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Abstract

Background

Both positive and negative associations between higher body mass index (BMI) and Parkin-

son disease (PD) have been reported in observational studies, but it has been difficult to

establish causality because of the possibility of residual confounding or reverse causation.

To our knowledge, Mendelian randomisation (MR)—the use of genetic instrumental vari-

ables (IVs) to explore causal effects—has not previously been used to test the effect of BMI

on PD.

Methods and findings

Two-sample MR was undertaken using genome-wide association (GWA) study data. The

associations between the genetic instruments and BMI were obtained from the GIANT con-

sortium and consisted of the per-allele difference in mean BMI for 77 independent variants

that reached genome-wide significance. The per-allele difference in log-odds of PD for each

of these variants was estimated from a recent meta-analysis, which included 13,708 cases

of PD and 95,282 controls. The inverse-variance weighted method was used to estimate a

pooled odds ratio (OR) for the effect of a 5-kg/m2 higher BMI on PD. Evidence of directional

pleiotropy averaged across all variants was sought using MR–Egger regression. Frailty
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simulations were used to assess whether causal associations were affected by mortality

selection.

A combined genetic IV expected to confer a lifetime exposure of 5-kg/m2 higher BMI was

associated with a lower risk of PD (OR 0.82, 95% CI 0.69–0.98). MR–Egger regression

gave similar results, suggesting that directional pleiotropy was unlikely to be biasing the

result (intercept 0.002; p = 0.654). However, the apparent protective influence of higher BMI

could be at least partially induced by survival bias in the PD GWA study, as demonstrated

by frailty simulations. Other important limitations of this application of MR include the inability

to analyse non-linear associations, to undertake subgroup analyses, and to gain mechanis-

tic insights.

Conclusions

In this large study using two-sample MR, we found that variants known to influence BMI had

effects on PD in a manner consistent with higher BMI leading to lower risk of PD. The mech-

anism underlying this apparent protective effect warrants further study.

Author summary

Why was this study done?

• There have been a number of conflicting observational studies describing associations

between higher body mass index (BMI) and the future risk of Parkinson disease (PD).

The most recent meta-analysis of cohort studies suggested that, overall, there was no

effect.

• Observational studies have limitations, such that causal associations may not be reliably

ascertained.

• This is the first time, to our knowledge, Mendelian randomisation has been used to

study a potential causal association between genetically determined higher BMI and risk

of PD.

What did the researchers do and find?

• We used two-sample Mendelian randomisation, in which the relationship between

genetic variants and BMI was ascertained from one study, and the relationship between

the same genetic variants and PD was ascertained from a second study. Using this

method, one can determine the estimated change in risk of PD per unit change in BMI.

• Our analysis indicated a potential causal influence of higher BMI protecting against PD.

• A limitation of the approach is that individuals who have higher BMI have a higher risk

of earlier mortality, and therefore individuals with lower BMI may be over-represented

amongst individuals diagnosed with PD. This “frailty effect” could at least partially

account for the estimated causal effect.

Mendelian randomisation of BMI and Parkinson disease
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What do these findings mean?

• Further investigation, including exploring potential mechanisms, is warranted.

• Although our results suggest that higher BMI is potentially protective against PD, the

negative health impacts of raising BMI are likely to be significant, and should be taken

into account.

Introduction

The risk of many disease outcomes increases as body mass index (BMI) increases, including

cardiovascular disease and cancer [1]. Low BMI has also been associated with excess mortality

(e.g., due to lung disease), but it is unknown whether these relationships are causal [1,2].

Parkinson disease (PD) is the second most common neurodegenerative disease worldwide

[3]. The population burden is increasing for PD, relative to other diseases, even after popula-

tion ageing is taken into account, and there is no cure [4]. A wide range of potential risk factors

for PD have been described, mainly in observational studies [5,6].

The role of BMI in risk of PD is unclear, with observational studies providing conflicting

results. A meta-analysis of case–control studies found significantly lower BMI in patients with

PD compared with controls, but reverse causality could explain these findings (i.e., weight loss

as a result of PD) [7]. A nested case–control study suggested that weight loss may precede

the clinical diagnosis of PD [8]. Other studies have found negative associations between BMI

and PD, some have found apparent null associations, and one has found a positive association

[9–12].

Ten cohort studies were recently meta-analysed, and the pooled odds ratio (OR) for the

association of a 5-kg/m2 higher BMI with risk of PD was 1.00 (95% 0.89–1.12) [13]. However,

there was substantial heterogeneity between studies (I2 = 65%; p = 0.003), and individual stud-

ies may have been affected by residual confounding, bias, and, again, reverse causality (the

latter can occur even in cohort studies, because PD has a long prodromal phase prior to

diagnosis).

Mendelian randomisation (MR) is an instrumental variable (IV)–based method to infer

causality in observational studies [14]. Gene variants that are associated with intermediate phe-

notypes or environmental exposures can be used as IVs to estimate the effect of the exposure

on a disease outcome (see Fig 1). Random assortment of gene variants during gametogenesis

means that potential confounding factors (observed and unobserved) are more likely to be

evenly distributed, and the effect estimate that results from IV analysis is likely to be free from

residual confounding and reverse causality. Given the difficulties in identifying causal risk fac-

tors for PD, MR has great potential to advance aetiological knowledge and identify putative

therapeutic targets [15]. Methods are evolving rapidly as more in silico datasets become avail-

able in the form of extensive genetic data for a huge range of phenotypes and outcomes. Two-

sample MR involves measuring variant–exposure associations in one dataset and variant–out-

come associations in a second [16]. However, MR relies on certain assumptions:

1. The IV is robustly associated with the exposure of interest. This assumption can be

checked by calculating an F statistic and R2 value. The IV may explain only a tiny amount

of variance in the exposure (R2), and therefore studies often have to be large. As a result of

genome-wide association (GWA) studies, there are increasing numbers of genetic variants

Mendelian randomisation of BMI and Parkinson disease
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that account for the variance in a range of exposures and outcomes, allowing instruments

of greater strength to be constructed.

2. The IV is independent of known confounders. In MR studies that have individual-level

data, one can check for known confounders and compare the frequency of these between

the two levels of the IV. In two-sample MR, the absence of individual-level data about

potential confounders can hamper the ability to test this assumption.

3. The IV is independent of the outcome, given the exposure and confounders. In other

words, there must be no alternative path, other than via the exposure, that the IV influences

the outcome. This is known as the exclusion restriction criterion. One situation that violates

this assumption is horizontal pleiotropy, in which there are alternative pathways through

which the IV affects the outcome.

Here we describe the use of two-sample MR to estimate the causal association between

genetically conferred variance in BMI and risk of PD.

Methods

Two-sample MR was undertaken using GWA study data. Ethical approval was not sought for

this specific project because all data came from the summary statistics of published GWA stud-

ies, and no individual-level data were used.

Genetic variant instruments for body mass index

SNPs from the largest GWA study of BMI to date were identified from the 2015 summary sta-

tistic files from the GIANT (Genetic Investigation of Anthropometric Traits) consortium

(http://portals.broadinstitute.org/collaboration/giant/index.php/GIANT_consortium) [17].

Data on major and minor alleles for each SNP (after imputation, 2,554,637 variants in 339,224

individuals of European descent), along with allele frequencies, beta coefficients for allele dose

and 5-kg/m2 change in BMI (i.e., the change in BMI on a 5-kg/m2 scale per effect allele), p-val-

ues, and standard errors (SEs) were extracted.

Fig 1. Directed acyclic graph of instrumental variable analysis using genetic variants as proxies for

environmental exposures (adapted from Lawlor et al. [14]). Genetic variants (Z) associated with an

exposure such as BMI (X) can be used as proxies to determine the effect of the exposure (X) on the outcome

(Y). The three IV assumptions are indicated by arrows or the absence of arrows: (1) the IV in this schematic

(FTO gene variant) is robustly associated with the exposure; (2) the IV is not associated with confounding

factors (C); and (3) there is no alternative way that the IV affects the outcome other than via the exposure.

BMI, body mass index; IV, instrumental variable; PD, Parkinson disease.

https://doi.org/10.1371/journal.pmed.1002314.g001
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This large number of variants was “clumped” to obtain a set of index SNPs that were inde-

pendent of each other and associated with BMI at the genome-wide significance level (i.e., p-

value < 5 × 10−8). Index SNPs were identified by ranking BMI associations from the smallest

to largest p-value (but still with a cutoff value of p = 5 × 10−8). Clumped SNPs were those in

linkage disequilibrium (LD) with index SNPs (R2 threshold of 0.001) or within 10,000 kb phys-

ical distance, based on a reference dataset (1000 Genomes Project; http://www.

internationalgenome.org/). Hence, each index SNP represented a number of clumped SNPs

that were all associated with or near to the index SNP, and the index SNPs were all indepen-

dent of one another (according to the parameters defined here). Independence of index SNPs

is important because bias can be introduced if there is LD between them and can result to

over-precise estimates in subsequent analysis. Standard code for clumping is available on the

PLINK website (http://zzz.bwh.harvard.edu/plink/clump.shtml), and further information is

provided in S1 Appendix.

After clumping, there were 78 independent SNPs that were associated with BMI (p< 5 ×
10−8), and together these explained 2.2% of the variance in BMI (R2 = 0.022), as calculated

from the summary files from the GIANT consortium [17]. To test the statistical significance of

the association of the instrument with BMI, an F statistic was calculated using the following

formula, where k is the number of variants and n is the sample size:

F ¼
R2ðn � 1 � kÞ
ð1 � R2Þ � k

Association of body mass index genetic variants with Parkinson disease

PD genotyping data were from the most recent meta-analysis of GWA studies in PD, which

related 7,782,514 genetic variants (after imputation) to PD, in up to 13,708 PD cases and

95,282 controls from 15 independent GWA datasets of individuals of European descent; the

meta-analysis was undertaken by the International Parkinson Disease Genomics Consortium

(IPDGC; http://pdgenetics.org/) [18]. We extracted the per-allele log-OR of PD together with

its SE for each of the independent, genome-wide significant BMI SNPs identified from the

GIANT consortium. It was possible to do this for 76 of the 78 BMI SNPs; for one SNP

(rs1016287) a suitable proxy in high LD was available (rs887912; R2 = 1.0), but for another

SNP (rs2245368), no suitable proxy (with R2 > 0.9) could be found, leaving 77 variants avail-

able for IV analysis. Three SNPs (rs1558902, rs17001654, and rs4256980) were palindromic,

resulting in potential strand ambiguity. Allele frequencies for these were compared between

the BMI and PD datasets to ensure that effect estimates were recorded with respect to the same

effect allele.

Two-sample Mendelian randomisation methods

Two-sample MR was undertaken using previously described methods and as summarised

below [19,20]. Wald ratios (βIV) were calculated for each of the 77 SNPs by dividing the per-

allele log-OR of PD (βZY) by the per-allele difference in mean BMI for each SNP (βZX):

bIV ¼ bZY=bZX

95% confidence intervals (95% CIs) were calculated from the SE of each Wald ratio, which

was derived from the SE of the variant–outcome association divided by the variant–exposure

association. Conventional linear regression analysis of the variant–exposure association and

variant–outcome association for each instrument was undertaken and weighted by inverse

Mendelian randomisation of BMI and Parkinson disease
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variance. The regression was constrained to pass through the origin, which forces the assump-

tion that when the exposure has a value of zero, the outcome is also zero. This is known as the

inverse-variance weighted (IVW) method, and the point estimate is equal to that derived from

fixed-effect meta-analysis. The IVW method assumes that all variants are valid IVs.

Individual Wald ratios and 95% CIs were compiled in a forest plot. Heterogeneity in Wald

ratios was tested using Cochran’s Q and quantified using the I2 test. A “leave one out” sensitiv-

ity analysis was undertaken to identify variants with disproportionate effects, again using the

IVW method.

To establish that violations of the third assumption of IV analysis were not biasing the esti-

mate of the causal association (i.e., that there was not an aggregate unbalanced horizontal

pleiotropic effect), MR–Egger regression was used. MR–Egger regression is similar to IVW

regression, except that the intercept is not constrained to pass through the origin [20]. Sub-

stantial heterogeneity in the IVW estimate indicates that alternative pathways may exist from

some of the SNPs to the outcome (known as horizontal pleiotropy), but this does not necessar-

ily bias the estimate. However, a non-zero intercept from the MR–Egger regression suggests

that pleiotropic effects tend to be in the direction of the intercept term, which will bias IVW

estimates. A statistical hypothesis test can be performed to see if there is evidence of the inter-

cept being different from zero, indicating overall unbalanced pleiotropy. The slope of the MR–

Egger regression provides the estimate of the effect of BMI on PD when the third assumption

is relaxed. The estimate is correct providing an additional assumption holds, the InSIDE

(instrument strength independent of direct effect) assumption. This assumption states that the

associations between genetic variants and the exposure are independent of the direct effects of

the variants on the outcome [20].

In the absence of unbalanced pleiotropy, the IV estimates for individual SNPs ought to be

symmetrically distributed around the point estimate, which, if centred on the IVW estimate,

suggests that the result is not systematically biased. This can be demonstrated using a funnel

plot of the individual variant effects plotted against the inverse of their SE.

We also repeated the IVW and MR–Egger analyses using the original 97 independent vari-

ants reported by the GIANT consortium (i.e., without the clumping step described above)

[17]. Similar to the analyses with the 77 clumped variants, two variants were not available in

the IPDGC data. The same proxy was used for one, and no proxy was found for the other, leav-

ing 96 variants in the instrument.

Power calculations were undertaken using the proportion of variance in BMI explained by

the 77 independent SNPs (R2 = 0.022) and the methods described by Brion and colleagues

[21]. There was 92% power to detect a relative 20% difference in PD risk for a 5-kg/m2 differ-

ence in BMI (i.e., an OR of at least 0.80 or 1.20) in the IPDGC cases and controls with an alpha

of 5% (p-value� 0.05). Power reduced to 38% to detect a relative difference in risk of 10%.

These power calculations assumed no heterogeneity.

Frailty analysis

Studies of disorders that are strongly influenced by age (such as neurodegenerative disease)

may be prone to bias if selective mortality has occurred [22]. For example, if people with high

BMI died prematurely before being diagnosed with PD, then bias could occur because individ-

uals with lower BMI live longer, resulting in a greater risk of being diagnosed with PD. Such

an induced association would not reflect any biological link between BMI and PD. We per-

formed simulations to estimate the likely effect that our MR analysis would show due to sur-

vival bias, assuming that BMI was not related to PD. The objective was to see if the likely

magnitude of the survival bias was large enough to explain the MR results estimated from the

Mendelian randomisation of BMI and Parkinson disease
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real data. We performed simulations where a large sample (n = 500,000) was generated with

data on BMI, SNPs influencing BMI, age, mortality status, and PD status. The variables were

related using the following model:

1. Individuals were randomly assigned genotypes for each of 77 SNPs, with allele frequencies

corresponding those in the MR analysis.

2. BMI values for each individual were simulated using their genotype values and the effect

size (in standard deviation units) of each SNP, and a random value to create a population

variance of one.

3. An age variable was generated for all individuals to match the distribution of ages in the PD

meta-analysis.

4. Alive/dead status was simulated for individuals as a function of their age and BMI. Baseline

age-related mortality rates and mortality rates for varying BMI levels were obtained from

Davey Smith and colleagues [2]. These were used to generate a Gompertz–Makeham mor-

tality curve, and individuals had their alive/dead status sampled as a function of the proba-

bility of death due to the survival curve.

5. PD status was simulated as a function of age-related diagnosis rates obtained from Driver

et al. [23]; therefore, PD status was a function of age only, and unrelated to BMI level.

6. A subset of 13,708 simulated individuals with PD and 95,282 without PD, all of whom sur-

vived the mortality function, were then retained, based on the distribution of ages of indi-

viduals in the Nalls et al. PD GWA study [18]. Observational associations and MR were

performed on these individuals to gauge the extent to which an association between BMI

and PD was induced artificially by frailty effects.

7. The entire process was repeated 1,000 times to obtain a distribution of the effect size that

was due to frailty effects only.

Full details about the simulations are available in S1 Appendix.

All analyses were undertaken in R (version 3.2.3).

Results

Table 1 shows the 77 variants selected for the analysis, with the effect alleles and frequencies,

the magnitude of the effect on BMI, and strength of the association with PD. Further informa-

tion on each variant, including regional genes and functions, are given in S1 and S2 Tables in

S1 Appendix. The per-allele results of the IV analysis are provided in S3 Table in S1 Appendix.

The F statistic for the instrument and its association with BMI was 99, which is large. This

means that weak instrument bias was unlikely.

Using the IVW method to pool results from individual SNPs, genetically conferred higher

BMI was found to be associated with a reduced risk of PD. The OR of PD per 5-kg/m2 higher

BMI was 0.82 (95% CI 0.69–0.98; p = 0.029). There was minimal evidence of heterogeneity

between variants (Q statistic = 95.5; I2 = 20.4%; p = 0.065; see Fig 2 and S3 Table in S1 Appen-

dix). For the observed OR of 0.82, the estimated statistical power was 85% when the alpha was

set at 5%.

Results from a “leave one out” analysis demonstrated that no single SNP was driving

the IVW point estimate (see S4 Table in S1 Appendix). For example, after removal of the

rs1558902 SNP, in the FTO locus, which has a strong magnitude of association with BMI, the

OR of PD per 5-kg/m2 higher BMI was 0.84 (95% CI 0.70–1.00).

Mendelian randomisation of BMI and Parkinson disease
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Table 1. Variants and effect alleles with frequencies and magnitude of effect on BMI and strength of association with PD.

SNP Chr BP EA Non-

EA

EA

freq*
EA BMI

beta

SE BMI

beta

p-Value BMI

association

EA PD log-

OR

SE PD log-

OR

p-Value PD

association

rs17001654 4 77348592 G C 0.154 0.030 0.005 7.76 × 10−09 −0.077 0.024 0.0014

rs13107325 4 103407732 T C 0.072 0.047 0.007 1.83 × 10−12 −0.109 0.032 0.0007

rs4787491 16 29922838 G A 0.509 0.015 0.003 2.70 × 10−08 −0.031 0.016 0.0508

rs4740619 9 15624326 T C 0.540 0.017 0.003 4.56 × 10−09 −0.029 0.017 0.0777

rs2820292 1 200050910 C A 0.547 0.018 0.003 1.83 × 10−10 −0.031 0.016 0.0587

rs1808579 18 19358886 C T 0.534 0.016 0.003 4.17 × 10−08 −0.027 0.016 0.0913

rs3888190 16 28796987 A C 0.397 0.031 0.003 3.14 × 10−23 −0.045 0.017 0.0076

rs2033732 8 85242264 C T 0.749 0.018 0.003 4.89 × 10−08 −0.023 0.019 0.2352

rs6465468 7 95007450 T G 0.300 0.016 0.003 4.98 × 10−08 −0.020 0.019 0.2844

rs12401738 1 78219349 A G 0.347 0.020 0.003 1.15 × 10−10 −0.023 0.017 0.1812

rs1000940 17 5223976 G A 0.320 0.018 0.003 1.28 × 10−08 −0.02 0.017 0.2477

rs6091540 20 50521269 C T 0.725 0.019 0.003 2.15 × 10−11 −0.02 0.018 0.2659

rs11727676 4 145878514 T C 0.911 0.037 0.006 2.55 × 10−08 −0.037 0.042 0.3745

rs16851483 3 142758126 T G 0.066 0.048 0.008 3.55 × 10−10 −0.046 0.033 0.1647

rs10968576 9 28404339 G A 0.315 0.025 0.003 6.61 × 10−14 −0.024 0.017 0.1669

rs10132280 14 24998019 C A 0.674 0.022 0.003 1.14 × 10−11 −0.021 0.018 0.2513

rs492400 2 219057996 C T 0.426 0.015 0.003 6.78 × 10−09 −0.014 0.017 0.4062

rs7899106 10 87400884 G A 0.057 0.038 0.007 2.96 × 10−08 −0.034 0.039 0.3811

rs1441264 13 78478920 A G 0.613 0.017 0.003 2.96 × 10−08 −0.015 0.016 0.3631

rs3101336 1 72523773 C T 0.611 0.032 0.003 2.66 × 10−26 −0.026 0.016 0.1203

rs13078960 3 85890280 G T 0.193 0.029 0.004 1.74 × 10−14 −0.022 0.020 0.2624

rs17094222 10 102385430 C T 0.209 0.025 0.004 5.94 × 10−11 −0.019 0.020 0.3432

rs11165643 1 96696685 T C 0.574 0.022 0.003 2.07 × 10−12 −0.016 0.016 0.3277

rs12940622 17 76230166 G A 0.572 0.018 0.003 2.49 × 10−09 −0.012 0.016 0.4607

rs11030104 11 27641093 A G 0.791 0.042 0.004 5.56 × 10−28 −0.027 0.020 0.1780

rs7599312 2 213121476 G A 0.721 0.021 0.003 1.17 × 10−10 −0.013 0.018 0.4813

rs6567160 18 55980115 C T 0.236 0.056 0.004 3.93 × 10−53 −0.03 0.019 0.1144

rs2176040 2 226801046 A G 0.362 0.015 0.003 9.99 × 10−09 −0.008 0.017 0.6443

rs1516725 3 187306698 C T 0.869 0.045 0.004 1.89 × 10−22 −0.022 0.024 0.3480

rs17724992 19 18315825 A G 0.743 0.020 0.003 3.42 × 10−08 −0.009 0.018 0.6166

rs7715256 5 153518086 G T 0.422 0.017 0.003 8.85 × 10−09 −0.008 0.016 0.6363

rs12429545 13 53000207 A G 0.135 0.032 0.004 1.09 × 10−12 −0.011 0.024 0.6440

rs1558902 16 52361075 A T 0.409 0.081 0.003 7.51 × 10−153 −0.022 0.017 0.1859

rs17203016 2 207963763 G A 0.195 0.021 0.004 3.41 × 10−08 −0.006 0.021 0.7884

rs657452 1 49362434 A G 0.397 0.023 0.003 5.48 × 10−13 −0.006 0.017 0.7212

rs1460676 2 164275935 C T 0.179 0.021 0.004 4.98 × 10−08 −0.005 0.022 0.8204

rs6804842 3 25081441 G A 0.569 0.018 0.003 2.48 × 10−09 −0.004 0.016 0.7945

rs4256980 11 8630515 G C 0.638 0.021 0.003 2.90 × 10−11 −0.005 0.017 0.7876

rs1528435 15 65864222 T C 0.631 0.018 0.003 1.20 × 10−08 −0.004 0.017 0.8292

rs16951275 2 181259207 T C 0.771 0.030 0.004 1.91 × 10−17 −0.006 0.019 0.7585

rs10182181 2 25003800 G A 0.468 0.031 0.003 8.78 × 10−24 −0.006 0.016 0.7275

rs17024393 1 109956211 C T 0.043 0.061 0.008 7.03 × 10−14 −0.01 0.049 0.8327

rs3817334 11 47607569 T C 0.401 0.026 0.003 5.15 × 10−17 −0.004 0.016 0.8003

rs1928295 9 119418304 T C 0.550 0.018 0.003 7.91 × 10−10 −0.003 0.016 0.8747

rs2112347 5 75050998 T G 0.621 0.025 0.003 6.19 × 10−17 −0.003 0.022 0.9055

rs2365389 3 61211502 C T 0.572 0.020 0.003 1.63 × 10−10 −0.001 0.017 0.9654

rs758747 16 3567359 T C 0.280 0.023 0.004 7.47 × 10−10 0.000 0.018 0.9996

(Continued )
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The effect estimated from MR–Egger regression was 0.76 (95% CI 0.51–1.14; p = 0.177),

with an intercept of 0.002 (95% CI −0.008 to 0.013; p = 0.654). A funnel plot (see S1 Fig in S1

Appendix) suggested that individual variants were symmetrically distributed around the point

estimate. Together these findings provide evidence against the possibility that systematic bias

in the IVW estimate may have arisen through overall unbalanced horizontal pleiotropy.

We repeated the analysis using the original set of “un-clumped” variants reported by the

GIANT consortium (96 variants in total) [17]. This reanalysis did not alter the observed effect

of genetically estimated BMI on risk of PD (IVW OR 0.80, 95% CI 0.67–0.97; see S2 Fig in S1

Appendix).

We performed simulations to obtain estimates of effect sizes that would be induced by sur-

vival bias alone, under the null hypothesis that BMI is not biologically related to PD. If the

effect sizes obtained from these simulations were similar in magnitude to the effect sizes we

Table 1. (Continued)

SNP Chr BP EA Non-

EA

EA

freq*
EA BMI

beta

SE BMI

beta

p-Value BMI

association

EA PD log-

OR

SE PD log-

OR

p-Value PD

association

rs13201877 6 137717234 G A 0.140 0.024 0.004 4.29 × 10−08 0.003 0.026 0.9138

rs7138803 12 48533735 A G 0.379 0.032 0.003 8.15 × 10−24 0.005 0.017 0.7605

rs2287019 19 50894012 C T 0.806 0.035 0.004 4.59 × 10−18 0.007 0.020 0.7198

rs2207139 6 50953449 G A 0.176 0.045 0.004 4.13 × 10−29 0.011 0.021 0.6064

rs17405819 8 76969139 T C 0.702 0.022 0.003 2.07 × 10−11 0.006 0.017 0.7158

rs10938397 4 44877284 G A 0.428 0.040 0.003 3.21 × 10−38 0.014 0.016 0.4092

rs29941 14 78969207 G A 0.670 0.018 0.003 2.41 × 10−08 0.006 0.017 0.7122

rs7141420 19 39001372 T C 0.529 0.023 0.003 1.23 × 10−14 0.008 0.017 0.6259

rs2033529 6 40456631 G A 0.289 0.018 0.003 1.39 × 10−08 0.006 0.018 0.7176

rs6477694 9 110972163 C T 0.371 0.017 0.003 2.67 × 10−08 0.006 0.017 0.7016

rs13021737 2 622348 G A 0.830 0.060 0.004 1.11 × 10−50 0.023 0.021 0.2741

rs1167827 7 75001105 G A 0.557 0.020 0.003 6.33 × 10−10 0.009 0.016 0.6014

rs7903146 10 114748339 C T 0.713 0.024 0.003 1.11 × 10−11 0.011 0.018 0.5310

rs543874 1 176156103 G A 0.195 0.050 0.004 2.62 × 10−35 0.025 0.020 0.2265

rs205262 6 34671142 G A 0.285 0.021 0.003 1.75 × 10−10 0.011 0.018 0.5442

rs11057405 12 121347850 G A 0.902 0.030 0.005 2.02 × 10−08 0.018 0.030 0.5438

rs7239883 18 38401669 G A 0.394 0.015 0.003 1.51 × 10−08 0.01 0.016 0.5618

rs2836754 21 39213610 C T 0.599 0.017 0.003 1.61 × 10−08 0.011 0.017 0.5139

rs12286929 11 114527614 G A 0.523 0.021 0.003 1.31 × 10−12 0.014 0.016 0.3858

rs2176598 11 43820854 T C 0.256 0.019 0.003 2.97 × 10−08 0.013 0.018 0.4701

rs3736485 15 49535902 A G 0.461 0.016 0.003 7.41 × 10−09 0.013 0.016 0.4350

rs10733682 9 128500735 A G 0.475 0.019 0.003 1.83 × 10−08 0.017 0.016 0.2755

rs13191362 6 162953340 A G 0.880 0.029 0.005 7.34 × 10−09 0.035 0.025 0.1626

rs9374842 6 120227364 T C 0.748 0.020 0.003 2.67 × 10−08 0.026 0.019 0.1726

rs887912 2 59075742 T C 0.317 0.023 0.003 2.75 × 10−11 0.031 0.018 0.0738

rs9540493 13 65103705 A G 0.464 0.018 0.003 4.97 × 10−08 0.025 0.017 0.1389

rs977747 1 47457264 C G 0.403 0.017 0.003 2.18 × 10−08 0.024 0.016 0.1368

rs2121279 2 142759755 T C 0.150 0.024 0.004 2.31 × 10−08 0.037 0.024 0.1217

rs9400239 6 109084356 C T 0.673 0.017 0.003 1.61 × 10−08 0.028 0.018 0.1180

rs3849570 3 81874802 A C 0.362 0.018 0.003 2.60 × 10−08 0.030 0.017 0.0815

*Frequency of effect allele in Locke et al. [17].

BMI, body mass index; BP, base pair position; Chr, chromosome; EA, effect allele; OR, odds ratio; PD, Parkinson disease; SE, standard error.

https://doi.org/10.1371/journal.pmed.1002314.t001
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Fig 2. Forest plot of Wald ratios and 95% CIs generated from clumped SNPs associated with BMI. Odds ratios for

individual SNPs are listed according to magnitude of effect in the instrumental variable analysis and are presented with pooled
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estimated from the real data, it would suggest that survival bias was sufficient to explain the

results. Simulations using empirical BMI- and age-related mortality rates demonstrated that a

likely influence of frailty on biasing the MR analysis of BMI and risk of PD was present, but

smaller than the estimated inverse influence of BMI on PD from the empirical MR analysis

(see Fig 3). The mean induced effect due to frailty alone in the IVW analysis was an OR of 0.97

per 5-kg/m2 higher BMI (95% CI 0.92–1.03), compared to our empirical estimate of the OR of

PD per 5-kg/m2 higher BMI of 0.82 (95% CI 0.69–0.98).

effects using the IVW method and MR–Egger regression. The most recent meta-analysis of observational studies is also plotted

(Wang et al. [13]). Squares represent the point estimate, and the bars are the 95% confidence intervals. There was weak evidence

of heterogeneity (Q statistic = 95.5; I2 = 20.4%; p = 0.065). IVW, inverse-variance weighted; MR, Mendelian randomisation.

https://doi.org/10.1371/journal.pmed.1002314.g002

Fig 3. Frailty analysis. We obtained effect estimates from two sources: (1) analysis of the causal influence of

BMI on PD using real data and (2) simulations where BMI had no effect on PD, and any apparent effect was due to

survival bias alone. This figure shows the comparison of the estimates from these two sources using three different

approaches—MR IVW analysis, MR–Egger regression, and observational associations. For the true effect estimates,

the horizontal lines denote the 95% confidence intervals; for the results from simulations, the horizontal lines denote

95% confidence intervals obtained from 1,000 simulations. BMI, body mass index; IVW, inverse-variance weighted;

MR, Mendelian randomisation; PD, Parkinson disease.

https://doi.org/10.1371/journal.pmed.1002314.g003
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Discussion

This study provides MR evidence that higher BMI could protect against the risk of developing

PD. Simulation studies performed to ascertain the effect of survivor bias showed that survivor

bias could be a contributing factor but did not explain all of the effect. To our knowledge, this

is the first MR study of this association and was undertaken in a very large sample. Genetic ele-

ments expected to lead to a lifetime elevation in BMI of 5 kg/m2 were associated with a lower

risk of PD, indicating a causal influence of BMI on PD (OR 0.82). Whilst there was minimal

evidence of heterogeneity across individual SNP estimates, the MR–Egger analysis supported

our main study findings, with an intercept value close to zero and a point estimate for the effect

that was similar to that of the main analysis (see S3 Fig in S1 Appendix). MR–Egger regression

has less statistical power than an equivalent IVW meta-analysis, and hence the confidence

intervals for this analysis were wider and included the null value.

These findings shed additional light on an issue for which the evidence to date has been

mixed. Prior to PD diagnosis, observational studies have found conflicting results with regard

to the association between BMI and risk of PD [8–12]. The conflicting results may be due to

study-specific biases, differential adjustment for confounding factors, and use of different cut-

offs to define the exposure (see Table 2). A recent meta-analysis of these and additional studies

concluded that there was no robust observational association [13]. There was substantial het-

erogeneity between the effect estimates of individual studies (I2 = 65%; p = 0.003), raising the

Table 2. Examples of previous observational studies of body mass index and Parkinson disease.

Authors and

year

[reference]

Study design and location Observed association Handling of potential sources of

bias

Handling of confounding

Ma et al. 2006

[8]

Nested case–control study in

Linxian County, China. Risk of

reverse causality reduced

because measurement of BMI

preceded ascertainment of the

outcome.

BMI inversely associated

with risk of PD, with dose-

dependent effect for

increasing BMI.

Two-step ascertainment of PD

diagnosis and standard clinical

criteria to reduce bias. Only definite

cases included. Generalisability

may be limited by cohort and

location.

Cases matched to controls 1:4 by

age and sex. Multiple logistic

regression analysis modelling

BMI, gastric ulcers, meat

consumption, and pack-years

smoking (all associated with PD in

univariate analysis).

Chen et al.

2004 [9]

Health Professionals Follow-up

Study and Nurses’ Health Study

cohorts, US; excluded cases

diagnosed within 3–4 y of

baseline.

Baseline BMI not associated

with risk of PD, but most

recently recorded BMI was

inversely associated with

PD.

Questionnaire during follow-up

included item about diagnosis of

PD, with positive responses

confirmed by neurological

examination. This approach misses

undiagnosed cases and biases

estimates towards the null value.

Generalisability may be limited by

cohort composition.

Associations adjusted for age,

smoking, caffeine intake, and

alcohol intake. Men and women

presented separately and in

pooled analysis.

Logroscino

et al. 2007

[11]

Harvard Alumni Health Study

cohort, US; 63,557 person-years

of follow-up; excluded cases

diagnosed within 4 y of baseline.

Trend for inverse

association between BMI

measured in 1988 and PD.

No association between BMI

measured in college and

PD.

Self-reported diagnosis of PD

(previous validation study found

70% to be correct). Non-differential

misclassification of the outcome

would bias estimates towards null.

Associations adjusted for age,

smoking, caffeine intake, physical

activity, and previous

cardiovascular disease or cancer.

Hu et al. 2006

[12]

Six independent population

surveys, Finland. Mean follow-up

18.8 y; excluded cases

diagnosed within 5 y of baseline.

BMI positively associated

with PD, with dose-

dependent effect for

increasing BMI.

PD diagnosis from national drug

reimbursement register. May under-

ascertain cases with low BMI—

differential misclassification—if

obese individuals are more likely to

contact health system.

Associations adjusted for age,

study year, blood pressure,

cholesterol level, education,

physical activity, smoking,

caffeine intake, and alcohol

intake. Men and women

presented separately and pooled.

BMI, body mass index; PD, Parkinson disease.

https://doi.org/10.1371/journal.pmed.1002314.t002
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question as to whether it was appropriate to perform meta-analysis. Three of these studies did

not set out specifically to investigate the effect of BMI on the risk of PD [8,24,25]. Two of the

studies showed a clear negative association between higher BMI and the risk of PD [8,11].

Many of the studies used self-report questionnaires to ascertain PD, which is likely to have

resulted in under-ascertainment of the outcome and bias towards the null. These factors could

have had a strong influence on the overall results of the meta-analysis.

Recently, a similar direction and magnitude of effect of higher BMI on risk of PD was

reported from the United Kingdom Clinical Practice Research Datalink. In a cohort of nearly

2 million, underweight people had a 15% excess risk of PD compared with normal weight peo-

ple, and overweight and obese people had a 12% and 17% reduction in risk, respectively [10].

The mechanism through which higher BMI may reduce the risk of PD is not immediately

apparent, but researchers have recently reported on possible neuroprotective benefits arising

in those with higher BMI, particularly relating to preservation of cognitive function and neural

networks, explored using functional imaging [26]. Higher BMI affects levels of circulating and

central insulin, which in turn may play a beneficial role with respect to neurodegeneration

[27]. Theories such as these require substantial further exploration.

Weight loss is widely recognised in patients with a diagnosis of PD [7]. The mechanisms

underlying body weight reduction in this context are easier to understand and are multifacto-

rial, including intrinsic factors of the disease as well as disruption of both peripheral and cen-

tral regulatory mechanisms of body weight, feeding behaviour, and energy metabolism [28].

Vitally, however, the mechanisms that drive risk of PD may not be the same as those that

underlie progression once disease has occurred, and the MR study presented here is designed

to investigate only the former.

There are a number of candidate genes (see S1 and S2 Tables in S1 Appendix) that are

located in close proximity to SNPs included as IVs, which is intriguing and raises the possibil-

ity of pleiotropic pathways (i.e., not via BMI). BDNF, coding for Brain-Derived Neurotrophic

Factor, is a gene that has previously been implicated in PD, and BDNF has been discussed as a

potential therapeutic agent in neurodegenerative disease but has previously been unsuccessful

in clinical trials in patients with amyotrophic lateral sclerosis [29–31]. PARK2, coding for the

Ubiquitin E3 ligase Parkin, is mutated in rare autosomal recessive juvenile-onset parkinsonism

cases, and is notable for not having been identified in a GWA study for PD [18,32]. Finally, the

RPTOR gene (encoding Raptor, a regulator of the kinase mTOR) is of interest given the links

between the mTOR pathway, macroautophagy, and PD [33]. For each of these examples, proof

that these genes are directly linked to causation at these loci requires further research.

The finding of higher BMI reducing the risk of PD seemingly conflicts with the observation

from a cohort study that physical activity may be a protective factor for PD [34]. Again, cohort

studies such as this may be biased by confounding or reverse causality, and the association

with physical activity may be driven simply by the fact that people with undiagnosed PD may

undertake less activity as a result of occult disease. However, evidence of an effect of physical

activity on BMI may be weaker than one might intuitively expect [35,36]. There may be true

inverse causal associations for both BMI and physical activity with risk of PD, and physical

activity may protect primarily through mechanisms that are independent of BMI. An MR

study (or randomised controlled trial) of physical activity and risk of PD could be used to

explore this further, if robust genetic variants could be identified to account for variability in

this behaviour.

An MR study to determine an association between genetically conferred variance in BMI

(alongside other potentially modifiable risk factors) and Alzheimer disease was recently re-

ported [37]. The authors observed no similar protective effect to that which we observed

for PD, but their instrument used only 32 variants. They did observe a reduction in risk of
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Alzheimer disease for increasing blood pressure, but did not undertake a similar frailty analysis

to that which we conducted.

Our frailty simulations sought to explore the extent to which our MR results could be

explained by frailty effects alone. The influence of frailty effects should be an important consid-

eration in epidemiological studies dealing with later life events [22]. We found that the effect

of BMI on mortality and the age disparity between the cases and controls in the PD GWA

study was unlikely to be sufficient to explain our MR estimate, particularly given that PD has a

relatively early onset compared to some other neurological disorders (median age 60 y old)

[3].

Strengths and weaknesses

MR uses an IV approach to assess causal relationships between environmental exposures/

intermediate phenotypes and disease outcomes, while minimising or eliminating the possibil-

ity of bias due to residual confounding or reverse causality. One key assumption is that the

instrument affects PD risk through its effect on a specific phenotype/exposure (here this was

BMI), and does not have a direct effect on PD risk independently of this (the exclusion restric-

tion criterion, or assumption number three from the Introduction). We tested this assumption

using MR–Egger regression and found no evidence of violation of this assumption.

This analysis was undertaken using summary statistics from the two largest datasets for

BMI and PD. The use of different datasets to ascertain variant–exposure and variant–outcome

associations, so-called two-sample MR, has methodological advantages over analysis under-

taken in a single dataset, but also some limitations [38]. First, the data are available without

having to undertake measurement of each association in turn, saving both time and cost.

Second, statistical power is high because very large sample sizes can be achieved using this

method. Third, if bias did arise in the analysis due to weak instruments, it would tend to be

biased towards the null (i.e., give rise to conservative estimates), whereas in one-sample MR

the estimate tends to be biased towards the confounded observational study estimate [16]. The

first assumption of MR is that the instrument under study is strongly associated with the expo-

sure. Here, the first-stage F statistic was large (99), and so weak instrument bias is unlikely.

Furthermore, samples are assumed to be completely independent. The cohorts contributing to

both the GIANT and IPDGC consortia are listed in S5 and S6 Tables in S1 Appendix. If there

was some overlap in the controls from the two consortia, then an F statistic of this magnitude

would mitigate potential bias.

Our frailty analysis used demographic information to model the induced bias due to the

combination of BMI influencing mortality and cases being on average younger than controls

in the PD GWA study. Alternative mechanisms of frailty may operate. For example, because

BMI reduces longevity, individuals with high BMI who survive longer potentially over-repre-

sent unmeasured factors that increase longevity. If these factors, in turn, also influence risk of

PD, then bias could be introduced into our MR estimates. This mechanism can influence

observational associations also.

One weakness of our approach is that two-sample MR using aggregate data (as done here)

does not currently allow one to examine non-linear relationships between exposures and out-

comes. The association between BMI and most health-related outcomes tends to be U- or

J-shaped, with very low weight and above average weight both resulting in adverse outcomes

[1]. Here, in the MR analysis, BMI was modelled as a continuous variable, and linearity as-

sumed. The use of aggregate data also means that we were not able to test differences of effect

in subgroups. There is evidence to suggest that the causal effect of BMI on some outcomes,

including socioeconomic status, may differ between men and women [39]. Using this design,
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we cannot test whether effects of BMI on PD differ by sex. In addition, lack of information

about potential confounding factors for the relationship of BMI and PD means that associa-

tions between the variants and smoking/alcohol behaviours could not be tested (assumption

number two from the Introduction). Another limitation of this study is that it does not offer

insight into the mechanisms by which BMI is causally related to PD. Finally, two-sample MR

assumes that both samples come from the same population, but with no overlap. If they come

from separate populations, the magnitude of the estimated causal effect could be biased. We

took steps to ensure that both samples were of individuals of European ancestry.

In this large two-sample MR study exploring the association between genetically deter-

mined higher BMI and risk of PD, we observed a possible protective effect exerted by a poten-

tially modifiable factor. MR should be seen as one tool to explore causal questions, but not as a

definitive answer. However, robust empirical evidence to support a protective role of higher

BMI in risk of PD may be hard to obtain. It is plausible that our finding could be replicated in

large cohort studies such as the UK Biobank, which gathered information on a wide range of

exposures and disease outcomes, along with genotyping data, on more than half a million

older people in the UK [40]. Our study offers the best evidence to date that higher BMI may

convey relative protection against PD, in support of clinical observation and some of the pre-

existing observational studies. However, the apparent protective influence of higher BMI

could be at least partially induced by survival bias in the PD GWA study, as demonstrated in

the frailty simulations.

Although BMI is a potentially modifiable risk factor for PD, the negative health impacts of

raising BMI are likely to be significant, and should be taken into account. Expected negative

effects would include increased risk of type 2 diabetes mellitus, ischaemic heart disease, and

cancer. Causal associations have been demonstrated between higher BMI and many cancers,

and have been explored for BMI and cardiovascular disease [41,42]. Assuming replication of

a negative association between BMI and PD, a great deal of further work would be required

(including mechanistic insights) before recommending this as a potential intervention against

PD, given the wider public health effects.
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