conclusions . 120

7.3 Rule-based Traceability Maintenance . 120
7.3.1 Delete File Level Change . 120
7.3.2 Add File Level Change . 122
7.3.3 Edit File Level Change . 122

7.3.3.1 Delete Artefact Element Level Change 122
7.3.3.2 Add Artefact Element Level Change 123
7.3.3.3 Edit Artefact Element Level Change 123

7.4 Change Impact Analysis . 124
7.4.1 Illustrative Example . 125

7.5 Rule-based Consistency Checking . 126
7.5.1 Inter Consistency Checking . 127
7.5.2 Intra Consistency Checking . 128
7.5.3 Rule Implementation . 129
7.5.4 Output . 129

7.6 Change Propagation . 129
7.6.1 Graph Database Update . 130
7.6.2 Inconsistency Resolution . 130
7.6.3 Final Output of Consistency Management 130

7.7 Implementation Evaluation and Conclusions 131

8 Automating Traceability Creation using Machine Learning 133
8.1 Introduction . 133
8.2 Machine Learning . 134

8.2.1 Basic Concepts . 134
8.2.2 Relevant Machine Learning Usage Scenarios 135
8.2.3 Motivation to Use Machine Learning 136

CONTENTS V

8.2.4 Traceability Creation as a Classification Problem 136
8.3 Data Collection . 137

8.3.1 Criteria for Candidate System Selection 137
8.3.2 Candidate Systems . 138

8.4 Data Preparation . 139
8.4.1 Establishing Positive Instances - Trace Links 140
8.4.2 Establishing Negative Instances - Generating Data for Representing

Non-Relations . 142
8.5 Feature Selection . 143
8.6 Model Selection . 144
8.7 Methodology . 147

8.7.1 Training . 147
8.7.2 Model Evaluation . 147

8.8 Results and Discussion . 149
8.9 Integration in the Framework . 152
8.10 Conclusions . 152

9 Evaluation 153
9.1 Evaluation Objectives . 153
9.2 Evaluation Questions . 154
9.3 Evaluation Design . 155

9.3.1 Research Method Selection . 155
9.3.1.1 Evaluation of Hypotheses 155
9.3.1.2 Correctness testing . 156
9.3.1.3 Performance Evaluation . 158

9.3.2 Data Collection . 159
9.3.2.1 Selecting a Data Collection Technique 159
9.3.2.2 Selecting Particular Open Source Systems 159
9.3.2.3 Change Selection . 160
9.3.2.4 Artefacts Obtained from Open Source Systems 160

9.4 Methodology and Results . 160
9.4.1 Methodology: Testing Correctness . 160

9.4.1.1 Framework Setup Scenario 160
9.4.1.2 Consistency Management Scenario 164

9.4.2 Methodology: Evaluation of Hypotheses 169
9.4.2.1 Q1 - Tool and methodology independence 169
9.4.2.2 Q2 - Automation . 170
9.4.2.3 Q3 - Artefact Independence 171

9.4.3 Methodology: Performance Tests . 172
9.4.4 Limitations and Threats to Validity . 177

9.5 Conclusions . 178

10 Conclusions 179
10.1 Summary . 179
10.2 Assessment and Limitations . 180

VI CONTENTS

10.2.1 Assessment in the Context of Requirements 180
10.2.2 Limitations . 181

10.3 Future Work . 182
10.4 Concluding Remarks . 185

Appendix A Appendix - A Performance results 187

Appendix B Appendix B - Summary Tables 191

References 211

LIST OF FIGURES

1.1 Differential evolution of software artefacts. 3

2.1 Trace link connecting a source and a target artefact. 13

3.1 Classification of solutions contributing to artefact consistency management. 26

4.1 Holistic artefact consistency management theoretical framework process diagram. . 51
4.2 JGAP system class diagram and source code excerpt. 53
4.3 Illustration of the property graph model. 57
4.4 Bridging the gap between heterogeneous artefacts and the property graph model. . 59
4.5 Flow chart illustrating the algorithm for inter link traversals. 67

5.1 The overall architecture of the ACM framework. 71
5.2 Design of setup management functionality, class diagram excerpt. 76
5.3 Design of the orchestration of change detection functionality, class diagram excerpt. 77

6.1 Property graph representation of a requirement, a Java source code class, and a Java
method artefact element. 85

6.2 Binary Block Parser system - Use case diagram excerpt. 85
6.3 Property graph representation of a single use case, a UML class and a UML operation. 86
6.4 Architecture diagram of Titan . 87
6.5 Property graph representation of a single architectural component, and a UML class

and operation. 87
6.6 Module view architecture of Neo4j - Excerpt. 88
6.7 Property graph representation of three architectural modules. 88
6.8 Example UML class Parser and its member method parse. 89
6.9 Sequence diagram fragment from the MyRobotLab system. 89
6.10 Property graph representation of the Service Lifeline element. 89
6.11 Artefact data extraction. 94
6.12 The Account UML class and its members. 96
6.13 Mapping heterogeneous XML schemas to a uniform schema to represent artefact data.101
6.14 Artefact and trace link data in Neo4j. 106
6.15 Framework setup functionality. 107

7.1 Change detection overview. 110
7.2 Nested hashmap representation of graph nodes and their properties. 117
7.3 Graph data representing Java source code and UML class diagram nodes. 121

vii

VIII List of Figures

7.4 Delete file level change. 121
7.5 Delete element from artefact. 123
7.6 Add new element to artefact. 123
7.7 Edit property of an existing element. 124
7.8 Example artefact property graph to illustrate the change impact analysis approach. . 125

8.1 Accuracy results of the J48, Multilayer Perceptron, Naive Bayes, SMO, and ZeroR
classifiers. 149

8.2 Cross-validation results: each system is used as a test set. 151

9.1 Framework Setup execution time (s) and system size. 175
9.2 Framework Setup execution time (s) and artefact size. 176
9.3 Change Detection execution time (s) and artefact size. 176

LIST OF TABLES

2.1 Artefact Categorisation Examples. 12

4.1 Evaluation of the suitability of the property graph model for artefact data representation. 58
4.2 Artefacts to be represented in the framework by a property graph model. 59
4.3 Artefact consistency management process inputs and outputs. 60

5.1 Mapping of functional areas to architectural components. 78

6.1 Categorisation of artefact elements based on their hierarchical relationships. 91
6.2 Property key/value pairs used in the framework. 97
6.3 Transformation output summary. 98

7.1 Summary of actions taken depending on the file level change type. 111

8.1 Comparison of candidate systems. 139
8.2 Extracted artefacts. 139
8.3 Feature vectors. 145
8.4 Training data. 147
8.5 Cross-validation: Systems highlighted in white are used for testing. 148
8.6 Accuracy of the Multilayer Perceptron, J48, SMO and Naive Bayes classifiers using

different feature combinations. 150

9.1 Derivation of evaluation questions and methods from the hypotheses and requirements.154
9.2 Functionality areas, inputs and expected outputs. 157
9.3 The number of artefacts obtained from each open source system. 161
9.4 Summary of Framework Setup results. 163
9.5 Summary of artefact element level change combinations in Java source code, JUnit

test, and UML class diagram artefacts. 165
9.6 Summary of Consistency Management test scenarios and results. 166
9.7 Tools used in the design or development of selected subject systems. 170
9.8 Automation level of Framework stages and Artefact Data setup. 171
9.9 Test environment properties. 173
9.10 Performance tests - methodology. 174

A.1 Framework Setup execution times using the MazeSolver, MyRobotlab and JBBP
systems. 187

A.2 Framework Setup execution times using the Service class (MyRobotLab), the Owner
interface (Neo4j), and the JBBPToken class (JBBP). 188

ix

X List of Tables

A.3 Change identification algorithm execution times using the Owner interface of the
Neo4j system. 188

A.4 Change identification algorithm execution times using the Service class of the
MyRobotlab system. 189

A.5 Change detection execution times using the JGAP system. 189

B.1 Comparison summary, Part I. The reviewed solutions are listed by their names
(where the name of the implemented system or project title is in place) or by the
authors’ names. 192

B.2 Comparison summary, Part II. The reviewed solutions are listed by their names
(where the name of the implemented system or project title is in place) or by the
authors’ names. 193

B.3 Comparison summary, Part III. The reviewed solutions are listed by their names
(where the name of the implemented system or project title is in place) or by the
authors’ names. 194

B.4 Comparison summary, Part IV. The reviewed solutions are listed by their names
(where the name of the implemented system or project title is in place) or by the
authors’ names. 195

B.5 Summary of artefacts handled by the framework and the derivation of property graph
nodes and their attributes from structural elements. 196

B.6 Delete and Add File Level changes - specific examples. 197
B.7 Artefact element level changes. 198
B.8 Delete file level change - Derivation of consistency rules based on the modified entity,

the connected entity, and inter link type. Part I. 199
B.9 Delete file level change - Derivation of consistency rules based on the modified entity,

the connected entity, and inter link type. Part II. 200
B.10 Delete file level change - Derivation of consistency rules based on the modified entity,

the connected entity, and inter link type. Part III. 201
B.11 Edit file level change - Delete artefact element level change - Derivation of inter rules.202
B.12 Edit file level change - Add artefact element level change - Derivation of inter rules. 203
B.13 Edit file level change - Edit artefact element level change - Derivation of inter rules

part I. 204
B.14 Edit file level change - Edit artefact element level change - Derivation of inter rules

part II. 205
B.15 Derivation of intra consistency rules. 206
B.16 Trace maintenance rules in the delete file level change scenario for each artefact type.207
B.17 Trace maintenance rules in the delete artefact element level change scenario for each

artefact type. 208
B.18 Trace maintenance rules in the edit artefact element level change scenario for each

artefact type. 209

LISTINGS

6.1 Java source code excerpt of a class with a field and getter method. 90
6.2 Example GraphML file modelling a UML class diagram and its property graph

representation. 95
6.3 An example inter trace link expressed in XML. 98
7.1 GraphML file, version n - mapping to key-value pairs 115
7.2 Graph G defined as a collection of key-value pairs 115
7.3 Graph G’ defined as a collection of key-value pairs 115
7.4 GraphML file, version n+1 - mapping to key-value pairs 116
7.5 Example ChangeData object . 120
7.6 String representation of impact analysis output. 126
7.7 Excerpt of XML rules capturing consistency rules. 129

xi

1CHAPTER ONE

INTRODUCTION

1.1 Problem Statement

Evolution is an inherent characteristic of software systems. Software may be subject to
modifications for a number of reasons including improving its performance, correcting and
preventing faults and adapting to external changes [1]. Measuring the cost and effort of software
maintenance has been the subject of studies as far back as the 1970s [2]. An often quoted
figure shows that at least 60% of software development costs is spent on software maintenance
[3]. Therefore the management of changes and the evolution of software systems have been
extensively investigated through various disciplines with the aim of improving the maintainability
of software. These research themes address different aspects of software evolution and include
process models, tools supporting software evolution, and versioning systems [4] [5] [6]. Software
evolution affects the complexity of the given system and has implications for software quality
[7].

The effects of software evolution are exacerbated by the heterogeneous nature of entities
representing software systems: the software development process produces artefacts expressed
in various forms, such as source code, design diagrams, and requirement documents in natural
language. All these artefacts represent the same system, at different levels of abstraction [8]. The
evolution of software therefore can be described as the evolution of all of these artefacts [9]. In
an ideal scenario, modifications to any of the artefacts will result in other related artefacts also
being changed accordingly.

In practice however, software entities evolve at different paces and times. Research on software
evolution has not yet adequately addressed the issue of the differential evolution of software
artefacts, which is the focus of this work. The lack of synchronisation results in artefacts
evolving inconsistently, where one representation reflects the latest changes, whilst related

1

2 CHAPTER 1. INTRODUCTION

artefacts may mirror previous versions, and contain possibly invalid information. A common
scenario involves changes being applied to source code while other artefacts are not updated.
Such practices can result in an ever growing drift between the different representations. A
simplified version of the problem is illustrated by Figure 1.1, which depicts a scenario where
three specific types of artefacts - requirements specification, UML class diagram and Java source
code - evolve inconsistently. Versions marked in red are inconsistent. The first consistency issue
is presented by version 1 (V1) of the requirement specification, which is not modified following
the creation of version 2 (V2) of the UML class diagram. Both version 2 (V2) and 3 (V3) of the
Java source code conform to version 2 of the UML diagram. The second consistency issue is
shown by version 2 of the UML class diagram, which is not updated to reflect Java source code
changes, i.e. the creation of version 4 (V4) of the Java source code.

1.2 Motivation

The consequences of the differential evolution of software artefacts can be summarised as
follows. Inconsistent artefacts do not accurately represent the software system, and consequently
stakeholders may develop a lack of trust in them. Outdated artefacts also hinder effective
communication and collaboration, which poses significant challenges in distributed development
scenarios. Additionally, not maintaining the consistency of diverse representations impedes the
effective understanding of the system. These issues reduce the evolvability [10] of systems and
present obstacles to software maintenance.

Considering the efforts associated with maintaining software systems, it is apparent that the
cost of such inconsistencies is not negligible. On the other hand, managing the consistency of
artefacts is likely to lead to more easily maintainable systems fulfilling their intended purpose.

Various research areas within software engineering have contributed to addressing the problem
of disconnected and inconsistently evolving artefacts from different perspectives. These
areas include, for example, Requirements Engineering, Software Processes, Software Change

Management (Impact analysis, Software Configuration Management), and Computer-Aided

Software Engineering (CASE).

CASE continues to improve the level of support for managing individual artefacts and software
development tasks [11]. In some cases, such as integrated development environments (IDE),
some support for keeping selected artefacts consistent may be in place, for example through
automatic code generation, which assumes that these artefacts are created and used within the
same environment. While CASE caters for some tasks relevant in managing the consistent
evolution of artefacts, such as versioning, it falls short of providing a complete solution, which

1.2. MOTIVATION 3

Figure 1.1: Differential evolution of software artefacts.

highlights the fact that the multitude of lifecycle tasks, tools and artefacts pose significant
challenges.

Requirements engineering is the process of establishing what services the software should provide,
and is concerned with analysing whether requirements are testable, properly understood and
have clearly stated origins [12]. A key problem in requirements engineering is the management
of inevitable changes. The ability to create and maintain links both between requirements
themselves and other artefacts can be particularly useful in tackling this issue, which has not
been adequately addressed to date.

Since changes cannot be eliminated, a viable solution that can accommodate them in a consistent
manner is required. Several software engineering process models have emerged over the past
decades aimed at providing a framework for supporting the steps of the development process.
Incremental development strategies aim to eliminate the disadvantages of sequential models,
such as late design breakage. Dividing the system into units of functionality based on subsets
of requirements and delivering this functionality in increments form the core of this approach,
providing the benefits of a more refined system at the end of the development process [6]. Being
able to identify the impact of a change in one artefact on another requires establishing links
between them. However, current processes do not enforce artefact linking and in most software
development scenarios software artefacts stay disconnected and go through stages of refinement
without considering dependent entities [13].

Besides minimising the challenges caused by modifications, an important aspect of effective
software change management is the ability to control and coordinate software changes, which is

4 CHAPTER 1. INTRODUCTION

carried out by configuration management [14] [15]. Policies and standards, such as Capability
Maturity Model Integration (CMMI) steps for configuration management [16], aid change
control tasks by specifying their main elements including the identification of configuration
items (artefacts) or tracking change requests. Abiding by such practices facilitates the consistent
evolution of software artefacts. However the individual tasks involved, which are often tedious
and error-prone, in an ideal scenario should be supported in an automatic manner and by a single
solution catering for all aspects of the problem.

1.3 Scope

This thesis investigates the feasibility of a holistic consistency management approach to
handle the differential evolution of heterogeneous software artefacts. The central claim of
this work is that the consistency of heterogeneous software artefacts can be managed in a single
framework, independent of representations, tools and methodologies, based on an approach
that supports the automation of traceability creation, change detection, change impact analysis,
consistency checking and change propagation, and is guided by the principles of extensibility and
minimal intrusion to user practices. The proposed approach aims to complement development
methodologies such as spiral and agile, and to support artefacts produced in traditional and agile
software development.

The approach is realised in a proof-of-concept system, the Artefact Consistency Management
(ACM) framework. ACM provides semi-automatic traceability creation and change propagation,
and automatic change detection, impact analysis and consistency checking functionality to
manage the consistent evolution of requirements specification, UML class diagram, Java
source code, JUnit test case, UML sequence diagram, UML use case diagram, and software
architecture (conceptual and module view) artefacts. These artefacts are selected for the current
implementation as they represent various lifecycle stages and abstraction levels. However, the
ACM framework is designed to be extensible and to allow new artefacts to be added. Finally, the
framework is evaluated using six open source systems.

Inconsistently evolving artefacts is a significant issue which has been discussed in both the
ViewPoint-oriented software development literature and the Model Driven Architecture (MDA)

community. While a summary of the main commonalities and differences between the approach
presented in this work and these areas is provided, it is outwith the boundaries of this research to
discuss their specifics in detail.

ViewPoint-oriented software development refers to the problem as the multiple perspectives

problem, resulting from "many actors, sundry representation schemes, diverse domain knowledge,

1.4. RESEARCH QUESTION AND HYPOTHESES 5

differing development strategies", and aims to provide a framework for managing these
perspectives. The resulting ViewPoints framework offers an infrastructure for supporting
multiple methods and views in a distributed, collaborative software development setting, through
integrating existing software development tools and methods [17]. Integration constitutes the
primary difference between the ViewPoints framework and this work, which aims to provide an
artefact and tool independent solution. Additionally, multiple-perspectives software development
requires a method engineering process to take place, for example, to construct ViewPoints
templates through which additional ViewPoints can be created [17].

MDA is a framework for software development, in which different representations of a system
are referred to as models [18]. The steps of software development include specifying Platform
Independent and Platform Specific models, which are transformed to code [19]. The issue of
inconsistency emerges as a result of changes. MDA specifies a methodology to carry out software
development tasks, while the work presented in this thesis aims to explore an approach to provide
support to manage the evolution of software artefacts as part of existing software development
activities. However, the ACM framework does not preclude the use of MDA and MDA specific
models.

1.4 Research Question and Hypotheses

This thesis poses the following research question:

Is it feasible to handle the differential evolution of heterogeneous software artefacts auto-
matically without imposing specific methodologies or tools and in an artefact independent
manner?

Answering this question entails the identification of the tasks involved in handling the evolution
of heterogeneous artefacts, and the investigation of an achievable level of automation and a
suitable representation of diverse software artefacts. To answer this research question, the
following hypotheses are investigated:

H1. The differential evolution of heterogeneous software artefacts can be handled by one
holistic consistency management framework. Currently no single approach offers a full
solution to manage the consistency of software artefacts. The feasibility of this hypothesis is
investigated through the design and implementation of such a holistic framework, the concept of
which is introduced in Chapter 4.

H2. An artefact consistency management framework need not impose specific method-
ologies or CASE tools on the user. Existing solutions aimed at ensuring the consistency of

6 CHAPTER 1. INTRODUCTION

artefacts often prescribe the processes to be followed and tools to be used. This is a restrictive
approach considering the multitude of representations, tools and the diversity of projects.

H3. It is possible to automate all aspects of artefact consistency management. This work
hypothesises that some aspects can be fully automated, while others may require manual effort,
and hence can be partially automated.

H4. An artefact consistency management framework can be independent of specific
artefacts: it can cater for heterogeneous software artefacts and can be extended to handle
any new artefacts given that data contained in them can be accessed.

1.5 Novel Contributions

1. A survey and classification of approaches (see Chapter 3) relevant to the discussion of
artefact consistency management. The survey reveals which research areas contribute to
addressing the problem, and through an evaluation it identifies potential shortcomings. Based
on the findings of the survey a set of challenges and characteristics of an ideal consistency
management solution are derived (see Chapter 4) from which high level requirements of a
consistency management framework are formed (see Chapter 4).

2. A holistic conceptual approach to support artefact consistency management incorporating
traceability creation, change detection, impact analysis, consistency checking and change
propagation (see Chapter 4).

3. The design, implementation and evaluation of a proof-of-concept prototype, the ACM
framework1, which provides:

• An extensible, property-graph based representation of heterogeneous software artefacts

• Automated support to transform heterogeneous representations to a unified graph-based
format, using XSLT transformations

• Change detection functionality to support

a) The extraction of changes from an external repository

b) The identification of changes at the property graph level using a graph-based change
identification algorithm

• Graph-based change impact analysis of heterogeneous software artefacts

• Extensible XML consistency rule base to support consistency checking of heterogeneous
software artefacts

1Source code can be found at: https://github.com/ACMFramework/ACMF

1.6. THESIS ORGANISATION 7

• A set of heterogeneous software artefacts obtained from six open source systems used for
evaluation
These contributions are discussed in Chapter 5, 6 and 7.

4. An approach to automate trace link creation between heterogeneous software artefacts using
machine learning (see Chapter 8).

5. A data set containing 1100 data instances representing trace links between UML diagram
(use case, sequence diagram, class diagram), Java source code, JUnit test case, and software
architecture (module view and conceptual view) artefacts. The data set provides a foundation
for conducting traceability experiments for heterogeneous artefacts using machine learning
and can be found at: https://github.com/ACMFramework/ACMTraceability.

6. A trace link classification, which is utilised in the ACM framework (see Chapter 2).

7. A categorisation of heterogeneous software artefacts (see Chapter 2).

1.6 Thesis Organisation

Chapter II provides a discussion of concepts relevant in the discussion of artefact consistency
management.

Chapter III presents a survey of related work. These solutions are classified and subsequently
evaluated.

Chapter IV describes the proposed solution, and the concept of the holistic view of artefact
consistency management.

Chapter V presents the overall architecture and design of the prototype (ACM) framework.

Chapter VI discusses the data representation strategy of ACM framework.

Chapter VII describes the implementation approach of each framework stage in the ACM
framework.

Chapter VIII introduces a machine learning based approach to automate trace link creation
between heterogeneous artefacts.

Chapter IX provides an evaluation of the proposed framework to assess feasibility and to
demonstrate the effectiveness of the solution in fulfilling the requirements set out.

Chapter X concludes the thesis by discussing the strengths and potential shortcomings of the
research and further areas of potential extension.

8 CHAPTER 1. INTRODUCTION

1.7 Publications

I. Pete and D. Balasubramaniam, "Handling the Differential Evolution of Software Artefacts
: a Framework for Consistency Management," in Paper presented at 22nd IEEE International
Conference on Software Analysis, Evolution, and Reengineering, 2015, pp. 599-600.

Works in Progress

Towards a Holistic Artefact Consistency Management Framework

Article manuscript submitted for publication to Automated Software Engineering in October,
2016.

A Survey of Artefact Consistency Management

Article manuscript submitted for publication to Journal of Systems and Software in October,
2016.

2CHAPTER TWO

BACKGROUND

This chapter introduces the terminology relevant in the discussion of artefact consistency
management, which is derived from established research areas. Firstly, the concept of software
artefacts is introduced and a classification of artefacts is provided. Subsequently, traceability
is defined and a classification of trace links is supplied, which is followed by a description of
change impact analysis. Lastly, definitions of consistency, consistency management, consistency
checking and change propagation are discussed.

2.1 Software Artefacts

2.1.1 Definition

The term artefact is used both in industry and academia to refer to entities representing a software
system. The context in which the concept primarily appears in industry is that of configuration
management. Software artefacts can be thought of as information container units, and can be
described by a number of attributes, such as actors creating or consuming them. Artefacts also
have a state and a lifecycle, and a significant aspect of them is that they can be linked to other
artefacts [20].

Finkelstein et al. define software artefacts as follows: "The (sub)-products and ’raw material’ of
a process. An artefact produced by a process may later be used as a raw material by the same
or a different process to produce other artefacts. Artefacts are often persistent and versioned.
An aggregate of software artefacts to be delivered to a user is called a software product" [17].
Another definition by Beyer and Noack highlights the fact that there is a diverse range of software
artefacts that constitute a software system ranging from documentation through test cases to
source code [21].

9

10 CHAPTER 2. BACKGROUND

In this work software artefacts are defined as products of the activities involved in software
development. Due to the variety of these lifecycle activities the resulting artefacts show a
high level of heterogeneity. Heterogeneous representations may also be managed by different
tools, such as Microsoft Word1, Axiom2, Rational Rose3, Microsoft Visual Studio4, Eclipse5,
TestLink6.

2.1.2 Artefact Classification

In the following section we propose a classification of software artefacts capturing the variety
of dimensions through which a system can be represented. The categorisation is based on the
following:

1. Aim and scope of artefacts: this aspect indicates whether the artefact is aimed at describing
the system at a high level to allow stakeholders to communicate design decisions, such
as an architecture diagram, or it captures low-level implementation details, such as source
code. Thus, categories may include specification artefacts, communication artefacts, and
implementation artefacts among others.

2. Process methodology and life cycle stage: each stage in the software life cycle has a well-
defined purpose and produces specific artefacts. In a conventional waterfall life cycle [12], the
analysis phase produces analysis artefacts, which can take multiple forms depending on the
given project. For example, the results of analysis can be expressed through natural language
requirements specifications, or equally, UML use cases. During design, typically architecture
and design artefacts are created, such as design diagrams or architectures represented by
Architecture Description Languages (ADL). The implementation phase may produce source
code items or an executable (implementation artefacts). Testing may result in unit tests
expressed in source code or test cases in a test management system (test artefacts). Finally,
an artefact typically associated with the maintenance phase is an issue, a bug, or an item in a
bug tracking system (maintenance artefacts).

Agile practices [12] may result in new artefact types as they structure the software life cycle
in a different manner. A notable difference when compared to the waterfall life cycle is the
reduction of effort spent on upfront specification. For example, product backlogs produced
during the project planning phase may capture requirements, and features, user stories or use
1https://products.office.com/en-gb/word
2http://www.iconcur-software.com
3http://www-03.ibm.com/software/products/en/ratirosefami
4https://www.visualstudio.com/
5https://eclipse.org/
6http://testlink.org/

2.2. TRACEABILITY 11

cases may replace rigorous documentation (analysis artefacts). Each sprint produces source
code and tests (implementation and test artefacts), and may also be accompanied by design
diagrams capturing parts of the system (design artefacts).

3. Specific artefact structure: certain artefacts are characterised by a well-defined structure,
such as source code built up from language constructs abiding by specified syntax rules.
On the other hand, some artefacts, such as requirements specifications, do not necessarily
exhibit a pre-defined structure to be rigorously followed across artefacts of the same type.
Therefore, their structural elements may be shaped by authors’ preferences and decisions.
Another consideration is whether the structure of artefacts is hierarchical or flat.

4. Abstraction level: artefacts can be characterised by their abstraction level, which indicates
the level of detail they capture. In this work, a relative scale is used to compare artefacts
to identify whether they represent a lower or a higher abstraction level when compared to
another one. The highest abstraction level is exemplified by requirement specifications, while
an instance of the lowest abstraction level relevant in this discussion is source code, for
example.

The variety of representations is further expanded by the different sub-types. For example,
source code can take various forms; high-level programming languages can be grouped into
categories based on the programming paradigm [22] they follow, and a single category may
include multiple programming languages which differ in features they provide. Most artefact
types can be categorised in multiple ways, which is illustrated by examples given in Table 2.1.

2.2 Traceability

In this section the definition of traceability used in this work, the description of traceability-related
concepts, and a classification of trace links are presented.

2.2.1 Definition, Significance and Terminology

A key aspect of software change management is the ability to understand relationships among
software artefacts. In a typical software project, a large number of artefacts may exist and
the specification of relationships among them is a complex and challenging task. The area of
traceability is concerned with the specification and maintenance of such links.

The need for traceability was first expressed at the end of the 1960s [25] and since then it has been
most extensively researched in the requirements engineering community. Its most widely cited
definition, which originates in this community, was coined by Gotel and Finkelstein: "the ability

12 CHAPTER 2. BACKGROUND

Artefact Type Categorisation and Examples

Source code � Based on programming paradigms [22], for example

Imperative: C
Declarative: SQL
Event-driven: Javascript
Functional: Haskell

UML design diagrams � Based on a classification proposed by Rumbaugh et al. [23], for example

Structural: class diagram, collaboration diagram
Dynamic: state machine diagram, activity diagram
Physical: deployment diagram
Model management: package diagram

Architecture diagrams � Based on architectural views [24], for example

Logical view architecture
Development view architecture
Process view architecture

Table 2.1: Artefact Categorisation Examples.

to describe and follow the life of a requirement, in both a forwards and backwards direction"
[26]. For the purposes of this work, a more generic definition of software traceability is proposed:
traceability refers to the ability to interrelate heterogeneous software artefacts representing a

software system at different abstraction levels.

Although traceability has been described as a quality attribute of software systems [27] and is
required for compliance with certain industry standards [28] [29] [30], it is not characterised
by broad acceptance and wide adoption in industry. In 1994, this problem was attributed to the
lack of a common definition of traceability and the diverse user, project, task and information
requirements [31]. The so called traceability problem [26] continues to exist in the present,
where reasons for the lack of industry-wide adoption include costs and efforts associated with
implementing traceability techniques. Current approaches may not offer a desirable level of
accuracy and coverage, which also impedes their adoption.

Conversely, the importance of the area is well illustrated by the establishment of the International
Centre for Excellence for Software Traceability (Coest), which was created to encourage research
collaborations in the area of traceability [32]. Implementing traceability allows software projects
to better abide by the various standards set for requirements engineering. Other advantages
include software reuse, improving system comprehension, and the ability to assess completeness

2.2. TRACEABILITY 13

of implementation. A major contribution of traceability is in the area of software maintenance,
where links connecting entities aid the identification of parts of a system affected by a change.
Specifically, it supports software change impact analysis [33], which is discussed in detail in
Section 2.3. As traceability relations indicate dependencies between software artefacts, these
relationships also support a number of other tasks such as understanding rationale and design
decisions [34].

Following is a brief summary of fundamental traceability concepts, which are used throughout
this thesis. The definitions are adopted from the work of Gotel et al. [25].

Trace link. An association between two artefacts as denoted by Figure 2.1. The illustration also
shows that trace links are effectively bidirectional as they can be traversed in two directions.

Besides the above definition, we define trace links as a pair P of a source and a target. Source
and target are elements of the set of artefact elements.

Source and Target artefacts. The two ends of the association describing the origin and the
destination of the trace link. In this work, artefacts may also be referred to as representations.

Figure 2.1: Trace link connecting a source and a target artefact.

Trace artefact type. As mentioned in Section 2.1.2, artefacts can be grouped based on similar
characteristics they share.

Trace. "A specified triplet of elements", which consists of the source and target artefacts, and a
trace link associating them.

Tracing. The process of establishing or using traces.

Trace granularity. The level of detail at which a trace captured, defined by the granularity of
the source and the target.

Traceability creation. An activity that involves the:

a) definition of the source and target artefacts and their trace links,
b) representing of traces resulting from the tracing process,
c) storing of traces, and finally
d) validation of traces.

14 CHAPTER 2. BACKGROUND

In this work the following synonyms are used to refer to this activity: establishing trace links,
trace link creation.

Traceability maintenance. A process aimed at managing already established traces including
the

a) retrieval,
b) analysis,
c) update, and
d) verification of traces.

Vertical tracing. The process of tracing artefacts, which are at different abstraction levels (for
example tracing between source code and requirements).

Horizontal tracing. The process of tracing artefacts, which are at the same abstraction level
(for example tracing between requirements).

2.2.2 Trace Link Classification

As Spanoudakis et al. point out, stakeholders in software projects utilise different links depending
on their perspectives and goals [35]. Therefore, numerous link types exist, which can be
categorised in various ways. Section 2.2.2.1 provides a summary of these classifications and
Section 2.2.2.2 introduces a categorisation of trace links connecting heterogeneous artefacts.

2.2.2.1 Existing Classifications

A summary of trace link classification strategies is provided by Winkler and Pilgrim [36].
Additionally, Spanoudakis et al. present an extensive overview of trace links and survey
existing classifications from the requirements engineering and software change management
communities. The identified types of trace links include dependency, generalisation/refinement,
evolution, satisfaction, overlap, conflicting, rationalisation, and contribution relations [35].
Dependency links imply that the existence of an element relies on the existence of another one.
Generalisation/refinement links demonstrate how elements of a system can be broken down into
components, how elements can be combined to form other entities and how elements can be
refined by others. Evolution links capture the history of development in a structured manner.
Satisfaction links indicate that requirements are satisfied by the system. Overlap links denote
whether two requirements refer to the same feature. Conflicting links capture scenarios where
two requirements conflict with each other. Rationalisation links allow the identification of the
rationale behind creating the given artefact. Lastly, contribution relations are established between
artefacts and the stakeholders who produced them.

2.2. TRACEABILITY 15

Another categorisation of trace links is introduced through the reference model created by
Ramesh et al. [31] who enhance their traceability meta model with four types of links, specifically,
Satisfaction, Evolution, Rationale and Dependency links. Some of these links overlap with those
specified above, as shown by their definitions:

A) Satisfaction links aim at ensuring that requirements of the system are satisfied.
B) Evolution links allow the recording of actions leading from existing objects to new objects.
C) Rationale links help identifying the rationale behind creating objects.
D) Dependency links aim to manage dependencies between objects.

2.2.2.2 Trace Link Classification of Heterogeneous Artefacts

To complement existing work in trace link classification and to provide a means to categorise link
types used throughout this work, a generic classification of heterogeneous artefacts is proposed.
The taxonomy differentiates two major trace link types, inter and intra links.

Intra Links

Intra artefact links exist among elements of the same artefact. Although they typically capture
logical relationships in the application domain, there may be instances where developers may
wish to add other links to aid understanding and maintenance. In this category, links may capture
the following:

1. Domain dependency: to denote that relationships exist among elements to reflect the
application domain. For example, composition, specialisation, use, instantiation, rationale
and containment may be represented by such links.

2. Development links: to denote relationships that are identified during development although
they may not be part of the application domain. For example, these links may be annotated
to indicate that the two linked elements should co-evolve, or overlap, conflict or reinforce
each other.

3. Evolution: to denote that an element is a new or revised form of another in an earlier version
of the artefact. Such changes can happen as a result of corrections, changes to user or system
requirements or other artefacts, and refinement as part of development activities.

Inter Links

Inter artefact links are those that exist between different artefacts. Within this category, links
between elements in different artefacts may be created to capture the following:

1. Identity: to denote that the linked elements are the same but seen from different perspectives.

16 CHAPTER 2. BACKGROUND

For example, an object in two different UML diagrams or a source code method and its
corresponding unit test may need to be identified as the same entity.

2. Satisfaction: to denote that an element in one artefact satisfies, implements, evaluates or
describes an element in another artefact, typically at a higher level of abstraction.

2.3 Change Impact Analysis

2.3.1 Definition and Terminology

Unmanaged modifications to a software system can have serious consequences. Therefore,
a change management process is needed to control changes and their impact. An aspect of
controlling changes is the activity of identifying the scope of changes, which is called impact
analysis (IA). Bohner and Arnold describe the concept as the identification of the (ripple-) effects
and consequences of a change [37]. Impact analysis is a recognised change management activity
and it is part of the Change Management Process Framework described by Leffingwell and
Widrig [38].

IA can be carried out prior to and following the implementation of a change [39]. Before a
change is implemented, it aids the planning and estimation of costs associated with the given
modification. IA techniques may also be applied to trace ripple effects of changes and to
propagate changes following their implementation. The following concepts are related to the IA
process and its evaluation as adopted from the work of Kama [40]:

Starting impact set (SIS). The first step of impact estimation is the identification of a set of
entities initially affected by the change, which constitute the elements of SIS.

Candidate or Estimated impact set (CIS or EIS). The process of tracing from the elements
contained within the SIS results in the establishment of a set of potentially impacted entities.

Actual Impact Set (AIS). This set contains elements, which are actually affected as a result of
the change.

Discovered Impact Set (DIS). It represents a set of elements actually impacted by the
modification although not identified and not in the CIS.

False Positive Impact Set (FPIS). These elements represent overestimation of impacts as it
contains elements that were not actually impacted yet were identified.

In the light of these concepts, IA can be defined as an activity aimed at estimating a CIS, which
coincides with the AIS. The most frequently applied accuracy metrics of the impact analysis

2.3. CHANGE IMPACT ANALYSIS 17

process include precision and recall. Precision measures the percentage of candidate impacts
that are actual impacts, whereas recall measures the percentage of actual impacts included in the
CIS [41].

Precision can be calculated as follows.

Precision = (|EIS|∩ |AIS|)/(|EIS|) (2.1)

while, recall is computed as follows.

Recall = (|EIS|∩ |AIS|)/(|AIS|) (2.2)

2.3.2 Categorisation of Change Impact Analysis Techniques

Numerous methods have been proposed to estimate change impact. To conclude this section, a
brief summary and categorisation of the most frequently used approaches is supplied; a detailed
discussion of the topic is provided in literature [39] [40] [42].

One categorisation is based on the scope of analysis they provide. While the majority of
approaches support IA within source code artefacts, some others facilitate heterogeneous artefacts.
Ibrahim et al. refer to the first category as code-level impact analysis, while the latter is discussed
as broader perspective impact analysis [43].

The categorisation provided by Wong et al. allows the derivation of the following IA concepts
[44]:

1. Structure-based IA. These approaches utilise dependency structures of source code artefacts
and trace links between heterogeneous artefacts in order to establish impact sets. A potential
drawback of such approaches is that additional techniques are required to reveal semantic
relationships.

2. History-based IA. To address shortcomings of structure-based IA solutions, these techniques
utilise revision histories to identify logical couplings between entities. Discovering logical
couplings (also referred to as evolutionary coupling) highlights how entities historically
change together. Particular techniques include association rules (such as a =⇒ b), to predict
that an entity b is likely to change as the result of an entity a being changed.

3. Probabilistic IA. To complement structure-based and/or history-based IA approaches and to
predict changes, probabilistic techniques can be leveraged. These include Bayesian networks
and Markov processes.

18 CHAPTER 2. BACKGROUND

2.4 Consistency, Consistency Management, Consistency
Checking and Change Propagation

The concept of consistency is integral to the discussion of artefact consistency management.
In the remainder of this chapter, consistency and consistency management are first discussed.
Subsequently, the definition of artefact consistency management is derived and the concept of
consistency checking is introduced.

2.4.1 Consistency

In the most generic sense of the word, consistency can be defined as the "condition of adhering
together" [45]. It is a widely used term in various areas within software engineering, which
handle different types of consistency related problems. However, at a high level, consistency in
these diverse cases refers to the same notion, that is, two entities are consistent if they abide by
some consistency definition, otherwise they are inconsistent.

A discussion of related work relevant to consistency is provided in Chapter 3. For example
inconsistency is defined by Nuseibeh et al. as "a situation in which a set of descriptions do
not obey some relationship that should hold between them" [46]. Zisman and Spanoudakis
informally describe inconsistency as a "state in which two or more overlapping elements of
different software models make assertions about the aspects of the system they describe which
are not jointly satisfiable." [47]

Since this work focuses on the consistency of heterogeneous software artefacts during software
evolution, the concept of consistency can be further narrowed to refer to this specific case. In the
scope of this discussion a set of heterogeneous artefacts are consistent if they abide by conditions
such that they represent the same state of a given software system.

2.4.2 Consistency Management

Similarly to consistency, the problem of consistency management is discussed in various software
engineering areas including requirements engineering [48] and model-based software engineering
[49]. Consistency management also lies at the core of solutions aiding the development of
complex systems, such as object management systems [50], and the viewpoints system [17]. The
discussion of consistency management in these areas is outside the scope of this work.

However, a generic definition of consistency management can be derived from these areas,
and it involves the activities of 1) defining consistency conditions in relation to entities the

2.4. CONSISTENCY, CONSISTENCY MANAGEMENT, CONSISTENCY CHECKING AND CHANGE PROPAGATION19

consistency management is aimed at, 2) defining and identifying violations of consistency, and
3) re-establishing consistency following violations [50].

Specific areas of concern in consistency management include the way consistency conditions
are formulated, for example, using constraints or rules, and the way consistency conditions are
expressed, for example, using formal means or specification languages.

2.4.3 Artefact Consistency Management

The above definition of consistency management can be further refined to introduce the concept
of artefact consistency management, which is used throughout this thesis. At a high level, artefact
consistency management consists of a set of tasks aimed at keeping heterogeneous software
artefacts consistent in the face of changes. Software artefacts evolve consistently if changes

applied to one artefact are reflected in all related artefacts and inconsistent representations

before they are further used. Based on this description it can be deduced that the consistency
management activities defined in Section 2.4.2 form only a subset of the tasks artefact consistency
management involves. The identified aspects of artefact consistency management are introduced
in detail in Chapter 4.

2.4.4 Consistency Checking

Based on the definition of consistency management described in Section 2.4.2, consistency
checking can be generally defined as a process that consists of the following activities:

a) definition of consistency conditions, and
b) detection of violations

Therefore consistency checking can be described as a subset of the activities involved in
consistency management. Specifically, consistency checking is the activity of assessing whether

conditions defining consistency between or within selected artefacts hold following a change.

The topic of consistency checking between versions of specific artefacts has been widely
researched, particularly in relation to the consistency of UML models [51]. Certain approaches
are independent of artefacts and address generic consistency issues: Vierhauser et al. provide
examples of consistency checking between specific models and generic approaches [52].

2.4.5 Change Propagation

Closely related to the concepts of impact analysis and consistency checking is change propagation,
which is defined in the impact analysis literature as follows: "change to one part or element

20 CHAPTER 2. BACKGROUND

of an existing system configuration or design results in one or more additional changes to the
system, when those changes would not have otherwise been required" [53]. This is not the
definition adopted here since in this work, similarly to Han’s research [54], change propagation
is a separate activity.

Change propagation is a key activity in software maintenance and change management as it
ensures that modifications are correctly applied to all dependent entities and no inconsistencies
are left in the system as a result of the given change and its ripple effects. Change propagation
can be applied within homogeneous artefacts, where a modification introduced to, for example,
source code may result in further changes to other source code entities. This problem [55] [56]
has been investigated in dependency analysis research [57]. Malik defines change propagation
as "the process of propagating code changes to other entities in a software system to ensure the
consistency of assumptions in the system after changing an entity" [58].

Based on the definition of consistency management described in Section 2.4.2 and related to
Malik’s definition, we define change propagation as a consistency management activity aimed at

enforcing consistency by re-establishing it following violations.

Change propagation across heterogeneous artefacts is highly relevant in this work, where a
modification to one software artefact results in inconsistencies in other entities and changes need
to be propagated in order to resolve the consistency violation. To conclude, it is worth noting
that change propagation also involves the discovery of the degree to which inconsistencies are
tolerated and whether an optimistic or pessimistic approach is adopted to solve inconsistencies.

2.5 Conclusion

In summary, this chapter has defined the concepts of software artefacts, traceability, change
impact analysis, consistency, consistency checking, consistency management and change
propagation. This serves as a preamble to discussing related work and the proposed consistency
management approach in Chapter 3 and 4, respectively.

3CHAPTER THREE

LITERATURE REVIEW

This chapter explores related work relevant to artefact consistency management. The approaches,
which span a number of research areas, are first classified. Following a detailed discussion
of their characteristics, an evaluation is carried out to identify their benefits and shortcomings.
This leads to establishing the characteristics of a potential solution in Chapter 4 addressing the
identified shortcomings.

3.1 Introduction

State-of-the art solutions presented in this chapter contribute to advancing the field either by
considering the problem in a holistic manner or by focusing on specific aspects of it. It is
not within the scope of this work to outline the history of all related fields and to identify the
main challenges of the individual research areas. Instead, the aim of the analysis is to compare
solutions originating from diverse research areas based on common characteristics related to the
discussion of artefact consistency management and to reveal the extent to which they advance
artefact consistency management.

Specifically, the focus of the review is to identify to what degree the issue has been addressed
and which research areas contribute to solving it. To obtain answers to these questions, relevant
solutions were analysed and evaluated based on the questions described in Subsection 3.2.4.

The rest of the chapter is organised as follows. Firstly, the methodology used to carry out the
review is presented in Section 3.2, followed by a classification (Section 3.3 and analysis of
solutions (Section 3.4). The chapter concludes with the outcomes of the evaluation discussed in
Section 3.5.

21

22 CHAPTER 3. LITERATURE REVIEW

3.2 Methodology

The review process was guided by principles of systematic literature reviews in software
engineering, based on a description of a methodology by Biolchini et al. [59] and a survey
provided by Kitchenham et al. [60]. The aim of adopting a non ad hoc approach was to allow
the reproducibility of the investigation. It is also worth noting, however, that despite the up front
planning, the review process is an iterative one. Therefore, certain planned aspects of it, such as
search terms and inclusion criteria were subject to change.

3.2.1 Planning

3.2.1.1 Research Questions

The following research questions are formulated to provide the groundwork for conducting the
survey.

RQ1. What research areas contribute to artefact consistency management?
RQ2. Which aspects of the problem of artefact consistency management do these approaches
address?
RQ3. Do these approaches implement the proposed solution and what level of automation do
they provide?
RQ4. Which software artefacts do these solutions cater for?

3.2.1.2 Search Process

Firstly, Google, Google Scholar 1 and CiteSeerX 2 were selected to perform search. Secondly, the
types of information sources were considered: conference proceedings, journals, PhD theses and
websites dedicated to solutions. Finally, search terms were identified, which include: software

traceability, traceability creation, traceability maintenance, software artefact, software change

impact analysis, software artefact consistency, software change propagation, heterogeneous soft-

ware artefacts, software change management, software configuration management, consistency

checking.

Inclusion and Exclusion Criteria

At the outset, studies originating between 2000 and 2013 were selected to identify the latest
results and approaches in each area. This was later extended to studies dating back prior to 2000

1https://scholar.google.co.uk/
2http://citeseerx.ist.psu.edu/index

3.2. METHODOLOGY 23

to include works laying the foundations of these areas.

The above search terms also returned not directly relevant results, primarily due to two reasons.
Some concepts, such as consistency or consistency checking, appear in various research areas.
To filter such results and exclude irrelevant ones, specific search techniques were utilised, such
as the exclusion search operator.

Besides, some of the search terms refer to large research areas, therefore studies directly
relevant to artefact consistency management and the research questions had to be selected.
To illustrate this process, the example of the term software traceability is taken. Firstly, the
relevance of traceability in artefact consistency management is identified. Since traceability
allows connections between heterogeneous software artefacts to be established, traceability
solutions aimed at supporting the automatic linking of artefacts are considered. As software
artefacts evolve, their connections are also impacted, therefore traceability maintenance solutions
are also within the scope of potential solutions. Secondly, further questions were raised to select
relevant solutions. For example:

• Are there any approaches that incorporate traceability to support software evolution?

• Are there any standalone traceability solutions that cater for heterogeneous software artefacts?

A similar process was applied with respect to each search term pertaining to larger research
areas.

3.2.2 Execution

The original study was first carried out between 2012 and 2013 and was followed up periodically
to identify unseen work. This approach proved to be effective as further examples of relevant
work were found after 2013 until the submission of this thesis.

Data Collection

The following information was extracted from the studies in question:

• The aim and scope of the work

• Motivation

• Supported software artefacts and extensibility

• Level of automation: is the solution manual, or semi-automatic, or fully automated? Which
aspects of the solution are automated, if any?

• Implementation details of prototype, if applicable, with respect to extraction and storage of
software artefacts and trace links.

24 CHAPTER 3. LITERATURE REVIEW

• Stages of artefact consistency management (introduced in Chapter 4) supported.

3.2.3 Results Analysis

Based on the findings of the search process, a classification of the investigated studies was
established. The main premise of the classification is that some solutions are holistic and support
multiple aspects of artefact consistency management, while others focus on solving a particular
aspect of the problem. Since the boundary between the specific research areas is often blurred,
the classification presents a major challenge in this review process.

Besides the categorisation, the findings also allow an evaluation of the individual solutions to be
carried out, the criteria and results of which are discussed in Section 3.5.

3.2.4 Related Surveys

To the best of our knowledge, a comprehensive overview combining and assessing results
achieved in areas that contribute to artefact consistency management, has not yet been produced.

Closely related to this survey is a review of traceability in requirements and model-driven
development by Winkler et al. [36]. The classification approach they follow is based on grouping
solutions around the hindering factors traceability practices face and strive to overcome. These
are namely natural, technical, economic and social limitations. The authors classify research
publications based on the artefacts among which traceability is established.

In "A Review of Software Change Impact Analysis", Lehnert presents the results of an
investigation of change impact analysis and identifies five scopes of impact analysis [42].
Accordingly, impact analysis can be performed at the source code, architectural model, and
requirements model level. Additionally, some solutions consider miscellaneous artefacts, such as
documentation, configuration files, bug trackers. Finally, combined scope approaches provide a
comprehensive analysis to trace impacts across different types of artefacts. Some of the solutions
mentioned in Lehnert’s survey are highlighted in this work for their contribution to artefact
consistency management.

Sun et al. provide a survey of code-based change impact analysis techniques proposed between
1997 and 2010 in [39]. Their work constructs a framework to characterise and classify these
techniques based on a set of criteria including the impact set, the type of analysis, intermediate
representations, language support, and tool support. While this work is specific to source code
artefacts, which is the focus of the majority of change impact analysis solutions, it provides
useful information on the evaluation of source code change impact analysis techniques, which

3.3. CLASSIFICATION 25

may be extensible to other artefacts.

Although not a survey paper, a study by Cleland-Huang et al. [61] presents a brief summary
of work in the areas of trace creation, trace maintenance and trace integrity, the correctness of
identified and maintained links. This work contributes to assessing current solutions. Similarly,
Gotel and Finkelstein investigate the requirements traceability problem and reveal that one of
the reasons contributing to the persistence of the issue is the lack of a common definition of
requirements traceability and related concepts [26]. The authors also provide a framework for
addressing the problem.

3.3 Classification

In this section, existing approaches are classified, which is followed by a detailed review in
Section 3.4. As shown in Figure 3.1, solutions can be grouped into two primary categories
based on the scope of the problem they aim to address. Holistic solutions are characterised by a
comprehensive support for managing artefacts incorporating techniques from traceability, change
impact analysis and various fields of software change management including configuration
management. Conversely, specific solutions focus on techniques for the individual aspects -
linking artefacts, assessing the ripple effects of changes and controlling the evolution of artefacts
by various means.

3.4 Review of State-of-the-art Solutions

The review provides a means to identify which related areas have received greater attention
and to articulate areas for improvement by assessing the individual solutions. It also aims to
contribute to understanding the reasons behind the lack of automated tool support for managing
software artefacts.

This section is organised as follows. Subsection 3.4.1 presents and categorises holistic solutions;
subsection 3.4.2 introduces and groups approaches from various fields addressing specific aspects
of the problem. Each solution is evaluated based on:

• its motivation and aims, and

• the stages of artefact consistency management (introduced in Chapter 4) and artefacts it
supports.

26 CHAPTER 3. LITERATURE REVIEW

Figure 3.1: Classification of solutions contributing to artefact consistency management.

3.4.1 Holistic Solutions

This category contains approaches that attempt to cater for multiple aspects of artefact consistency
management. Thus, they focus on managing the evolution of artefacts throughout the develop-
ment process. These solutions recognise the importance of handling heterogeneous artefacts and
the multidimensional nature of software [9]. They are further divided into subcategories based on
their underlying approach for representing artefacts; while some approaches combine artefacts
to embed one in another, others keep them separate and may utilise a unified representation
for processing them. A subset of these solutions manages heterogeneous artefacts to support
collaboration between stakeholders producing these artefacts.

3.4.1.1 Maintaining Separate Artefacts

Lehnert et al. present a rule-based approach for analysing the impact of changes across
heterogeneous artefacts [62]. The solution provides a rule-based dependency analysis method

3.4. REVIEW OF STATE-OF-THE-ART SOLUTIONS 27

to identify and record traceability links, and utilises a change taxonomy comprised of atomic
and composite change operations. Additionally, change impact is determined based on the
combination of change types and dependencies, and is expressed in the form of propagation
rules. The supported artefacts, UML models, Java source code and JUnit test cases, are mapped
to a unified format, to EMF-based models, and stored in the EMFStore model repository3.
Through this mapping heterogeneous artefacts are supported. However, to extend the solution
with additional artefacts, users are required to produce EMF-based meta-models. The feasibility
of the approach is demonstrated through the EMFTrace prototype, which is an extension of the
EMFStore model repository. The evaluation of the solution through a case study revealed that it is
able to determine the impact of changes across heterogeneous artefacts and the rule-based impact
analyses approach resulted in an average precision and recall of above 80%. Most features of
EMFTrace are automated, thus it is a promising solution to assist users with their change impact
analysis tasks. However, dependency detection and impact analysis rules are manually created
and maintained, which may become a cumbersome task in cases where a large number of rules
exist. Additionally, the prototype requires various dependencies such as Eclipse Kepler Modeling

Tools, EMFStore, EMF Client Platform, MoDisco.

Olsson et al. [8] describe a conceptual architecture and a prototype tool for managing traceability
and inconsistencies among software requirement descriptions, UML use case models and black-
box test plans. Similarly to EMFTrace, their solution extracts key information from artefacts.
Relationships among elements of these models are manually established. The prototype tool
captures changes and displays them to developers who can take appropriate action based on
these notifications. Thus, the majority of change propagation is carried out in a manual manner,
while in some cases changes can be automatically propagated based on entity name similarity.
The approach is closely related to work carried out in the area of inconsistency management in
multiple-view software development environments, based on the notion that software can be
viewed in analysis, design, code and test views, where inconsistencies between the views can be
detected, monitored and presented to users who can resolve them once their causes are located
[63].

Han takes a different approach to managing changes of heterogeneous artefacts [54]. Instead of
using an extracted representation of artefacts, the change management activities, such as impact
analysis and change propagation, are carried out on the original representations of software
artefacts in the development environment. The approach incorporates the representation of
relationships between artefacts, change impact analysis utilising change patterns and suggestions
for carrying out change propagation based on rules and user intervention. The technique, however,

3http://eclipse.org/emfstore

28 CHAPTER 3. LITERATURE REVIEW

has not been implemented in a proof of concept tool.

The fundamental premise of Reiss’ constraint-based work [64] is that such a solution should
be independent of tools and notations and should not rely on any artefacts being the primary
representation. The approach is based on meta-constraints describing how entities in one type
of artefact should be associated with entities in another type of artefact. For instance, the
design can be thought of as constraints on the source code (for example a UML diagram can
impose constraints about the existence of a class in the source code). Constraints are specified
as predicate equations and are stored in a relational database. The concept was implemented
in a prototype tool, CLIME and has been evaluated with the following artefacts: UML class
diagrams, source files, design patterns and design constraints [9]. Independence from tools and
artefacts is achieved by extracting relevant information from artefacts. However, the solution
does not utilise a common representation of these. Instead, relevant information is abstracted
from the original artefacts. Change detection is implemented through the update manager, which
determines whether any of the artefacts in the project have changed since the last check. Then it
notes any artefacts that have been deleted, added or modified. Change propagation is carried out
in a manual manner: in case any inconsistencies appear, they are indicated to software developers,
who can resolve them manually. The main strengths of the solution lie in its attributes of artefact
and tool independence. However, CLIME currently only handles a limited set of artefacts and
the maintenance of a large number of constraints may be problematic. Extending the prototype
involves creating an information extractor specific to the artefact to be added.

Ensuring consistency between source code and design is the focus of the solution proposed by
Hammad et al. [65] who aim to answer the question "Does a particular source code modification
affect the design and if so, how should the design be changed". Firstly, an XML-based format,
srcML4 is utilised to represent source code, and another XML format, srcDiff, is used to capture
source code changes. Source code modifications impacting the design (UML class diagrams) are
identified using XPath queries, and results are presented to the user who can manually resolve
the inconsistencies. Therefore, automatic change propagation is not implemented in the solution.
The technique does not require explicit traceability links. However, it relies on the existence of a
version of the source code and the class diagram when both artefacts were consistent with each
other. The approach is implemented in the srcTracer prototype, which has been evaluated through
a case study using C++ and UML class diagram artefacts and by comparing manual inspection
results with that of the tool. The evaluation shows promising results as the tool has demonstrated
the capability to reduce the effort required for the task. However, the approach is specific to
source code and design artefacts, and therefore does not provide an artefact independent solution.

4http://www.srcml.org/

3.4. REVIEW OF STATE-OF-THE-ART SOLUTIONS 29

Zekkaoui et al. [66] recognise the multi-dimensional nature of software systems where
representations evolve throughout the lifecycle and at different rates. The aim of their work is to
facilitate the expression and management of consistency between all artefacts by proposing a
unified approach to represent heterogeneous artefacts. This is achieved through a meta-model
capable of representing all types of artefacts and with the help of a rule engine allowing users
to define consistency rules as logical operations between artefacts. Their approach, partly
implemented in a proof of concept tool and the CMAC Eclipse plugin under development,
identifies elements that are not compliant with the specified consistency rules. Artefacts are
represented using typed graphs and they are extracted manually by a domain expert. At the
time of writing this thesis the approach was work in progress and no evaluation was provided.
However, it is a promising solution as it ensures artefact independence by allowing users to extend
existing consistency rules and artefacts (through the Artifact Builder architectural component).

ArchEvol [67], developed by Nistor et al., is aimed at maintaining an accurate architectural model
consistently mapped to its corresponding implementation in order to support architecture-driven
development and the evolution of the relationships between versions of the architecture and
the implementation. The main premise of the work is to allow development and architecture
design to be achieved separately with synchronisation taking place at certain points in time. The
aim of the approach is to allow stakeholders to use specific tools for specific tasks, such as an
IDE for implementation and an architecture development environment for creating and updating
architectural models. To realise this and to enable the parallel evolution of architecture and
source code, the authors propose the integration of ArchStudio 5, Eclipse 6 and SubVersion 7

by creating an additional layer of infrastructure. Specifically, the communication between tools
is achieved by creating an Eclipse plugin and an ArchStudio component that are linked, whilst
SubVersion is integrated through the Subclipse client. This makes it possible to record changes
to architectural models, thereby providing versioning capabilities. While the solution allows
stakeholders to perform their tasks in dedicated tools, it is not obvious how much effort would
be required to extend the system to work with additional tools and artefacts.

Collaboration and Artefact Versioning

Some holistic solutions in the subcategory of Maintaining Separate Artefacts attempt to provide
artefact versioning and create links between them to support their evolution, or they provide
a collaboration environment for distributed teams handling heterogeneous artefacts. Software
projects are increasingly carried out in a distributed manner and development efforts are

5http://isr.uci.edu/projects/archstudio/
6https://eclipse.org/
7https://subversion.apache.org/

30 CHAPTER 3. LITERATURE REVIEW

distributed across multiple locations [68]. This presents further challenges in evolving software
projects.

ADAMS [69] is a web-based environment to address problems arising in cooperative development
and to support coordination and collaboration in distributed software engineering teams. It
integrates both project management (e.g. schedule management) and artefact management
features (e.g. artefact versioning, traceability management and artefact quality management).
ADAMS is divided into a number of subsystems, out of which the following two are of relevant in
the current discussion. The Artefact Management subsystem manages the lifecycle of artefacts
and allows the tracking of artefact evolution. It is characterised by a fine-grained management
of software artefacts, which means that artefacts can be managed as either atomic entities or
composites. ADAMS has been extended with a traceability recovery tool, Re-Trace to support
software engineers in defining trace links using information retrieval [70]. Therefore, it currently
offers a semi-automatic approach to trace link creation. The Event and Notification subsystem
makes it possible for software engineers to be notified about changes provided that they had
subscribed to the specific event. Since in any given system a high number of artefacts can
exist, the proliferation of notification messages presents scalability and usability issues. ADAMS

provides excellent support for creating trace links between artefacts of different types and
for managing the evolution of artefacts through versioning. However, a major consistency
management task, change impact analysis is not explicitly supported, and the maintenance of
trace links requires manual effort.

In the dynamic process of software development, one way to manage evolution is by using
Software Configuration Management (SCM) techniques. As defined by Scott and Nisse [71],
SCM is a "discipline to identify the configuration of a system at distinct points in time" to
allow the systematic control of changes and to ensure its integrity and traceability. It manages
the evolution of software systems by controlling changes to a product throughout its lifecycle.
Furthermore, it ensures that product components are accessible, their consistency is maintained,
and that change requests, components and their status are recorded [14]. Traditional SCM systems
follow a file-oriented approach meaning that a software system is thought of as a collection of
files residing in directories of a file system. However developers and other participants of the
development process are likely to consider the system as a collection of interrelated high-level
abstractions. SCM systems are particularly suited to handle source code, while higher-level
artefacts, which can also be managed as files, may contain elements that can cause issues with
certain operations, such as merging [72]. In addition, SCM systems lack traceability support.

Molhado [73] intends to provide a solution to these issues in an effort to reduce the gap between
software design and SCM. It is an infrastructure that supports the building of object-oriented

3.4. REVIEW OF STATE-OF-THE-ART SOLUTIONS 31

SCM systems and allows developers to model their software systems in terms of logical objects
and relationships. The Molhado architecture makes it possible to integrate tools used to create
and manage different artefacts with the resulting SCM system. Therefore in this SCM-centred
development environment, changes to objects (i.e. artefacts) will be recorded. The fine-grained
evolution of links among artefacts is managed by a versioned hypermedia infrastructure. Nguyen
et al. recognise the significance of managing the evolution of architectural elements and system
architecture parallel with source code. Taking a different approach from Architecture Description

Languages (ADL)8, which handle the planned evolution of architectures, MolhadoArch [74], the
architecture-based SCM infrastructure and framework, manages versions of architectural entities
by capturing explicit revisions. Users of the environment can use built-in editors to specify
the implementations of architectural elements. Alternatively, source code can be imported.
This provides means to connect architecture with source code artefacts through hyperlinks
and to ensure their consistent evolution. However, it ties the user to the environment for
accomplishing both design and implementation related tasks, making it less likely to be adopted
in non-architecture-centric project scenarios.

In a software project a large number of files may exist with a possibly high number of relationships
between them. To capture these relationships, hypertext can be used. Accordingly, a software
project can be thought of as a "complex information artefact" [75] as opposed to the software
configuration management view, where a project is composed of a collection of files. Hypertext
- nonlinear text - refers to a mechanism that allows the navigation from one textual chunk to
another and the ability to establish relationships between them [76]. It is the underlying notion
defining the World Wide Web. An earlier mentioning of using hypertext in a software engineering
context was in 1986. Delisle et al. [77] stated that the hypertext technology naturally lends itself
to capturing relationships in a software development project as it provides storage for all the
information associated with a software project also including a version history while allowing
simultaneous access to project information.

An example of a hypertext-based approach is described by Taylor et al. [78]. The authors
propose an open hypermedia approach, called Chimera, to provide hypertext services to support
software development activities and capturing relationships among information objects. The aim
of this work is to augment existing software development environments (SDE) with hypermedia
services to manage links between a wide variety of objects. Such objects represent different
views of a software system, such as a requirement, design or source code. The solution aims
to complement existing tools used in software development. However, the integration of the
approach with different tools may demand significant effort.

8https://www.sei.cmu.edu/library/assets/Survey_of_ADLs.pdf

32 CHAPTER 3. LITERATURE REVIEW

Scacchi et al. [79] present the hypertext-based system, Document Integration Facility (DIF) to
facilitate the management of systems and the documents produced during their development,
use and maintenance. The supported documents include requirements specifications, functional
specifications, architectural designs, source code, testing information and user and maintenance
manuals. DIF considers segments of documents as objects, while relationships between them
are considered as links. Objects are stored in files and as nodes of hypertext, while relationships
between objects are stored in a relational database. The approach is specific to the listed artefacts
and uses a prescribed documentation method to produce them. Therefore it is not applicable in a
wide variety of software development scenarios.

The main premise behind the work of Nguyen et al. [80] is that software documentation
plays a significant role in program understanding. Thus, to eliminate some of the factors
hindering productive software development and to improve software documentation, a better
interoperability between source code and documentation should be provided. The lack of this
interoperability is illustrated by effort spent on software maintenance and bug fixing during
which many different tools are used. Their proposed solution, the Software Concordance (SC), is
an integrated development environment, which aims to improve software document management
using hypermedia technology. Both Java source code and documentation are represented in
a tree-based, XML-compatible format, which is built on Fluid Internal Representation (Fluid
IR). This allows not only for inline multimedia documentation within source code but also for
hyperlinks between elements of documents. Artefacts and hyperlinks are versioned using the
Molhado hypertext versioning system [73], and the fine-grained version control services are
constructed from the Molhado object-oriented SCM infrastructure.

The Ophelia project [81] [82] [83] [84] provides a platform to support software engineering
in a distributed environment. With the help of Ophelia, heterogeneous tools used in software
development are integrated in the environment by defining standard interfaces described using
CORBA IDL9 definitions. The project concluded in 2003 with the release of a beta version
and supported requirements, modelling, bug tracking, and project management tools. The
Integrator component of the Ophelia architecture supports extracting data from heterogeneous
tools through which the solution can be extended. However, the task may require manual user
intervention. As part of the project a traceability layer and prototype tool, Traceplough, were
created to support traceability across all project artefacts and to manage the change process:
stakeholders are notified about changes and inconsistent artefacts can be synchronised. While
artefacts are represented as CORBA objects, relationships are modelled by a graph structure
allowing navigation among artefacts. By means of the graph model links can be processed and

9Common Object Request Broker Architecture (CORBA) Interface Definition Language (IDL). CORBA makes
it possible for separate pieces of software created in different languages to work together as a single application [85]

3.4. REVIEW OF STATE-OF-THE-ART SOLUTIONS 33

used for impact analyses. However automatic impact analysis is not explicitly supported. With
Traceplough, users can define and visualise trace links, which are established at the artefact
level, which is rather coarse grained when used for further analysis. Potential shortcomings of
Traceplough arise from the maintenance of the traceability graph and the proliferation of events
associated with notifications.

Bruegge et al. note that distributed development is increasingly common in global companies
and propose Sysiphus [86], an environment for distributed modelling and collaboration in which
system models, collaboration artefacts and organisational models reside in a shared repository.
System models represent the different software artefacts (such as requirements, detailed design,
architecture), collaboration artefacts provide information about system models, such as change
requests, and finally, organisational models illustrate relationships among participants of the
project, and between the models that they create. The main premise of the approach is that
information captured as a side effect of development can be used to resolve issues and to
facilitate collaboration between stakeholders. The solution incorporates traceability to support
manual change impact analysis activities. Tracing among artefacts is realised using explicit links
manually set up by users and visualised in the environment. Changes are recorded at the artefact
level, and stakeholders can subscribe to be notified of them. Similarly to Traceplough, Sysiphus

alleviates collaboration issues associated with distributed software development. However, trace
links are captured in coarse-grained manner, which results in a less sophisticated impact analysis
solution.

The Open Source Component Artefact Repository (OSCAR) system [87] [88] is the artefact
management subsystem of the GENESIS environment, which was designed to support work-
flow processes and the management of work products in distributed software engineering
environments. OSCAR handles different types of data including users, process models, for
example, and through its APIs allows the integration of open source applications to provide
configuration management functionality. It also defines the notion of an active artefact, an
artefact aware of and capable of recording changes it undergoes. Artefacts are represented by
XML documents which associate meta-data, such as linking information, with file data. This
flexible approach allows the addition of new artefact types by extending the base Document
Type Definition (DTD). Although OSCAR was released, its functionality was reduced to basic
integration in the GENESIS environment and to provide version control and annotate artefacts
with meta-data.

The Advanced Process Environment Research (Aper) [89] is an example of a Process-Centred
Software Engineering Environment (PSEE) 10. The aim of Process-Centred Software Engineering

10Terms used in literature to refer to PSEEs include: Process Sensitive Environments (PSE), Process Support

34 CHAPTER 3. LITERATURE REVIEW

is to produce high quality software by focusing on the quality of the software processes [90].
The development process is represented in process models (written in a Process Modelling
Language (PML)) specifying how the development activities have to be carried out. PSEEs
provide services for the execution of these models. Typical PSEE features therefore include
automation of routine tasks and rule enforcement. Furthermore, they also provide collaborative
tools and project management capabilities. PSEEs are relevant in this discussion as one of their
central requirements is the ability to manage artefacts, and they control not only the software
processes themselves, but also software products, which continuously evolve.

Aper is composed of the Aper language, the Aper compiler, the Aper server, the object
management system (Aper OMS) and multiple Aper clients. The solution supports consistency
management, process evolution and heterogeneous artefacts including design diagrams and
requirement specifications. In contrast with the more coarse grained approaches described above,
one of the main contributions of Aper is the decomposition of software artefacts and the creation
and maintenance of both inter and intra product relationships. However it is not explicitly stated
whether intra and inter relationships are generated automatically or manually. Ripple effect
management functionality in Aper is based on relationships. Firstly, artefacts affected by a
change are identified by trigger mechanisms. Secondly, potentially impacted artefacts are traced
using relationships. Finally, consistency conditions are monitored to flag up violations. Despite
its holistic approach of managing software artefacts, the solution and its functionality being
specific to process centred environments is a hindering factor for wider industry adoption.

3.4.1.2 Combining Artefacts

Some solutions attempt to create a continuous link between different types of artefacts by
embedding one in another to ensure consistency and to manage their evolution.

Donald E. Knuth stated that the intent behind a design decision bears the same importance as
code itself, and he proposed literate programming [91]. It is an approach that supports the parallel
evolution of source code (written in C) and its corresponding documentation by combining the
two artefacts in a single document. When a change is made, the literate program, which is a mix
of explanations in natural language and implementation code, is to be updated first, following
which the code will be re-generated [92].

The above concept was extended by the open source project, Intent [93]. The motivating factor
behind this approach is that, although documentation is an important aspect of application
lifecycle management as it is used to capture design choices and their rationale, keeping

Systems (PSS) and Process Centred Environments (PCE) [90]

3.4. REVIEW OF STATE-OF-THE-ART SOLUTIONS 35

documentation consistent with code is a substantial effort. Intent is integrated in the Eclipse
IDE, and provides an environment for creating and editing documentation mixing formal and
non-formal syntax, and tools to synchronise documentation with development artefacts. Its
purpose remained similar to that of literate programming, although it attempts to achieve this
goal in a more flexible way. Firstly, Intent follows the philosophy that each task (modelling,
specification, implementation, etc.) should be carried out with its dedicated tool. This also
means that the solution tries to cater for the different lifecycle needs of various types of artefacts.
This is supported by inconsistency markers which indicate synchronisation issues and allow
users to take the appropriate action in a timely fashion. Secondly, the set of supported technical
artefacts is not constrained to source code written in a single programming language. In the
event of a change, which is automatically detected, synchronisation errors are placed in the parts
of the documentation that are related to the changed artefacts. Users can apply changes when
appropriate, therefore change propagation is a manual effort. Intent, similarly to other solutions
in this category, makes it possible to synchronise related artefacts, and it also allows software
development tasks to be undertaken using their designated tools. However, in a distributed
software development team the solution may not provide the most efficient means to ensure
consistency.

Aguiar et al. present an integrated solution [94], which is different from literate programming in
that one artefact is not embedded in another one. However, it shows similarities as the approach
focuses on weaving contents from heterogeneous sources together. The aim of the approach is to
solve the semantic consistency problem of software documentation and heterogeneous contents
including source code and diagrams by proposing XSDoc, a documentation infrastructure based
on wiki and XML technologies. Utilising the wiki frontend, users can integrate heterogeneous
contents in the web-based documentation using the mark-up language of the wiki and by means
of inlining or linking. Various plugins allow the integration of XSDoc with IDEs (currently
Eclipse) and wikis. Although the solution is extendible by implementing new plugins to work
with additional tools, the authors did not specify if it supports change detection, which is essential
for impact analyses. Additionally it is not mentioned how links between the heterogeneous
representations are maintained.

ArchJava [95] incorporates architectural descriptions into Java source code and thereby the
structure defined by architecture and the implementation are unified in one language. This
allows the consistency property communication integrity to be satisfied between architecture and
implementation in an effort to contribute to architecture conformance. ArchJava includes new
language constructs such as components, connections and ports to support the specification of
software architectures. Murta et al. describe this approach as equality by definition [96]. The

36 CHAPTER 3. LITERATURE REVIEW

main shortcoming of ArchJava is that it is not realistic to assume that developers and architects
use the same tools and notations to accomplish their design or development tasks.

3.4.2 Solutions Addressing Specific Aspects of Consistency Management

Solutions in the following category focus on specific tasks that constitute artefact consistency
management discussed in Chapter 2. They encompass traceability and change impact analysis
techniques, and approaches enabling consistency checking and change propagation. In this
section solutions from their respective research fields are presented. A more extensive review of
the individual fields is provided in surveys discussed in Section 3.2.4.

3.4.2.1 Traceability Techniques

Since an understanding of relationships among software artefacts leads to numerous benefits
including support for impact analysis tasks for predicting cost and effort and visualising
dependencies, traceability is one of the key building blocks of managing artefact consistency.
Relationships between artefacts can be created in a manual, semi-automatic or automatic manner.
One of the best known manual techniques is using requirements traceability matrices [97], which
associate requirements with other artefacts, such as test cases, using identifiers. A requirements
matrix may take the form of a separate document. Several requirements management, life cycle
and general-purpose tools support traceability tasks [25], such as IBM Rational DOORS 11,
which allows the manual specification and management of traces. Since manual trace capture is
a tedious and error prone activity, over the past couple of decades various solutions have been
proposed in the research community to alleviate this problem. Despite the availability of (mostly)
proprietary tools to support trace creation and maintenance, automated traceability remains an
open issue.

Below is a brief summary of the research efforts and results achieved in the traceability
community that contribute to managing artefact consistency. Providing a comprehensive survey
of the field is beyond the scope of this thesis. Out of the large body of work produced in the
area, this thesis investigates fundamental techniques of automated trace creation since support
for establishing links brings the automation of artefact consistency management a step closer.
This also applies to approaches aimed at managing the evolution of trace links. These solutions
are grouped into the traceability maintenance category. Besides a categorisation of traceability
techniques originating from before 2006 and criteria for their evaluation [98], Cleland-Huang et
al. provide an overview of automated traceability approaches and group them into categories
based on the intelligence level of algorithms utilised [99]. The authors argue that an ideal

11http://www-01.ibm.com/software/awdtools/doors/features/traceability.html

3.4. REVIEW OF STATE-OF-THE-ART SOLUTIONS 37

industrial strength traceability solution is dependent on these algorithms and how they can handle
the complexities of real world requirements.

Automated Trace Creation A subcategory of automated trace creation approaches, traceabil-
ity recovery techniques, identify candidate links retrospectively from existing artefacts to perform
after-the-fact tracing [25]. Qusef et al. divides traceability recovery approaches into three groups
[100]: information-retrieval-based, heuristic-based and data-mining based solutions.

Information retrieval (IR)-based techniques are used to recover trace links between software
artefacts of different types. Numerous software artefacts, such as bug reports, user manuals,
wikis, build logs, test scripts, design documents, provide textual content. Artefacts, which show
high textual similarity, are good candidates for establishing relationships between them [33].
Various tools implement information retrieval techniques, these include Poirot [101], DrTrace

[102], ReqSimile [103], TRASE [104] (which uses Latent Dirichlet Allocation), RETRO [105],
ADAMS Re-Trace [70]. Similarly, Antoniol et al. [33] propose a traceability recovery method
based on IR to create links between free text documents and source code. The method has
been applied to C++ and Java source code, and functional requirements. Maletic et al. [106]
present a solution that is primarily focused on trace link recovery. However, the technique,
which is facilitated by a formal hypertext model, uses conformance analysis and a timestamp
strategy to support the checking of trace link validity during system evolution. The link recovery
process between source code and documentation uses latent semantic indexing and is partially
automated as in some scenarios user input is required. The hypertext model allows software
documents to be represented as nodes of a network, while their relationships are modelled by
links. Traceclipse [107] is a traceability recovery tool implemented as an Eclipse IDE plug-in.
It provides semi-automatic traceability recovery, which is based on IR using Lucene. The user
interface is wizard-based and allows users to manage trace links by viewing, editing and manually
specifying them. Trace links are stored in XML format. Similarly, the TraceME [108] Eclipse
plug-in is aimed at supporting traceability recovery using the Lucene IR engine. Traceability
information is stored and managed in XML files, and the solution also provides a traceability
graph to help users with their impact analysis tasks.

The second group of traceability recovery solutions leverage data mining techniques on software
configuration management repositories, combining traceability recovery with mining software
repositories. Kagdi et al. [109] utilise sequential-pattern and itemset mining to recover trace
links using version histories. Following the identification of files that were committed together,
change patterns and trace links can be derived. The approach works with source code, user
documents, build management documents, and release documents.

38 CHAPTER 3. LITERATURE REVIEW

An example of heuristic solutions is the approach proposed by Qusef et al. [100]. In order to
recover trace links between test cases and source code and to overcome deficiencies of existing
heuristics, such as naming conventions, the authors apply Data Flow Analysis. Similarly, Egyed
and Grunbacher also discuss a heuristic-based approach in [110].

Other techniques include ontology-based solutions that aim to improve recall and precision
values achieved by other techniques. For example Zhang et al. [13] apply text mining and
an ontology-based approach to automatically establish links between source code and natural
language documents. Hayashi et al. [111] propose a technique to recover trace links between
documentation written in natural language and source code.

As opposed to traceability recovery, in situ trace link capture aims to establish trace links
prospectively while artefacts are generated or modified. Most importantly, the trace capture
happens in the background while users perform their tasks. Asuncion et al. [25] present
a prospective trace capture technique, supported by the ACTS tool implemented on top of
ArchStudio. Their technique allows the capturing of trace links between heterogeneous artefacts
using rules. Additionally, with the help of notification adapters, changes to artefacts are checked
(whether the traced artefact has been moved, deleted or revised), and trace links can be updated.
The solution can be used with tools providing public APIs or built-in history logs in order to
capture trace links between artefacts created by these tools. While there are a vast number of
open source tools that allow this, some proprietary ones do not. Furthermore, an expert technical
user is required to create and manage rules.

Spanoudakis et al. [112] describe a rule-based approach to automatically generate relationships
between requirement statement documents, use case documents and analysis object models.
The authors have identified four types of trace links between the above mentioned artefacts:
overlap, requires execution of, requires feature in and can partially realise relations. The links
are automatically created assuming that they satisfy the traceability rules associated with them.
Additionally, two types of rules have been specified: requirements-to-object-model rules are used
to generate links between requirements and analysis models, while inter-requirement traceability
rules create relationships between requirement statement, different parts of use cases or between
requirement statements and use cases. Both artefacts and traceability rules are expressed in
XML.

The TraceM [113] conceptual framework is aimed at allowing stakeholders to derive implicit
relationships between artefacts from explicit and existing links through a relationship mapping
service. The approach builds on the enabling services of open hypermedia and information
integration to provide the means to create, maintain, view and navigate between relationships.

3.4. REVIEW OF STATE-OF-THE-ART SOLUTIONS 39

Finally, recent traceability research focuses on improving the overall performance of tracing
by creating new techniques or performance enhancement techniques, and by analysing and
mimicking the way humans perform tracing tasks [114]. The problem therefore has been
approached from new angles such as expert systems and artificial intelligence [115].

Trace Link Maintenance Besides link creation, it is equally important to update existing
relationships because as systems evolve trace links may degrade, which leads to traceability decay.
This is illustrated by scenarios where trace links represent false dependencies and may point to
non-existent artefacts. While much research attention has been directed towards establishing
links, their maintenance has been less extensively investigated [25]. Maintenance techniques
assume already established relationships which allows the focus to be shifted to adding, editing
or removing links [96]. Solutions discussed below contribute to artefact consistency management
by supporting the evolution of artefacts and relationships between them.

Cleland-Huang et al. present the concept of event-based traceability (EBT) [116], which supports
the maintenance of artefacts and their trace links. The approach is based on the Event Notifier
design pattern and that the evolution of requirements can be described as a series of change events,
which can be automatically identified by an event recognition algorithm. Events are categorised
into change primitives (create, inactivate, modify, merge, refine, decompose, replace) [117].
Artefacts can subscribe to the requirements that they are dependent on and upon changes the
requirements manager component publishes an event notification message along with information
about the change. This message is received by the event server and is forwarded to dependent
artefacts. This is an effective mechanism for detecting changes and for assessing their impact on
dependent artefacts. For example to identify artefacts impacted by a change to a requirement, the
user can request a forward trace to all the artefacts that subscribe to this requirement. Utilising
information contained in change logs, "owners" of artefacts can manually resolve inconsistencies.
However, as the authors describe, a potential shortcoming is revealed in large software projects
where, due to the potentially large number of fine-grained traceability links, the published event
notification messages may become unmanageable.

Mäder et al. [34] [118] present a rule-based approach to reduce manual effort in maintaining
an evolving set of existing relationships and to address traceability decay. The technique
is demonstrated and evaluated through the traceMaintainer prototype tool, which supports
the semi-automatic maintenance of trace links following changes to structural UML models.
The solution assumes that during the object-oriented development activity a model-based
development approach is followed, a CASE tool is used to capture UML diagrams and a
traceability information model is also in place. The maintenance process can be split into

40 CHAPTER 3. LITERATURE REVIEW

two major phases. The recognition phase captures elementary changes to model elements
and recognises the development activity that is composed of these changes. For this reason,
integration with a CASE tool is required. The second phase is responsible for updating the trace
links affected by the change event. Each development activity can be related to rules, which
are expressed in XML format. Rules recognise development activities and provide options on
how to perform a given update activity. The authors performed two experiments to evaluate the
prototype. The second experiment, which was carried out using a library management system,
revealed that the manual effort spent on maintaining trace links can be reduced by 71%. The
integration with a CASE tool allows the automatic capturing of change events, and manual
impact analysis is supported through a dialog listing all existing and potentially new trace links
involved in the given activity. A limitation of the approach is that only pre-defined development
activities can be recognised, which makes the use of traceMaintainer limited in some scenarios.

ArchTrace [96] is an extensible infrastructure for semi-automatically maintaining traceability
between an architectural description and its corresponding implementation. It was designed to be
independent from the specific tools that are used to create and manage architectural descriptions
and source code. The solution is characterised by proactive consistency management and
provides an instant update mechanism, where trace links are continuously updated after each
change. The updates are managed by traceability management policies, which can act as rules, to
help decide which actions to take, or constraints, limiting the actions that can be taken. The tool’s
pluggable architecture allows the addition of new policies, however currently it supports ten
policies that map architectural components, connectors and interfaces to their respective source
code elements. ArchTrace does not provide automatic support for trace capture; it assumes the
existence of trace links. Changes to artefacts are detected through triggers inserted into external
systems, such as CM systems and architectural design environments. The triggers monitor
changes made by users, and fire when these changes are committed. Users can visualise all
architectural elements that are related to the selected source code item, which provides a way
to manually analyse change impact. Similarly, the propagation of changes to architecture and
configuration items is manual.

Asuncion et al. [119] adopt a process-oriented approach to support traceability that spans the
entire development lifecycle. The solution is based on weaving artefacts together in tandem with
the different phases of the software lifecycle. To demonstrate the concept, a prototype tool has
been developed, which provides a means for trace link creation and support for software lifecycle
activities. Traceability creation is performed manually and is aimed at minimising the overhead
associated with trace definition. The solution also allows the updating of trace links manually
through data entry forms. The prototype tool has been evaluated in an industrial setting. It aids

3.4. REVIEW OF STATE-OF-THE-ART SOLUTIONS 41

architects in high level design tasks and enables them to integrate traceability with less effort in
their development tasks.

In summary, automated trace creation and maintenance techniques contribute to the management
of artefact consistency as one of its key elements is the existence of relationships between
artefacts. The majority of solutions are based on IR with recall values measuring coverage
ranging between 90-100%, and precision values indicating accuracy ranging between 5-30%
[114]. This presents a major hindering factor for industry adoption. Additionally, as pointed out
by Bashir’s study [98], automated techniques cater for a small subset of artefacts.

3.4.2.2 Change Impact Analysis (IA) Approaches

Automated support for assessing the consequences of modifications is one of the backbones of
artefact consistency management, since identifying a potential impact set facilitates consistency
checking and change propagation. A summary of the main concepts and some relevant IA
solutions is presented below.

As reinforced by Lehnert’s findings [42], most IA solutions concentrate on analysing the ripple
effects of changes impacting source code elements. That is, determining which source code
entities are likely to be affected when another source code element changes. To answer this
question, techniques ranging from call graphs [120], dependency analysis [121] and probabilistic
models [122] to history mining [123] and their combinations [124] have been proposed. These
solutions are characterised by disparate accuracy and coverage values [125].

The abundance of techniques proposed to automate source code impact analysis provides a
useful starting point for approaches handling heterogeneous artefacts. However, these techniques
address only a part of the artefact consistency management problem. It is an interesting question
waiting to be answered if and to what extent particular source code specific techniques could be
used in the scope of diverse artefacts. For example, dependencies are extensively used in static
source code IA techniques, which is similar to the notion of using trace links between different
types of artefacts in estimating the consequences of a change. Equally, change coupling detection
could be extended to non-source code artefacts assuming they are stored in version control.

An example of change impact analysis solutions catering for non-source code artefacts is the work
proposed by Dantas and Werner [126]. The aim of the approach is to detect UML model elements
that changed together in the past using mined association rules and the Apriori algorithm. For
this reason a versioned UML repository is utilised and the authors present their work through a
use case, a class and a component diagram. Kotonya et al. support change impact analysis at the
requirement level using traceability information and probability values [127]. Lee et al. propose

42 CHAPTER 3. LITERATURE REVIEW

a goal-driven requirements traceability approach combined with an analysis of requirements
change impact [128].

A number of solutions extend IA to multiple artefacts. For example, Briand defines a
methodological framework and a rule-based approach for change detection and impact analysis
to facilitate the change planning process [129]. The authors indicate that in order to provide
support for impact analysis specific to UML models, the following prerequisites have to be
satisfied: automatic change detection and classification, verification of the consistency of changed
diagrams, suitable technique for impact analysis and an assessment and prioritisation of results.
Thus, a change taxonomy consisting of 97 change categories has been created besides 120
consistency rules specified using OCL. The prototype tool, iACMTool, reads two versions of a
UML model and produces an impact analysis report.

Finally, Ibrahim et al. recognise that traceability across high and low level software artefacts,
such as design, test cases and code, and catering for impact analysis are essential factors in
determining the ripple effects of changes following a change request [130]. Their approach is
evaluated in a case study and by using the Catia prototype tool, which highlights the differences
in change impact analysis results obtained for pairs of the different types of artefacts.

3.4.2.3 Consistency Checking and Change Propagation Approaches

A number of consistency checking solutions have been proposed in literature. This section
briefly introduces the main concepts and groups of solutions contributing to artefact consistency
management. Finkelstein discusses the technical challenges in consistency management [131],
in an effort to analyse the requirements for constructing consistency management tools capable
of handling heterogeneous and distributed information.

The discipline of Model Driven Engineering (MDE) aims to develop and maintain software
through model transformations [132]. Using rules, a transformation translates a source artefact
to a target artefact, both of which can be of different types ranging from concrete representations
to more abstract models. Reviewing a taxonomy of transformations is beyond the scope of
this thesis. However, it is important to mention that two specific types are directly relevant
in the discussion of artefact consistency management. Firstly, synthesis turns a more abstract
representation (e.g. design model) into a more concrete, lower level one (such as source
code), a typical example being code generation, which can be classified as forward engineering.
Secondly, reverse engineering provides an abstraction of higher-level artefacts from lower-level
ones. Forward and reverse engineering together constitute round-trip engineering (RTE) [133].
Generative and transformational techniques are relevant since they implement means to handle
the synchronisation (change propagation) of heterogeneous artefacts to re-establish consistency

3.4. REVIEW OF STATE-OF-THE-ART SOLUTIONS 43

between them following a change [134]. Synchronisations also utilise relationships between
artefacts, called mappings.

Examples of code generation facilities include the Visual Studio class designer [135], which was
created with the intention to keep source code and class diagrams synchronised. The IDE 12

also provides the capability to generate source code from a class diagram and vice versa, where
changes made to a class diagram are reflected in the source code, and alterations of the source
code are also synchronised to the diagram. Additionally, the Eclipse plug-in, Objecteering [136]
guarantees Java code-UML model consistency and Enterprise Architect’s template driven code
generation engine [137] allows its users to perform forward engineering tasks.

Furthermore, the open source framework and code generation facility, the Eclipse Modeling
Framework (EMF) [138], facilitates the generation of different representations of an application,
such as source code written in Java and UML. Relatedly, the main aim of Executable UML
[139] [140] is to use models of the system to directly execute the system. These models are
complete enough to be executed. The Foundational UML (fUML) standard has been created to
specify precise semantics for an executable subset of standard UML. Another key ingredient of
Executable UML is the Action Language for Foundational UML (Alf), which provides a textual
notation for UML behaviours that can be attached to a UML model and allows the specification
of detailed behaviour. Executable UML allows its user to program, at a higher level of abstraction.
Finally, various commercial tools provide round trip engineering functionality. Poseidon for
UML [141], which can also be run integrated within Eclipse, makes it possible to maintain
consistency between UML models and Java code. A major benefit of code generation solutions
is their support for software development activities and enhancing developer productivity by
reducing time spent on routine programming tasks. However, outside the scope of some specific
application domains, such as parser generators [24], applications of the approach are limited and
generating a complete functioning program that does not require human intervention remains a
distant goal. Another interesting question these solutions raise is the level of detail the various
design models can capture, and how accurately models can be mapped to an implementation.
Although ADLs and UML also support some code generation, these solutions are not widely
adopted in industry.

Some consistency checking solutions address more general consistency issues, independent from
the actual domain of the models and not specific to MDE [52]. A substantial amount of work
has been done in checking the consistency of both heterogeneous and specific artefacts. As an
example of the first category, Nentwich et al. have developed xlinkit [142], a consistency checking
service that is based on the XML, XLink and XPath technologies. The framework is implemented

12https://www.visualstudio.com/en-us

44 CHAPTER 3. LITERATURE REVIEW

as a web service and supports the management of the consistency of software specifications.
This is achieved in a tolerant manner: the solution does not force the immediate resolution
of inconsistencies as they are not always undesirable. The aim is to pinpoint inconsistencies
so they can be handled by document owners when appropriate. Elements are connected by
hyperlinks. One of the main contributions of this work is the creation of a set-based rule
language, which is a restricted form of first-order logic expressing consistency constraints
between distributed documents. Campbell et al. [143] provide an example of the second
category of solutions. Their proposed approach checks inter-diagram structural and syntactical
inconsistencies between UML diagrams of different types and detects structural problems within
individual diagrams. The results of consistency checks are then presented to users who can
address the issues manually. Additionally, Dimech and Balasubramaniam propose an automated
approach to check conformance between Java source code and architectural models in UML
[144]. The approach is implemented in an Eclipse plug-in, Card.

3.5 Evaluation

As mentioned at the beginning of this chapter, the aim of the evaluation of related approaches is
to establish to what extent the issue of artefact consistency management has been addressed and
to highlight which specific aspects have been in the focal point of research areas introduced in
the survey.

The review of solutions and an analysis of the problem area revealed that the management of the
consistency of software artefacts consists of multiple activities: a) managing changes requires
mechanisms to detect modifications, b) it is essential that heterogeneous artefacts are linked and
c) the impacts of any artefact being modified is assessed. Following these steps d) consistency
checks can be carried and finally, e) consistency can be-re-established. The concept of this
holistic view of artefact consistency management is discussed in detail in Chapter 4, however the
approach is also utilised during evaluation, where these aspects allow the pinpointing of facets of
the problem that have been more thoroughly investigated and automated compared to others.

A major component of the evaluation is a comparison, illustrated by Table B.1, B.2, B.3 and B.4
in Appendix B, which is carried out using a subset of the reviewed solutions. The approaches
selected were primarily the ones where tool support is available and ones where more than one
aspect of artefact consistency management is applicable. Thus, for example traceability recovery
solutions were not considered. However, a review of such solutions contributes to drawing
conclusions about automation levels and artefact coverage. The comparison provides information
about automation levels by analysing which aspects of artefact consistency management are

3.6. CONCLUSIONS 45

catered for. Additionally, the scope of solutions in terms of supported artefacts is highlighted,
and it is also investigated if distributed development is supported. Finally, the analysis of artefact
storage and link storage provide insights into implementation level specifics of the given solution.

The issue of inconsistently evolving artefacts has not yet been sufficiently addressed in its
entirety. The solution space for managing artefact consistency is diverse and the individual
solutions approach the problem from various angles, which is a hindrance to performing a direct
comparison. Notably, solutions stem from different research areas and their motivation and aims
are significantly disparate: some may focus on trace link creation for a better comprehension of
the system, while others may have the priority to minimise the side effects of modifications.

The evaluation did not identify any solutions, which cater for all aspects of consistency
management providing traceability creation and maintenance, change detection, impact analysis,
consistency checking and change propagation. In most cases, a subset of these aspects is satisfied,
either in an automated, semi-automatic (parts of the process can be automatic and mostly user
input is required) or manual manner (the solution offers data or visualisation but the task is
performed by the user).

In terms of supported artefacts, the evaluation revealed that most solutions concentrate on specific
artefacts. This applies, in particular, to traceability-specific solutions and in cases where proof-
of-concept tools have been developed to work with a subset of artefacts. A similar categorisation
of solutions based on artefact types is discussed in Software Traceability: A Roadmap [35].

The automation of any aspect of artefact consistency management is a challenging problem and
the reviewed solutions provide varying degrees of support for it. This problem is exacerbated
when a given solution combines more than one aspect, and it is also impacted by which artefacts
are catered for. It is apparent how strong of a link there is between the adoptability and success
of an artefact management solution and how automated it is.

The implementation specifics analysed provide a further dimension to discovering differences
between the approaches. Specifically, the results highlight that in terms of artefact representation
solutions can be divided into two main categories: approaches that represent artefacts in an
intermediary format, such as XML, and approaches that process artefacts in their original format.

3.6 Conclusions

This survey provides an overarching review of solutions that contribute to artefact consistency
management and that are rooted in various research areas. The evaluation of related approaches
and a summary of their limitations contribute to formulating the requirements of an artefact

46 CHAPTER 3. LITERATURE REVIEW

consistency management solution (presented in Chapter 4) and they also facilitate the definition
of the directions of this research.

One of the focuses of this work is the exploration of possible ways to cater for all types of present
and future artefacts, which was derived from the findings of the evaluation, namely that typically
only a selected set of artefacts is supported by any given solution. As traceability stems from
the requirements engineering community, traceability issues related to requirements have been
extensively researched [25]. In MDA, the software development process is driven by modeling
[19]. Agile and incremental software development processes emphasise the importance of coding
or low level design. A possible solution that concentrates on a specific type of artefact cannot
be comprehensive enough as it will not be applicable in a large number of scenarios and such
a solution will not span the entire development lifecycle. Another area worth investigating is
the level of automation as existing approaches automate some but not all aspects of artefact
consistency management. Finally, since most solutions do not cater for all aspects of artefact
consistency management, to more effectively address the challenges arising from the differential
evolution of software artefacts, a holistic solution is required.

4CHAPTER FOUR

HOLISTIC ARTEFACT
CONSISTENCY
MANAGEMENT

FRAMEWORK

This chapter introduces the concept of a holistic artefact consistency management framework
proposed in this thesis to address challenges arising from the differential evolution of software
artefacts. It presents these challenges and describes the conceptual foundations of the framework
including the stages of managing artefact consistency. The chapter concludes with a discussion
of the selected data representation model, the property graph, and the individual framework
stages.

4.1 Challenges of Artefact Consistency Management

Artefact consistency management is a complex problem due to the inherent characteristics of
software development. The tasks involved in a software project are undertaken by various
stakeholders who possess different skills, have exposure to different parts of the system, and
carry out their work using different tools, potentially at different geographical locations. Each
phase of the development produces various artefacts, which differ in their abstraction level and
purpose. Additionally, the nature of the project determines the development process, the structure
of teams, stakeholders involved and methodologies applied. Such diversity presents significant
challenges to artefact consistency management efforts. These difficulties are considered below.

47

48 CHAPTER 4. HOLISTIC ARTEFACT CONSISTENCY MANAGEMENT FRAMEWORK

Diversity of Artefacts

Software development activities produce a number of artefacts, and any artefact at any abstraction
level can take multiple forms. This is well illustrated by the different types of UML diagrams,
such as class and sequence diagrams modelling different aspects of a system. This complexity in
artefact types poses one of the key challenges associated with building an artefact consistency
management framework.

Artefacts produced in software development are dependent on the adopted methodology. For
example, agile projects, besides source code, produce artefacts that are mostly related to tracking
work progress. These may include product backlogs, sprint backlogs (which in turn may contain
user stories, goals and tasks associated with the given sprint), and product roadmaps [145]. On
the other hand, traditional development methodologies are associated with another set of artefacts.
For example, following a waterfall approach may produce a feasibility document, requirements
specification, design documents, source code, and various tests [146]. Adopting a spiral model
of software development may also produce documents highlighting the results of risk analysis
[147].

Another factor influencing artefacts is the project domain. For example, the development process
of mission critical systems may be regulated by safety regulations and industry standards [148],
which results in rigorous documentation and formal specifications.

Finally, open source projects, which provide direct access to their artefacts, are also worth
mentioning. Artefacts stored in open source repositories may include wikis or user manuals, as
demonstrated by the systems discussed in Chapter 8.

Diversity of Tools

Software life cycle tasks are undertaken by stakeholders using a variety of CASE tools. Integrated
development environments (IDEs) provide support to produce source code and tests. Higher-level
artefacts are created using diagram and analysis tools. An ideal framework, to maximise its
applicability in software projects, should not impose any specific application on the user and
should be configurable to work with any tool.

Usability

Participants of software projects possess different skills and work with different artefacts. Some
stakeholders, such as business analysts, may be more concerned with high-level representations,
while others, such as developers and testers, may work with source code and tests. This results in
different needs that must be accommodated by an artefact consistency management framework.

4.2. AN IDEAL CONSISTENCY MANAGEMENT FRAMEWORK 49

Customisability is thus an important characteristic. Examples of customisable properties include
the level of detail and frequency of changes users want to be notified about.

Automation

Tasks associated with artefact consistency management, when performed manually, are error-
prone, tedious and require substantial effort. Some aspects of artefact consistency management
can be more easily automated, such as checking consistency violations, while others may present
non-trivial challenges. For example identifying relationships between diverse representations is
a complex task due to the heterogeneity of artefacts and the fact that semantics and intentions are
not explicitly captured. The extent to which automation is possible is an open problem.

Distributed Software Development

Software development is increasingly carried out in a distributed manner [149] with stakeholders
based in different geographical locations. Issues caused by this trend are related to knowl-
edge management, quality control, synchronous collaboration, and risk, project and process
management concerns. Specifically, global software development, where teams are distributed
worldwide, introduces an additional level of complexity to artefact consistency management
tasks. In this respect, areas of concern are multiple versions of artefacts, creating and maintaining
links among distributed artefacts, and the availability and accessibility of the latest version of
any given artefact. Artefact repositories and version control systems are often used to mitigate
the effects of distribution.

4.2 An Ideal Consistency Management Framework

The attributes of an ideal consistency management solution and areas that have not yet been
sufficiently addressed in research provide a basis for deriving the high level requirements of a
viable artefact consistency management framework. Notably, catering for all aspects of artefact
consistency management remains the main open challenge along with the lack of support for a
diverse range of artefacts in one solution. Full automation is an ideal characteristic of such a
framework. The discovery of a viable level of automation is highly desirable in supporting both
artefact evolution and framework adoptability in real project scenarios.

Requirements of a workable framework for consistency management, such as extensibility and
the ability to cater for a wide range of software representations, have already been expressed
in literature [9]. Incorporating those characteristics, this work formulates the following key
requirements:

50 CHAPTER 4. HOLISTIC ARTEFACT CONSISTENCY MANAGEMENT FRAMEWORK

R1 - Automated as far as possible. In order for the framework to be adopted in software projects
and to reduce manual effort, it should provide automated support for consistency management
tasks.

R2 - Artefact independent. The ideal framework should be able to cater for different types of
artefacts instead of being limited to a particular subset of them.

R3 - Methodology and Tool independent. The ideal solution should take it into account that
software artefacts are created and edited in a wide variety of tools. It should work with both new
and existing tools and should support seamless integration into any environment. Stakeholders
involved in the development process should be able to follow their usual work processes and
the solution should be usable in different development settings. Both R2 and R3 express the
requirement of extensibility.

R4 - Customisable and non-intrusive. An ideal framework should provide means for
configuring and setting user preferences. Additionally, it should be non-intrusive to user practices
and it should require minimal interaction.

R5 - Supports distributed development. With global teams being prevalent in software
development projects, an ideal solution should provide support for addressing challenges arising
from the distributed nature of software development.

R6 - Is able to handle variable numbers of artefacts and changes (Performance). Software
systems differ in their size and complexity. An ideal solution takes this diversity into account
and can effectively handle a varying number of artefacts and changes of different complexity.

4.3 Proposed Approach: Concept of a Holistic Artefact
Consistency Management Framework

4.3.1 Definition

Following an in-depth review of state-of-the-art approaches addressing facets of the artefact
consistency management problem, this work hypothesises that the problem of the differential
evolution of heterogeneous software artefacts can be satisfied with a comprehensive framework
which incorporates the following key stages:

• Traceability creation and maintenance,

• Change detection,

• Impact analysis,

4.3. PROPOSED APPROACH: CONCEPT OF A HOLISTIC ARTEFACT CONSISTENCY MANAGEMENT

FRAMEWORK 51

• Consistency checking, and

• Change propagation

The holistic framework concept is depicted by Figure 4.1, where rounded rectangles denote the
framework stages, the rectangle represents Artefact Data, block arrows show control flow, and
line arrows capture data flow. Artefact Data represents elements of the different artefacts of the
system and their interconnections. The Trace Link Creation stage encompasses functionality to
create relationships between artefacts. The resultant trace links form an essential component
of any consistency management solution as they allow the discovery of dependencies, which
can be utilised by other stages of the process. Artefacts may be prone to frequent changes,
therefore the Change Detection stage provides means to identify parts of the system that have
been modified. This change data is subsequently passed to the Change Impact Analysis stage,
which discovers the consequences of the identified change and builds a set of potentially affected
artefacts by leveraging the established trace links. Potentially affected artefacts serve as an input
to Consistency Checking, which establishes whether elements of the set are inconsistent as a
result of the change. Lastly, Change Propagation is responsible for carrying out modifications to
re-establish the consistency of affected software artefacts, which is similar to Han’s definition of
change propagation [54].

Figure 4.1: Holistic artefact consistency management theoretical framework process diagram.

52 CHAPTER 4. HOLISTIC ARTEFACT CONSISTENCY MANAGEMENT FRAMEWORK

4.3.2 Illustrative Example

Following is a concrete example depicting a basic scenario to demonstrate aspects of the holistic
framework. The example is extracted from an open source system, JGAP1, which is introduced
in detail in Chapter 8. Figure 4.2 shows an excerpt of the class diagram of JGAP, generated
based on a subset of classes obtained from the code repository, and its corresponding Java
source code. The GeneticOperator interface on the UML diagram represents an operation that
takes place on a population of chromosomes during the evolution process. It is implemented
by the BaseGeneticOperator class, which is extended by the AveragingCrossoverOperator,
GaussianMutationOperator and InversionOperator classes. The Java source code excerpt in the
image shows the corresponding implementation of the BaseGeneticOperator UML class, i.e. the
BaseGeneticOperator Java class and its members, the m_monitor and m_monitorActive fields,
and the BaseGeneticOperator, getConfiguration and equals methods.

The lines connecting Java source code and UML class diagram entities represent trace links
between elements of these two artefact types. For the purpose of this illustration, trace links
denote a connection between a UML diagram element and its corresponding source code element.
For example, as shown in Figure 4.2, a link is established between the getConfiguration()

method contained on the class diagram in the BaseGeneticOperator class, and its corresponding
implementation, represented by the getConfiguration() Java method. Trace links are created by
the Trace Link Creation framework stage shown on Figure 4.1. Artefact Data provides means
to store artefact elements and trace links. In this example it comprises the classes, interfaces,
methods, and fields outlined in the class diagram, and implemented in Java source code, coupled
with their interconnections.

Let us presume that the BaseGeneticOperator Java class is updated with a new constructor,
BaseGeneticOperator. The Change Detection stage is responsible for flagging up the mod-
ification and for providing details necessary for subsequent stages. Change Detection also
involves the updating of the data store and intra trace links, that is, it also performs traceability
maintenance. Based on the change, the Change Impact Analysis stage forms a set of potentially
impacted elements linked to the modified entity. One such element is the BaseGeneticOperator

class on the UML diagram, since it is connected to the BaseGeneticOperator Java class.
Consistency Checking determines if the BaseGeneticOperator UML class is now inconsistent
due to the modification. According to the present example it is inconsistent, therefore Change

Propagation resolves the inconsistency by propagating the appropriate modification by adding
the BaseGeneticOperator method to the UML diagram. This step also involves the maintenance
of inter trace links. Thus, a link is established between the BaseGeneticOperator UML and Java

1http://jgap.sourceforge.net/

4.3. PROPOSED APPROACH: CONCEPT OF A HOLISTIC ARTEFACT CONSISTENCY MANAGEMENT

FRAMEWORK 53

Figure 4.2: JGAP system class diagram and source code excerpt.

methods. The framework then returns to the Change Detection stage.

54 CHAPTER 4. HOLISTIC ARTEFACT CONSISTENCY MANAGEMENT FRAMEWORK

4.3.3 Real World Applicability of the Holistic Approach

As mentioned in Section 4.1, software development is characterised by a great degree of diversity.
As no universal methodologies and techniques exist that are suitable for all projects, a number of
methodologies have emerged [12]. Although a key requirement of the proposed holistic approach
is methodology and tool independence, considering the diversity of software development
projects, some projects may benefit from adopting such an approach to a greater degree than
others.

Considering project methodology and processes, the approach may provide benefits to stakehold-
ers in projects where the need to create and maintain trace links is recognised, and is perhaps
enforced by process improvement models, such as CMMI. Another influencing factor is the
project domain, which also affects the development methodology. For example, in developing
safety-critical control systems, which are characterised by formalised quality assurance and a
rigorous analysis of the requirements, plan driven approaches are more suitable. In such systems,
various documentation, design and test artefacts are produced, and change management processes
and controlling the affects of changes are essential elements of the development process. In
such scenarios adopting the consistency management approach contributes to alleviating change
management efforts. Finally, projects can also be categorised based on their size. Large
systems are also characterised by a diverse set of stakeholders who may produce and utilise
different artefacts to understand the system. Such cases highlight the need to keep heterogeneous
representations consistent, which provides software maintenance benefits.

4.4 Data Representation

The remainder of this chapter outlines overarching aspects of the holistic approach before the
architecture and design of the prototype framework are discussed in Chapter 5. Such aspects
include the data representation model and a discussion of each framework stage from a conceptual
point of view.

Artefact Data, a core aspect of the framework, consists of artefacts and their trace links, supplying
an input for stages of the framework. As defined in Chapter 2, software artefacts are products
of activities involved in software development projects and are characterised by heterogeneity,
which constitutes one of the main challenges for artefact consistency management. Based on the
description of holistic artefact consistency management, it is apparent that one of the backbones
of the approach is the existence of trace links between heterogeneous artefacts. Links allow
subsequent framework stages, such as change impact analysis and consistency checking, to take
place.

4.4. DATA REPRESENTATION 55

4.4.1 Conceptual Data Model

One of the pivotal aspects of the framework is selecting the most suitable model to represent
Artefact Data, which contains heterogeneous artefacts and trace links connecting them. The aim
of any representation is to capture information contained in artefacts and to allow operations to
be performed on it in an effective manner. The first step of the investigation is the analysis of the
characteristics of framework artefact and trace link data. These are summarised as follows.

• Structure. Some artefacts exhibit a hierarchical structure, while others do not. For example,
in source code there may be a hierarchical relationship between elements. However, in a
requirements specification document each requirement may bear the same significance and
there may not be a root element.

• Changeability. Framework data is prone to continuous changes.

• Significance of connections. Framework data is highly connected and relationships between
artefacts are as important as the elements connected by these relations.

• Heterogeneity. Numerous types of artefacts and artefact elements exist and are handled by
the framework.

• Specific element details. Due to the heterogeneity of framework data, each element can be
described by a varying number of attributes.

Additionally, at a high level, a data representation model should fulfil the following requirements:

• Extensible. In case new elements or specific details are added, the existing representation
should be extendable to include these.

• Can be queried. Information about elements and their relationships should be available and
mechanisms to reveal them through queries should be in place.

• Modifiable. Modifications of existing data can be carried out.

The listed attributes are the driving factors in choosing the most suitable representation. As part
of the selection process a number of alternatives have been considered. These are introduced in
the section below, along with the selected data model, the property graph structure.

4.4.1.1 Property Graph Structure

Graphs are applied in numerous fields, such as biological systems, neural networks, social
networks, and the Internet, as they provide powerful means to represent interconnections. This
ubiquity is illustrated by the emergence of network science [150] [151].

Specifically, graphs have been extensively used in computer science, and in particular in software

56 CHAPTER 4. HOLISTIC ARTEFACT CONSISTENCY MANAGEMENT FRAMEWORK

engineering, in a number of problems: graph-based representations of object-oriented programs
(such as class dependency networks, and subroutine call graphs) have been investigated to support
the various phases and tasks involved in software development, such as software maintenance
and indicating software quality [152] [153]. Other specific graph representations include control
flow graphs and program dependence graphs developed in the fields of program analysis and
compiler design [154]. Data flow graphs have been used in software testing [155], and the code
property graph - combining abstract syntax trees, control flow graphs and program dependence
graphs - has been applied in discovering software vulnerabilities [154]. In particular, out of the
solutions discussed in Chapter 3, MolhadoArch, for example, applies a graph representation
where the architectural structure of a system is modelled as a directed graph [74].

At a high level, graphs are collections of connected objects, which can be used to represent
real world systems in the form of nodes (objects) and edges (their connections). A graph G is
formally defined as a pair of sets (V,E), where V is a set of vertices (nodes) and E is a set of
edges between pairs of vertices [156]. Using a set based notation, an example set of vertices can
be defined as V = v1, v2, v3, v4, v5, where the graph consists of five nodes. Edges are formed as
follows: E = (v1, v2), (v2, v3), (v3, v4), (v4, v1), (v5, v1).

Heterogeneous artefacts and trace links between them in the framework are modelled as a graph
structure. Artefact elements constitute graph nodes - each v node of the vertex set V = v1,...

vn is an artefact element, where n is the number of these elements. Trace links are represented
by edges of the graph. The set of edges, E = e1, ... en consists of connections between the
n artefact elements. An important trait of the graph model used by the framework is that it
associates attributes, i.e. a number of key/value properties, with both nodes and edges. This is
called the property graph, which is a powerful knowledge representation model [157]. Edges
have directions associated with them, however relationships can be navigated regardless of the
direction. Applying a property graph model provides an approach both to represent parts of the
data explicitly using the graph structure, and to infer implicit knowledge through traversals [158].
Figure 4.3 illustrates the structural elements (nodes, edges and properties with their values) of
the property graph.

Given this description, a definition of framework data elements expressed as property graph
concepts is now presented.

Artefacts: are the original representations of a system, which are high-level types. Artefact
examples include source code, UML class diagram, unit tests. Artefacts are not explicit graph
entities, but can be inferred from graph node properties.

Artefact elements: are entities that build up a given artefact (type). An example artefact element

4.4. DATA REPRESENTATION 57

Figure 4.3: Illustration of the property graph model.

is a source code element, such as a method or an interface. These elements are represented by
nodes of the graph, i.e. a set of vertices may contain the following specific artefact elements:
Java class, Java method, UML interface, UML attribute, etc.

Artefact element attributes: are properties associated with graph nodes. The number and type
of attributes are dependent on the given node. For example a Java method node will have a
parameters property linked to it, whereas it is not applicable for a Java field, which can be
described by other attributes, such as variable_type.

Trace link attributes: are properties associated with graph edges. This makes it possible to
differentiate trace links in the framework. For example a link can have a type property, which
may take the value Inter_link for an inter trace link.

4.4.1.2 Alternative Artefact and Trace Link Representations

Existing approaches in traceability and artefact consistency management research have introduced
a number of artefact representations. Some solutions keep the original representation of artefacts
[91][93], while others use XML [119] [142], hypertext [106], EMF-based models [62] and the
Resource Description Framework (RDF) [159]. Trace links may be stored in numerous ways,
including XML [62] or relational databases [9]. Some data representation models are specific to
artefacts, whereas others, such as XML, can be generalised to heterogeneous artefacts. An XML-
based solution satisfies the extensibility, modifiability and query requirements of an effective
data model for representing artefact data. However, it is not the most practical solution as artefact
data is prone to changes, and the resulting updates to the XML schema would necessitate further
changes in the framework.

58 CHAPTER 4. HOLISTIC ARTEFACT CONSISTENCY MANAGEMENT FRAMEWORK

4.4.1.3 Evaluation of the Property Graph Model

The requirements of framework data are satisfied by the property graph model. Firstly, it supports
the modelling of heterogeneous data, and it also captures the required level of detail, thus
making it possible to express the richness of data. Most importantly, the graph representation
reflects the nature of artefact and trace link data, i.e. that connections between elements are of
vital importance in the framework. Finally, another advantage of a graph representation is the
possibility of utilising graph algorithms. Table 4.1 summarises each aspect and discusses how
the property graph satisfies it.

Requirement Discussion

Structure It is possible to represent hierarchical and non-hierarchical data
using property graphs.

Changeability Graph nodes and graph node property values can be added,
modified and deleted.

Significance of connections Graphs allow the sufficient modelling of both entities and
relationships between them.

Heterogeneity The property graph allows the modelling of heterogeneous entities
through its properties.

Specific entity details Each entity on a property graph can be described by different
properties.

Table 4.1: Evaluation of the suitability of the property graph model for artefact data representation.

Table 4.2 shows that a wide range of artefacts can be modelled using property graphs, and
provided that means to extract data from the original artefacts is available, property graphs
present a viable solution to model any artefact. A detailed discussion of the specification of
graph nodes and their properties pertaining to concrete artefacts is provided in Chapter 6.

4.4.2 Bridging the Gap Between Heterogeneous Artefacts and the
Property Graph Model

Artefacts outside the framework are stored in their original tools in formats specific to the given
tool. Artefacts inside the framework are represented by a property graph. To bridge the gap
between diverse formats and the property graph, the approach of extracting artefact data from
the original representations to a generic intermediary format was adopted. The implementation
specifics of the approach are described in Chapter 6.

The intermediary format is used as a means to obtain artefact and trace link data and not as a
means of representation. The extracted data at this stage is still heterogeneous due to structural

4.5. FRAMEWORK STAGES 59

Artefact Type Methodology

Java source code Transform XML representation of source code
Python source code Transform AST 2

A, UML Behaviour diagrams:
use case diagram, state machine diagrams
B, UML Structure diagrams:
class diagram, component diagrams
C, UML Interaction diagrams:
sequence diagrams

Transform underlying XML representation of UML diagrams

Architectures Transform XML representation of architecture diagrams
Requirement specifications (natural language) stored in documents (e.g. Word) Transform XML representation of documents 3, 4

Requirement specification (natural language) stored in wikis Use plugins available to extract content 5

jUnit test classes Transform XML representation of unit test classes
Issues in issue tracker Use APIs to access issue trackers, such as 6

Table 4.2: Artefacts to be represented in the framework by a property graph model.

differences between artefacts. Thus, a process is required to perform the transformation of data
stored in the intermediary format to the unified representation, that is, to graph nodes, graph
edges and their properties.

The problem is illustrated in Figure 4.4 and the proposed approach to solving it consists of three
parts:

1. Data extraction from the original data source

2. Transformation of heterogeneous intermediary schemas to a uniform representation of
artefact elements and trace links

3. Property graph persistence

Figure 4.4: Bridging the gap between heterogeneous artefacts and the property graph model.

4.5 Framework Stages

The remainder of this chapter details each framework stage and the high-level approaches based
on which framework design and, subsequently, implementation are carried out. The specifics of
automatic Traceability creation are discussed separately, in Chapter 8.

60 CHAPTER 4. HOLISTIC ARTEFACT CONSISTENCY MANAGEMENT FRAMEWORK

Change
Detection

Change Impact
Analysis

Consistency
Checking

Change
Propagation

Input(s)
Request to detect
changes Change Data,

1, Change Data
2, Impact set

1, Change Data
2, Impact set
3, Set of inconsistent
elements

Output(s)

Change Data:
details of the changed
entity and the type of
change

Impact set
Set of inconsistent
elements

Suggestions to resolve
inconsistencies

Table 4.3: Artefact consistency management process inputs and outputs.

At a high-level, each stage is summarised by listing the inputs it requires and the outputs
it produces, which is shown in Table 4.3. For example, Change Detection is initiated by a
user request to pinpoint changes and it generates Change Data, which contains details about
the modification. Change Data is passed to the subsequent stage, Change Impact Analysis,
which produces a set of potentially impacted elements. The following subsections examine the
framework stages based on these inputs and outputs.

4.5.1 Change Detection

To provide artefact consistency management capabilities, an efficient and reliable mechanism to
capture changes to heterogeneous artefacts has to be in place. The problem of change detection
is manifold and it is concerned with the identification of

1. the changed artefact,

2. the change type, and

3. the changed elements within the artefact.

4.5.1.1 Artefact Change Classification

Identifying the type of change is an essential component of change detection and is also relevant
for further stages of consistency management. The following considerations are to be taken into
account when categorising changes.

• Artefact type: each artefact may be characterised by different changes and frequency of
changes.

• Change type: any change can be grouped into an add, delete or edit category.

4.5. FRAMEWORK STAGES 61

• Structure: composite changes are built up of a number of other changes.

• Relevance: some modifications are relevant for artefact consistency management, while
others are not. For example modifying comments in source code is likely not to affect other
related representations, such as UML class diagrams or requirement specifications.

A generic, graph-based taxonomy of changes is provided by Lehnert et al. [160] to support change
impact analysis and software evolution. The taxonomy differentiates atomic and composite
change types, where composite changes can be modelled as a sequence of atomic operations.
In this work, a similar change categorisation approach is used and certain aspects of Lehnert’s
classification are adopted and customised, such as the notion of atomic and composite changes.

The first step of creating a change classification is to consider how artefacts may change at a
high level. Existing artefacts can be edited or deleted and new artefacts may be added to the
repository where they are stored. Edited artefacts can also change in a number of ways. Thus,
a two-level change categorisation is proposed, which consists of file level and artefact element

level changes.

1. File level changes

• Add (new file)

• Delete (existing file)

• Edit (existing file)

2. Artefact element level changes (when an existing artefact is edited)

• Edit by changing an existing element

• Edit by adding a new element

• Edit by deleting an existing element

The following scenarios exemplify these categories. For the purposes of the illustration three
specific artefacts are selected, Java source code, UML class diagram and JUnit tests. However,
the change categorisation is applicable to any artefact.

Scenario 1: while refactoring an existing software system, a new Java class is added to a
repository.
Change type: at the file level, this change is an add type, which is not further decomposed.

Scenario 2a: the visibility of a method on a UML class diagram is modified.
Change type: at the file level this is an edit change type, and specifically, at the artefact element
level, an existing element was edited.

62 CHAPTER 4. HOLISTIC ARTEFACT CONSISTENCY MANAGEMENT FRAMEWORK

Scenario 2b: a field is deleted from a UML class diagram.
Change type: at the file level this is an edit change type, and specifically, at the artefact element
level, an existing element was deleted.

Scenario 2c: a new method is added to a UML class diagram.
Change type: at the file level this is an edit change type, and specifically, at the artefact element
level, an element was added.

Scenario 3: a JUnit test class is deleted from a repository.
Change type: at the file level, this change is a delete type, which is not further decomposed.

4.5.1.2 Change Detection Output: Change Data

Following the identification of the modified artefact, the changed entity within the artefact and
the change type, the change detection process produces a Change Data output, which is discussed
in Chapter 7. The output provides a means to identify the modified entity, while also supplying
detailed change information to subsequent framework stages.

4.5.2 Rule-based Traceability Maintenance

Although it is not a separate framework stage, traceability maintenance is integral to a successful
consistency management process and is closely related to change detection and subsequent stages.
Therefore it is discussed following an examination of change detection and prior to introducing
the change impact analysis approach. Traceability maintenance encompasses the functionality
to update inter trace links in the graph database following the detection of a modification and
the identification of the changed entities and their corresponding change types. During change
detection, the graph database is updated to reflect the latest state of artefacts, i.e. depending
on the modification(s), new nodes may be added, and existing ones may be deleted or edited.
Trace links may also be affected by the modification in question, such that new links are added
or existing links are deleted.

The consequences of changes to inter trace links can be captured by formulating trace
maintenance rules, which are described in Chapter 7. The rules depend on the specifics of the
change provided by Change Data, and in summary, can be formulated based on the following:

a) File level change type,
In case of edit file level changes:
b) Artefact element level change type,
c) Fine-grained change type (signature or content change, discussed in Chapter 6),

4.5. FRAMEWORK STAGES 63

d) Artefact element type from which the fine-grained artefact element type can be established
(child or parent element, discussed in Chapter 6).

4.5.3 Change Impact Analysis

Succeeding the modification of an artefact element, the aim of the change impact analysis
of heterogeneous software artefacts in the ACM framework is to determine further elements
possibly affected by the same modification. Input to this process is provided by Change Data.
The output of change impact analysis is therefore the set of elements deemed to be affected by
the modification. As mentioned in Chapter 2, change impact analysis can be performed utilising
various approaches, such as structure-based, history-based and probabilistic methods. Following
is a discussion of the approach presented in this work.

Impact Analysis as Property Graph Traversals

The impact analysis strategy of the ACM framework utilises the property graph representation of
heterogeneous artefact entities and specifics of the change obtained through change detection.
Therefore it falls in the category of structure-based impact analysis solutions, which it extends
to cater for multiple artefact types. Traversing the artefact graph allows the identification of
connected entities at the specified level. The approach stems from the assumption that nodes
connected to a modified node may also be impacted by the same modification, depending on the
link connecting them. The traversal can be described as a breadth-first search and the approach
currently caters for direct connections. Similarly to nodes, edges of the graph can also be
described with a type property, which is a significant factor in traversals. Each node is connected
to the start node through a specific link type expressed by the values of the type property, which
define the scope of traversals.

The flow chart in Figure 4.5 describes the algorithm for traversals of inter links. The input of
traversals is Change Data, which makes it possible to identify the modified node, which is the
starting point of the traversal, and to express specifics of the change type, which determines the
subsequent steps. In case the start node was edited or deleted, it is possible to identify nodes
connected to it, which are then added to the set of potentially impacted nodes, i.e. the output of
impact analysis. In case the node was newly added to the graph, further details are required and
in certain cases there is no straight forward way of identifying connected elements. In case the
newly added node represents a class, the impact analysis algorithm cannot determine which other
nodes may be connected. Exceptions are Java source code and JUnit artefacts, in cases where
they connect to other classes or interfaces. However, if a member element is added, it is already
connected to a class through an intra link, hence it is possible to visit the node representing the

64 CHAPTER 4. HOLISTIC ARTEFACT CONSISTENCY MANAGEMENT FRAMEWORK

container class. If the container class is connected to other nodes through inter links, those nodes
are traversed and added to the set of potentially impacted nodes. In summary, the algorithm is
based on the change type and the types of elements. Traversals are based on link types. These
are the three factors constituting change impact analysis using the property graph.

4.5.4 Consistency Checking

An essential component of artefact consistency management is the functionality to establish
whether an element affected by a modification remains consistent, and hence need not be changed,
or as a result of the modification, it has become inconsistent. The identification of inconsistencies
falls under the responsibility of consistency checking in the ACM framework.

Listing 1 shows the overview of the consistency checking approach, which is based on the
interplay of the outputs of previous framework stages supplying data about the specifics of
the change and its potential impact, and consistency rules. Change Data, provides details of
the modification(s) through which the changed entity can be located in the graph database.
Additionally, properties captured in Change Data also play a crucial role in formulating
consistency checking rules. Specifically, the change type property separates three cases from
each other; add, edit and delete scenarios are processed differently.

Algorithm 1 Consistency Checking Approach Overview.
1: input: ChangeData, Impact set
2: output: Artefact element is consistent, Artefact element is inconsistent, Artefact element is

potentially inconsistent
3: begin
4: Evaluate the change type property value of the ChangeData object
5: if change type = add, no consistency rules can be derived
6: if change type = delete, evaluate changed and connected entity, and apply corresponding
7: consistency rule
8: if change type = edit, evaluate changed and connected entity, and the artefact element
9: level change type, and apply corresponding consistency rule

10: Create ConsistencyResult
11: end

Consistency Rules

Consistency rules take the form of if-then rules and are created based on the following
information:

• Artefact level change type (add, edit, delete)

• Artefact type

4.6. CONCLUSIONS 65

• Artefact element type, which also denotes hierarchical relationships between elements found
within a specific artefact; certain elements contain others, or some elements are contained
within others

• Fine-grained artefact element type derived from Artefact element type

• Existing Inter and Intra trace links connecting elements

Specific examples of these aspects are given in Chapter 6.

Consistency checking is divided into two main categories. Inter consistency checking takes
place between artefacts of different types, while intra consistency checking is performed
between elements of the same artefact.

Finally, consistency rules represent three outcomes of consistency checking. An element
connected to a modified element can be either consistent, inconsistent or potentially inconsistent.
By flagging up potential inconsistencies, the framework applies a pessimistic approach to
consistent checking, that is, if there is a chance of inconsistency, it is reported to the user who
can decide about the course of action to take.

4.5.5 Change Propagation

Change Propagation is aimed at assisting users with re-establishing consistency by suggesting
possible resolutions based on the output of consistency checking. Since the input includes
information about the change and changed element, the potentially affected elements and their
state of consistency, change propagation can provide users with further information on how to
resolve inconsistencies. For example, in case a UML class is inconsistent as a result of editing a
requirement in a requirement specification, the framework may suggest to edit the UML class.

In case the outcome of consistency checking is that no consistency violations have been detected,
the users are given a summary about the change and the results of consistency management. In
case there is a (potential) inconsistency, users are given suggestions on possible resolutions. The
framework provides a summary of the change and the (potentially) inconsistent elements.

4.6 Conclusions

The problem of artefact consistency management may be more effectively tackled using a
comprehensive framework incorporating traceability creation and maintenance, change detection,

change impact analysis, consistency checking and change propagation techniques. This
hypothesis constitutes the conceptual foundation of the proposed approach, which is aimed

66 CHAPTER 4. HOLISTIC ARTEFACT CONSISTENCY MANAGEMENT FRAMEWORK

at fulfilling the high-level requirements discussed in 4.2. This chapter introduced the framework
and its underlying stages, and provided an overview of data representation and the approaches
taken in each framework stage. In the following chapter design decisions pertaining to the
framework architecture, artefact and trace link data representation are described.

4.6. CONCLUSIONS 67

Figure 4.5: Flow chart illustrating the algorithm for inter link traversals.

5CHAPTER FIVE

ARCHITECTURE AND
DESIGN

The proposed holistic approach to artefact consistency management is realised in the design and
implementation of a proof-of-concept system, the Artefact Consistency Management (ACM)
framework. Following the formulation of the characteristics of an ideal consistency management
solution, the first step towards the realisation of the holistic framework is the translation of
high-level requirements to an overall architecture of the framework. This chapter presents the
design strategy, the framework architecture and decisions made during the design process.

5.1 Design Strategy

The design process started by specifying and analysing the following:

1. the functional requirements of the system,

2. design constraints, and

3. quality attributes.

The framework design, due to the nature of this work, adopted a lightweight version of Attribute

Driven Design (ADD), an approach for deriving software architectures characterised by a design
process based on software quality attributes [161].

5.1.1 Functional Requirements

Functional requirements of the system were derived from the stages of the holistic framework,
and were captured in the form of a use case document. The document can be found in the

69

70 CHAPTER 5. ARCHITECTURE AND DESIGN

framework’s GitHub repository1.

5.1.2 Design Constraints

Design constraints establish assumptions that the implementation is required to fulfil. The design
constraints of the ACM framework are as follows.

1. Persistent storage. The framework stores its data in a graph database.

2. Version control. The framework obtains artefact data from version control systems in which
original artefacts are stored.

5.1.3 Architectural Tactics

When considering the quality attributes relevant for the framework, properties the framework
shall exhibit, architectural tactics were utilised. Tactics provide the architectural means to control
parameters relevant for a given quality attribute, such as modifiability, availability, performance,
and security [162].

Quality attributes for the ACM framework are closely linked to a subset of the characteristics of
an ideal framework, presented in Chapter 4. The remainder of this section describes the tactics,
which are used to achieve the quality attributes.

1. Modifiability

Modifiability tactics are linked to the requirements of artefact and tool independence,
identified by R2 and R3, respectively. To achieve this, the framework shall cater for
heterogeneous artefacts and the addition of new ones. To support a changing number
of artefacts and tools, the framework may require extensions: functionality to handle the
consistency of new artefacts and their storage, capabilities to obtain artefact data from
new sources represented by new file formats. Additionally, users may have their own
preferences for persistence and version control systems. Finally, functionality offered by
the framework can also be extended and modified. These extensibility requirements can be
addressed by utilising modifiability tactics aimed at controlling changes including their time
and cost implications. Such aims can be achieved through various means including localising
modifications or preventing ripple effects of changes [163]. The specific modifiability tactics
applied for each relevant architectural component are discussed in detail in Section 5.3.

1https://github.com/ACMFramework/ACMF/blob/master/ACMF_UseCaseDoc.docx

5.2. FRAMEWORK ARCHITECTURE 71

2. Usability

Usability tactics are related to requirement R4 (Customisable and non-intrusive). A
framework that does not impose new methodologies and processes on the user, needs
to seamlessly integrate with the user’s current practices regardless of the role the user takes
in a software development project. Closely linked is the ability to configure the framework
to allow users to customise it to their own needs. Usability tactics help design a framework
that does not require a high learning curve, is less error prone and provides a better user
experience [164].

5.2 Framework Architecture

The overall architecture of the ACM framework, showing its boundaries and external components,
and system components and their connectors, is depicted in Figure 5.1.

Figure 5.1: The overall architecture of the ACM framework.

72 CHAPTER 5. ARCHITECTURE AND DESIGN

The architecture adopts a combination of styles. Thus, it is best described as a heterogeneous
architecture in which components are hierarchically decomposed, and can be organised using
different styles at different levels. Figure 5.1 shows that at the topmost component level, structural
elements are organised into layers, namely a Presentation, Logic, and Data Access constituting a
layered style. This style allows the layers to evolve independently. The Logic Layer is further
decomposed into an Interaction Manager, Traceability Manager, Setup Manager and Consistency

Manager component. The latter exhibits a Pipe-Filter architectural style involving the Change

Detector, Impact Analyser, Consistency Checker and Change Propagator components. The
External Repository component, which is outwith the boundaries of the framework, interacts
with the framework through its corresponding API. Finally, the Configuration component is
identified as a common module used by various components of the framework. Following is a
summary of the layers and architectural components within them with a brief description of the
functional requirements they fulfil.

Presentation Layer

The Presentation Layer provides an interface between the system and users. It encapsulates the
functionality of the frontend, and allows users to interact with the framework and view requested
information. Its responsibilities include providing access to framework data visualisation,
customisation and configuration capabilities.

Logic Layer

Artefact and link data stored in the framework is mainly processed and utilised in this layer.
It encapsulates the consistency management functionality of the framework, through the
Consistency Manager component, which supports users in re-establishing the consistency of
artefacts across the system following a change: users can identify which artefacts have changed,
which entities are potentially impacted by the same modification and whether these elements are
in an inconsistent state. Functionality to support the semi-automatic establishment of trace links
and the setting up of the framework - through the Traceability Manager and Setup Manager

components - are also encapsulated by this layer. Framework setup, trace link creation and
consistency management are initiated by the Interaction Manager component.

Data Access Layer

This layer consists of components that allow basic CRUD (Create, Retrieve, Update, and
Delete) operations to be performed on the data store through the GraphDatabaseAccessor and
GraphMLManager components. The Transformer component is responsible for mapping original
artefacts to the framework’s data representation model.

5.3. DETAILED DESIGN OF ARCHITECTURAL COMPONENTS 73

Data Store

Artefact Data, comprised of artefact elements and trace links, is stored using XML-based
(GraphML and custom XML) formats and a graph database backend. Hence the Data Store

consists of the GraphML, XML and Graph database components.

External artefact repository

Original artefacts are stored outside the framework in a version control system. This component
is external to the system and can be accessed through APIs corresponding to the user’s choice of
version control system.

5.3 Detailed Design of Architectural Components

Following an overview of the framework’s overall architecture, this section discusses the design
decisions made with respect to each architectural component.

5.3.1 Data Access Layer and Data Store components

5.3.1.1 Data Store

The Data store component provides the means to store artefact data. Prior to saving data to the
graph database however, XML and GraphML intermediate representations are required, which
are managed by the GraphML and XML components.

5.3.1.2 Data Access Layer

GraphDatabaseAccess component

One of the aims of the Data Access Layer (DAL) is to provide a means to access and update
the underlying data store through the Graph Database component. At a high level this involves
adding new instances individually or in bulk, updating and deleting one or more nodes (or edges)
and obtaining information about existing nodes (or edges). One of the principles applied in the
design of the DAL is localising changes to the DAL in case the data store changes. Thus, the
Data Access Object (DAO) design pattern [165] is adopted, which allows communication with
the underlying persistence and the domain logic. In case a different graph database is selected,
the conversion does not cause unintended changes to the rest of the framework. Concrete
classes representing a specific database technology implement the IGraphStoreDAO interface,
which provides signatures of basic graph database operations. Using the factory pattern and the
DaoFactory class allows the instantiation of the required Dao implementation. The design of

74 CHAPTER 5. ARCHITECTURE AND DESIGN

the Graph Database component draws inspiration from architectural tactics for modifiability.
In particular, restricting changes to specific components reduces the cost of modifications and
components prone to modifications can be identified to minimise the effects of changes.

Transformer and GraphMLManager components

The Transformer component is responsible for mapping the original artefacts to the framework’s
data representation model. The GraphMLManager component allows CRUD operations to be
performed on GraphML representations saved in the GraphML data store. To perform mapping,
the Transformer component uses services provided by GraphMLManager.

5.3.2 External Repository and Corresponding API Component

The change detection functionality requires details of modifications. As expressed by the Version

control design constraint introduced in Section 5.1, the framework is designed to cater for
artefacts originally hosted in a version control system. The aim of this decision is to ensure
that the latest version of heterogeneous artefacts, including non-source code representations, is
available. Should changes happen to any of these representations, they can be queried using the
version control system or APIs providing programmatic access to them. Each major version
control system provides open source APIs for accessing and manipulating their repositories, such
as hg4j 2 for Mercurial, SVNKit 3 the Java Subversion library, or JGit 4 for Git. The External

repository component represents such version control systems and is connected to the framework
through the API component. During the design process the following concerns were considered.

1. Heterogeneous Version Control Systems

Since a number of version control systems exist and they may vary across projects, to
address this heterogeneity, the functionality to pull data from repositories is designed
with pluggability in mind. The framework shall be able to obtain specifics of changes
irrespective of the external system. The IRepoQuery interface exposes standard operations
required to implement this functionality, and concrete classes provide repository specific
implementations. Similarly to the design of database access, this design concern is also
related to the modifiability attribute described in Section 5.1 Thus, the factory pattern and a
RepoFactory class is used to create instances of the required class depending on the selected
version control system.

2http://hg4j.com/
3http://svnkit.com/
4https://eclipse.org/jgit/

5.3. DETAILED DESIGN OF ARCHITECTURAL COMPONENTS 75

2. Change Handling

Any artefact in any repository may be subject to modifications at any moment in time. Some
artefacts may change more frequently than others and some artefacts may be more relevant
to some users than others. Due to these variables, the idea of pulling changes as they occur
was dismissed since it may potentially lead to a profusion of notifications, the problem of
which is highlighted in literature [116]. Instead, users can configure the framework to pull
changes from the repository at specified intervals.

5.3.3 Logic layer and its Components

5.3.3.1 Interaction Manager

The Interaction Manager component coordinates the functionality of multiple components within
the Logic Layer and also provides a single point of interaction to the Presentation Layer.

5.3.3.2 Traceability Manager

The Traceability Manager component manages traceability related tasks. Firstly, it handles
functionality to establish trace links between heterogeneous artefacts, which incorporates a
machine learning approach, presented in Chapter 8, to automate the process as far as possible.
Secondly, the component is responsible for the maintenance of trace links during the consistency
management process. Link maintenance involves deleting and adding trace links at the graph
database level.

5.3.3.3 Setup Manager

The Setup Manager is responsible for managing the initial framework setup. This involves
initiating framework configuration using the Configuration component, following which the
setting up of Artefact Data is performed: artefact elements are extracted from their original tools
and are transformed to the unified representation of framework data (Transformer component),
and trace links between them are established (Traceability Manager component). Finally, artefact
and trace link data are saved to the Data Store using the Data Access layer.

The design of framework setup is based on the Observer pattern. A SequentialExecutionManager

class provides orchestration functionality by registering all required functionality to be executed
- in this case configuration, data extraction, transformation, link establishment and data import to
the data store - and by executing them in the specified order. Figure 5.2 illustrates this design
solution, where the GraphMLImporter, ConfigurationHandler and TraceLinkCreator classes

76 CHAPTER 5. ARCHITECTURE AND DESIGN

provide an execute() method, which is registered with the SequentialExecutionManager class
used by SetupHandler that performs the above mentioned sequential execution.

Figure 5.2: Design of setup management functionality, class diagram excerpt.

5.3.3.4 Consistency Manager

This composite component consists of four subcomponents that are responsible for the
consistency management functionality in the framework. The output of each subcomponent is
taken as an input and is processed by the subsequent subcomponent. Thus, these subcomponents
are best described as a Pipe-Filter architectural style, where the tasks involved in consistency
management are executed in a sequential manner.

The Pipe-Filter architectural style introduces modifiability tactics in the design process including
Use encapsulation, which allows hiding the internal details of data processing as only inputs
and outputs are visible, and Restrict communication paths, which defines the number of inputs
and outputs each filter can have thus limiting dependencies between them [163]. Each filter is
described in the following sections.

5.3. DETAILED DESIGN OF ARCHITECTURAL COMPONENTS 77

Change Detector Component

The Change Detector component provides change detection functionality to identify the file level
and artefact element level change type. The following components are responsible for carrying
out these tasks: file level changes are captured by the External Repository and API components.
The artefact element level change type is identified by the Change Detector component. At the
end of the process, the framework outputs change data capturing the details of the change. The
Change Detector component also initiates updates to the data store using the Change Data output
of change detection, and the maintenance of trace links in the database.

The orchestration of these responsibilities is achieved via the SequentialExecutionManager class
described in Subsection 5.3.3.3. This class is responsible for registering components that are to
be executed. Such components implement the IExecutable interface, which exposes an execute()

method. In the current example these include the ChangeExtractor and ChangeIdentifier classes
from the Change Detector component, and TraceLinkMaintainer class from the Traceability

component. Functionality to be executed as part of change detection is provided by the
execute methods implemented in the above mentioned classes, and registering them with the
SequentialExecutionManager class makes it possible to perform their operations in a specified
sequence.

Figure 5.3: Design of the orchestration of change detection functionality, class diagram excerpt.

Change Impact Analyser Component

This component is responsible for establishing the set of potentially impacted artefact elements
following detecting and identifying modifications. The input to this process is supplied by
Change Data to identify the changed entity and its connections in the database. The approach is
designed with artefact and tool independence in mind through performing impact analysis at the
property graph level.

78 CHAPTER 5. ARCHITECTURE AND DESIGN

Functionality Layer Component

Support for Artefact Data
Data Access,
Data Store Transformer, Graph Database Accessor

Support for traceability Logic Traceability Manager
Support for change detection Logic Consistency Manager (Change Detector)
Support for change impact analysis Logic Consistency Manager (Impact Analyser)
Support for consistency checking Logic Consistency Manager (Consistency Checker)
Support for change propagation Logic Consistency Manager (Change Propagator)

Table 5.1: Mapping of functional areas to architectural components.

Consistency Checker Component

The functionality of checking the consistency of artefact elements following a change is
represented by the Consistency Checker component, the input to which is suppied by the
Change Impact Analyser component.

Change Propagator Component

The Change Propagator component, which is responsible for providing suggestions to users,
receives its inputs from the Consistency Checker component.

5.4 Design Evaluation

To conclude the chapter, an assessment of the design is provided to reveal the extent to which
it supports the functional and non-functional requirements set out in Chapter 4. Firstly, the
functional requirements are evaluated by mapping functional areas to architectural components
in Table 5.1. Lastly, non-functional properties of the framework are assessed.

Modifiability. As mentioned at the start of the chapter, this property is closely linked to the
artefact and tool independence attributes of an ideal framework: a framework that can be extended
to cater for new artefacts authored in different tools satisfies one aspect of the modifiability
requirement. Components of the Data Access Layer and the Data Store provide means to
extract and store heterogeneous artefacts in the framework. The second aspect is framework
extensibility. The first step during design was the identification of variable components that may
trigger changes to the framework. Such modifications are the result of adding new artefacts, tools,
and changing user preferences with regards to version control systems or database backends.
The identified components include Data Store, Data Access Layer, and External Repository.
Thus, localising changes to the DAL layer ensures that modifications do not affect the rest of the

5.4. DESIGN EVALUATION 79

framework.

Usability. User interactions are managed by the Presentation Layer. The architecture provides a
Configuration component, which allows preferences to be set and modified. Users may interact
with this component at setup time to perform an initial framework configuration. Preferences
may include notification settings, change detection intervals, which allow the framework to
provide its functionality in a non-intrusive manner.

Distributed development. The framework currently caters for distributed development by
pulling artefact and link data from remote repositories. Since the architecture is designed to be
modifiable, it is possible to extend it with components required for managing further functionality
related to distributed development practices.

Automation. The architecture of the ACM framework allows the functionality of individual
components to be carried out automatically. The level of automation provided for each functional
area is dependent on the feasibility of the implementation, therefore automation is re-assessed in
Chapter 6.

6CHAPTER SIX

IMPLEMENTATION OF THE
ACM FRAMEWORK: DATA

REPRESENTATION

6.1 Introduction

The prototype, the ACM framework, is implemented in Java and supports the stages of artefact
consistency management defined in Chapter 4, including traceability creation, change detection,

change impact analysis, consistency checking, and change propagation. As mentioned in the
same chapter, to automate these stages as far as possible, data was obtained from original
artefacts and stored in a uniform representation, as a property graph. This mapping is handled
by an overarching framework component, Artefact Data, which is an artefact and trace link
store. Artefact Data is represented by the Data Store component and Data Access Layer at an
architectural level. While this chapter presents the implementation specifics relevant to Artefact

Data and discusses data representation, Chapter 7 describes the implementation of the framework
stages.

Considerations relevant to Artefact Data include:

1. A description of the structural attributes of the original representations and their mapping to
properties of the property graph model of the ACM framework,

2. The approach taken for mapping heterogeneous artefacts created by diverse tools to the
property graph model, which involves
a) the extraction of data from original artefacts and their transformation to a unified

81

82 CHAPTER 6. IMPLEMENTATION OF THE ACM FRAMEWORK: DATA REPRESENTATION

representation, and
b) the storage of artefact and trace link data in the framework.

6.2 Artefact Selection

For this implementation, a set of concrete artefacts were selected to demonstrate the feasibility
of the holistic consistency management approach and the functionality of the framework. The
selected artefacts were obtained from a number of open source systems, which are introduced in
detail in Chapter 8. These artefacts include:

• Requirement specifications,

• UML use case diagrams,

• UML class diagrams,

• UML sequence diagrams,

• Conceptual architecture,

• Module view architecture,

• Java source code, and

• JUnit test cases.

These artefacts are used to verify whether it is possible to obtain data from diverse formats and
to convert it to uniform Artefact Data handled by the framework, and whether it is feasible to
perform consistency management tasks leveraging this data. The level of automation achieved
while carrying out these tasks is discussed in Chapter 9. Despite using a set of artefacts, the
framework can be extended with additional representations.

The motivating factor for selecting these artefacts is the requirement to cover a diverse range
of representations: artefacts with different structural characteristics, from various stages of the
software lifecycle covering both lower and higher abstraction levels.

6.3 Property Graph Representation

Chapter 4 introduced the concepts of artefacts, artefact elements and trace links using the
property graph-based representation. This section discusses the mapping of diverse artefacts and
their relationships to artefact elements and trace links modelled by the property graph.

Firstly, the mapping of original artefacts to graph nodes is described in Subsection 6.3.1, which
involves identifying the structural elements of the original representations. Based on these

6.3. PROPERTY GRAPH REPRESENTATION 83

structural elements, relevant artefact elements can be derived and their properties can be specified.
For example, in a requirements specification, each functional and non-functional requirement is
represented by an artefact element, which in turn is mapped to a node in the graph. However,
the executive summary structural element is outside the scope of this work as it is unlikely to
directly contribute to consistency management tasks. Thus, such elements are not considered.
This pattern applies to all artefacts. The derivation of artefact elements from original artefacts,
their mapping to graph nodes and their properties are detailed in Table B.5 in Appendix B. For
example, based on the variable declaration structural element of JUnit test artefact the variable

declaration artefact element is derived. This artefact element is described, for example, by the
name, type, and modifier properties and is represented by a graph node.

Secondly, the mapping of trace links between and within the original artefacts to graph edges is
discussed in Subsection 6.3.2.

Common Properties: Name, Type, and Unique id

Despite the structural variance of heterogeneous artefacts, some properties are shared by all
artefact types, such that each artefact element can be described by a name and a type. For
example, an architectural component called Service can be associated with a name property that
takes the value Service, and a type property, which is assigned the value component. Additionally,
a unique identifier property is reserved to identify each element in a unique manner.

Unique identifiers are generated in the framework since an essential implementation level
consideration is the identification of artefact elements. The motivation to generate identifiers
stems from the fact that the graph database storing artefact elements and their trace links does
not provide such a mechanism. Each node is assigned an identifier, although following database
updates, these can be overwritten.

Another advantage of generating an identifier is that the information contained within can be
customised. In the current implementation the unique id is composed of three parts: an artefact

prefix, a sequential number, and the full file path of the transformed artefact representation. An
example is as follows: SC1D:LocalRepo/Account.graphml. The artefact prefix specifies the type
of the artefact. Thus, the artefact type is not stored in the form of an additional node property,
instead, it can be inferred from the unique id. The prefix currently takes the following values and
can be extended when new artefacts are added.

1. SC: source code artefact

2. UT: unit test artefact

3. DI: UML class diagram artefact

84 CHAPTER 6. IMPLEMENTATION OF THE ACM FRAMEWORK: DATA REPRESENTATION

4. AR: Software architecture (Conceptual and Module view) artefact

5. SD: UML sequence diagram artefact

6. UC: UML use case artefact

7. RQ: requirement artefact

6.3.1 Specification of Graph Nodes and Properties

6.3.1.1 Requirement Specification

According to the classification described in Chapter 2, requirements specifications are high-level
artefacts, mostly associated with the requirements engineering process [12]. Written typically
in natural language, specifications can be structured in various ways. Therefore their building
blocks may vary from document to document. A sample structure adopted from a template1

is given in Table B.5 in Appendix B. The functionality and design constraints of the system
are captured in functional and non-functional requirements, which constitute relevant artefact
elements. Each requirement can be identified by its name, and can be described by a title,
contents, priority and type attribute. These descriptors allow the specification of graph properties
to describe artefact elements extracted from requirements specifications. To illustrate the format
of the original artefact and the property graph representation, the following example is given: a
single requirement in a requirements specification document may take the following form.

Name: R1
Title: Customer details
Description: The system shall record customer details: name, address,

telephone number and account number.
Type: Functional
Priority: High

Figure 6.1 shows that the example requirement artefact element can be represented by graph node
1, and described by the Name (R1), Title (Customer details), Contents (The system shall...), Type

(Functional), Priority (High), and UniqueId (RQ0D/Users/I/f.graphml) properties. Properties of
the node are derived by transforming each descriptor of the requirement into a property. In this
example, node 1 is connected to node 2 representing a Java class, which in turn is connected to
node 3 denoting a Java method.

6.3. PROPERTY GRAPH REPRESENTATION 85

Figure 6.1: Property graph representation of a requirement, a Java source code class, and a Java method
artefact element.

Figure 6.2: Binary Block Parser system - Use case diagram excerpt.

6.3.1.2 UML Design Diagram: Use Case diagram

The elements of a UML use case diagram are derived from its OMG specification [166]. Out
of these elements, the framework captures the use case structural element. An excerpt of the
use case diagram of the Binary Block Parser system2 is shown in Figure 6.2. A single use case,

1http://csis.pace.edu/ marchese/CS775/Requirements%20Specification%20Template.doc
2https://github.com/raydac/java-binary-block-parser

86 CHAPTER 6. IMPLEMENTATION OF THE ACM FRAMEWORK: DATA REPRESENTATION

Figure 6.3: Property graph representation of a single use case, a UML class and a UML operation.

Parse binary data represented by graph node 1 and its properties is illustrated in Figure 6.3. It is
connected to nodes 2 and 3, which depict a UML class and operation, respectively.

6.3.1.3 Software Architecture: Conceptual view

Software architectures capture elements encapsulating processing, data, and interaction [24].
The main structural elements include components and connectors. Figure 6.4 shows an excerpt
of the architecture of the Titan graph database3. Each component is mapped to a graph node and
can be described by a name and a type property. Figure 6.5 depicts node 1, which represents the
Storage and Index Interface layer architectural component, and its connections, node 2 and node
3.

6.3.1.4 Software Architecture: Module view

Module view architectures represent the structure of a system as a set of code units [167].
Therefore, their main elements are modules, which can be described by a name and a type

property. An excerpt of the module view architecture of Neo4j4 is given in Figure 6.6, while a
sample property graph representing three modules as nodes is shown in Figure 6.7.

3https://github.com/thinkaurelius/titan/tree/titan10/docs/static/images
4https://github.com/neo4j/neo4j/tree/3.1/docs/images

6.3. PROPERTY GRAPH REPRESENTATION 87

Figure 6.4: Architecture diagram of Titan

Figure 6.5: Property graph representation of a single architectural component, and a UML class and
operation.

6.3.1.5 UML Design Diagram: Class diagram

The main structural elements of a UML class diagram can be derived from its formal specification
[166] [168]. Artefact elements extracted from UML diagrams are either container, such as
classes, or member elements, such as operations and attributes. Each element can be described
by a name, type and modifier (such as visibility) attribute. Due to the diversity of element types,
each set of UML elements may be associated with specific attributes. A UML class diagram
excerpt containing a single UML class with an operation is provided in Figure 6.8 to highlight
its structural elements. To represent the class and its member as a property graph, each artefact
element contained in the diagram is transformed to a graph node, and each relevant descriptor of

88 CHAPTER 6. IMPLEMENTATION OF THE ACM FRAMEWORK: DATA REPRESENTATION

Figure 6.6: Module view architecture of Neo4j - Excerpt.

Figure 6.7: Property graph representation of three architectural modules.

the given element is transformed to a property as shown by nodes 2 and 3 in Figure 6.3.

6.3.1.6 UML Design Diagram: Sequence diagram

UML sequence diagrams possess a number of structural elements as derived from OMG’s formal
specification [166]. For the current implementation the lifeline element is considered, which
captures an object, a class or a use case. Figure 6.9 illustrates an example from the MyRobotLab

6.3. PROPERTY GRAPH REPRESENTATION 89

Figure 6.8: Example UML class Parser and its member method parse.

system5, consisting of the Service and Communication Manager lifelines, and send messages.
Lifeline elements are mapped to graph nodes and can be described by a name and type property.
In the example shown in Figure 6.10, node 1 represents the Service lifeline, which is connected
to a Java source code class, depicted by node 2.

Figure 6.9: Sequence diagram fragment from the MyRobotLab system.

Figure 6.10: Property graph representation of the Service Lifeline element.

5https://github.com/MyRobotLab/myrobotlab

90 CHAPTER 6. IMPLEMENTATION OF THE ACM FRAMEWORK: DATA REPRESENTATION

6.3.1.7 Java source code

Java source code shares common structural elements with UML class diagrams, such as classes,
interfaces, enums, methods, and fields. Additionally, .java files contain implementation specific
elements, which are detailed in the Java language specification [169]. The derivation of properties
from Java source code follows the same process as that of UML class diagrams. The original
and property graph representations are included in Listing 6.1 and Figure 6.1, respectively.

package banking;
public class Account
{

private float balance;
public float getBalance()
{

return balance;
}

}

Listing 6.1: Java source code excerpt of a class with a field and getter method.

6.3.1.8 JUnit test

The property graph representation of JUnit tests is identical to that of Java source code, since no
additional elements are required to be captured for the purposes of the framework.

6.3.1.9 Element Hierarchy: Container and Member Elements

As noted earlier, some UML elements may contain further UML elements. For example, a
class may contain a number of methods. This statement can be extended to other artefact types
characterised by a hierarchical structure. Elements containing others are defined as container

(parent) elements, whereas contained elements are called members (children). A summary of
this hierarchical categorisation is given in Table 6.1. For the purposes of this work, requirements,
use cases and UML sequence diagram lifelines are regarded as member elements. On the other
hand, architectural components and modules may contain further components and modules.

6.3.2 Specification of Graph Edges and Properties

The classification of the two fundamental types of trace links, intra and inter links, is provided
in Chapter 2. In a similar manner to deriving artefact elements and properties, firstly, the original
format of trace links is discussed. Subsequently, their property graph model counterpart is
introduced along with corresponding properties.

6.3. PROPERTY GRAPH REPRESENTATION 91

Element Type Container Member Artefact Type

Field Yes Source code / UML class diagram / JUnit test case
Method Yes Source code / UML class diagram / JUnit test case
Class Yes Source code / UML class diagram / JUnit test case
Enum Yes Source code / UML class diagram / JUnit test case
Interface Yes Source code / UML class diagram / JUnit test case
Requirement Yes Requirement specification
Component Yes Conceptual architecture
Module Yes Module view architecture
Use case Yes UML use case diagram
Lifeline Yes UML sequence diagram

Table 6.1: Categorisation of artefact elements based on their hierarchical relationships.

Inter Links

An inter trace link can be illustrated, for example by a connection between a Java class and a
requirement, as shown in Figure 6.1. Inter trace links are not explicitly present in the original
representations of the artefacts as establishing them requires knowledge of the system. In case
they are recorded, they are captured outside the artefacts. Thus, trace links are made explicit
when they are modelled as graph edges. Each edge can be annotated with a number of properties.
In the current implementation, links are assigned a type property, which for inter links takes the
value INTER_LINK. Finally, links may also be characterised by their directionality, as discussed
in Chapter 2. In the current implementation inter and intra trace links are bidirectional.

Intra Links

An example of intra links is the connection between a Java class and its member method. This
relationship is implicit in the original format of the source code artefact, i.e. the .java file shown
in Listing 6.1. However, through the property graph representation the relationship becomes
explicit and is modelled as an edge between nodes corresponding to the given class and its
member method. Similarly to inter links, intra links can also be described by properties.

6.3.3 Conclusions

In summary, the above examples demonstrate that property graphs offer a flexible means of
modelling heterogeneous artefacts. Should it be required, the property graph can be extended to
represent additional artefact types. In a similar manner to existing artefacts, when a new artefact
type is considered, its structural elements and trace links can be represented as graph nodes and
edges following the same steps.

92 CHAPTER 6. IMPLEMENTATION OF THE ACM FRAMEWORK: DATA REPRESENTATION

Artefacts characterised by a hierarchical structure also map to a hierarchical representation in
the property graph. However, in cases when intra connections are implicit or not recorded, such
as a relationship between two requirements in a specification, the individual requirements are
captured as independent nodes.

6.4 Bridging the Gap between Heterogeneous Artefacts and
the Property Graph Model

A pivotal question of framework implementation concerns obtaining data from heterogeneous
representations. The high-level approach is described in Chapter 4, while the next subsections
introduce the steps taken to achieve the setting up of Artefact Data and bridge the gap between
the original representations and the property graph model. Firstly, artefact data extraction is
introduced in Subsection 6.4.1, followed by the implementation specifics of transformation in
Subsection 6.4.2 and a discussion of the selected graph database in Subsection 6.4.3.

6.4.1 Artefact Data Extraction

The first step towards achieving artefact and tool independence in the framework is the extraction
of artefact and trace link data from original representations. A framework prerequisite is a tool’s
capability to provide an XML-based representation of its data, which allows transformation to
take place. Some tools and artefact types can be programmatically accessed to extract artefact
data, while others involve manual aspects. Firstly, the tools used to create original artefacts are
described, followed by the discussion of the export functionality.

6.4.1.1 Tools

The artefacts handled by the framework are originally created in a variety of tools. Since certain
artefact types are not readily available from open source repositories, sample artefacts are needed
to provide a wide variety of representations to demonstrate framework implementation, and
subsequently its evaluation. For this reason, a sample natural language requirements specification
and multiple UML class diagrams were created.

Requirements specifications can be written using a number of word processing applications and
requirements management tools [170]. Since the main criterion of selecting a tool is the ease of
access it provides to its artefact data and no other constraints are present, for the purposes of the
framework, open source word processing solutions are considered. The selected tool for this work

6.4. BRIDGING THE GAP BETWEEN HETEROGENEOUS ARTEFACTS AND THE PROPERTY GRAPH MODEL 93

is OpenOffice Write6, since a number of APIs can be used to access and manipulate documents
created in .odt format. In particular, the Apache ODF Toolkit7 returns text contained within the
document as a single string, where the required elements can be selected and manipulated.

Other sample artefacts used in the framework are extracted from open source repositories, where
their file format is already given. A wide variety of UML diagramming tools are available [171].
For the purposes of the framework, a suitable UML tool proved to be Dia8, which supports
exporting to various formats, including XML-based ones. Java source code can be written using
a wide range of tools: from simple text editors to IDEs, including NetBeans9, IntelliJ IDEA10

and Eclipse11. IDEs can also be used to create JUnit test cases.

6.4.1.2 Extraction

The data extraction process involves exporting data from the selected tools manually, as is the
case with Dia and UML class diagrams, or programmatically. Requirements specifications
related artefact data can be obtained using the aforementioned Apache ODT Toolkit API from
Java. Options for source code extraction are greater and various solutions were considered
including JavaML12, the XML vocabulary for representing Java source code, and BeautyJ13,
which converts Java source code to XJava XML. Eventually, the lightweight command line tool,
srcML, was selected, which allows the creation of an XML representation of Java, C/C++ and C#
source code by combining source code (text) and AST information (markup tags) [172]. Using
the tool, it is possible to perform a one-to-one mapping of .java files to .java.xml. Each artefact
is mapped to physical files in a repository or file system differently. While a UML class diagram
may be represented by a single .dia file, Java source code and JUnit artefacts are a composite of
multiple .java files and therefore are extracted to multiple .java.xml files.

The extraction process and the output for each artefact type are illustrated in Figure 6.11. The
extracted files are stored in the framework folder (ACMF), which is specified when the framework
is first setup. The ACMF folder contains the following sub-folders: ArchitectureConceptual,

ArchitectureModuleView, Requirement, SourceCode, UMLClass, UMLSequence, UMLUseCase,

and UnitTests. Each artefact is extracted to its corresponding folder based on its type.
6https://www.openoffice.org/
7http://incubator.apache.org/odftoolkit/simple/
8https://wiki.gnome.org/Apps/Dia
9https://netbeans.org/

10https://www.jetbrains.com/idea/
11https://eclipse.org/
12http://paginas.fe.up.pt/ aaguiar/javaml/
13https://sourceforge.net/projects/beautyj.berlios/

94 CHAPTER 6. IMPLEMENTATION OF THE ACM FRAMEWORK: DATA REPRESENTATION

Figure 6.11: Artefact data extraction.

6.4.2 Transformation

Following the extraction, transformation aims to map heterogeneous XML documents to a
uniform representation. Specifying a uniform representation allows artefact and link data to
ultimately be saved in the data store, where they are represented as a property graph. The
transformation functionality has raised numerous implementation-level considerations. Firstly,
the format and the schema of the uniform representation is selected. Secondly, the strategy for
establishing trace links using this representation is considered.

In terms of formats, the first alternative considered was a custom XML schema to represent
artefacts of various types. According to this schema, both artefact elements and relations are
uniquely identified and properties of both entities can be expressed through custom elements. The
main advantages of this approach are the flexibility offered by XML and the freedom to specify
the custom schema. However, adopting a custom XML-based solution involves handling issues
that are already addressed by formats readily available to represent property graph concepts.
These include the identification of elements, granularity of information, the ability to store
generic data effectively, directionality of links, and most importantly, issues related to linking
elements. One consideration is whether link information should be stored in the graph XML file
or as a separate file.

6.4.2.1 Transformation: GraphML

A comprehensive survey of graph exchange formats reveals that a number of file formats are
available to model, store and exchange graph data [173]. A few examples include the Graph

Modelling Language (GML)14, the Graph eXchange Language (GXL) 15, and the LEMON Graph
14https://www.fim.uni-passau.de/fileadmin/files/lehrstuhl/brandenburg/projekte/gml/gml-technical-report.pdf
15http://www.gupro.de/GXL/Introduction/intro.html

6.4. BRIDGING THE GAP BETWEEN HETEROGENEOUS ARTEFACTS AND THE PROPERTY GRAPH MODEL 95

Format (LGF)16. To unify heterogeneous artefact and link data, GraphML [174] was chosen,
which is used to describe graph structures and to represent application specific data.

<graphml>
<key attr.name="name" attr.type="string" for="node" id="d0"/>
<key attr.name="visibility" attr.type="string" for="node" id="d1"/>
<key attr.name="variableType" attr.type="string" for="node" id="d2"/>
<key attr.name="parameters" attr.type="string" for="node" id="d4"/>
<key attr.name="returnType" attr.type="string" for="node" id="d5"/>
<key attr.name="type" attr.type="string" for="node" id="d6"/>
<key attr.name="relType" attr.type="string" for="edge" id="d7"/>
<key attr.name="uniqueId" attr.type="string" for="node" id="d8"/>

<graph edgedefault="undirected" id="DI">
<node id="1">
<data key="d0">Account</data>
<data key="d1">Public</data>
<data key="d2"/>
<data key="d6">class</data>
<data key="d8">Unique id value</data>
</node>
<node id="2">
<data key="d0">getAccountNo</data>
<data key="d1">Public</data>
<data key="d5">String</data>
<data key="d4"/>
<data key="d6">UMLOperation</data>
<data key="d8">di1/Users/ildikopete/Dropbox/PhD/SharedBackup/Evaluation/

MazeSolver/Evaluation Files/UML/Revision19/XML/OldVersion/
revision19Old.vdx</data>

</node>
<node id="3">
<data key="d0">balance</data>
<data key="d1">Private</data>
<data key="d2">int</data>
<data key="d6">UMLAttribute</data>
<data key="d8">di22/Users/ildikopete/Dropbox/PhD/SharedBackup/Evaluation

/MazeSolver/Evaluation Files/UML/Revision19/XML/OldVersion/
revision19Old.vdx</data>

</node>
<edge id="diE2" source="1" target="2">
<data key="d1">Parent_Child</data>
</edge>
<edge id="diE2" source="1" target="3">
<data key="d1">Parent_Child</data>
</edge>

</graph>
</graphml>

Listing 6.2: Example GraphML file modelling a UML class diagram and its property graph representation.

16https://lemon.cs.elte.hu/trac/lemon

96 CHAPTER 6. IMPLEMENTATION OF THE ACM FRAMEWORK: DATA REPRESENTATION

GraphML is best introduced through a concrete example. Listing 6.2 shows a GraphML file
representing a UML class diagram, which is depicted in Figure 6.12. The properties of graph
nodes and edges are derived based on the process introduced in Section 6.3.1. Artefact element
properties are defined by the key element in the GraphML file. Keys have identifiers, names, types

and a domain attribute specifying the element the given property is assigned to, as properties can
be associated with edges, nodes or both. Node elements denote graph nodes, while edge elements
stand for graph edges. The values of artefact element properties are defined by data elements
nested in Node elements, whereas edge properties are specified in data elements inside Edge

elements. Other artefact types with their corresponding elements, properties and connections are
described in a similar manner in GraphML using the appropriate property keys and their values.

Figure 6.12: The Account UML class and its members.

Table 6.2 summarises the properties used in the framework describing the current set of selected
artefacts. Should the framework be extended with new artefact types, further properties can be
added. When adding new properties, a convention to be taken into account is that GraphML key

element names are reserved to denote existing properties, and they should not be overridden by
new ones. For example, regardless of the artefact type, D8 should always stand for the unique id

property.

6.4.2.2 Transformation: XSLT

The transformation functionality is implemented using XSLT transformations. Alternatives
considered include the DOM17, SAX18 and JAXP Java parsers19. Each artefact type has a
corresponding XSLT file, which transforms the XML-based extracted artefact data to the custom
GraphML schema specified in Listing 6.2. The XSLT approach has proved to be a flexible one,
as it allows the extension of the framework without major refactoring should new artefacts be
added. In case a new artefact is introduced, its corresponding XSLT has to be supplied.

17https://docs.oracle.com/javase/tutorial/jaxp/dom/readingXML.html
18https://docs.oracle.com/javase/tutorial/jaxp/sax/parsing.html
19https://docs.oracle.com/cd/B28359_01/appdev.111/b28394/adx_j_parser.htm

6.4. BRIDGING THE GAP BETWEEN HETEROGENEOUS ARTEFACTS AND THE PROPERTY GRAPH MODEL 97

Property Key Value Description Example Values

Name The name of the artefact element
as specified in the original tool d0 getAccountNo, Account, balance

Visibility Visibility modifier d1 Public, Private, Protected
VariableType The data type of a variable

(field / attribute) d2 Int, String, Object
Parameters Parameter list

(methods / operations) d4 (int a, String b)
ReturnType Return value

(methods / operations) d5 Void, String, Int
Type The type of the entity

specified in the framework d6 Method, Enum, Component
RelType The type of the relationship

specified in the framework d7 Parent_Child, Uses
UniqueId An identifier generated to

uniquely identify artefact elements d8 SC0D:/file.graphml
Content The body of a member element

(methods / requirements) d3
return null;
"The system shall..."

Title The title of a requirement d11 "User input"
Priority The priority value

associated with a requirement d12 High
ReqType The type of a requirement d13 Functional

Table 6.2: Property key/value pairs used in the framework.

6.4.2.3 Transformation Output

The output of the transformation process is summarised in Table 6.3, which highlights the way
original artefacts are mapped to the uniform GraphML format. Since a source code repository
may contain hundreds of .java files, the mapping process of Java source code and JUnit test
artefacts differs from other types. Each .java file is transformed to a GraphML representation as
combining all Java source code or JUnit test artefact data to a single file may not be viable due to
the possible overhead caused by handling large files. Despite the separate storage, the GraphML

files are logically the same artefact.

6.4.2.4 Extracting and Transforming Trace Links

Besides artefact elements, Artefact Data also contains trace links, which connect these elements.
Intra links are extracted from original artefacts when performing artefact data extraction and
transformation. These links are denoted by Edge elements in the GraphML representation. Inter

98 CHAPTER 6. IMPLEMENTATION OF THE ACM FRAMEWORK: DATA REPRESENTATION

Artefact GraphML Representation

Java source code A GraphML file represents a single Java class/interface/enum
UML class diagram A GraphML file represents an entire UML class diagram

that may consist of multiple classes/interfaces/enums
JUnit test A GraphML file represents a single Java test class
UML sequence diagram A GraphML file represents an entire UML sequence diagram

consisting of multiple lifelines
Requirements specification A GraphML file represents an entire document, which may

contain multiple requirements
UML use case diagram A GraphML file represents an entire UML use case diagram
Conceptual architecture A GraphML file represents the entire architecture
Module view architecture A GraphML file represents the entire architecture

Table 6.3: Transformation output summary.

links, however, require specific traceability creation mechanisms to be in place to establish them.

Intra Links Establishment

Domain dependency links are either explicitly specified in the original artefact or they can be
derived. For example an association between two UML classes that is drawn on the diagram
can be extracted using the same principle applied in extracting artefact elements: the XML
representation of data obtained from the original artefacts also contains links between artefact
elements. This class of links is annotated with a generic Uses label expressed through the relType

key in the GraphML representation.

Implicitly stored relationships such as the ones between Java classes and their member methods
are annotated with a Parent-Child label. The current implementation supports the extraction of
such relationships from Java source code, UML, and JUnit test cases.

Inter Links Establishment

Establishing inter artefact trace links is currently achieved using machine learning techniques
resulting in a semi-automatic process, which is described in Chapter 8. Since inter links are not
represented by edges in the GraphML file, a custom representation is in place and inter trace
links are stored in an XML file, where they are specified as follows.

<Relations>
<Relation id="1">
<SourceNode>x</SourceNode>
<TargetNode>y</TargetNode>

6.4. BRIDGING THE GAP BETWEEN HETEROGENEOUS ARTEFACTS AND THE PROPERTY GRAPH MODEL 99

</Relation>
</Relations>

Listing 6.3: An example inter trace link expressed in XML.

The motivation to store inter trace links separately from intra links and artefact elements relates
to an implementation aspect, graph data persistence, which is discussed in the next subsection.
The Blueprints API 20 allows GraphML files to be imported to graph databases through which
intra links and artefact elements are saved. Inter links between nodes are established through an
additional database update. However, adding inter links to the GraphML file would necessitate
a custom logic to be built to save artefact data, intra links and inter links and accessing the
database on multiple occasions. Additional repercussions may include the need to combine
all GraphML files in a single file to avoid additional linking between files. Storing all artefact
element data in a single file may present performance issues when dealing with large projects.

The following list outlines the strategy to establish inter trace links with respect to artefact types
currently handled by the framework, and the granularity of linking. Creating inter links involves
understanding the system and the concepts the given artefacts represent. For any given pair of
source and target artefact, elements at the same level are connected. For example, container
elements in Java source code are connected to container elements in UML class diagrams. On
the other hand, member elements are linked to other members. The list also highlights that each
artefact type is connected to all the other types. The motivation to cover inter links between all
artefact types is to support artefact independence. Specific examples of artefact linking taken
from open source systems are introduced in Chapter 8. An alternative linking strategy may utilise
transitivity, where an identified link between element a and b, and a link between b and c allows
the conclusion to be drawn that a and c are also connected without a link being created explicitly.
This strategy may be implemented as part of future work.

1. Source artefact: Java source code

Java source code container elements are connected to UML / JUnit container, UML sequence
diagram lifeline, requirement, use case, architectural component, architecture module artefact
elements. Java source code member elements are linked to UML / JUnit member elements.

2. Source artefact: UML class diagram / JUnit tests / UML sequence diagram

UML / JUnit container and UML sequence diagram lifeline elements are connected to Java
source code container, requirement, use case, architectural component and architecture
module artefact elements. Additionally, UML / JUnit member elements are linked to Java
source code and JUnit member elements.

20https://github.com/tinkerpop/blueprints/wiki

100 CHAPTER 6. IMPLEMENTATION OF THE ACM FRAMEWORK: DATA REPRESENTATION

3. Source artefact: Requirement specification

Requirement artefact elements are connected to use case, achitectural component, architecture
module, UML sequence diagram lifeline, JUnit/ UML / Java container element(s).

6.4. BRIDGING THE GAP BETWEEN HETEROGENEOUS ARTEFACTS AND THE PROPERTY GRAPH MODEL 101

4. Source artefact: UML use case

Use case member elements are connected to requirement, achitectural component, architec-
ture module, UML sequence diagram lifeline, JUnit/ UML / Java container element(s).

5. Source artefact: Conceptual architecture

Architectural component elements are connected to requirement, use case, architectural
module, sequence diagram lifeline, Java / UML / JUnit container element(s).

6. Source artefact: Module view architecture

Module elements are connected to requirement, use case, architectural component, sequence
diagram lifeline, Java / UML / JUnit container element(s).

6.4.2.5 Transformation Summary

In summary, at the end of the transformation process, the inputs are transformed to a uniform
representation using GraphML. Intra links are stored within GraphML files, while inter links are
captured in a separate XML file.

Figure 6.13: Mapping heterogeneous XML schemas to a uniform schema to represent artefact data.

6.4.3 Graph Data Persistence

The graph data required and utilised by the framework, possesses particular characteristics;
the number of nodes may vary depending on the number of artefacts extracted from the given
project. The number of edges varies similarly due to the types of artefacts and the complexity of
relationships between them in a specific project. These attributes require a flexible and scalable
storage solution to best fulfil the potential scenarios. Additionally, artefact and link data is
prone to frequent modifications, which the selected persistence mechanism is required to handle
effectively.

102 CHAPTER 6. IMPLEMENTATION OF THE ACM FRAMEWORK: DATA REPRESENTATION

6.4.3.1 Graph Databases

One way of persisting a graph structure is by utilising graph databases, which is the selected
approach in this work. This choice is evident given the representation of framework data.
The decision is also underpinned by the numerous advantages offered by graph databases and
conclusions drawn from a careful consideration of multiple alternatives. The emergence of big
data and cloud computing has brought about requirements which are more adequately satisfied
by NoSQL databases than with traditional relational database management systems [175]. Graph
databases can be described as a specific type of NoSQL database tailored to handle large volumes
of continually growing and highly connected data. Use cases of major graph databases include
social networks, fraud detection and real-time recommendation engines [176].

A graph database is a database management system, which provides CRUD (Create, Read,
Update, Delete) functionality and exposes a graph data model [177]. The graph data model,
which dates back to the 1980s, is characterised by a graph data structure. Additionally, data
manipulation is expressed by graph transformations, and it allows the definition of integrity
constraints [178].

A graph data model is a particularly reasonable choice for data where the interconnectivity of
data is as significant as the data itself, since connections are as important entities as nodes. In
particular, the investigated graph databases support the property graph model, a directed, labelled
multi-graph, which allows edges and nodes to maintain a key/value property map. Thus, it is
possible to associate attribute metadata with nodes and edges enhancing their expressivity [157].

Graph databases offer numerous advantages and their use in the framework is underlined by the
following key factors:

• Property graph model. This model allows efficient modelling of framework artefact and
trace link data at a fine-grained level. The level of detail included on the graph through
properties is customisable, which makes the model flexible to changes.

• Framework functionality. Besides providing storage for framework data, graph databases
also assist with carrying out the consistency management tasks of the framework. Firstly,
graph traversals make it possible to walk the graph based on pre-defined conditions and to
establish subgraphs. This process is part of the change impact analysis functionality of the
framework and is detailed in Chapter 7. To perform traversals, a number of query languages
are available, such as Cypher21 and Gremlin22. Other aspects of the framework require
efficient querying of graphs, which is one of the most basic functionality of graph databases.

21http://neo4j.com/docs/stable/cypher-query-lang.html
22https://github.com/tinkerpop/gremlin/wiki

6.4. BRIDGING THE GAP BETWEEN HETEROGENEOUS ARTEFACTS AND THE PROPERTY GRAPH MODEL 103

It is also important to note that the interoperability of graph databases with other technologies
allows the framework to be easily extended, for example with visualisation techniques.

• Performance considerations. Graph databases provide index-free adjacency ("every
element has a direct pointer to its adjacent element")[179] and represent an explicit graph
where relationships are "first class citizens" [177]. These characteristics make it possible
for graph databases to execute substantially more effective queries on the same data in
comparison with relational databases, where graph data has to be mapped to tables and the
queries require joins to be performed. These performance benefits guarantee that major
performance-related issues are alleviated when reading and writing framework data. This is a
significant consideration since a software project may contain a large number of connections.

• Utilities and data maintenance. Finally, in comparison with the GraphML file format,
graph databases provide utilities aimed at the effective maintenance of the stored data, such
as versioning, recovery, and backups to mention a few.

Possible disadvantages include the fact that most graph databases do not provide support for
time-based versioning of property graphs [177]. Therefore, differences between two versions
are captured using other means. Graph databases are a relatively new technology and different
aspects of them are yet to reach a sufficient maturity level. Certain graph databases do not
provide support for distributed storage, and query languages vary across databases. However,
the area is actively growing, and various open source solutions aim to support interoperability
between them.

6.4.3.2 Alternative Strategies

Besides utilising graph databases, various other means of modelling, storing graph data and
managing its evolution are available.

Open source graph libraries allow the creation and manipulation of graphs. Additionally,
capabilities to import, export, visualise and analyse graphs are supported. Examples of Java
libraries include GraphStream23 for directed and undirected multi-graphs, Jung24 for directed
and undirected multi-graphs providing entity annotations through metadata, Grph25 providing
a general model for graphs, and JGraphT26 for various types of graphs. APIs written in other
programming languages, such as BGL27 in C++, are also widely used for solving graph-based
problems.

23http://graphstream-project.org/
24http://jung.sourceforge.net/
25http://www.i3s.unice.fr/ hogie/grph/
26http://jgrapht.org/
27https://dl.acm.org/citation.cfm?id=504206

104 CHAPTER 6. IMPLEMENTATION OF THE ACM FRAMEWORK: DATA REPRESENTATION

Besides graph exchange formats, non graph-specific formats can also be utilised to store and
exchange graph data, such as a custom XML schema. Another alternative is the Resource

Description Framework (RDF), used in the semantic web, since information modelled in RDF

can be viewed as a graph [159].

The libraries discussed above implement well-known graph algorithms and traversal mechanisms,
which can be incorporated in the framework. These file formats allow graph data to be
modelled. These properties alone are however not adequate in addressing the data description
and storage requirements of the framework. Consequently, the combination of graph libraries
and file formats raises questions regarding the handling of I/O operations, on-disk durability,
memory management, change and transaction management of graph data, ease of querying large
volumes of data, and the ability to scale to varying sizes of data. Graph exchange formats are
predominantly concerned with the description of mostly static graph data [173], whereas graph
databases, which are specifically aimed at managing dynamically changing graph data take care
of such considerations and are better suited to model, store and query framework data.

Another aspect of vital importance is the specific graph model supported by any given solution.
Accordingly, it is to be considered whether the model describes the data at the required level
of detail and whether it is possible to modify it without significant effort should the data
change. Notably, GraphML provides a suitable solution to model artefact data. However, when
considering the number of artefacts and changes that may occur, querying and updating artefacts
and links in a database seems to be a more robust approach.

6.4.3.3 Neo4j

Despite its relatively recent emergence, the field of graph databases is rapidly growing and
numerous alternatives are available satisfying different requirements and usage scenarios. Graph
databases include Neo4j28, Titan29, Allegrograph (proprietary)30, GraphDB31, InfiniteGraph

(proprietary)32, OrientDB33, InfoGrid34, HypergraphDB35, and Microsoft Trinity36. Following a
comparison and evaluation of the alternatives, Neo4j was selected as the storage backend for the
ACM framework.

28http://neo4j.com/
29http://thinkaurelius.github.io/titan/
30http://franz.com/agraph/allegrograph/
31http://ontotext.com/products/graphdb/
32http://www.objectivity.com/products/infinitegraph/
33http://orientdb.com/orientdb/
34http://infogrid.org/trac/
35http://hypergraphdb.org/index
36http://research.microsoft.com/pubs/183710/Trinity.pdf

6.5. CONCLUSIONS 105

Since most graph databases provide full ACID transaction support, a graph model for data
representation, indexing, and querying capabilities, a good basis for comparing them is their
performance when being subjected to different data loads. Thorough performance introspections
are available in literature discussing results for graph query languages and micro-operations
(traversals and reading and writing individual elements to and from the database), graph
operations (fundamental read/write graph operations, such as getting neighbours), and algorithms
(shortest path, etc.) carried out using different graph databases [180] [181] [182] [183].

Besides results obtained from such studies, a performance comparison test of Neo4j and Titan

was conducted: test artefacts and relationships were generated and the execution time of saving
data in the databases was measured. The results highlight that Neo4j is a more suitable choice.
However, Titan is part of a well-developed infrastructure of products that supports various aspects
of solving problems using graphs [184].

Another aspect that contributed to the selection of Neo4j is the maturity of the project in
comparison with other alternatives, and the support available through its community. Cypher, the
graph query language offered by Neo4j, is a pattern-matching query language allowing traversals
and graph operations. There are multiple ways of accessing and using the Neo4j database. At
the outset, the Neo4j Server, to be accessed through its HTTP API, was considered, which was
changed in favour of using Neo4j embedded in the JVM process. This allows the leveraging
of the Neo4j core-Java-API providing high-speed traversals and a mapping of graph database
concepts to Java objects [176]. Should current requirements change, the design of the Data

Access Layer allows the current implementation to be substituted to alternative ones. Accessing
the database through Java is a natural choice as the framework is implemented in Java.

Figure 6.14 shows a fraction of artefact and trace link data in Neo4j. Each node denotes an
artefact element, each connection annotated with the keyword _default is an intra trace link, and
each link labelled as INTER_REL is an inter trace link. The highlighted graph node stands for a
public Java method, called mark. The method contents and unique identifiers are also illustrated.

6.5 Conclusions

The areas described in the preceding sections encompass functionality to establish Artefact

Data in the holistic framework consisting of a property graph of nodes (artefact elements) and
edges (trace links). At the outset, heterogeneous artefacts supply input for extraction. The
output of extraction is an XML-based representation, which is transformed to a unified format to
express artefact elements and their connections. Finally, artefact data is saved to the Neo4j graph
database.

106 CHAPTER 6. IMPLEMENTATION OF THE ACM FRAMEWORK: DATA REPRESENTATION

Figure 6.14: Artefact and trace link data in Neo4j.

This implementation approach takes various alternative solutions into account in each major
step, along with possible advantages and drawbacks of the alternatives. The implementation is
guided by high-level design principles and aims at maximising automation as far as possible.
A notable shortcoming of the current implementation is that a layer of potential inconsistency
is introduced due to the multiple representations. In the event of a change affecting an original
artefact, the XML-based and GraphML representations have to be re-generated and updated.
This issue is introduced by the gap that exists between heterogeneous formats. The property
graph representation and the current implementation approach seem to be the most viable means
to address this issue in comparison with alternatives considered.

6.5. CONCLUSIONS 107

Figure 6.15: Framework setup functionality.

7CHAPTER SEVEN

IMPLEMENTATION OF THE
ACM FRAMEWORK:

FRAMEWORK STAGES

7.1 Introduction

Following the discussion of Artefact Data in Chapter 6, the implementation specifics of the
framework stages including Change Detection, Change Impact Analysis, Consistency Checking,
and Change Propagation are now presented. The discussion excludes the approach adopted for
implementing the Traceability creation stage, which in turn is introduced in Chapter 8. This
chapter concludes with an evaluation of the overall implementation of the ACM framework.

7.2 Change Detection

The aim of change detection is to reveal which original artefact have changed and how. This
change information provides the required input for subsequent framework stages. Change
detection is also responsible for carrying out further tasks to update the XML, GraphML

representations and the graph database. This subsection firstly presents an overall summary of
change detection. Next, details concerning the approach to identify the file level and artefact

element level changes are given. A flow chart summarising the steps involved in change detection
is shown in Figure 7.1.

The starting point of the process is the identification of changed artefacts and the file level
change type. This information is extracted from the external repository where original artefacts

109

110 CHAPTER 7. IMPLEMENTATION OF THE ACM FRAMEWORK: FRAMEWORK STAGES

are stored. Next, based on the file level change type, different actions are taken, which are
summarised in Table 7.1.

Figure 7.1: Change detection overview.

In case an artefact is deleted, all the necessary data for updating the graph database is in place
and the update (labelling nodes to be removed) can be carried out. The output of the process is a
list of ChangeData objects, which is passed to the subsequent framework stage. The framework
folder and its subfolders are also updated accordingly: corresponding XML and GraphML

representations are removed as they contain outdated artefact data and are no longer required by
any of the framework stages.

Edit and add file level changes require additional processing. In both cases, an XML and
GraphML representation are generated to represent the latest version of the given artefact. In

7.2. CHANGE DETECTION 111

Delete Add Edit

File System�
Remove artefact from
file system

Add artefact
to file system

Add new version of artefact
to file system and label
previous version with suffix

Graph database� Label nodes as toBeRemoved
Import new artefact
from GraphML file

Update property values
of existing node,
add new nodes, delete nodes

Table 7.1: Summary of actions taken depending on the file level change type.

case of an add change, ChangeData objects are produced and the graph database is updated by
importing the new GraphML representations. For edit changes, both the previous and current
versions of the GraphML representation are kept, which, using the proposed change identification
algorithm, are compared. The result of the comparison is a list of ChangeData objects, which
constitute the output of change detection and are used to perform the database update. In case
of add and delete artefact element level changes, database nodes and edges representing the
modified elements and their trace links are added and deleted, respectively. Editing artefact
elements results in updating the properties of nodes representing the elements in the database.
Inter links are updated based on inter trace link maintenance rules, which are discussed in Section
7.3.

7.2.1 Specifics of Changes

The change classification adopted in this work and example scenarios of file level changes are
discussed in Chapter 4. In the following section some specifics of file level changes and a detailed
discussion of artefact element level changes are presented.

In terms of delete file level changes, due to the unique characteristics of some artefacts, such
as Java source code and JUnit tests, deleting a .java file equates to the delete file level change
despite not all .java files representing the artefact are removed. On the other hand, an entire UML
class diagram artefact can be removed by a single delete operation. The framework caters for
such scenarios irrespective of their likelihood. Table B.6 in Appendix B shows specific examples
of delete and add file level changes for each artefact type.

To identify artefact element level change types, different scenarios are considered based on
the original artefacts and their main structural elements, which is highlighted in Table B.7 in
Appendix B. It is important to note that some structural elements, such as comments in source
code, are not relevant since managing their consistency is not in the scope of this work.

112 CHAPTER 7. IMPLEMENTATION OF THE ACM FRAMEWORK: FRAMEWORK STAGES

Based on the listing of concrete changes, the following conclusions can be drawn. Firstly, artefact
element level changes can be further decomposed. For example, when editing Java source code
and JUnit test cases, these modifications may either affect the contents of the artefact element, or
its signature. Therefore edit type changes are classified as signature, content type changes or
both. Secondly, the differentiation of container and member elements creates another dimension
to categorising changes: each artefact element level change can be an edit, add or delete of a
container or a member element.

Lastly, following the investigation of change types, it is concluded that apart from a generic
categorisation of change types and the identification of the modified artefact, the framework
requires a finer-grained change specification. Changes should be defined at the property graph
level similarly to artefact and trace link data. By doing so, it is possible to express changed
entities as nodes described by properties, and changes as addition or deletion of nodes, or as
editing node properties.

7.2.2 Identification of the File Level Change Type

The framework identifies the file level change by pulling changes from external repositories. As
noted earlier, the framework assumes that artefacts are checked into version control to provide
access to them. In the current implementation changes are pulled from the repository by users
invoking the change detection functionality. However, a number of alternative solutions present
themselves in this context and may be implemented as part of future work. For example, change
detection may be initiated automatically with the frequency of detection set by the user, similarly
to specifying the types of changes, and artefacts of interest. The result of the identification of the
file level change type is a list of files in the repository that have been added, deleted, or edited as
part of the latest commit.

Reading and writing to a version control system can be implemented by utilising the APIs
offering access to repositories. The first implementation concern concerns selecting a system that
provides the required data in the most straightforward way. Popular open source version control
systems include the centralised SVN1, and the distributed Git2 and Mercurial3. For the ACM
framework, Mercurial was selected as it is widely used and it can be accessed either through
the numerous available APIs, such as hg4j4, or directly by using scripts. To return the list of
added, modified and deleted files, the framework utilises a script. This information is sufficient
to identify which original artefact was subject to a change and to establish the file level change

1https://subversion.apache.org/
2https://git-scm.com/
3https://www.mercurial-scm.org/
4http://hg4j.com/

7.2. CHANGE DETECTION 113

type. In case of delete and add file level changes, file system and graph database operations take
place. However, in case an artefact is modified through an edit file level change, the next step is
the identification of the artefact element level change type, which is discussed in the next section.

7.2.3 Identification of the Artefact Element Level Change Type

Two pivotal questions relating to the identification of artefact element level changes include
how deltas between two versions of an artefact are computed, and how these are represented
and captured in the framework. The idea of utilising difference algorithms [185] used in a
number of scenarios, including version control systems, was dismissed since a line or string
based comparison is inadequate for the purposes of the framework where both the changed
entity and the type of change are relevant and need to be identified. Hence, the delta produced
by any approach should reflect the change type combined with the identification of an entity
that is meaningful from the framework’s perspective. The output of change detection allows
information, such as the following statement, to be derived: "the signature of the Java class
Account was edited by modifying its access modifier from public to protected". The level of
detail captured by change detection corresponds to the level of detail captured by the property
graph representation of artefact elements. For example, since import statements in Java source
code are not mapped to a node in the property graph, their modifications are not recorded in
the framework. Prior to introducing the graph-based approach, the next section discusses the
alternatives.

7.2.3.1 Change Identification and Representation: XML

A potential approach for representing and capturing changed entities is utilising a generic XML
solution. This seems to be a viable approach due to the fact that artefacts are stored in an
XML-based format and XML is a flexible solution for representing concepts. XML change
detection is used in a number of application areas, such as version management of documents,
and various solutions are available to detect and represent changes. These are reviewed by
Cobena et al. in depth [186]. Ones that are of particular importance are the algorithms that
handle XML documents as tree data: XML documents can be represented as ordered, labelled
trees. Thus, finding changes between two XML documents can be seen as the "tree-to-tree
correction problem" for ordered labelled trees [187].

Existing tools for XML differencing include DeltaXML 5, which allows the storing of delta
information in the form of change attributes in the original XML document. Another approach is

5http://www.deltaxml.com/products/core/

114 CHAPTER 7. IMPLEMENTATION OF THE ACM FRAMEWORK: FRAMEWORK STAGES

XyDelta 6, where each node in the XML document is given a unique identifier, while identifiers
that are different between the two versions represent the corresponding operations. Further
examples include the proprietary TreeDiff 7, diffMK 8 and VM Tools 9.

7.2.3.2 Change Identification and Representation: Graph-based Approach

For the purposes of this work, instead of XML differencing, a graph-based approach was chosen
to identify and represent modified entities and their respective change types. The motivating
factor is that since artefact data is already represented as graph nodes, no conversion to another
representation is required. The higher the number of interim representations, the higher the
potential for consistency issues to arise, should any of these representations change. Additionally,
the graph-based approach makes it possible to express changes and differences between two
versions of artefacts at the graph level. Since graph nodes model artefact elements, the translation
of changes to the artefact element level is straightforward.

The idea of using graph-based differencing of versions of a software system is not new and has
been expressed in the literature [188]. A graph-based approach presents a number of alternatives
for implementation. One example is the format used for storing change data; the framework
may utilise a custom XML-based format or the GraphML format can be extended to cater for
expressing changes. Another consideration is the level at which graph differencing is performed,
such as at the graph database or at the GraphML level, using Java APIs or custom objects.

This work adopts some aspects of the XyDelta change representation model to identify the
change type and the changed entity. In XyDelta nodes in the original XML document are given
unique identifiers, which are stored in the XidMap. The delta between two versions of the XML
document is expressed through the operations of these identifiers: if an identifier is not found in
the new version, it corresponds to a node that has been deleted [186].

GraphML File Differencing

In the approach adopted in this work, each node property is mapped to a key-value representation,
which uniquely identifies property values of graph nodes, through which graph nodes and their
changes can be identified. The approach is illustrated through an example shown in Listing
7.1. As mentioned in Chapter 6, each data element in the GraphML file has a key attribute with
pre-defined values. These attributes can take the role of keys in the key-value pairs. Every data
element has a value associated with it, which can be assigned a unique identifier such as V + a

6http://www.dia.uniroma3.it/ vldbproc/062_581.pdf
7http://www.xml.com/pub/r/536
8http://www.w3.org/2008/05/xmlspec-diff-generation/
9http://www.vmsystems.net/vmtools/doc/

7.2. CHANGE DETECTION 115

sequential number. In case two data elements have the same value, they are assigned the same
identifier, i.e. the same value in the key-value pair. In this example the D1 key of both nodes has
the same value (public), hence they are both assigned the value V1. Unique identifiers of nodes
represented by D8 data keys are excluded from differencing since they are not the same across
two versions of the GraphML file. Hence, Every D8 key is assigned a set value.

<node id="1">
<data key="d0">BitIOCommonTest</data>-->V0
<data key="d1">public</data>-->V1
<data key="d6">class</data>-->V2
<data key="d8">sc0Path</data>-->V3
<data key="d9"/>-->V4

</node>
<node id="2">

<data key="d0">rnd</data>-->V5
<data key="d1">public</data>-->V1
<data key="d2">Random</data>-->V6
<data key="d6">Field</data>-->V7
<data key="d8">sc1Path</data>-->V3

</node>

Listing 7.1: GraphML file, version n - mapping to key-value pairs

The above nodes shown in Listing 7.1 can be represented as collections of key-value pairs. A
graph G, which consists of these two nodes, may therefore be defined as:

Let graph G:
N1 --> (D0 --> V0, D1 --> V1, D6 --> V2, D8 --> V3, D9 --> V4)
N2 --> (D0 --> V5, D1 --> V1, D2 --> V6, D6 --> V7, D8 --> V3)

Listing 7.2: Graph G defined as a collection of key-value pairs

The subsequent (modified) version of the same GraphML file is presented in Listing 7.4: the D1

data key of the first node was edited from public to protected. Graph G’, which is version n+1 of
graph G, is therefore defined as:

Let graph G’:
N1 --> (D0 --> V0, D1 --> V8, D6 --> V2, D8 --> V3, D9 --> V4)
N2 --> (D0 --> V5, D1 --> V1, D2 --> V6, D6 --> V7, D8 --> V3)

Listing 7.3: Graph G’ defined as a collection of key-value pairs

116 CHAPTER 7. IMPLEMENTATION OF THE ACM FRAMEWORK: FRAMEWORK STAGES

<node id="1">
<data key="d0">BitIOCommonTest</data>-->V0
<data key="d1">protected</data>-->V8
<data key="d6">class</data>-->V2
<data key="d8">sc0Path</data>-->V3
<data key="d9"/>-->V4

</node>
<node id="2">

<data key="d0">rnd</data>-->V5
<data key="d1">public</data>-->V1
<data key="d2">Random</data>-->V6
<data key="d6">Field</data>-->V7
<data key="d8">sc1Path</data>-->V3

</node>

Listing 7.4: GraphML file, version n+1 - mapping to key-value pairs

Listing 7.3 shows that the D1-V1 key-value pair was modified to D1-V8, therefore it can be
concluded that the node was edited. The three basic types of changes can be defined as follows:

Add: if node exists in graph G’ but it is not present in graph G, it was added.
Edit: if node exists in both graph G and G’ and any of its key-value pairs are modified, it was
edited.
Delete: if node exists in graph G but it is not present in graph G’, it was deleted.

Implementation of GraphML File Differencing

To implement the solution in Java, both previous and current versions of the graph (pre and post
modification) obtained from GraphML files are parsed to a nested hashmap data structure. Nodes
of the graph are identified by keys, while node property names and their values constitute values
and are also stored as a hashmap, as illustrated by Figure 7.2. Change identification can also be
realised using a constraint modelling system, such as Conjure [189], which allows the problem to
be solved effectively. This option however, was dismissed for the current implementation, since
it requires a constraint solver to be integrated in the framework resulting in further complexity.
Furthermore, in case any changes are introduced to the underlying algorithm, utilising Java
collections for implementing both the change and node identification problems provides a more
flexible way of incorporating those changes.

Listing 2 describes the algorithm for identifying identical entities and fine-grained change types.
While iterating the nested hashmap representations of the previous and current versions of the
graph, beforeMap and afterMap respectively, the inner hashmaps inside both are compared. Inner

7.2. CHANGE DETECTION 117

Figure 7.2: Nested hashmap representation of graph nodes and their properties.

hashmaps with the same number of keys are checked for matching values of D0 keys. D0 keys
stand for the name property of graph nodes, and since nodes with the same name and number
of properties are identical, to establish matching nodes, hashmaps with the same D0 values are
to be searched. In case values of all other keys are identical, the graph node is unchanged. If
values of other keys mismatch, the node has been edited. Such keys are added to a list of edited
entities. All matching keys are added to a list of matching entities. Should the values of D0 keys
be different, the inner hashmaps do not match, showing an add change. The same applies for
inner hashmaps with different numbers of keys.

Deleted nodes are identified by differencing the sets of keys of beforeMap and matching keys.
Added nodes can be obtained by differencing the sets of keys of afterMap and matching keys.
Edited nodes can be established based on the list of edited entities.

A challenge revealed during implementation is differentiating rename changes from additions.
Rename operations involve the modification of the D0 property. However, at the same time, any
other property may be modified. When comparing a node from the previous version with a node
in the subsequent version, it cannot be stated with certainty whether the investigated nodes are
the same in case the actual change was a rename. This is due to the fact that any two nodes can
have the same number and type of properties, and their values are also subject to changes. For
this reason, for any node where a match was not found, the node in the new graph is labelled as
an addition.

Some modifications affect intra trace links, which are represented by edges in the GraphML files.
To update intra links, they are re-generated following the identification of changed entities and
change types. The approach for updating inter trace links is discussed separately in Section 7.3.

118 CHAPTER 7. IMPLEMENTATION OF THE ACM FRAMEWORK: FRAMEWORK STAGES

Algorithm 2 Change identification.
1: Input:
2: Nested hashmap representation of before and after graphs:
3: a, outer hashmaps beforeMap and afterMap
4: b, inner hashmaps beforeValue and afterValue
5: Artefact change type: were the artefacts added, deleted or edited?
6: Output: List of edited, added, deleted nodes
7: begin
8: For each key-value mapping in beforeValue and afterValue
9: If beforeValue.keySet size = afterValue.keySet size

10: If values corresponding to the D0 key are equal in beforeValue and afterValue
11: beforeValue and afterValue represent the same graph entity
12: If beforeValue and afterValue are equal, the entity did not change.
13: Add beforeValue key and afterValue value to map of visited key-value pairs.
14: Else
15: The entity was edited. Add beforeValue key and afterValue value to
16: map of visited key-value pairs. Add beforeValue key and
17: afterValue to map of edited key-value pairs.
18: Else beforeValue and afterValue are not the same graph entity. No action.
19: Else
20: beforeValue and afterValue are not the same graph entity. No action.
21: End for
22: Get added entities by differencing the keys of afterMap and visited key-value pairs.
23: Get removed entities by differencing the keys of beforeMap and visited key-value pairs.
24: Get edited entities from edited map keyset.
25: End

Element Identification Problem

A pivotal aspect of change detection is the identification of artefact elements across two
subsequent versions of the given artefact. That is, how can it be established that artefact

element 1 in version n is identical to artefact element 1 in version n+1 regardless of the element
being edited or remaining the same across the two versions. This issue exists regardless of
the models selected to represent artefact elements and changes, and can be translated to the
graph-based representation as follows. What methodology can be adopted to establish that N1 on
graph G is identical to N1 on graph G’. The answer is straight forward in case the node was not
modified since the key-value pairs are identical. Using the above example, it can be concluded
that N2 on graph G is the same as N2 on graph G’. However, in case the node was edited, in
the current implementation, domain-specific knowledge based on the artefact type is utilised.
For example in a Java class, there cannot be two methods with the same name and signature.

7.2. CHANGE DETECTION 119

Therefore, when comparing two nodes in two versions of a graph describing a Java source code
artefact, if the two nodes have the same number of data elements, and their name is the same
(D1 data key), it can be concluded that they are identical even if other data key values have been
modified. This rule can be applied in case of UML class diagrams and JUnit test cases. Further
rules can be associated with other artefact types. For example, if node N stands for a requirement
in a requirement specification artefact, it can be concluded that node N is the same across two
versions of the file if their title properties (D11) are the same.

One specific case of this problem is the rename operation, which is also a type of edit change
and it may be interpreted either as a rename or as a composite change consisting of a delete

and an add operation. Another case is specific to Java source code, JUnit test and UML class
diagram artefacts, where it is possible that multiple artefact elements with the same name and
type exist. For example, there may be multiple Java methods with the same name and different
parameters. Furthermore, for example, a Java class that contains multiple constructors poses the
same challenge in identifying if elements are the same across two subsequent versions of the
artefact.

7.2.4 Change Detection Output: Change Data object

The output of change detection is represented by the ChangeData object, which provides the
following attributes of a modification and the modified artefact:

• Change type. As mentioned above, changes can be grouped as add, delete, or edit changes.

• Name of the modified entity. The name of the artefact element that was changed.

• Specific artefact type. It can take the values of artefacts handled by the framework, such as
Java source code, UML class diagrams, etc.

• Artefact element type. Element types may take the value of method, class, interface, etc.

• The scope of the change. It shows whether the change is limited to the signature of the
given artefact element or if it affects its contents or both.

• UniqueId. The unique identifier of an element.

• Edits. Property-level details of artefact element level edit changes.

• Adds. Property-level details of artefact element level add changes.

An example of the ChangeData object in Java and the granularity level it offers are shown by
change_1 in Listing 7.5. The example shows that the contents of the MazeView Java method
were edited, while its signature remained the same.

120 CHAPTER 7. IMPLEMENTATION OF THE ACM FRAMEWORK: FRAMEWORK STAGES

Public ChangeData change_1 =
new ChangeData ("MazeView", ElementType.Method, false, ArtefactType.

JAVA_SOURCE_CODE, ChangeType.EDIT);

Listing 7.5: Example ChangeData object

7.2.5 Conclusions

The main contribution of the change detection stage is the identification of changes of
heterogeneous artefacts utilising a graph-based approach. The solution captures changes at
the property graph level through the ChangeData object. While a graph-based representation
of changes is required by subsequent stages of consistency management, it may also be useful
in a number of other scenarios such as refactoring. To provide useful insights for refactoring
tasks, the GraphML representation can be extended to capture finer-grained details of a method’s
body. The correctness of the change detection solution is evaluated through concrete examples
obtained from open source systems, which is detailed in Chapter 9.

7.3 Rule-based Traceability Maintenance

The following section provides an analysis of the various change scenarios and their potential
effects on inter trace links through which the traceability maintenance approach adopted in this
work is revealed. Three main change scenarios can be established based on the file level change
type. Thus, this section is divided into three corresponding subsections. Figure 7.3 presents a
property graph denoting Java source code (SC1, SC2, SC3) and UML class diagram (DI1, DI2,
DI3) artefact elements, which will be used to demonstrate the different change scenarios in each
corresponding subsection. The figure depicts a Java class (SC1) with its members (SC2 and
SC3), a field and a method, respectively. SC1 is connected to DI1 through an inter trace link,
which models a UML class, and DI2 and DI3 denote its members.

7.3.1 Delete File Level Change

As described in Subsection 7.2.1, the delete file level change equates to removing files
representing artefacts in the repository. Since Java source code and JUnit test artefacts are
stored in multiple .graphml files, deleting any of the corresponding artefact files results in
partially removing these artefacts.

7.3. RULE-BASED TRACEABILITY MAINTENANCE 121

Figure 7.3: Graph data representing Java source code and UML class diagram nodes.

The effects of delete file level changes and the derivation of inter trace link maintenance rules
are demonstrated using a Java source code artefact as depicted by Figure 7.4. In this scenario
a .java file is deleted from the code repository. The change results in removing nodes SC1,
SC2 and SC3, marked in red, from the graph database. Since the deleted nodes are required for
change impact analysis and consistency checking, they are first labelled in the graph database
with a to be removed annotation. The update of the database is performed during the Change

Propagation stage. Based on this scenario, the following rule can be formulated: if a Java source
code artefact element type is removed, all of its relationships, including both intra and inter trace
links, should be deleted. After considering other artefact types, this rule can be extended to all
artefacts currently handled by the framework. Therefore the derived delete trace maintenance

rule is as follows:

If an artefact element of any type is removed, all of its relationships, including intra and inter

trace links, should be deleted.

Figure 7.4: Delete file level change.

122 CHAPTER 7. IMPLEMENTATION OF THE ACM FRAMEWORK: FRAMEWORK STAGES

A summary table of the delete file level change scenario for each artefact type is provided in
Appendix B in Table B.16.

7.3.2 Add File Level Change

It is the inverse operation of the delete file level change, which results in adding new artefacts to
the repository. In case of Java source code and JUnit test artefacts, in most cases fragments of
the artefact are added by creating new .java files. Further examples include adding a new UML
class diagram, sequence diagram or conceptual architecture diagram. In most cases, inter trace
link maintenance cannot take place as rules are not sufficient enough to infer new relationships.
However, inter trace link creation techniques can be used to automate the process, as described
in Chapter 8.

However, in the specific case of Java source code artefacts and when creating a new Java class or
interface, inheritance information, that is, an existing intra link between the newly added class
and an existing class or interface, may be used to infer potential inter links. Specifically, in case
the added class extends an existing class or implements an interface:

• it should be connected to the requirement, architectural component, module or use case
artefact element that class / interface is connected to through an inter link,

• it may potentially be connected to the UML class, JUnit class, UML sequence diagram that
class / interface is connected to through an inter link.

7.3.3 Edit File Level Change

Edit file level changes describe situations when existing artefacts are modified either by deleting,
editing or adding new elements. Therefore, the edit scenario is further grouped into three artefact

element level change types. Edit file level changes and the formulation of trace maintenance rules
are demonstrated through the same example introduced above using a Java source code artefact.

7.3.3.1 Delete Artefact Element Level Change

Figure 7.5 illustrates deleting the SC3 node, which is a member element of the Java class
represented by SC1. The example highlights that in this case the delete trace maintenance rule

is applicable, which can be generalised to the other artefacts handled by the framework. A
summary of the change scenarios specific to each artefact is provided in Appendix B in Table
B.17.

7.3. RULE-BASED TRACEABILITY MAINTENANCE 123

Figure 7.5: Delete element from artefact.

7.3.3.2 Add Artefact Element Level Change

Adding a new member element is shown on Figure 7.6. The addition of SC4 results in an intra

trace link being established between SC1 and SC4. However, any potential inter trace links
cannot be simply inferred by trace maintenance rules, and fall under the inter trace link creation
problem. This scenario overlaps with consistency checking in certain cases, as based on the
findings of the consistency checking stage, the addition of inter trace links may be suggested.
For example, if consistency checking identifies an inconsistency by adding SC4 based on a rule,
it may suggest the addition of a DI4 node, which should be connected to SC4.

Figure 7.6: Add new element to artefact.

7.3.3.3 Edit Artefact Element Level Change

The edit scenario is depicted on Figure 7.7, which shows that the visibility property value of the
SC3 node was changed to public. The SC3 node is a member of SC4, which is a container node.
The edit scenario in general can represent editing both container and member elements, which

124 CHAPTER 7. IMPLEMENTATION OF THE ACM FRAMEWORK: FRAMEWORK STAGES

is applicable to Java source code, UML class diagram and JUnit test artefacts. In the example,
the inter trace link connecting SC3 and DI3 remains unmodified. Further edit change scenarios
may include renaming SC3, where the entity may still remain connected to DI3. However, in
ambiguous situations the identity of the node may change as it now may represent a new artefact
element. Additionally, the contents of some artefact elements may also be subject to updates,
which may or may not affect their inter and intra links. Thus, the framework takes an optimistic
approach to trace link maintenance for edit artefact element level changes, which is based on the
granularity of artefact elements. The following edit trace maintenance rule is specified:

Following an edit artefact element level change, existing intra and inter trace links are not

affected.

Table B.18 provides a summary of edit artefact element level change scenarios for each artefact.

Figure 7.7: Edit property of an existing element.

7.4 Change Impact Analysis

The impact analysis algorithm, which is introduced in Chapter 4, is implemented using the Neo4j

Traverser Framework10. The main components for realising the approach are the following:

• A start node, which is supplied by the ChangeData object

• Edges (relationship types and directions) to traverse, which is specified by the algorithm

• A stop criterion to finish traversing (stop evaluator)

• A selection criterion to establish the set of nodes to return (returnable evaluator)

10http://neo4j.com/docs/stable/tutorial-traversal-java-api.html

7.4. CHANGE IMPACT ANALYSIS 125

7.4.1 Illustrative Example

The following example shown in Figure 7.8 highlights how the impact analysis algorithm is
realised using the Traverser Framework.

Figure 7.8: Example artefact property graph to illustrate the change impact analysis approach.

Inputs

• Property graph of artefact elements: the graph consists of nodes A, B, C, D, E and F. Node
A, which denotes a Java method called mark, is directly connected to B, C and D, through
an inter link. Node B is a UML method called mark, node C stands for a requirement in a
specification document expressing the functionality of the mark method. Finally, node D is
a unit test for the mark Java method. Node D is also connected to F through an intra link,
while node B has another connection, namely node E.

• The ChangeData object, which specifies the following:

• The name of element: mark

• The type of element: method

• The fine-grained change type: false - it is not a signature change

• The artefact type: source code

• The artefact element level change type: edit

• The file level change type: edit

• The specifics of the edit artefact level change: previous and current contents

• The uniqueId: SCPath

126 CHAPTER 7. IMPLEMENTATION OF THE ACM FRAMEWORK: FRAMEWORK STAGES

These details suggest that the contents of the mark method were edited. The aim of impact
analysis using this concrete example is to establish which nodes may be impacted by the same
modification.

Processing

Based on the ChangeData object, the modified node (A) is identified and is set as the starting
point of the traversal. The Neo4j Traverser object is responsible for performing and customising
the traversal. For example, it defines the depth and type (breadth or depth first) of the traversal.
The API also makes it possible to define rules for the traversals by specifying them in the
overridden Evaluator object of the Traverser Framework.

Output

At the end of the process, the impact_set{B, C, D} consisting of node B, C and D is returned. A
string representation of the output may take the following form:

(A)--[INTER_REL]-->(B)
(A)--[INTER_REL]-->(C)
(A)--[INTER_REL]-->(D)

Listing 7.6: String representation of impact analysis output.

The output is represented by an IAResult object in the framework, which encapsulates the
changed entity, the specifics of the change, and the results of inter and intra traversals in the form
of lists of Node and Path objects.

7.5 Rule-based Consistency Checking

The realisation of consistency checking is detailed in the following section. Firstly, inter

consistency checking is introduced, then the particulars of intra consistency checking are
presented. As described in Chapter 4, the basic premise of the consistency checking approach
is that following change detection and impact analysis, the consistency of potentially impacted
entities can be analysed by applying consistency rules. The components of consistency rules,
which are identified in Chaper 4, are obtained at implementation level in the following manner:

• File level change type (add, edit, delete) obtained from the getFileLevelChangeType property
of the ChangeData object

• Artefact type obtained from the getArtefactType property of the ChangeData object. It takes

7.5. RULE-BASED CONSISTENCY CHECKING 127

the values of types currently handled by the framework.

• Artefact element type derived from the type property of the artefact element in question.

• Fine-grained artefact element type denoting hierarchical relationships between elements of a
specific artefact, which can take the value of container or member element and is derived
from the artefact element type. This categorisation is applicable to Java source code, UML
class diagram and JUnit test artefacts due to their structural similarities.

• Existing inter and intra trace links connecting elements derived from the property values of
edges connecting the given elements.

7.5.1 Inter Consistency Checking

In the following section the consistency management approach between heterogeneous artefacts
is discussed. To derive inter consistency rules, three basic scenarios are considered based on the
file level change type. Therefore this section is divided into three subsections, which represent
the three categories of file level changes. In each subsection a number of scenarios, based on the
artefact type, are introduced.

Delete File Level Change

A delete file level change results in removing multiple artefact elements at the same time, thus at
the graph database level multiple nodes are affected.

Tables B.8, B.9 and B.10 in Appendix B show the derivation of consistency rules and that the
rules are dependent on the specifics of the changed entity, the elements it is connected to, and
the type of the inter trace link between them. In the current discussion, identity and satisfaction

links are relevant. An identity inter trace link between two entities shows that they represent the
same concept. On the other hand, a satisfaction type inter link does not guarantee a one-to-one
mapping between the two entities. Therefore, in case a Java class is deleted, a requirement may
remain consistent. However, the same rule may not be applicable if the changed entity is a
requirement, and the connected entity is a Java class.

Add File Level Change

The add file level change is the inverse operation of the delete file level change and the same
example scenarios are applicable. In case new elements are added, no connections are in place
between these and existing elements. Since consistency checking requires the existence of trace
links, rules cannot be defined to cater for this scenario. However, in particular cases, which are
specific to Java source code, UML class diagram and JUnit test artefacts, intra connections may
be utilised. For example a newly added class may implement an existing interface, which results

128 CHAPTER 7. IMPLEMENTATION OF THE ACM FRAMEWORK: FRAMEWORK STAGES

in the creation of an intra link between them.

Edit File Level Change

Edit file level changes result in modifications within existing artefacts and are summarised in
Table B.7 in Appendix B. Since further three edit file level change scenarios exist - add, delete

and edit artefact element level changes -, consistency rules are derived accordingly. Firstly,
delete artefact element level changes are introduced in Table B.11 in Appendix B.

Establishing inter rules for the add new artefact element change scenario in Java, JUnit and
UML class diagram artefacts requires the inter trace links of the parent of the newly added
artefact element. For example, when a new UML method is added to a UML interface, the
elements connected to the UML interface through an inter link may be inconsistent. As shown
in Table B.12 in Appendix B, deriving rules in such a manner is applicable to artefacts which
provide both member and container elements. Furthermore, in the specific case of adding a UML
container element, existing intra connections do not provide sufficient information to create inter

consistency rules.

Edit artefact element level changes are summarised in Tables B.13 and B.14 in Appendix B. The
types of edited elements show that specific artefacts can be edited in a number of ways. For
example Java member artefact elements can be changed by modifying their signature, such as
renaming a method, or by editing the contents, such as changing a method’s body.

7.5.2 Intra Consistency Checking

Intra rules are applicable in case of edit artefact element level changes since in case of add

artefact element level and delete artefact element level changes, intra links are added and deleted,
respectively. Table B.15 in Appendix B shows the intra rules applicable to Java source code,
UML class diagram and JUnit test artefacts. Since intra trace links between requirement elements
in a requirement specification, use case elements in a use case document, and lifeline elements
in a sequence diagram artefact are not recorded in the current implementation of the framework,
no intra rules are applicable to these artefacts. Furthermore, despite the fact that conceptual
architecture and module view architecture artefacts are characterised by a structure in which
certain elements may contain others, such as components and subcomponents, the framework
presently handles these artefact elements individually.

7.6. CHANGE PROPAGATION 129

7.5.3 Rule Implementation

Consistency checking rules are captured in a rule-base in an XML format and are parsed using
the Java DOM API. XML was selected as a means of representing the different scenarios since it
allows new rules to be added should the framework be extended with additional artefacts. Such
flexibility provides further benefits from an implementation point of view, as adding further rules
does not require the implementation to be altered. Listing 7.7 shows an excerpt of the rule-base,
which represents a delete file level change. In this example a Java source code container artefact
is removed, and the corresponding rule indicates that the connected UML sequence diagram
member element is inconsistent.

<DeleteFileLevelChangeRule id="rule3">
<ChangedEntity>

<ArtefactType>JAVA_SOURCE_CODE</ArtefactType>
<FineGrainedElementType>Container</FineGrainedElementType>

</ChangedEntity>
<ConnectedEntity>

<ArtefactType>SEQUENCE_DIAGRAM</ArtefactType>
<FineGrainedElementType>Member</FineGrainedElementType>

</ConnectedEntity>
<InterLinkType>Identity</InterLinkType>
<StateOfConsistency>Connected entity is inconsistent.</

StateOfConsistency>
</DeleteFileLevelChangeRule>

Listing 7.7: Excerpt of XML rules capturing consistency rules.

7.5.4 Output

The results of consistency checking are captured in a ConsistencyCheckResult class, which
associates a pair of changed artefact element with a potentially impacted element and an
applicable consistency rule.

7.6 Change Propagation

In the current implementation of the ACM framework, change propagation is responsible for
suggesting resolutions to users based on the results of consistency checking. Additionally, it
is the last stage of the consistency management process, and therefore the final graph database
update takes place in this stage prior to pulling new changes from the repository. Finally, users
are presented with the results of consistency management, including a summary of the changes,
their potential impact and consistency issues.

130 CHAPTER 7. IMPLEMENTATION OF THE ACM FRAMEWORK: FRAMEWORK STAGES

Similarly to consistency checking, change propagation can also be divided into two broad
categories. Intra change propagation follows intra consistency checking when inconsistencies
are resolved within an artefact. On the other hand, inter change propagation refers to the activity
of resolving inconsistencies in heterogeneous artefacts.

7.6.1 Graph Database Update

The majority of database update operations take place in the Change detection stage as described
in Subsection 6.3.1.5. However, inter trace link maintenance, that is adding, removing and
editing edges of the graph, is performed during change propagation. Moreover, nodes that have
been previously labelled with the tobeRemoved annotation are removed from the database.

7.6.2 Inconsistency Resolution

The ConsistencyCheckResult object provides sufficient data to suggest resolutions to users.
It contains details about the changed artefact element, and the database nodes that may be
inconsistent as a result. Based on this input, the framework differentiates two cases:

a, (Potential) inconsistencies

In this case, the framework suggests the user to apply the same change to inconsistent and
potentially inconsistent elements that was previously performed on the changed artefact element.

b, No consistency issues

In this case a message is displayed to the user stating that the framework did not identify
consistency issues following the specific change. However, the elements of the impact set are
listed and the user can confirm these results by checking these elements either at the database or
at the original artefact level.

7.6.3 Final Output of Consistency Management

The final output of the consistency management cycle is presented to the user at the end of change
propagation. The output consists of a summary of the changes and (potential) inconsistencies. An
ideal change propagation solution is automated as far as possible and therefore involves applying
changes to inconsistent artefacts as automatically as possible. Additionally, the user should be
able to configure which changes may be automatically applied and which modifications require
manual input. This level of change propagation support is not within the scope of this work.

7.7. IMPLEMENTATION EVALUATION AND CONCLUSIONS 131

7.7 Implementation Evaluation and Conclusions

To conclude Chapter 6 and Chapter 7, an evaluation of framework implementation is provided.
The assessment is carried out by considering system prerequisites, the functionality offered
by the current implementation and by analysing the level of support provided for high-level
requirements set out.

The current implementation of the ACM framework enables users to perform framework setup to
unify heterogeneous artefacts to a property graph representation, and consistency management.
In order to invoke the functionality of the framework certain prerequisites are required. These
assumptions and the system requirements for running the framework can be summarised as
follows.

• Version Control. The current implementation assumes that the original artefacts are stored
in a version control system. This makes it possible for the framework to pull artefacts from
the repository and perform operations on them.

• Database backend. It is assumed that the user has a graph database installed. The current
implementation supports Neo4j and can be extended to allow migrating to other graph
databases.

• User supplied data. In order to extend the framework with new artefacts users are required
to supply XSLT files to allow the transformation of their custom XML-based representation
to the custom GraphML structure.

• Tools. The tools used to create and store original artefacts are required to provide functionality
to export artefact data to an XML-based representation.

• System requirements. The framework currently runs on a Windows platform. Further pre-
requisites include a version control system of the user’s choice (in the current implementation
Mercurial is required) and the Java platform11.

Following is a summary of the framework functionality and an analysis of how the current
implementation achieves the high level requirements set out in Chapter 4.

• Tool independence. The framework caters for any tool assuming that it allows the extraction
of artefact data to an XML-based format. For the present version of the implementation the
following heterogeneous tools and formats are selected: OpenOffice Write (.odt), DIA (.dia)

and Eclipse (.java). Additionally, the framework can be extended to cater for artefacts created
in further tools.

11http://www.oracle.com/technetwork/java/javase/overview/index.html

132 CHAPTER 7. IMPLEMENTATION OF THE ACM FRAMEWORK: FRAMEWORK STAGES

• Artefact independence. The property graph model allows the representation of any entity
characterised by any structural attributes and abstraction level assuming artefact data can be
extracted as mentioned above. Apart from the ability to handle any artefact regardless of its
type, another important aspect to consider is that the framework should prioritise artefacts
which are the most widely used in software development projects. Representations selected
for the current implementation include requirement specifications written in natural language,
UML class diagrams, Java source code, JUnit test cases, UML use cases, UML sequence
diagrams, software architectures (conceptual and module view), subsets of which are used in
traditional and agile software projects.

• Automation. A major goal of the ACM framework is the discovery of approaches that
allow automation across all stages of the consistency management process. The framework
makes it possible to automatically extract and transform heterogeneous artefacts to a uniform
format assuming data in the original tools can be accessed. The creation of inter trace links is
currently semi-automated and the approach is presented in the following chapter. Change
detection is carried out in an automatic manner and is currently invoked manually by the
user. Change impact analysis and consistency checking are automatic. Change propagation
automatically suggests resolutions to inconsistencies, however, the propagation of changes is
carried out manually by user at their discretion.

• Configuration. The ability to configure the framework during the setup process addresses
the "Customisable and non-intrusive" requirement. Users can currently perform framework
configuration at startup. However, future work remains to be done in the area to allow users
to customise other aspects of the framework, which is discussed in Chapter 10.

• Performance. The ability to effectively handle a varying number of artefacts and changes of
different complexity is evaluated in Chapter 9.

8CHAPTER EIGHT

AUTOMATING
TRACEABILITY CREATION

USING MACHINE
LEARNING

An integral aspect of the ACM framework is Traceability creation, which lays the foundations
for subsequent stages. Therefore, its automation plays a pivotal role in providing an effective
solution. This chapter introduces an approach based on machine learning to automate trace link
creation, which is identified as a classification problem. It then discusses data collection, and
feature and model selection. Finally, the trained models are evaluated, and an assessment of the
approach and the strategy used to integrate it in the framework are provided.

8.1 Introduction

Traceability creation aims to establish inter trace links between software artefacts. Since the
stages of consistency management, which are discussed in Chapter 4, rely on the existence
of correct and complete trace links, a mechanism for creating them is intrinsic to the ACM
framework. In accordance with the high level requirements of the framework, any traceability
approach should be independent of artefacts and tools, and be as automatic as possible. Automatic
link creation is also central to the adoption of the framework in real world scenarios, where
establishing links manually in a potentially large number of artefacts may not be feasible.

133

134 CHAPTER 8. AUTOMATING TRACEABILITY CREATION USING MACHINE LEARNING

Automating trace link creation is a well-established research problem and various techniques
have been proposed to develop more intelligent algorithms to automatically identify links or
to complement and improve the accuracy of existing solutions. As described in Chapter 3,
these can be categorised in different ways including information retrieval [70], heuristic [100],
data mining [109], ontology [190], and rule-based [112] techniques. Despite the number of
approaches, providing a solution to accurately and automatically establish trace links among a set
of heterogeneous representations remains an open problem. The aim of the approach discussed
in this chapter is to provide a machine learning based semi-automated solution to create inter
trace links and to cater for diverse artefacts. Prior to discussing the specifics of the approach,
basic concepts of machine learning are introduced.

8.2 Machine Learning

8.2.1 Basic Concepts

Mitchell defines machine learning as a field concerned with the construction of "computer
programs that automatically improve with experience" [191]. Machine learning allows the
discovery of knowledge from data by devising algorithms that draw inspiration from a number
of fields. Such areas include artificial intelligence, probability and statistics, computational
complexity, information theory, psychology and neurobiology, control theory, and philosophy
[191]. The impact of these fields is manifested in the core ideas behind machine learning
algorithms and models. For example Neural Networks are modelled based on the biological
brain, and Bayesian Networks learning is based on principles originating in probability and
statistics.

Machine learning algorithms have proven to be useful in a substantial number of application
domains. One example is data mining problems where the aim is to discover implicit correlations
and novel patterns in large-scale data [192]. Other areas include speech recognition, computer
vision, and robot control.

Machine learning problems can be categorised into various groups, such as classification,
regression or clustering problems. The aim of both classification and regression is to predict
a target (output) based on some predictors (inputs) [193]. However, the two differ in the
type of the target. While the target in classification is a nominal variable, in regression it is
numeric. Classification, under which the approach presented here falls, is introduced in detail in
Subsection 8.2.4. The main premise of clustering is to assign observations into groups based
on some similarity. A notable clustering method is the K-means algorithm, which is aimed at
finding user-specified number of clusters represented by their centroids [192].

8.2. MACHINE LEARNING 135

Depending on the learning approach, four main types of machine learning scenarios can be
differentiated [194]. Supervised learning involves the use of labelled instances, that is, the
algorithm is provided with a training set that contains the desired output values. On the other
hand, in unsupervised learning the training data does not contain the desired outputs, whereas
semi-supervised learning may involve a few desired outputs. Finally, in reinforcement learning

the algorithm learns through trial and error. The work presented here falls under the area of
supervised learning.

8.2.2 Relevant Machine Learning Usage Scenarios

Machine learning has been applied in a number of software development and software
maintenance problems; as Zhang points out, requirements engineering, rapid prototyping,
component reuse, cost/effort prediction, defect prediction, test oracle generation, validation,
reverse engineering and change impact prediction are just a few areas that can benefit from the
potential machine learning techniques offer [195] [196]. However, due to the data requirements
of such techniques, one of the hindering factors of applying machine learning algorithms is
the availability and accessibility of relevant software engineering specific data from software
projects [197].

In the field of traceability, a number of solutions rely on machine learning techniques to
complement other automated trace generation techniques and to improve their results. A few
examples include the Multi-strategy Learning approach to recover trace links between Java
programs and Use Case elements [198], and a custom classification algorithm to improve the
quality of traces between regulatory code and product level requirements [199]. Additionally,
work has been done to evaluate the applicability and performance of clustering in automated
tracing [200], to combine the Vector Space Model with Regular Expressions, Key Phrases and
Clustering using a modified K-means algorithm to automatically recover links between text
documents and source code [201], and to investigate the use of clustering to improve tracing
between high-level requirements and low-level design elements [202]. Finally, reinforcement
learning has been used to identify common textual segments between documents and to suggest
links between them [203]. These solutions focus on specific artefacts and on automating tracing
between these representations. In comparison, the approach presented in this work applies
supervised learning to establish trace links between heterogeneous artefacts and hereby aims at
providing a more generic solution applicable in different development scenarios.

136 CHAPTER 8. AUTOMATING TRACEABILITY CREATION USING MACHINE LEARNING

8.2.3 Motivation to Use Machine Learning

Automatically creating trace links is a complex problem. Inter artefact relationships cannot
simply be inferred from a set of rules describing correlations between artefact elements without
imposing very restrictive practices on developers, such as strict naming conventions, or manually
creating mappings between artefacts. The heterogeneity of artefacts and artefact elements,
which differ in their naming, structure and abstraction levels, exacerbate this complexity. It
cannot be guaranteed that software projects follow standardised coding practices such as naming
conventions, which means all aspects of artefacts can be variable. The complexity of this
problem makes a simple heuristic approach unlikely to succeed. Thus, a way of capturing and
leveraging the fundamental complexity of the interactions between artefacts is required and
machine learning is particularly suited to modelling complex non-linear spaces.

8.2.4 Traceability Creation as a Classification Problem

The premise of our approach is that establishing trace links can be thought of as a binary
classification problem. That is, a pair of source and target artefact elements can be categorised
into a given set of categories, related or unrelated, based on existing and already categorised
pairs. As described by Domingos [204], a classification is a system which, given a vector of
feature values, outputs a single discrete value called the class. The problem, specifically in
the context of classification, can be defined as approximating a boolean-valued function from
training examples, i.e. given examples labelled as members and non-members of a class. Each
instance X - a pair of source and target artefact elements - is represented by attributes (selected
features, which are discussed in Section 8.5). The target concept - whether or not a trace link
exists for X - can be denoted by:

c : X → 0,1wherec(X) = 1 (8.1)

if there is a link between source and target, and

c : X → 0,1wherec(X) = 0 (8.2)

if there is no link between source and target.

The learner is presented with negative (c(X) = 0) and positive (c(X) = 1) examples and the aim of
the classification is to find an estimation (h) such that h(X) = c(X). The outcome of the learning
process is successful if following the approximation of the target function over training examples,
the approximation on unobserved examples yields sufficiently accurate results [191]. In the next
few sections, the methodology for data collection, preparation and feature selection is outlined,

8.3. DATA COLLECTION 137

followed by model selection, training and an evaluation of results.

8.3 Data Collection

A prerequisite of successfully implementing machine learning algorithms in the ACM framework
is the availability and accessibility of relevant software engineering data for training and
evaluation. This is often a challenge due to the nature of software projects; data from proprietary
products is typically unavailable [197] and artefacts other than source code are not always
available or complete for open source systems. The experiments presented in this work utilise
data from six different open source systems hosted in online repositories.

8.3.1 Criteria for Candidate System Selection

The primary criteria for selecting candidates include:

Artefacts available in repository. The main criterion was the availability of a variety of
artefacts to represent different combinations of traceability scenarios. It was also considered
which artefacts are most widely used in projects. According to a survey, the most widely used
non source code artefact is the UML class diagram, followed by sequence diagrams and use
cases [205]. Examining a number of online repositories reveals similar patterns.

Implementation language: Java. The framework currently handles Java source code, and
therefore the search was limited to systems implemented in this language.

System size. Systems of varying sizes were selected for experiments. Smaller systems are easier
to comprehend and allow the establishment of trace links across the entire system instead of
having to focus on individual components to manage complexity. Conversely, larger systems
may offer more complicated links of different types between artefacts.

The criterion of the availability of various artefact types proved to be a challenge since only
a small proportion of systems provide documentation, such as requirement or architecture
specifications. To maximise the chance of finding candidate systems, an extensive search took
place on popular source code repositories using a list of available hosts [206]. Out of the listed
repositories, candidate systems were found on GitHub1, SourceForge2 and Google Code3. A
further challenge is the non-uniform metrics these hosts provide for comparing project size.
GitHub, for example, does not disclose lines of code metrics; therefore, where such information

1https://github.com/
2https://sourceforge.net/
3https://code.google.com/

138 CHAPTER 8. AUTOMATING TRACEABILITY CREATION USING MACHINE LEARNING

is not available, the metric was calculated. Following is a brief summary of the candidate
systems.

8.3.2 Candidate Systems

Table 8.1 provides a summary of the functionality, origin and size metrics of the selected systems.

Micro Mouse Simulator (MMS)4 is a micro-mouse maze editor and simulator that leverages
various maze solving algorithms. It has been implemented using Java and Python. MMS provides
Java source code and UML class diagram type artefacts.

JGAP5 is a Java framework that can be used as a means to solve problems applying evolutionary
principles. JGAP offers extensive documentation and approximately 1400 test cases, which
makes it a suitable candidate for extracting source code and unit test artefacts.

Neo4j6, the popular graph database, was selected because of the size of its codebase and because
it provides Java source code, unit test and module view architecture artefacts.

Myrobotlab7 is a framework for robotics and creative machine control providing services
for machine vision, speech recognition, servo control, GUI control and microcontroller
communication. Since Myrobotlab offers extensive documentation in the form of architectural
diagrams, as well as some test cases covering certain areas of its functionality, it provides data
for setting up architecture-source code and unit test-source code links.

The Java Binary Block Parser (JBBP)8 is a framework for parsing binary block data in Java
supporting various data types. JBBP was selected due to the variety of artefacts it contains: most
Java classes are covered by test cases and the system also allowed the extraction of a use case
diagram providing another dimension to artefact data used in trace link establishment.

Finally, Titan9 is an open source distributed graph database designed to support complex and
real-time traversal queries on large graphs and concurrent transactions. The project provides test
cases, Java source code, as well as a conceptual architecture artefact for extraction.

The various metrics provided by the repositories, such as lines of code, number of contributors
and commits allow the comparison of the size of the candidate systems. It is concluded that
MMS and JBBP represent one end of the spectrum characterised by a smaller size, JGAP and

4https://code.google.com/p/maze-solver/
5http://jgap.sourceforge.net
6https://github.com/neo4j
7https://github.com/MyRobotLab/myrobotlab
8https://github.com/raydac/java-binary-block-parser
9https://github.com/thinkaurelius/titan

8.4. DATA PREPARATION 139

System Description Source Repository Lines of Code (LOC) Number of Contributors / Commits

MazeSolver Micro-mouse maze editor Google Code 9223 4/139
JGAP Java framework for Genetic Algorithms SourceForge 57200 -
Neo4j Graph database GitHub 152139 118 / 34995
MyRobotLab Java framework for robotics GitHub 133247 11 / 665
Java Binary Parser Java binary block data parser GitHub 27677 1 / 194
Titan Distributed graph database GitHub 107792 32 / 4422

Table 8.1: Comparison of candidate systems.

ARTEFACT TYPES

SYSTEMS UML Use Case
Diagram

Module View
Architecture
Diagram

Conceptual
Architecture
Diagram

UML Class
Diagram

UML Sequence
Diagram

Java
Source Code JUnit tests

MazeSolver X X
JGAP X X
Neo4j X X X
Myrobotlab X X X
Java Binary Block Parser X X X
Titan X X X

Table 8.2: Extracted artefacts.

MyRobotLab are larger systems, followed by Titan, while Neo4j is the largest of the candidate
systems.

Table 8.2 shows the types of artefacts extracted from the systems. It can be seen that Java source
code was available in all repositories and most repositories allowed the extraction of unit test
artefacts, while every other artefact type was found only in single repositories.

8.4 Data Preparation

The aim of data preparation and feature selection is to establish a training set for supervised
learning, which is characterised by the desired outputs being specified for each data instance.
The data from available artefacts for each system was extracted using the extraction functionality
of the ACM framework. The extracted data was transformed to the GraphML format, which
provided input for generating the training data. Artefacts across different systems include Java
source code, UML class diagram, UML use case diagram, logical and development architecture,
UML sequence diagram, and JUnit test cases.

As described in Chapter 6, in a GraphML representation each artefact element is denoted by a
node element with nested data elements describing its properties.

140 CHAPTER 8. AUTOMATING TRACEABILITY CREATION USING MACHINE LEARNING

8.4.1 Establishing Positive Instances - Trace Links

The Traceability component of the framework processes the values of the data elements in the
GraphML files to produce numeric feature values, which are explained in Section 8.5. Following
the extraction of artefact data, trace links were established manually between artefact elements
to provide training examples for machine learning. As described in Chapter 6, a trace link is a
pair of source and target elements identified by unique ids.

The process of trace link establishment varies between artefact combinations. However, one
of the conditions holds across all systems: in order to establish all the correct links and arrive
at an adequate trace link coverage, domain knowledge and experience with the given system
is required. The smaller the system, the easier it is to comprehend its overall architecture
and discover links. The number of links can be correlated not only to project size, it is also
determined by the type of the source and target artefact. For example numerous connections can
be established between unit tests and source code due to their proximity in abstraction levels.
However, when connecting a high level conceptual architecture to source code, the number of
connections is lower. Trace link coverage is also dependent on the level of detail extracted from
the original representations. The framework allows the extraction of class level and member level
entities in case of Java source code, JUnit test cases and UML class diagrams. For architectures,
the framework considers components, while other architectural features are part of future work.
For UML sequence and use case diagrams extracted elements include lifelines, messages, and
use cases, respectively. In the remainder of this section, the methodology to establish links
between heterogeneous artefacts is described. Links were created between representations that
were available from the given system. Each system provides source code artefacts. On the other
hand, other representations can be found in specific systems. Thus, trace links were established
between source code and other available artefact types.

Java Source Code - JUnit Test Links

Firstly, trace links were created at class level between source code and test classes, or other
relevant class level elements. It may be possible that the functionality of multiple classes is tested
in a single test class, in which case all connections were recorded separately. Secondly, trace
links were established at member level between source code and test class methods and fields. A
single test case may connect to multiple Java methods depending on the complexity of the test
case.

The strategy taken to establish trace links involved analysing assert statements, which mainly test
a single unit, and are usually mapped to a single method. Besides assertions, test cases are likely
to contain calls to various other methods. In such cases, as mentioned above, connections were

8.4. DATA PREPARATION 141

established between the called methods and the calling test case. This may also include links
between test cases and Java fields, since the modification of fields may also lead to changing
the given test case. This case highlights another strategy used during tracing, which is based on
analysing the impact of changes should any of the entities change.

Java Source Code - UML Class Diagram Links

In this case links were established at class level between source code and UML classes, or other
relevant class level elements, and at member level between source code and UML methods and
fields. Both scenarios denote which UML entities are mapped to which implementation classes.
The tracing process involved the identification of mappings from UML class level entities to
source code class level entities based on name similarity as a first step, followed by the discovery
of links between member elements.

Java Source Code - UML Sequence Diagram Links

The level of detail captured in this scenario is dependent on the given sequence diagram. In
the systems used for data extraction, available sequence diagrams contain higher-level use case
entities instead of object or class entities. This allowed tracing to multiple source code classes,
which embody the functionality of the use case.

Java Source Code - UML Use Case Diagram Links

Use cases were mapped to a number of Java classes depending on the functionality described in
the use case, the specificity of the wording of the use case and the design of the system. The
approach taken to establish links was based on understanding the functionality described in the
use case and then searching for corresponding implementations at the class level. Tracing in this
specific case did not involve member level entities.

Java Source Code - Software Architecture (Conceptual View) Links

Depending on the architecture of the given system, components may encompass larger or smaller
areas of functionality, which affects the number of implementation entities they connect to.
The strategy of setting up relationships was to identify the functionality offered by the given
component either based on the documentation or the description provided on the diagram and to
determine which source code entities implement this functionality. Trace links were established
at class level.

Java Source Code - Software Architecture (Module View) Links

Such as in case of conceptual view architectures, modules and subsystems in a module view
architecture are mapped to multiple class level implementation artefact elements. Given the

142 CHAPTER 8. AUTOMATING TRACEABILITY CREATION USING MACHINE LEARNING

systems available for data extraction, the name similarity between module names and the physical
directories in which source code files are saved was used to establish trace links.

In summary, the tracing strategies and artefact combinations described above resulted in the
following links:

• Test Class-Source Code Class

• Test Case-Source Code Method

• Test Case-Source Code Field

• Test Class Field-Source Code Field

• UML Class-Source Code Class

• UML Operation-Source Code Method

• UML Attribute-Source Code Field

• Sequence Diagram Use Case-Source Code Class

• Sequence Diagram Message-Source Code Method

• UML Use Case-Source Code Class

• Architecture Component-Source Code Class, and

• Module-Source Code Class

8.4.2 Establishing Negative Instances - Generating Data for
Representing Non-Relations

Subsequent to establishing trace links, training data representing unrelated artefact elements was
generated. Elements within the extracted artefacts were correlated with target elements that they
do not form a trace link with. An example scenario is when a use case models functionality that
is not implemented by the selected Java class. The result is training data that contains:

• Architecture module source elements and unrelated source code target elements

• Architecture component source elements and unrelated source code target elements

• UML Sequence diagram source elements and unrelated source code target elements

• Unit test source elements and unrelated source code target elements

• UML class diagram and unrelated source code target elements

• UML use case source elements and unrelated source code target elements

In summary, it can be concluded that the characteristics of the training data are determined by
attributes of the systems the data is extracted from. Key factors include the size of the system,
the available artefacts and their complexity.

8.5. FEATURE SELECTION 143

8.5 Feature Selection

Features form one of the essential components of creating an accurate predictive model. A
feature is the specification of an attribute of a data instance, which may either be represented by
a categorical or a continuous variable [207]. Features were chosen based on application domain
knowledge to capture generic attributes applicable across heterogeneous artefacts independent of
their type. This includes features based on the names and types of artefact elements since all
artefacts can be described by these. The selected features can also be extended to new artefacts
should they be added to the model. Data extracted from the original representations is textual.
Therefore, a major component of the feature engineering process is the conversion of textual data
to numeric variables. Following is a description of how this was achieved for specific features.

Name Similarity

Since each artefact element has a name, source and target elements can be compared through a
similarity measure. To compute similarity, various algorithms can be used. For the purpose of
this work, the Levenshtein (edit) distance was selected [208]. The similarity score is expressed
using a 0.0 to 1.0 scale, where 0.0 denotes a 0% match, while 1.0 stands for a 100% match.

Atomic vs. Container Elements

Artefact elements can either be composite or atomic. For example, in the current dataset a Java
method element is atomic, while a UML interface element may contain fields and methods, thus
it is composite. This feature is defined as follows: container elements are assigned the value 1,
atomic elements take the value 0.

Enumerating Abstraction Levels

Artefacts can also be described by their abstraction levels. Requirement specifications represent
high abstraction level artefacts, source code and unit tests are low abstraction level artefacts,
while architectures and diagrams are in between the two. The abstraction level of both source
and target elements are expressed in a numeric format, such that a high abstraction level is
represented by 0, and a low abstraction level equals to 2. Artefacts that are in between the two
abstraction levels, are assigned the value 1. This scale is applicable to any artefact including ones
from a traditional software process or agile projects. The feature is represented by a numeric
value based on the absolute value of the difference between the source and the target.

Artefact Type

Every artefact can be grouped into a type category. At present, the categories the framework
caters for include: requirement, architecture, design, source code, test, documentation, API,

144 CHAPTER 8. AUTOMATING TRACEABILITY CREATION USING MACHINE LEARNING

and configuration files. These cover the types of artefacts currently identified and can be easily
extended to include new categories.

The feature values are expressed as follows: the values 1 or 0 are assigned to every source
and target artefact element depending on their type. To indicate that a given source artefact
is of architecture type, the following feature values are specified: IsSourceArchitecture = 1,
IsSourceRequirement = 0, IsSourceDiagram = 0, IsSourceSourceCode = 0, IsSourceDiagram =
0.

Class

The class feature can take two possible values: a true or false value denoting a relation or a
non-relation between the source and target artefact element.

Source and target id

These additional features allow the identification of the original source and target artefact
elements. Unique ids are extracted from the GraphML representation of artefacts and take the
same form as described in Section 8.4.

Table 8.3 illustrates a data instance as described by feature vectors. The data instance denotes a
pair of source and target artefact element related by a trace link, hence the class feature takes the
value 1. The source element represents a Java class called Maze, while the target element stands
for a UML class which is also named Maze. The name similarity feature indicates a 100% match
between the names of the source and the target. Since both the source and target elements are
container types, the IsSourceContainer and IsTargetContainer features are assigned the value 1.
The fact that source and target represent different abstraction levels is expressed by the value
of the AbstractionLevelSeparation feature, which is set to 1. The features show the type of the
source and target elements: since the source element is a Java class, the IsSourceSoureCode

feature is set to 1, while the values of the remaining type features are set to 0. The same is
applicable to representing the type of the target element.

8.6 Model Selection

The next step in devising the approach was selecting models, which were firstly trained on the
training data and were subsequently validated. To the best of our knowledge this process has not
been carried out in the context of heterogeneous artefact data. Therefore, a number of experiments
were conducted using various models to compare their performance. Initially, in the exploratory

8.6. MODEL SELECTION 145

Feature Value

NameSimilarity 1
IsSourceContainer 1
IsTargetContainer 1
AbstractionLevelSeparation 1
IsSourceRequirement 0
IsSourceSourceCode 1
IsSourceDiagram 0
IsSourceArchitecture 0
IsSourceUnitTest 0
IsTargetRequirement 0
IsTargetSourceCode 0
IsTargetDiagram 1
IsTargetArchitecture 0
IsTargetUnitTest 0
Related 1

Table 8.3: Feature vectors.

phase of the experiments, Matlab10 was used. However, for the purposes of integrating the
approach in the ACM framework, which is discussed in Section 8.9, the Waikato Environment for
Knowledge Analysis (Weka)11 was selected. Firstly, a simple linear technique, the perceptron,
and a non-linear technique, multilayer perceptron with backpropagation, were explored. The
initial selection of these two models was based on the premise that the potential failure of the
linear technique to classify trace links demonstrates the inherent complexity of the system being
modelled, and justifies a more complex approach. Subsequently, further standard classifiers, such
as J48, Naive Bayes and Support Vector Machines (SMO), were selected. Additionally, ZeroR

was utilised to establish a baseline. The aim of the experiments was to compare the performance
of the selected models, which are introduced in the subsection below.

Single Layer Network, the Perceptron

Artificial neural networks provide "a robust approach to approximating real-valued, discrete-
valued, and vector-valued target functions" [191]. The first selected classifier, the perceptron, is
the simplest form of artificial neural networks consisting of an input and an output layer. Inspired
by the biological nervous system, it is an abstract model of the biological neuron dating back to
the 1940s [209]. The basic premise of the model is that supplied with a vector of real-valued
inputs, it performs a linear combination of them. Based on a threshold value, the model outputs

10http://uk.mathworks.com/products/matlab/index.html?s_tid=gn_loc_drop
11http://www.cs.waikato.ac.nz/ml/weka/

146 CHAPTER 8. AUTOMATING TRACEABILITY CREATION USING MACHINE LEARNING

1 if the result is greater than the threshold, and outputs 0 otherwise. The perceptron can be used
for problems where the data is linearly separable, i.e. there exists a hyperplane that perfectly
separates positive and negative examples of the class [191].

Multilayer Perceptron with Backpropagation

To represent non-linear decision surfaces, multilayer networks are required, consisting of a
number of neurons, which can be input, output or hidden units. Such networks are capable
of solving non-linearly separable problems. Multilayer networks are most commonly used in
conjunction with the backpropagation algorithm, which has been successfully applied in a large
number of areas including speech recognition, pattern recognition and computer vision [210].

ZeroR

The simplest classifier relies on the target class and ignores all the other features. That is, it
possesses no predictive power and merely identifies the majority class in the dataset. Therefore
ZeroR can be leveraged as a benchmark for other classifiers [211].

Decision Trees - J48

The decision tree classifier builds classification models in a tree structure and by breaking the
data set into smaller subsets. The output is a tree consisting of decision nodes and leaf nodes
representing the classification result [192]. In this work, J48, an implementation of the C4.5
algorithm is used [212].

Naive Bayes

Naive Bayes is a probabilistic classifier based on Bayes Theorem. It is characterised by
independence assumptions: according to the model all features contribute to the result equally
and they are independent from each other [192].

Support Vector Machines - Sequential Minimal Optimisation (SMO)

Support Vector Machines (SVMs) date back to the 1970s. In its simplest form an SVM is
a hyperplane "that separates a set of positive examples from a set of negative examples with
maximum margin." [213] Finding the maximum margin is a quadratic programming problem.
One way of solving this problem and a method of training support vector machines is SMO,
which was applied in this work.

8.7. METHODOLOGY 147

All Systems MazeSolver JGAP Neo4j MyRobotLab Java Binary Parser Titan

No. of Relations
(Positive instances) 512 57 93 127 52 106 77

No. of Non-Relations
(Negative instances) 649 62 192 83 119 62 131

Table 8.4: Training data.

8.7 Methodology

The following section discusses the training methodology and provides a description of the
implementation of model evaluation.

8.7.1 Training

As shown in Table 8.4, a total of 1161 data instances were generated across all systems. 512

data instances represent related artefacts, while the remaining 649 constitute unrelated pairs.
Table 8.2 highlights which systems provide which artefacts. Since test cases are offered by most
systems, this is reflected in the number of unit test - source code relationships contained in the
data set.

Initially, the building, training and evaluation of the single and multilayer neural networks were
performed using the Matlab Neural Network Toolbox12. Input training data was imported from
CSV input files to Matlab and it was loaded into an 1161x14 feature matrix (1161 instances with
14 features). Following the data input and the construction of the network architecture, the model
was trained using the perceptron, and the scaled conjugate gradient backpropagation algorithm.

Following that, the Weka environment was used to build the ZeroR, J48, Multilayer perceptron,
Naive Bayes and Support Vector Machines (SMO) classifiers. Weka provides an Experimenter
tool to design and run experiments to allow the comparison of the accuracy of selected algorithms.
Additionally, the models can also be trained and evaluated using the Weka Workbench or its Java
API. The specifics of model evaluation are discussed in the next section.

8.7.2 Model Evaluation

The accuracy of a classifier is the percentage of test set data instances that are correctly classified
[211]. In order to evaluate model performance and to find the model that most accurately
represents both current and future data, various evaluation methods were utilised.

12http://uk.mathworks.com/products/matlab/

148 CHAPTER 8. AUTOMATING TRACEABILITY CREATION USING MACHINE LEARNING

MazeSolver JGAP Neo4j MyRobotlab Java Binary P. Titan
MazeSolver JGAP Neo4j MyRobotlab Java Binary P. Titan
MazeSolver JGAP Neo4j MyRobotlab Java Binary P. Titan
MazeSolver JGAP Neo4j MyRobotlab Java Binary P. Titan
MazeSolver JGAP Neo4j MyRobotlab Java Binary P. Titan
MazeSolver JGAP Neo4j MyRobotlab Java Binary P. Titan

Table 8.5: Cross-validation: Systems highlighted in white are used for testing.

Firstly, hold-out methods [214] as part of a preliminary evaluation, randomly separate data
instances into training, validation and test sets to avoid overfitting. In case of the multilayer
perceptron, the training set is used for updating the network weight and biases, the validation set
allows the tuning of the parameters of the classifier, and the test set is not used during training and
is utilised for evaluating model performance on unseen data [215]. 70% of the data is assigned
to the training set, while the remaining 30% is split into two equal parts which make up the
validation and test sets. For the entire data set this means that the model was trained on 813
samples, and it was validated and tested using 174 and 174 instances, respectively.

Secondly, k-fold cross-validation [214] was performed to assess the accuracy and validity of
the models. In the validation process Weka’s default cross-validation settings were applied,
which split the dataset into ten subsets, i.e. folds. Each fold is held out for testing while training
is performed on the rest of the data. Results following training and cross-validation are presented
in Figure 3.

Thirdly, in order to select the features with the most predictive power, the models were trained
and evaluated on data with different feature combinations. This step is also a means to evaluate
how data from different systems affects the performance of the models. The combinations are
shown in Table 8.6, and are as follows:

• Exclude one specific feature from the feature space

• Combine two specific features

• Apply all features

Finally, the dataset was split into six subsets, each of which represents one of the systems. In the
first iteration the models were trained on a training set that excludes one of the subsets, which in
turn is used for testing. In each iteration, a new system was selected for testing. The process and
the selection of test sets are illustrated in Table 8.5. The subsets, as shown in Table 8.4, are not
of equal size, they differ in the number of positive and negative instances, and they represent
different artefact types.

8.8. RESULTS AND DISCUSSION 149

8.8 Results and Discussion

In the following section the results of training and validation are presented. Using the perceptron
algorithm, which was trained using Matlab with default settings and was supplied with the entire
dataset, convergence was not reached in 1000 iterations. The experiment highlights that the
perceptron is not able to separate positive and negative classes in the specified number of steps.

Figure 8.1: Accuracy results of the J48, Multilayer Perceptron, Naive Bayes, SMO, and ZeroR classifiers.

Figure 8.1 compares the classification performance following the training and 10-fold cross-
validation of the J48, Naive Bayes, SMO, Multilayer Perceptron and the Zero R classifiers. These
results were obtained by using all the features and the entire dataset consisting of all systems.
The accuracy value represents the percentage of correctly classified instances. The results show
that J48 and the Multilayer perceptron classify the data instances with similar accuracy values
and are the best performing models compared to the Naive Bayes and SMO algorithms. Finally,
the ZeroR classifier sets the baseline at 55.9% accuracy.

The J48, Multilayer Perceptron, SMO and Naive Bayes classifiers were also evaluated using
different feature combinations on all systems. The results are presented in Table 8.6; the first
column shows features and their combinations, while subsequent columns represent the classifiers.
The values in the intersections are accuracy values obtained from Weka. The results highlight the
differences between systems and the weight of specific features and their combinations. Certain
features show significantly worse performance than others. For example, training the Multilayer
Perceptron on the AbstractionLevelSeparation feature results in 59.1% accuracy, while excluding

150 CHAPTER 8. AUTOMATING TRACEABILITY CREATION USING MACHINE LEARNING

Selected
Features

M
ultilayerPerceptron

J48
SM

O
N

aive
B

ayes

A
bstractionL

evelSeparation
59.1

61.2
61.2

61.2
A

llfeatures
excluding

A
bstractionL

evelSeparation
85.9

85.2
82.6

77.4
A

llfeatures
excluding

IsSourceC
ontainer&

IsTargetC
ontainer

80.8
81.3

81.2
78.8

A
llfeatures

excluding
N

am
eSim

ilarity
67.7

70.1
70

65.3
A

llfeatures
excluding

Type
features

84.2
85.5

79.8
76.4

A
llfeatures

85.7
85.2

82.6
75.1

IsSourceC
ontainer&

IsTargetC
ontainerand

A
bstractionL

evelSeparation
67

69.1
69

66.2
IsSourceC

ontainer&
IsTargetC

ontainerand
Type

features
68.3

70.1
70.3

65.5
IsSourceC

ontainer&
IsTargetC

ontainer
69.4

69.1
69

66.2
N

am
eSim

ilarity
&

A
bstractionL

evelSeparation
77.95

79.5
76.5

74.3
N

am
eSim

ilarity
&

IsSourceC
ontainerand

IsTargetC
ontainer

81.3
81.7

79.8
79.8

N
am

eSim
ilarity

&
Type

features
80.8

81.3
81.2

79.5
N

am
eSim

ilarity
73.6

73.4
72.6

73.2
Type

features
&

A
bstractionL

evelSeparation
62.1

63.3
63.3

63.3
Type

features
62.1

63.3
63.3

58.6

Table
8.6:

A
ccuracy

ofthe
M

ultilayerPerceptron,J48,SM
O

and
N

aive
B

ayes
classifiers

using
differentfeature

com
binations.

8.8. RESULTS AND DISCUSSION 151

the feature and training and validating on the remaining features shows an accuracy value of
85.9%. In comparison, excluding NameSimilarity results in 67.7% accuracy, and NameSimilarity

on its own also performs poorly at 73.6%. The findings of the Multilayer perceptron suggest
that accuracy of the model does not rely on a single feature. However, certain combinations of
NameSimilarity, AbstractionLevelSeparation, IsSourceContainer, IsTargetContainer, and the
Type features yield better accuracy values. The other classifiers, J48, SMO and Naive Bayes, do
not show significantly different results and allow the same conclusions to be drawn.

Finally, Figure 8.2 shows the accuracy values obtained following the cross-validation of the
models using each system as a test set. Validating the performance of the Multilayer Perceptron
on MazeSolver results in 96.6% of the instances being correctly classified, while JBBP shows
a considerably lower accuracy value, 47%. The results could be explained by the differences
between the systems in terms of artefact types and the number of inter links connecting artefact
elements. The features describing heterogeneous artefacts may be better suited to a set of
artefacts, for example provided by MazeSolver, where there is not a wide gap between the
abstraction levels of artefacts. An additional factor may be the strategy used for establishing
trace links. Finally, the systems also differ in the number of data instances they provide. Thus,
the trained model may not in all cases be applicable to a specific system, and discovering the
degree to which it can be generalised to all systems, forms part of future work.

Figure 8.2: Cross-validation results: each system is used as a test set.

152 CHAPTER 8. AUTOMATING TRACEABILITY CREATION USING MACHINE LEARNING

8.9 Integration in the Framework

The final step of implementing the approach is integrating it in the ACM framework to arrive at
a semi-automatiac trace link creation approach. The integration can be achieved using a wide
variety of machine learning libraries including Weka, Encog13, PyBrain14 and scikit15. For the
current implementation the Weka API was selected since the framework is written in Java.

The aim of the Traceability creation stage of the framework is to assist users with their inter trace
link creation tasks as part of setting up Framework Data. The input to inter trace link creation is
supplied by users in the form of candidate links stored in a .xml links file, which is discussed in
Chapter 6. Following the training of the selected classifier, the framework runs the model on
test data obtained from the .xml links file and classifies each data instance. The user is presented
with a final .xml links file, which contains trace links as returned by the selected model.

8.10 Conclusions

The poor performance of the linear model, the perceptron, empirically confirms the widely held
belief about the complexity of this problem. Using the multilayer perceptron the experiments
show a prediction accuracy of 85.7% in cross validation, which is closely followed by the J48
algorithm at 85.2% accuracy. The differences in the accuracy values of the models obtained
following cross-validation can be explained by the diversity of the modelled systems. However,
the accuracy results prove that using machine learning to aid the automation of trace link creation
is a viable approach and it is worth further investigating. Besides observing the benefits of
applying the approach in this complex problem domain, which does not assume the use of
specific artefacts or development conventions, the shortcomings machine learning approaches
may present are also to be discovered.

Potential improvements to the current implementation include extending the breadth of programs
considered by utilising different systems providing further artefact types. Further experiments
are required to analyse the correlation between systems and features. The solution also forms
a basis for further work in various other areas, such as visualising results, and allowing users
to edit trace links predicted by the model. Since each classifier is trained with default settings,
an investigation into fine-tuning the parameters of classifiers may provide further classification
accuracy gains. Specifically, since the J48 classifier shows promising results, pruning methods
could be utilised [216].

13http://www.heatonresearch.com/encog
14http://pybrain.org
15http://scikit-learn.org/stable

9CHAPTER NINE

EVALUATION

This chapter describes the evaluation strategy to analyse the applicability of the framework in
software development scenarios and to test the functionality of its individual components. It starts
with summarising the hypotheses presented in Chapter 1, and the requirements of the proposed
approach discussed in Chapter 4. Thereby, the objectives of the evaluation are established and
the evaluation questions are formulated. Subsequently, appropriate research methods pertaining
to each question are selected. This provides the basis for evaluating the proposed approach and
its implementation, the ACM framework. Table 9.1 shows the relationships between hypotheses
and requirements, and the process of deriving corresponding evaluation questions and research
methods. The Evaluation aim column highlights the evaluation concerns. Next, the evaluation
process is designed and implemented. These steps involve data collection, data analysis and
testing the framework against the collected data. Finally, the results are analysed and conclusions
are drawn while taking into account validity considerations.

9.1 Evaluation Objectives

The aim of the evaluation is threefold: the main objective is to provide a verification of the
hypotheses using empirical software engineering methods to critically evaluate the degree to
which the proposed solution addresses the problem at hand. Through evaluation, it is revealed
whether the stated hypotheses are realistic, and the strengths and weaknesses, and areas of
potential improvements are also identified. Secondly, the correctness of the results achieved at
each stage of the consistency management process is tested using software engineering validation

and verification methods. Lastly, the performance of the solution is analysed. A solution is
suitable for wider adoption if, besides other criteria, it meets demands to scale under varying
workloads. Performance is measured using appropriate metrics. Table 9.1 also highlights that H1

is not mapped to a requirement and an evaluation question. The reason for this choice is the fact

153

154 CHAPTER 9. EVALUATION

Hypotheses Requirements Evaluation
Aim

Evaluation
Questions

Evaluation
Methods

H1 Hypothesis
Design & implementation
of proposed approach

H2 R3, R4 Hypothesis Q1 Case study

H3 R1 Hypothesis Q2
Design & implementation
of proposed approach,
case study

H4 R2, R4 Hypothesis Q3 Case study
R6 Performance Q4 Performance metrics

Func. Req. & R4 Correctness Q5 Validation & verification
R5 Outside the scope of this thesis

Table 9.1: Derivation of evaluation questions and methods from the hypotheses and requirements.

that the feasibility of the proposed approach expressed in H1 is investigated through the design
and implementation of the ACM framework.

9.2 Evaluation Questions

The evaluation is based on the following questions:

Q1: Is the ACM framework independent of methodologies and tools? This questions investigates
whether the framework imposes any additional tasks on the user that are not part of their usual
work, such as including annotations in any of the artefacts, and whether it imposes additional
tools on users instead of their usual CASE tools. This question can be answered through
qualitative methods.

Q2: Can the stages of consistency management identified in Chapter 4 be automated and to what
degree? The goal of this question is to discover the level of automation that can be attained for
each stage, and possible limitations. This question can be evaluated qualitatively.

Q3: Is the ACM framework independent of artefacts? This question is aimed at assessing
whether the framework can handle heterogeneous artefacts, and if it can be extended to cater for
additional artefact types. This question can be evaluated qualitatively.

9.3. EVALUATION DESIGN 155

Q4: Performance: does the ACM framework support varying workloads when subjected to
a, a varying number of artefacts (system size),
b, a varying number of artefact nodes (artefact size),
c, a varying number of changes? (change complexity)
This question can be investigated quantitatively.

Q5: Does the ACM framework fulfil its functionality requirements and produce the expected
output in each stage of the consistency management process? This question also entails
discovering the degree to which the framework can be configured and customised to suit users’
preferences. This final evaluation question is assessed by comparing results produced by the
framework with expected results.

Questions Q1 to Q3 are investigated using empirical software engineering methods. On the other
hand, Q5 is answered using validation and verification. Finally, analysing Q4 requires the use of
metrics.

9.3 Evaluation Design

The design of the evaluation consists of two steps. Firstly, the most suitable methodology to
investigate each evaluation question was selected. Secondly, the data collection strategy was
planned and specific systems were selected.

9.3.1 Research Method Selection

9.3.1.1 Evaluation of Hypotheses

As described by Sjøberg et al., empirical research "seeks to explore, describe, predict, and explain
natural, social, or cognitive phenomena by using evidence based on observation or experience"
[217]. Empirical software engineering research provides an extensive toolset to achieve these
goals. After a careful consideration of the evaluation questions and the alternatives, such as
controlled experiments and surveys [218], the method of case studies was selected.

Case studies are widely used in software engineering and can be defined as a method "aimed
at investigating contemporary phenomena in their context" [219]. The primary motivation for
using a case study approach is to prove that the hypotheses hold in real project scenarios, which
is a significant consideration for a software engineering solution. Additionally, through a case
study a deeper understanding of the problem can be gained and potential shortcomings of the
proposed approach can be discovered.

156 CHAPTER 9. EVALUATION

Criteria for Success

A pivotal aspect of the design of the case study is the specification of success and failure criteria.
Success criteria were established per evaluation question.

Q1 - Methodology and Tool independence

Success: The consistency management process does not require the changing of the methodology
that is used to create the original artefacts. Additionally, users are not required to utilise further
tools to create and edit artefacts. The outcome is a true or false statement that accepts or rejects
the corresponding hypothesis.

Q2 - Level of automation

Success: One or more aspects of artefact consistency management can be carried out without
manual intervention. The outcome of the investigation is a list of automatic, semi-automatic and
manual steps.

Q3 - Artefact independence

Success: The framework can be extended to handle any software artefact. The outcome is a true
or false statement that accepts or rejects the corresponding hypothesis.

9.3.1.2 Correctness testing

Framework correctness is evaluated through software engineering validation and verification.
Specifically, each functional area is tested and expected outputs are compared to actual outputs.
Both individual functional units (unit testing) and collections of a number of functional units
(integration testing) are assessed. The high level functionality areas, inputs and expected outputs
are summarised in Table 9.2. The tests can be found in the ACM framework’s GitHub repository1.
Test packages are named as follows: framework.X.Tests, where X stands for the given framework
component or functionality area to be tested.

Criteria for Success

Besides identifying the expected outputs of each functionality area, the following success criteria

were defined determining if a given test passes or fails.

• Artefact Extraction. XML representation of original artefacts is saved to the specified
framework folder in the form of .xml files.

1https://github.com/ACMFramework/ACMF

9.3. EVALUATION DESIGN 157

Functionality Inputs Outputs

Artefact Extraction Original artefacts in their original format
XML representation of original
artefacts

Artefact Transformation
XML representation of original artefacts,
XSLT stylesheets

GraphML representation of
artefacts

Traceability Creation
GraphML representation of artefacts
converted to feature data for classification

XML representation of trace links,
containing pairs of ids of connected
GraphML nodes

Data Storage
GraphML representation of artefacts,
XML representation of trace links

Graph database populated with data
consisting of nodes and edges

Change Detection A change in an external repository ChangeData and updated graph database

Change Impact Analysis ChangeData
Set of potentially impacted artefact
elements expressed as graph nodes

Consistency Checking
ChangeData, set of potentially
impacted artefact elements

Artefact element is consistent,
potentially inconsistent, or
inconsistent

Change Propagation ChangeData, list of inconsistent elements
Update suggestions for each element
to re-establish consistency

Configuration
User input (database location, external
repository location, XSLT file path and
framework root folder)

The framework configuration file is
populated with values specified by the user

Table 9.2: Functionality areas, inputs and expected outputs.

• Artefact Transformation. GraphML representation of XML inputs is saved to the specified
framework folder in the form of .graphml files. GraphML representation captures required
artefact data: artefact elements and their intra trace links.

• Traceability Creation. XML links file is produced and contains correct trace links between
artefact elements obtained from GraphML representation.

• Data Storage. Graph database is populated with data obtained from the .graphml and .xml

links files.

• Change Detection.
A) File level changes in external repository are extracted and identified.
B) Artefact element level changes, if any, are identified.
C) Local representations in the framework folder are updated.
D) Graph database nodes, properties, and specific edges are updated.

158 CHAPTER 9. EVALUATION

• Impact Analysis. The framework returns a set of potentially impacted elements based on
graph traversals. This includes graph nodes directly connected to the changed node through
inter and intra links.

• Consistency Checking. The framework returns one of the following results: consistent,
inconsistent or potentially inconsistent based on consistency checking rules.

• Change Propagation. The framework suggests resolutions to each identified (potential)
inconsistency.

9.3.1.3 Performance Evaluation

Performance measurements reveal how the framework performs when subjected to specific
workloads [220] in terms of the number of artefacts, size of artefacts and the number of changes.
This question can be analysed through a case study approach and specific metrics. For this
evaluation, execution time (s) was selected. The objective of scenarios 1 and 2 is to reveal the
correlation between execution times and the number of artefacts. In scenario 1 the steps involved
in Framework Setup are tested, while scenario 2 measures execution times of the Consistency

Management steps. Scenarios 3 and 4 investigate the correlation between artefact size and
execution times. Finally, scenarios 5 and 6 measure the performance of the change identification
algorithm and change detection, respectively.

Scenario 1. Measure execution times of Framework Setup with a system consisting of the
smallest number of artefacts (MazeSolver), the largest number of artefacts (MyRobotLab), and a
system in between the two (JBBP).

Scenario 2. Measure execution times of Consistency Management with a system consisting of
the smallest number of artefacts (MazeSolver) and a system consisting of the largest number of
artefacts (MyRobotLab).

Scenario 3. Measure execution times of Framework Setup with artefacts consisting of the largest
and smallest number of nodes. The inputs include:

• GraphML file representing the Service Java class of the MyRobotLab system, which contains
171 nodes. This artefact contains the highest number of nodes out of the artefacts used in this
evaluation.

• GraphML file representing the Owner interface from the Neo4j system. This interface
represents the other end of the spectrum with 2 nodes, which is the lowest number in the data
set.

• GraphML file representing the JBBPToken class from the JBBP system. The number of nodes
in this class (37) fall between the number of nodes in the Service class and Owner interface.

9.3. EVALUATION DESIGN 159

Scenario 4. Measure execution times of Consistency Management with artefacts consisting of
the largest and smallest number of nodes (Service class, Owner interface).

Scenario 5. Measure execution times of the change identification algorithm, which is part of
the Change Detection framework stage. This test is aimed at measuring the performance of the
algorithm with the largest and smallest number of nodes and all artefact element level change
types. The inputs of this test scenario are the same as described in Test scenarios 3 and 4.

Scenario 6. Measure execution times of Change Detection with different change types. This
test is aimed at measuring the impact of change types on the performance of change detection.

9.3.2 Data Collection

9.3.2.1 Selecting a Data Collection Technique

The selection of the most suitable data collection method was driven by the evaluation objectives
and questions. An additional factor was the volume of data required for carrying out the
evaluation. The technique that best fulfils these requirements was chosen from a number of data
collection methods for software field studies. For the purposes of this evaluation, second degree
techniques were considered, which are characterised by an indirect involvement of software
engineers. Such techniques include Static and Dynamic Analysis of a System and Documentation

Analysis. In this work, the Analysis of Electronic Databases of Work Performed technique was
selected, which took the form of extracting artefact data from online version control systems
[221]. The aim of obtaining data from existing open source software development projects hosted
in online repositories was to allow the evaluation of the solution in realistic project scenarios.
This technique is also extensively used in research related to mining software repositories [124].
Comments in code were not considered as their investigation is outside the scope of this thesis.

9.3.2.2 Selecting Particular Open Source Systems

The next step was the identification of subject systems. The selection criteria are described in
Chapter 8, and for convenience a brief summary is provided here. Principally, candidate systems
are required to provide a wide range of artefacts to assess artefact independence. Therefore,
this requirement stems from question Q3. Another aspect is system size. The evaluation of
question Q4 requires different system sizes to model different levels of complexity in terms
of the number of artefacts. Challenges encountered and specifics of the selected systems are
described in Chapter 8. The particular systems used in different steps of the evaluation process
are specified in each corresponding step.

160 CHAPTER 9. EVALUATION

9.3.2.3 Change Selection

An integral part of evaluating the framework was introducing changes to artefacts. For this
purpose, existing changesets from the selected repositories were taken. The changesets provide
changes of varying sizes and complexity. The main motivation for selecting existing changesets
was to capture realistic project scenarios. Since changes in open source repositories are to a large
extent constrained to source code, custom modifications to other representations, such as UML
class diagrams, were also introduced.

9.3.2.4 Artefacts Obtained from Open Source Systems

From each system a subset of artefacts were obtained. This is due to the challenge of establishing
inter trace links in larger systems, where relationships between entities may potentially be
complex. The task therefore requires domain and expert knowledge of the given system to
ensure that the property graph representation of the system is accurate. Hence the problem was
constrained to a subset of artefacts. The number of artefacts obtained from each system is shown
on Table 9.3. The types of artefacts and the methodology of establishing trace links between
them are discussed in detail in Chapter 8.

9.4 Methodology and Results

In the following section a description of the evaluation methodology and a report of results are
provided. As mentioned in Section 9.1, the overall evaluation serves three purposes. Accordingly,
this section is split into three subsections. Firstly, the steps involved in carrying out testing for
correctness are detailed along with a discussion of results. Next, the implementation of the case
study and its results are described. Lastly, the methodology applied in assessing performance is
introduced, followed by a discussion of results.

9.4.1 Methodology: Testing Correctness

Q6 was evaluated using the tests introduced in Section 9.3.1.2. These tests also demonstrate basic
usage scenarios of the framework and utilise data obtained from the JGAP system. Additionally,
tests are grouped into two distinct scenarios, Framework Setup and Consistency Management.
The organisation of this section follows these scenarios.

9.4.1.1 Framework Setup Scenario

The first step was carrying out setup, in which the framework was configured, followed by
data extraction and transformation. Subsequently, trace links were established. Lastly, artefact

9.4. METHODOLOGY AND RESULTS 161

System Number of artefacts

MazeSolver

Java source code: 10
JUnit test: 1
UML class diagram:2
Total: 13

JGAP

Java source code: 61
JUnit test: 47
UML class diagram: 1
Total: 109

Neo4j

Java source code: 77
JUnit test: 39
Module view architecture:
1
Total: 117

MyRobotLab

Java source code: 334
JUnit test: 6
UML sequence diagram: 1
Total: 341

Java Binary Block Parser

Java source code: 76
JUnit test: 55
UML Use case diagram: 1
Total: 132

Titan

Java source code: 133
JUnit test: 34
Conceptual architecture: 1
Total: 168

Table 9.3: The number of artefacts obtained from each open source system.

element and link data were saved to the graph data store.

To perform framework setup, the following prerequisites are required:

• Neo4j (version 2.1.3 minimum) is installed

• Mercurial is installed, and the path of the local and remote repositories are available

• Java (version 7) is installed

• Original artefacts are in local Mercurial repository

• Artefacts can be exported to an XML-based representation (The src2ml tool can be used to
extract Java, C, C# and C++ source code files. Automatic extraction is also available for

162 CHAPTER 9. EVALUATION

SQL2, JavaScript3 and Python4.)

• Additional XSLT files for new artefact types are supplied.

1. Configure Framework

Firstly, the framework root directory, ACMF, and its subfolders were created in the local file
system. The subfolders SourceCode and UnitTests were populated with executables necessary for
automating artefact data extraction. The second step involved editing the framework configuration
file to setup the database path, the framework root folder path, and the local and remote repository
paths.

The JGAP system utilised in these tests provides Java source code, JUnit test, and UML class
diagram artefacts. Since the available UML diagrams are not consistent with the latest version of
the source code, additional diagrams were generated using the code generation functionality of
Eclipse. All the original artefacts were placed in the external repository the framework has been
configured to use.

2. Extract Artefact Data

The input to this step was provided by the original artefacts located in the external repository.
These include .java and .dia files. To extract Java source code and JUnit tests the framework
calls the src2ml script, which takes all .java files from the specified local repository and produces
a .java.xml representation. Requirement specifications, when available, can be extracted using
the Apache ODF Toolkit. Obtaining artefact data from UML class diagrams is currently achieved
by manually invoking the export functionality in DIA, which outputs a .vdx file. At the end of
the extraction process, the following outputs were produced: .vdx files representing UML class
diagram artefacts, and .java.xml files representing Java source code and JUnit test artefacts. The
outputs are stored in the specified framework subfolders.

3. Transform XML Representations to GraphML

Next, transformation was performed. All .java.xml and .vdx files located in the subdirectories of
the framework folder were transformed to a GraphML representation. The output of the process
was a set of .graphml files placed in the framework’s subfolders.

2https://crmbusiness.wordpress.com/2011/10/27/how-to-convert-an-sql-statement-into-a-xml-file/
3https://www.npmjs.com/package/js2xmlparser
4http://pythonhosted.org/pyRegurgitator/

9.4. METHODOLOGY AND RESULTS 163

Test scenario Result

Configure Framework �Passed. The configuration file is
populated with the specified values.

Extract Artefact Data �Passed. Specified folder is populated
with .java.xml and .xml files
extracted from original .dia, .java
and .odt representations.

Transform to GraphML �Passed. Specified folder is populated
with .graphml files. .graphml files
contain correct artefact data.

Setup Inter Trace Links �This step is manually performed.
The result is an .xml file
containing trace links.

Import to Graph Database �Passed. Neo4j is populated with
nodes and edges.

Table 9.4: Summary of Framework Setup results.

4. Setup Inter Trace Links

During correctness testing this step was performed manually: based on the input .graphml files,
an .xml links file was produced. However, the framework provides an approach, described and
evaluated in Chapter 8, to automate inter trace link setup. The output of this approach can be
incorporated during setup and can be approved by the user.

5. Import Artefact Elements and Trace Links to Graph Database

In this step all the GraphML representations were automatically imported to the Neo4j database,
and edges were established between nodes based on the contents of the .xml links file. At the
end of the process the database was populated with artefact element data represented as nodes,
and trace links connecting artefact elements in the form of edges. This concludes the framework
setup process.

6. Framework Setup Results and Discussion

Testing the Framework Setup scenario confirms that assuming the prerequisites highlighted at
the beginning of this section are satisfied, following artefact data extraction and transformation,
artefact elements and trace links are correctly saved to the data store.

164 CHAPTER 9. EVALUATION

9.4.1.2 Consistency Management Scenario

Following setup, the framework is ready to perform consistency management. Firstly, change
detection was initiated by introducing changes to existing artefacts. Subsequently, change
impact analysis, consistency checking and change propagation were performed. Consistency
management correctness tests utilised the Salesman and SalesmanFitnessFunction Java source
code artefacts and their UML class counterparts from the JGAP system.

1. Introduce Changes to Original Artefacts

The input to consistency management was supplied through updating the repository by adding
new artefacts, and deleting or editing existing ones. The aim of generating changes was to span
both file and artefact element level modifications and to cover a number of change combinations.
The following section provides a summary of the applied changes.

Scenario 1. Add new artefact. This change at the file level equates to creating a new .java,

.dia or .odt file and it may represent adding a Java or JUnit class, or other container types
such as interfaces or enums. Additionally, it may stand for changes that involve creating a new
requirement specification document or a new UML class diagram.

Scenario 2. Delete existing artefact. This change represents the delete counterpart of Scenario
1. and utilises the Salesman class.

Scenario 3. Edit existing artefact. This file level change can be broken down into further
artefact element level modifications. It represents a scenario in which contents of an existing
artefact are updated by either adding new elements to it, or editing or deleting existing ones.
Table 9.5 highlights the artefact element level changes and their combinations pertaining to each
artefact type available in the JGAP system. Due to the structural similarity of Java source code,
JUnit test case and UML class diagram artefacts, the same tests are applicable. The artefact level

changes summarised in Table 9.5 are performed using the SalesmanFitnessFunction class, its
m_salesman field, its SalesmanFitnessFunction constructor and evaluate method.

2. Perform Change Detection

Change detection was initiated by invoking the manageChangeDetection() method in the
ChangeDetectionManager class. Firstly, the file level change was identified. Next, depending
on the change type, different courses of action were taken. Ultimately, all changes resulted in
the graph database and GraphML representations being updated. However, edit changes also
required the identification of artefact element level change types. The output of the change
detection process was a list of ChangeData objects. The aim of this step was to reveal if the
output produced was correct when compared to manual change detection. The correctness of the

9.4. METHODOLOGY AND RESULTS 165

Artefact Element Level Change Affected Structural Element

Edit

Class/Enum/Interface/Method/Field
name, modifier, and specific properties,
such as parameters, contents, return type,
and their combinations

Add Field, Method
Delete Field, Method
Add and Delete Field, Method

Add and Edit

Add Field, Method
Edit Class/Enum/Interface/Method/Field
name, modifier, and specific properties,
such as parameters, contents,
return type

Edit and Delete

Delete Field, Method
Edit Class/Enum/Interface/Method/Field
name, modifier, and specific properties,
such as parameters, contents, return type

Table 9.5: Summary of artefact element level change combinations in Java source code, JUnit test, and
UML class diagram artefacts.

output is critical as subsequent framework stages rely on it.

3. Perform Change Impact Analysis

Checking impact analysis results for correctness was achieved through the comparison of
results obtained through manual change impact analysis with those produced by the framework.
Firstly, Change Data was supplied to the ChangeImpactAnalyser class. Change impact analysis
functionality was initiated by invoking the execute() method, which created an IAResult object
for each change. The list of IAResult objects contains the set of potentially impacted graph
database nodes for each change.

4. Perform Consistency Checking

Based on the list of IAResult objects, consistency checking was invoked by calling the execute()

method of the ConsistencyChecker class. The output was a list of ConsistencyCheckResult

objects indicating whether the elements in question are consistent, potentially inconsistent, or
inconsistent.

166 CHAPTER 9. EVALUATION

Test Scenario Result

Change
Detection �

Passed.
A) File level changes are extracted and correctly identified
B) Artefact element level changes are correctly identified.
C) Local representations (.xml and .graphml) in the specified
framework folder are correctly updated
D) Graph database nodes, properties, and specific edges are correctly updated.

Change
Impact Analysis �

Passed.
The framework correctly returns nodes connected to the changed node.

Consistency
Checking �

Passed.
The framework identifies (potential) inconsistencies based on the specified rules.

Change Propagation �
Passed.
The framework provides suggestions to resolve (potential) inconsistencies.

Table 9.6: Summary of Consistency Management test scenarios and results.

5. Perform Change Propagation

Utilising the list of ChangeData objects and the output of consistency checking, change
propagation suggested resolutions of inconsistencies and it was invoked through the execute()

method of the ChangePropagator class. Since this is the last step of consistency management, it
is also responsible for removing nodes labelled for deletion from the graph database.

6. Results and Discussion

The results of consistency management test scenarios are summarised in Table 9.6.

Change Detection

Change detection returned the expected results in case of add, edit and delete file level changes. It
catered for both individual artefact element level changes and their combinations described in 9.5.
However, it raised a number of issues as a result of the particulars of the change identification

algorithm. As mentioned in Chapter 6, the change identification algorithm considers rename

operations as a combination of delete and add artefact element level changes. For example, in
case the evaluate() method is renamed to evaluate_m(), the modification is flagged up as a delete

operation where evaluate() is removed, and an add operation where evaluate_m() is added. Since
the results of change detection provide input to change impact analysis, the output of rename
operations has implications on the results of impact analysis and further subsequent stages.

Another feature of the change identification algorithm concerns handling multiple constructors

9.4. METHODOLOGY AND RESULTS 167

and methods in Java source code artefacts. In this specific case, multiple entities share the
same name and differ in their parameters. In case any of them changes, all the entities with the
same name are identified as being subject to modifications. This is the default behaviour of the
algorithm as parameters are a property that can also change and hence cannot be used to identify
entities across two versions of the same artefact.

Besides returning a list of ChangeData objects, change detection is also responsible for correctly
updating the graph database and the file system. Specifically, in case of add file level changes,
the XML and GraphML representations of the new artefacts are generated and are imported to
Neo4j. In case of delete file level changes, the corresponding XML and GraphML representations
are removed from the framework folder and the relevant graph database nodes are labelled for
deletion. Should an artefact be edited, its XML and GraphML representation are re-generated
and correct unique ids are assigned. Finally, property values of nodes in the graph database are
correctly updated.

Change Impact Analysis

Impact analysis returns elements directly connected through both inter and intra trace links.
These elements constitute the Estimated Impact Set (EIS). As per the change impact analysis
algorithm, no impact set is returned for add file level changes. In case Java source code, JUnit
test and UML class diagram artefacts (member elements) are affected by add artefact element

level changes, impact analysis returns inter traversal results for the parent of the modified entity.

As shown by the following example, the impact set returned by the framework can differ from
manual results and the Actual Impact Set (AIS). This is due to the pessimistic impact analysis
approach of the framework, which deems all connected elements potentially affected. Currently,
this is achieved by considering all direct connections on the graph. On the other hand, since
indirect connections are not catered for, the EIS may not include elements that are actually part
of the AIS. Upon multiple invocations of the consistency management functionality, indirect
connections may also be identified to be potentially affected. However, considering them within
a single consistency management iteration is part of future work.

As mentioned in Chapter 4, precision and recall are two metrics that are used to measure the
accuracy of change impact analysis. However, precision and recall metrics are dependent on the
types of changes, the artefacts, the level of human expertise in the given system, which pose
threats to validity and are discussed in Subsection 9.4.4.

• Edit the signature of the m_salesman field in the SalesmanFitnessFunction class. This change
affects the m_salesman field specified in the UML class diagram due to an inter link that

168 CHAPTER 9. EVALUATION

exists between them and it was correctly added to the impact set. The field is connected to the
SalesmanFitnessFunction class through an intra link, therefore the class and all its members
were added to the impact set. Manual impact analysis showed that the modification of the
field affected the SalesmanFitnessFunction constructor and the evalute method of the class,
while remaining members were not affected. Therefore in this case, the EIS was larger than
the AIS.

• Delete the SalesmanFitnessFunction constructor of the SalesmanFitnessFunction class. The
modification impacts the SalesmanFitnessFunction method in the UML class diagram that is
connected through an inter link. Similarly to the edit scenario, the SalesmanFitnessFunction

class and all its members were flagged up as potentially impacted elements due to their intra
links. Thus, in this case, the EIS was larger than the AIS.

• Add new method newMethod to the SalesmanFitnessFunction class. Since the SalesmanFit-

nessFunction Java class is connected to the SalesmanFitnessFunction UML class through an
inter link, this was returned as a potentially impacted element. Similarly to the edit scenario,
the SalesmanFitnessFunction class and all its members were flagged up as potentially
impacted elements due to their intra links. Thus, in this case, the EIS was larger than
the AIS.

Additionally, correctness tests also reveal that errors can introduce unexpected and incorrect
results: the framework heavily relies on trace links being correctly identified. For example if
there is a missing inter link between the SalesmanFitnessFunction class and the SalesmanFit-

nessFunction UML class, the addition of a UML member entity does not flag the container as
being potentially affected by the change.

Consistency Checking

The consistency checking mechanism takes the elements of the impact set and based on the
specified rules evaluates them to be consistent, inconsistent or potentially inconsistent. The
results suggest that the framework can identify potentially inconsistent elements within the
same artefact and can make a decision if another related artefact is also inconsistent due to the
modification. Since not all identified possibly inconsistent elements are actually inconsistent,
the framework produces a number of false positives, which is due to its pessimistic approach
to consistency management. In cases where it cannot be said with certainty that the potentially
impacted entities are consistent, the frameworks flags up potential inconsistencies. On the other
hand, if not all dependencies are modelled by explicit trace links, other potentially inconsistent
entities may not be identified.

To test the correctness of consistency checking results, the same examples were used as

9.4. METHODOLOGY AND RESULTS 169

above. Editing the signature of the m_salesman field in the SalesmanFitnessFunction

class results in an inconsistency of the SalesmanFitnessFunction UML class. Deleting the
SalesmanFitnessFunction constructor of the SalesmanFitnessFunction class was correctly
identified as an inconsistency, which affects the SalesmanFitnessFunction UML class. Adding
a new method to the SalesmanFitnessFunction class results in an inconsistency of the the
SalesmanFitnessFunction UML class, which was correctly identified. Since establishing a
comprehensive set of trace links using this system requires expert knowledge of it, missing
dependencies may result in undiscovered inconsistencies. Missing fine-grained intra links may
also impact the results of consistency checking. For example, links are not established between
the contents of a method and the entities referenced inside. The introduction of additional, finer-
grained consistency checking rules and the extension of impact analysis to indirect dependencies
are potential avenues for improving results.

The ACM framework currently analyses changes separately from each other, which results
in connections between modifications not being captured: some changes require further
modifications in order to manage inconsistencies within the given artefact. Consequently,
the framework may flag up the impact of a change up as potential inconsistency, even though
these are resolved by subsequent changes. The understanding of such connections is an area
for future work including the establishing of different granularity levels of impact analysis and
consistency checking either to handle each change individually or the change set as a whole.
This feature could potentially be customised by the user.

Change Propagation

Based on the results of consistency checking, change propagation correctly displays suggestions.
In case of a (potential) inconsistency, the user is recommended to apply the same file level change
to the potentially impacted and inconsistent artefact element as the original change. In case of
Add file level changes a message is displayed to the user and no change propagation is carried
out.

9.4.2 Methodology: Evaluation of Hypotheses

9.4.2.1 Q1 - Tool and methodology independence

The assessment of whether the use of the framework imposes specific tools or methodologies
involves answering the following questions:

1. Is it possible to extract data from any artefact authoring tool?

2. Does the framework impose any specific methodologies on its user?

170 CHAPTER 9. EVALUATION

System Tools Used in Design or Development

JGAP JBuilder
MMS Eclipse
JBBP NetBeans
MyRobotLab Eclipse, NetBeans, Dia

Table 9.7: Tools used in the design or development of selected subject systems.

The first question requires carrying out the steps of Framework Setup. Firstly, the original
artefacts were obtained. Subsequently XML data extraction was carried out. Table 9.7 highlights
the tools used in the development or design of the case study systems where such information
is available. It shows that a variety of CASE tools are utilised when producing artefacts. To
answer the second question, the steps of Consistency Management were carried out on the JGAP

system. These steps reveal whether using the framework involves changing the currently applied
software methodology.

Results and Discussion

The ability to extract artefact data from any tool in the form of an XML document depends on
the format of the files produced by these tools and the tools’ export capabilities. The evaluation
reveals that .java files obtained from the JBuilder5, Eclipse and NetBeans6 IDEs can be converted
to an XML format using available tools. Additionally, .dia files produced by Dia can be exported
to a .vdx format, which can be processed in the framework. Finally, the underlying XML contents
of .odt files can be programmatically accessed. Performing change detection, change impact
analysis, consistency checking and change propagation on the JGAP system, for example, does
not result in changes in the user’s current methodology.

9.4.2.2 Q2 - Automation

Q2 investigates the automation level of each framework stage. It is also assessed whether setting
up Artefact Data is an automatic process. To accomplish these goals, the JGAP system was
utilised and the same steps were performed as during correctness testing. This is due to the
fact that framework stages and Artefact Data coincide with the main functional areas of the
framework. In particular, automation levels pertaining to Artefact Data can be assessed by
performing the Framework Setup tests. Lastly, Consistency Management tests can be used to
investigate automation levels of the framework stages.

5www.embarcadero.com/products/jbuilder
6www.netbeans.org

9.4. METHODOLOGY AND RESULTS 171

Scenario Level of automation

Setup Artefact Data Automatic - assuming prerequisites are satisfied.
Create Trace Links Semi-automatic using machine learning technique presented in Chapter 8.
Detect Changes Automatic.
Analyse Change Impact Automatic.
Check Consistency Automatic.
Propagate Changes Base implementation is automatic. Changes are applied manually.

Table 9.8: Automation level of Framework stages and Artefact Data setup.

Results and Discussion

The evaluation highlights that one of the main hindrances to automation is the diversity of
representations. However, storing heterogeneous artefacts and their trace links in a uniform
format in the framework allows the consistency management steps to be carried out in an
automated manner. To facilitate setting up Artefact Data as automatically as possible, some
prerequisites were defined. Provided that these conditions are satisfied, establishing Artefact

Data is automatic. Specifically, following framework configuration, which involves the manual
creation of the framework folder and the preparation of XSLT files, the extraction process is
automatic in case of source code, unit test and requirement specification artefacts. However,
UML diagrams are currently manually exported from their tools. Transformation is an automatic
process. Automating trace link creation between heterogeneous artefacts remains the main
challenge of this work. However, effort has been made to automate the process by utilising
machine learning techniques. Although change detection is currently manually invoked by the
user, the process is automatic. Additionally, configuring the framework to automatically pull
changes from a repository at specified intervals can be implemented as part of future work.
Change impact analysis and consistency checking are automatic steps. The base implementation
of change propagation is automatic. However, carrying out changes is performed manually by
the user at this stage.

Overall, as shown in Table 9.8, automating certain stages of the holistic framework is more
straightforward, while others pose challenges. Additionally, manual and semi-automatic stages
create obstacles in efforts to fully integrate each aspect in an automated manner.

9.4.2.3 Q3 - Artefact Independence

Artefact independence was evaluated primarily based on two qualities. Firstly, it was analysed
whether the framework handles heterogeneous artefacts. Secondly, it was investigated whether

172 CHAPTER 9. EVALUATION

the framework can be extended with additional artefacts. Specifically, the following questions
were answered:

• Is it possible to extract data to an XML format from any artefact independent of its type?

• Is it possible to transform any XML representation to the custom GraphML format?

To answer the first question, five systems, MazeSolver, JGAP, Neo4j, Titan, and JBBP, were
selected, which cover Java source code, Junit test, UML class diagram, module view architecture,
conceptual architecture and UML use case diagram artefacts. To test if the framework can be
extended with additional artefacts, the sixth system, MyRobotLab, was selected, as it provides a
UML sequence diagram artefact, which previously had not been used with the framework. The
evaluation was achieved by carrying out the steps of Framework Setup using each of the five
open source systems. To test new artefacts, such as UML sequence diagrams provided by the
MyRobotLab system, new XSLT transformation files were created and the same process was
followed.

Results and Discussion

Any artefact providing an XML-based representation can be used with the framework, which is
demonstrated by the fact that the artefacts mentioned above are successfully extracted. The level
to which extraction can be automated may vary depending on the ease of access to the underlying
XML data, which is discussed in the previous subsection. Another component required to achieve
artefact independence is the availability of XSLT files to perform transformation to the uniform
property graph format. An associated challenge is the complexity of the XML schema, which
determines whether the required level of detail can be accessed. While data from the XML
representation of Java source code and JUnit tests can easily be obtained, extracting relevant
elements for example from UML sequence diagrams involves manual aspects.

Artefact independence also entails the ability to carry out consistency management tasks on
any artefact. Following transformation and data being saved to the database, Consistency

Management is performed on the property graph representation. Therefore, it can be stated that
consistency management of heterogeneous artefacts can be carried out in the framework, which
is independent of artefacts.

9.4.3 Methodology: Performance Tests

The performance evaluation was performed on a test environment characterised by properties
given in Table 9.9. The methodology of carrying out performance tests in each test scenario is
described in Table 9.10.

9.4. METHODOLOGY AND RESULTS 173

Operating system Windows 8.1
System type 64-bit Operating System, x64-based processor
Processor Intel ®Core TM i5-3210M CPU @ 2.50 GHz
Memory 6.00 GB
Hard disk 1 TB HDD
Java runtime Version 1.8

Table 9.9: Test environment properties.

Results and Discussion

The tests can be found in the framework.PerformanceTests package in the src folder of the
ACM framework. To reproduce the results of performance evaluation, users are required to
setup the framework with artefact and trace link data. Once the framework is setup, consistency
management can be carried out by initiating changes to the original artefacts in the repository.
The remainder of this section describes the summary of results, while details are provided by the
performance tables in Appendix A.

Scenario 1

Framework setup was firstly performed using 54 classes / interfaces / enums and 1 UML class
diagram obtained from the MazeSolver system. At the graph database level, these artefacts
equate to 846 nodes and 727 edges (intra relationships). Secondly, the MyRobotlab system
provided 643 Java and JUnit classes / enums / interfaces and 1 sequence diagram. Using this
data, 12502 nodes and 11794 edges were established in the database. Finally, the database was
populated with 1326 nodes and 1175 edges obtained from the JBBP system from 76 Java classes
/ interfaces / enums, 1 use case diagram and 55 unit tests. Framework setup takes an average of
20.917 seconds using the MazeSolver, an average of 182.058 seconds using the MyRobotLab,
and an average of 46.007 seconds using data from the JBBP system as illustrated by Figure 9.1.

Scenario 2

Besides change detection, impact analysis, consistency checking and change propagation,
consistency management involves database and file system operations. This is reflected in
the performance results. Specifically, editing the attachGUI and detachGUI methods of the
CalibratorGUI class took 31.968 seconds, while deleting the setRobotLocation method of the
RobotBase class was performed in 32.381 seconds. In the first example, the XML and GraphML
representations are re-generated prior to database updates. In the second case, the XML and
GraphML representations are deleted from the file system, following which corresponding nodes
are labelled in the database. Additionally, change impact analysis also involves opening and

174 CHAPTER 9. EVALUATION

Test Scenario Methodology

Scenario 1

Carry out Framework Setup on the MazeSolver, MyRobotLab, and
JBBP systems.
In all scenarios measure elapsed execution time using
the System.nanoTime() method .

Scenario 2

Carry out Consistency Management on the MazeSolver system
and on the MyRobotLab system.
Applied changes:
a, MyRobotLab system: edit the attachGUI and detachGUI methods
of the CalibratorGUI class.
b, MazeSolver system: delete the setRobotLocation method of the
RobotBase class.

Scenario 3
Perform Framework Setup using the Service class of the MyRobotLab
system, the Owner interface of the Neo4j system, and
the JBBPToken class of the JBBP system.

Scenario 4

Perform Consistency Management using the Service class of the
MyRobotLab system and the Owner interface from the Neo4j system.
Applied changes:
a, Edit the getMethodToolTip method of the Service class.
b, Add method newMethod to the Owner interface.

Scenario 5

Run the change identification algorithm with the following inputs:
a, Service class
b, Owner interface.
Applied changes:
a, Edit signature of class / interface
b, Delete existing method
c, Add a new method.

Scenario 6

Perform Change Detection using the JGAP system.
Changes:
a, Edit file level changes taken from Revision 1.24.
affecting the BestChromosomesSelector class:
Edit m_chromosomes field and the selectChromosomes method.
Delete the returnsUniqueChromosomes method.
Add a new method.
b, Delete file level change manually invoked:
Delete the AveragingCrossoverOperator class.
c, Add file level change manually invoked:
Add the BestChromosomesSelector class.

Table 9.10: Performance tests - methodology.

9.4. METHODOLOGY AND RESULTS 175

Figure 9.1: Framework Setup execution time (s) and system size.

closing the database connection while performing graph traversals. The duration of consistency
management varies depending on the number of file level and graph database level operations.
Further influencing factors include the size of artefacts, and the number of graph database nodes
and edges, which determine the duration of traversals and file level operations.

Scenario 3 and Scenario 4

The results show that Framework setup took an average of 12.827 seconds using the Service

class, an average of 5.5 seconds using the Owner class, and an average of 8.9171 seconds using
the JBBP class, which is depicted by Figure 9.2. The execution times of consistency management
carried out on the Owner interface (30.449 seconds) and the Service class (39.291) show a
similar trend seen in scenario 2. Consistency management, as mentioned in the previous section,
involves additional operations and may also vary depending on the applied changes, as suggested
by the results of scenarios 5 and 6.

Scenario 5

The change identification algorithm is realised in a number of steps: firstly, the input is converted
to a nested hashmap representation, which is passed to the compareMaps method that performs
the comparison of the inputs. Lastly, the getChangeData method returns the output in the form
of a list of ChangeData objects. In this test scenario the execution time of all of these steps
was measured. In assessing the performance of the change identification algorithm, two Java

176 CHAPTER 9. EVALUATION

Figure 9.2: Framework Setup execution time (s) and artefact size.

container elements were used to reveal the correlation between artefact size and execution times,
which is depicted by Figure 9.3. The results show that running the algorithm using the Owner

interface, which contains 2 nodes, took 0.08 seconds on average. However, when running the
algorithm in a significantly larger GraphML file, which contains 171 nodes, the average execution
time was 5.6 seconds.

Figure 9.3: Change Detection execution time (s) and artefact size.

Scenario 6

Change detection entails different tasks depending on the file level change type as described in
Chapter 6. All changes involve database updates, and file level operations such as generating
new GraphML files or deleting existing ones. Additionally, edit file level changes also involve

9.4. METHODOLOGY AND RESULTS 177

running the change identification algorithm. The different operations that take place in each
individual case explain the differences in the execution times shown by results.

Performance results show that artefact size, the number of trace links and change type determine
the duration of Framework setup and Consistency management tasks. Therefore, the framework
may exhibit different performance values in specific projects. Artefact size and the complexity
of trace links are factors external to the framework. However, performance may be improved by
handling large GraphML files more effectively by reducing the number of save operations, and
the number of times database connections are opened and closed, through connection pooling,
for example. Finally, in case of large datasets, clustering Neo4j may provide further performance
benefits.

9.4.4 Limitations and Threats to Validity

The evaluation of the ACM framework is characterised by the following limitations that may
pose threats to the validity of the results.

Firstly, a threat to validity exists in that all aspects of the evaluation were carried out by one person.
This includes selecting candidate systems, data collection and establishing trace links between
heterogeneous artefacts obtained from open source systems. Thus, it cannot be guaranteed that
all relevant links from the selected subset of the systems have been identified. This affects the
validity of results due to the framework stages being dependent on trace links.

Secondly, some limitations of the evaluation arise due to characteristics of open source systems
used and artefacts provided by these systems. Each open source system provides different
artefacts and is characterised by different levels of complexity, which can be expressed through
the number of inter trace links and dependencies, and the number of artefacts. This raises the
question whether evaluating the ACM framework on the selected systems and case studies allows
the generalisation of findings to any other systems and cases. Therefore, additional systems and
artefacts are required to broaden this work to further projects.

Finally, the validity of results is also affected by the selected changesets and manual changes
applied during evaluation. It raises the question whether these changes are representative of
the most common changes in real project scenarios and how results can be generalised to other
systems. Particularly, in case of change impact analysis, some selected changes may provide
different results from others in terms of precision and recall. In some cases there may be larger
differences between the EIS and AIS.

178 CHAPTER 9. EVALUATION

9.5 Conclusions

The evaluation presented in this chapter shows that the ACM framework is a viable option to
manage the consistency of heterogeneous artefacts in a holistic manner. It supports artefacts
created using a variety of tools and it is possible to automate framework stages provided specific
pre-requisites are satisfied. The framework can be extended to handle additional artefacts.
Potential issues and areas of improvement are highlighted in each corresponding section and are
further discussed in Chapter 10.

The evaluation was guided by the principles of transparency and reproducibility to allow the
tests to be duplicated. This is supported by the availability of the source code and tests.

10CHAPTER TEN

CONCLUSIONS

10.1 Summary

Since the evolution of modern software systems is inevitable, artefacts representing the system
go through frequent refinements. Consequently, the different representations may become
inconsistent with one another. The differential evolution of artefacts may hinder effective
software maintenance and stakeholders may develop a lack of trust in them as they do not
accurately represent the system. Frequent modifications characterising incremental and agile
development may aggravate this problem.

Various solutions have emerged in requirements engineering, traceability, change management
and impact analysis research to establish links between artefacts, to assess the impact of
modifications and to provide mechanisms to control changes in software development projects.
A survey of these approaches leads to the conclusion that the problem remains to be addressed.
Based on the findings of the survey, the requirements of an ideal software artefact consistency
management solution were derived. This thesis proposes a holistic consistency management
approach and investigates its feasibility. The concept is realised in the design and implementation
of the ACM framework, which aims to fulfil a subset of the proposed requirements of an ideal
consistency management solution discussed in Chapter 4. It combines traceability, change
detection, change impact analysis, consistency checking and change propagation. Finally, the
thesis provides an evaluation of the framework, which shows promising results in supporting
artefact consistency management tasks.

The next section presents an overall assessment of the holistic approach and the ACM framework.

179

180 CHAPTER 10. CONCLUSIONS

10.2 Assessment and Limitations

First, an assessment is provided in light of evaluation results and based on the requirements
presented in Chapter 4. Next, limitations of the work are discussed. These are divided into
three main categories: limitations 1) of the approach, 2) of the current implementation, and 3)
attributed to external factors.

10.2.1 Assessment in the Context of Requirements

R1 - Automated as far as possible.
A critical element of any consistency management solution ready for wider adoption is
automation. The implementation of each framework stage strives to provide automation as
far as possible. This work demonstrates that some stages are easier to automate than others.
Particularly challenging areas include establishing and maintaining trace links, which is a
well-recognised problem in traceability research. However, with trace links in place, further
framework stages can be successfully automated.

Therefore, all stages of consistency management are automated to varying degrees. Trace link
creation is supported by machine learning techniques, which has yielded a semi-automated
solution. Change detection, impact analysis, consistency checking are fully automated. On the
other hand, besides providing suggestions, actual change propagation and applying changes to
inconsistent artefacts remains a manual task. Additionally, the consistency management process
currently requires user intervention at certain points, such as when initiating change detection.

Although full automation remains a challenge to be addressed, the ACM framework has
significantly contributed to achieving this aim.

R2 - Artefact Independent and R3 - Methodology and Tool Independent.
Since both requirements relate to extensibility and the framework’s ability to handle different
representations authored in different tools, they are discussed together. Evaluation results show
that the framework is capable of handling heterogeneous software artefacts and it does not
require users to change their methodologies and tools, assuming the prerequisite to generate an
XML-based representation of the original artefact is met.

R4 - Customisable and Non-Intrusive.
The framework currently allows users to configure the framework during the setup stage to
specify the database backend, the external repository and XSLT files used for transformation.
However, there is a wide scope for further work in this area as other stages of the framework are
also configurable. These are discussed in future work.

10.2. ASSESSMENT AND LIMITATIONS 181

R5 - Supports Distributed Development.
Distributed software development is a key aspect of modern software projects. The ACM
framework presently contributes to achieving this aim by connecting to external repositories,
which are used in distributed settings. However, in the scope of the current implementation,
explicit support for distributed development remains an area for future work.

R6 - Is able to handle variable numbers of artefacts and changes (Performance).
A pivotal aspect of the adoptability of the framework is its performance. The evaluation shows
that the ACM framework is able to handle artefacts of different sizes and changes of different
types. However, further work is required to fully assess the level to which this requirement
is satisfied. Specifically, in case of large systems with a large number of trace links, expert
knowledge is required to establish links. Providing trace link data at this level of detail was not
possible in the scope of the current work.

10.2.2 Limitations

• Traceability. The main limitation of the approach is that the correctness of each consistency
management stage is heavily reliant upon the correctness of trace links. The dependence
on trace links raises the question of how framework stages could be more tolerant to errors
introduced during trace creation. This is a significant issue considering that the current
approach to creating trace links using machine learning, by nature, is not likely to provide
100% accuracy. Thus, user intervention is required to ensure correct links are established
prior to consistency management.

• Granularity of artefact elements. One of the limitations of the current implementation
arises from the level of granularity of artefact elements. Each artefact type is different in terms
of the level of detail they capture and this is reflected in their property graph representation in
the framework. Specifically, in case of Java source code and JUnit test artefacts, although
the contents of methods are captured, the method body is considered as an atomic entity.
Naturally, this limits change detection, change impact analyis and consistency checking and
provides a more coarse-grained approach. This limitation can be addressed by implementation
level changes and additional consistency rules need to be added to the rule base capturing the
required level of detail.

• Extraction and transformation. A pre-requisite of the artefact independence requirement
is the availability of an XML-based representation of artefacts, which is an external limitation.
The XML format ensures that through XSLT transformations a GraphML representation of the
original artefact can be produced. Each authoring tool provides different XML representations
and in some cases some elements and intra trace links cannot be automatically extracted.

182 CHAPTER 10. CONCLUSIONS

For example the XML schema of UML class diagrams extracted from Dia does not allow
capturing the connections between UML classes that are on the same diagram. In such cases
the automatically generated .graphml file is manually edited to add the required trace links.

• Change detection. Change detection has presented the problem of identifying an entity
across two versions of the same artefact, which exists regardless of change and artefact
representation, and is discussed in Chapter 6. The current solution applies domain knowledge
to identify entities, which can be extended to the artefacts supported by the framework.
However, an artefact-independent approach may provide a more robust solution.

• Impact analysis. In the current implementation when a new artefact element is added without
a trace link connecting it to existing elements, no impact analysis and consistency checking
take place. In this particular case the problem falls under the scope of trace link creation. The
current workaround to this issue involves flagging up the change to the user in the change
propagation stage. However, a trace maintenance mechanism is required to handle such cases
in the current or the next consistency management iteration.

• Consistency checking. As mentioned in Chapter 9, the current consistency checking
approach analyses each change in isolation. Thus, in cases where there are connections
between modifications they are not captured and inconsistencies may be flagged up even if
they are resolved by other changes. This issue may potentially be resolved by considering a
changeset as a whole.

10.3 Future Work

Due to the complexity and multi-faceted nature of the research problem, there is a wide scope
for further work and extending the framework. Each framework stage is a research area on its
own and each of these fields may benefit from extending relevant aspects of the framework. This
research can be continued in different directions. Future work can be based on the challenges
introduced in Chapter 4, as well as on optimising and extending the framework, and further
automating the stages of consistency management.

Artefact Data representation

The property graph-based representation has proven to be a flexible approach to model software
artefacts and their connections. Graph traversals are utilised in the change impact analysis
process. Open questions include whether the graph representation can be further utilised to
support other consistency management tasks, such as consistency checking, and whether further
optimisations or automation can be enabled based on the structure of the property graph.

10.3. FUTURE WORK 183

Framework Stages

• Trace link Creation and Maintenance. In the current implementation machine learning
techniques are applied in an effort to automate trace link creation. The approach seems
promising based on the preliminary cross-validation results. One potential avenue for further
exploration is extending machine learning techniques to the overall framework to contribute
to further automating the stages or improving their results. In particular, trace maintenance,
which is currently rule-based, could be supported by machine learning.

• Change Detection. An important avenue of future work is the identification of entities
across two versions of the same artefact, mentioned in Section 10.2. Additionally, since
change detection is manually invoked by the user, a useful enhancement would be to provide
configuration options for pulling change data from an external repository at specified intervals.
Adapting to the frequency of changes may present an interesting extension to current
functionality. Finally, the entire consistency management process would benefit from a
finer-grained change detection approach. For example, in the current implementation changes
to the contents of Java methods or JUnit field values are not captured, which limits the
granularity of further consistency management stages.

• Impact Analysis. The impact analysis process of the framework currently considers only
direct dependencies. In order to minimise the number of false positives and false negatives
in the set of potentially impacted artefacts, indirect dependencies should also be included.
Techniques currently applied mostly in conjunction with source code artefacts to discover
logical dependencies [42] present another avenue for investigation. Further work may also
include exploring whether it is possible adopt historical co-change analysis to be used with
heterogeneous artefacts. Finally, source code impact analysis utilises probabilistic methods
to improve the accuracy of change impact analysis results, which is also worth investigating
in the context of heterogeneous representations.

• Consistency Checking. The present consistency checking approach is based on pre-defined
consistency rules, which are stored in an XML rule base. Each scenario, defined by a changed
element and a potentially affected element, is mapped to a corresponding rule. Further
work may explore another approach where hierarchical relationships may reduce the number
of explicit rules. Another potential direction may be associating probability values with
identified inconsistencies, which may provide further benefits to consistency checking.

Finally, the current implementation assumes that the initial state is a consistent one. It does
not flag up inconsistencies between artefacts that are saved to the framework folder and the
graph database. Instead it checks for inconsistencies as a result of a change introduced to
one of the artefacts. A potential enhancement may be decoupling consistency checking from

184 CHAPTER 10. CONCLUSIONS

the rest of the framework stages to ensure that consistency management always starts from a
consistent state.

• Change Propagation. Change propagation lends itself to a substantial amount of further
work. Propagating and applying a change to an inconsistent artefact is a non-trivial task,
especially when the heterogeneity of artefacts is considered. In an ideal scenario the task
is carried out in an automatic manner. Automation may be feasible in cases, such as when
propagating changes from source code to UML diagrams. However, in other scenarios, user
intervention may be required. A more immediate enhancement to the current implementation
is the functionality to pinpoint which original artefact is inconsistent. This is currently
expressed using graph nodes in the database, which the user can locate based on a unique id.

Usability and Visualisation

The ACM framework presently does not provide a user interface. Thus, users are required to
be familiar with invoking framework functionality and some internal implementation details.
To transition the framework from a proof-of-concept implementation to a tool ready for wider
adoption, a user interface is a high priority enhancement. Besides abstracting implementation
level details, a further element of providing a user interface is managing user interactions, such
as displaying appropriate messages when errors occur, and setting preferences.

Providing a user interface also allows framework data to be visualised. Viewing trace links
between heterogeneous entities may help users in maintaining and understanding their systems.
Visualising a selected set of impact nodes, changed nodes and inconsistencies aids impact
analysis and consistency checking and assists in the maintenance of the system.

Customisation capabilities are also closely associated with providing a user interface and usability.
The ability to configure the framework would provide a greater degree of flexibility and would
contribute to fulfilling the requirement of offering a non-intrusive solution. With a user interface
in place users may specify which artefacts are relevant to them, the intervals at which consistency
management is initiated, and the level of detail they would like to view in each framework stage.

Visualising the results of consistency checking may present an approach to automating change
propagation. For example, inconsistent artefact elements could be accessed through the user
interface and users could apply the required change.

Work has been done at the University of St Andrews in the form of a Master’s project to provide
visualisation of artefact and trace link data [222]. The integration of this functionality in the
framework provides a starting point to visualisation efforts.

10.4. CONCLUDING REMARKS 185

Distributed Software Development

Due to the ubiquity of distributed software development, for the framework to be useful in a
large number of projects, future work is required to investigate how a consistency management
solution can function in such a setting and how specific requirements arising from distributed
development can be met. In this respect, areas of concern include multiple versions of artefacts,
creating and maintaining links among distributed artefacts, and the availability and accessibility
of the latest version of any given artefact.

Evaluation of Applicability

Finally, the framework lends itself to further work in evaluating its applicability to explore the
effort involved in using the framework on a project of realistic complexity, and assessing the
benefits it provides to users in consistency management tasks. Such an analysis, similarly to the
evaluation that was carried out in the scope of this work, may utilise a case study approach. A
key aspect of the evaluation is the identification of an industrial project that provides multiple
artefacts produced by different stakeholders using different tools, which also constitutes the main
challenge involved in such an evaluation due to the accessibility of such information. Following
the deployment of the framework, users could assess its usefulness while performing their tasks
during the development process, the effort involved in using it and its ease of use. While the
study is pre-dominantly qualitative, a quantitative analysis of artefact numbers, artefact types,
project size would provide further insights into the applicability of the framework.

10.4 Concluding Remarks

This thesis has presented a novel holistic approach to support managing the consistency of
heterogeneous software artefacts and demonstrated that it is a viable and promising solution to
an open problem.

The ACM framework may provide benefits to various stakeholders during both software
development and maintenance. The challenges software changes pose, in the context of diverse
teams, tools, and artefacts, may be alleviated by performing consistency management. The
framework provides support for change detection, impact analysis, consistency checking and
change propagation to reduce manual effort while allowing users to perform development,
analysis and testing tasks following their normal processes. Stakeholders may also benefit from
utilising specific framework stages, for example to assist them with analysing the impact of
changes to other representations. Overall, the framework reduces maintenance efforts, and
contributes to better comprehension and sustainability of a software system.

186 CHAPTER 10. CONCLUSIONS

The ACM framework, which is available in an online repository, can be extended with any
artefacts and is thus applicable in different software development scenarios. Due to the
complexity of the problem, much work remains to be done, presenting interesting challenges
and new directions in traceability, change impact analysis and consistency checking research,
particularly in the context of heterogeneous software artefacts.

AAPPENDIX A

APPENDIX - A
PERFORMANCE RESULTS

Test Scenario 1: MazeSolver, MyRobotlab & JBBP

Run Execution time(s)
(MazeSolver)

Execution time(s)
(MyRobotlab)

Execution time(s)
(JBBP)

1 32.3 211.797 55.703
2 19.061 164.071 44.25
3 18.860 171.234 43.005
4 19.18 178.374 45.389
5 21.528 180.487 46.847
6 19.510 161.096 52.208
7 19.671 198.66 44.669
8 18.797 165.785 43.029
9 21.048 205.497 39.937
10 19.218 183.584 45.039
Mean: 20.917 182.058 46.007

Table A.1: Framework Setup execution times using the MazeSolver, MyRobotlab and JBBP systems.

187

188 APPENDIX A. APPENDIX - A PERFORMANCE RESULTS

Test Scenario 3: Service class, Owner interface, JBBPToken class

Run Execution time(s)
Service class

Execution time(s)
Owner interface

Execution time(s)
JBBPToken class

1 13.838 5.075 9.816
2 12.427 5.292 8.698
3 12.604 5.609 8.873
4 12.833 5.653 9.238
5 13.180 5.366 8.842
6 12.678 5.957 8.315
7 12.605 5.147 8.528
8 13.064 5.679 8.775
9 12.565 5.66 9.081
10 12.482 5.568 9.005
Mean: 12.827 5.5 8.9171

Table A.2: Framework Setup execution times using the Service class (MyRobotLab), the Owner interface
(Neo4j), and the JBBPToken class (JBBP).

Test Scenario 5: Owner interface

Run Execution time (s)
Edit interface signature

Execution time(s)
Add method

Execution time (s)
Delete method

1 0.084 0.094 0.089
2 0.084 0.1 0.085
3 0.091 0.086 0.09
4 0.084 0.115 0.082
5 0.083 0.082 0.084
6 0.084 0.087 0.077
7 0.082 0.92 0.087
8 0.085 0.076 0.081
9 0.081 0.07 0.078
10 0.068 0.086 0.076
Mean: 0.082 0.088 0.082

Table A.3: Change identification algorithm execution times using the Owner interface of the Neo4j
system.

189

Test Scenario 5: Service class

Run Execution time (s)
Edit class signature

Execution time(s)
Add method

Execution time (s)
Delete method

1 6.095 5.75 5.64
2 5.86 5.46 5.47
3 5.89 5.44 5.72
4 5.79 5.46 5.62
5 5.74 5.75 5.76
6 6.02 5.38 5.89
7 5.71 5.53 5.65
8 5.48 5.63 5.68
9 5.68 5.35 5.85
10 5.59 5.59 5.65
Mean: 5.78 5.53 5.69

Table A.4: Change identification algorithm execution times using the Service class of the MyRobotlab
system.

Test Scenario 6: Change Detection
Add File Level
Change

Delete File
Level Change

Edit File Level
Change

Edit Artefact Element
Level Change

Add Artefact Element
Level Change

Delete Artefact Element
Level Change

Run
1 11,71 24.751 14.055 13.273 15.967
2 10.744 22.098 17.049 14.144 14.354
3 10.777 22.242 13.943 12.985 19.067
4 10.325 22 14.054 13.291 15.112
5 10.44 22.273 13.709 14.455 15.888
6 10.436 21.697 13.679 14.306 15.126
7 10.307 22.013 14.593 14.884 18.387
8 10.326 22.931 13.858 14.33 14.795
9 10.314 22.562 14.001 15.027 15.635
10 10.238 21.961 13.679 14.406 14.904
Mean: 10.561 22.452 14.262 14.11 15.923

Table A.5: Change detection execution times using the JGAP system.

BAPPENDIX B

APPENDIX B - SUMMARY
TABLES

191

19
2

A
PP

E
N

D
IX

B
.

A
PP

E
N

D
IX

B
-S

U
M

M
A

RY
TA

B
L

E
S

Solutions
Traceability

Creation
Traceability
Maintenance

Change
Detection

Impact
Analysis

Consistency
Checking

Change
Propagation

Supported
Artefacts

Supports
Distributed

Dev.

Artefact
Representation

Link
Storage &

Representation

MolhadoArch

Not provided
by the tool.
Manual or
automatic

processes can be
incorporated.

Automatic
Versioning and
differencing are

provided.
Not covered Automatic Not covered

Specific artefacts:
architecture and

source code
- Document tree

Architectural
relationship

graph

Ophelia

Semi-automatic;
relationhips

can be
defined
in the

TracePlough
prototype

Not covered Not covered Not covered Not covered Not covered

Heterogeneous
artefacts:

specifically
documentation
and code, code
and test cases

Yes CORBA objects Graph

Sysiphus

Semi-automatic;
implicit

dependencies
can also

be identified

Not covered

Automatic
through a

notification
system

Automatic Not covered Not covered

Heterogeneous
artefacts:
problem

statements,
requirements,
architecture,

detailed design,
test cases

Yes Graph-based Not specified

Roundtrip
engineering
solutions:
Microsoft

Visual Studio

NA NA Automatic Automatic Automatic Automatic
Specific artefacts:
design diagrams
and source code

Yes Na NA

Literate
programming NA NA Manual Manual Manual Manual

Specific artefacts:
documentation

and C code
- Original NA

Intent
Automatic

by combining
representations

Automatic
by combining

representations
Automatic Automatic

Automatic
based on

constraints
Manual

Specific artefacts:
documentation
and technical

artefacts

- Original
Central

repository

Table B.1: Comparison summary, Part I. The reviewed solutions are listed by their names (where the name of the implemented system or project title is
in place) or by the authors’ names.

193

Solutions
Traceability

Creation
Traceability
Maintenance

Change
Detection

Impact
Analysis

Consistency
Checking

Change
Propagation

Supported
Artefacts

Supports
Distributed

Dev.

Artefact
Representation

Link
Storage &

Representation

Aper

Links are
present; it is not

specified whether
their creation is

automatic

Not covered
Automatic through
a trigger process Automatic Automatic

Manual: users
are notified

Heterogeneous
artefacts:

not specified
-

Software products
are decomposed Not specified

Olsson &
Grundy Manual Not covered

Semi-automatic:
change data

can be imported
to the tool

Automatic Automatic

Manual;
some changes

can be
automatically

applied

Specific artefacts:
requirements,

use case models,
black-box
test plans

-

Abstracted
representation

model capturing
key information

from original
artefacts

Not specified

ArchEvol
Automatic

by integrating
existing tools

Automatic
by integrating
existing tools

Manual Manual Manual Manual
Specific artefacts:

architecture
and source code

-

Mappings are
defined between

architecture
and source

code elements;
original artefacts

are stored
in a WebDAV

repository

Not specified

Clime

Manual, links
are defined

through
meta-constraints

-
Automatic
using the

Activity monitor
Not covered

Automatic
using constraints Manual

Heterogeneous
artefacts:

prototype works
with Java source

code, UML
class diagrams

-

Abstract
information

from original
artefacts (common

framework,
not common

representation)

Relations
in a database

Software
Concordance Semi-automatic

Manual through
versioned hypermedia Automatic Not covered Semi-automatic Manual

Specific artefacts:
Java source code
and multimedia
documentation

Through
collaborative

documentation
process

Fluid Internal
Representation Hyperlinks

Maletic
et al.

Semi-automatic,
based on LSI

Automatic
through

conformance
analysis

Not covered Not covered Not covered Not covered
Specific artefacts:

source code
and documentation

- Hypertext Hypertext

Table B.2: Comparison summary, Part II. The reviewed solutions are listed by their names (where the name of the implemented system or project title is
in place) or by the authors’ names.

19
4

A
PP

E
N

D
IX

B
.

A
PP

E
N

D
IX

B
-S

U
M

M
A

RY
TA

B
L

E
S

Solutions
Traceability

Creation
Traceability
Maintenance

Change
Detection

Impact
Analysis

Consistency
Checking

Change
Propagation

Supported
Artefacts

Supports
Distributed

Dev.

Artefact
Representation

Link
Storage &

Representation

ACTS Automatic

Semi-automatic
through

notification
adapters

Automatic
through

recording
adapters

Not covered Not covered Not covered

Heterogeneous artefacts,
differentiation

between primary
(architecture)

and other
artefacts

Yes

Original artefacts;
tool-specific
adapters are

utilised

XML-based

Asuncion
et al. Manual

Manual,
updates are
side affects

of trace
utilisation

Not covered

Manual,
bidirectional

updates between
documents and
artefacts using

data entry
forms

Not covered Not covered

Heterogeneous artefacts;
specifically

features,
use cases,
functional

requirements

-

Document
representation

stored in
artefact

repository
(MS SQL)

Trace
repository

ADAMS Automatic
Trace link
versioning
provided

Automatic
Semi-automatic
through event
notification

Not covered Manual

Specific artefacts:
UML diagrams

and textual
documentation

Yes

Metadata
about original

artefacts is
stored in a
relational
database

Not
specified

OSCAR

Supported,
automation

level not
specified

- Not covered Not covered Not covered Not covered

Heterogeneous artefacts;
no

specific
artefacts

mentioned in
evaluation of
the working

system

Yes XML-based XML-based

EBT

Supported,
automation

level not
specified

Automatic

Automatic
through
change
events -

integrated
with

DOORS

Automatic Not covered Manual

Specific artefacts:
requirements,

class and
sequence
diagrams,
Java code,
test cases

Yes Original
Event
server

Table B.3: Comparison summary, Part III. The reviewed solutions are listed by their names (where the name of the implemented system or project title
is in place) or by the authors’ names.

195

Solutions
Traceability

Creation
Traceability
Maintenance

Change
Detection

Impact
Analysis

Consistency
Checking

Change
Propagation

Supported
Artefacts

Supports
Distributed

Dev.

Artefact
Representation

Link
Storage &

Representation

ArchJava

Automatic
by integrating

the two
representations

Automatic
by integrating

the two
representations

Automatic
by integrating

the two
representations

Automatic
by integrating

the two
representations

Automatic NA

Specific artefacts:
architecture

and
source
code

-
Implicit

mappings NA

traceMaintainer -
Semi-automatic,

rule-based Not covered Not covered Not covered Not covered
Specific artefacts:

structural
UML models

- Original artefacts
Traceability

relation
repository

ArchTrace Manual
Automatic,

policy-based Automatic
Manual with
visualisation

support
Not covered Not covered

Specific artefacts:
source code,
architecture

Yes

Original -
architecture

represented by
xADL, source

code stored
in SubVersion

Stored in
architecture

description or
CM system

EMFTrace
Semi-automatic,

Rule-based Semi-automatic
Based on

change taxonomy
Automatic,
Rule-based Not covered Not covered

Heterogeneous artefacts;
specifically:

UML models,
Java source code

, Junit test
cases

-
EMF-based

models stored
in EMFStore

XML-based

iACMTool
Intra-artefact
traceability - Automatic

Automatic,
Rule-based

Automatic,
Rule-based

(using OCL)
-

Specific artefact:
UML model - Original Not specified

Table B.4: Comparison summary, Part IV. The reviewed solutions are listed by their names (where the name of the implemented system or project title
is in place) or by the authors’ names.

196 APPENDIX B. APPENDIX B - SUMMARY TABLES

Artefact Structural Elements Properties Derived Artefact Elements Graph Nodes

Requirement spec.

Executive summary,
Product Description,
Functional Requirements,
Non-Functional Requirements,
Recommendations,
References,
Appendices

Common: name, type
descriptor, contents,
title, priority

Requirement
A graph node represents
a
single Requirement

UML class d.
Class / Interface / Enum,
Attribute, Operation

Common: name, type
descriptor, modifier,
Attribute specific: attribute type,
Operation
specific: input
parameters, return
type

Class / Interface /
Enum,
Attribute,
Operation

A graph node represents
a
single Class /
Interface / Enum,
Attribute,
or Operation

Java s. c.

Package statement,
Import statements,
Interface / Class /
Method / Enum
/
Variable declaration,
Comments,
Annotations,
Other language constructs
within methods

Common: name, type
descriptor, modifier,
Field specific: field type,
Method specific: input
parameters, return
types, throws clause,
method body,
Class
/ Interface /
Enum specific: extends,
implements clause

Interface / Class /
Method
/ Enum /
Variable declaration

A graph node represents
a
single Interface /
Class / Enum,
Method, or
Variable declaration

JUnit
Artefact elements and graph
nodess derived are identical to those of Java source code

Module view arch. Module Common: name, type Module
A graph node represents
a single Module

Conceptual arch.
Component,
Connector Common: name, type Component

A graph node represents
a
single Component

UML use case d.
Use case,
Actor Common: name, type Use case

A graph node represents
a single Use case

UML sequence d.
Frame, Lifeline,
TimeConstraint,
Message, etc.

Specific to Lifeline and
Message elements:
name, type

Object/Use case/
Class
represented
by lifeline

A graph node represents
a
single Lifeline

Table B.5: Summary of artefacts handled by the framework and the derivation of property graph nodes
and their attributes from structural elements.

197

Artefact Delete and Add file level changes and examples

Java source code
A .java file is deleted from the repository or added to the repository.
The .java file contains a single class and its members.
However, in some cases the .java file may contain nested classes.

UML class diagram
A .dia file is deleted from the repository or added to the repository.
The .dia file represents a UML class diagram that contains multiple
container and member elements.

JUnit test
A .java file is deleted from the repository or added to the repository.
The .java file contains a single test class and its members.

UML sequence diagram
A .dia file is deleted from the repository.
The .dia file represents a UML sequence diagram with
multiple lifelines.

Requirement specification
A .odt file is deleted from the repository or added to the repository.
The .odt file contains multiple requirements.

UML Use case diagram
A .dia file is deleted from the repository or added to the repository.
The .dia file represents a UML use case diagram with multiple use cases.

Conceptual Architecture diagram A .dia file representing a conceptual architecture diagram is deleted or added to the repository.
Module view architecture diagram A .dia file representing a module view architecture diagram is deleted or added to the repository.

Table B.6: Delete and Add File Level changes - specific examples.

19
8

A
PP

E
N

D
IX

B
.

A
PP

E
N

D
IX

B
-S

U
M

M
A

RY
TA

B
L

E
S

Type of artefact Change

Requirement spec. Edit requirement name / priority / description
Requirement spec. Delete requirement
Requirement spec. Add requirement
UML class diagram Add class / interface / enum / operation / attribute
UML class diagram Edit class / interface / enum / attribute / operation signature / operation return type
UML class diagram Delete class / interface / enum / attribute / operation
Java s.c. / JUnit tests Add class / interface / enum / method / field
Java s.c. / JUnit tests Edit class / interface / enum / field / method signature / method return type / method body
Java s.c. / JUnit tests Delete class / interface / enum / field / method

Table B.7: Artefact element level changes.

199

Changed Entity Inter Trace Link Type Connected Entity Inter Consistency Rule

Artefact type:Java source code,
Artefact element type: Java
class,
Fine-grained element type:
Container element,
Example scenario: delete a single
or multiple Java classes

Identity

UML/JUnit
container
element, UML
sequence
diagram lifeline

Connected entity is inconsistent.

Satisfaction Requirement, use case Connected entity is potentially inconsistent.

Satisfaction
Architectural
component,
architectural module

Connected entity is potentially inconsistent.

Artefact type:UML class
diagram
Delete entire UML class
diagram

Identity

Java/JUnit
container
element, UML sequence
diagram lifeline

Connected entity is inconsistent.

Satisfaction Requirement, use case Connected entity is potentially inconsistent.

Satisfaction
Architectural
component,
architectural module

Connected entity is potentially inconsistent.

Artefact type: JUnit test,
Artefact element type: JUnit
test class,
Fine-grained element type:
Container element,
Example scenario:
Delete
a single
or multiple test files

Identity

UML/Java
container element,
UML sequence
diagram lifeline

Connected entity is inconsistent.

Satisfaction Requirement, use case Connected entity is potentially inconsistent.

Satisfaction
Architectural
component,
architectural module

Connected entity is potentially inconsistent.

Table B.8: Delete file level change - Derivation of consistency rules based on the modified entity, the connected entity, and inter link type. Part I.

20
0

A
PP

E
N

D
IX

B
.

A
PP

E
N

D
IX

B
-S

U
M

M
A

RY
TA

B
L

E
S

Changed Entity Inter Trace Link Type Connected Entity Inter Consistency Rule

Artefact type:
UML sequence
diagram,

Delete an entire UML
sequence diagram

Identity
UML/JUnit/Java
container element Connected entity is inconsistent.

Satisfaction Requirement, use case Connected entity is potentially inconsistent.

Satisfaction
Architectural
component,
architectural module

Connected entity is potentially inconsistent.

Artefact type:
Requirement
specification,

Delete
an entire
requirement specification
document.

Satisfaction

UML/JUnit/Java
container element,
UML sequence
diagram lifeline

Connected entity is inconsistent.

Identity Use case Connected entity is inconsistent.

Satisfaction
Architectural
component,
architectural module

Connected entity is inconsistent.

Artefact type:
Use case diagram,

Delete
an entire
use case document.

Satisfaction

UML/JUnit/Java
container element,
UML sequence
diagram lifeline

Connected entity is inconsistent.

Identity Requirement Connected entity is inconsistent.

Satisfaction
Architectural
component,
architectural module

Connected entity is inconsistent.

Table B.9: Delete file level change - Derivation of consistency rules based on the modified entity, the connected entity, and inter link type. Part II.

201

Changed Entity Inter Trace Link Type Connected Entity Inter Consistency Rule

Artefact type:
Conceptual
architecture,
Delete an entire
architecture diagram.

Satisfaction

UML/JUnit/Java
container element,
UML sequence
diagram lifeline

Connected entity is inconsistent.

Satisfaction Use case, Requirement Connected entity is inconsistent.
Identity Architectural module Connected entity is inconsistent.

Artefact type:
Module view
architecture,

Delete an entire
architecture diagram.

Satisfaction

UML/JUnit/Java
container element,
UML sequence
diagram lifeline

Connected entity is inconsistent.

Satisfaction Use case, Requirement Connected entity is potentially inconsistent.

Identity Architectural component Connected entity is potentially inconsistent.

Table B.10: Delete file level change - Derivation of consistency rules based on the modified entity, the connected entity, and inter link type. Part III.

20
2

A
PP

E
N

D
IX

B
.

A
PP

E
N

D
IX

B
-S

U
M

M
A

RY
TA

B
L

E
S

Deleted Entity Connected Entity Inter Trace Link Type Inter Rules

Java member element UML/JUnit member Identity Connected entity is inconsistent.
UML member element Java/JUnit member Identity Connected entity is inconsistent.

UML container
Java/JUnit container /
UML sequence diagram lifeline Identity Connected entity is inconsistent.

UML container
Requirement, Use case, Architectural
component, Architectural module Satisfaction Connected entity is potentially inconsistent.

JUnit member element UML/Java member Identity Connected entity is inconsistent.
UML sequence diagram lifeline UML/JUnit/Java container Identity Connected entity is inconsistent.

Requirement, Use case, Architectural
component, Architectural module Satisfaction Connected entity is potentially inconsistent.

Requirement
UML/JUnit / Java container /UML sequence
diagram lifeline / Architectural component /
Architectural module

Satisfaction Connected entity is inconsistent.

Use case Identity Connected entity is inconsistent.

Use case
UML/JUnit / Java container /UML sequence
diagram lifeline / Architectural component /
Architectural module

Satisfaction Connected entity is inconsistent.

Requirement Identity Connected entity is inconsistent.

Architectural component
UML/JUnit / Java container /UML sequence
diagram lifeline Satisfaction Connected entity is inconsistent.

Architectural module Identity Connected entity is inconsistent.
Requirement / Use case Satisfaction Connected entity is potentially inconsistent.

Architectural module
UML/JUnit / Java container /UML
sequence diagram lifeline Satisfaction Connected entity is inconsistent.

Architectural component Identity Connected entity is inconsistent.
Requirement / Use case Satisfaction Connected entity is potentially inconsistent.

Table B.11: Edit file level change - Delete artefact element level change - Derivation of inter rules.

203

Added Entity Entity Connected to Parent Parent Inter Trace Link Inter Rule

Java member element UML/JUnit container Identity Connected entity is inconsistent.
UML member element Java/JUnit container Identity Connected entity is inconsistent.
JUnit member element UML/Java container Identity Connected entity is potentially inconsistent.
UML sequence diagram
lifeline, requirement,
use case,
architecture component,
architecture module No connected entity as no parents exist NA No consistency rule can be established.

Table B.12: Edit file level change - Add artefact element level change - Derivation of inter rules.

204 APPENDIX B. APPENDIX B - SUMMARY TABLES

Edited Entity Connected Entity Inter Trace
Link Type Inter Rules

Java source code member /
container element,
Change type:
signature change

UML/JUnit
member/container Identity Connected entity is inconsistent.

Requirement
/ UML use case /
architectural component /
architectural module

Satisfaction Connected entity is consistent.

UML sequence diagram
lifeline Identity Connected entity is consistent.

Java source code member
element,
Change type: content change

UML member Identity Connected entity is consistent.

JUnit member Identity Connected entity is potentially inconsistent.
Requirement
/ UML use case /
architectural component /
architectural module

Satisfaction Connected entity is consistent.

UML sequence diagram
lifeline Identity Connected entity is consistent.

UML member /container
element,
Change type:
signature change

Java
source code / JUnit
member/container

Identity Connected entity is inconsistent.

Requirement
/ UML use case /
architectural component /
architectural module

Satisfaction Connected entity is consistent.

UML sequence diagram
lifeline Identity Connected entity is consistent.

JUnit member /container
element,
Change type:
signature / content change

Java
source code / UML class
diagram,member /
container /
UML sequence diagram
lifeline

Identity Connected entity is consistent.

Requirement
/ UML use case /
architectural component /
architectural module

Satisfaction Connected entity is consistent.

UML sequence diagram lifeline
Java
source code / UML class
diagram / JUnit container

Identity Connected entity is consistent.

Requirement
/ UML use case /
architectural component /
architectural module

Satisfaction Connected entity is consistent.

Table B.13: Edit file level change - Edit artefact element level change - Derivation of inter rules part I.

205

Edited Entity Connected Entity Inter Trace
Link Type Inter Rules

Requirement

Java
source code / UML class
diagram / JUnit,container /
UML sequence diagram
lifeline

Satisfaction Connected entity is potentially inconsistent.

UML use case Identity Connected entity is inconsistent.
Architectural
component /
architectural module

Satisfaction Connected entity is potentially inconsistent.

UML Use case Same consistency rules apply as in case of requirement artefact elements.

Architectural component

Java
source code / UML class
diagram / JUnit container /
UML sequence diagram
lifeline

Satisfaction Connected entity is potentially inconsistent.

Requirement / Use case Satisfaction Connected entity is consistent.
Architectural module Satisfaction Connected entity is potentially inconsistent.

Architectural module
Same
consistency rules apply as in case of architectural component artefact elements.

Table B.14: Edit file level change - Edit artefact element level change - Derivation of inter rules part II.

20
6

A
PP

E
N

D
IX

B
.

A
PP

E
N

D
IX

B
-S

U
M

M
A

RY
TA

B
L

E
S

Changed Entity Connected Entity Intra Trace Link Type Intra Rules

Edit UML member element (signature) UML container element Domain dependency Connected entity is consistent.
Delete UML member element UML container element Domain dependency Connected entity is consistent.
Add UML member element UML container element Domain dependency Connected entity is consistent.
Edit UML container element (signature) UML container element Domain dependency Connected entity is potentially inconsistent.
Delete UML container element UML container element Domain dependency Connected entity is potentially inconsistent.
Add UML container element UML container element Domain dependency Connected entity is consistent.
Edit Java / JUnit member element (signature) Java / JUnit container element Domain dependency Connected entity is potentially inconsistent.
Edit Java / JUnit member element (content) Java / JUnit container element Domain dependency Connected entity is consistent.
Delete Java / JUnit member element Java / JUnit container element Domain dependency Connected entity is potentially inconsistent.
Add Java / JUnit member element Java / JUnit container element Domain dependency Connected entity is consistent.
Edit Java / JUnit container element (signature) Java / JUnit container element Domain dependency Connected entity is inconsistent.

Table B.15: Derivation of intra consistency rules.

207

A
rt

ef
ac

t
C

ha
ng

e
D

es
cr

ip
tio

n
C

or
re

sp
on

di
ng

R
ul

e

Ja
va

so
ur

ce
co

de
D

el
et

e
a

.ja
va

fil
e

fr
om

th
e

re
po

si
to

ry
.

D
el

et
e

tr
ac

e
m

ai
nt

en
an

ce
ru

le
U

M
L

cl
as

sd
ia

gr
am

D
el

et
e

an
en

tir
e

U
M

L
cl

as
s

di
ag

ra
m

(.d
ia

)f
ro

m
th

e
re

po
si

to
ry

.
D

el
et

e
tr

ac
e

m
ai

nt
en

an
ce

ru
le

JU
ni

tt
es

t
D

el
et

e
a

.ja
va

fil
e

fr
om

th
e

re
po

si
to

ry
.

D
el

et
e

tr
ac

e
m

ai
nt

en
an

ce
ru

le
U

M
L

se
qu

en
ce

di
ag

ra
m

D
el

et
e

an
en

tir
e

U
M

L
se

qu
en

ce
di

ag
ra

m
(.d

ia
)f

ro
m

th
e

re
po

si
to

ry
.

D
el

et
e

tr
ac

e
m

ai
nt

en
an

ce
ru

le
R

eq
ui

re
m

en
ts

pe
ci

fic
at

io
n

D
el

et
e

an
en

tir
e

.o
dt

fil
e,

fr
om

th
e

re
po

si
to

ry
.

D
el

et
e

tr
ac

e
m

ai
nt

en
an

ce
ru

le
U

M
L

us
e

ca
se

di
ag

ra
m

D
el

et
e

an
en

tir
e

U
M

L
us

e
ca

se
di

ag
ra

m
(.d

ia
)f

ro
m

th
e

re
po

si
to

ry
.

D
el

et
e

tr
ac

e
m

ai
nt

en
an

ce
ru

le
So

ft
w

ar
e

ar
ch

ite
ct

ur
e

(c
on

ce
pt

ua
lv

ie
w

)
D

el
et

e
an

en
tir

e
ar

ch
ite

ct
ur

e
di

ag
ra

m
(.d

ia
)f

ro
m

th
e

re
po

si
to

ry
.

D
el

et
e

tr
ac

e
m

ai
nt

en
an

ce
ru

le
So

ft
w

ar
e

ar
ch

ite
ct

ur
e

(m
od

ul
e

vi
ew

)
D

el
et

e
an

en
tir

e
ar

ch
ite

ct
ur

e
di

ag
ra

m
(.d

ia
)f

ro
m

th
e

re
po

si
to

ry
.

D
el

et
e

tr
ac

e
m

ai
nt

en
an

ce
ru

le

Ta
bl

e
B

.1
6:

Tr
ac

e
m

ai
nt

en
an

ce
ru

le
s

in
th

e
de

le
te

fil
e

le
ve

lc
ha

ng
e

sc
en

ar
io

fo
re

ac
h

ar
te

fa
ct

ty
pe

.

20
8

A
PP

E
N

D
IX

B
.

A
PP

E
N

D
IX

B
-S

U
M

M
A

RY
TA

B
L

E
S

Artefact Change Description Corresponding Rule

Java source code Delete a Java member / container element. Delete trace maintenance rule
UML class diagram Delete a UML member / container element. Delete trace maintenance rule
JUnit test Delete a JUnit member / container element. Delete trace maintenance rule
UML sequence diagram Delete a lifeline element. Delete trace maintenance rule
Requirement specification Delete a requirement. Delete trace maintenance rule
UML use case diagram Delete a use case. Delete trace maintenance rule
Software architecture (conceptual view) Delete a component. Delete trace maintenance rule
Software architecture (module view) Delete a module. Delete trace maintenance rule

Table B.17: Trace maintenance rules in the delete artefact element level change scenario for each artefact type.

209

A
rt

ef
ac

t
C

ha
ng

e
D

es
cr

ip
tio

n
C

or
re

sp
on

di
ng

R
ul

e

Ja
va

so
ur

ce
co

de
E

di
ta

Ja
va

m
em

be
r/

co
nt

ai
ne

re
le

m
en

t.
E

di
tt

ra
ce

m
ai

nt
en

an
ce

ru
le

U
M

L
cl

as
sd

ia
gr

am
E

di
ta

U
M

L
m

em
be

r/
co

nt
ai

ne
re

le
m

en
t.

E
di

tt
ra

ce
m

ai
nt

en
an

ce
ru

le
JU

ni
tt

es
t

E
di

ta
JU

ni
tm

em
be

r/
co

nt
ai

ne
re

le
m

en
t.

E
di

tt
ra

ce
m

ai
nt

en
an

ce
ru

le
U

M
L

se
qu

en
ce

di
ag

ra
m

E
di

ta
lif

el
in

e
el

em
en

t.
E

di
tt

ra
ce

m
ai

nt
en

an
ce

ru
le

R
eq

ui
re

m
en

ts
pe

ci
fic

at
io

n
E

di
ta

re
qu

ir
em

en
t.

E
di

tt
ra

ce
m

ai
nt

en
an

ce
ru

le
U

M
L

us
e

ca
se

di
ag

ra
m

E
di

ta
us

e
ca

se
.

E
di

tt
ra

ce
m

ai
nt

en
an

ce
ru

le
So

ft
w

ar
e

ar
ch

ite
ct

ur
e

(c
on

ce
pt

ua
lv

ie
w

)
E

di
ta

co
m

po
ne

nt
.

E
di

tt
ra

ce
m

ai
nt

en
an

ce
ru

le
So

ft
w

ar
e

ar
ch

ite
ct

ur
e

(m
od

ul
e

vi
ew

)
E

di
ta

m
od

ul
e.

E
di

tt
ra

ce
m

ai
nt

en
an

ce
ru

le

Ta
bl

e
B

.1
8:

Tr
ac

e
m

ai
nt

en
an

ce
ru

le
s

in
th

e
ed

it
ar

te
fa

ct
el

em
en

tl
ev

el
ch

an
ge

sc
en

ar
io

fo
re

ac
h

ar
te

fa
ct

ty
pe

.

REFERENCES

[1] T. Mens, Software Evolution, ch. Introduction and Roadmap: History and Challenges of
Software Evolution, pp. 1–11. Berlin, Heidelberg: Springer Berlin Heidelberg, 2008.

[2] B. W. Boehm, “Software Engineering,” IEEE Transactions on Computers, vol. C-25,
no. 12, pp. 1226–1241, 1976.

[3] P. Marounek, “Simplified approach to effort estimation in software maintenance,” Journal

of Systems Integration, vol. 3, no. 3, pp. 51–63, 2012.

[4] T. Mens, M. Wermelinger, S. Ducasse, S. Demeyer, R. Hirschfeld, and M. Jazayeri,
“Challenges in software evolution,” pp. 13–22, 2005.

[5] Extreme Chaos, 2001. Available at http://www.cin.ufpe.br/{~}gmp/docs/papers/
extreme{_}chaos2001.pdf. Accessed January 2016.

[6] C. Larman, Applying UML and Patterns: An Introduction to Object-Oriented Analysis and

Design and Iterative Development (3rd Edition). Upper Saddle River, NJ, USA: Prentice
Hall PTR, 2004.

[7] S. D. Suh and I. Neamtiu, “Studying software evolution for taming software complexity,”
Proceedings of the Australian Software Engineering Conference, ASWEC, pp. 3–12, 2010.

[8] T. Olsen and J. Grundy, “Supporting traceability and inconsistency management between
software artefacts,” 2002.

[9] S. P. Reiss, “Incremental maintenance of software artifacts,” IEEE Transactions on

Software Engineering, vol. 32, no. 9, pp. 682–697, 2006.

[10] H. P. Breivold, I. Crnkovic, and P. Eriksson, “Evaluating software evolvability,” Software

Engineering Research and Practice in Sweden, vol. 96, 2007.

[11] P. Loucopoulos and V. Karakostas, C . A . S . E . Technology. New York, NY, USA:
McGraw-Hill, Inc., 1995.

211

http://www.cin.ufpe.br/{~}gmp/docs/papers/extreme{_}chaos2001.pdf
http://www.cin.ufpe.br/{~}gmp/docs/papers/extreme{_}chaos2001.pdf

212 REFERENCES

[12] I. Sommerville, Software Engineering: (8th Edition) (International Computer Science).
Boston, MA, USA: Addison-Wesley Longman Publishing Co., Inc., 2006.

[13] Y. Zhang, R. Witte, J. Rilling, and V. Haarslev, “Ontological approach for the semantic
recovery of traceability links between software artefacts,” IET software, vol. 2, no. 3,
pp. 185–203, 2008.

[14] S. Dart, “Concepts in configuration management systems,” in Proceedings of the 3rd

international workshop on Software configuration management, pp. 1–18, ACM, 1991.

[15] Configuration Management. Available at http://www.sei.cmu.edu/productlines/
frame{_}report/config.man.htm. Accessed January 2016.

[16] Configuration Management. Available at http://www.sei.cmu.edu/productlines/
frame{_}report/config.man.htm. Accessed March 2016.

[17] B. Nuseibeh, J. Kramer, and A. Finkelstein, “A framework for expressing the relationships
between multiple views in requirements specification,” IEEE Transactions on Software

Engineering, vol. 20, no. 10, pp. 760–773, 1994.

[18] T. Stahl, M. Völter, J. Bettin, A. Haase, and S. Helsen, Model-Driven Software

Development: Technology, Engineering, Management. John Wiley & Sons, 2006.

[19] A. G. Kleppe, J. Warmer, and W. Bast, MDA Explained: The Model Driven Architecture:

Practice and Promise. Boston, MA, USA: Addison-Wesley Longman Publishing Co.,
Inc., 2003.

[20] J. Bettin, Software, Engineering, Artefacts, Language, 2010. Available at
http://semat.org/documents/20181/27952/SEMAT_position_Bettin.pdf/

665484b8-ef4b-4c0c-a77a-891fd9d8cb46. Accessed January 2016.

[21] D. Beyer and A. Noack, “Clustering software artifacts based on frequent common changes,”
in 13th International Workshop on Program Comprehension (IWPC’05), pp. 259–268,
IEEE, 2005.

[22] Programming Paradigms. Available at http://cs.lmu.edu/{~}ray/notes/

paradigms/. Accessed January 2016.

[23] J. Rumbaugh, I. Jacobson, and G. Booch, Unified Modeling Language Reference Manual.
Pearson Higher Education, 2004.

[24] R. N. Taylor, N. Medvidovic, and E. M. Dashofy, Software Architecture: Foundations,

Theory, and Practice. Wiley Publishing, 2009.

http://www.sei.cmu.edu/productlines/frame{_}report/config.man.htm
http://www.sei.cmu.edu/productlines/frame{_}report/config.man.htm
http://www.sei.cmu.edu/productlines/frame{_}report/config.man.htm
http://www.sei.cmu.edu/productlines/frame{_}report/config.man.htm
http://semat.org/documents/20181/27952/SEMAT_position_Bettin.pdf/665484b8-ef4b-4c0c-a77a-891fd9d8cb46
http://semat.org/documents/20181/27952/SEMAT_position_Bettin.pdf/665484b8-ef4b-4c0c-a77a-891fd9d8cb46
http://cs.lmu.edu/{~}ray/notes/paradigms/
http://cs.lmu.edu/{~}ray/notes/paradigms/

REFERENCES 213

[25] J. Cleland-Huang, O. Gotel, and A. Zisman, Software and Systems Traceability. London:
Springer London, 2012.

[26] O. C. Z. Gotel and C. W. Finkelstein, “An analysis of the requirements traceability
problem,” in Requirements Engineering, 1994., Proceedings of the First International

Conference on, pp. 94–101, Apr 1994.

[27] B. Ramesh, C. Stubbs, T. Powers, and M. Edwards, “Requirements traceability: Theory
and practice,” Annals of Software Engineering, vol. 3, no. 1, pp. 397–415, 1997.

[28] MATLAB and Simulink - MathWorks. Available at http://www.mathworks.co.uk/
discovery/requirements-traceability.html. Accessed March 2016.

[29] IEEE Standard Dictionary of Measures to Produce Reliable Software, 1989. Available at
https://standards.ieee.org/findstds/standard/982.1-1988.html. Accessed
March 2016.

[30] S. Engineering and S. Committee, “IEEE Standard for Software Maintenance,”
1998. Available at http://www.cs.uah.edu/~rcoleman/CS499/CourseTopics/

IEEE_Std_1219-1998.pdf. Accessed March 2016.

[31] B. Ramesh and M. Jarke, “Toward reference models for requirements traceability,” IEEE

transactions on software engineering, vol. 27, no. 1, pp. 58–93, 2001.

[32] Center of Excellence for Software Traceability. Available at http://www.coest.org/.
Accessed March 2016.

[33] G. Antoniol, G. Canfora, G. Casazza, a. De Lucia, and E. Merlo, “Recovering traceability
links between code and documentation,” IEEE Transactions on Software Engineering,
vol. 28, no. 10, pp. 970–983, 2002.

[34] P. Mäder, O. Gotel, and I. Philippow, “Rule-based maintenance of post-requirements
traceability relations,” in 2008 16th IEEE International Requirements Engineering

Conference, pp. 23–32, IEEE, 2008.

[35] G. Spanoudakis and A. Zisman, “Software Traceability: A Roadmap,” in Handbook

of Software Engineering and Knowledge Engineering, pp. 395–428, World Scientific
Publishing, 2004.

[36] S. Winkler and J. Pilgrim, “A survey of traceability in requirements engineering and
model-driven development,” Software & Systems Modeling, vol. 9, no. 4, pp. 529–565,
2009.

http://www.mathworks.co.uk/discovery/requirements-traceability.html
http://www.mathworks.co.uk/discovery/requirements-traceability.html
https://standards.ieee.org/findstds/standard/982.1-1988.html
http://www.cs.uah.edu/~rcoleman/CS499/CourseTopics/IEEE_Std_1219-1998.pdf
http://www.cs.uah.edu/~rcoleman/CS499/CourseTopics/IEEE_Std_1219-1998.pdf
http://www.coest.org/

214 REFERENCES

[37] R. Arnold and S. Bohner, “Impact analysis-Towards a framework for comparison,” 1993

Conference on Software Maintenance, pp. 292–301, 1993.

[38] D. Leffingwell and D. Widrig, Managing Software Requirements: A Unified Approach.
Boston, MA, USA: Addison-Wesley Longman Publishing Co., Inc., 2000.

[39] B. Li, X. Sun, H. Leung, and S. Zhang, “A survey of code-based change impact analysis
techniques,” vol. 23, pp. 613–646, Wiley Online Library, 2013.

[40] N. Kama, “Change Impact Analysis for the Software Development Phase : State-of-the-
art,” International Journal of Software Engineering & Its Applications, vol. 7, no. 2,
pp. 235–244, 2013.

[41] S. Lehnert, “A taxonomy for software change impact analysis,” in Proceedings of the 12th

International Workshop on Principles of Software Evolution and the 7th Annual ERCIM

Workshop on Software Evolution, pp. 41–50, ACM, 2011.

[42] S. Lehnert, “A Review of Software Change Impact Analysis,” tech. rep., Ilmenau
University of Technology, Department of Software Systems / Process Informatics, Ilmenau,
2011.

[43] S. Ibrahim, N. B. Idris, M. Munro, and A. Deraman, “Integrating software traceability for
change impact analysis.,” Int. Arab J. Inf. Technol., vol. 2, no. 4, pp. 301–308, 2005.

[44] S. Wong, Y. Cai, and M. Dalton, “Change impact analysis with stochastic dependencies,”
Drexel University Philadelphia, PA, USA, Tech. Rep, 2011.

[45] Definition of Consistency. Available at http://www.merriam-webster.com/

dictionary/consistency. Accessed March 2016.

[46] B. Nuseibeh, S. Easterbrook, and A. Russo, “Leveraging inconsistency in software
development,” Computer, vol. 33, no. 4, pp. 24–29, 2000.

[47] G. Spanoudakis and A. Zisman, “Inconsistency management in software engineering:
Survey and open research issues,” in Handbook of Software Engineering and Knowledge

Engineering, pp. 329–380, World Scientific, 2001.

[48] M. Kamalrudin and S. Sidek, “A review on software requirements validation and consis-
tency management,” International Journal of Software Engineering and its Applications,
vol. 9, no. 10, pp. 39–58, 2015.

http://www.merriam-webster.com/dictionary/consistency
http://www.merriam-webster.com/dictionary/consistency

REFERENCES 215

[49] S. J. I. Herzig, U. States, and A. Reichwein, “A Conceptual Framework for Consistency
Management in Model-Based Systems Engineering,” Proceedings of the ASME 2011

International Design Engineering Technical Conferences & Computers and Information

in Engineering Conference, pp. 1–11, 2011.

[50] P. Tarr and L. Clarke, “Consistency management for complex applications,” Proceedings

of the 20th International Conference on Software Engineering, pp. 230–239, 1998.

[51] M. Elaasar and L. Briand, “An overview of uml consistency management,” Carleton

University, Canada, Technical Report SCE-04-18, 2004.

[52] M. Vierhauser, P. Grünbacher, W. Heider, G. Holl, and D. Lettner, “Applying a consistency
checking framework for heterogeneous models and artifacts in industrial product lines,”
in Proceedings of the 15th International ACM/IEEE Conference on Model Driven

Engineering Languages & Systems (MODELS), 2012.

[53] M. Giffin, O. de Weck, G. Bounova, R. Keller, C. Eckert, and P. J. Clarkson, “Change
Propagation Analysis in Complex Technical Systems,” Journal of Mechanical Design,
vol. 131, no. 8, p. 081001, 2009.

[54] J. Han, “Supporting Impact Analysis and Change Propagation in Software Engineering
Environments,” in International Workshop on Software Technology and Engineering

Practice, no. 96, pp. 172–182, 1997.

[55] V. Rajlich, “A model for change propagation based on graph rewriting,” pp. 84–91, 1997.

[56] P. Jönsson, “Impact analysis: Organisational views and support techniques,” 2005.

[57] H. Malik and A. E. Hassan, “Supporting software evolution using adaptive change
propagation heuristics,” in Software Maintenance, 2008. ICSM 2008. IEEE International

Conference on, pp. 177–186, IEEE, 2008.

[58] A. E. Hassan and R. C. Holt, “Predicting change propagation in software systems,”
in Software Maintenance, 2004. Proceedings. 20th IEEE International Conference on,
pp. 284–293, IEEE, 2004.

[59] J. Biolchini, P. G. Mian, A. Candida, and C. Natali, “Systematic Review in Software
Engineering,” Engineering, vol. 679, pp. 165–176, 2005.

[60] B. Kitchenham, P. Brereton, D. Budgen, M. Turner, J. Bailey, and S. G. Linkman,
“Systematic literature reviews in software engineering - A systematic literature review,”
Information & Software Technology, vol. 51, no. 1, pp. 7–15, 2009.

216 REFERENCES

[61] J. Cleland-Huang, O. Gotel, J. H. Hayes, P. Mäder, and A. Zisman, “Software traceability:
trends and future directions,” in Proceedings of the on Future of Software Engineering,

FOSE, pp. 55–69, 2014.

[62] S. Lehnert, Q. Farooq, and M. Riebisch, “Rule-based impact analysis for heterogeneous
software artifacts,” in 17th European Conference on Software Maintenance and Reengi-

neering, CSMR, pp. 209–218, 2013.

[63] J. Grundy, J. Hosking, and W. B. Mugridge, “Inconsistency management for multiple-
view software development environments,” IEEE Transactions on Software Engineering,
vol. 24, no. 11, pp. 960–981, 1998.

[64] S. P. Reiss, “Constraining software evolution,” in 18th International Conference on

Software Maintenance (ICSM, pp. 162–171, 2002.

[65] M. Hammad, M. L. Collard, and J. I. Maletic, “Automatically identifying changes that
impact code-to-design traceability during evolution,” Software Quality Journal, vol. 19,
no. 1, pp. 35–64, 2010.

[66] M. Zekkaoui and A. Fennan, “Unified approach for building heterogeneous artifacts and
consistency rules,” Journal of Emerging Technologies in Web Intelligence, vol. 6, no. 1,
2014.

[67] E. C. Nistor, J. R. Erenkrantz, S. A. Hendrickson, and A. van der Hoek, “Archevol: version-
ing architectural-implementation relationships,” in Proceedings of the 12th International

Workshop on Software Configuration Management, SCM, pp. 99–111, 2005.

[68] F. Lanubile, “Collaboration in distributed software development,” in Software Engineering,

International Summer Schools, ISSSE, pp. 174–193, 2008.

[69] F. Fasano, “Fine-grained management of software artefacts,” in 23rd IEEE International

Conference on Software Maintenance (ICSM, pp. 507–508, 2007.

[70] A. De Lucia, R. Oliveto, and G. Tortora, “Adams re-trace: Traceability link recovery
via latent semantic indexing,” in Proceedings of the 30th International Conference on

Software Engineering, ICSE ’08, pp. 839–842, 2008.

[71] C. Hapter, J. A. Scott, and D. Nisse, “Software Configuration Management,” in Guide

to the Software Engineering Body of Knowledge (R. D. Alain Abran, James W. Moore,
Pierre Bourque, ed.), ch. 7, Los Alamitos: IEEE Computer Society, 2001.

REFERENCES 217

[72] A. De Lucia, F. Fasano, R. Oliveto, and G. Tortora, “Fine-grained management of software
artefacts: the adams system,” Software Practice & Experience, vol. 40, no. 11, pp. 1007–
1034, 2010.

[73] T. N. Nguyen, E. V. Munson, J. T. Boyland, and C. Thao, “An infrastructure for
development of object-oriented, multi-level configuration management services,” in 27th

International Conference on Software Engineering (ICSE, pp. 215–224, 2005.

[74] T. N. Nguyen, E. V. Munson, J. Boyland, and C. Thao, “Architectural software
configuration management in molhado,” in 20th International Conference on Software

Maintenance (ICSM), pages = 296–305, year = 2004, crossref = DBLP:conf/icsm/2004,

url = http://dx.doi.org/10.1109/ICSM.2004.1357815, doi = 10.1109/ICSM.2004.1357815,

biburl = http://dblp2.uni-trier.de/rec/bib/conf/icsm/NguyenMBT04, bibsource = dblp

computer science bibliography, http://dblp.org.

[75] E. J. Whitehead Jr, An analysis of the hypertext versioning domain. PhD thesis, University
of California, Irvine, 2000.

[76] J. Conklin, “Hypertext: An introduction and survey,” Computer, vol. 20, no. 9, pp. 17–41,
1987.

[77] N. M. Delisle and M. D. Schwartz, “Neptune: a hypertext system for CAD applications,”
in Proceedings of the 1986 ACM SIGMOD International Conference on Management of

Data, pp. 132–143, 1986.

[78] K. M. Anderson, R. N. Taylor, and E. J. W. Jr., “Chimera: Hypertext for heterogeneous
software environments,” in ECHT ’94: European Conference on Hypertext Technology,
pp. 94–107, 1994.

[79] P. K. Garg and W. Scacchi, “A hypertext system to manage software life cycle documents,”
in Proceedings of the Twenty-First Annual Hawaii International Conference on Software

Track, pp. 337–346, 1988.

[80] T. N. Nguyen and E. V. Munson, “The software concordance: A new software document
management environment,” in Proceedings of the 21st Annual International Conference

on Documentation, pp. 198–205, 2003.

[81] R. G. Dewar, L. M. MacKinnon, R. J. Pooley, A. D. Smith, M. J. Smith, and P. A. Wilcox,
“The OPHELIA project: Supporting software development in a distributed environment,”
in Proceedings of the IADIS International Conference WWW/Internet 2002, ICWI, pp. 568–
571, 2002.

218 REFERENCES

[82] P. A. Wilcox, C. R. Russell, M. J. Smith, A. D. Smith, R. J. Pooley, L. M. Mackinnon,
R. G. Dewar, and D. Weiss, “A CORBA-Oriented Approach to Heterogeneous Tool
Integration ; OPHELIA,” in In The Workshop on Tool Integration in System Development

(TIS 2003), 2003. the 9th European Software Engineering Conference and 11th ACM

SIGSOFT Symposium on the Foundations of Software Engineering (ESEC/FSE), 2003.

[83] M. Hapke, A. Jaszkiewicz, K. Kowalczykiewicz, D. Weiss, and P. Zielniewicz, “Ophelia:
Open platform for distributed software development,” in Open Source for an Information

and knowledge society: Proceedings of the Open Source International Conference.,
Citeseer, 2004.

[84] M. Smith, D. Weiss, P. Wilcox, and R. Dewar, “The ophelia traceability layer,” in
Cooperative Method and Tools for Distributed Softwar Processes, Volume 380.222, pp. 88–
464, 2003.

[85] CORBA. Available at http://www.omg.org/gettingstarted/corbafaq.htm. Ac-
cessed March 2016.

[86] B. Bruegge, A. H. Dutoit, T. Wolf, T. Universit, and D. Garching, “Sysiphus : Enabling
informal collaboration in global software development,” in IEEE International Conference

on Global Software Engineering (ICGSE’06), 2006.

[87] D. Nutter, C. Boldyreff, S. Rank, et al., “An artefact repository to support distributed
software engineering,” 2003.

[88] C. Boldyreff, D. Nutter, and S. Rank, “Active artefact management for distributed software
engineering,” in Computer Software and Applications Conference, Proceedings. 26th

Annual International, pp. 1081–1086, 2002.

[89] J.-Y. Chen and S.-C. Chou, “Consistency management in a process environment,” Journal

of Systems and Software, vol. 47, pp. 105 – 110, 1999.

[90] R. Matinnejad and R. Ramsin, “An analytical review of process-centered software
engineering environments,” in IEEE 19th International Conference and Workshops on

Engineering of Computer-Based Systems, ECBS, pp. 64–73, 2012.

[91] D. E. Knuth, “Literate programming,” The Computer Journal, vol. 27, no. 2, pp. 97–111,
1984.

[92] D. Kupfer, Eclipse Intent: Being Agile does not mean be-

ing short-sighted, 2012. Available at http://jaxenter.com/

http://www.omg.org/gettingstarted/corbafaq.htm
http://jaxenter.com/eclipse-intent-being-agile-does-not-mean-being-short-sighted-45856.html
http://jaxenter.com/eclipse-intent-being-agile-does-not-mean-being-short-sighted-45856.html

REFERENCES 219

eclipse-intent-being-agile-does-not-mean-being-short-sighted-45856.

html. Accessed March 2016.

[93] Mylyn Intent. Available at http://www.eclipse.org/proposals/mylyn.docs.

intent/. Accessed March 2016.

[94] A. Aguiar and G. David, “Wikiwiki weaving heterogeneous software artifacts,” in
Proceedings of the 2005 International Symposium on Wikis, pp. 67–74, 2005.

[95] J. Aldrich, C. Chambers, and D. Notkin, “Archjava: connecting software architecture
to implementation,” in Proceedings of the 24th International Conference on Software

Engineering, ICSE, pp. 187–197, 2002.

[96] L. G. Murta, A. van der Hoek, and C. M. Werner, “Continuous and automated evolution
of architecture-to-implementation traceability links,” Automated Software Engineering,
vol. 15, no. 1, pp. 75–107, 2008.

[97] F. A. C. Pinheiro, Perspectives on Software Requirements, ch. Requirements Traceability,
pp. 91–113. Boston, MA: Springer US, 2004.

[98] M. F. Bashir and M. A. Qadir., “Traceability techniques: A critical study,” in 2006 IEEE

International Multitopic Conference, pp. 265–268, 2006.

[99] J. Cleland-Huang and J. Guo, “Towards more intelligent trace retrieval algorithms,” in
3rd International Workshop on Realizing Artificial Intelligence Synergies in Software

Engineering, RAISE, pp. 1–6, 2014.

[100] A. Qusef, R. Oliveto, and A. De Lucia, “Recovering traceability links between unit tests
and classes under test: An improved method,” in Software Maintenance (ICSM), 2010

IEEE International Conference on, pp. 1–10, IEEE, 2010.

[101] J. Lin, C. C. Lin, J. Cleland-Huang, R. Settimi, J. Amaya, G. Bedford, B. Berenbach,
O. B. Khadra, C. Duan, and X. Zou, “Poirot: A distributed tool supporting enterprise-
wide automated traceability,” in 14th IEEE International Conference on Requirements

Engineering (RE), pp. 356–357, 2006.

[102] B. Liang, G. V. Wilson, and J. Aranda, “Tracing requirements to tests: An information
retrieval approach,”

[103] J. N. och Dag, B. Regnell, P. Carlshamre, M. Andersson, and J. Karlsson, “A feasibility
study of automated natural language requirements analysis in market-driven development,”
Requirements Engineering, vol. 7, no. 1, pp. 20–33, 2002.

http://jaxenter.com/eclipse-intent-being-agile-does-not-mean-being-short-sighted-45856.html
http://jaxenter.com/eclipse-intent-being-agile-does-not-mean-being-short-sighted-45856.html
http://jaxenter.com/eclipse-intent-being-agile-does-not-mean-being-short-sighted-45856.html
http://www.eclipse.org/proposals/mylyn.docs.intent/
http://www.eclipse.org/proposals/mylyn.docs.intent/

220 REFERENCES

[104] H. U. Asuncion, A. U. Asuncion, and R. N. Taylor, “Software traceability with topic
modeling,” in Proceedings of the 32Nd ACM/IEEE International Conference on Software

Engineering - Volume 1, pp. 95–104, 2010.

[105] J. H. Hayes, A. Dekhtyar, and S. K. Sundaram, “Advancing candidate link generation for
requirements tracing: The study of methods,” IEEE Transactions on Software Engineering,
vol. 32, no. 1, pp. 4–19, 2006.

[106] J. I. Maletic, E. V. Munson, A. Marcus, and T. N. Nguyen, “Using a hypertext model
for traceability link conformance analysis,” in In Proc. of the 2nd Int. Workshop on

Traceability in Emerging Forms of Software Engineering, pp. 47–54, 2003.

[107] S. Klock, M. Gethers, B. Dit, and D. Poshyvanyk, “Traceclipse: an eclipse plug-in
for traceability link recovery and management,” in TEFSE’11, Proceedings of the 6th

International Workshop on Traceability in Emerging Forms of Software Engineering,
pp. 24–30, 2011.

[108] G. Bavota, L. Colangelo, A. D. Lucia, S. Fusco, R. Oliveto, and A. Panichella, “Traceme:
Traceability management in eclipse,” in 28th IEEE International Conference on Software

Maintenance, ICSM, pp. 642–645, 2012.

[109] H. Kagdi, J. I. Maletic, and B. Sharif, “Mining Software Repositories for Traceability
Links,” in Proceedings of the 15th IEEE International Conference on Program Compre-

hension, pp. 145–154, IEEE Computer Society, 2007.

[110] A. Egyed and P. Grünbacher, “Automating requirements traceability: Beyond the record
& replay paradigm,” in 17th IEEE International Conference on Automated Software

Engineering(ASE), pp. 163–171, 2002.

[111] S. Hayashi, T. Yoshikawa, and M. Saeki, “Sentence-to-code traceability recovery with
domain ontologies,” in 2010 Asia Pacific Software Engineering Conference, pp. 385–394,
2010.

[112] G. Spanoudakis, A. Zisman, E. Pérez-miñana, P. Krause, and B. P. D. Systems, “Rule-
based generation of requirements traceability relations,” Journal of Systems and Software,
vol. 72, pp. 105–127, 2004.

[113] S. A. Sherba, K. M. Anderson, and M. Faisal, “A framework for mapping traceability
relationships,” in 2 nd International Workshop on Traceability in Emerging Forms of

Software Engineering at 18th IEEE International Conference on Automated Software

Engineering, pp. 32–39, 2003.

REFERENCES 221

[114] A. Mahmoud, N. Niu, and S. Xu, “A semantic relatedness approach for traceability link
recovery,” in Program Comprehension (ICPC), 2012 IEEE 20th International Conference

on, pp. 183–192, 2012.

[115] H. Sultanov, J. H. Hayes, and W.-K. Kong, “Application of swarm techniques to
requirements tracing,” Requirements Engineering, vol. 16, no. 3, pp. 209–226, 2011.

[116] J. Cleland-Huang, C. K. Chang, and M. Christensen, “Event-based traceability for
managing evolutionary change,” IEEE Transactions on Software Engineering, vol. 29,
no. 9, pp. 796–810, 2003.

[117] J. Cleland-Huang, C. K. Chang, and Y. Ge, “Supporting event based traceability through
high-level recognition of change events,” in 26th International Computer Software and

Applications Conference (COMPSAC), pp. 595–602, 2002.

[118] P. Mäder and O. Gotel, “Towards automated traceability maintenance,” Journal of Systems

and Software, vol. 85, no. 10, pp. 2205–2227, 2012.

[119] H. U. Asuncion, F. François, and R. N. Taylor, “An end-to-end industrial software
traceability tool,” in Proceedings of the 6th joint meeting of the European Software

Engineering Conference and the ACM SIGSOFT International Symposium on Foundations

of Software Engineering, pp. 115–124, 2007.

[120] X. Ren, F. Shah, F. Tip, B. G. Ryder, and O. Chesley, “Chianti: A tool for change impact
analysis of java programs,” in Proceedings of the 19th Annual ACM SIGPLAN Conference

on Object-oriented Programming, Systems, Languages, and Applications, pp. 432–448,
2004.

[121] M. Lee, A. J. Offutt, and R. T. Alexander, “Algorithmic analysis of the impacts of changes
to object-oriented software,” in Technology of Object-Oriented Languages and Systems.

TOOLS 34. Proceedings. 34th International Conference on, pp. 61–70, 2000.

[122] A. R. Sharafat and L. Tahvildari, “A probabilistic approach to predict changes in object-
oriented software systems,” in 11th European Conference on Software Maintenance and

Reengineering (CSMR’07), pp. 27–38, 2007.

[123] T. Zimmermann, P. Weisgerber, S. Diehl, and A. Zeller, “Mining version histories to
guide software changes,” in Proceedings of the 26th International Conference on Software

Engineering, pp. 563–572, 2004.

222 REFERENCES

[124] H. Kagdi, “Improving change prediction with fine-grained source code mining,” in
Proceedings of the Twenty-second IEEE/ACM International Conference on Automated

Software Engineering, pp. 559–562, 2007.

[125] G. Tóth, P. Hegedűs, A. Beszédes, T. Gyimóthy, and J. Jász, “Comparison of different
impact analysis methods and programmer’s opinion: An empirical study,” in Proceedings

of the 8th International Conference on the Principles and Practice of Programming in

Java, pp. 109–118, 2010.

[126] C. Dantas, L. Murta, and C. Werner, “Mining change traces from versioned uml
repositories,” in Brazilian Symposium on Software Engineering (SBES), pp. 236–252,
2007.

[127] S. Lock and G. Kotonya, “An integrated, probabilistic framework for requirement change
impact analysis,” The Australian Journal of Information Systems, vol. 6, no. 2, pp. 38–63,
1999.

[128] W.-T. Lee, W.-Y. Deng, J. Lee, and S.-J. Lee, “Change impact analysis with a goal-driven
traceability-based approach,” International Journal of Intelligent Systems, vol. 25, no. 8,
pp. 878–908, 2010.

[129] L. C. Briand, Y. Labiche, and L. O’Sullivan, “Impact analysis and change management of
uml models,” in Software Maintenance, (ICSM). Proceedings. International Conference

on, pp. 256–265, Sept 2003.

[130] S. Ibrahim, N. B. Idris, M. Munro, and A. Deraman, “A Software Traceability Validation
For Change Impact Analysis of Object Oriented Software,” in Proceedings of the

International Conference on Software Engineering Research and Practice & Conference

on Programming Languages and Compilers, (SERP), 2006.

[131] A. Finkelstein, “A foolish consistency: Technical challenges in consistency management,”
in International Conference on Database and Expert Systems Applications, pp. 1–5,
Springer, 2000.

[132] T. Mens and P. Van Gorp, “A taxonomy of model transformation,” Electronic Notes in

Theoretical Computer Science, vol. 152, pp. 125–142, 2006.

[133] S. Sendall and J. Küster, “Taming model round-trip engineering,” in Proceedings of

Workshop on Best Practices for Model-Driven Software Development, p. 1, 2004.

REFERENCES 223

[134] M. Antkiewicz and K. Czarnecki, “Design space of heterogeneous synchronization,” in
Generative and Transformational Techniques in Software Engineering II, International

Summer School, GTTSE, pp. 3–46, 2007.

[135] Class Designer - keep code and class model in sync. Available at http://blogs.msdn.
com/b/classdesigner/archive/2005/05/12/417000.aspx. Accessed March 2016.

[136] Overview of Objecteering for Eclipse. Available at http://support.objecteering.
com/objecteering6.1/help/us/objecteering{_}for{_}eclipse/intro/

overview.htm. Accessed March 2016.

[137] Enterprise Architect. Available at http://www.sparxsystems.com.au/resources/
demos/. Accessed March 2016.

[138] D. Steinberg, F. Budinsky, M. Paternostro, and E. Merks, EMF: Eclipse Modeling

Framework 2.0. Addison-Wesley Professional, 2nd ed., 2009.

[139] Executable UML | Modeling Languages. Available at http://modeling-languages.
com/executable-uml/. Accessed March 2016.

[140] D. Milicev, Model-Driven Development with Executable UML. Wrox Press Ltd., 1st ed.,
2009.

[141] Gentleware - model to business: uml tool - professional edition. Available at http:
//www.gentleware.com/uml-software-pe.html. Accessed March 2016.

[142] C. Nentwich, L. Capra, W. Emmerich, and A. Finkelsteiin, “xlinkit: A consistency
checking and smart link generation service,” ACM Transactions on Internet Technology

(TOIT), vol. 2, no. 2, pp. 151–185, 2002.

[143] A. L. Campbell, C. B. H. Cheng, E. W. McUmber, and K. R. E. Stirewalt, “Automatically
detecting and visualising errors in uml diagrams,” Requirements Engineering, vol. 7, no. 4,
pp. 264–287, 2002.

[144] C. Dimech and D. Balasubramaniam, “Maintaining architectural conformance during
software development: A practical approach,” in European Conference on Software

Architecture, pp. 208–223, Springer, 2013.

[145] S. Sheuly, A Systematic Literature Review on Agile Project Management. PhD thesis,
2013.

[146] E. M. Simão, Comparison of software development methodologies based on the SWEBOK.
PhD thesis, 2011.

http://blogs.msdn.com/b/classdesigner/archive/2005/05/12/417000.aspx
http://blogs.msdn.com/b/classdesigner/archive/2005/05/12/417000.aspx
http://support.objecteering.com/objecteering6.1/help/us/objecteering{_}for{_}eclipse/intro/overview.htm
http://support.objecteering.com/objecteering6.1/help/us/objecteering{_}for{_}eclipse/intro/overview.htm
http://support.objecteering.com/objecteering6.1/help/us/objecteering{_}for{_}eclipse/intro/overview.htm
http://www.sparxsystems.com.au/resources/demos/
http://www.sparxsystems.com.au/resources/demos/
http://modeling-languages.com/executable-uml/
http://modeling-languages.com/executable-uml/
http://www.gentleware.com/uml-software-pe.html
http://www.gentleware.com/uml-software-pe.html

224 REFERENCES

[147] B. W. Boehm, “A spiral model of software development and enhancement,” Computer,
vol. 21, no. 5, pp. 61–72, 1988.

[148] K. Fowler, Mission-critical and safety-critical systems handbook: Design and development

for embedded applications. Newnes, 2009.

[149] J. D. Herbsleb and D. Moitra, “Global software development,” IEEE software, vol. 18,
no. 2, pp. 16–20, 2001.

[150] S. Boccaletti, V. Latora, Y. Moreno, M. Chavez, and D.-U. Hwang, “Complex networks:
Structure and dynamics,” Physics Reports, vol. 424, pp. 175 – 308, 2006.

[151] Network science. Available at http://www.network-science.org/. Accessed March
2016.

[152] L. Šubelj and M. Bajec, “Software systems through complex networks science: Review,
analysis and applications,” in Proceedings of the First International Workshop on Software

Mining, SoftwareMining ’12, pp. 9–16, 2012.

[153] A. Chatzigeorgiou, N. Tsantalis, and G. Stephanides, “Application of graph theory to oo
software engineering,” in Proceedings of the 2006 International Workshop on Workshop

on Interdisciplinary Software Engineering Research, pp. 29–36, 2006.

[154] F. Yamaguchi, N. Golde, D. Arp, and K. Rieck, “Modeling and discovering vulnerabilities
with code property graphs,” in Proceedings of the 2014 IEEE Symposium on Security and

Privacy, pp. 590–604, 2014.

[155] C. Wenjing and X. Shenghong, “A software function testing method based on data flow
graph,” in International Symposium on Information Science and Engineering, vol. 2,
pp. 28–31, 2008.

[156] K. Ruohonen, Graph Theory. Tampere University of Technology, 2008.

[157] M. A. Rodriguez and P. Neubauer, “Constructions from dots and lines,” Bulletin of the

American Society for Information Science and Technology, vol. 36, no. 6, pp. 35–41, 2010.

[158] M. Rodriguez, Knowledge Representation and Reasoning with Graph

Databases, 2011. Available at http://markorodriguez.com/2011/02/23/

knowledge-representation-and-reasoning-with-graph-databases/. Accessed
March 2016.

http://www.network-science.org/
http://markorodriguez.com/2011/02/23/knowledge-representation-and-reasoning-with-graph-databases/
http://markorodriguez.com/2011/02/23/knowledge-representation-and-reasoning-with-graph-databases/

REFERENCES 225

[159] J. Tauberer, What is RDF and what is it good for?, 2008. Available at https:

//github.com/JoshData/rdfabout/blob/gh-pages/intro-to-rdf.md. Accessed
March 2016.

[160] S. Lehnert, Q. u. a. Farooq, and M. Riebisch, “A taxonomy of change types and its
application in software evolution,” in Engineering of Computer Based Systems (ECBS),

IEEE 19th International Conference and Workshops on, pp. 98–107, 2012.

[161] R. Wojcik, F. Bachmann, L. Bass, P. Clements, P. Merson, R. Nord, and B. Wood,
“Attribute-driven design (add), version 2.0,” tech. rep., DTIC Document, 2006.

[162] L. Bass, Architectural tactics, 2006. Available at http://resources.sei.cmu.edu/
library/asset-view.cfm?assetid=31149. Accessed March 2016.

[163] F. Bachmann, L. Bass, and R. Nord, “Modifiability tactics,” tech. rep., DTIC Document,
2007.

[164] L. J. Bass and B. E. John, “Linking usability to software architecture patterns through
general scenarios,” Journal of Systems and Software, vol. 66, no. 3, pp. 187–197, 2003.

[165] Core J2EE Patterns - Data Access Object. Available at http://www.oracle.com/
technetwork/java/dataaccessobject-138824.html. Accessed March 2016.

[166] O. M. Group, OMG Unified Modeling Language, 2015. Available at http://www.omg.
org/spec/UML/2.5/. Accessed March 2016.

[167] F. Bachmann, L. Bass, D. Garlan, J. Ivers, R. Little, P. Merson, R. Nord, and J. Stafford,
Documenting Software Architectures: Views and Beyond. Addison-Wesley Professional,
2011.

[168] K. Fakhroutdinov, Class and Object Diagrams Overview. Available at http://www.
uml-diagrams.org/class-diagrams-overview.html. Accessed March 2016.

[169] J. Gosling, B. Joy, G. Steele, G. Bracha, and A. Buckley, The Java® Language

Specification, 2015. Available at http://docs.oracle.com/javase/specs/jls/se8/
jls8.pdf. Accessed March 2016.

[170] G. H. Andreas Birk, List of Requirements Management Tools. Available at http://
makingofsoftware.com/resources/list-of-rm-tools. Accessed March 2016.

[171] UML Directory. Available at http://uml-directory.omg.org/. Accessed March
2016.

https://github.com/JoshData/rdfabout/blob/gh-pages/intro-to-rdf.md
https://github.com/JoshData/rdfabout/blob/gh-pages/intro-to-rdf.md
http://resources.sei.cmu.edu/library/asset-view.cfm?assetid=31149
http://resources.sei.cmu.edu/library/asset-view.cfm?assetid=31149
http://www.oracle.com/technetwork/java/dataaccessobject-138824.html
http://www.oracle.com/technetwork/java/dataaccessobject-138824.html
http://www.omg.org/spec/UML/2.5/
http://www.omg.org/spec/UML/2.5/
http://www.uml-diagrams.org/class-diagrams-overview.html
http://www.uml-diagrams.org/class-diagrams-overview.html
http://docs.oracle.com/javase/specs/jls/se8/jls8.pdf
http://docs.oracle.com/javase/specs/jls/se8/jls8.pdf
http://makingofsoftware.com/resources/list-of-rm-tools
http://makingofsoftware.com/resources/list-of-rm-tools
http://uml-directory.omg.org/

226 REFERENCES

[172] D. M. L. Collard, D. J. I. Maletic, M. Decker, B. Bartman, D. Guarnera, C. Newman,
H. Michaud, B. Kovacs, and Tessandra Sage, srcML. Available at http://www.srcml.
org/about-srcml.html. Accessed March 2016.

[173] M. Roughan and J. Tuke, “Unravelling graph-exchange file formats,” arXiv preprint

arXiv:1503.02781, 2015.

[174] M. Eiglsperger, U. Brandes, J. Lerner, and C. Pich, “Graph Markup Language (GraphML)
16.1,” Handbook of Graph Drawing and Visualization, pp. 517–541, 2013.

[175] J. Pokorny, “New Database Architectures: Steps towards Big Data Processing,” IADIS

European Conference Data Mining, pp. 3–10, 2013.

[176] Neo4j - The World’s Leading Graph Database. Available at http://www.neo4j.org/.
Accessed March 2016.

[177] I. Robinson, J. Webber, and E. Eifrem, Graph Databases. O’Reilly Media, Inc., 2013.

[178] R. Angles and C. Gutierrez, “Survey of graph database models,” ACM Computing Surveys,
vol. 40, no. 1, pp. 1–39, 2008.

[179] M. Rodriguez, The Graph Traversal Programming Pattern, 2010. Available
at http://www.slideshare.net/slidarko/graph-windycitydb2010?related=1.
Accessed March 2016.

[180] P. Macko, D. Margo, and M. Seltzer, “Performance introspection of graph databases,”
Proceedings of the 6th International Systems and Storage Conference on - SYSTOR ’13,
p. 1, 2013.

[181] M. Ciglan, A. Averbuch, and L. Hluchy, “Benchmarking Traversal Operations over
Graph Databases,” IEEE 28th International Conference on Data Engineering Workshops,
pp. 186–189, 2012.

[182] N. Martínez-bazan, V. Muntés-mulero, and S. Gómez-villamor, “DEX : High-Performance
Exploration on Large Graphs for Information Retrieval,” Artificial Intelligence, pp. 573–
582, 2007.

[183] F. Holzschuher and R. Peinl, “Performance of Graph Query Languages: Comparison of
Cypher, Gremlin and Native Access in Neo4J,” in Proceedings of the Joint EDBT/ICDT

2013 Workshops, (New York, NY, USA), pp. 195–204, 2013.

http://www.srcml.org/about-srcml.html
http://www.srcml.org/about-srcml.html
http://www.neo4j.org/
http://www.slideshare.net/slidarko/graph-windycitydb2010?related=1

REFERENCES 227

[184] M. Rodriguez, Solving Problems with Graphs, 2012. Available at http://

www.slideshare.net/slidarko/yow-australia2012?related=1. Accessed March
2016.

[185] E. W. Myers, “An O(ND) difference algorithm and its variations,” Algorithmica, vol. 1,
no. 1-4, pp. 251–266, 1986.

[186] G. Cobéna, T. Abdessalem, and Y. Hinnach, “A comparative study for xml change
detection.,” in BDA, 2002.

[187] K.-C. Tai, “The Tree-to-Tree Correction Problem,” Journal of the ACM, vol. 26, no. 3,
pp. 422–433, 1979.

[188] J. Stanek, S. Kothari, and K. Gui, “Method of comparing graph differencing algorithms for
software differencing,” IEEE International Conference on Electro/Information Technology,
pp. 482–487, 2008.

[189] O. Akgun, I. P. Gent, C. Jefferson, I. Miguel, and P. Nightingale, “Breaking Conditional
Symmetry in Automated Constraint Modelling with CONJURE,” The 21st European

Conference on Artificial Intelligence, vol. 263, pp. 3–8, 2014.

[190] Y. Zhang, R. Witte, J. Rilling, and V. Haarslev, “An Ontology-based Approach for the
Recovery of Traceability Links,” in 3rd International Workshop on Metamodels, Schemas,

Grammars, and Ontologies for Reverse Engineering (ATEM), 2006.

[191] T. M. Mitchell, Machine Learning. New York, NY, USA: McGraw-Hill, Inc., 1 ed., 1997.

[192] M. J. Zaki and W. M. Jr, Data Mining and Analysis: Fundamental Concepts and

Algorithms. New York, NY, USA: Cambridge University Press, 2014.

[193] L. Schmidt-Thieme, Linear Regression, 2007. Available at http://www.ismll.

uni-hildesheim.de/lehre/ml-07w/skript/ml-2up-01-linearregression.pdf.
Accessed March 2016.

[194] M. Mohri, A. Rostamizadeh, and A. Talwalkar, Foundations of Machine Learning. The
MIT Press, 2012.

[195] D. Zhang and J. J. P. Tsai, “Machine learning and software engineering.,” Software Quality

Journal, vol. 11, no. 2, pp. 87–119, 2003.

[196] V. Musco, A. Carette, M. Monperrus, and P. Preux, “A Learning Algorithm for Change
Impact Prediction,” in 5th International Workshop on Realizing Artificial Intelligence

Synergies in Software Engineering, 2016.

http://www.slideshare.net/slidarko/yow-australia2012?related=1
http://www.slideshare.net/slidarko/yow-australia2012?related=1
http://www.ismll.uni-hildesheim.de/lehre/ml-07w/skript/ml-2up-01-linearregression.pdf
http://www.ismll.uni-hildesheim.de/lehre/ml-07w/skript/ml-2up-01-linearregression.pdf

228 REFERENCES

[197] M. S. Twala, Bhekisipho, Michelle Cartwright, “Applying Rule Induction in Software
Prediction,” Advances in Machine Learning Applications in Software Engineering, pp. 265–
286, 2007.

[198] M. Grechanik, K. S. McKinley, and D. E. Perry, “Recovering and using use-case-diagram-
to-source-code traceability links,” in Proceedings of the 6th joint meeting of the European

Software Engineering Conference and the ACM SIGSOFT International Symposium on

Foundations of Software Engineering, pp. 95–104, 2007.

[199] J. Cleland-Huang, A. Czauderna, M. Gibiec, and J. Emenecker, “A machine learning
approach for tracing regulatory codes to product specific requirements,” in Proceedings of

the 32nd ACM/IEEE International Conference on Software Engineering, pp. 155–164,
2010.

[200] C. Duan and J. Cleland-Huang, “Clustering support for automated tracing,” in 22nd

IEEE/ACM International Conference on Automated Software Engineering (ASE), pp. 244–
253, 2007.

[201] X. Chen and J. C. Grundy, “Improving automated documentation to code traceability
by combining retrieval techniques,” in 26th IEEE/ACM International Conference on

Automated Software Engineering (ASE), pp. 223–232, 2011.

[202] B. T. Armstrong, “Can clustering improve requirements traceability? a tracelab-enabled
study,” 2013.

[203] H. Sultanov and J. H. Hayes, “Application of reinforcement learning to requirements
engineering: requirements tracing,” in 21st IEEE International Requirements Engineering

Conference, RE, pp. 52–61, 2013.

[204] P. Domingos, “A few useful things to know about machine learning,” Communications of

the ACM, vol. 55, no. 10, pp. 78–87, 2012.

[205] B. Dobing and J. Parsons, “How uml is used,” Communications of the ACM, vol. 49, no. 5,
pp. 109–113, 2006.

[206] Drue Placette, 45 of the Top Source Code Repository Hosts. Available at https://blog.
profitbricks.com/top-source-code-repository-hosts/. Accessed March 2016.

[207] Glossary of Terms.

[208] M. J. Atallah and S. Fox, eds., Algorithms and Theory of Computation Handbook. Boca
Raton, FL, USA: CRC Press, Inc., 1st ed., 1998.

https://blog.profitbricks.com/top-source-code-repository-hosts/
https://blog.profitbricks.com/top-source-code-repository-hosts/

REFERENCES 229

[209] T. Munakata, Fundamentals of the New Artificial Intelligence - Neural, Evolutionary,

Fuzzy and More, Second Edition. Texts in Computer Science, Springer, 2007.

[210] K. Kawaguchi, Backpropagation Neural Networks. Available at http://www.ece.

utep.edu/research/webfuzzy/docs/kk-thesis/kk-thesis-html/node18.html.
Accessed March 2016.

[211] C. Nasa and Suman, “Article: Evaluation of different classification techniques for web
data,” International Journal of Computer Applications, vol. 52, no. 9, pp. 34–40, 2012.

[212] Class J48. Available at http://weka.sourceforge.net/doc.dev/weka/

classifiers/trees/J48.html. Accessed March 2016.

[213] J. C. Platt, “Sequential minimal optimization: A fast algorithm for training support vector
machines,” Advances in Kernel Methods. Support Vector Learning, vol. 208, pp. 1–21,
1998.

[214] R. Kohavi, “A study of cross-validation and bootstrap for accuracy estimation and model
selection,” in Proceedings of the Fourteenth International Joint Conference on Artificial

Intelligence, IJCAI, pp. 1137–1145, 1995.

[215] Mathworks Documentation. Divide Data for Optimal Neural Network

Training. Available at http://uk.mathworks.com/help/nnet/ug/

divide-data-for-optimal-neural-network-training.html. Accessed March
2016.

[216] S. Drazin, “Decision Tree Analysis using Weka,” Machine Learning-Project II, University

of Miami, pp. 1–3, 2010.

[217] D. I. K. Sjoberg, T. Dyba, and M. Jorgensen, “The future of empirical methods in software
engineering research,” in Future of Software Engineering, pp. 358–378, IEEE Computer
Society, 2007.

[218] S. Easterbrook, “Empirical research methods for software engineering,” in Proceedings

of the Twenty-second IEEE/ACM International Conference on Automated Software

Engineering, pp. 574–574, 2007.

[219] P. Runeson, M. Host, A. Rainer, and B. Regnell, Case Study Research in Software

Engineering: Guidelines and Examples. Wiley Publishing, 1st ed., 2012.

[220] H. H. Liu, Software Performance and Scalability. Wiley-Blackwell, 2009.

http://www.ece.utep.edu/research/webfuzzy/docs/kk-thesis/kk-thesis-html/node18.html
http://www.ece.utep.edu/research/webfuzzy/docs/kk-thesis/kk-thesis-html/node18.html
http://weka.sourceforge.net/doc.dev/weka/classifiers/trees/J48.html
http://weka.sourceforge.net/doc.dev/weka/classifiers/trees/J48.html
http://uk.mathworks.com/help/nnet/ug/divide-data-for-optimal-neural-network-training.html
http://uk.mathworks.com/help/nnet/ug/divide-data-for-optimal-neural-network-training.html

230 REFERENCES

[221] T. C. Lethbridge, S. E. Sim, and J. Singer, “Studying software engineers: Data collection
techniques for software field studies,” Empirical software engineering, vol. 10, no. 3,
pp. 311–341, 2005.

[222] R. Carvalho, “Visualising and analyzing software artefacts and their relationships.”
unpublished thesis, 2016.

	Contents
	List of Figures
	List of Tables
	Listings
	Introduction
	Problem Statement
	Motivation
	Scope
	Research Question and Hypotheses
	Novel Contributions
	Thesis Organisation
	Publications

	Background
	Software Artefacts
	Definition
	Artefact Classification

	Traceability
	Definition, Significance and Terminology
	Trace Link Classification
	Existing Classifications
	Trace Link Classification of Heterogeneous Artefacts

	Change Impact Analysis
	Definition and Terminology
	Categorisation of Change Impact Analysis Techniques

	Consistency, Consistency Management, Consistency Checking and Change Propagation
	Consistency
	Consistency Management
	Artefact Consistency Management
	Consistency Checking
	Change Propagation

	Conclusion

	Literature Review
	Introduction
	Methodology
	Planning
	Research Questions
	Search Process

	Execution
	Results Analysis
	Related Surveys

	Classification
	Review of State-of-the-art Solutions
	Holistic Solutions
	Maintaining Separate Artefacts
	Combining Artefacts

	Solutions Addressing Specific Aspects of Consistency Management
	Traceability Techniques
	Change Impact Analysis (IA) Approaches
	Consistency Checking and Change Propagation Approaches

	Evaluation
	Conclusions

	Holistic Artefact Consistency Management Framework
	Challenges of Artefact Consistency Management
	An Ideal Consistency Management Framework
	Proposed Approach: Concept of a Holistic Artefact Consistency Management Framework
	Definition
	Illustrative Example
	Real World Applicability of the Holistic Approach

	Data Representation
	Conceptual Data Model
	Property Graph Structure
	Alternative Artefact and Trace Link Representations
	Evaluation of the Property Graph Model

	Bridging the Gap Between Heterogeneous Artefacts and the Property Graph Model

	Framework Stages
	Change Detection
	Artefact Change Classification
	Change Detection Output: Change Data

	Rule-based Traceability Maintenance
	Change Impact Analysis
	Consistency Checking
	Change Propagation

	Conclusions

	Architecture and Design
	Design Strategy
	Functional Requirements
	Design Constraints
	Architectural Tactics

	Framework Architecture
	Detailed Design of Architectural Components
	 Data Access Layer and Data Store components
	Data Store
	Data Access Layer

	External Repository and Corresponding API Component
	Logic layer and its Components
	Interaction Manager
	Traceability Manager
	Setup Manager
	Consistency Manager

	Design Evaluation

	Implementation of the ACM Framework: Data Representation
	Introduction
	Artefact Selection
	Property Graph Representation
	Specification of Graph Nodes and Properties
	Requirement Specification
	UML Design Diagram: Use Case diagram
	Software Architecture: Conceptual view
	Software Architecture: Module view
	UML Design Diagram: Class diagram
	UML Design Diagram: Sequence diagram
	Java source code
	JUnit test
	Element Hierarchy: Container and Member Elements

	Specification of Graph Edges and Properties
	Conclusions

	Bridging the Gap between Heterogeneous Artefacts and the Property Graph Model
	Artefact Data Extraction
	Tools
	Extraction

	Transformation
	Transformation: GraphML
	Transformation: XSLT
	Transformation Output
	Extracting and Transforming Trace Links
	Transformation Summary

	Graph Data Persistence
	Graph Databases
	Alternative Strategies
	Neo4j

	Conclusions

	Implementation of the ACM Framework: Framework Stages
	Introduction
	Change Detection
	Specifics of Changes
	Identification of the File Level Change Type
	Identification of the Artefact Element Level Change Type
	Change Identification and Representation: XML
	Change Identification and Representation: Graph-based Approach

	Change Detection Output: Change Data object
	Conclusions

	Rule-based Traceability Maintenance
	Delete File Level Change
	Add File Level Change
	Edit File Level Change
	Delete Artefact Element Level Change
	Add Artefact Element Level Change
	Edit Artefact Element Level Change

	Change Impact Analysis
	Illustrative Example

	Rule-based Consistency Checking
	Inter Consistency Checking
	Intra Consistency Checking
	Rule Implementation
	Output

	Change Propagation
	Graph Database Update
	Inconsistency Resolution
	Final Output of Consistency Management

	Implementation Evaluation and Conclusions

	Automating Traceability Creation using Machine Learning
	Introduction
	Machine Learning
	Basic Concepts
	Relevant Machine Learning Usage Scenarios
	Motivation to Use Machine Learning
	Traceability Creation as a Classification Problem

	Data Collection
	Criteria for Candidate System Selection
	Candidate Systems

	Data Preparation
	Establishing Positive Instances - Trace Links
	Establishing Negative Instances - Generating Data for Representing Non-Relations

	Feature Selection
	Model Selection
	Methodology
	Training
	Model Evaluation

	Results and Discussion
	Integration in the Framework
	Conclusions

	Evaluation
	Evaluation Objectives
	Evaluation Questions
	Evaluation Design
	Research Method Selection
	Evaluation of Hypotheses
	Correctness testing
	Performance Evaluation

	Data Collection
	Selecting a Data Collection Technique
	Selecting Particular Open Source Systems
	Change Selection
	Artefacts Obtained from Open Source Systems

	Methodology and Results
	Methodology: Testing Correctness
	Framework Setup Scenario
	Consistency Management Scenario

	Methodology: Evaluation of Hypotheses
	Q1 - Tool and methodology independence
	Q2 - Automation
	Q3 - Artefact Independence

	Methodology: Performance Tests
	Limitations and Threats to Validity

	Conclusions

	Conclusions
	Summary
	Assessment and Limitations
	Assessment in the Context of Requirements
	Limitations

	Future Work
	Concluding Remarks

	Appendix - A Performance results
	Appendix B - Summary Tables
	References

