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Robust Indirect Field Oriented Control of Induction 

Generator 
 

 

 

 

 
Abstract—The paper presents a novel robust field oriented 

vector control for induction generators. The proposed controller 

exploits the concept of indirect field orientation and guarantees 

asymptotic DC-link voltage regulations when DC-load is constant 

or slowly varying. An output-feedback linearizing Lyapunov’s 

based technique is employed for the voltage controller design. 

Flux subsystem design provides robustness with respect to rotor 

resistance variations. Decomposition of the voltage and current-

flux subsystems, based on the two-time scale separation, allows to 

use a simple controllers tuning procedure.  

Results of comparative experimental study with standard 

indirect field oriented control are presented. It is shown that in 

contrast to existing solutions designed controller provides system 

performances stabilization when speed and flux are varying. 

Experimentally shown that robust field oriented controller 

ensures robust flux regulation and robust stabilization of the 

torque current dynamics leading to improved energy efficiency of 

the electromechanical conversion process. Proposed controller is 

suitable for energy generation systems with variable speed 

operation.  

Keywords—induction generator, field-oriented control, variable 

speed energy generation. 

I. INTRODUCTION 

Variable speed electrical generation is an attractive solution 
for many energy plants: diesel, hydro and wind power stations 
[1], [2], ground vehicle, aerospace and naval power systems 
[3]. Main advantage of the variable speed generation is higher 
achievable energy efficiency of the primary mover and 
electrical generator.  

The doubly-fed induction generator with vector control is 
an attractive solution for variable-speed energy generation 
applications with a converter connected between the stator and 
rotor [4]. The DFIG allows to produce constant-frequency 
electric power from a prime mover whose speed varies within a 
slip range, typically 20–30% of the DFIG synchronous speed. 
The converter needs only be rated for a fraction of the total 
output power, which depends on the allowable slip range [5]. 
AC-DC-AC power electronics configurations are commonly 
used for permanent magnet synchronous generator (PMSG) 
based systems [6], which are known as the most advanced 
generation systems for modern wind power stations. 
Nevertheless cost of PMSG is significantly higher than 
induction machine due to the use of rare-earth magnetic 
materials which have a very limited origin and their cost is 
continuously increasing. The tendency to reduce the use of 
expensive rare-earth magnets has driven a renewed interest for 
research into advanced design and control concepts for 
induction machine. 

Simple and cheap induction machine generation system 
(IG), based on capacitor self-excitation [7], does not provide 
required accuracy of the voltage and frequency control. 

An alternative approach is known as induction generation 
under field oriented control, reported in large number of 
publications since 1990th [1], [8], Fig.1. The standard control 
system structure of the field oriented generation is simple a 
copy of speed control system having indirect or direct field 
orientation with speed PI controller replaced by DC-bus PI 
voltage controller. The similarity of the two system is based on 
fact that outputs of the two controllers form the reference 
signal for electric machine torque and consequently for torque 
producing component of the stator current vector. Flux 
subsystems for motor and generation operation are the same 
and use the direct or indirect field orientation.  
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Fig. 1. Generation system structure 

In [8] speed and flux variations are compensated in torque 
current computation, a novel nonlinear flux observer with 
saturation effect consideration is proposed. More recent 
publication [9] reports the system analysis based on some sort 
of linearized model and frequency domain approach. Active 
losses optimization is considered in [10]. The stability 
properties of the existing systems are not proved theoretically, 
so performances specifications are not available.  

In [11] the authors proposed a new IG vector flux-voltage 
control algorithm based on output-feedback linearizing 
technique. In contrast to existing solutions the proposed 
feedback linearized controller provides linear DC link voltage 
error dynamics compensating for flux and speed variations and 
IG active losses. The linear equivalent structure of the voltage 
control loop allows to specify the dynamics performances of 
the voltage control loop.  

The indirect field oriented controllers for induction machine 
are sensitive to variation of the rotor resistance. This problem is 
well investigated in literature and number of solutions are 
proposed on the base of robust and adaptive approaches [12], 
[13].  
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In this paper we developed a new robust indirect field 
oriented flux controller, which provides robust with respect to 
rotor resistance variations flux control improving both dynamic 
performance of the voltage control and energy efficiency of the 
electromechanical energy conversion. The results of the 
experimental studies are presented in order to demonstrate 
performances of the proposed control during different 
operation conditions. Comparison with a standard solution is 
presented as well. 

This paper is organized as follows. The IG model and 
control problem formulation are given in Sections II. The flux-
voltage controller is designed in Section III. In Section IV the 
experimental results are reported followed by the Conclusions 
of the study. 

II. PROBLEM STATEMENT 

The standard two-phase model of electrical part of 
symmetrical induction generator, under the assumptions of 
linear magnetic circuits and balanced operating conditions, is 
represented in an arbitrary rotating reference frame (d-q) as 
[12] 
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where 
T

d q(u ,u )u  is the control vector of stator voltages, 

T

d q(i ,i )i , T

d q( , )  ψ  denote stator current and rotor flux 

vectors,   is the rotor speed. Subscripts d and q stand for 

vector components in the (d-q) reference frame, 
0  is the 

angular position of the (d-q) reference frame with respect to a 
fixed stator reference frame (a-b), where physical variables are 
defined; Ps – active power produced by IG.  

Positive constants related to the electrical and mechanical 
parameters of the IM are defined as follows: 

2

2 m m 1

1 m

2 1 2 2

R L L R
, L 1 , , L ,

L L L L

 
           

  


where 
1 2 1 2R , R , L , L  are stator/rotor resistances and 

inductances, respectively, 
mL  is the magnetizing inductance. 

One pole pair is assumed without loss of generality. 

Transformed variables in (1) are defined according to  
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J , xyz stands for 

two-dimensional voltage, flux and stator current vectors. 

Produced by IG electrical power Ps is transferred to DC-
link by IGBT inverter. Under assumption of ideal inverter 
without loses the DC-link power Pdc is equal to generation 
power Ps. In this case DC-link voltage Vdc dynamics is 
described by 

  1

dc dc LV C i i   


dc dc dc s dci P V P V ,   

where C – is DC-link capacitance, 
dci  – DC-link current from 

inverter, 
Li  – load current. 

Consider the IG and DC-link models (1), (4) and assume 
that: 

A1. The stator currents, rotor speed and load current are 
available for measurement. Rotor speed 0 . All generator 

parameters and DC-link capacitance are known and constant.  

A2. The DC-link voltage reference *

dcV 0  is constant. 

Under these assumptions, the control problem is to design a 
flux-voltage controller which guarantees the following control 
objectives: 

CO1. Asymptotic voltage regulation with all internal 
signals bounded, i.e. 

 dc
t
limV 0,


  

where *

dc dc dcV V V   is voltage regulation error. 

CO2. Asymptotic flux regulation: 


t
lim 0


   

where *    – is a flux regulation error,   – flux vector 

magnitude, * 0   – constant flux reference. 

CO3. Asymptotic field orientation, i.e. 


q

t
lim 0.


   

CO4. Robustness to rotor resistance variations. 

The following sections report the proposed solution to the 
formulated control problem. 

III. CONTROLLER DESIGN  

A.  Robust flux-current field oriented controller 

Let consider indirect field oriented control algorithm for 
system (1), which consists of 

- flux controller 
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- d-axis current observer 
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- current controllers 
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where 
*

d d di i i   and 
*

q q qi i i   are current tracking errors, 

* *

d qi , i  – are references for 
di  and qi  currents respectively, 

d d d
ˆi i i   is d-axis current observation error, zd, zq – integral 



terms of current controllers,  id iqk ,k  are the current 

controller’s proportional gains, 
iik  – current controller’s 

integral gains,  1 2,   – correction coefficients, 
1k  – current 

observer gain. 

It is important to note that the correction term 

* *

1 d 2 di i        provides the closed loop properties 

for flux subsystem and therefore the controller (8) - (11) 
potentially has robustness properties with respect to rotor 
resistance variations at non-zero machine speed. This property 
will be proven by results of the experimental study.  

Let assume that *

qi  and *

di  are slowly varying signal, so that 

* *

d qi i 0  . Under these conditions, current-flux error dynamic 

can be written as 
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In order to investigate the stability of the system (12) - (13) 
the following quadratic form for the flux subsystem (13) first 
considered 

  2 2 2 2

d q 1 d 2 dV i i 2.        

The time derivative of (14) along the trajectories (13) can 
be derived as follows: 
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Under the conditions 

  
2

id1 m 1 1k L / 8       2

0 2k / 8    (15)

the form of (14) becomes a Lyapunov function satisfying 

conditions V 0 , V 0 . Hence, according to Lyapunov 

stability criteria it can be concluded that the equilibrium point 

  d d q di , , , i 0     

is globally exponentially stable. From structural properties of 
subsystem (13) it can be concluded, that  

  
T

2 d d d q dz , i , , , i 0   x  

As far as constant matrix 
1

A  is Hurwitz, nominal dynamic 

of subsystem (12) (if  t 0
1

B ) is linear and exponentially 

stable. Matrix  t1
B  is bounded and system (12), (13) can be 

viewed as composed of the exponentially stable subsystem (12) 
perturbed by a vanishing perturbation generated by subsystem 
(13). Hence equilibrium point  

  
T

T T

1 2, 0 x x x  

is globally exponentially stable. 

Remark 1. In contrast to solution [12], a correction term 

* *

1 d 2 di i        in equation (8) for the proposed 

controller is based on d-axis current estimation error 
di , while 

current tracking error 
di  is controlled at zero level using high-

gain PI-controller (10). This provides additional robustness 
properties with respect to stator resistance variations and 
inverter nonlinearities.  

B.  Feedback linearizing voltage controller  

Taking in to account conditions (18) applied voltages 
becomes  
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Using (19) IG output power is computed as 
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According to (20) and under condition (18), the output 
power consist of the three components: active loses of the 
stator circuit (proportional to R1), active rotor loses the 
(proportional to R2) and input mechanical power  
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where T – is electromagnetic torque.  

Using equations (3), (4) we can derive [11] 
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and voltage regulation dynamics became 
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Let define desired voltage dynamics as a second order 
linear asymptotically stable system in the following form 
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where  v vik ,k 0  are the proportional and integral gains of 

voltage controller. 

Feedback linearizing voltage controller from (23) and (24)
is given by the solution of nonlinear algebraic equation 
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Controller block diagram is shown in Fig. 2.  

For constant or slowly varying *

dcV , 
Li , *  – dynamics of 

the voltage control loop can be designed mach slower than 
current dynamics (12) providing the two-time scale separation, 
to justify common assumption for current fed IG control. 

Under these conditions the system error dynamics is given 
by (24), (12) and allows for separated considerations of the two 
subsystems: voltage control loop (24) and flux-current error 
dynamics (12), (13). 

System tuning is provided by selection of proportional and 
integral gains for voltage and current controllers as  

 

 2

vi vk k / 2   
2

ii ik k / 2    

Such tuning provides damping factor 2 / 2   for each 

control loop. Natural frequency of undamped oscillations is 

given by 2

ov vik   for voltage controller and 2

0i iik   for 

current controllers. The two-time scale separation between 
voltage and current loops is satisfied for condition 

 0i ov3 4    . 

From this simplified stability analysis it follows that 

dc
t
limV 0,


  and therefore control objectives CO1-CO3 are 

locally achieved if    
2

* 2

m 2 m 2 1L / L 4 L / L R 0      . 

Remark 2. For 
Li const  compensation term 

Li  may be 

removed from feedback linearizing controller (26) leaving 

Li compensation for the integral action of the controller. 

IV. EXPERIMENTAL RESULTS 

The experiments are carried out using the Rapid 
Prototyping Station (RPS). As shown in Fig. 3, the RPS 
includes: (1) Induction generator (see rated data in Appendix) 
coupled with induction motor which is used as primary mover; 
(2) 20 A and 380 V three-phase PWM controlled inverter, 
operated at 5 kHz switching frequency; (3) Commutated load 
resistance RL; (4) DSP TMS320F28335 controller which 
performs data acquisition, implements control algorithms with 
programmable tracing of selected variables; (5) Personal 
computer for processing, programming, interactive 
oscilloscope, data acquisition, etc. The motor speed is 
measured by a 1024 pulse/revolution optical encoder. The 

sampling time is 200 sec. DC-link capacitance equal to  
1000 μF. 
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Fig. 2. Voltage control system block diagram  
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Fig. 3. Experimental setup  

During all experiments, rotor speed is stabilized by 
industrial vector control system. In order to compare proposed 
solution with standard PI controller, described in [11], we 

eliminate compensation of load current 
Li  at the first stage of 

experiments.  

Tuning parameters are set to: controller (10), (11) 

id iqk k 800  , 2

ii iqk k / 4 ; controller (8)-(11), (26) 

Vk =125 , 2

Vi Vk =k / 2 ; controller [11] 
V Vik =0.2, k =15 . 

Standard and developed controllers are tuned to provide the 
same performances when system operates at speed 140 rad/s. 

Comparative tests are performed for two constant speeds 
ω=140 rad/s and ω=100 rad/s using the same operation 
sequence: 

- before the test DC-link voltage is charged to 330 V, rotor 
speed is stabilized by primary mover; 

- initial time interval 0…0.3 s is used to excite the generator 
by applying flux reference trajectory reported in Fig.4 with 

 * 0 0.02   Wb and reached the value of 0.5 Wb (low flux 

level is used in order to prevent inverter voltage saturation 
during system start-up due to low level of Udc); 

- starting at t=1 s, voltage reference increases to level of 
540 V with first derivative equal to 420 V/s; 

- starting at t=2 s, flux reference increases to *=0.9 Wb in 
order to achieve IG operation with rated flux; 

- at time t=3 s load current equal to 1.8 A (50% of rated 
value) is applied and at t=3.5 s is removed. 

Experimental results for proposed voltage control algorithm 
(8)-(11), (26) are shown in Fig. 5. Flux and voltage tracking 
errors during simulation are depicted in Fig. 6. 

 

0 1 2 3 t, s 
0 

0.2 

0.4 

0.6 

0.8 

1 
Flux reference, Wb 

0 
100 
200 
300 
400 
500 
600 

0 1 2 3 t, s 

Voltage reference, V and 

load current profile, A∙100 

*V   

Li   

Fig. 4. Flux and voltage reference trajectories and load current profile 

As it follows from transients is Fig. 5 and Fig. 6 proposed 
control algorithm provides asymptotic flux-voltage regulation. 
Experimental results are close to results of simulation. 

In order to compare dynamic behavior of the standard and 
developed controllers at different speed we perform an 
additional test during IG operation with ω=140 rad/s and load 
equal to 50% of rated. Transients for both controllers at 

different speed are depicted in Fig. 7. From presented in Fig. 
7 transients it follows that both controllers provides the same 
dynamic behaviour when system operates at speed 140 rad/s. 
Performances of proposed controller are independent from 
generator speed. At the same time dynamics of standard 
controller deteriorates when ω=100 rad/s. Dynamic error 
increases up to 12 V. 
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Transients with load current compensation in control 
algorithm (26) are shown in Fig. 8. Due to iL compensation 
dynamic voltage error is reduced to negligible level. 

The next set of experiments is carried out in order to 
investigate robustness properties of controller (8)-(11), (26) 
with respect to rotor resistance variations. During these tests 

estimated value of 2R  in the controller was equal to 

2 2R̂ 1.4R . Such type of variation corresponds to worst 

case, when estimated rotor resistance used in the controller is 
grater than real value [13]. Experimental transients for 
standard and proposed controllers are depicted in Fig. 9. 
Note that during standard controller operation load duration 
was increased to 2 s in order to demonstrate steady state 
operation.  

Comparison of the transients, reported in Figs. 9, 5 and 7, 
shows that improved indirect field-oriented controller 
demonstrates strong robustness properties with respect to 



rotor resistance variations. No significant difference can be 
noted in transients in nominal (Fig. 5, 7b) and perturbed 
(Fig. 9b) conditions. From Fig. 5 and 9b it follows that q-axis 
currents at steady state are at the same level. 

From the other hand dynamic behavior of the standard 
controller significantly deteriorates: voltage regulation error has 
additional oscillations and q-axis current is increased to 32 % at 
steady state in comparison to nominal conditions. As it shown 
in [12], [13], such current behavior leads to significant 
reduction of the system efficiency. 
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V. CONCLUSIONS 

A novel robust indirect field-oriented controller for 
induction generator has been designed. Nonlinear control 
algorithm guarantees local asymptotic voltage-flux regulation 
under variable speed and flux conditions. In contrast to existing 
solutions proposed controller provides system performances 
stabilization when speed and flux are varying. Robust with 
respect of rotor resistance variations flux controller provides 

improved voltage loop dynamics, robust stabilization of the 
torque current dynamics and therefore improved energy 
efficiency of the electromechanical conversion process.  

The advantages of proposed solution with respect to 
standard control with PI voltage controllers are demonstrated 
by experiments. Designed controller is suitable for energy 
generation systems with variable speed operation.  
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APPENDIX 

IG parameters 

Rated output power 1.9 kW Stator resistance 3.5 Ohm 

Rated phase voltage, rms 220 V Rotor resistance 2.1 Ohm 

Rated phase current, rms 5 A Stator inductance 0.2655 H 

Rated frequency 50 Hz Rotor inductance 0.2655 H 

Number of pole pairs 2 Magnetizing 
inductance 

0.257 H 

 


