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Abstract

The hygro-thermal effects on vibration and buckling analysis of functionally graded beams are

presented in this paper. The present work is based on a higher-order shear deformation theory which

accounts for a hyperbolic distribution of transverse shear stress and higher-order variation of in-plane

and out-of-plane displacements. Equations of motion are obtained from Lagrange’s equations. Ritz

solution method is used to solve problems with different boundary conditions. Numerical results for

natural frequencies and critical buckling temperatures of functionally graded beams are compared

with those obtained from previous works. Effects of power-law index, span-to-depth ratio, transverse

normal strain, temperature and moisture changes on the results are discussed.

Keywords: Advanced composite beams; Hygro-thermal loadings; Buckling; Vibration.

1. Introduction

Hygro-thermal stresses arising from a variation of temperature and moisture content

can affect structural responses of engineering structures. Therefore, an accurate evalua-

tion of environmental exposure is important to investigate hygro-thermal effects on their

behaviours. Owing to the low density and high stiffness and strength, composite structures become

popular in several applications of aerospace, automotive engineering, construction, etc. They became

more attractive due to an introduction of functionally graded (FG) materials. The general benefit

of these structures compared to conventional ones is a continuous variation of hygro-thermo-elastic

properties in a required direction so that interfacial issues found in laminated composite structures

could be neglected.
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In order to accurately predict hygro-thermo-mechanical behaviours of FG nanobeams and FG

plates/beams, several models and approaches have been developed in recent years. Ebrahimi and

Salari [1, 2] investigated nonlocal thermo-mechanical buckling and free vibration of FG nanobeams in

thermal environments. Ebrahimi and Barati [3] proposed a unified formulation for dynamic analysis of

nonlocal heterogeneous nanobeams in hygro-thermal environment. Zidi et al. [4] analyzed static

responses of FG plates under hygro-thermo-mechanical loading using a four variable re-

fined plate theory. Zenkour et al. [5, 6] investigated hygro-thermo-mechanical effects on

behaviours of FG plates on elastic foundations. Fazzolari and Carrera [7] studied thermal

stability of FG sandwich plates under various through-the-thickness temperature distri-

butions. Vibration and buckling analysis of FG beams under mechanical loads have been investigated

by many authors based on classical beam theory (CBT) ([8, 9]), first-order shear deformation beam

theory (FSBT) ([10–14]), higher-order shear deformation beam theory (HSBT)([15–27]). For thermal

environments, the thermal stability and vibration analysis of FG beams have studied by many authors

with different methods. Esfahani et al. [28] studied nonlinear thermal buckling of FG beams. The

nonlinear thermal dynamic buckling of FG beams is also investigated by Ghiasian et al. [29]. Ma

and Lee [30] proposed exact solutions for nonlinear bending behaviour of FG beams under an in-plane

thermal loading. Malekzadeh and Monajjemzadeh [31] investigated the dynamic thermal response of

FG beams under a moving load. Sankar [32] studied the thermal stresses of simply supported FG

beams. Wattanasakulpong et al. [33] employed the HSBT to study the buckling and vibration of

FG beams under the uniform thermal loading. Sun et al. [34] investigated thermal buckling and

post-buckling of FG beams on nonlinear elastic foundation. Trinh et al. [35] used Levy-type solu-

tion for studying thermo-mechanical responses of FG beams. Bhangale and Ganesan [36] analyzed

thermoelastic buckling and vibration behaviours of FG sandwich beam with constrained viscoelastic

core. By using differential quadrature method, Pradhan and Murmu [37] analyzed thermo-mechanical

vibration of FG sandwich beams. However, a limited number of researches has been considered to

investigate responses of FG beams in moisture environments. Shen [38, 39] studied nonlinear analysis

of composite laminated beams in hygro-thermal environments. Moreover, it is known that Ritz

method is efficient to deal with composite and FG beams with arbitrary boundary condi-

tions. The accuracy and efficiency of this approach can be found in some representative

earlier works [24, 26, 40–44].

The objective of this paper is to present hygro-thermal responses of FG beams using a higher-

order shear deformation theory in which a higher-order variation of both in-plane and out-of-plane

displacement is taken into account. FG beams are composed of ceramic and metal mixtures, and the
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material properties are varied according to power-law form. Ritz solution is developed for different

boundary conditions to verify the accuracy of the present theory and to investigate the effects of

power-law index, span-to-depth ratio, temperature and moisture content on the vibration and buckling

responses of FG beams under hygro-thermal loadings.

2. Theoretical formulation

2.1. Material properties

A FG beam made of a mixture of ceramic and metal isotropic materials, which is embedded in

a moisture and temperature environment, with length L and uniform section b × h is considered as

shown in Fig. 1. The material properties are varied according to power-law form:

P (z) = (Pc − Pm)

(
2z + h

2h

)p

+ Pm (1)

where p is the power-law index and Pc and Pm are Young’s modulus E, mass density ρ, coefficient

of thermal expansion α, coefficient of moisture expansion β, thermal conductivity coefficient k of

ceramic and metal materials, respectively.

Moreover, the thermo-elastic material properties of FG beams are also expressed in terms of

temperature T (K) ([31]):

P (T, z) = H0(H−1T
−1 + 1 +H1T +H2T

2 +H3T
3) (2)

where H0, H1, H2, H3 are temperature dependent coefficients for various types of materials (Table

1). It should be noted that both temperature dependency (TD) and temperature independency (TID)

are considered in this paper.

2.2. Moisture and temperature distribution

Three different moisture and temperature distributions through the beam depth are considered:

uniform moisture and temperature rise, linear moisture and temperature rise and nonlinear moisture

and temperature rise.

• Uniform moisture and temperature rise: the temperature and moisture are supposed to be

uniform in the beam and increased from a reference T0 and C0, thus their current values of

temperature and moisture are:

T = T0 + ∆T (3a)

C = C0 + ∆C (3b)

3



where T0 and C0 are reference temperature and moisture, respectively, which are supposed to

be at the bottom surface of the beam.

• Linear moisture and temperature rise: the temperature and moisture are linearly increased as

follows:

T (z) = (Tt − Tb)
(

2z + h

2h

)
+ Tb (4a)

C(z) = (Ct − Cb)

(
2z + h

2h

)
+ Cb (4b)

where Tt and Tb are temperatures as well as Ct and Cb are moisture content at the top and

bottom surfaces of the beam.

• Nonlinear moisture and temperature rise: the temperature and moisture are varied nonlinearly

according to a sinusoidal law ([7]) as follows:

T (z) = (Tt − Tb)
[
1− cos

π

2

(
2z + h

2h

)]
+ Tb (5a)

C(z) = (Ct − Cb)

[
1− cos

π

2

(
2z + h

2h

)]
+ Cb (5b)

In addition, the temperature distribution obtained from Fourier equation of steady-state one-

dimensional heat conduction is also considered:

T (z) = Tb +
Tt − Tb∫ h/2

−h/2
1

k(z)dz

∫ z

−h/2

1

k(ξ)
dξ (6)

2.3. Kinematics

The displacement field is chosen from previous study [25]:

u1(x, z, t) = u(x, t)− zw,x +

[
sinh−1

( z
h

)
− 8z3

3
√

5h3

]
θ(x, t) = u(x, t)− zw,x + f1(z)θ(x, t) (7a)

u3(x, z, t) = w(x, t) +

(
1√

h2 + z2
− 8z2√

5h3

)
wz(x, t) = w(x, t) + f2(z)wz(x, t) (7b)

where the comma indicates partial differentiation with respect to the coordinate subscript that

follows; f2 = f1,z; u and θ are the axial displacement and rotation; and w and wz are the

transverse displacements, respectively.

The nonzero strains are given by:

εxx(x, z, t) = u,x − zw,xx + f1θ,x (8a)

εzz(x, z, t) = f2,zwz (8b)

γxz(x, z, t) = f2 (θ + wz,x) (8c)
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The elastic constitutive equations are given by:
σxx

σzz

σxz

 =


Q11 Q13 0

Q13 Q11 0

0 0 Q55




εxx

εzz

γxz

 (9)

where

Q11 =
E(z)

1− ν2
, Q13 =

E(z)ν

1− ν2
, Q55 =

E(z)

2(1 + ν)
(10)

If the transverse normal strain effect is omitted (εzz = 0), the components of Qij in Eq. (9) are

reduced as:

Q11 =
E(z)

1− ν2
, Q13 = 0, Q55 =

E(z)

2(1 + ν)
(11)

It is noted that Poisson’s ratio ν is supposed to be constant through the beam thickness and its

value is evaluated as the average of ceramic and metal ones.

2.4. Lagrange’s equations

The strain energy U of system is expressed by:

U =
1

2

∫
V

(σxxεxx + σzzεzz + σxzγxz)dV

=
1

2

∫ L

0

[
Au2,x − 2Bu,xw,xx +Dw2

,xx + 2Bsu,xθ,x − 2Dsw,xxθ,x +Hsθ2,x

+ 2(Xu,xwz − Y w,xxwz + Y sθ,xwz) + Zw2
z +As(θ2 + 2θwz,x + w2

z,x)
]
dx (12)

where

(A,B,D,Bs, Ds, Hs, Z) =

∫ h/2

−h/2
Q11(z)

(
1, z, z2, f1, zf1, f

2
1 , f

2
2,z

)
bdz (13a)

(X,Y, Y s) =

∫ h/2

−h/2
Q13(z) (1, z, f1) f2,zbdz (13b)

As =

∫ h/2

−h/2
Q55(z)f

2
2 bdz (13c)

The work done V by axial hygro-thermal stress resultants is expressed by:

V = −1

2

∫ L

0
(N t +Nm)(w,x)2dx (14)
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where

N t =

∫ h/2

−h/2
Q11(z)α(z)

[
T (z)− T 0

]
bdz (15a)

Nm =

∫ h/2

−h/2
Q11(z)β(z)

[
C(z)− C0

]
bdz (15b)

The kinetic energy K is expressed by:

K =
1

2

∫
V
ρ(z)(u̇21 + u̇23)dV

=
1

2

∫ L

0

[
I0u̇

2 − 2I1u̇ẇ,x + I2ẇ
2
,x + 2J1θ̇u̇− 2J2θ̇ẇ,x +K2θ̇

2 + I0ẇ
2

+ 2L1ẇẇz + L2ẇ
2
z

]
dx (16)

where dot-superscript denotes the differentiation with the time t; and I0, I1, I2, J1, J2,K2, L1, L2

are the inertia coefficients defined by:

(I0, I1, I2, J1, J2,K2, L1, L2) =

∫ h/2

−h/2
ρ(z)

(
1, z, z2, f1, zf1, f

2
1 , f2, f

2
2

)
bdz (17)

Lagrangian functional is used to derive the governing equations of motion:

Π = U + V − K (18)

Π =
1

2

∫ L

0

[
Au2,x − 2Bu,xw,xx +Dw2

,xx + 2Bsu,xθ,x − 2Dsw,xxθ,x +Hsθ2,x

+ 2(Xu,xwz − Y w,xxwz + Y sθ,xwz) + Zw2
z +As(θ2 + 2θwz,x + w2

z,x)
]
dx

− 1

2

∫ L

0
(N t +Nm)(w,x)2dx

− 1

2

∫ L

0

[
I0u̇

2 − 2I1u̇ẇ,x + I2ẇ
2
,x + 2J1θ̇u̇− 2J2θ̇ẇ,x +K2θ̇

2 + I0ẇ
2 + 2L1ẇẇz + L2ẇ

2
z

]
dx

(19)

The displacement field is expressed by the approximation functions according to the Ritz method

as follows:

u(x, t) =

N∑
j=1

ujψj(x)eiωt (20a)

w(x, t) =
N∑
j=1

wjϕj(x)eiωt (20b)

θ(x, t) =

N∑
j=1

θjψj(x)eiωt (20c)

wz(x, t) =
N∑
j=1

yjϕj(x)eiωt (20d)
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where ω is the natural frequency, and (uj , wj , θj , yj) are unknown values. The approximation

functions ψj(x) and ϕj(x) are chosen as follows:

ψj(x) = ϕj(x) = xj−1 (21)

The Lagrange multipliers (δi) are used to impose the boundary conditions, that leads to a new

Lagrangian functional:

Π∗ = Π + δiūi(x̄) (22)

where ūi(x̄) denote prescribed displacement at two ends (x̄ = 0 and L). Substituting Eq. (20) into

Eq. (19), and using Lagrange’s equations:

∂Π

∂qj
− d

dt

∂Π

∂q̇j
= 0 (23)

where qj representing the values of (uj , wj , θj , yj), a characteristic problem for hygro-thermal vi-

bration and buckling response is obtained through the stiffness matrix K and mass matrix M:



K11 K12 K13 K14 K15

TK12 K22 K23 K24 K25

TK13 TK23 K33 K34 K35

TK14 TK24 TK34 K44 K45

TK15 TK25 TK35 TK45 0


− ω2



M11 M12 M13 0 0

TM12 M22 M23 M24 0

TM13 TM23 M33 0 0

0 TM24 0 M44 0

0 0 0 0 0







u

w

θ

y

δ


=



0

0

0

0

0


(24)

where

K11
ij = A

∫ L

0
ψi,xψj,x dx,K

12
ij = −B

∫ L

0
ψi,xϕj,xx dx,K

13
ij = Bs

∫ L

0
ψi,xψj,x dx

K14
ij = X

∫ L

0
ψi,xϕj dx,K

22
ij = D

∫ L

0
ϕi,xxϕj,xx dx−N t

∫ L

0
ϕi,xϕj,x dx−Nm

∫ L

0
ϕi,xϕj,x dx

K23
ij = −Ds

∫ L

0
ϕi,xxψj,x dx,K

24
ij = −Y

∫ L

0
ϕi,xxϕj dx

K33
ij = Hs

∫ L

0
ψi,xψj,x dx+As

∫ L

0
ψiψj dx,K

34
ij = Y s

∫ L

0
ψi,xϕj dx+As

∫ L

0
ψiϕj,x dx

K44
ij = Z

∫ L

0
ϕiϕj dx+As

∫ L

0
ϕi,xϕj,,x dx

M11
ij = I0

∫ L

0
ψiψj dx,M

12
ij = −I1

∫ L

0
ψiϕj,x dx,M

13
ij = J1

∫ L

0
ψiψj dx

M22
ij = I0

∫ L

0
ϕiϕj dx+ I2

∫ L

0
ϕi,xϕj,x dx,M

23
ij = −J2

∫ L

0
ϕi,xψj dx

M24
ij = L1

∫ L

0
ϕiϕj dx,M

33
ij = K2

∫ L

0
ψiψj dx,M

44
ij = L2

∫ L

0
ψiψj dx (25)
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The components of matrix K15, K25, K35 and K45, which depend on boundary conditions (Table

2), are list below:

• For hinged-hinged (H-H) beams:

K15
i1 = ψi(0), K15

i2 = ψi(L), K15
ij = 0 with j = 3, 4, ..., 6

K25
i3 = ϕi(0), K25

i4 = ϕi(L),K25
ij = 0 with j = 1, 2, 5, 6

K35
ij = 0 with j = 1, 2, ..., 6

K45
i5 = ϕi(0), K45

i6 = ϕi(L), K45
ij = 0 with j = 1, 2, 3, 4 (26)

• For clamped-hinged (C-H) beams:

K15
i1 = ψi(0), K15

i2 = ψi(L), K15
ij = 0 with j = 3, 4, ..., 8

K25
i3 = ϕi(0), K25

i4 = ϕi(L), K25
i5 = ϕi,x(0),K25

ij = 0 with j = 1, 2, 6, 7, 8

K35
i6 = ψi(0), K35

ij = 0 with j = 1, 2, 3, 4, 5, 7, 8

K45
i7 = ϕi(0), K45

i8 = ϕi(L), K45
ij = 0 with j = 1, 2, ..., 6 (27)

• For clamped-clamped (C-C)beams:

K15
i1 = ψi(0), K15

i2 = ψi(L), K15
ij = 0 with j = 3, 4, ..., 10

K25
i3 = ϕi(0), K25

i4 = ϕi(L), K25
i5 = ϕi,x(0), K25

i6 = ϕi,x(L),K25
ij = 0 with j = 1, 2, 7, ..., 10

K35
i7 = ψi(0), K35

i8 = ψi(L), K35
ij = 0 with j = 1, 2, ..., 6, 9, 10

K45
i9 = ϕi(0), K45

i10 = ϕi(L), K45
ij = 0 with j = 1, 2, ..., 8 (28)

3. Numerical results and discussion

In this section, a number of numerical examples are analyzed to verify the accuracy of present the-

ory and investigate the effects of power-law index, span-to-depth ratio, transverse normal strain, tem-

perature and moisture content on buckling and vibration responses of FG beams for various boundary

conditions (H-H, C-H and C-C). FG beams are made of ceramic (Si3N4, Al2O3) and metal (SUS304)

with material properties in Table 1. Three types of temperature and moisture distribution through

the beam depth are considered: uniform moisture and temperature rise (UMR, UTR), linear moisture

and temperature rise (LMR, LTR), nonlinear moisture and temperature rise (NLMR, NLTR). The

following non-dimensional parameters are used:

ω̄ =
ωL2

h

√√√√ I0∫ h/2
−h/2E(z)dz

, ω̂ =
ωL2

h

√
12ρc
Ec

, λ = ∆Tcr
L2

h2
αm (29)
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where αm is thermal expansion coefficient of metal at T0 (K). Noticing that the following relations

are used in this paper: T0=300 (K), C0=0 %, Tb - T0=5 (K).

For convergence test, Table 3 reports the first natural frequency with respect to the number of series

N of Si3N4/SUS304 beams with p=1, L/h=5 and ∆T=20, ∆C=0. The results are calculated with

different boundary conditions and Fourier-law NLTR. In order to obtain good solution, the number

of series N are chosen 8, 12, and 14 for H-H, C-H and C-C beams, respectively. For this reason, these

numbers are used in the following examples.

As the first example, FG beams under uniform temperature rise (UTR) are considered. Table 4

presents the normalized critical temperatures of Si3N4/SUS304 beams for both temperature depen-

dency (TD) and temperature independency (TID) solutions with different values of power-law index

p. It is noted that the results reported in this example are based on the assumption that the temper-

ature resultant in Eq. (15a) is calculated with Q11 = E(z)/(1 − ν). The results are compared with

those of Wattanasakulpong et al. [33] and Trinh et al. [35] using HSBT. The present results without

normal strain (εzz = 0) are in good agreement with earlier works. Figure 2a presents the effect of

the power-law index p on the normalized critical temperatures of Si3N4/SUS304 beams with L/h=20.

It is plotted with both TD and TID solutions as well as with and without normal strain. It can be

seen that the normalized critical temperatures decrease with the increase of p and the results with

εzz 6= 0 are smaller than those with εzz = 0. This can be explained by the fact that the effect of

transverse normal strain made beams softer. This figure also shows that the TD solutions give lower

values than the TID ones, which emphasizes the importance of temperature dependency in the FG

beams. Similarly, the accuracy of present theory in predicting the vibration response of Al203/SUS304

FG beams is studied in Table 5. The results are calculated with p=0.2, 2 and ∆T=0, 50 and 100. It

is seen that good agreements between HSBTs are again found for all cases. Figure 2b displays the

effects of UTR on the normalized fundamental frequency of Al203/SUS304 FG beams (L/h=30 and

p=2). Obviously, the result decreases with the increase of ∆T up to critical temperatures at which the

fundamental frequencies vanish. In this case, the critical temperatures of H-H, C-H and C-C beams

are 52.6580 (K), 103.5923 (K) and 192.1833 (K), respectively.

The next example aims to investigate the effects of linear and nonlinear temperature rise (LTR,

NLTR) on the thermal buckling and vibration of FG beams. For verification purpose, the critical tem-

peratures of Si3N4/SUS304 beams with L/h=40 are reported in Table 6. These results are compared

with those of Esfahani et al. [28], Ebrahimi and Salari [2] based on FSDT. It is observed that the

present solutions are in good agreement with those of [28] for C-C beams under the Fourier-law NLTR

while there is slight deviations for several values of p between the present solutions and those of [2]
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for H-H beams under LTR. It is noted that the superscript ”a” is used to indicate that Poisson’s ratio

effect is not included in the constitutive equation and thermal stress resultant (Q11 = E(z)) and this

index will be used in the next examples for verification studies. Tables 7 and 8 show the comparisons

of the critical temperatures from the present solutions and those from [35]. It shows that there are

small differences between the HSBT models. The effect of normal strain is again found in which the

HSBTs over-predict critical temperatures in comparison with the quasi-3D theory. Figure 3a displays

the variation of fundamental frequency for UTR, LTR and Fourier-law NLTR. It can be seen that the

results decrease with the increase of ∆T and vanish at the critical temperatures. Table 9 and Figure

3b consider the effects of temperature distribution under Fourier- and sinusoidal-law through the beam

depth for different boundary conditions. For comparison, the critical temperature with Fourier law

is smaller than that with sinusoidal one. Moreover, Table 10 presents the normalized fundamental

frequency of Si3N4/SUS304 beams with L/h=20, p=0.1, 0.5 and 1, ∆T=20 and 80, subjected to the

LTR and Fourier-law NLTR. The results are compared to those of [33] and [35] for different boundary

conditions and good agreements between the HSBT models are again found.

The final example is to analyse the effects of moisture content on the thermal vibration behaviour

of FG beams. Tables 11-13 present the normalized fundamental frequencies of Si3N4/SUS304 FG

beams under the uniform, linear and nonlinear moisture (UMR, LMR, NLMR) and temperature rises.

It is noted that the sinusoidal-law NLMR is used in this example. The results are calculated for the

power-law indices p=0.2, 1 and 5, ∆T=0, 20 and 40, ∆C=0 %,1 % and 2 %. The present solutions

are compared with those obtained from Ebrahimi and Barati [3] based on HSBT with H-H beam. The

present solutions based on HSBT without Poisson’s ratio are in good agreement with those of [3] for

all moisture and temperature changes. The effect of normal strain is clearly observed in which the

quasi-3D solutions are smaller the HSBT ones. Figure 4a presents the effect of the power-law index p

on the normalized fundamental frequency of Si3N4/SUS304 FG beams (L/h=20) with different values

of ∆C. It shows that for a moisture rise, the fundamental frequency decreases with the increase of p

and the moisture content rise makes the beams softer. This phenomena is also observed in Fig. 4b

which plots the variation of fundamental frequency with respect to the UTR. It can be seen from this

figure that the frequency of the FG beams with moisture content rise ∆C=2% is smaller than that

without moisture content rise, and that the critical temperatures decrease with the increase of ∆C.

4. Conclusions

Hygro-thermal vibration and stability analysis of FG beams is presented. It is based on a higher-

order shear deformation theory, which considers a higher-order distribution of transverse shear stress
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and both in-plane and out-of-plane displacements. These beams are subjected to hygro-thermal load-

ings under uniform, linear and nonlinear distributions through the beam depth. Lagrange’s equations

are applied to derive the characteristic dynamic equations and Ritz solution method is developed to

solve the problems for different boundary conditions. The proposed Ritz solution converges quickly

and agrees well with that from other studies. The obtained numerical results showed that:

• The critical buckling temperatures and natural frequencies derived from the quasi-3D theory,

which includes normal strain, is smaller than those from the HSBT, which neglects it. It implies

that the effect of normal strain is important and needs to be taken into account for the analysis

of hygro-thermal behaviours of FG beams.

• The increase of the power-law index leads to the increase of metal volume fraction, that makes

the beams softer and decrease of the critical temperature and natural frequency.

• The temperature dependency solutions give lower values than the temperature independency

ones, so the importance of temperature dependency in the FG beams is confirmed.

• For a temperature rise, the critical temperature and fundamental frequency derived from non-

linear temperature rise are larger than those from uniform one.

• The critical temperature and fundamental frequency calculated from Fourier-law nonlinear tem-

perature distribution are smaller than those from sinusoidal-law one.

• The thermal buckling and vibration responses of FG beams decrease with the increase of moisture

content.

In conclusion, the proposed beam model and approach is found to be simply and efficient for

hygro-thermal buckling and vibration of FG beams.
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CAPTIONS OF FIGURES

Figure 1: Geometry of FG beams.

Figure 2: Variation of normalized critical temperature and fundamental frequency of FG beams

with respect to the power-law index p and uniform temperature rise ∆T.

Figure 3: Variation of normalized fundamental frequency of Si3N4/SUS304 beams with respect to

the power-law index p and temperature rise (TD).

Figure 4: Variation of normalized fundamental frequency of Si3N4/SUS304 beams with respect to

the power-law index, moisture and temperature rise (L/h=20, TD).
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Table 1: Temperature dependent coefficients for ceramic and metal materials.

Materials P0 P−1 P1 P2 P3

Al2O3

E (Pa) 349.55e+9 0 -3.853e-4 4.027e-7 1.673e-10

α (1/K) 6.8269e-6 0 1.838e-4 0 0

β 0 0 0 0 0

κ (W/mK) 0.26 0 0 0 0

ν 0.26 0 0 0 0

ρ (kg/m3) 3800 0 0 0 0

Si3N4

E (Pa) 348.43e+9 0 -3.070e-4 2.160e-7 -8.946e-11

α (1/K) 5.8723e-6 0 9.095e-4 0 0

β 0 0 0 0 0

κ (W/mK) 13.723 0 -1.032e-3 5.466e-7 -7.876e-11

ν 0.24 0 0 0 0

ρ (kg/m3) 2370 0 0 0 0

SUS304

E (Pa) 201.04e+9 0 3.079e-4 -6.534e-7 0

α (1/K) 12.330e-6 0 8.086e-4 0 0

β 0.0005 0 0 0 0

κ (W/mK) 15.379 0 -1.264e-3 2.092e-6 -7.223e-10

ν 0.3262 0 -2.002e-4 3.797e-7 0

ρ (kg/m3) 8166 0 0 0 0
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Table 2: Kinematic boundary conditions.

BCs x = 0 x = L

H-H u = 0, w = 0, wz = 0 u = 0, w = 0, wz = 0

C-H u = 0, w = 0, w,x=0, θ=0, wz = 0 u = 0, w = 0, wz=0,

C-C u = 0, w = 0, w,x=0, θ=0, wz=0 u = 0, w = 0, w,x=0, θ=0, wz=0
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Table 3: Convergence test for the nondimensional fundamental frequency (ω̂) of Si3N4/SUS304 beams under Fourier-law

NLTR with p = 1, L/h = 20, ∆T=20 (K), TD, ∆C=0 %.

BCs Normal strain N

6 8 10 12 14 16 18

H-H εzz = 0 5.9735 5.9719 5.9719 5.9719 5.9719 5.9719 5.9719

εzz 6= 0 5.7193 5.7178 5.7178 5.7178 5.7178 5.7178 5.7178

C-H εzz = 0 9.4357 9.4283 9.4271 9.4265 9.4261 9.4259 9.4257

εzz 6= 0 9.1075 9.0795 9.0716 9.0678 9.0656 9.0640 9.0627

C-C εzz = 0 13.7367 13.7045 13.6990 13.6967 13.6953 13.6944 13.6938

εzz 6= 0 13.3787 13.2585 13.2321 13.2204 13.2140 13.2095 13.2057
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Table 4: Normalized critical temperatures (λ) of Si3N4/SUS304 beams under UTR (L/h=20).

Temperature BCs Theory p

dependency 0 0.5 1 2 5 10

TID H-H Present (εzz = 0) 1.309 0.970 0.878 0.812 0.752 0.714

Present (εzz 6= 0) 1.210 0.897 0.811 0.751 0.695 0.660

HSBT [35] 1.307 - 0.866 - 0.744 0.710

HSBT [33] 1.348 - 0.876 - 0.750 0.712

C-C Present (εzz = 0) 5.133 3.780 3.399 3.136 2.918 2.784

Present (εzz 6= 0) 4.781 3.522 3.169 2.925 2.720 2.594

HSBT [35] 5.130 - 3.398 - 2.917 2.782

C-H Present 2.656 1.958 1.763 1.628 1.514 1.443

Present (εzz 6= 0) 2.464 1.817 1.637 1.512 1.405 1.339

HSBT [35] 2.654 - 1.758 - 1.510 1.440

TD H-H Present (εzz = 0) 1.151 0.882 0.806 0.750 0.698 0.665

Present (εzz 6= 0) 1.071 0.820 0.748 0.696 0.648 0.617

HSBT [35] 1.151 - 0.796 - 0.693 0.663

HSBT [33] 1.185 - 0.805 - 0.697 0.664

C-C Present (εzz = 0) 3.553 2.831 2.606 2.458 2.332 2.248

Present (εzz 6= 0) 3.336 2.663 2.456 2.313 2.190 2.102

HSBT [35] 3.559 - 2.609 - 2.333 2.244

C-H Present (εzz = 0) 2.116 1.644 1.506 1.408 1.324 1.269

Present (εzz 6= 0) 1.981 1.538 1.408 1.316 1.235 1.184

HSBT [35] 2.115 - 1.503 - 1.321 1.267
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Table 5: Fundamental frequency (ω̄) of Al2O3/SUS304 beams under UTR (L/h=30).

Temperature BCs Theory p=0.2 p=2

dependency ∆T=0 50 100 ∆T=0 50 100

TID H-H Present (εzz = 0) 2.9484 1.8416 - 3.0100 1.1810 -

Present (εzz 6= 0) 2.8232 1.6347 - 2.8826 0.8051 -

HSBT [35] 2.9506 1.8450 - 3.0129 1.1816 -

C-C Present (εzz = 0) 6.6373 6.1198 5.5490 6.7339 5.9821 5.1090

Present (εzz 6= 0) 6.3768 5.8352 5.2320 6.4732 5.6854 4.7553

HSBT [35] 6.6371 6.1209 5.5489 6.7366 5.9834 5.1125

HSBT [33] 6.6394 6.1189 5.5452 6.7355 5.9802 5.1028

C-H Present (εzz = 0) 4.5901 3.8552 2.9281 4.6625 3.5699 1.8886

Present (εzz 6= 0) 4.4056 3.6320 2.6236 4.4772 3.3216 1.3476

HSBT [35] 4.5898 3.8574 2.9297 4.6653 3.5731 1.8925

TD H-H Present (εzz = 0) 2.9484 1.8191 - 3.0100 1.0859 -

Present (εzz 6= 0) 2.8232 1.6086 - 2.8826 0.6563 -

HSBT [35] 2.9506 1.8220 - 3.0129 1.0868 -

C-C Present (εzz = 0) 6.6373 6.1124 5.5126 6.7339 5.9605 5.0032

Present (εzz 6= 0) 6.3768 5.8266 5.1905 6.4732 5.6616 4.6378

HSBT [35] 6.6371 6.1142 5.5141 6.7366 5.9631 5.0068

HSBT [33] 6.6394 6.1109 5.5081 6.7335 5.9581 4.9965

C-H Present (εzz = 0) 4.5901 3.8431 2.8594 4.6625 3.5347 1.5906

Present (εzz 6= 0) 4.4056 3.6185 2.5435 4.4772 3.2828 0.8707

HSBT [35] 4.5898 3.8437 2.8608 4.6653 3.5391 1.5946
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Table 6: Critical temperature of Si3N4/SUS304 FG beams under LTR and Fourier-law NLTR (L/h=40, TD).

Temperature BCs Theory p

distribution 0 0.5 1 2 5 10

LTR H-H Presenta (εzz = 0) 116.4406 91.8046 82.9295 75.8794 69.0474 64.8133

FSBT [2] 127.3340 95.5739 84.6229 76.4715 69.4307 -

Fourier-law NLTR C-C Presenta (εzz = 0) 411.7059 377.7547 357.9741 337.0286 310.0925 291.3543

FSBT [28] 412.2400 377.9600 357.9400 337.0300 310.1200 291.3500

a: Q11 = E(z)
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Table 7: Critical temperature of Si3N4/SUS304 FG beams under LTR for different boundary conditions (L/h=20, TD).

BCs Theory p

0 0.5 1 2 5 10

H-H Present (εzz = 0) 411.5245 354.7101 332.6536 314.4494 295.2286 282.2571

Present (εzz 6= 0) 385.1274 330.2483 308.9443 291.3484 272.8943 260.5459

Presenta (εzz = 0) 411.7060 354.8756 332.8174 314.6159 295.3957 282.4179

HSBT [35] 451.5600 360.9400 328.1300 301.5600 279.6900 265.6300

C-C Present (εzz = 0) 1156.1584 1106.1719 1089.8592 1078.7302 1073.7643 1065.7153

Present (εzz 6= 0) 1100.9855 1046.4138 1027.9710 1014.8334 1006.9889 997.0252

Presenta (εzz = 0) 1157.7996 1107.9445 1091.7181 1080.6962 1075.8608 1067.8635

HSBT [35] - 1142.1900 1062.5000 1004.6900 957.8100 921.8800

C-H Present (εzz = 0) 718.5718 652.8875 624.7796 604.3525 584.2301 568.0967

Present (εzz 6= 0) 679.1061 613.3336 585.5554 564.7903 544.1176 528.0379

Presenta (εzz = 0) 719.2049 653.5143 625.4122 605.0142 584.9244 568.7844

HSBT [35] 814.0600 667.1900 612.5000 570.3100 531.2500 507.8100

a: Q11 = E(z)
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Table 8: Critical temperatures of Si3N4/SUS304 beams under Fourier-law NLTR (L/h=20, TD).

BCs Theory p

0 0.5 1 2 5 10

H-H Present (εzz = 0) 411.5245 379.3918 360.9977 340.3445 311.8557 291.9825

Present (εzz 6= 0) 385.1274 352.4187 334.2954 314.4406 287.6173 269.1585

Presenta (εzz = 0) 411.7060 379.5747 361.1826 340.5314 312.0370 292.1517

HSBT [35] 451.5600 388.7500 357.5000 327.5000 293.7500 273.7500

C-C Present (εzz = 0) 1156.1584 1204.0415 1213.1728 1202.5179 1164.6606 1124.4957

Present (εzz 6= 0) 1100.9855 1140.8570 1146.0126 1133.6258 1093.7100 1052.6690

Presenta (εzz = 0) 1157.7996 1205.9121 1215.1809 1204.6140 1166.8631 1126.7276

HSBT [35] - - - 1132.5000 1042.5000 972.5000

C-H Present (εzz = 0) 718.5718 709.6778 695.0922 672.6986 630.3660 596.2206

Present (εzz 6= 0) 679.1061 666.0060 650.0307 627.0078 585.8770 553.3163

Presenta (εzz = 0) 719.2049 710.3689 695.8183 673.4623 631.1354 596.9569

HSBT [35] 814.0600 736.2500 688.7500 637.5000 572.5000 531.2500

a: Q11 = E(z)
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Table 9: Critical temperatures of Si3N4/SUS304 beams under Fourier- and sinusoidal-law NLTR (L/h=30, TD).

Temperature BCs Theory p

distribution 0 0.5 1 2 5 10

Fourier H-H Present (εzz = 0) 202.2578 173.5389 160.5549 148.3615 134.2035 125.0658

Present (εzz 6= 0) 187.7199 160.0195 147.7213 136.2821 123.1300 114.6789

C-C Present (εzz = 0) 647.7525 630.7537 613.2717 589.7918 550.4308 519.7221

Present (εzz 6= 0) 611.2257 590.8552 572.5358 548.9211 510.9149 481.7654

C-H Present (εzz = 0) 379.9401 345.7176 326.5833 306.6677 281.4281 264.1042

Present (εzz 6= 0) 355.7747 321.7415 302.8348 283.7695 259.9836 243.8099

Sinusoidal H-H Present (εzz = 0) 266.8324 224.9764 208.1080 193.4138 178.0297 168.1896

Present (εzz 6= 0) 248.2054 208.2022 192.1421 178.2136 163.6644 154.4077

C-C Present (εzz = 0) 823.1910 755.8429 727.9468 706.6631 687.8553 672.7974

Present (εzz 6= 0) 778.0221 710.9078 683.0384 661.3097 641.8079 625.5963

C-H Present (εzz = 0) 491.8173 430.8636 406.2229 385.4767 364.4358 349.8751

Present (εzz 6= 0) 461.5226 402.6337 378.6681 358.7276 337.7749 323.6678
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Table 10: Fundamental frequency (ω̂) of Si3N4/SUS304 beams under LTR and Fourier-law NLTR (L/h=20, TD).

Temperature BCs Theory ∆T(K)=20 ∆T(K)=80

distribution p=0.1 0.5 1 p=0.1 0.5 1

LTR H-H Present (εzz = 0) 8.7846 6.8133 5.9658 8.1742 6.2547 5.4252

Present (εzz 6= 0) 8.4170 6.5248 5.7113 7.7782 5.9387 5.1433

Presenta (εzz = 0) 8.4391 6.5450 5.7307 7.8532 6.0088 5.2118

HSBT [1] 8.4716 6.5742 5.7588 7.8766 6.0166 5.2128

HSBT [35] 8.4634 6.5415 5.7114 7.8795 6.0063 5.1927

C-C Present (εzz = 0) 20.1188 15.6333 13.6920 19.8063 15.3661 13.4427

Present (εzz 6= 0) 19.4059 15.0816 13.2106 19.0807 14.8018 12.9487

Presenta (εzz = 0) 19.3522 15.0342 13.1654 19.0523 14.7779 12.9263

HSBT [1] 19.6398 15.2580 13.3671 19.3420 15.0040 13.1304

HSBT [35] 19.3371 15.0222 13.1554 18.9778 14.6972 12.8431

C-H Present (εzz = 0) 13.8663 10.7631 9.4225 13.4286 10.3728 9.0500

Present (εzz 6= 0) 13.3426 10.3565 9.0669 12.8863 9.9482 8.6764

Presenta (εzz = 0) 13.3283 10.3443 9.0552 12.9083 9.9697 8.6976

HSBT [1] 13.4380 10.4238 9.1227 13.0201 10.0515 8.7674

HSBT [35] 13.3373 10.3526 9.0635 12.8837 9.9342 8.6571

NLTR H-H Present (εzz = 0) 8.7865 6.8184 5.9719 8.1855 6.2841 5.4605

Present (εzz 6= 0) 8.4190 6.5302 5.7178 7.7900 5.9696 5.1805

Presenta (εzz = 0) 8.4409 6.5499 5.7366 7.8640 6.0370 5.2456

HSBT [1] 8.4675 6.5437 5.7124 7.9265 6.0402 5.2186

HSBT [35] 8.4730 6.5779 5.7632 7.8861 6.0431 5.2448

C-C Present (εzz = 0) 20.1198 15.6360 13.6953 19.8121 15.3810 13.4604

Present (εzz 6= 0) 19.4070 15.0844 13.2140 19.0867 14.8172 12.9670

Presenta (εzz = 0) 19.3532 15.0369 13.1685 19.0578 14.7921 12.9432

HSBT [1] 19.6390 15.2501 13.3558 19.3552 14.9886 13.1011

HSBT [35] 19.3379 15.0244 13.1579 18.9832 14.7115 12.8600

C-H Present (εzz = 0) 13.8676 10.7669 9.4271 13.4367 10.3935 9.0747

Present (εzz 6= 0) 13.3441 10.3605 9.0716 12.8947 9.9698 8.7022

Presenta (εzz = 0) 13.3297 10.3479 9.0595 12.9160 9.9896 8.7214

HSBT [1] 13.4395 10.4211 9.1178 13.0483 10.0594 8.7648

HSBT [35] 13.3382 10.3553 9.0669 12.8907 9.9533 8.6801

a: Q11 = E(z)
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Table 11: Fundamental frequency (ω̂) of Si3N4/SUS304 beams under uniform moisture and temperature rise for different

boundary conditions (L/h=20, TD).

BCs ∆C Theory ∆T=0 ∆T=20 ∆T=40

p=0.2 1 5 p=0.2 1 5 p=0.2 1 5

H-H ∆C=0% Present (εzz = 0) 8.3030 6.2144 5.0652 7.9313 5.8635 4.7304 7.5298 5.4784 4.3579

Present (εzz 6= 0) 7.9769 5.9708 4.8664 7.5893 5.6046 4.5168 7.1685 5.2003 4.1250

Presenta (εzz = 0) 7.9757 5.9694 4.8656 7.6186 5.6324 4.5441 7.2327 5.2624 4.1863

HSBT [3] 7.9680 5.9314 4.8449 - - - - - -

∆C=1% Present (εzz = 0) 8.1372 5.8496 4.5711 7.7574 5.4749 4.1958 7.3463 5.0598 3.7699

Present (εzz 6= 0) 7.8043 5.5906 4.3504 7.4076 5.1971 3.9542 6.9757 4.7578 3.4988

Presenta (εzz = 0) 7.8164 5.6192 4.3913 7.4516 5.2593 4.0309 7.0566 4.8606 3.6219

HSBT [3] - - - 7.4435 5.2167 4.0063 - - -

∆C=2% Present (εzz = 0) 7.9679 5.4606 4.0166 7.5796 5.0564 3.5824 7.1581 4.6033 3.0712

Present (εzz 6= 0) 7.6278 5.1826 3.7644 7.2213 4.7549 3.2969 6.7775 4.2697 2.7327

Presenta (εzz = 0) 7.6539 5.2457 3.8590 7.2809 4.8576 3.4421 6.8759 4.4224 2.9514

HSBT [3] - - - - - - 6.8673 4.3722 2.9180

C-H ∆C=0% Present (εzz 6= 0) 12.4092 9.2498 7.5477 12.1243 8.9822 7.2940 11.8230 8.6962 7.0206

∆C=1% Present (εzz 6= 0) 12.2809 8.9691 7.1716 11.9926 8.6917 6.9021 11.6876 8.3948 6.6106

∆C=2% Present (εzz 6= 0) 12.1512 8.6786 6.7731 11.8594 8.3905 6.4848 11.5505 8.0814 6.1715

C-C ∆C=0% Present (εzz 6= 0) 17.9130 13.3399 10.8821 17.7061 13.1479 10.7012 17.4896 12.9450 10.5089

∆C=1% Present (εzz 6= 0) 17.8188 13.1346 10.6086 17.6106 12.9390 10.4218 17.3928 12.7321 10.2231

∆C=2% Present (εzz 6= 0) 17.7240 12.9258 10.3270 17.5146 12.7262 10.1338 17.2954 12.5153 9.9282

a: Q11 = E(z)
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Table 12: Fundamental frequency (ω̂) of Si3N4/SUS304 beams under linear moisture and temperature rise (L/h=20,

TD).

BCs ∆C Theory ∆T=0 ∆T=20 ∆T=40

p=0.2 1 5 p=0.2 1 5 p=0.2 1 5

H-H ∆C=0% Present (εzz = 0) 8.2127 6.1295 4.9846 8.0343 5.9658 4.8259 7.8474 5.7943 4.6597

Present (εzz 6= 0) 7.8828 5.8824 4.7825 7.6969 5.7113 4.6164 7.5016 5.5317 4.4420

Presenta (εzz = 0) 7.8889 5.8879 4.7882 7.7177 5.7307 4.6358 7.5382 5.5661 4.4763

HSBT [3] 7.8817 5.8491 4.7664 - - - - - -

∆C=1% Present (εzz = 0) 8.1651 5.9992 4.7669 7.9857 5.8315 4.5999 7.7976 5.6558 4.4245

Present (εzz 6= 0) 7.8334 5.7466 4.5554 7.6461 5.5711 4.3800 7.4495 5.3866 4.1949

Presenta (εzz = 0) 7.8432 5.7628 4.5793 7.6710 5.6018 4.4189 7.4904 5.4331 4.2505

HSBT [3] - - - 7.6651 5.5616 4.3962 - - -

∆C=2% Present (εzz = 0) 8.1173 5.8659 4.5388 7.9368 5.6941 4.3623 7.7475 5.5137 4.1760

Present (εzz 6= 0) 7.7835 5.6076 4.3164 7.5951 5.4273 4.1300 7.3970 5.2374 3.9323

Presenta (εzz = 0) 7.7973 5.6348 4.3603 7.6240 5.4699 4.1908 7.4423 5.2967 4.0120

HSBT [3] - - - - - - 7.4365 5.2518 3.9832

C-H ∆C=0% Present (εzz 6= 0) 12.3395 9.1845 7.4860 12.2043 9.0631 7.3697 12.0640 8.9374 7.2497

∆C=1% Present (εzz 6= 0) 12.3027 9.0839 7.3194 12.1671 8.9609 7.1996 12.0263 8.8335 7.0759

∆C=2% Present (εzz 6= 0) 12.2659 8.9822 7.1486 12.1298 8.8574 7.0250 11.9885 8.7282 6.8974

C-C ∆C=0% Present (εzz 6= 0) 17.8621 13.2929 10.8379 17.7660 13.2106 10.7608 17.6668 13.1258 10.6817

∆C=1% Present (εzz 6= 0) 17.8352 13.2192 10.7164 17.7389 13.1363 10.6379 17.6395 13.0509 10.5573

∆C=2% Present (εzz 6= 0) 17.8082 13.1452 10.5933 17.7118 13.0616 10.5133 17.6122 12.9755 10.4313

a: Q11 = E(z)
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Table 13: Fundamental frequency (ω̂) of Si3N4/SUS304 beams under sinusoidal moisture and temperature rise(L/h=20,

TD).

BCs ∆C Theory ∆T=0 ∆T=20 ∆T=40

p=0.2 1 5 p=0.2 1 5 p=0.2 1 5

H-H ∆C=0% Present (εzz = 0) 8.2127 6.1295 4.9846 8.0857 6.0152 4.8730 7.9533 5.8962 4.7572

Present (εzz 6= 0) 7.8828 5.8824 4.7825 7.7504 5.7629 4.6656 7.6122 5.6383 4.5440

Presenta (εzz = 0) 7.8889 5.8879 4.7882 7.7670 5.7781 4.6811 7.6399 5.6639 4.5699

HSBT [3] 7.8817 5.8491 4.7664 - - - - - -

∆C=1% Present (εzz = 0) 8.1874 6.0529 4.8399 8.0600 5.9370 4.7244 7.9272 5.8163 4.6044

Present (εzz 6= 0) 7.8565 5.8026 4.6316 7.7236 5.6813 4.5104 7.5848 5.5547 4.3841

Presenta (εzz = 0) 7.8646 5.8143 4.6493 7.7423 5.7030 4.5385 7.6148 5.5872 4.4232

HSBT [3] - - - 7.7355 5.6625 4.5149 - - -

∆C=2% Present (εzz = 0) 8.1619 5.9753 4.6907 8.0341 5.8577 4.5710 7.9009 5.7353 4.4464

Present (εzz 6= 0) 7.8300 5.7217 4.4757 7.6967 5.5985 4.3496 7.5574 5.4699 4.2180

Presenta (εzz = 0) 7.8402 5.7398 4.5061 7.7175 5.6270 4.3912 7.5896 5.5094 4.2716

HSBT [3] - - - - - - 7.5826 5.4650 4.2429

C-H ∆C=0% Present (εzz 6= 0) 12.3395 9.1845 7.4860 12.2436 9.1010 7.4057 12.1444 9.0147 7.3230

∆C=1% Present (εzz 6= 0) 12.3199 9.1253 7.3749 12.2239 9.0411 7.2928 12.1245 8.9540 7.2085

∆C=2% Present (εzz 6= 0) 12.3003 9.0656 7.2619 12.2041 8.9807 7.1781 12.1045 8.8930 7.0919

C-C ∆C=0% Present (εzz 6= 0) 17.8621 13.2929 10.8379 17.7948 13.2382 10.7870 17.7252 13.1818 10.7347

∆C=1% Present (εzz 6= 0) 17.8478 13.2495 10.7567 17.7804 13.1946 10.7051 17.7107 13.1379 10.6521

∆C=2% Present (εzz 6= 0) 17.8334 13.2059 10.6748 17.7659 13.1507 10.6225 17.6962 13.0938 10.5687

a: Q11 = E(z)
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(a)

(b)

Figure 1: Geometry of FG beams.
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(a) λ of Si3N4/SUS304 beams with L/h=20
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Figure 2: Variation of normalized critical temperature and fundamental frequency of FG beams with respect to the

power-law index p and uniform temperature rise ∆T.
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Figure 3: Variation of normalized fundamental frequency of Si3N4/SUS304 beams with respect to the power-law index

p and temperature rise (TD).
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Figure 4: Variation of normalized fundamental frequency of Si3N4/SUS304 beams with respect to the power-law index,

moisture and temperature rise (L/h=20, TD).
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