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We analyze the smooth and sharp creation of a pointlike source for a quantized massless scalar field in
(3þ 1)-dimensional Minkowski spacetime, as a model for the breakdown of correlations that has been
proposed to occur at the horizon of an evaporating black hole. The creation is implemented by a time-
dependent self-adjointness parameter at the excised spatial origin. In a smooth creation, the renormalized
energy density hT00i is well defined away from the source, but it is unbounded both above and below: the
outgoing pulse contains an infinite negative energy, while a cloud of infinite positive energy lingers near
the fully-formed source. In the sharp creation limit, hT00i diverges everywhere in the timelike future of the
creation event, and so does the response of an Unruh-DeWitt detector that operates in the timelike future of
the creation event. The source creation is significantly more singular than the corresponding process in
1þ 1 dimensions, analyzed previously, and it may be sufficiently singular to break quantum correlations as
proposed in a black hole spacetime.

DOI: 10.1103/PhysRevD.95.085007

I. INTRODUCTION

In quantum field theory, it has been long known that a
time dependent boundary condition or a time dependent
metric can create particles and energy flows. Parker’s
pioneering work showed that a Klein-Gordon field on an
expanding cosmological spacetime undergoes particle cre-
ation [1]. Moore showed that particle creation can be
induced by varying the length of a cavity [2], while
Candelas and Deutsch showed that even a single accel-
erating mirror can induce a flux of particles and energy [3];
this phenomenon is now known as the Dynamical (or non-
stationary) Casimir Effect, and it was observed in 2011
using a photon analogue system [4]. The most celebrated
example is Hawking’s prediction of black hole radiation
[5], whose observation in analogue quantum systems may
be at the threshold of current technology [6,7].
In order to reconcile the thermal character of Hawking

radiation with fundamental unitarity of quantum theory, it
has been proposed [8–14] that the horizon of a radiating
black hole could be more singular than the conventional
picture of quantum fields on the classical black hole
spacetime suggests [15–17]. While detailed modeling of
this possible singularity remains elusive, the key proposed
feature is that the singularity should break down

correlations between the two sides of the horizon. A
context in which such breaking of correlations can be
studied is quantum field theory on a fixed background
spacetime. One way to do this is to write down by hand a
quantum state in which the correlations are absent [18,19].
Another is to allow an impermeable wall to develop where
initially there was none [20–23]. The purpose of the present
paper is to improve the understanding of the latter scenario.
When the impermeable wall is inserted quickly, a

surprising feature emerges: for a massless scalar field in
1þ 1 dimensions, the energy transmitted into the field
diverges in the limit of rapid wall creation, but the response
of an Unruh-DeWitt detector [24,25] crossing this pulse
of diverging energy remains finite [22]. The finite detector
response casts doubt on the ability of wall creation,
however rapid, to break down quantum correlations suffi-
ciently strongly to save unitarity in an evolving black hole
spacetime. One limitation of the analysis in [22] is however
that it was done in 1þ 1 dimensions. Quantum fields
generally become more singular as the spacetime dimen-
sion increases: would the conclusions in 3þ 1 dimensions
be similar? A second limitation is that the analysis in [22]
relied on an infrared cutoff to eliminate the infrared
ambiguity that the massless scalar field has in 1þ 1
dimensions. Could the results in [22] be an artifact of
the (1þ 1)-dimensional infrared sickness, with no counter-
part in 3þ 1 dimensions?
In this paper we take a first step toward adapting the wall

creation analysis of [22] to 3þ 1 dimensions, and answer-
ing these questions. We consider a massless scalar field in
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(3þ 1)-dimensional Minkowski spacetime, and we intro-
duce at the spatial origin a time-dependent boundary
condition that interpolates, over a finite interval of time,
between ordinary Minkowski dynamics and a Dirichlet-
type condition. As the boundary condition is introduced at
just one spatial point, the physical interpretation is now not
the smooth creation of a wall but the smooth creation of a
pointlike source. We then ask what happens to the energy
transmitted into the field and to the response of an Unruh-
DeWitt detector in the limit of rapid source creation.
The answers turn out to have some similarities with the
(1þ 1)-dimensional analysis of [22] but also significant
differences. A technical difference is that in 3þ 1 dimen-
sions there is no infrared ambiguity, and no infrared cutoff
is needed. A difference in physically observable quantities
is that in 3þ 1 dimensions both the field’s energy density
and the detector’s response are more singular.
First, we consider the energy. While the renormalized

energy density hT00i is well defined everywhere away from
the source, it is bounded neither above nor below. In the
outgoing pulse generated by the evolving source, hT00i is
unbounded below immediately to the future of the light
cone of the point where the boundary condition starts to
change, and the total energy in the pulse is negative infinity.
After the pulse has gone, hT00i is nonzero, and it diverges at
r → 0 proportionally to −ðln rÞ=r4: a cloud of positive
energy lingers near the source after the source is fully
formed, and the total energy in this cloud is positive
infinity. Further, at a fixed r, hT00i is not static, and it
diverges at t → ∞ proportionally to ln t. In the limit of
rapid source creation, hT00i diverges everywhere in the
timelike future of the creation event. The source creation
hence leaves in the late time region a large energetic
memory. This memory has no counterpart in the (1þ 1)-
dimensional analysis of [22].
We note that the firewall in both the previous paper [22]

and the present work is not in fact modeled by the wall or
point source, respectively, where the boundary conditions
are specified. Instead, these serve as the source of the firewall
which itself is modelled by the resulting outgoing null shell
of energy. It is for this reason that it is important to calculate
the response of a detector passing through the outgoing shell
of energy (i.e. firewall), as we do in Sec. IV. In particular,
we consider the response of a static Unruh-DeWitt detector.
We find that the response of a detector that operates only in
the late time region mimics hT00i closely, both in the late
time limit and in the limit of rapid source creation: in both
limits, the response has a logarithmic divergence. We have
not considered in detail the response of a detector that goes
through the pulse emanating from the changing boundary
condition, but the behavior in the post-pulse region is already
sufficient to establish that the response does not remain finite
in the limit of rapid source creation.
We conclude that the rapid creation of a source makes the

(3þ 1)-dimensional field significantly more singular than

the corresponding event in 1þ 1 dimensions; in particular,
the response of an Unruh-DeWitt detector diverges in the
rapid creation limit. These results suggest that a source
creation may be able to model the breaking of quantum
correlations in the way that has been proposed to happen in
an evolving black hole spacetime [8–14]. The persistence
of large late time effects is perhaps particularly reminiscent
of the energetic curtain scenario proposed in [8].
We begin in Sec. II by setting up the classical dynamics

of the scalar field under the evolving boundary condition at
the spatial origin. Section III introduces the quantized field
and evaluates hT00i. The response of an Unruh-DeWitt
detector is considered in Sec. IV. Section V gives a brief
summary and discussion. Technical material is relegated to
five appendices.
Our metric signature is mostly minus. Overline denotes

complex conjugation. A continuous function of a real
variable is said to be C0, a function that is n ∈ N ¼
f1; 2;…g times continuously differentiable is said to be
Cn, and a function that has all derivatives is said to be C∞,
or smooth. We work in geometric units in which
ℏ ¼ c ¼ 1.

II. CLASSICAL FIELD

A. Field equation and boundary condition

We consider a real massless scalar field ϕ in (3þ 1)-
dimensional Minkowski spacetime from which the spatial
origin has been excised. Writing the metric as

ds2 ¼ dt2 − ðdx1Þ2 − ðdx2Þ2 − ðdx3Þ2; ð2:1Þ

the field equation is

ð∂2
t −∇2Þϕ ¼ 0; ð2:2Þ

where ∇2¼∂2
x1 þ∂2

x2 þ∂2
x3 . The Klein-Gordon inner prod-

uct evaluated on a constant t hypersurface reads

ðϕ1;ϕ2ÞKG ¼ i
Z

dx1dx2dx3ðϕ1∂tϕ2 − ð∂tϕ1Þϕ2Þ: ð2:3Þ

In the spherical coordinates, defined by ðx1; x2; x3Þ ¼
ðr sin θ cosφ; r sin θ sinφ; r cos θÞ, the metric reads

ds2 ¼ dt2 − dr2 − r2ðdθ2 þ sin2 θdφ2Þ ð2:4Þ

and the Klein-Gordon inner product reads

ðϕ1;ϕ2ÞKG ¼ i
Z

∞

0

r2dr
Z
S2
dΩðϕ1∂tϕ2 − ð∂tϕ1Þϕ2Þ;

ð2:5Þ

where dΩ ¼ sin θdθdφ is the volume element on unit S2.
The excised spatial origin is at r ¼ 0.
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To specify the dynamics, we need to define ∇2 at each
t as a self-adjoint operator. After decomposition into
spherical harmonics, the only freedom is in the spherically
symmetric sector, as discussed in Appendix A: writing

ϕðt; rÞ ¼ fðt; rÞffiffiffiffiffiffi
4π

p
r
; ð2:6Þ

the eigenfunctions of ∇2 must satisfy the boundary
condition

ðcos θðtÞÞ lim
r→0

fðt; rÞ ¼ Lðsin θðtÞÞ lim
r→0

∂rfðt; rÞ; ð2:7Þ

where L is a positive constant of dimension length,
introduced for dimensional convenience, and the prescribed
function θðtÞ, taking values in ½0; πÞ, specifies at each t the
self-adjoint extension of ∇2. We denote this extension
by ΔθðtÞ.
Δ0 coincides with the unique self-adjoint extension of

∇2 on L2ðR3Þ, yielding usual scalar field dynamics on full
Minkowski space. For θ ∈ ðπ=2; πÞ, Δθ has a positive
proper eigenvalue, which on quantization would give a
tachyonic instability. We therefore assume θ ∈ ½0; π=2�, in
which case the spectrum of Δθ consists of the negative
continuum.
We specialize to a θðtÞ that interpolates between θ ¼ 0

and θ ¼ π=2 over a finite interval of time. We may
parametrize θðtÞ as

θðtÞ ¼
8<
:

0 for t ≤ 0;

arccot½λL cotðhðλtÞÞ� for 0 < t < λ−1;

π=2 for t ≥ λ−1;

ð2:8Þ

where λ is a positive constant of dimension inverse length
and h∶R → R is a smooth function such that

hðyÞ ¼ 0 for y ≤ 0; ð2:9aÞ

0 < hðyÞ < π=2 for 0 < y < 1; ð2:9bÞ

hðyÞ ¼ π=2 for y ≥ 1: ð2:9cÞ

Over the interval 0 < t < λ−1, the boundary condition (2.7)
then reads

lim
r→0

∂rfðt; rÞ
fðt; rÞ ¼ λ cotðhðλtÞÞ: ð2:10Þ

In words, this parametrization means that the boundary
condition interpolation takes place over time λ−1 while the
interpolation profile is determined by the dimensionless
function hðyÞ. The limit of rapid interpolation with fixed
profile is that of λ → ∞.

B. Mode functions

As preparation for quantization, we shall write down
the mode solutions that reduce to the usual Minkowski
modes for t ≤ 0. As noted above, we need consider only the
spherically symmetric sector.
We work in the radial null coordinates u ≔ t − r and

v ≔ tþ r, in which t ¼ ðvþ uÞ=2 and r ¼ ðv − uÞ=2. The
metric (2.4) becomes

ds2 ¼ dudv −
1

4
ðv − uÞ2ðdθ2 þ sin2 θdφ2Þ: ð2:11Þ

Taking ϕ to be spherically symmetric, the field equa-
tion (2.2) becomes

∂u∂vðrϕÞ ¼ 0: ð2:12Þ

We hence seek mode solutions with the ansatz

ϕk ¼
Ukffiffiffiffiffiffi
4π

p
r
; ð2:13Þ

where

Ukðu; vÞ ¼
1ffiffiffiffiffiffiffiffi
4πk

p ½e−ikv þ EkðuÞ�; ð2:14Þ

k > 0, and Ek is to be found. As any choice for Ek satisfies
the wave equation, the task is to determine Ek so that the
boundary condition (2.7) is satisfied for all t and the usual
Minkowski modes are obtained for t ≤ 0.
Substituting (2.14) in the boundary condition (2.7) gives

for Ek the ordinary differential equation

L sinðθðtÞÞ d
dt

½e−ikt − EkðtÞ� ¼ cosðθðtÞÞ½e−ikt þ EkðtÞ�:
ð2:15Þ

Writing

EkðuÞ ¼ Rk=λðλuÞ ð2:16Þ

and using (2.8), (2.15) takes the dimensionless form

sinðhðyÞÞ d
dy

½e−iKy − RKðyÞ� ¼ cosðhðyÞÞ½e−iKy þ RKðyÞ�;

ð2:17Þ

where K¼k=λ>0 is the dimensionless frequency and
y ¼ λu.
To solve (2.17), we introduce the auxiliary function

BðyÞ¼
8<
:
0 for y≤0;

expð−R
1
y cotðhðzÞÞdzÞ for 0<y<1;

1 for y≥1:

ð2:18Þ
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BðyÞ is everywhere smooth: smoothness at y ¼ 1 follows
from the smoothness of hðzÞ near z ¼ 1, and smoothness at
y ¼ 0 is shown in Appendix B. For y > 0, BðyÞ satisfies

B0ðyÞ
BðyÞ ¼ cotðhðyÞÞ: ð2:19Þ

It follows that the solution to (2.17) is

RKðyÞ ¼
�−e−iKy for y ≤ 0;

−e−iKy − 2iK
BðyÞ

R y
0 BðzÞe−iKzdz for 0 < y < ∞:

ð2:20Þ

From (2.20) and the smoothness of B we see that RKðyÞ is
smooth everywhere except possibly at y ¼ 0, and we verify
in Appendix B that RKðyÞ isC25 at y ¼ 0. It follows that the
mode functions are smooth everywhere except possibly at
r ¼ t, and they are at least C25 at r ¼ t.
An alternative expression for RKðyÞ is

RKðyÞ ¼

8>><
>>:

−e−iKy for y ≤ 0;

e−iKy − 2
BðyÞ

R y
0 B

0ðzÞe−iKzdz for 0 < y < 1;

e−iKy − 2CK for y ≥ 1;

ð2:21Þ

where

CK ¼
Z

1

0

B0ðzÞe−iKzdz: ð2:22Þ

At u ≤ 0 and u ≥ λ−1, the mode functions ϕk (2.13) hence
reduce respectively to

ϕkðt; rÞ ¼
8<
:

− ie−ikt sinðkrÞ
2π

ffiffi
k

p
r

for u ≤ 0;

e−ikt cosðkrÞ−Ck=λ

2π
ffiffi
k

p
r

for u ≥ λ−1:
ð2:23Þ

For u ≤ 0, ϕkðt; rÞ coincide with the usual Minkowski
space mode functions. Evaluating the Klein-Gordon inner
product (2.5) on a hypersurface of constant negative t
shows that the normalization is ðϕk;ϕk0 ÞKG ¼ δðk − k0Þ.
For u ≥ λ−1, the r-dependence in the numerator of ϕkðt; rÞ
(2.23) contains the term cosðkrÞ, which one would expect
from the boundary condition (2.7) with θ ¼ π=2, but it
contains also the additive memory term −Ck=λ, which
carries a recollection of how the boundary condition
evolved from θ ¼ 0 to θ ¼ π=2. From (2.22) we see that
CK is smooth in K, C0 ¼ 1, and CK → 0 faster than any
inverse power of K as K → ∞, as can be verified by
repeated integration by parts [26]. For fixed λ, the memory
term is hence insignificant at large frequencies but

significant at low frequencies. We shall see in Sec. III that
the memory term has a significant effect on the stress-
energy tensor and the Wightman function.
A spacetime diagram is shown in Fig. 1, indicating the

regions u < 0, 0 < u < λ−1 and u > λ−1.

III. QUANTIZED FIELD

A. Field operator and the Fock vacuum

We quantize the field by using for the spherically
symmetric sector the mode functions found in Sec. II
and treating the nonzero angular momentum sectors as in
ordinary Minkowski space. As we are interested in the
effects due to the evolving boundary condition, compared
with a field in ordinary Minkowski space, we write out only
the expressions for the spherically symmetric sector.
We expand the spherically symmetric sector of the

quantized field as

FIG. 1. Spacetime diagram of the evolving boundary condition
(2.7) at r ¼ 0, with the angular dimensions suppressed. The
interpolation between θ ¼ 0 and θ ¼ π=2 at r ¼ 0 occurs over
0 < t < λ−1 (solid line), and the null cones of the events where
the boundary condition changes fill the region 0 < u < λ−1 in the
spacetime. The early region u < 0 is outside the null cone of
ðt; rÞ ¼ ð0; 0Þ, and the mode functions there coincide with those
in full Minkowski space. The mode functions in the late region
u > λ−1 carry a memory of the field evolution that occurred over
the intermediate region 0 < u < λ−1. The infinite contributions to
the energy at r ¼ 0 (positive infinity) and r ¼ t (negative infinity)
are shown as heavy dashed lines. The spacelike hypersurface
t ¼ T > λ−1, shown as a short dashed line, intersects all three
regions.
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ϕ ¼
Z

∞

0

ðakϕk þ a†kϕkÞdk; ð3:1Þ

where the annihilation and creation operators have the
commutators ½ak; a†k0 � ¼ δðk − k0Þ. By the normalization of
the mode functions, this gives the field and its time
derivative the correct equal-time commutator. We denote
by j0i the state that is annihilated by all ak and by all the
annihilation operators of the nonzero angular momentum
sectors. In the region u < 0, j0i coincides with the usual
Minkowski vacuum, which we denote by j0Mi.

B. Energy density

In the Lorentz frame of the metric (2.4), the energy
density of the classical scalar field is given in terms of the
energy-momentum tensor by

T00 ¼ Tuu þ Tvv þ 2Tuv; ð3:2Þ

where [15]

Tuu ¼ ð∂uϕÞ2; ð3:3aÞ

Tvv ¼ ð∂vϕÞ2; ð3:3bÞ

Tuv ¼ Tvu ¼
1

4r2
½ð∂θϕÞ2 þ ðsin θÞ−2ð∂φϕÞ2�; ð3:3cÞ

and we have taken the scalar field to be minimally coupled.
To obtain the renormalized energy density of the quantized
field in the state j0i, hT00i ≔ h0jT00j0iren, we point-split
the expressions in (3.3), take the expectation value in j0i,
renormalize by subtracting the corresponding expectation
value in j0Mi, and finally take the coincidence limit. As j0i
and j0Mi differ only in the spherically symmetric sector, the
derivatives in (3.3c) show that hTuvi ¼ 0, and we find

hT00i ¼ lim
u1 ;u2→u
v1 ;v2→v

ð∂u1∂u2 þ ∂v1∂v2Þ½h0jϕð1Þϕð2Þj0i

− h0Mjϕð1Þϕð2Þj0Mi�; ð3:4Þ

where ϕ now stands for the spherically symmetric quantum
field (3.1).
To evaluate (3.4), we write ϕ in terms of f as in (2.6).

Recalling that r ¼ ðv − uÞ=2, this gives

hT00i ¼
1

4π

�hð∂ufÞ2i
r2

þ hð∂vfÞ2i
r2

þ hfð∂uf − ∂vfÞi þ hð∂uf − ∂vfÞfi
2r3

þ hf2i
2r4

�
:

ð3:5Þ

By (2.6), (2.13) and (3.1), f has the expansion

f ¼
Z

∞

0

ðakUk þ a†kUkÞdk: ð3:6Þ

From (2.14), (2.16) and (3.6) we obtain for hT00i the final
expression

hT00i ¼
λ2

16π2r2

Z
∞

0

dK
K

½jR0
Kðλðt − rÞÞj2 − K2�

−
1

32π2r2
∂
∂r

�
Gλðt; rÞ

r

�
; ð3:7Þ

where the prime on RK denotes the derivative with respect
to the argument and

Gλðt;rÞ¼
Z

∞

0

dK
K

�
jRKðλðt−rÞÞj2þ2cosð2KλrÞ−1

þRKðλðt− rÞÞeiKλðtþrÞ þRKðλðt− rÞÞe−iKλðtþrÞ
�
:

ð3:8Þ

The first term in (3.7) comes from the first term in (3.5),
the second term in (3.7) comes from the last two terms in
(3.5), and the second term in (3.5) vanishes. We note in
passing that Gλ is related to the renormalized vacuum
polarization hϕ2i by

hϕ2i ¼ Gλðt; rÞ
16π2r2

: ð3:9Þ

C. Energy density in the early, late
and intermediate regions

We consider hT00i separately in the early region, t < r,
in the late region, t > rþ λ−1, and in the intermediate
region, r ≤ t ≤ rþ λ−1.
In the early region, t < r, j0i coincides with j0Mi, and

hT00i vanishes. This can be seen immediately from (3.4),
and also by substituting (2.20) into (3.7) and (3.8).
In the late region, t > rþ λ−1, the first term in (3.7)

vanishes. We show in Appendix C that hT00i is a pointwise
well defined function, it has dependence on both t and r, it
is continuous, and it has the asymptotic forms

hT00i ∼
ln t

4π2r4
as t → ∞ with r fixed; ð3:10aÞ

hT00i ∼ −
ln r
8π2r4

as r → 0 with t fixed: ð3:10bÞ

On the hypersurface of t ¼ T ¼ constant with T > λ−1 (see
Fig. 1), every ball of radius less than T − λ−1 contains
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hence an infinite total energy, due to positive hT00i that
diverges as r → 0.
In the intermediate region, r ≤ t ≤ rþ λ−1, we show in

Appendix D that hT00i is a pointwise well-defined function,
and it is continuous in r for t > r. Under the technical
assumption that the third derivative of tanðhðyÞÞ is non-
negative for sufficiently small positive y, we show in
addition that hT00i is well defined also at t ¼ r (where it
then vanishes); however, due to contributions from the first
term in (3.7), hT00i tends to negative infinity as r → t−,
faster than any negative multiple of 1=hðλðt − rÞÞ. In
particular, hT00i is not continuous at r ¼ t. This implies
that integrating hT00i on a hypersurface of t ¼ T ¼
constant > 0 over an an arbitrarily small neighborhood
of r ¼ T gives negative infinite energy. The changing
boundary condition creates a pulse of infinite negative
energy traveling outward, immediately to the future of the
light cone of the point ðt; rÞ ¼ ð0; 0Þ where the boundary
condition starts to change.
Combining the results of the two previous paragraphs,

it follows that the total energy on the hypersurface of
t ¼ T ¼ constant with T > λ−1 is not defined, even though
hT00i exists at every point. Given an r0 ∈ ð0; TÞ, the total
energy for r ≤ r0 is positive infinite, due to a large positive
contribution from r → 0, while the total energy for r ≥ r0 is
negative infinite, due to a large negative contribution
from r → T−.

D. Rapid boundary condition change

Finally, consider the limit in which the boundary con-
dition changes rapidly, λ → ∞. At each given point in the
region t > r, hT00i diverges in this limit, with the asymp-
totic form

hT00i ∼
ln λ
8π2r4

; ð3:11Þ

as we show in Appendix C. In the limit of rapid source
creation, hT00i hence diverges everywhere inside the light
cone of the creation event. This is in a stark contrast to the
corresponding (1þ 1)-dimensional wall creation, where
hT00i vanishes inside the light cone of the creation
event [22].

IV. RESPONSE OF AN UNRUH-DEWITT
DETECTOR

In this section we consider an inertial Unruh-DeWitt
(UDW) detector [24,25] at a fixed spatial location.
We consider a detector that is coupled linearly to the

quantum field. Within first-order perturbation theory, the
probability of the detector to undergo a transition from a
state with energy 0 to a state with energy ω is proportional
to the response function, given by [15,16,24,25]

F ðωÞ ¼
Z

∞

−∞
dt1

Z
∞

−∞
dt2e−iωðt1−t2Þχðt1Þχðt2ÞWðt1; t2Þ;

ð4:1Þ

where the smooth real-valued switching function χ spec-
ifies how the detector’s interaction with the field is turned
on and off, and W is the pull-back of the field’s Wightman
function to the detector’s worldline. In the Minkowski
vacuum j0Mi, we have [15]

W j0Miðt1; t2Þ ¼ −
1

4π2ðt1 − t2 − iϵÞ2 ; ð4:2Þ

where the limit ϵ → 0þ is implied and encodes the
distributional part of W, and from (4.1) we obtain
[18,27,28]

F j0MiðωÞ ¼ −
ωΘð−ωÞ

2π

Z
∞

−∞
du½χðuÞ�2

þ 1

2π2

Z
∞

0

ds
cosðωsÞ

s2

×
Z

∞

−∞
duχðuÞ½χðuÞ − χðu − sÞ�; ð4:3Þ

where Θ is the Heaviside function. Denoting by F j0i the
response function in the state j0i, and setting
ΔF ¼ F j0i − F j0Mi, we then have

ΔF ðωÞ ¼
Z

∞

−∞
dt1

Z
∞

−∞
dt2e−iωðt1−t2Þχðt1Þχðt2ÞΔWðt1; t2Þ;

ð4:4Þ

where

ΔWðt1; t2Þ¼
1

4πr2

Z
∞

0

�
Ukðt1− r;t1þ rÞUkðt2− r;t2þ rÞ

−UM
k ðt1−r; t1þ rÞUM

k ðt2− r; t2þ rÞ
�
dk;

ð4:5Þ

r is the location of the detector, and UM is as in (2.14) but
with EkðuÞ ¼ −e−iku for all u. Note that ΔWðt1; t2Þ
vanishes when t1; t2 ≤ r.
We consider a detector that operates only in the future

region, t > rþ λ−1. For t1; t2 > rþ λ−1, the integrand in
(4.5) can be rearranged and split to give
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4π2r2ΔWðt1; t2Þ ¼
Z

∞

0

dK
K

½ð1 − CKÞeiKλt2 þ ð1 − CKÞe−iKλt1 � cosðKλrÞ þ
Z

∞

0

dK
K

½jCKj2 − cosðKλrÞ�

þ
Z

∞

0

dK
K

½ð1 − eiKλt2Þ þ ð1 − e−iKλt1Þ� cosðKλrÞ þ
Z

∞

0

dK
K

ðe−iKλðt1−t2Þ − 1Þ cosð2KλrÞ

þ
Z

∞

0

dK
K

½cosð2KλrÞ − cosðKλrÞ�: ð4:6Þ

The integrals can be evaluated by the formulas of Appendix E, with the result

8π2r2ΔWðt1; t2Þ ¼ Hðλðt2 þ rÞÞ þHðλðt2 − rÞÞ þHðλðt1 þ rÞÞ þHðλðt1 − rÞÞ þ ln

�
λ2ðt21 − r2Þðt22 − r2Þ
j4r2 − ðt1 − t2Þ2j

�
þ iπ½Θðt2 − t1 − 2rÞ − Θðt1 − t2 − 2rÞ� þ 2k1; ð4:7Þ

where the function H is defined in Proposition E.2 and the
constant k1 is given by (E.2). Note that Wðt1; t2Þ has
singularities at jt1 − t2j ¼ 2r, which is when the two points
are separated by a null geodesic that bounces off the origin,
but this singularity is only logarithmic, and ΔWðt1; t2Þ
is representable by a function. Note also that the first
four terms in (4.7) are real because t1; t2 > rþ λ−1 by
assumption and HðαÞ is real for α ≥ 1 by (E.4).
We consider two limits.
First, suppose that the support of χ is contained in some

finite interval of fixed length, centered at t ¼ tc, and
consider the limit tc → ∞. By the large argument expan-
sion of H in (E.5), the contribution from the H-terms in
(4.7) vanishes in this limit, and we have

ΔF ðωÞ ∼ ðln tcÞjχ̂ðωÞj2
2π2r2

; ð4:8Þ

where the hat denotes the Fourier transform, χ̂ðωÞ ≔R∞
−∞ e−iωtχðtÞdt. ΔF hence diverges in this limit, propor-
tionally to ln tc. This is similar to the late time divergence of
hT00i (3.10a).
Second, consider the limit of large λ. We assume that

the support of χ is contained in ½rþ a;∞Þ, where a is a
positive constant, and we take λ large enough that λ−1 < a.
By similar arguments, we find

ΔF ðωÞ ¼ ðln λÞjχ̂ðωÞj2
4π2r2

þOð1Þ: ð4:9Þ

The ln λ divergence in (4.9) at λ → ∞ is similar to the ln λ
divergence of hT00i in (3.11).

V. SUMMARY AND DISCUSSION

We have addressed the smooth and sharp creation of a
pointlike source for a massless scalar field in (3þ 1)-
dimensional Minkowski spacetime, implemented by intro-
ducing at the spatial origin a time-dependent boundary
condition that interpolates between ordinary Minkowski

dynamics and a Dirichlet-type boundary condition. We
found that the process is significantly more singular than a
corresponding creation of a wall in (1þ 1)-dimensional
Minkowski spacetime [22]. While hT00i is well defined
away from the source, it is unbounded from above and
below: there is a pulse of infinite negative energy traveling
outward, and there is a cloud of infinite positive energy that
lingers around the fully formed source. In the rapid source
creation limit, hT00i diverges everywhere in the timelike
future of the creation event, and so does the response of an
Unruh-DeWitt detector that operates in the timelike future
of the creation event.
There are two technical reasons for the differences

between our (3þ 1)-dimensional process and the corre-
sponding (1þ 1)-dimensional process analyzed in [22].
First, as our boundary condition is at a single spatial point,
it does not divide the (3þ 1)-dimensional spacetime into
two regions. Our boundary condition in fact resembles
more closely the removal of a (1þ 1)-dimensional wall
than its creation [23]. This affects both hT00i and the
response of the Unruh-DeWitt detector. Second, the
(3þ 1)-dimensional hT00i (3.5) contains terms that have
no counterpart in 1þ 1 dimensions, and these additional
terms are especially significant near the source.
We emphasize that the infinite negative energy radiating

from the evolving source is localized in the immediate
future of the light cone of the point where the boundary
condition starts to change, and this negative energy cannot
be made finite by slowing down the boundary condition
change. We have verified, adapting the methods of our
Appendix D and under analogous technical assumptions,
that a similar infinite energy occurs also in the (1þ 1)-
dimensional wall creation of Sec. II in [22], but with
two qualitative differences: the infinite energy in [22] is
localized not where the boundary condition starts to change
but where the boundary condition approaches its final
value, and the infinite energy has positive sign. Specifically,
formula (2.17b) in [22] tends toþ∞ as u → λ−1− , so fast that
the total energy in (2.18) and (2.19) is positive infinity.
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Formula (2.20) in [22] is hence not correct: the term
denoted therein by Oð1Þ should be replaced by positive
infinity. We suspect that similar comments may apply to
formulas (3.7b), (3.8) and (3.9) in [22]. Note, however, that
the results about detector response versus total energy in
[22] were obtained via the boundary condition family (4.1),
and they are hence not affected by the infinities that occur
in (2.18)–(2.20).
Our results, including the divergent negative energy near

r ¼ t, suggest that the creation of a pointlike source in
quantum field theory may be sufficiently singular to model
the breaking of correlations that has been proposed to
happen at the horizon of an evaporating black hole [8–14].
It is conceivable that the divergent negative energy near
r ¼ t and the divergent positive energy near r ¼ 0 could be
arranged to cancel and produce a finite total energy on each
hypersurface of constant t, but such a cancellation would
require a nonlocal correlation between the regulator near
r ¼ t and the regulator near r ¼ 0.
We note in passing that while the source creation

contributes to the imaginary part of the Wightman function,
the imaginary part of the Wightman function on a trajectory
of constant r in the late time region consists only of the
terms proportional to Θðt2 − t1 − 2rÞ and Θðt1 − t2 − 2rÞ
in (4.7). As the imaginary part of the Wightman function
is the commutator, this shows that the source creation
does not produce a lingering violation of strong Huygens’
principle in the late time region on a trajectory of
constant r. The source creation does hence not appear to
offer opportunities for enhanced quantum communication
of the kind examined in [29–31].
Finally, we anticipate that our techniques can be adapted

to address an evolving boundary condition on a spherical
shell or ball, where the dynamics will be potentially more
germane for modeling possible new physics in the space-
time of an evaporating black hole. In particular, will the
evolving boundary condition on the spherical shell or ball
lead to diverging positive or negative energies in some
regions of the spacetime?

ACKNOWLEDGMENTS

We thank Jim Langley for providing the proof of
Proposition B.1, Eduardo Martín-Martínez for raising
the question of the strong Huygens’ principle violation,
and Joel Feinstein and Alex Schenkel for helpful dis-
cussions. This work was funded in part by the Natural
Sciences and Engineering Research Council of Canada
(M. E. C. and G. K.) and by Science and Technology
Facilities Council (J. L., Theory Consolidated Grant
ST/J000388/1). For hospitality, G. K. thanks the
University of Nottingham, and J. L. thanks the
University of Winnipeg, the Winnipeg Institute for
Theoretical Physics, and the Nordita 2016 “Black
Holes and Emergent Spacetime” program.

APPENDIX A: SCALAR LAPLACIAN
ON PUNCTURED Rn

In this appendix we record relevant properties of the
scalar Laplacian on punctured Euclidean Rn with n ≥ 2.
We use spherical coordinates in which r is the radial

coordinate and the puncture is at r ¼ 0. The scalar
Laplacian reads

∇2 ¼ 1

rn−1
∂rðrn−1∂rÞ þ

1

r2
∇2

Sn−1 ; ðA1Þ

where ∇2
Sn−1 is the Laplacian on unit Sn−1. The L2 inner

product is

ðg1; g2Þ ¼
Z

∞

0

rn−1dr
Z
Sn−1

dΩg1g2; ðA2Þ

where dΩ is the volume element on unit Sn−1.
The scaling g ¼ rð1−nÞ=2f maps the inner product to

ðf1; f2Þsc ¼
Z

∞

0

dr
Z
Sn−1

dΩf1f2 ðA3Þ

and ∇2 to

∇2
sc ¼ ∂2

r −
ðn − 1Þðn − 3Þ

4r2
þ 1

r2
∇2

Sn−1 : ðA4Þ

After decomposition into spherical harmonics, ∇2
sc reduces

for each harmonic to the operator ∂2
r − a=r2, where

a ≥ −1=4, and the inner product ð·; ·Þsc reduces to the
standard L2 inner product on the positive half-line. The
self-adjoint extensions of ∇2

sc for each harmonic can hence
be analyzed by standard methods [32,33] (for a pedagogical
introduction see [34]), and the outcomes are summarized
in [35]. The self-adjoint extension is unique except for
a ¼ −1=4, which occurs in the spherically symmetric
sector for n ¼ 2, and for a ¼ 0, which occurs in the
spherically symmetric sector for n ¼ 3. In each of these
two cases there is a Uð1Þ family of self-adjoint extensions,
characterized by a boundary condition at the origin.
In the n ¼ 3 spherically symmetric sector, the boundary

condition at the origin is

cos θ lim
r→0

fðrÞ ¼ L sin θ lim
r→0

f0ðrÞ; ðA5Þ

where L is a positive constant of dimension length,
introduced for dimensional convenience, and θ ∈ ½0; πÞ
is the parameter that specifies the extension. For θ ∈
½0; π=2� the spectrum consists of the negative continuum,
while for θ ∈ ðπ=2; πÞ there is also one proper eigenvalue,
which is positive and nondegenerate. The case θ ¼ 0

reduces to the essentially self-adjoint operator ∇2

on L2ðR3Þ.
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APPENDIX B: MODE FUNCTION
REGULARITY ACROSS r= t

In this appendix we show that the function BðyÞ (2.18)
is smooth at y ¼ 0 and the function RKðyÞ (2.20) is C25

at y ¼ 0. This shows that the mode functions are C25

across r ¼ t.

1. BðyÞ (2.18)
We shall show that the function BðyÞ (2.18) is smooth

at y ¼ 0.
From (2.18) it is immediate that BðyÞ → 0 as y → 0þ.

We show below in Proposition B.1 that BðnÞðyÞ → 0 as
y → 0þ for n ∈ N ¼ f1; 2;…g. From this it follows by
L’Hôpital and induction in n that all derivatives of BðyÞ at
y ¼ 0 exist and vanish.
Proposition B.1. For n ∈ N, BðnÞðyÞ → 0 as y → 0þ.
Proof.—(This proof was provided by Jim Langley.)

Let 0 < y < 1, and write gðyÞ ≔ tanðhðyÞÞ, where h was
defined in Sec. II A. Note that gðyÞ > 0, gðyÞ and all its
derivatives approach 0 as y → 0þ, and from (2.18) we have

BðyÞ ¼ exp

�
−
Z

1

y

dz
gðzÞ

�
; ðB1Þ

B0ðyÞ ¼ BðyÞ=gðyÞ: ðB2Þ

For n ∈ N, induction gives

BðnÞðyÞ ¼ PnðyÞfnðyÞ; ðB3aÞ

fnðyÞ ¼
BðyÞ

ðgðyÞÞn ; ðB3bÞ

where each Pn is a polynomial in g and its derivatives.
Since each Pn is bounded as y → 0þ, it suffices to show
that fnðyÞ → 0 as y → 0þ for n ∈ N.
From (B3b) we have

lnðfnðyÞÞ ¼ −
�Z

1

y

dz
gðzÞ

��
1þ n lnðgðyÞÞR

1
y

dz
gðzÞ

�
: ðB4Þ

As y → 0þ, the first parentheses in (B4) tend to ∞,
while the second parentheses tend to 1 by L’Hôpital.
Hence lnðfnðyÞÞ → −∞ as y → 0þ, by which fnðyÞ → 0
as y → 0þ. □

2. RKðyÞ (2.20)
We shall show that the function RKðyÞ (2.20) is C25

at y ¼ 0.
We write (2.20) as

RKðyÞ ¼
�
−e−iKy for y ≤ 0;

−e−iKy − 2iKSKðyÞ for 0 < y < ∞;
ðB5Þ

where K > 0 and

SKðyÞ ¼ JKðyÞ=BðyÞ; ðB6aÞ

JKðyÞ ¼
Z

y

0

BðzÞe−iKzdz: ðB6bÞ

We show below in Proposition B.3 that SðnÞK ðyÞ → 0 as
y → 0þ for n ¼ 0; 1; 2;…; 25. This and (B5) show that
RKðyÞ is C25 at y ¼ 0. For the purposes of Appendix D, we
formulate Proposition B.3 for SK that is defined by (B6) not
just for K > 0 but for K ∈ R.
Lemma B.2. For K∈R, 0<y<1 and n∈f1;2;…;25g,

we have

SðnÞK ðyÞ ¼ hK;nðyÞ
BðyÞðgðyÞÞn ; ðB7Þ

where g was defined above (B1) and hK;n satisfies

hðkÞK;nðyÞ ¼ rK;n;kðyÞBðyÞ þ sK;n;kðyÞJKðyÞ for 0 ≤ k ≤ n;

ðB8Þ

where each rK;n;k and sK;n;k is a polynomial in g, its
derivatives and e−iKy, and rK;n;nðyÞ → 0 as y → 0þ.
Proof.—Starting from (B6) and using repeatedly (B2)

and the identity

J0KðyÞ ¼ e−iKyBðyÞ; ðB9Þ

we have verified the claim case by case for each n and k,
with the help of algebraic computing. □

Proposition B.3. For K ∈ R and n ∈ f0; 1; 2;…; 25g,
SðnÞK ðyÞ → 0 as y → 0þ.
Proof.—Consider SK. We use in (B6a) L’Hôpital with

(B2) and (B9), obtaining limy→0þSðyÞ¼ limy→0þJ
0ðyÞ=

B0ðyÞ¼ limy→0þe
−iKygðyÞ¼0.

Consider then the derivatives of SK . From (B2) we have

d
dy

½BðyÞðgðyÞÞn� ¼ BðyÞðgðyÞÞn−1ð1þ ng0ðyÞÞ: ðB10Þ

By Lemma B.2, we may hence evaluate limy→0þS
ðnÞ
K ðyÞ

for n ≥ 1 by applying L’Hôpital to (B7) n times, using
after the nth differentiation limy→0þJKðyÞ=BðyÞ ¼
limy→0þSKðyÞ ¼ 0. □

We stopped Lemma B.2 at n ¼ 25 because of computing
time limitations in the case-by-case proof. If Lemma B.2
extends to n ∈ N, the proof of Proposition B.3 generalizes
to n ∈ N and implies smoothness of RKðyÞ at y ¼ 0.
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APPENDIX C: hT00i AT LATE TIMES

In this appendix we verify the properties of hT00i quoted
in Secs. III C and III D in the late time region, t > rþ λ−1.
Let t > rþ λ−1. From the last line of (2.21) we see that

the first term in (3.7) vanishes. It hence suffices to consider
Gλ (3.8), which by the last line of (2.21) reduces to

Gλðt; rÞ ¼ 4

Z
∞

0

dK
K

½jCKj2 þ cosð2KλrÞ

− ðCKeiKλt þ CKe−iKλtÞ cosðKλrÞ�; ðC1Þ
where the integral is convergent (at large K in the sense of
an improper Riemann integral) by the properties of CK
noted in Sec. II B: CK is smooth in K, C0 ¼ 1, and CK → 0
faster than any inverse power of K as K → ∞.
Rearranging the integrand in (C1) gives

Gλðt; rÞ ¼ 4

Z
∞

0

dK
K

½ð1−CKÞeiKλtþð1−CKÞe−iKλt�

×cosðKλrÞ

þ 2

Z
∞

0

dK
K

½jCKj2 − cosðKλðtþ rÞÞ�

þ 2

Z
∞

0

dK
K

½jCKj2 − cosðKλðt− rÞÞ�

þ 2

Z
∞

0

dK
K

½cosð2KλrÞ− cosðKλðtþ rÞÞ�

þ 2

Z
∞

0

dK
K

½cosð2KλrÞ− cosðKλðt− rÞÞ�: ðC2Þ

The integrals can be evaluated by the formulas of
Appendix E, with the result

Gλðt; rÞ ¼ 2Hðλðtþ rÞÞ þ 2Hðλðt − rÞÞ
þ 2Hðλðtþ rÞÞ þ 2Hðλðt − rÞÞ

þ 4 ln

�
λðt2 − r2Þ

r

�
− 4 ln 2þ 4k1; ðC3Þ

where the function H is defined in Proposition E.3 and the
constant k1 is given by (E2).
The observations in Secs. III C and III D about hT00i at

t > rþ λ−1 follow from (C3) by Proposition E.2.

APPENDIX D: hT00i AT INTERMEDIATE TIMES

In this appendix we verify the properties of hT00i
quoted in Sec. III C in the intermediate time region,
r ≤ t ≤ rþ λ−1.

1. Preliminaries

For r < t < rþ λ−1, the integrals in (3.8) and in the first
term in (3.7) are convergent because (2.21) implies for
fixed y ∈ ð0; 1Þ the small K estimates

RKðyÞ ¼ −1þOðKÞ; ðD1aÞ

jR0
KðyÞj2 ¼ OðK2Þ; ðD1bÞ

and the large K estimates

RKðyÞ ¼ e−iKy

�
1þ 2

B0ðyÞ
BðyÞ

1

iK
þOðK−2Þ

�
; ðD2aÞ

jRKðyÞj2 ¼ 1þOðK−2Þ; ðD2bÞ

jR0
KðyÞj2 ¼ K2 þOðK−2Þ: ðD2cÞ

For t ¼ r, the integrands in (3.8) and in the first term
of (3.7) vanish.
For t ¼ rþ λ−1, the integrand in (3.7) vanishes, while

(3.8) is given by (C1) with t ¼ rþ λ−1, and all the steps
from (C1) to (C3) still hold with t ¼ rþ λ−1.
Collecting, we see that Gλðt; rÞ (3.8) and the first term

in (3.7) are well defined everywhere in r ≤ t ≤ rþ λ−1.
What remains is to examine the existence and continuity

of ∂rGλðt; rÞ, and the continuity of the first term in (3.7).
We address each in turn.

2. ∂rGλðt;rÞ
We show first that ∂rGλðt; rÞ exists and is continuous in r

for 0 < r < t, for each positive t. We then assume that
g000ðyÞ ≥ 0 for sufficiently small positive y, and show that
∂rGλðt; rÞ → 0 as r → t−. This establishes that the second
term in (3.7) exists and is continuous in r.
We introduce dimensionless variables by λt ¼ σ > 0 and

λr ¼ σ − y, where 0 < y < σ. The quantity of interest is
then Gλðσ=λ; ðσ − yÞ=λÞ ¼ F−ðyÞ þ FþðyÞ, where

F−ðyÞ ¼
Z

1

0

dK
K

½jRKðyÞj2 þ 2 cosð2Kðσ − yÞÞ − 1

þ RKðyÞeiKð2σ−yÞ þ RKðyÞe−iKð2σ−yÞ�; ðD3aÞ

FþðyÞ ¼
Z

∞

1

dK
K

½jRKðyÞj2 þ 2 cosð2Kðσ − yÞÞ − 1

þ RKðyÞeiKð2σ−yÞ þ RKðyÞe−iKð2σ−yÞ�; ðD3bÞ

and the notation suppresses the dependence of F� on σ.
In F−, using (B5) gives

F−ðyÞ ¼ 2

Z
1

0

dK½iðeiKy − eiKð2σ−yÞÞSKðyÞ

− iðe−iKy − e−iKð2σ−yÞÞSKðyÞ þ 2jSKðyÞj2�: ðD4Þ

Straightforward convergence estimates show that F−ðyÞ is
C1 for y > 0, and estimates using Proposition B.3 show that
F0
−ðyÞ → 0 as y → 0.
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In Fþ, we use the identity

RKðyÞ ¼ e−iKy −
2i
K

�
B0ðyÞ
BðyÞ e

−iKy − VKðyÞ
�
; ðD5Þ

where

VKðyÞ ¼
1

BðyÞ
Z

y

0

B00ðzÞe−iKzdz; ðD6Þ

obtained by integrating (2.21) by parts. This gives

FþðyÞ ¼ 2

Z
∞

1

dK

�
2

K3

�
B0ðyÞ
BðyÞ

�
2

þ 2

K
cosð2Kðσ − yÞÞ þ 2

K2

B0ðyÞ
BðyÞ sinð2Kðσ − yÞÞ

þ
�
−

2

K3

B0ðyÞ
BðyÞ e

iKy þ i
K2

eiKy þ i
K2

eiKð2σ−yÞ
�
VKðyÞ þ

�
−

2

K3

B0ðyÞ
BðyÞ e

−iKy −
i
K2

e−iKy −
i
K2

e−iKð2σ−yÞ
�
VKðyÞ

þ 2

K3
jVKðyÞj2

�
; ðD7Þ

from which straightforward estimates show that FþðyÞ is
C1 for y > 0.
To examine FþðyÞ and F0þðyÞ as y → 0, we evaluate

the integral over K in (D7). In the terms that do not
involve VK , the integral over K produces elementary
functions and the cosine integral Ci [36]. In the terms
that involve VK , we use (D6), we interchange the
integrations as justified by the absolute convergence of
the multiple integral, and we evaluate first the integral
over K in terms of elementary functions and the
exponential integral E1 [36]. Among the terms that
ensue, several have B0 or B00 under an integral; however,
integration by parts reduces most of these terms to
combinations that involve S1ðyÞ and T1ðyÞ, where

TKðyÞ ¼
1

BðyÞ
Z

y

0

BðzÞze−iKzdz; ðD8Þ

and the small y behavior of these terms and their
derivatives can be analyzed by Proposition B.3 and its
generalizations. We find that Fþ decomposes as FþðyÞ ¼
Fþ1ðyÞ þ Fþ2ðyÞ, where we omit the lengthy expression
for Fþ1ðyÞ but just note that it satisfies Fþ1ðyÞ → 0 and
F0
þ1ðyÞ → 0 as y → 0, while the expression for Fþ2ðyÞ

for y < 1 reads

Fþ2ðyÞ ¼
4

B2ðyÞ
Z

y

0

dzB0ðzÞ

×
Z

z

0

dt cos t B0ðz − tÞ gðzÞ − gðz − tÞ
t

: ðD9Þ

To control Fþ2ðyÞ, we introduce the additional technical
assumption that g000ðyÞ ≥ 0 for sufficiently small positive y.

For sufficiently small positive y, an elementary analysis
then gives for t ∈ ½0; y� the inequalities

g0ðyÞ
y

≤
g0ðyÞ − g0ðy − tÞ

t
≤ g00ðyÞ; ðD10aÞ

gðyÞ
y

≤
gðyÞ − gðy − tÞ

t
≤ g0ðyÞ; ðD10bÞ

understood at t ¼ 0 in the limiting sense. From now on we
assume y < 1 and so small that (D10) hold.
Consider now Fþ2ðyÞ. Applying L’Hôpital in (D9) and

using (D10b), we find that Fþ2ðyÞ → 0 as y → 0.
Consider then F0

þ2ðyÞ. Differentiating (D9) gives

F0
þ2ðyÞ¼

4

gðyÞB2ðyÞ
�
BðyÞ

Z
y

0

dtcostB0ðy−tÞgðyÞ−gðy−tÞ
t

−2

Z
y

0

dzB0ðzÞ
Z

z

0

dtcostB0ðz−tÞgðzÞ−gðz−tÞ
t

�
:

ðD11Þ

For the limit of F0
þ2ðyÞ as y → 0, L’Hôpital shows that it

suffices to consider

2

gðyÞBðyÞ
Z

y

0

dt cos t

�
−B0ðy − tÞ gðyÞ − gðy − tÞ

t

þ gðyÞB00ðy − tÞ gðyÞ − gðy − tÞ
t

þ gðyÞB0ðy − tÞ g
0ðyÞ − g0ðy − tÞ

t

�
: ðD12Þ
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The last term in (D12) can be controlled by (D10a). The
combination of the first two terms can be controlled
by taking y to be so small that g0 < 1, writing
B0 ¼ gB00=ð1 − g0Þ, and using (D10b) and the monotonicity
of g0. We find that F0

þ2ðyÞ → 0 as y → 0.
Combining these results shows that ∂rGλðt; rÞ is con-

tinuous in r for 0 < r ≤ t. This establishes that the second
term in (3.7) exists at each point and is continuous in r.

3. (3.7) first term

To analyse the first term in (3.7), it suffices to consider
~FðyÞ ¼ ~F−ðyÞ þ ~FþðyÞ, where y > 0 and

~F−ðyÞ ¼
Z

1

0

dK
K

½jR0
KðyÞj2 − K2�; ðD13Þ

~FþðyÞ ¼
Z

∞

1

dK
K

½jR0
KðyÞj2 − K2�: ðD14Þ

We show first that ~FðyÞ is continuous for y > 0. We then
assume that g000ðyÞ ≥ 0 for sufficiently small positive y, and
show that ~FðyÞ → −∞ as y → 0, faster than any negative
multiple of 1=gðyÞ.
In ~F−, we use (B5) and proceed as with F− (D3). We find

that ~F−ðyÞ is continuous for y > 0 and ~F−ðyÞ → 0
as y → 0.
In ~Fþ, we start as with Fþ (D3b), finding

~FþðyÞ ¼ 2

Z
∞

1

dK

�
2

K3

�
B0ðyÞ
BðyÞ

�
4

þ 2

K3

�
B0ðyÞ
BðyÞ

�
2

jVKðyÞj2

−
2

K3

�
B0ðyÞ
BðyÞ

�
3

½eiKyVKðyÞþ e−iKyVKðyÞ�

þ 2i
K2

�
B0ðyÞ
BðyÞ

�
2

½eiKyVKðyÞ− e−iKyVKðyÞ�

−
i
K2

B0ðyÞ
BðyÞ ½e

iKyWKðyÞ− e−iKyWKðyÞ�
�
; ðD15Þ

where VK is given by (D6) and

WKðyÞ ¼
1

BðyÞ
Z

y

0

B000ðzÞe−iKzdz: ðD16Þ

This shows that ~FþðyÞ is continuous for y > 1.
Proceeding as with (D7), and assuming y < 1, we find

~FþðyÞ ¼ ~Fþ1ðyÞ þ ~Fþ2ðyÞ, where we omit the lengthy
expression for ~Fþ1ðyÞ but just note that it satisfies
~Fþ1ðyÞ → 0 as y → 0, and

~Fþ2ðyÞ ¼
4

g2ðyÞB2ðyÞ
�Z

y

0

dzB0ðzÞJðzÞ − BðyÞJðyÞ
�
;

ðD17Þ

where

JðyÞ ¼
Z

y

0

dt cos t B0ðy − tÞ gðyÞ − gðy − tÞ
t

: ðD18Þ

No assumptions about the sign of g000ðyÞ have been made
yet. We now assume that g000ðyÞ ≥ 0 for sufficiently small
positive y, and we take y to be so small that (D10) hold,
cos y ≥ 1=2, and g0 ≤ 1=2, the last of which implies
B00 > 0. Differentiating (D18) and using (D10), we then
have J0ðyÞ ≥ 1

2
BðyÞ=y. Using (D17), and noting that the

square brackets therein have the derivative −BðyÞJ0ðyÞ,
L’Hôpital hence shows that gðyÞ ~Fþ2ðyÞ → −∞ as y → 0.
Collecting, these observations show that ~FðyÞ is con-

tinuous for y > 0, but ~FðyÞ → −∞ as y → 0, faster than
any negative multiple of 1=gðyÞ.

APPENDIX E: INTEGRALS

In this appendix we collect results about integrals that
appear in Sec. IVand Appendix C. We recall that CK (2.22)
is smooth in K, it falls off at large K faster than any inverse
power of K, and C0 ¼ 1.
Proposition E.1 For α; β > 0, we haveZ

∞

0

dK
K

ðeiαK − eiβKÞ ¼ lnðβ=αÞ; ðE1aÞ
Z

∞

0

dK
K

ðeiαK − e−iβKÞ ¼ lnðβ=αÞ þ iπ; ðE1bÞ
Z

∞

0

dK
K

½jCKj2 − cosðαKÞ� ¼ ln αþ k1; ðE1cÞ

where the integrals are improper Riemann integrals,

k1 ¼ γ þ
Z

1

0

dK
K

ðjCKj2 − 1Þ þ
Z

∞

1

dK
K

jCKj2 ðE2Þ

and γ is Euler’s constant.
Proof.—In (E1a) and (E1b), we insert a low K cutoff,

express the integral of each term in terms of the exponential
integral E1 [36], and use small argument form of E1 to
remove the cutoff.
In (E1c), we break the integral into the subintervals

0 < K < 1 and 1 < K < ∞, express the contributions from
the subintervals in terms of the cosine integrals Cin and Ci
[36], and use the cosine integral identities [36]. Note that k1
is finite because of the small and large K properties
of CK . □

Proposition E.2. For α > 0, let

HðαÞ ≔
Z

∞

0

dK
K

ð1 − CKÞeiαK; ðE3Þ

where the integral is an improper Riemann integral. Then
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HðαÞ ¼
(
−
R
1
0 dz

BðαÞ−BðzÞ
α−z þ ð1 − BðαÞÞðlnðα−1 − 1Þ þ iπÞ for 0 < α < 1;

−
R
1
0 dz

BðαÞ−BðzÞ
α−z for α ≥ 1:

ðE4Þ

It follows that H is C∞, HðαÞ is real for α ≥ 1, and HðαÞ for α > 1 has the absolutely convergent series representation

HðαÞ ¼ −
X∞
p¼0

1

αpþ1

Z
1

0

dzzpð1 − BðzÞÞ: ðE5Þ

Proof.—Consider first ImHðαÞ. Taking the imaginary part of (E3) under the integral, recalling that
R∞
0 dK sinðαKÞ=K ¼

π=2 (since α > 0 by assumption), and introducing a large K cutoff M > 0, we have

ImHðαÞ ¼ π

2
þ lim

M→∞
IðM; αÞ; ðE6Þ

where

IðM;αÞ ≔ −
Z

M

0

dK
K

Z
1

0

dzB0ðzÞ sinððα − zÞKÞ ¼ −
Z

1

0

dzB0ðzÞ
Z

M

0

dK
K

sinððα − zÞKÞ ¼ −
Z

1

0

dzB0ðzÞSiððα − zÞMÞ

¼ −Siððα − 1ÞMÞ −
Z

1

0

dzBðzÞ sinððα − zÞMÞ
α − z

¼ −Siððα − 1ÞMÞ − BðαÞ
Z

1

0

dz
sinððα − zÞMÞ

α − z
þ
Z

1

0

dz
BðαÞ − BðzÞ

α − z
sinððα − zÞMÞ

¼ ðBðαÞ − 1ÞSiððα − 1ÞMÞ − BðαÞSiðαMÞ þ
Z

1

0

dz
BðαÞ − BðzÞ

α − z
sinððα − zÞMÞ: ðE7Þ

The first equality in (E7) is a definition, the second equality
comes by interchanging the integrals, justified by the
absolute convergence of the double integral, and the third
equality uses the definition of the sine integral function
Si [36]. The fourth equality comes from integration by
parts, the fifth equality by decomposing the integrand, and
the sixth equality by using again the definition of Si. In the
last expression in (E7), the integral term vanishes as M →
∞ by the Riemann-Lebesgue lemma, and since SiðxÞ →
�π=2 as x → �∞ [36], the other two terms show that
IðM;αÞ → −πBðαÞ þ π=2 as M → ∞. From this and (E6)
we obtain the imaginary part of (E4).

Consider then ReHðαÞ. Taking the real part of (E2) under
the integral, we introduce both a large K cutoff and a small
K cutoff and proceed as above, using now the cosine
integrals Cin and Ci [36]. Removing the cutoffs with the
help of the cosine integral identities [36] gives the real part
of (E4).
The smoothness of H and the reality of HðαÞ for α ≥ 1

are immediate from (E4). The series (E5) follows from (E4)
by writing ðα − zÞ−1 ¼ α−1ð1 − ðz=αÞÞ−1 and using the
geometric series. □
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