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Summary 31 

Ross River virus (RRV) is a mosquito-borne virus endemic to Australia. The 32 

disease, marked by arthritis, myalgia and rash, has a complex epidemiology 33 

involving several mosquito species and wildlife reservoirs. Outbreak years 34 

coincide with climatic conditions conducive to mosquito population growth. 35 

 36 

We developed regression models for human RRV notifications in the Mildura 37 

Local Government Area, Victoria, Australia with the objective of increasing 38 

understanding of the relationships in this complex system, providing trigger points 39 

for intervention and developing a forecast model. Surveillance, climatic, 40 

environmental and entomological data for the period July 2000–June 2011 were 41 

used for model training then forecasts were validated for July 2011–June 2015. 42 

 43 

Rainfall and vapour pressure were the key factors for forecasting RRV 44 

notifications. Validation of models showed they predicted RRV counts with an 45 

accuracy of 81%. Two major RRV mosquito vectors (Culex annulirostris and 46 

Aedes camptorhynchus) were important in the final estimation model at proximal 47 

lags. 48 

 49 

The findings of this analysis advance understanding of the drivers of RRV in 50 

temperate climatic zones and the models will inform public health agencies of 51 

periods of increased risk.  52 



1. Introduction 53 

Ross River virus (RRV), Family Togaviridae Genus Alphavirus, is the most 54 

common mosquito-borne virus in Australia, with the largest burden occurring in 55 

the tropical north [1]. Symptoms in humans include debilitating fatigue, muscle 56 

and joint pain that persist between 3–6 months, and up to a year in some cases [2], 57 

leading to significant morbidity and economic loss [3]. However, 55–75% of 58 

cases are asymptomatic [4]. 59 

 60 

In the southeast State of Victoria, RRV is endemic with seasonal incidence. Most 61 

cases occur during the Southern hemisphere summer and early autumn, so 62 

reporting of arbovirus notifiable disease surveillance data typically refers to 63 

Australian financial years (1 July to 30 June the following calendar year) [1]. In 64 

the period July 2005–June 2010, a mean of 214 human cases were notified per 65 

year in Victoria (3.8 per 100,000 people per year), with the majority acquiring 66 

infection in either northern regions of the State (the Murray Valley) or southeast 67 

coastal regions [1]. Outbreaks have occurred in 1992/93, 1996/97, and more 68 

recently in 2010/11 when 1312 cases were notified across the State (23.3 per 69 

100,000 people) [5]. 70 

 71 

The epidemiology of RRV is complex with the disease maintained in wildlife 72 

reservoirs and transmitted to humans by mosquitoes, with human-mosquito-73 

human transmission potentially occurring during epidemics [4]. The virus has 74 

been isolated from over 40 different mosquito species however only a small 75 



number are thought to be competent vectors [6]. The predominant mosquito 76 

vector species vary by location and season. Macropods are thought to be the major 77 

wildlife reservoir, which also vary by ecological niche.   Other marsupials, 78 

rodents and flying foxes may also be involved [6], particularly in urban areas [4]. 79 

Horses can also be clinically infected [7], however their role in amplifying the 80 

virus is unclear. 81 

 82 

1.1. Arboviral surveillance and intervention in Victoria 83 

Ross River virus is a notifiable human disease under the Public Health and 84 

Wellbeing Regulations (2009). In Victoria, doctors and/or pathology laboratories 85 

must notify all laboratory confirmed cases to the Department of Health and 86 

Human Services (DHHS) within five days of diagnosis. According to the 87 

nationally agreed case definition [1] laboratory definitive evidence confirming a 88 

case requires either: 89 

• isolation of RRV, or 90 

• detection of RRV nucleic acid, or 91 

• immunoglobulin G (IgG) seroconversion or a significant increase in 92 

antibody level or a ≥fourfold rise in titre to RRV, or 93 

• detection of RRV-specific IgM, in the absence of Barmah Forest virus 94 

IgM, unless Ross River virus IgG is also detected, or 95 

• detection of RRV-specific IgM in the presence of Ross River virus IgG. 96 

 97 



Control of arboviruses relies on early detection of increased levels of mosquitoes 98 

and/or virus activity, prompting public health interventions including vector 99 

control and public education for bite prevention [8]. Under the Victorian 100 

Arbovirus Disease Control Program (VADCP) local governments across Victoria 101 

implement surveillance and control strategies on vector mosquito populations 102 

during the peak season between November and April each year when most human 103 

arbovirus notifications are received [9]. This program has been providing 104 

standardized adult mosquito monitoring and sentinel chicken surveillance targeted 105 

at Murray Valley encephalitis (MVE) and other endemic arboviruses since 1991 106 

in a One Health model of collaboration. The Victorian Department of Economic 107 

Development, Jobs, Transport and Resources (DEDJTR) provides virological and 108 

entomological support to the VADCP, funded equally by the DHHS and the local 109 

governments involved, overseen by a multidisciplinary Task Force. Surveillance 110 

involves weekly mosquito trapping using carbon dioxide and light-baited traps in 111 

eight local government areas across Victoria. Mosquitoes are counted and 112 

identified by species and viral isolation is attempted in an effort to detect the 113 

presence of RRV. 114 

 115 

Before and during each peak season for arboviral activity, the VADCP analyses 116 

three broad environmental indicators [9-11] of conditions suitable for increased 117 

MVE virus activity in southeast Australia. Meteorological data (rainfall in the 118 

catchment basins of the four main river systems in Eastern Australia and proxy 119 

measures for the Southern Oscillation Index (SOI) and La Niña events) are 120 



considered by DHHS and councils to inform of likely disease occurrence and 121 

when to instigate interventions. No models are currently available to combine 122 

these data for RRV prediction, with public health interventions being informed by 123 

routine notifiable disease surveillance and mosquito monitoring through the 124 

VADCP. 125 

 126 

1.2. Modelling and prediction 127 

Due to the climatic dependence of wildlife and mosquito populations, models 128 

using climate and/or entomological variables to predict RRV incidence may be 129 

helpful for informing disease control activities and forecasting the impact of 130 

climate change. A detailed review [3] describes previous models for RRV. Most 131 

predictive models for RRV have used logistic regression to estimate the odds or 132 

probability of an outbreak within a season, using seasonal variables at fixed points 133 

in time [12-16]. Others have explored prediction of disease using time-series 134 

analysis techniques [12], such as seasonal autoregressive integrated moving 135 

average and polynomial distributed lag (PDL) time-series models [17], and also 136 

negative binomial regression [18], to predict rates of disease, rather than simply 137 

whether or not an outbreak might occur in a season. Models tailored to conditions 138 

at the local level have tended to have better predictive capacity than broader 139 

geographic models [13]. All previous models based on RRV surveillance data for 140 

Southern Australia have estimated associations with annual case counts, with only 141 

two incorporating both entomological and climatic variables (for the southwest 142 

region of Western Australia [13] and southern South Australia [15]). None of the 143 



models for RRV in southern Australia have attempted to model monthly counts 144 

and none have explicitly undertaken out-of-sample validation (forecasting), 145 

however their outputs have informed surveillance and control activities. 146 

 147 

Models combining mosquito count and climate data have produced better results 148 

than models considering climatic variables alone [13, 17]. For example, Woodruff 149 

et al. (2006) developed early and late warning models for RRV outbreak years in 150 

14 statistical local areas of Western Australia and found climate data alone had 151 

64% sensitivity for an early warning model, and the addition of mosquito 152 

surveillance data increased the sensitivity to 85%. Previous models for predicting 153 

RRV in Victoria [16] have used only climatic data at one time point per season 154 

(total rainfall in July, maximum temperature in November) to estimate the 155 

probability of an outbreak during peak transmission season for two adjacent areas 156 

in the Murray Valley, achieving in-sample sensitivity (internal ‘rotational’ 157 

validation) of between 64–96% for predicting an outbreak season. 158 

 159 

The aim of this analysis was to develop predictive models for monthly counts of 160 

human RRV notifications in a highly affected inland location. Specific objectives 161 

included estimating the association between notified case counts and explanatory 162 

climatic, environmental and entomological variables, evaluating the usefulness of 163 

mosquito count data for informing public health interventions by estimating 164 

trigger points for action and, lastly, developing a forecasting tool. 165 

  166 



2. Methods 167 

2.1. Data 168 

Mildura Local Government Area (LGA), located inland in northwest Victoria 169 

(Figure 1) was selected for this analysis as it has the highest RRV disease burden 170 

in the State. RRV notifiable disease surveillance data for the period July 2000–171 

June 2015 were provided by the DHHS including the following variables: 172 

estimated date of onset, 5 year age-group, sex and residential address (or exposure 173 

address where ascertained at interview by health officials). These data were 174 

geocoded utilising the Google Maps® application programming interface, 175 

aggregated by month of onset and divided by annual Australian Bureau of 176 

Statistics estimates of the resident LGA population. 177 

 178 

Weekly mosquito trapping count data were provided by the Victorian Department 179 

of Economic Development, Jobs, Transport and Resources (DEDJTR) for the 180 

same time period, for four traps in the Mildura LGA. Six species of interest were 181 

investigated for predictive value, including two thought to play a major role in 182 

Victoria in RRV transmission [4] (Aedes camptorhynchus and Culex 183 

annulirostris), two mosquito species with possible roles in transmission (Ae. 184 

notoscriptus, Coquillettidia linealis) and two further species with unknown 185 

importance for RRV transmission (Cx. australicus, the principal vector for MVE, 186 

and Cx. globicoxitus). Mosquitoes are only counted for the months November to 187 

April of each year. The median, mean and maximum counts across the four traps 188 

located in the Mildura LGA were calculated each month and categorized as 189 



follows for each species: “no mosquitoes trapped” (the reference category), “1–9 190 

mosquitoes”, “10–99 mosquitoes”, “100–999 mosquitoes”, “≥1000 mosquitoes”. 191 

 192 

Climatic and environmental variables were selected following a review of 193 

previous models, and are summarized by source in Table 1. Weather station data 194 

were obtained from the Australian Bureau of Meteorology weather station with 195 

the most complete data in Mildura LGA (Mildura airport; Bureau of Meteorology 196 

Station Number: 076031; geo-coordinates 142.0867°E, -34.2358°S, see Figure 1). 197 

 198 

2.2. Descriptive and univariable statistical analyses 199 

The distribution of each variable was examined and described, using contingency 200 

tables for categorical variables, collapsing categories where appropriate. Summary 201 

statistics and histograms were inspected for continuous variables and these 202 

transformed as required. 203 

 204 

Data for the period July 2000–June 2011 were used to train the model. Owing to 205 

over-dispersion, negative binomial regression models were constructed to predict 206 

the monthly count of notified RRV cases each month for Mildura LGA (y), of the 207 

form: 208 

𝑌𝑌 ~ 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃(𝑚𝑚𝑚𝑚∗) 

𝑙𝑙𝑃𝑃(𝑚𝑚𝑚𝑚∗) = 𝛽𝛽0 + 𝛽𝛽1𝑥𝑥1 + 𝛽𝛽2𝑥𝑥2 + ⋯+ 𝛽𝛽𝑝𝑝𝑥𝑥𝑝𝑝 + 𝜐𝜐 

𝑒𝑒𝑥𝑥𝑒𝑒(𝜈𝜈) ~ 𝐺𝐺𝐺𝐺𝑚𝑚𝑚𝑚𝐺𝐺(
1

𝐺𝐺𝑙𝑙𝑒𝑒ℎ𝐺𝐺
,𝐺𝐺𝑙𝑙𝑒𝑒ℎ𝐺𝐺) 

 209 



where the p predictor variables x1, x2, …, xp are given, and the population 210 

regression coefficients β0, β1, …, βp are estimated, applying a dispersion 211 

parameter (α) to represent the ratio of the variance of the expected counts to their 212 

mean. The dispersion parameter affects the variance of the expected counts, not 213 

the expected counts themselves. Exponentiation allows expression of the 214 

coefficients as incidence rate ratios (IRR). 215 

 216 

Climatic and entomologic variables were lagged by 1–12 months and screened for 217 

entry into multivariable modelling. For each putative predictor variable, the lag 218 

with the strongest statistical association was selected using Akaike’s Information 219 

Criterion (AIC) [19] – as this criterion may be applied to non-nested models – and 220 

entered into multivariable models if they were crudely statistically associated with 221 

RRV case count based on a liberal P-value threshold (P<0.25). The linearity of 222 

the univariable relationship with the outcome variable was assessed graphically 223 

for each continuous variable and by comparing the AIC of univariable models 224 

including a linear term versus those with the variable categorized into quintiles. 225 

Where appropriate categorized variables were retained for further analyses and 226 

category levels collapsed. 227 

 228 

All continuous covariates were tested for collinearity in pairs by calculating 229 

Spearman’s correlation coefficient (ρs). Among pairs of highly correlated 230 

predictors (ρs ≥|0.70|), only the variable with the strongest statistical association 231 

with the outcome was retained for further analysis [20]. 232 



 233 

2.3. Multivariable analyses 234 

Multivariable models were constructed including all retained variables and 235 

trimmed for parsimony using manual backwards-stepwise regression to P<0.20.  236 

Each removed variable was re-entered individually into the preliminary main 237 

effects model and retained if P<0.15. At this point, pairwise interactions were 238 

tested among all retained terms, categorising continuous variables as required, and 239 

the model was reconstructed as a generalized linear model to implement 240 

regression diagnostics (deviance-based goodness-of-fit to the training data, 241 

assessment of residuals, influence and leverage). Maximum likelihood R2 was 242 

used as a robust measure of fit (no universally accepted adjusted-R2 measure is 243 

available for negative binomial models [21]). The final ‘estimation’ model was 244 

checked for serial auto-correlation (AC) by including case counts in immediately 245 

preceding months [22] after testing for non-stationarity and trend in the time 246 

series following the Dickey-Fuller (DF) approach [23]. 247 

 248 

2.4. Prediction, validation and adjustment for over-fitting 249 

The final estimation model was used to predict monthly notified human RRV case 250 

counts notified in each month in the 4 year validation dataset (July 2011–June 251 

2015) for Mildura LGA, and 95% prediction intervals (PI) were estimated 252 

adapting the method of Farrington et al [24] to the negative binomial distribution. 253 

External (‘out-of-sample’) forecasts and their 95% PIs were then compared to 254 

observed data (not used in model development) using Pearson’s correlation 255 



coefficient (ρp) [25], and models were tested for their proportional agreement with 256 

subjectively defined ‘outbreak alerts’ ( months with >2 notified cases and where 257 

the count of cases exceeded the 5-year mean plus 1 SD for that month estimated 258 

excluding known outbreak years, i.e. 2010/11, assuming a negative binomial 259 

distribution) [26]. The final estimation model was pruned to account for over-260 

fitting by removing variables sequentially, and the comparisons repeated, to arrive 261 

at the final ‘prediction’ model, selected based on its forecasting ability. 262 

 263 

Analyses were undertaken using Stata (StataCorp Texas, version 14.0) and the R 264 

statistical package version 3.1.1 [27] using the libraries ‘MASS’ [28] and ‘epiR’ 265 

[29]. 266 

 267 

3. Results 268 

There were 479 notified cases of RRV in Mildura LGA during the study period. 269 

The outbreak during the 2010/11 financial year accounted for 251 notifications 270 

(52.4%) (Figure 2). The mean notification rate (excluding 2010/11) was 63.9 per 271 

100,000 person years (32.6 per 100,000). Cases were notified year-round however 272 

87% had estimated dates of onset between November and April. There were 31 273 

outbreak alerts in the study period, six of these in 2010/11 and sixteen in the 274 

model validation period. 275 

 276 

Amongst those species investigated, the predominant mosquito species trapped in 277 

Mildura LGA during the study period were Culex annulirostris (n=142,638), 278 



Aedes camptorhynchus (n=24,349), Cx. australicus (n=6,768) and Coquillettidia 279 

linealis (n=5,249). Univariable associations between RRV incidence in Mildura 280 

LGA and lagged counts of the mosquito species and climatic and environmental 281 

variables are provided in supplementary material (Tables S1-2). 282 

 283 

The final estimation model for Mildura LGA is presented in Table 2. A doubling 284 

of maximum vapour pressure was associated with a 3.5-fold rise in the rate of 285 

notifications in the following month (IRR=3.47; 95% CI: 1.57, 7.66). Mean trap 286 

counts of Cx. annulirostris ≥1000 were associated with a seven-fold increase in 287 

the rate of RRV notifications in the following month.  When the mean Ae. 288 

camptorhynchus was ≥10, RRV notifications 2 months later were increased 55%. 289 

A doubling of precipitation and more rain days, were associated with 25% and 8% 290 

rises in RRV notifications, 4 and 6 months later, respectively. Two interaction 291 

terms were retained in the final model. The main effect of Murray River flows in 292 

the highest quintile (maximum daily flow in a month ≥16,268 ML) was an 85% 293 

reduction in RRV notifications 3 months later (IRR=0.15; 95% CI: 0.03, 0.81), 294 

whereas when the Southern Oscillation Index (measured 6 months prior) was 295 

greater than its median across the study period (≥1.7 units) Murray River flows in 296 

the highest quintile were associated with a 5.7-fold increase in the rate of RRV 297 

notifications 3 months later. The main effect of Pacific Ocean sea surface 298 

temperatures ≥26.8 °C was a 68% reduction in notifications 2 months later, 299 

whereas when minimum monthly sea levels (measured 7 months prior) were 300 



≥13.2 cm and sea surface temperatures ≥26.8 °C were associated with a 4-fold rise 301 

in RRV notifications 2 months later. 302 

 303 

There was no long term trend in the time-series (P=0.14) and the null hypothesis 304 

of non-stationary was rejected (DF test statistic=-5.856, degrees of freedom=132, 305 

P<0.001). Moderate serial auto-correlation was detected (Lag 1, AC=0.61) with 306 

each case one month prior being associated with a 12% increase in RRV 307 

incidence the following month (IRR=1.12, 95% CI: 1.05, 1.19). An 308 

autocorrelation term was included then eliminated (owing to P>0.20) from the 309 

final estimation model. 310 

 311 

Forecast ability of the model was improved by pruning to the final forecasting 312 

model (presented in Table 3 with a comparison of observed data and forecasts). 313 

Total observed annual counts were within forecast prediction intervals in all four 314 

validation years (Figure 2), and at a monthly resolution observed counts were 315 

within the forecast prediction intervals in 39 of 48 months in the validation period 316 

(81%), in comparison to 129 of 132 months in the model training period (98%). In 317 

two of the validation years (2011/2012 and 2013/2014) there was excellent 318 

agreement between forecast and observed case counts and outbreak alerts, 319 

proportional agreement of 0.92 and 0.83, respectively. The model under-predicted 320 

case counts in 2012/2013 and 2014/2015, all 9 months with observed counts 321 

above the forecast prediction interval occurred in these two years, resulting in 322 



poorer proportional agreement (0.50 in both cases) with observed outbreak alerts 323 

in these two years. 324 

 325 

4. Discussion 326 

Climate, environmental and entomologic variables were used to develop 327 

prediction models for monthly RRV incidence rates for the Victorian inland Local 328 

Government Area with the highest notification rates. To our knowledge, this study 329 

was the first to integrate mosquito count data into Victorian RRV predictive 330 

modelling and the first to attempt out-of-sample forecasting of monthly counts of 331 

RRV for a location in Southern Australia. 332 

 333 

The most robust way to assess predictive model accuracy is to review a graphical 334 

representation of observed versus predicted events using external data [30], as 335 

adopted for assessing the current models. The final forecasting model performed 336 

extremely well at tracking the observed counts in the validation period, and 337 

clearly fit the data well (differentiating between the outbreak year 2010/11 and 338 

other years with relatively low counts). Forecast prediction intervals encompassed 339 

the observed monthly counts in 39 of 48 months in the validation period. Of the 340 

nine months with observed counts falling above the predicted interval, five in 341 

2012/13 and two in 2014/15 had very low notified case counts (≤4) and raised 342 

outbreak alerts merely on the basis that these low counts were well outside the 343 

typical RRV activity season (when typically ≤1 case was observed in most other 344 

years). The subjectively defined outbreak alert threshold is likely to be 345 



oversensitive, so direct comparisons can only be interpreted cautiously. Raising 346 

the alert threshold to 2 SD greater than the long-term mean did not resolve the 347 

issue, as such a threshold was largely insensitive at detecting months that 348 

appeared to be clearly in excess of normal. 349 

 350 

Statistical epidemiological modelling is often applied to address questions of 351 

causality (estimation and hypothesis testing) with fewer examples where the 352 

explicitly-stated aim is modelling for prediction of future observations [22]. When 353 

forecasting (predicting into the ‘out-of-sample’ future), a modified approach may 354 

be required, as was the case in this study, reducing the focus on the relationships 355 

between individual variables. While model fit remains important there is a trade-356 

off, external validity is paramount (models constructed based on historical data 357 

must hold into the near future) and over-fitting to training data may well come at 358 

the expense of robust future prediction [22]. For this reason the final ‘estimating’ 359 

model, used for assessing the relationships between variables, was pruned to 360 

produce a more parsimonious ‘forecasting’ model. 361 

 362 

Other models of RRV in Southern Australia have been restricted to providing 363 

early warning of outbreak years, rather than attempting to forecast monthly 364 

counts. As presented, the forecasting model will be utilized each year to provide 365 

forecasts to the DHHS. Further modelling will be required to refine the variable 366 

selection and improve the robustness of forecasts. Other more complex 367 



approaches may be required [25], perhaps following the PDL modelling approach 368 

that Hu et al. (2006) implemented for Brisbane, Queensland. 369 

 370 

Rainfall and vapour pressure were key factors for forecasting RRV notifications 371 

in Mildura LGA. Rainfall has been included as an important predictor in all 372 

previous Ross River virus models for Southern Australia [12, 13, 15, 16], and 373 

underlies one of the broad early warning indicators [10] considered by DHHS for 374 

years of increased MVE activity. Vapour pressure is a measure of air humidity 375 

that depends on temperature and air pressure, similar variables have been included 376 

in all previous prediction models [12, 15, 16] developed for regions along the 377 

Murray River (that forms a natural border between the States of Victoria and New 378 

South Wales). It is biologically plausible that these variables are related to 379 

arbovirus transmission, as mosquitoes require a minimum temperature and 380 

moisture for breeding. The lags of these variables likely reflect effects of water, 381 

temperature and climatic conditions on local ecology, for example through their 382 

effects on vegetation and wildlife reservoir host populations along with their 383 

direct effect on mosquito populations. Whilst it is difficult to identify causal links 384 

between distally-lagged precipitation variables and the timescales of vector 385 

development and transmission of RRV, the main purpose of the models developed 386 

here was as predictive tools rather than to draw explicit conclusions regarding 387 

causation. Including rainfall parameters with lags between 4 and 6 months 388 

provided the model with the best predictive performance at a monthly resolution. 389 

When we evaluated rainfall variables over lags of 1 to 3 months (in univariable 390 



analysis), very similar estimates were obtained as those included in the final 391 

model (for total monthly precipitation lagged 4 months, and number of days with 392 

greater than 1 mm rainfall lagged 6 months). There were only low levels of 393 

temporal auto-correlation observed between these variables, so these were 394 

included in multivariable estimation and prediction models at shorter lags (as 395 

secondary effects of rainfall over different time-scales). However, these variables 396 

representing shorter lags of rainfall were subsequently eliminated. Owing to weak 397 

correlations between climatic variables (rainfall, vapour pressure, humidity and 398 

temperature) in our data, it is also likely that some of the proximal effect of 399 

rainfall is represented by other variables in the final models. 400 

 401 

Culex annulirostris  and Ae. camptorhynchus are the two major mosquito vectors 402 

for Ross River virus in Victoria [4]. Their inclusion in the final estimation model 403 

at proximal lags is consistent with their role in transmitting virus to humans from 404 

wildlife reservoirs and the time taken for mosquitoes to develop, the ~2 week 405 

extrinsic and 1-2 week intrinsic incubation periods of RRV [17]. The univariable 406 

associations presented in supplementary Table S1 represent useful trigger points 407 

for action by the local council (such as mosquito larvicidal treatments and public 408 

announcements about the risk and appropriate preventative actions). Risk of RRV 409 

is likely to be greatly increased in months subsequent to those when mean weekly 410 

trap counts of Cx. annulirostris and Ae. camptorhynchus exceed 100 and 10 411 

mosquitoes, respectively. Contrary to the findings of previous modelling studies 412 

of RRV notifications in other Australian States [13, 17], we found that inclusion 413 



of variables representing mosquito numbers provided no improvement in model 414 

forecasting ability (although strongly statistically significant associations were 415 

observed between lagged mosquito count variables and RRV notifications in the 416 

final estimation model). Hu et al. (2006) noted the limitations of including 417 

mosquito count data in early warning forecasting models (cost of collection and 418 

proximal lags limiting the extent of early warning). 419 

 420 

Two interesting interactions were present in the final estimation model, both of 421 

which appear indicative of periods of extreme climatic conditions. Elevated SOI 422 

(i.e. a La Niña event) 6 months earlier and maximum Murray River flow 3 months 423 

prior were associated with increased rates of notification for RRV. A severe 424 

flooding event affecting the Murray River valley occurred in the 2010/11 outbreak 425 

year. Interestingly, on its own, high maximum Murray River flows (indicative of 426 

low amounts of irrigation) were associated with substantially decreased rates of 427 

RRV notification. 428 

 429 

Weather patterns in the study region are heavily influenced by the development 430 

and intensity of El Niño/La Niña events in the Pacific Ocean [31]. Across eastern 431 

Australia, El Niño events are often associated with drier than normal conditions 432 

while La Niña events are associated with wetter than normal conditions. Lower 433 

sea surface temperatures in the Niño 3.4 region (SST) are an indicator of La Niña 434 

events and in this analyses were associated with increased rates of RRV 435 

notification, which is biologically plausible as wetter conditions favour mosquito 436 



larval development. Sea surface temperature was considered as a potential model 437 

covariate, even for this inland study area, as it was identified by Woodruff et al 438 

[16] as a predictor in their model of RRV for the Murray region in Victoria, and 439 

for its role in the El Niño Southern Oscillation phenomenon that influence 440 

weather patterns across Australia. 441 

 442 

Of interest, another biologically plausible and statistically significant interaction 443 

was detected, between SST and sea levels (when both were increased, rates of 444 

notification of RRV cases were also likely to be increased). Sea level changes are 445 

driven by complex processes including thermal expansion of water, input of water 446 

into the ocean from glaciers and ice sheets, and changed water storage on land 447 

[32]. Variables representing sea level were considered for inclusion in these 448 

models because sea levels are correlated with SST and the SOI [33]. Again, this 449 

interaction term may indicate periods of extreme climatic conditions, with 450 

extremes in sea levels and sea surface temperature being a feature of cyclones (as 451 

experienced in the 2010/11 outbreak year when cyclones in Queensland caused 452 

major flooding in the Murray-Darling river basin immediately preceding 453 

extremely high arbovirus activity). The DHHS utilizes another sea surface 454 

temperature measure, the Indian Ocean Dipole (IOP), which is based on the 455 

difference between sea surface temperature in the Western and Eastern tropical 456 

Indian Ocean, as a predictor for MVEV activity in south-eastern Australia [9]. 457 

Negative IOP events generally coincide with La Niña events. 458 

 459 



The study was subject to a number of limitations: notification data may be 460 

undoubtedly understated and biased toward cases with typical clinical symptoms - 461 

those with less severe illness may not seek medical help or may be misdiagnosed. 462 

For this reason model outputs are interpreted as notification rates (rather than 463 

incidence rates). Residential location was accepted as a proxy for place of 464 

infection as this information was not available for a majority of cases. 465 

Misclassification of  place of infection for some cases may have altered the 466 

measured associations between model covariates and disease, thus reducing 467 

predictive accuracy. The model did not account for mosquito control activities, as 468 

a reliable, consistent measure of these activities was unavailable. It is likely this 469 

omission has reduced the predictive accuracy of the models and ideally these 470 

should be accounted for in future research. Despite these limitations, the model 471 

presented appears a useful forecasting tool for RRV in region investigated with 472 

81% of observed monthly counts in the validation period falling within forecast 473 

prediction intervals. 474 

 475 

Changing climatic conditions over the coming decades are likely to alter the 476 

current patterns of arboviral disease in Australia [3, 34], although the nature of 477 

this change is controversial [35]. The effect on arbovirus transmission is likely to 478 

vary regionally. For example, the impact will differ in arid compared to 479 

temperate, and coastal versus inland regions, reflecting variation in the effect of 480 

climate change on local ecological conditions [34]. Advanced tools, such as the 481 

models presented here, will be required to monitoring the changing relationship 482 



between notified cases and local conditions, and to provide early warning of 483 

periods of high arbovirus activity. 484 

 485 
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9. Figure captions 610 

 611 

Figure 1: Study extent of predictive modelling of Ross River virus cases in the 612 

Mildura Local Government Area (shaded grey), Victoria, Australia, for the period 613 

1 July 2000 to 30 Jun 2015. Black circle represents the location of the Mildura 614 

airport weather station. The Murray River forms the northern border of Mildura 615 

local government area. 616 

 617 

 618 

Figure 2: Monthly time-series, predictions and forecasts of notified Ross River 619 

virus cases in the Mildura Local Government Area, Victoria, Australia, for the 620 

period 1 July 2000 to 30 Jun 2015. Data for the Australian financial year 2010/11 621 

have been rescaled by a factor of 3. Dotted lines represent upper 95% prediction 622 

intervals. 623 


