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Overheating in English Dwellings: Comparing modelled and monitored large-scale datasets 

 

Abstract 

 

Monitoring and modelling studies of the indoor environment indicate that there are often 

discrepancies between simulation results and measurements. The availability of large monitoring 

datasets of domestic buildings allows for more rigorous validation of the performance of building 

simulation models derived from limited building information, backed by statistical significance tests 

and goodness of fit metrics. These datasets also offer the opportunity to test modelling assumptions. 

This paper investigates the performance of domestic housing models using EnergyPlus software to 

predict maximum daily indoor temperatures over the summer of 2011. Monitored maximum daily 

indoor temperatures from the English Housing Survey’s (EHS) Energy Follow-Up Survey (EFUS) 

for 823 nationally representative dwellings are compared against predictions made by EnergyPlus 

simulations. Due to lack of information on the characteristics of individual dwellings, the models 

struggle to predict maximum temperatures in individual dwellings and performance was worse on 

days when the outdoor maximum temperatures were high. This research indicates that unknown 

factors such as building characteristics, occupant behaviour and local environment makes the 

validation of models for individual dwellings a challenging task. The models did, however, provide 

an improved estimate of temperature exposure when aggregated over dwellings within a particular 

region.  
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1. Introduction 

 

The exposure to high indoor temperatures in UK domestic dwellings is of increasing concern due to 

the established relationship between excess heat and mortality and human performance (Armstrong 

et al., 2011, ZCH, 2015). The warming climate is expected to lead to an increase in extreme 

temperature events (Murphy et al., 2009), and energy-efficient building design and retrofit 

standards may increase the propensity of dwellings to overheat (Mavrogianni et al., 2012, Taylor et 

al., 2014). Several empirical studies have sought to examine the overheating performance of 

buildings in the UK by monitoring indoor temperatures. Beizaee et al. (2013) monitored indoor 

temperatures in 207 dwellings across England, showing detached and pre-1919 homes being 

significantly cooler than average, and flats and modern dwellings being significantly warmer. A 

study of 282 homes in Leicester indicated flats had a significantly greater overheating risk than 

other built forms, while dwellings with solid walls showed a lower risk (Lomas & Kane, 2012). 

 

A larger number of modelling studies (Oikonomou et al. (2012); Hamdy and Hensen (2015); Porritt 

and Cropper (2010); Peacock, Jenkins, and Kane (2010); Gupta and Gregg (2013)) have examined 

overheating risk in UK dwellings, in particular the characteristics of dwellings that may influence 

overheating risk and the adaptations that may be employed to reduce this risk under various climate 

and occupancy scenarios. Modelling approaches are often used in overheating studies for two main 

reasons: their ability to model a large number of building variants at a much lower cost than 

monitoring studies, and also their ability to examine risks under a variety of possible scenarios. 

Recent large-scale indoor overheating modelling studies in the UK include an investigation of heat-

related mortality across the London housing stock (Taylor et al., 2015) and housing modification of 

heat exposure in Great Britain (Taylor et al., 2016). While the simulation results of these models 

support empirical findings showing that top-floor flats and highly-insulated buildings may be 

susceptible to elevated indoor temperatures, there has yet to be a detailed validation of model 

outputs against a large database of monitored data. Additionally, dwelling stock-level models lack 



the detailed building and occupancy information that would allow a precise prediction of indoor 

temperature for individual buildings, but rather rely on the assumption that aggregated overheating 

estimates would reflect the trends across the building stock itself.  

 

Validation of Dynamic Thermal Building Simulation Software (DTBSS), such as EnergyPlus (US-

DoE, 2013), against empirical data is usually only performed for individual buildings or in a test 

cell environment. Empirical validation of indoor temperatures for building energy simulation 

programs against monitored data has previously been performed in a number of studies (Zhuang et 

al, 2010; Royer et al, 2013; Mateus et al, 2014), while combined empirical and inter-model 

validation of EnergyPlus-predicted indoor temperatures has been performed by Henninger and 

Witte (2015), Lomas et al (1997), Strachan et al (2015), and Buratti et al (2013). Additionally, 

calibration of models – or using empirical data to adjust EnergyPlus modelling parameters-  has 

been carried out using sensitivity analyses by Pereira, Bögl and Natschläger (2014) and Roberti, 

Oberegger, and Gasparella (2015). The validation of DTBSS-derived indoor temperatures is a 

difficult task due to the large number of parameters relating to occupancy, building construction and 

microclimate and their associated uncertainties. This makes it hard to draw concrete conclusions 

about what is causing differences between individual dwellings. The advantage of comparing 

DTBSS models against large monitored datasets is that outputs averaged over many dwellings can 

be observed, helping to evaluate the general trends when comparing across various dwelling types 

and model uncertainty.  

 

The aim of this paper is to evaluate the indoor overheating modelling framework described by 

Taylor et al. (2015, 2016) and Symonds et al. (2016), which estimates indoor temperature metrics 

for building variants based on limited available input data from building stock databases. This 

modelling framework is the basis for ongoing research into the modification of population 

temperature exposure by the English housing stock under current and future climate and adaptation 

scenarios - scenarios which cannot be captured by simply creating a statistical model using the 

EFUS dataset. The evaluation will be performed by comparing monitored indoor temperatures from 

823 dwellings in the English Housing Survey’s (EHS) Energy Follow-Up Survey (EFUS) (DECC, 

2013a) with EnergyPlus modelled indoor temperatures for the same set of dwellings. Overheating 

trends between modelled and monitored datasets are investigated as a time-series, the relationship 

between external and indoor temperatures, and by comparing the mean of the daily maximum 

indoor temperature aggregated by dwelling type. A number of statistical tests and goodness of fit 

metrics are used to evaluate the model results. The work is, to our knowledge, the first comparison 

between a large dataset of monitored and modelled dwellings.  

 

2. Methods 

 

This study makes comparisons between simulated and monitored indoor temperatures over the 2011 

summer period (May 1st-September 30th). The monitored temperatures were obtained from the 

EFUS dataset compiled by the Department of Energy and Climate Change (DECC), whilst 

EnergyPlus was used for the building simulations over the same period. Model performance 

evaluations focussed on daily maximum indoor temperatures (𝑇Room
max ) due to the association of 

outdoor maximum temperatures with mortality (Armstrong et al., 2011), and their previous use in 

estimating mortality risk modification by buildings (Taylor et al., 2015).  

 

2.1 Energy Follow-Up Survey Data 

 

EFUS consists of a monitored subset of the dwellings in the 2010/2011 English Housing Survey 

(EHS) (DCLG, 2011), with sub-hourly temperature measurements in 823 English homes. The EHS 

is a national survey commissioned by the Department for Communities and Local Government 



(DCLG) which has taken place every two years since 2008. The survey consists of a household 

interview as well as a physical inspection of dwellings. The Energy Follow-Up Survey was initiated 

by DECC in 2011 (with monitoring running into 2012) as a revisit to a subset of the homes 

surveyed within the EHS. EFUS consists of more detailed data collected with the aim of 

understanding the changing patterns in energy use within homes. This is a unique dataset because it 

includes indoor temperatures (collected over at least 13 months), energy use data, and detailed 

dwelling information. Both datasets include a large sample of dwellings, designed to be 

representative of the English housing stock. In this paper, we use the EFUS temperature readings 

from all 823 dwellings across England.  

 

The details of the monitoring method and data collection are provided elsewhere (DECC, 2013b). 

We provide here a brief summary. The monitored data were recorded sub-hourly in up to three 

rooms including living rooms, bedrooms and hallways. The temperature measurements were made 

using Tiny Tag Transit data loggers (Gemini, Chichester, UK) which have a measurement accuracy 

of ±0.2 ºC, a resolution of 0.01 ºC and range of -70 ºC to +40 ºC. The memory capacity of the data 

loggers is 32,000 readings. Data were recorded at 20 minute intervals, as opposed to shorter time 

intervals, in order to maximise the time frame over which the measurements were made. In order to 

match the temporal resolution of the simulated output, data from the 20 minute intervals was 

averaged to obtain an hourly value. The data loggers were installed by EFUS survey interviewers 

who were instructed to place loggers on internal walls, out of direct sunlight and away from heat 

sources. Of the 823 houses analysed, 763 dwellings had recordings from three data loggers, whilst 

60 dwellings had one or two data loggers installed. Uncertainties and potential biases in the EFUS 

air temperature measurements are detailed in the EFUS methodology report (DECC, 2013b). 

Dwellings where any extreme temperature readings were recorded (≤-10 ºC or ≥40 ºC) were 

removed from further analysis, under the assumption that these readings were from poorly placed or 

faulty loggers. The remaining sample size used in the analysis was therefore data from 768 living 

rooms and 772 bedrooms. Data measured in the hallways is not used in this paper. 

 

Each monitored dwelling can be cross-referenced, based on its building code, to the corresponding 

building and household information in the EHS database. Parameters in the EHS may then be used 

to inform the building characteristics of EFUS dwellings and provide the required inputs to building 

simulations (see section 2.2). The Government Office Region (GOR) in which each dwelling was 

located, was used to assign each dwelling to one of six regions whose climates were modelled in 

EnergyPlus (see section 2.2.1). Information on the local environment was used to classify the 

dwelling as being in either a rural, urban, or city location. Building fabric types for the EHS were 

used alongside building age to calculate U-values and building fabric permeability using the UK 

Governments Standard Assessment Procedure (SAP) for Energy in Buildings (BRE, 2009). Table 1 

outlines the characteristics of the buildings and their occupants, monitored within EFUS.  

 

2.2 Building Simulation 

 

EnergyPlus (US-DoE, 2013) is a commonly used building physics simulation tool developed by the 

United States Department of Energy. It is able to model dynamic indoor temperatures and air 

movement within the building and can output metrics such as indoor operative temperatures, energy 

use and relative humidity at user defined time steps. EnergyPlus takes a large amount of user 

provided information related to the building, the occupants, and the surrounding environment as 

inputs via an input definition file (“.idf”). A Red Hat Enterprise Linux 5 (RHEL5) version of 

EnergyPlus 8.1 has been used, due to its compatibility on high performance computing facilities. 

An in-house tool called EnergyPlus Generator2 (EPG2) was used to take information about the 

monitored buildings from the EHS and create an input file for each monitored building within 

EFUS.  

 



EnergyPlus files were generated for each of the 823 EFUS dwellings, with their location based on 

GOR region. Building characteristics which were used as inputs to the model include the dwelling 

type, whether the dwelling has cavity or solid walls, the glazing fraction1, the ceiling height, the 

usable floor area2 and the U-values of the windows, walls, roof and floors (altered by adjusting 

material thicknesses and thermal conductivities). The layouts of the building archetypes were held 

constant and were chosen to be representative of the English stock, based on floor plans as 

described in Symonds et al. (2016). Buildings are shaded by surrounding buildings of the same type 

(i.e. terraced houses have a row of terraced houses in front and behind them, as well as adjoining 

dwellings). Information on the orientation of buildings is not provided in the EHS and so this 

variant was selected at random for each dwelling from a uniform distribution in the range 0º to 360º 

East of North. Variations within ceiling height, usable floor area, and window size have been 

incorporated into the model by recalculating the position of surface vertices for each individual 

building. Further details of the EnergyPlus model development are described in Symonds et al 

(2016). 

 

2.2.1 Regional Weather Data 

 

EnergyPlus requires the weather data over the course of the simulation period to be specified as an 

input (“.epw”) file. Real local weather data from 2011 was required for modelling, however 

location precision was limited by the fact that EFUS/EHS dwellings are only locatable by region 

(GOR) rather than a specific geographic location. Since weather files for particular years are not 

freely available for particular locations in England, they had to be created using raw data from 

various weather stations. Weather data from the MetOffice Integrated Data Archive System 

(MIDAS) database (Met Office, 2012) has been used for this purpose. This database contains hourly 

weather data (including dry bulb and dew point temperatures, wind speed and direction, 

atmospheric pressure, precipitation, solar radiation, cloud cover) for various locations within the 

UK and abroad from 1853 up to present day. Jentsch, Bahaj and James (2008) describe methods by 

which raw weather data can be converted into an EnergyPlus weather file. Global horizontal 

radiation is the only radiation variable recorded at a limited number of MIDAS weather stations. 

This meant that the other radiation variables had to be calculated using equations based on 

geometry (CIBSE, 2002) and the recorded cloud cover. Infra-red radiation from the sky was 

calculated using cloud cover, dry bulb temperature and vapour pressure following Crawford and 

Duchon (1999). Illuminance data was calculated from radiation parameters following Perez et al. 

(1990). The locations of the weather stations used are shown in Figure 1. The choice of weather 

stations was limited by which locations had a full set of weather observations available in 2011. To 

fill the gaps in incomplete weather data, it was sometimes necessary to piece together data from two 

weather stations in relatively close proximity to one another. A full account of the weather data 

used is given in Table 2. 

 

2.2.2 Occupant Behaviour 

 

Occupant behaviour was modelled in EnergyPlus by creating schedules for each occupant within idf 

input files. We modelled two occupancy types; a family of five who are out during the day and two 

pensioners who are assumed to stay at home during the day. EFUS homes containing a couple aged 

                                                 
1 Glazing fraction is calculated using the information on the external wall and window areas for the 

front and the back of the dwelling from the EHS. i.e. glazing fraction = (front window area + back 

window area) / (front wall area + back wall area).  
2 Useable floor area is defined in the EHS as floor space that can be reasonably used for habitation. 

It represents all area within the footprint excluding 1) the area under external walls, 2) the are under 

internal walls, 3) area occupied by staircases. Cupboards, integral balconies, and internal garages 

are included. Lofts are only included if habitable, with a fixed stair in place to access it. 



60 or over with no dependent child(ren) or one person aged over 60 were modelled as pensioner 

occupants. All other occupancies (defined in Table 1) were modelled as a family. Each occupant 

was assumed to have a metabolic rate of 100 Watts when awake and 80 Watts when sleeping 

(Ainsworth et al., 1993). Occupants were assumed to move between rooms in the dwelling 

depending on the time of day and were able to control various aspects of their environment such as 

whether or not windows were open. Set schedules were assumed for cooking and the use of 

electrical appliances, contributing to internal gains. Details on the occupancy schedule and internal 

gains can be found in Symonds et al. (2016). Variations within occupancy behaviour have been 

modelled by varying the following: 

 

(i) Annual energy consumption of electrical appliances (MWh). A high consumption of 

electrical appliances such as kettles and TVs will lead to greater internal gains within the 

dwelling. The use of electrical appliances is fixed according to set schedules. The power 

of appliances was varied up (×2) and down (×0.5) to reflect changes in appliance usage.  

The base-case value of 4 MWh per year was chosen based on findings in DECC (2011c, 

2015) reports. 

(ii) Window opening temperature thresholds (between May and September). Windows in 

the bedrooms can be opened between 10 pm at night and 8 am in the morning. In other 

rooms, pensioners are able to open and close windows all day (8 am – 10 pm). Families 

can open windows between 8 am and 9 am and 6 pm and 10 pm but close windows 

during the day when they are assumed to be out.  

 

The simulated baseline and the variations in occupancy parameters are shown in Table 3. These 

variations in occupancy meant that the 823 buildings were simulated five times. To speed up the 

simulation runs considerably, the EnergyPlus simulations were run in parallel on high performance 

computing facilities. 

 

2.3 Statistical assessment of model performance 

 

An assessment of the model’s ability to predict the EFUS data was made by comparing the 

modelled and monitored daily maximum temperatures in the living room (𝑇liv
max) and bedroom 

(𝑇bed
max). Pearson’s correlation coefficient (r) and the Root Mean Square Error (RMSE) were used to 

evaluate the performance of the model for each individual dwelling using daily values over the 

whole summer period. Pearson’s correlation coefficient was used to test the level of dependence 

between the modelled and monitored daily maximum temperatures. It is calculated as: 

 

𝑟 =  
∑ (𝑥𝑡 − �̅�𝑡)(𝑦𝑡 − �̅�𝑡)𝑛

𝑡=1

√∑ (𝑥𝑡 − �̅�𝑡)2𝑛
𝑡=1 √∑ (𝑦𝑡 − �̅�𝑡)2𝑛

𝑡=1

 

  

where n is the number of days over the summer period (153), t is the day number (i.e. t = 1 is May 

1st),  𝑥𝑡 and 𝑦𝑡 are the modelled and monitored daily maximum indoor temperatures, �̅�𝑡 and �̅�𝑡 are 

the mean modelled and monitored daily maximum indoor temperatures over the entire summer 

period. RMSE is used to assess the mean deviation between the daily maximum temperature 

predicted by the model to that of the monitored data. RMSE is calculated using the following 

equation: 

 

𝑅𝑀𝑆𝐸 = √
∑ (𝑥𝑡 − 𝑦𝑡)2𝑛

𝑡=1

𝑛
 

 

with n, t,  𝑥𝑡 and 𝑦𝑡 defined as above. As there are too many dwellings for us to present the r and 

RMSE for each entry, we instead use four performance metrics to evaluate the model performance 



for dwelling types within regions: 

 

 �̅� and 𝑅𝑀𝑆𝐸̅̅ ̅̅ ̅̅ ̅̅ : the average r and RMSE across all dwellings of a certain type within a 

particular region. 

 𝑟𝜇 and 𝑅𝑀𝑆𝐸𝜇: the r and RMSE of the average maximum daily temperatures across 

dwellings of a certain type within a particular region.  

 

We use 𝑟𝜇 and 𝑅𝑀𝑆𝐸𝜇 to determine if a better model performance is observed when attempting to 

predict aggregated data from dwellings. The model performance was also evaluated as a function of 

the maximum external temperature (𝑇Ext
max). This was achieved by calculating �̅� and 𝑅𝑀𝑆𝐸̅̅ ̅̅ ̅̅ ̅̅  using 

modelled and monitored data from days where the external temperature at the regional weather 

station (described in section 2.2.1) exceeded certain thresholds. The external temperature threshold 

(𝑇Ext
max thresh.) was varied in the range 10-30 ºC in increments of 2 ºC.  

 

The models prediction of the mean of the maximum indoor temperature over the whole summer 

period was evaluated with respect to various characteristics of dwellings and their geographic 

location (GOR). Two tailed t-tests were used to test the statistical significance of the level of 

agreement between the modelled and monitored mean maximum temperatures (Mean 𝑇<Room>
max ). 

The null hypothesis being tested was that the means of the modelled and monitored daily maximum 

temperatures are equal. P-values were calculated to test the predictions of the models allowing the 

null hypothesis to be accepted or rejected at a certain level of statistical significance.  

 

3. Results 

 

3.1 Comparisons of daily maximum temperatures in living rooms 

 

Time-series comparisons between the modelled and monitored maximum daily temperatures for all 

dwellings in the dataset over the 2011 summer period (May-September) have been performed. The 

metrics (�̅�, 𝑅𝑀𝑆𝐸̅̅ ̅̅ ̅̅ ̅̅ , 𝑟𝜇 and 𝑅𝑀𝑆𝐸𝜇) described in section 2.3 were used to assess model performance. 

Table 4 gives all �̅�, 𝑅𝑀𝑆𝐸̅̅ ̅̅ ̅̅ ̅̅ , 𝑟𝜇 and 𝑅𝑀𝑆𝐸𝜇 values for the various dwelling types within each of the 

six modelled regions. The standard errors on the �̅� and 𝑅𝑀𝑆𝐸̅̅ ̅̅ ̅̅ ̅̅ , 𝜎�̅� and 𝜎𝑅𝑀𝑆𝐸̅̅ ̅̅ ̅̅ ̅̅ , defined as the 

standard deviation divided by the square root of number of dwellings, are also shown. The standard 

errors indicate the spread in the mean performance of the models. The �̅� and 𝑅𝑀𝑆𝐸̅̅ ̅̅ ̅̅ ̅̅  calculated 

across all dwellings within the dataset are 0.52 and 2.66 ºC, respectively. When comparing average 

daily temperatures across all dwellings by type within all regions, values of 0.82 and 1.37 ºC are 

achieved for 𝑟𝜇 and 𝑅𝑀𝑆𝐸𝜇, respectively. These values were found by finding the dwelling 

weighted average of the 𝑟𝜇 and 𝑅𝑀𝑆𝐸𝜇 values in Table 4. This indicates that an improvement in 

model performance can be achieved by grouping dwellings together by type for a particular region.  

 

When looking at particular dwelling types within regions, the lowest �̅� was observed for converted 

flats in the North East (0.24), whilst the highest is for high-rise flats in the North East (0.73). The 

highest 𝑅𝑀𝑆𝐸̅̅ ̅̅ ̅̅ ̅̅  is for bungalows in the North West (4.36 ºC), whilst the lowest is for low-rise flats in 

the South West (1.62 ºC). Figure 2(a-d) show some time-series comparisons of the monitored and 

modelled daily maximum living room temperatures for the best and worst performing models in 

terms of �̅� and 𝑅𝑀𝑆𝐸̅̅ ̅̅ ̅̅ ̅̅  with more than 10 dwellings. The median properties of these dwellings are 

given in Table A1. The modelled time-series were produced using the base-case occupancy 

behaviour defined in Table 3. The time-series distributions plot the mean of the EnergyPlus 

prediction and the EFUS data for particular dwelling types within each of the six regions. The 95% 

confidence intervals (CI) indicate a large spread in the modelled and monitored data. The 

confidence interval is, in general, slightly wider for the monitored than the modelled data. This 

could be due to the fact that variations within occupant behaviour and local climate are inherently 



accounted for in the data but are less so in models.  

 

The performance of EnergyPlus models was also evaluated as a function of the external 

temperature. Figure 3(a-d) show the relationship between the external temperature threshold and the 

mean of the maximum living room temperature on days where the external temperature threshold 

was exceeded, for the best and worst performing models (with more than 10 dwellings). �̅� and 

𝑅𝑀𝑆𝐸̅̅ ̅̅ ̅̅ ̅̅  are displayed at the bottom of the plot alongside the number of days on which external 

temperature thresholds were exceeded. The prediction of EnergyPlus models tend to diverge from 

the EFUS data at higher external temperatures with the modelled prediction overestimating internal 

temperatures. This is reflected in the �̅� and 𝑅𝑀𝑆𝐸̅̅ ̅̅ ̅̅ ̅̅  values.  

 

3.2 Statistical significance of mean maximum temperature predictions 

 

An evaluation of the statistical significance of the differences between EnergyPlus predictions and 

the EFUS data was performed using two tailed t-tests. These tests were able to determine whether 

the mean of the daily maximum temperatures predicted by the models is in agreement with the 

monitored data. P-values were calculated for EnergyPlus models categorised by dwelling type and 

by the GOR of the dwelling under base-case and the variations in simulated occupant window 

opening and electrical consumption behaviour shown in Table 3. Table 5 displays the p-values of 

the t-tests comparing the means of the simulation results produced by EnergyPlus and the 

counterpart EFUS data. The null hypothesis, that the two means are compatible with one another at 

the 95% confidence level, was accepted in four out of the eight base-case comparisons of living 

room temperatures. This indicates that some of the modelling assumptions may need refining. The 

models tend to perform worse when predicting bedroom temperatures, where only the high-rise flat, 

which is a relatively small sample of dwellings (9) can be accepted at the 95% confidence level.  

 

Figure 4 shows a box and tail plot comparing the mean maximum temperature for various dwelling 

types over the summer period in the living room simulated under base-case occupancy. The number 

of dwellings and the p-values are shown at the bottom of the plot. The results of both the 

monitoring and modelling seem to support previous findings (Beizaee et al., 2013), and suggest that 

higher average temperatures are observed in flats. Detached homes are observed to be least prone to 

higher average temperatures during the summer. Figure 5 shows a box and tail plot comparing 

modelled and monitored mean maximum temperatures across the nine GOR regions. The results 

indicate that, as expected, homes in London and the South East are most prone to overheating, 

whilst homes in the North and West are least prone to overheating. The p-values are shown at the 

bottom of the plot and indicate that models for six of the nine regions can be accepted at the 95% 

confidence level. Models for the North West, West Midlands, and South East fail to satisfy the null 

hypothesis at 95% confidence. This indicates that the weather stations used to model these regions 

are not representative of the average weather for the region in question. 

 

4. Discussion 

 

The use of rich monitored datasets such as EFUS provides an excellent opportunity to thoroughly 

evaluate the predictions made using the EnergyPlus building physics software. The direct validation 

of EnergyPlus (EP) simulations against monitored data is a challenging task. This has been 

demonstrated to a certain extent by the results of our analyses. Although we had a relatively large 

sample of dwellings (~800) we did not have all the relevant information on individual dwellings 

(e.g. orientation, occupancy behaviour, local weather information). This meant that we had to make 

assumptions on what some of the input parameters entering the EnergyPlus models should be. Past 

sensitivity analyses have shown that some of the missing information, such as occupancy 

behaviour, is important (Mavrogianni et al., 2014). This means that we are not in a position where 

we are able validate the model against monitored data for individual dwellings. We can however, 



achieve more valid predictions when modelling collectively for a groups of dwelling types or those 

in the same geographic region. Naturally, this resulted on occasions in large CIs. Although the 

central estimates of the EnergyPlus simulations were mostly within the respective CIs, this poses 

some difficulty in interpreting the goodness of the model in situations with large CIs. 

 

Pearson’s correlation coefficients, RMSEs, and t-tests have been used to evaluate the performance 

of model at predicting maximum indoor temperatures. The mean correlation, �̅�, between the daily 

maximum living room temperature predicted by EnergyPlus and that in the monitored EFUS dataset 

averaged across all dwellings was 0.52. The 𝑅𝑀𝑆𝐸̅̅ ̅̅ ̅̅ ̅̅  between the modelled and monitored data for 

all dwellings was found to be 2.66 ºC with the performance getting worse on days when external 

temperatures were higher. The results highlight the difficulties in predicting maximum temperatures 

for individual dwellings. An improved prediction can be made when estimating the average of the 

maximum indoor temperature for groups of dwelling types within particular regions. In this case it 

was possible to achieve a correlation of 0.82 and RMSE of 1.37 ºC. These values were calculated by 

taking the dwelling weighted averages of 𝑟𝜇 and 𝑅𝑀𝑆𝐸𝜇 from Table 4. This suggests that in 68.2% 

of cases (since RMSE represents one standard deviation), we are able to predict the average 

maximum indoor temperature for a given dwelling type in a region to within approximately ±6%.  

 

Figure 4 shows that a modest agreement between the modelled and the monitored data is observed 

for the various types of built form. Some improvements in the agreement between data 

measurements and simulation were observed when using an alternative occupant variation from the 

base-case for some of the dwelling types. The statistical significance hypothesis tests suggest that 

occupant behaviour may have a strong influence on the agreements between simulations and 

measurements. This could reflect adaptive occupant behaviour adopted to prevent high temperatures 

in more overheating-prone dwelling types. It may also be easier to keep windows open for longer in 

some dwelling types such as high-rise flats without security fears. The box plots also show that the 

simulated variance in indoor temperatures is less than those in the monitored data. This can be 

explained by the fact that occupant behaviour and environmental factors such as building shading 

and the UHI are being held constant in models. 

 

The models were seen to perform poorly for bedrooms, which suggests that occupancy schedules 

need revising. Occupants may, for example, spend more time in bedrooms or open windows 

differently to what is currently modelled and hence occupant behaviour, in this regard, may be 

having more influence on the indoor temperature. Figure 3 indicated that the models perform less 

well at high external temperatures. This could be explained by occupants making preventative 

measures which are not modelled, such as leaving doors and windows open for longer or keeping 

curtains closed. Due to the complexity of deriving regional climate files, some GOR regions were 

combined. The weather data used in simulations was generally taken from rural areas such as air 

fields rather than urban areas, and therefore do not include temperature increments due to the Urban 

Heat Island (UHI). The weather stations chosen may not be representative of the locations of the 

dwellings in that particular region. The lack of information about the EFUS dwelling locations 

makes this assumption hard to test.  

 

The differences between the predictions of EnergyPlus and the EFUS indoor temperature 

measurements can be explained by several factors including 1) a lack of information on building 

occupant behaviour, 2) the simulated regional climates used in the EnergyPlus models differing 

from the actual local climates to which the monitored dwellings are exposed, 3) a lack of 

information about local shading, surrounding terrain, or building orientation in the EFUS/EHS 

datasets, 4) the uncertainty in the model inputs including inferred building characteristics calculated 

using SAP (Francis et al., 2014), and 5) biases and uncertainties which may be present in the 

monitored EFUS data, for example due to sensor exposure to radiation heat transfer. The models are 

able to account for variations in some occupant behaviours, such as temperature thresholds for 



window-opening, and the internal gains produced by electrical equipment. However, other 

important behavioural-related variables that may contribute to internal gains, such as cooking 

schedules, were held constant in the simulations. 

 

Future work will focus on improving model performance. We are seeking to gain secure access to 

the EHS which will enable us to locate dwellings more precisely. This will allow more localised 

weather to be used in the models. A metamodelling framework has been developed by Symonds et 

al. (2016) based on EnergyPlus outputs, which enables overheating estimates to be rapidly 

calculated for individual dwellings. This framework will be used to optimise the input variables for 

individual buildings, to enable model calibration. The metamodel will also help to quantify the 

uncertainties in the building fabric characteristics, such as U-values and permeability, of the 

surveyed EHS dwellings and also to investigate the association between built forms and occupant 

behaviours. Different ranges and distributions of occupant behaviour could also be tested for 

particular dwelling and household types. Future EnergyPlus validation work could also incorporate 

energy measurements made as part of EFUS.  

 

In the absence of making dedicated measurements (which are very costly) whose purpose is to 

validate large scale housing models such as EnergyPlus, researchers will always be confronted with 

using data whose purpose was not to validate their models. Nevertheless, the existence of such large 

datasets has provided us with the opportunity to evaluate the performance of EnergyPlus models at 

the building stock level at a scale not previously seen before.  

 

5. Conclusion 

 

In this paper, the results of building simulations carried out using EnergyPlus were compared to 

temperature data recorded in 823 homes over the summer of 2011. Six regional climates within 

England were modelled using weather data compiled from MIDAS weather stations. The model 

prediction of the maximum daily temperatures within individual dwellings correlated to the data at a 

level of about 0.5 with an average RMSE of 2.66 ºC found. When modelling daily maximum 

temperatures across aggregate dwellings within particular regions the performance improved by 

nearly a factor of two, with 0.82 and 1.37 ºC calculated for 𝑟𝜇 and 𝑅𝑀𝑆𝐸𝜇, respectively. The results 

of the statistical hypothesis tests against model predictions, indicate that some of the modelling 

assumptions may need modifying. Particularly in bedrooms and in relation to occupant behaviour 

and local weather conditions. The availability of the large scale EFUS dataset has allowed a 

thorough evaluation of the performance of the models against empirical data. The large number 

unknowns relating to building characteristics, occupants and local climate makes it difficult to draw 

concrete conclusions about which model assumptions are right and which are wrong. This 

emphasises the need for further research into the tuning and uncertainty analysis of model inputs 

and assumptions using a metamodeling technique.  
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  Number of 

households 

% of total 

households 

House type Detached 143 17 

Semi-detached 244 30 

Mid-terrace 124 15 

End-terrace 83 10 

Bungalow 101 12 

Converted Flat 15 2 

Low-rise Flat 103 13 

High-rise Flat 10 1 

Government 

Office 

Region 

(GOR) 

North East 57 7 

North West 130 15 

Yorkshire and Humber 106 13 

East Midlands 79 9 

West Midlands 71 9 

East of England 112 14 

Greater London 62 8 



South East 125 15 

South West 81 10 

Surrounding 

environment 

City: population > 10k 639 78 

Urban: town, fringe or 

village 

160 19 

Rural: hamlet and 

isolated dwellings 

24 3 

Household 

type 

Couple, no dependent 

child(ren) 

319 39 

Couple with dependent 

child(ren) 

179 22 

Lone parent with 

dependent child(ren) 

45 5 

Other multi-person 

households 

40 5 

One person under 60 94 11 

One person aged 60 or 

over 

146 18 

Table 1 – Characteristics of the dwelling types, building locations and occupants within the Energy 

Follow-Up Survey (EFUS) dataset. 

 

Region Abbrev. Weather data used 

North East 

and Yorkshire 

and Humber 

NE Bramham in West Yorkshire was used for all weather data except 

cloud cover, visibility and atmospheric pressure where the Bingley 

weather station was used. 

 

North West NW Ringway weather station at Manchester airport was used for 

weather observations. Hulme Library in Greater Manchester was 

used for solar and precipitation observations.  

East Midlands 

and East of 

England 

EM Wittering Airfield, Cambridgeshire was used for all weather 

observations. 

West 

Midlands 

WM The University of Birmingham weather station in Winterbourne 

was used for all observations except cloud cover, visibility, 

atmospheric pressure, and wind speed and direction where 

Birmingham Airport was used. 

South East 

and Greater 

London 

SE Kenley Airfield, Greater London was used for all weather 

observations. 

South West SW Dunkeswell Airfield, Devon was used for all weather except solar 

and precipitation observations where Exeter airport was used. 

Table 2 – Summary of weather data obtained from the Met Office Integrated Data Archive System 

(MIDAS) used to create the weather files used in EnergyPlus simulations. 

 

 

 Symbol Unit Base-

case 

Upward 

variation 

Downward 

variation 

Annual electrical 

appliance energy 

consumption  

𝐸use MWh 4 8 2  



Window opening 

temperature threshold  

𝑊open ºC 22  26 18  

Table 3 – Base-case occupancy behaviour for modelled annual electrical energy consumption and 

window opening threshold. Upward and downward variations (relative to the base-case) in 

window opening and electrical appliance usage were also modelled for all dwellings. The 

window opening temperature threshold relates to the temperature within the room at which 

windows are opened. 

  

Built Form Region N �̅� 𝝈�̅� 𝑹𝑴𝑺𝑬̅̅ ̅̅ ̅̅ ̅̅ ̅ 𝝈𝑹𝑴𝑺𝑬̅̅ ̅̅ ̅̅ ̅̅ ̅ 𝒓𝝁  𝑹𝑴𝑺𝑬𝝁 

Terrace 

 

NW 32 0.36 0.06 3.31 0.26 0.78 1.74 

NE 35 0.42 0.05 3.37 0.3 0.85 1.39 

WM 13 0.45 0.07 3.39 0.47 0.8 1.4 

EM 37 0.53 0.03 2.28 0.19 0.86 0.83 

SE 43 0.52 0.03 2.63 0.19 0.8 1.32 

SW 17 0.49 0.05 2.37 0.21 0.7 1.51 

Semi-detached 

 

NW 49 0.53 0.04 2.82 0.19 0.86 1.73 

NE 50 0.47 0.04 2.71 0.16 0.86 1.23 

WM 29 0.56 0.04 2.31 0.17 0.87 0.94 

EM 53 0.57 0.03 2.34 0.15 0.86 1.24 

SE 37 0.59 0.03 2.66 0.24 0.86 1.3 

SW 14 0.58 0.06 2.89 0.33 0.83 1.07 

Detached 

 

NW 12 0.43 0.09 2.66 0.24 0.81 1.85 

NE 21 0.57 0.04 2.8 0.29 0.84 1.42 

WM 13 0.52 0.04 2.86 0.24 0.83 1.58 

EM 40 0.64 0.03 2.4 0.16 0.89 1.09 

SE 33 0.62 0.03 2.81 0.21 0.85 1.29 

SW 20 0.55 0.05 2.33 0.17 0.87 1.43 

Bungalow NW 12 0.42 0.09 4.36 0.91 0.77 3.41 

NE 21 0.56 0.04 2.26 0.2 0.88 0.77 

WM 3 0.6 0.02 2.55 0.53 0.74 2.38 

EM 37 0.54 0.03 2.47 0.19 0.8 1.57 

SE 14 0.61 0.03 2.65 0.32 0.83 1.67 

SW 10 0.61 0.04 2.51 0.47 0.8 2.03 

Converted Flat NW 2 0.5 0.14 2.22 0.49 0.6 1.95 

NE 3 0.24 0.18 3.95 1.5 0.43 2.75 

WM 2 0.52 0.05 1.85 0.33 0.48 2.1 

SE 8 0.47 0.06 2.72 0.43 0.74 2.39 

Low-rise Flat NW 13 0.41 0.06 2.85 0.46 0.77 1.37 

NE 22 0.47 0.05 2.42 0.2 0.86 0.98 

WM 6 0.53 0.05 2.35 0.4 0.75 1.28 

EM 13 0.59 0.06 1.95 0.3 0.87 0.94 

SE 34 0.49 0.03 2.72 0.23 0.78 1.02 

SW 10 0.53 0.05 1.62 0.17 0.77 0.67 

High-rise Flat NW 2 0.7 0.02 2.73 0.55 0.75 2.5 

NE 3 0.73 0.06 3 0.62 0.81 1.83 

SE 4 0.41 0.05 3.13 0.35 0.67 2.42 

Table 4 – Pearson correlation coefficients (�̅�) and Root Mean Square Errors (RMSE̅̅ ̅̅ ̅̅ ̅̅ ) for maximum 

daily living room temperatures predicted by EnergyPlus models to the EFUS data. The results 

presented above are averages across the number of dwellings (i.e. sample size) shown in 

column, N.  The standard error for both (�̅�) and 𝑅𝑀𝑆𝐸̅̅ ̅̅ ̅̅ ̅̅  are also presented to indicate the range 



in the model performance. We also present 𝑟𝜇 and 𝑅𝑀𝑆𝐸𝜇 which indicate the performance of 

the model when the mean maximum temperatures are averaged across dwelling types within 

regions. 

 

  p-values 

Built form Room Base-

case 
𝐸use

up
 𝐸use

down 𝑊open
up

 𝑊open
down 

Semi-

detached 

Bedroom <0.001 <0.001 <0.001 <0.001 <0.001 

Living 

room 

<0.001 <0.001 <0.001 <0.001 <0.001 

Detached Bedroom 0.001 <0.001 0.002 <0.001 <0.001 

Living 

room 

0.574 0.27 0.151 0.186 <0.001 

Bungalow Bedroom <0.001 <0.001 <0.001 <0.001 0.002 

Living 

room 

<0.001 <0.001 0.001 <0.001 0.003 

Mid-

terrace 

Bedroom <0.001 <0.001 <0.001 <0.001 0.343 

Living 

room 

0.024 <0.001 0.064 <0.001 <0.001 

End-

terrace 

Bedroom 0.026 0.005 0.09 <0.001 <0.001 

Living 

room 

0.78 0.067 0.4 0.013 <0.001 

Low-rise 

flat 

Bedroom <0.001 <0.001 <0.001 <0.001 <0.001 

Living 

room 

0.932 0.176 0.364 <0.001 <0.001 

Converted 

flat 

Bedroom 0.013 0.008 0.017 0.003 0.684 

Living 

room 

0.01 0.002 0.027 <0.001 0.998 

High-rise 

flat 

Bedroom 0.592 0.713 0.531 0.895 0.083 

Living 

room 

0.852 0.585 0.999 0.432 0.406 

Table 5 – P-value results from the independent two sample t-tests between EFUS data and the 

EnergyPlus prediction of the mean maximum daily temperatures over the 2011 summer (May-

Sept). Results are shown for the living room and bedroom. T-tests assumed non-equal variances 

between the two data samples. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

Appendices 



Region Built Form  Wall 

type 

N Wall 

U-value 

(W/m2/K) 

Roof U-

value 

(W/m2/K) 

Window 

U-value 

(W/m2/K) 

Floor U-

value 

(W/m2/K) 

Perme-

ability 

(m3/m2/s) 

Glazing 

Fraction 

Ceiling 

height 

(m) 

Useable 

Floor 

Area 

(m2) 

SW 

 

Lowrise Cavity 10 0.64 2.3 2.76 0.23 10.05 0.25 2.3 47.51 

Lowrise Solid 1 1.14 2.3 2.76 1.23 8.18 0.34 2 55.96 

Semi Cavity 12 0.5 0.22 2.76 0.73 16.05 0.2 2.4 81.5 

Semi Solid 3 2.1 0.28 4.03 0.72 21.06 0.29 2 130.73 

Bungalow Cavity 8 0.5 0.36 2.76 0.65 10.81 0.22 2.4 88.19 

Bungalow Solid 2 0.36 0.23 2.76 0.76 12.44 0.26 2.3 61.66 

Terrace Cavity 15 0.64 0.28 2.76 0.69 14.87 0.3 2.4 68.79 

Terrace Solid 7 2.1 0.5 2.76 0.68 16.93 0.23 2.4 90.62 

Detached Cavity 18 0.5 0.33 2.76 0.78 17.45 0.2 2.3 138.2 

Detached Solid 5 2.1 0.39 2.76 0.81 18.03 0.17 2 128.6 

WM 

 

Lowrise Cavity 5 0.64 0.39 2.76 0 10.02 0.22 2.3 50.79 

Lowrise Solid 1 2 2.3 2.76 0.95 9.3 0.2 2.3 57.91 

Semi Cavity 16 0.5 0.28 2.76 0.7 17.42 0.28 2.4 80.01 

Semi Solid 14 2.1 0.2 2.76 0.73 16.46 0.22 2.4 78.97 

ConvertedFlat Solid 2 2.1 2.3 3.39 0.41 13.69 0.15 2.65 37.39 

Bungalow Cavity 3 0.5 0.22 2.76 0.68 13.03 0.2 2.4 55.96 

Terrace Cavity 9 0.5 0.39 2.76 0.69 16.32 0.23 2.4 70.82 

Terrace Solid 8 2.1 0.33 2.76 0.75 18.04 0.29 2.45 76 

Detached Cavity 11 0.5 0.33 2.76 0.73 17.91 0.2 2.4 133.34 

Detached Solid 2 1.31 0.36 3.39 0.78 15.43 0.13 2.25 119.35 

SE Lowrise Cavity 33 0.5 2.3 2.76 0 10.74 0.31 2.4 45.86 

Lowrise Solid 4 2.05 2.3 2.76 0 13.41 0.34 2.45 67.17 

Semi Cavity 29 1.6 0.33 2.76 0.71 16.52 0.26 2.4 88.97 

Semi Solid 10 2.1 0.39 2.76 0.74 18.72 0.27 2.65 108.44 

ConvertedFlat Cavity 2 1.3 2.3 2.76 0.72 9.69 0.25 2.4 51.81 

ConvertedFlat Solid 6 2.1 2.3 4.03 0.63 10.85 0.19 2.6 60.71 

Bungalow Cavity 12 0.5 0.39 2.76 0.65 12.54 0.28 2.4 85.3 

Bungalow Solid 3 1.73 0.46 2.76 0.61 10.87 0.31 2.4 73.88 

Terrace Cavity 29 0.64 0.39 2.76 0.61 15.53 0.33 2.4 77.19 

Terrace Solid 22 2.1 0.39 2.76 0.62 17.97 0.29 2.6 91.66 

Detached Cavity 30 0.5 0.28 2.76 0.75 19.38 0.21 2.4 153.67 

Detached Solid 3 2.1 0.39 2.76 0.79 30 0.18 2.4 257.06 

Highrise Cavity 1 1.6 2.3 2.76 0 16.86 0.29 2.4 53.72 

Highrise Solid 3 1.74 2.3 2.76 0 18.36 0.32 2.4 51.12 

EM Lowrise Cavity 12 0.5 0.86 2.76 0 9.57 0.21 2.3 46.53 

Lowrise Solid 1 0.42 0.24 2.76 0 18.17 0.46 2.4 64.56 

Semi Cavity 33 0.5 0.39 2.76 0.74 16.36 0.25 2.4 85.43 

Semi Solid 22 2.1 0.39 2.76 0.74 16.99 0.27 2.5 88.11 

Bungalow Cavity 33 0.5 0.28 2.76 0.65 11.45 0.23 2.4 61.94 

Bungalow Solid 6 1.64 1.04 2.76 0.78 10.91 0.22 2.35 60.45 

Terrace Cavity 28 0.5 0.28 2.76 0.68 15.47 0.23 2.3 75.75 

Terrace Solid 15 2.1 0.33 2.76 0.74 15.73 0.29 2.6 66.96 

Detached Cavity 30 0.46 0.36 2.76 0.75 17.96 0.2 2.3 134.1 

Detached Solid 10 2.1 0.39 3.39 0.79 20.28 0.21 2.3 130.13 

Highrise Solid 1 2.1 2.3 4.03 0 13.69 0.25 2.6 43.93 

NE Lowrise Cavity 21 0.5 2.3 2.76 0 10.27 0.23 2.4 50.22 

Lowrise Solid 1 2.1 2.3 2.76 0.46 9.47 0.25 2.5 57.21 

Semi Cavity 46 0.5 0.33 2.76 0.72 17.02 0.24 2.4 88.83 

Semi Solid 6 2.05 0.45 2.76 0.72 17.22 0.26 2.45 108.44 

ConvertedFlat Solid 3 2.1 2.3 4.03 0 15.12 0.25 2.6 53.24 

Bungalow Cavity 22 0.5 0.22 2.76 0.66 11.53 0.19 2.4 70.91 

Terrace Cavity 25 0.5 0.28 2.76 0.61 15.97 0.25 2.4 71.32 

Terrace Solid 15 2.1 0.33 2.76 0.58 18.13 0.29 2.7 75.77 

Detached Cavity 21 0.42 0.22 2.76 0.76 18.41 0.19 2.4 136.73 

Highrise Cavity 2 1.05 2.3 2.76 0 16.4 0.29 2.35 54.83 



Table A1 – Median building characteristics for the dwelling types within particular regions for the 

full dataset of 823 dwellings. 

 

 

Highrise Solid 1 1.73 1.46 2.76 0 17.06 NA 2.3 56.58 

NW Lowrise Cavity 13 0.5 2.3 2.76 0 10.26 0.27 2.3 60.26 

Lowrise Solid 1 1.73 2.3 2.76 0.68 8.85 0.12 2.3 43.01 

Semi Cavity 46 0.5 0.33 2.76 0.72 16.43 0.26 2.45 84.44 

Semi Solid 7 2.1 0.5 2.76 0.72 17.12 0.32 2.6 99.93 

Converted 

Flat 

Cavity 2 1.3 1.4 2.76 0.35 10.73 0.22 2.6 54.93 

Bungalow Cavity 12 0.5 0.22 2.76 0.68 11.07 0.19 2.4 74.28 

Terrace Cavity 21 0.5 0.28 2.76 0.62 16.65 0.37 2.5 80.73 

Terrace Solid 13 2.1 0.28 2.76 0.59 16.28 0.29 2.7 78.54 

Detached Cavity 10 0.46 0.25 2.76 0.79 17.49 0.19 2.4 121.47 

Detached Solid 3 2.1 0.39 2.76 0.84 23.04 0.16 2.5 136.41 

Highrise Cavity 2 1.6 2.3 2.76 0 15.97 0.2 2.35 48.13 


