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The Candidate Antimalarial Drug
MMV665909 Causes Oxygen-Dependent
mRNA Mistranslation and Synergizes
with Quinoline-Derived Antimalarials

Cindy Vallières, Simon V. Avery
School of Life Sciences, University of Nottingham, University Park, Nottingham, United Kingdom

ABSTRACT To cope with growing resistance to current antimalarials, new drugs
with novel modes of action are urgently needed. Molecules targeting protein syn-
thesis appear to be promising candidates. We identified a compound (MMV665909)
from the Medicines for Malaria Venture (MMV) Malaria Box of candidate antimalarials
that could produce synergistic growth inhibition with the aminoglycoside antibiotic
paromomycin, suggesting a possible action of the compound in mRNA mistransla-
tion. This mechanism of action was substantiated with a Saccharomyces cerevisiae
model using available reporters of mistranslation and other genetic tools. Mistransla-
tion induced by MMV665909 was oxygen dependent, suggesting a role for reactive
oxygen species (ROS). Overexpression of Rli1 (a ROS-sensitive, conserved FeS protein
essential in mRNA translation) rescued inhibition by MMV665909, consistent with the
drug’s action on translation fidelity being mediated through Rli1. The MMV drug also
synergized with major quinoline-derived antimalarials which can perturb amino acid
availability or promote ROS stress: chloroquine, amodiaquine, and primaquine. The
data collectively suggest translation fidelity as a novel target of antimalarial action
and support MMV665909 as a promising drug candidate.

KEYWORDS translation fidelity, iron-sulfur cluster, oxidative stress, Medicines for
Malaria Venture, malaria, antimalarial, yeast

The malaria parasite, Plasmodium, is a major public health burden in the developing
world. More than 200 million new cases of malaria were reported globally in 2015,

with Plasmodium spp. responsible for 438,000 deaths that year, mainly of children and
pregnant women in sub-Saharan Africa (1). Despite the availability of antimalarial drugs
for treatment, there is an urgent need for novel inhibitors as the parasite develops
resistance to first-line therapies, compromising the treatment of malaria patients. To
support current therapy and help eradicate malaria, new drugs with novel modes of
action and no cross-resistance with current antimalarials are necessary (2).

A common strategy for identifying new potential drugs is to screen in vitro cultures
of Plasmodium spp. against large chemical libraries, typically assaying for growth
inhibition. Determining the molecular target(s) of candidate agents identified from
such screens is challenging. One approach relies on the generation of resistant strains
by prolonged exposure of parasites to drugs and identification of resistance-associated
mutations by whole-genome sequencing (3, 4). However, identification of generic
resistance mechanisms shared by diverse compounds is common. For example, several
groups of investigators have identified resistance mutations in Plasmodium falciparum
ATP4 (PfATP4), a Na�/H�-ATPase regulating parasite Na�, after exposure of Plasmo-
dium spp. to diverse ranges of new agents (5–7). It is still unclear why PfATP4 appears
to be a resistance marker for so many recently discovered drugs although other
transporters such as the P. falciparum chloroquine (CQ) resistance transporter and
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multidrug resistance gene 1 (PfCRT and PfMDR1, respectively) have also been associ-
ated with resistance to current antimalarials that do not necessarily have common
mechanisms of action (8). An effective strategy for specifying mode of action can be to
screen for compounds targeting a specific function, typically involving a transgenic-
parasite assay. Unfortunately, despite recent improvements (e.g., genome editing with
CRISPR/Cas9 [9]), the main human malaria parasite P. falciparum is not easy to manip-
ulate genetically. Among alternative experimental systems, the yeast Saccharomyces
cerevisiae is a powerful eukaryotic model for mode-of-action studies as it is inexpensive
to culture and easy to manipulate and offers an extensive range of genetic tools and
libraries (10). With strong conservation of function between yeast and Plasmodium spp.,
yeast has been widely used for heterologous expression of functional Plasmodium sp.
proteins (11–14) and for studies elucidating antimalarial drug modes of action (15–19)
or resistance (20–22). Findings from such yeast studies have been successfully extrap-
olated to malaria patients (23).

Protein synthesis, as an essential function of the cell, represents an attractive drug
target. Plasmodium spp. possess three genomes: nuclear, apicoplastic (from a relic
chloroplast), and mitochondrial. All three genomes require dedicated translational
machineries to function (24). Antibiotics targeting organellar components required for
protein translation, specifically organellar ribosomes and tRNA synthetases, have long
been used to help treat and prevent infections by the parasite (25). Recently, a potent
new drug, DDD107498, has been reported to inhibit protein synthesis of P. falciparum
at multiple life cycle stages through eukaryotic translation elongation factor 2 (eEF2)
which is necessary for GTP-dependent ribosome translocation along mRNA (3). To date,
no antimalarials have been described that target the fidelity of protein synthesis.
Antibiotics such as aminoglycosides that act via mRNA mistranslation have proven very
effective against bacteria (26).

The Medicines for Malaria Venture (MMV) distilled over 25,000 compounds that kill
blood stages of P. falciparum in vitro into a group of 400 chemically diverse compounds
with minimal cytotoxicity, called the Malaria Box (27, 28). In the present work, we tested
a number of these compounds in combination with the aminoglycoside antibiotic
paromomycin in order to identify agents potentially targeting protein synthesis. Pre-
viously, synergistic inhibition of yeast growth in combination with paromomycin led to
characterization of a novel mode of action of the toxic metal chromate, based on errors
in mRNA translation during protein synthesis (29). Here, we reveal one compound
[MMV665909; 2-bromo-N-(4-pyridin-2-yl-1,3-thiazol-2-yl)benzamide] among the MMV
drugs tested that produces synergistic growth inhibition with paromomycin. Using
reporters of mistranslation and other yeast genetic tools not available with the malaria
parasite, we corroborate a role of the MMV compound in mistranslation. Promisingly,
we also observed synergy between MMV665909 and three existing antimalarials:
amodiaquine, chloroquine, and primaquine. The results suggest a novel target for a
candidate antimalarial, which additionally exhibits synergy when combined with quin-
oline derivatives.

RESULTS
Discovery of a novel antimalarial drug candidate targeting protein translation.

In a recent study, the 400 compounds comprising the Malaria Box were screened for
growth inhibition of the yeast model Saccharomyces cerevisiae. At the highest drug
concentration supplied (50 �M), only 16 of the drugs produced detectable growth
inhibition (28). To help identify compounds that may perturb protein translation in the
present study, we tested for synergy with the aminoglycoside paromomycin. Paromo-
mycin is known to cause mRNA mistranslation via ribosome binding (26, 30) and has
been applied successfully previously to discover mistranslation-based action of other
agents (29). Synergy is evident where a growth effect is significantly stronger with
combined drugs than from simple addition of their individual effects, indicating that
the compounds target a common process (31). Each drug was supplied at just subin-
hibitory concentrations, and growth inhibition was calculated after 15 h. Four of the
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MMV drugs most active against yeast were tested for synergy (Fig. 1A; see also Fig. S1
in the supplemental material). Among these, MMV665909 produced a significant,
�80%, inhibition of yeast growth when combined with the aminoglycoside (Fig. 1A).
Synergy was quantified by calculation of a combination index (CI) using a response
additivity approach (32). The CI for the MMV665909-paromomycin combination was
0.23, indicating that the drugs act synergistically (a CI of �1 is considered indicative of
synergy).

The above evidence for synergy suggested that MMV665909 and paromomycin may
target a common process. As paromomycin causes mistranslation, we tested whether
MMV665909 also causes mRNA mistranslation, in the first instance using a qualitative
yeast assay based on readthrough of a premature ade2-1 UAA stop codon. Mistranslation-
dependent readthrough suppresses the red pigmentation associated with this allele
(29). MMV665909 suppressed the red pigmentation at a drug concentration which only
slightly inhibited yeast growth (Fig. 1B). To support this qualitative indication of
mistranslation, the rate of translational readthrough of a UAA stop codon was moni-
tored quantitatively in a dual-luciferase assay. The plasmid used for this encodes two
luciferases, Renilla followed by firefly, separated by the UAA stop codon. Expression of
the firefly luciferase occurs when there is readthrough of the stop codon. The rate of

FIG 1 MMV665909 acts synergistically with paromomycin and causes stop codon readthrough. (A)
Growth of S. cerevisiae in YPD broth alone or supplemented with 25 �M MMV665909 (MMV) and/or 200
�g · ml�1 paromomycin (PM). The OD600 was measured after 15 h. Growth was calculated as a
percentage of growth of the control (ctrl) without drug. (B) A tenfold dilution series of S. cerevisiae W303
(ade2-1) was spotted from left to right on YPD agar alone or supplemented with MMV665909. Loss of red
pigmentation indicates readthrough of the premature stop codon associated with the ade2-1 allele. (C)
S. cerevisiae transformed with the dual-luciferase plasmid containing a UAA stop codon between the
firefly and Renilla luciferase ORFs was exposed to the indicated MMV665909 concentrations in YPD agar
before determination of both luciferase activities. The ratio of these activities indicates the level of
translation readthrough at the UAA stop codon. (D) S. cerevisiae transformed with the dual-luciferase
plasmid containing a His245 ¡ Arg245 missense codon within the firefly luciferase ORF was assayed
as described for panel C. The firefly/Renilla luciferase ratio here provided a measure of amino acid
misincorporation. Mean data are shown in panels A, C, and D from triplicate independent experi-
ments � standard errors of the means. *, P � 0.05; **, P � 0.01; ***, P � 0.001; ****, P � 0.0001, by
two-tailed Student’s t test. RLU, relative light units.
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readthrough was increased �5-fold in the presence of the MMV drug (Fig. 1C). In
addition, decreased accuracy of translation elongation in the presence of MMV665909
was tested using a modified firefly luciferase construct containing a near-cognate
His245 ¡ Arg245 mutation, where misincorporation of histidine is required to restore
wild-type activity. In this case, the drug did not increase firefly luciferase activity (i.e.,
amino acid misincorporation) and actually produced a slight decrease (Fig. 1D). The
results suggested that MMV665909 does not impair translation fidelity generally but
has some specificity for translation termination.

MMV665909 impairs growth and translation fidelity in an oxygen-dependent
manner. Previous work showed that the metal toxicant chromate provokes protein
synthesis defects via mRNA mistranslation (29); like MMV665909, chromate exhibited
synergistic toxicity with paromomycin and increased the rate of stop codon read-
through. The chromate phenotype was oxygen dependent. To test whether the effect
of MMV665909 on yeast growth was oxygen dependent, growth in the presence of
drug was compared under anaerobic and aerobic conditions. Growth inhibition by
MMV665909 was fully rescued in the absence of oxygen (Fig. 2A). The translation error
rate was also compared using a dual-luciferase assay. The drug-induced stop codon
readthrough observed under aerobic incubations was absent under the anaerobic
condition (Fig. 2B). This indicates an oxidative basis for MMV665909-induced mistrans-
lation. The background rate of mistranslation (in the absence of drug) was also
decreased by the absence of oxygen. Chromate can cause mistranslation by competing
with sulfate for uptake to cells via the Sul1 and Sul2 transporters, leading to cysteine
and methionine starvation (33). In contrast, deletion of SUL1 and SUL2 did not rescue
growth of yeast treated with MMV665909 (Fig. S2), thus distinguishing the action of
MMV665909 from that of chromate. (An apparent slight sensitization of the sul1� sul2�

deletion strain was not significant compared with growth of the corresponding wild-
type controls.)

Targeting of translation fidelity by MMV665909: involvement of the conserved
iron-sulfur protein Rli1. We showed above that MMV665909 impairs translation
termination in an oxygen-dependent manner. Translation termination normally occurs
when a stop codon enters the ribosomal A site during mRNA reading. Among the

FIG 2 MMV665909 impairs growth and translation fidelity in an oxygen-dependent manner. (A) S.
cerevisiae BY4741 in a 10-fold dilution series was spotted onto YPD agar alone or supplemented with 50
�M MMV665909 and incubated for 4 days under aerobic or anaerobic conditions. (B) Cells transformed
with the UAA stop codon dual-luciferase plasmid were incubated in YPD broth with or without 20 �M
MMV665909 and in the presence or absence of oxygen before luciferase activities were measured. Mean
data are shown from triplicate independent experiments � standard errors of the means. *, P � 0.05; **,
P � 0.01, by two-tailed Student’s t test.
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essential proteins involved in translation termination, function of the iron-sulfur (FeS)
protein Rli1 (ABCE1 in human and other organisms) is known to be oxygen sensitive.
Rli1 function is an important target of reactive oxygen species (ROS) and ROS-generating
chemicals (34), including the antimalarial primaquine (PMQ) (18). In translation termi-
nation, Rli1 in concert with Sup45 (eukaryotic release factor 1 [eRF1]), dissociates and
splits the ribosome into its subunits (35) (Fig. 3A), with Sup45 and Rli1 required for
faithful stop codon reading (36–38). To indicate whether Rli1 may be targeted by
MMV665909, we tested drug sensitivity in cells overexpressing the protein under tet
control (34); increased expression of a principal drug target(s) should confer resistance
to the relevant drug (39). Overexpression of RLI1 conferred resistance to MMV665909
(Fig. 3B). Overexpression of SUP45 produced a mild rescue in the lag phase but a mild
sensitization in the exponential phase, with a net outcome of no effect after �20 h (Fig.
S3). Overexpression of RLI1 also appeared to moderate the extent of drug-induced stop
codon readthrough, from 3.7-fold in the wild type to 1.4-fold in Rli1-overexpressing
cells (Fig. 3C). These relative effects were unlikely to reflect saturation of the system
(noting that the no-drug background rate was also increased in RLI1-overexpressing
cells) as we have observed mistranslation rates of �0.004 with this construct. The
increased background mistranslation rate of RLI1-overexpressing cells did not exert a
marked growth effect and is possibly due to an imbalance in the translation machinery.
Decreased Rli1 activity also is known to increase the rate of stop codon readthrough
(37, 38). The data are consistent with the suggestion that Rli1 may be targeted by
MMV665909. The dependency of Rli1 function on FeS biogenesis, which is rooted in the

FIG 3 Involvement of Rli1 in MMV665909 action. (A) Simplified scheme showing the translation termi-
nation process. Rli1 and Sup45 are required for ribosome dissociation and termination fidelity. (B) S.
cerevisiae cells transformed with a tet-bearing plasmid expressing an empty vector (EV) or overexpressing
RLI1 were cultured in YNB medium alone or supplemented with 10 �M MMV665909. Doxycycline was
excluded to give maximal RLI1 expression. Standard errors of the means from triplicate independent
growth experiments are smaller than the dimensions of the symbols. (C) Yeast cells carrying the
tet-bearing plasmid (empty vector or RLI1) and the dual-luciferase plasmid carrying a UGA stop codon (in
a BSC4 context) were incubated in the presence (�) or absence (�) of 20 �M drug, and luciferase
activities were measured as described in Materials and Methods. Mean data are shown from triplicate
independent experiments � standard errors of the means. *, P � 0.05; ****, P � 0.0001, by two-tailed
Student’s t test. (D) Wild-type (WT) and isogenic deletion mutant sod2Δ strains were cultured in YPD
medium alone or supplemented with 10 �M MMV665909 (in this experiment, unlike the experiment
described in panel B, YNB medium was not needed for plasmid selection). Standard errors of the means
from duplicate independent growth experiments are smaller than the dimensions of the symbols.
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mitochondria, makes Rli1 ROS sensitive (34). The Mn superoxide dismutase Sod2
protects mitochondrial FeS clusters from superoxide attack, and we found that sod2�

cells are hypersensitive to the MMV drug (Fig. 3D). The data support an oxidative mode
of MMV665909 action on Rli1 function, an action that could account for mistranslation
and growth inhibition.

MMV665909 combined with quinoline derivatives produces synergistic in-
hibition of yeast growth. To decrease the likelihood of resistance emergence to
antimalarials, the drugs are commonly used in combinations. We hypothesized that
MMV665909 may act synergistically with certain quinoline-derived antimalarials as
these also are known to cause oxidative stress as well as amino acid starvation (16), a
potential cause of mRNA mistranslation (40, 41). To test the efficacy of MMV665909 in
combination with the quinoline-containing antimalarials chloroquine (CQ), amodi-
aquine (AQ), and primaquine (PMQ), drugs were supplied at concentrations which,
individually, were just subinhibitory. When combined, MMV665909 plus CQ and
MMV665909 plus PMQ produced synergistic inhibition of exponential yeast growth
(Fig. 4A). Amodiaquine could not be tested in the same way because of a drug color
change during growth which produced a fluctuating contribution to optical density
(OD) measurements. Therefore, AQ was tested in a checkerboard assay specifically for
synergy. This showed that the combination of AQ with MMV665909 decreased the MICs
of the individual agents by �8-fold and was synergistic, with a fractional inhibitory
concentration (FIC) of 0.25 (combinations are considered synergistic when the FIC is
�0.5) (Fig. 4B). The results indicated that MMV665909 produces synergistic growth
inhibition when combined with currently used quinoline antimalarials, consistent with
certain predicted overlaps in the actions of these drugs.

FIG 4 MMV665909 acts in synergy with current quinoline antimalarial drugs. (A) S. cerevisiae was cultured
in YPD broth supplemented with 10 �M MMV665909, 1.5 mM primaquine (PMQ), and/or 5 mM
chloroquine (CQ). Standard errors of the means from triplicate independent growth experiments are
smaller than the dimensions of the symbols. (B) Checkerboard assay in YPD broth with yeast at the
indicated concentrations of MMV665909 and amodiaquine. The growth values are percentages of the
growth of the control (OD600) determined in the absence of both agents.
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DISCUSSION

With increased recrudescence of Plasmodium isolates resistant to current antima-
larials, there is an urgent need for new drugs with broad therapeutic potential and new
mechanisms of action to fight against malaria. One recent example is DDD107498, a
novel multiple-stage antimalarial compound with clinical potential noted to target
translation elongation factor 2, which is essential for protein synthesis (3). Due to its
essentiality at all stages of the parasite life cycle, protein synthesis could be an
important antimalarial drug target. Synergistic drug combinations that target specifi-
cally the fidelity of protein synthesis (in fungi) have been described previously (31).
These combinations consisted of an aminoglycoside antibiotic and a sulfate transport
inhibitor and produced synergistic inhibition against target organisms but not mam-
malian cells. Building on those findings, here we combined the aminoglycoside paro-
momycin (known to cause mRNA mistranslation) with compounds from the Malaria Box
(27), testing for synergistic effects of the combinations using the yeast model. Synergy
between drugs is commonly seen where they target a common process but by different
mechanisms or pathways (31, 42), which is the principle applied here to find Malaria
Box candidates that may target protein synthesis fidelity.

Many of the 400 diverse drug-like molecules in the Malaria Box do not affect yeast
growth when tested individually. One reason for this high level of resistance is
attributable to expression by yeast of efficient drug efflux pumps (28). Elsewhere, the
antimalarial drug atovaquone is known to inhibit complex III of the yeast mitochondrial
respiratory chain in vitro (43) but does not inhibit growth due to efficient drug efflux
(44). Another contributory factor to resistance against certain MMV drugs could be
where these target respiration (28) since yeast is commonly cultured under fermenta-
tive conditions, as was the case here where we were not concerned with respiratory
drug targets. Moreover, one compound, MMV665909, acted in synergy with paromo-
mycin in this study. MMV665909 also provoked stop codon readthrough. MMV665909
was not identified as a translation inhibitor of P. falciparum in a previous high-throughput
in vitro translation screen of the Malaria Box (45). However, these investigators did not
test mistranslation. Rather, their assay specifically probed the level of protein (lucifer-
ase) synthesis in an in vitro translation system. The luciferase assay used in this study
is based on a dual-luciferase system designed to assay specifically for mistranslation,
according to relative expression levels of two luciferases (46, 47). Therefore, results from
the two studies are not inconsistent, and this work highlights the importance of using
different assay formats for deep interrogation of agents that may impair protein
synthesis at different levels or by different mechanisms.

MMV665909 caused mRNA mistranslation in an oxygen-dependent manner. Consistent
with an oxidation-related mechanism, MMV665909 scored fourth highest among all the
Malaria Box compounds for predicted propensity to form highly reactive epoxides
during metabolism (28). Elsewhere, oxygen-dependent chromate-induced mistransla-
tion is known to lead to an accumulation of toxic protein aggregates and loss of cell
viability (29). Chromate interferes with mRNA translation indirectly by competing with
sulfate for uptake into cells, leading to starvation for the sulfur-containing amino acids
(cysteine and methionine) needed for protein synthesis (33). Unlike the effect of
chromate, deletion of the relevant sulfate transporters did not alter MMV665909
resistance, indicating a different mechanism. As the effect of MMV665909 appears to be
specific to the termination of translation (no rescue of the firefly luciferase activity was
observed when a missense mistranslation was assayed), we investigated rescue by Rli1
as Rli1 is required for translation termination but not translation elongation (48) and is
known to be ROS sensitive (34). Overexpression of Rli1 conferred MMV665909 resis-
tance and also partly rescued the effect of the MMV drug on mRNA mistranslation. Rli1
is a highly conserved (49, 50), multifunctional ABC-family protein with diverse, essential
roles in protein synthesis (48). Therefore, Rli1 is also present in Plasmodium spp.
Sequence identity with the yeast Rli1 protein is 59% in the human pathogen P.
falciparum (the PF3D7_1368200 gene). As indicated above, Rli1 function has been
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shown to be a primary cellular target of ROS and redox-active agents such as H2O2,
paraquat, copper (34), and primaquine (18). Decreased Rli1 activity is known to result
in stop codon readthrough (37), similar to the effect of MMV665909. The N-terminal
[4Fe-4S] cluster domain of Rli1 plays a crucial role in its functions (including accurate
stop codon reading), while FeS clusters are known to be ROS-hypersensitive structures.
Analysis of incorporation and turnover of radiolabeled 55Fe to Rli1 under copper stress
established that FeS cluster supply to Rli1 was the primary target (34), indicating
impairment by a stressor at upstream steps in FeS cluster biogenesis. The FeS cluster
biogenesis process is well conserved through evolution (51, 52). In Plasmodium, three
pathways are involved in FeS cluster biogenesis: the SUF (SUlFur mobilization) pathway
in the apicoplast organelle, the iron-sulfur cluster (ISC) formation pathway in the
mitochondrion, and the cytosolic iron-sulfur protein assembly (CIA) pathway, which
resides in the cytosol and nucleus. The ISC/CIA pathways are essential in the maturation
of Rli1 and common to yeast and Plasmodium spp. Therefore, an Rli1-targeted mech-
anism of MMV665909 action, as suggested here, is likely to be well conserved.

In a previous study, MMV665909 was shown to inhibit the interaction between
proteins PfAtg8 and PfAtg3 (53). Atg8 is a ubiquitin-like autophagy protein, and Atg3
is its E2-conjugating enzyme. Atg8 is essential for Plasmodium growth and survival and
partially localizes to the apicoplast. Yeast expresses an Atg8 orthologue; but the protein
is not essential in yeast, and therefore any inhibition by MMV665909 could not alone
account for inhibition of cell growth. Autophagy and translation are linked processes.
Ribophagy is an autophagic pathway that targets ribosomes (54). Work in P. falciparum
showed that PfAtg8 may possibly be involved in ribophagy (55). Any MMV665909-
mediated impairment of ribophagy via PfAtg8 would abrogate normal control of
protein synthesis, thus potentially exacerbating the effects of error-prone translation
caused by any depletion of functional Rli1 by the same drug. In addition, bioinformatic
predictions at ChEMBL (www.ebi.ac.uk/chembl/) suggest that the lysine and proline
tRNA synthetases may be targets of MMV665909. It is possible that any targeting of
these translation-related enzymes has the potential to contribute further to mistrans-
lation. It is not unexpected or rare for a single drug to have multiple targets. For
example, the major antimalarial artemisinin targets both mitochondria (15) and the
calcium channels Pmr1 and Pmc1 (56) in yeast.

To help tackle concerns over the development of resistance, antimalarials are now
commonly administered as combination therapies. This strategy is known to improve
efficacy of treatment and reduce the risk of resistance emergence. Moreover, drugs
targeting protein synthesis, like the recently identified DDD107498 (3), need to be
combined with a fast-acting compound that reduces the initial level of infection. A
similar strategy would probably apply to MMV665909, given the action on fidelity of
protein synthesis described here. The current antimalarials amodiaquine, chloroquine,
and primaquine are all reported to promote oxidative stress (18, 57–59) in common, we
argue, with MMV665909 (Fig. 2 and 3). ROS-labile FeS groups have been described as
the primary targets of PMQ (18). An increase of oxidized proteins was observed in
parasites treated with CQ (58). CQ-heme complexes in the parasite may generate
oxidative stress by enhancing the toxicity of the ROS produced during the degradation
of the hemoglobin (57). Furthermore, quinoline antimalarials can deplete certain
essential amino acids like tryptophan and tyrosine (16, 23), an effect likely to decrease
translation fidelity (40, 41). Therefore, we tested quinoline derivatives in combination
with MMV665909, and we observed marked synergy. Synergistic combinations allow
lower doses of the drugs to be used than if the drugs are supplied singly, which lessens
cost and risk of toxicity. Toxicity is a particular concern for drugs like primaquine, which
is associated with severe side effects and causes hemolysis in patients with glucose-
6-phosphate dehydrogenase deficiency (60).

This study has exploited the power of yeast genetic tools to show that the candidate
antimalarial MMV665909 is able to target the fidelity of protein translation, probably via
the essential FeS protein Rli1, revealing a novel mode of action for an antimalarial. Rli1
is highly conserved, including in Plasmodium spp. Furthermore, MMV665909 was
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shown to act in synergy with the current antimalarials chloroquine, amodiaquine, and
primaquine. Therefore, this study supports translation fidelity as a novel target for
antimalarials such as MMV665909, a candidate MMV drug in the fight against malaria.

MATERIALS AND METHODS
Yeast strains and plasmids. Unless specified otherwise, all experiments were performed with

Saccharomyces cerevisiae BY4741 (MATa his3-1 leu2-0 met15-0 ura3-0). Isogenic deletion mutants were
from Euroscarf (Frankfurt, Germany). The double deletion mutant sul1� sul2� was constructed previously
(33). The S. cerevisiae W303 background (MAT� ura3-1 ade2-1 trp1-1 his3-11,15 leu2-3,112) was used for
red/white mistranslation assays. Yeast were maintained and grown in YPD medium (2% peptone [Oxoid,
Basingstoke, United Kingdom], 1% yeast extract [Oxoid], 2% D-glucose) or YNB medium (0.69% yeast
nitrogen base without amino acids; Formedium, Norfolk, United Kingdom) supplemented with 2%
(wt/vol) D-glucose and as appropriate for plasmid selection (61). Where necessary, medium was solidified
with 2% (wt/vol) agar (Sigma-Aldrich, St. Louis, MO). For overexpression of proteins, the RLI1 or SUP45
open reading frames (ORFs) were placed under the control of the tetO promoter in the pCM190 vector
and modified so that the product was C-terminally tagged with the hemagglutinin (HA) epitope, as
described previously for pCM190-RLI1-HA (34). SUP45 was ligated between the NotI-PstI sites of pCM190.
Yeast transformations were performed by the lithium acetate method (62).

Chemicals. With the exception of the compounds from the MMV box provided by the Medicines for
Malaria Venture (Geneva, Switzerland), all drugs were from Sigma-Aldrich: paromomycin sulfate, amo-
diaquine dihydrochloride dihydrate, chloroquine diphosphate salt, and primaquine bisphosphate. With
the exception of MMV compounds (in dimethyl sulfoxide [DMSO]), stock solutions of all chemicals used
in this study were prepared in distilled water, filter sterilized, and added to growth medium to give the
final concentrations specified in the figure legends or on the figures.

Growth inhibition assays. Single colonies of yeast were used to inoculate broth cultures in
Erlenmeyer flasks and incubated at 30°C with orbital shaking at 120 rpm overnight. Overnight cultures
were diluted to an OD at 600 nm (OD600) of �0.5 and cultured for a further 4 h in fresh medium. The 4-h
mid-/late-exponential-phase cultures were diluted to an OD600 of �0.1, and 300-�l aliquots were
transferred to 48-well microtiter plates (Greiner Bio-One, Stonehouse, United Kingdom) with chemicals
added as specified in the figure legends or on the figures and balanced for any solvent additions. Plates
were incubated at 30°C with shaking in a BioTek Powerwave XS microplate spectrophotometer, and the
OD600 was recorded every 30 min.

Checkerboard assays. All culturing for checkerboard assays was performed as described above.
Aliquots (150 �l) were transferred to 96-well microtiter plates (Greiner Bio-One, Stonehouse, United
Kingdom) with chemicals added as specified on Fig. 4B. The inoculated plates were incubated statically
for 24 h at 30°C before measurement of the OD600 with a BioTek EL800 microplate spectrophotometer.
After subtraction of the background reading for noninoculated medium, growth for each condition was
calculated as a percentage of the growth of the control in the absence of the added inhibitors. Fractional
inhibitory concentrations (FICs) were calculated as described previously (63).

Anaerobic growth assays on solid medium. S. cerevisiae W303 cultures prepared as described
above were adjusted to OD600 values of �2.0, 0.2, 0.02, and 0.002, and the dilution series was spotted
(4 �l) onto YPD agar alone or supplemented with the MMV drug. Images were captured after 4 days of
growth at 30°C under anaerobic (Whitley DG250 anaerobic workstation; Don Whitley Scientific) or
aerobic conditions.

Mistranslation assays. For qualitative determination of mistranslation, experimental cultures of S.
cerevisiae W303 were spotted onto YPD agar alone or supplemented with the MMV drug, as described
above. Images were captured for comparisons of red versus white colonies after 2 days of growth at 30°C.

For quantitative determination of mistranslation, S. cerevisiae was transformed with a dual-luciferase
reporter plasmid encoding firefly and Renilla luciferases either separated by a stop codon (UAA version
kindly provided by D. Bedwell, University of Alabama [47], or UGA version [in a BSC4 context] supplied
by C. Loenarz, University of Nottingham [64]) or containing a missense codon in the ORF encoding firefly
luciferase (His245 ¡ Arg245; pDB868 from D. Bedwell [46]). Precultures were prepared as described
above in YNB broth supplemented appropriately for plasmid selection. Then, the cultures were diluted
to an OD600 of �0.1 in YPD medium, 300-�l aliquots were transferred to 48-well microtiter plates, and the
MMV drug was added as specified in the figure legends or on the figures. Plates were incubated at 30°C for
16 h with shaking in a BioTek Powerwave XS microplate spectrophotometer or statically in the presence or
absence of oxygen for the anaerobic or aerobic assays, respectively. Cell extracts were prepared by lysis of
culture samples (OD600 of �2) for 10 min using passive lysis buffer from a Promega Dual-Luciferase Reporter
Assay System (Promega, Madison, WI, USA). Firefly luciferase activity was measured (10-s integration time)
using luciferase assay buffer (Promega) in a GloMax 20/20 luminometer (Promega). Renilla luciferase activity
(10-s integration time) was determined subsequent to quenching of firefly activity using Stop & Glo buffer
(Promega). Background measurements for nontransformed cells were subtracted, and the ratio of lumines-
cence attributable to the firefly versus Renilla luciferase was calculated.

SUPPLEMENTAL MATERIAL

Supplemental material for this article may be found at https://doi.org/10.1128/AAC
.00459-17.
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