
Ibrahim, Osman Ali Sadek and Landa-Silva, Dario
(2017) ES-Rank: evolution strategy learning to rank
approach. In: 32nd ACM Symposium on Applied
Computing (SAC 2017), 3-7 April 2017, Marrakech,
Morocco.

Access from the University of Nottingham repository:
http://eprints.nottingham.ac.uk/41540/1/dls_sac2017.pdf

Copyright and reuse:

The Nottingham ePrints service makes this work by researchers of the University of
Nottingham available open access under the following conditions.

This article is made available under the University of Nottingham End User licence and may
be reused according to the conditions of the licence. For more details see:
http://eprints.nottingham.ac.uk/end_user_agreement.pdf

A note on versions:

The version presented here may differ from the published version or from the version of
record. If you wish to cite this item you are advised to consult the publisher’s version. Please
see the repository url above for details on accessing the published version and note that
access may require a subscription.

For more information, please contact eprints@nottingham.ac.uk

mailto:eprints@nottingham.ac.uk

ES-Rank: Evolution Strategy Learning to Rank Approach

Osman Ali Sadek Ibrahim
ASAP Research Group,

The University of Nottingham
CS Dept., Minia University, Egypt.

psxoi@nottingham.ac.uk

Dario Landa-Silva
ASAP Research Group,

School of Computer Science
The University of Nottingham

dario.landasilva@nottingham.ac.uk

ABSTRACT
Learning to Rank (LTR) is one of the current problems in
Information Retrieval (IR) that attracts the attention from
researchers. The LTR problem is mainly about ranking the
retrieved documents for users in search engines, question an-
swering and product recommendation systems. There are
a number of LTR approaches from the areas of machine
learning and computational intelligence. Most approaches
have the limitation of being too slow or not being very ef-
fective. This paper investigates the application of evolution-
ary computation, specifically a (1+1) Evolutionary Strategy
called ES-Rank, to tackle the LTR problem. Experimen-
tal results from comparing the proposed method to four-
teen other approaches from the literature, show that ES-
Rank achieves the overall best performance. Three datasets
(MQ2007, MQ2008 and MSLR-WEB10K) from the LETOR
benchmark collection and two performance metrics, Mean
Average Precision (MAP) and Normalized Discounted Cu-
mulative Gain (NDCG) at top-10 query-document pairs re-
trieved, were used in the experiments. The contribution of
this paper is an effective and efficient method for the LTR
problem.

CCS Concepts
•Information systems → Learning to rank;

Keywords
Learning to Rank; Evolution Strategy; Machine Learning;
Information Retrieval

1. INTRODUCTION
In information retrieval (IR), ranking the retrieved docu-
ments with respect to their relevance in response to the
user’s query is very important in order to satisfy the user’s
information needs. This is known as the Learning to Rank

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
SAC 2017,April 03-07, 2017, Marrakech, Morocco
Copyright 2017 ACM 978-1-4503-4486-9/17/04. . . $15.00
http://dx.doi.org/10.1145/3019612.3019696

(LTR) problem in IR. In order to tackle this problem, earlier
approaches include term scoring methods such as TF-IDF,
Okapi-BM25 and language models among others [19]. How-
ever, a limitation of using only one scoring method in IR sys-
tems is that such approach is not effective enough in order
to retrieve the most relevant documents. Moreover, learning
models such as Okapi-BM25 and language models rely con-
siderably on the relevance judgment in order to achieve good
retrieval results [11, 25, 26]. This limitation has inspired the
use of more than one scoring method for ranking documents.
Moreover, using additional features that represent the qual-
ity (e.g. reputation of the source in the web) of the retrieved
documents according to the user’s query helps to accom-
plish a more effective ranking. Recently, Tao Qin et. al.
[23] proposed the LETOR datasets which have been widely
adopted by IR researchers interested in document ranking
techniques. Each dataset in LETOR is a distilled benchmark
originating from search engines and from the well-known
TREC conference document collections. These benchmarks
contain more than one scoring weighting scheme as part of
the benchmark features. They also contain some other fea-
tures that indicate the importance of the documents on the
web. The documents in the LETOR datasets were mapped
into fully judged query-document pairs suitable for conduct-
ing research on the LTR problem. Hence, given that the
LETOR benchmark collection has been used in various pre-
vious works proposing LTR methods, three of these datasets
are used for the experiments in this paper. A number of
machine learning and computational intelligence approaches
have been proposed to improve the ranking based features.
Section 2 provides more on the background of the LTR prob-
lem in IR, while section 3 presents a brief literature review
of related work in this subject.

The intended contribution of this paper is to present an Evo-
lutionary Strategy (ES) to tackle the LTR problem. The
proposed method is called ES-Rank and consists on evolv-
ing a vector of weights where each weight represents a desir-
able feature. The mutation step-size in ES-Rank has been
tuned based on preliminary experimentation. Details of the
proposed method are presented in section 4. In order to
assess the performance of ES-Rank, Mean Average Preci-
sion (MAP) and Normalized Discounted Cumulative Gain
(NDCG) [23] are used and comparison is carried out against
fourteen state-of-the-art LTR approaches from the litera-
ture. Experimental results in this paper show that ES-Rank
performs very well when compared to those other methods in

http://dx.doi.org/10.1145/3019612.3019696

terms of MAP and NDCG. Furthermore, most of the other
methods consumed very long computation time while ES-
Rank was much faster. For example, some of the other meth-
ods consumed more than 9 hours on each MSLR-WEB10K
dataset fold [23] while ES-Rank consumed only around 30
minutes on each fold. Another feature of ES-Rank is that
it has small memory requirements according to the prob-
lem size (2XM dimensions where M represents the number
of features in the training dataset). Experimental results
are presented in sections 5 while conclusions and proposed
future work are given in section 6.

2. BACKGROUND
A LTR dataset consists of query-document pairs for a large
number of queries [23]. This is illustrated in Table 1 showing
the representation of several query-document pairs. Each
pair contains a relevance label indicating the relevance de-
gree of the document for each query. In most cases, the
relevance labels are binary where 1 means relevant and 0
means irrelevant. There is also a query identifier (id) in-
dicating the corresponding query for each query-document
pair. The feature vector refers to M other features such
as Term-Weighting Scores (e.g. TF-IDF, Okapi-BM25 and
Language Models [23]), PageRank and Host Server Impor-
tance, features associated to each query-document pair in
the LTR dataset. Each feature in the Feature Vector has the
form FeatureID:FeatureValue, where FeatureValue contains
the contribution value of this feature in the query-document
pair. The dataset itself is divided into N folds (usually it
contains 5 folds) and each fold contains training, validation
and testing set of the query-document pairs. These folds
are useful for examining the LTR algorithm behavior and
its predictive performance by applying it on test datasets
different to the training datasets. More details about LTR
datasets and query-document pairs are in [22, 23].

Figure 1: Learning to Rank (LTR) Approach Archi-
tecture as Discussed in [18].

In recent years, LTR as a supervised learning-based method
has been widely used in IR to produce ranking functions
based on the training datasets. The ranking function is used
to rank the retrieved documents in response to the user’s
query. Figure 1 shows the general LTR approach architec-
ture that most learning-based approaches follow to deal with
the IR ranking problem. It starts with the training set made
of query-document pairs being the input to a computational

Table 1: Learning to Rank (LTR) Query-Document
Pairs Representation

Relevance Label QueryId:id Feature Vector
1 qid:1 1:0.1 2:0.8 4:0.5N:M
0 qid:1 1:0.9 2:0.6 4:0.2N:M
1 qid:1 1:0.1 2:0.8 4:0.5N:M
1 qid:2 1:0.2 2:0.4 4:0.5N:M
0 qid:2 1:0.3 2:0.7 4:0.3N:M
1 qid:3 1:0.4 2:0.3 4:0.5N:M

intelligence or machine learning technique [15]. The ranking
model or ranking function is created and then used to rank
the search results for the user’s queries. The ranking model
can also be used in the test phase to measure the predictive
performance of the ranking algorithm on the test datasets.
Then, the resulting ranking system will produce an ordered
list of documents retrieved from the document collection in
response to the search. The next section reviews some of
the existing LTR approaches in order to set the context for
the method proposed in this paper.

3. RELATED WORK
There are three categories of LTR methods [18]: (1) the
point-wise method, (2) the pair-wise method and (3) the
list-wise method. These categories are based on the loss
function or fitness function measurements. The point-wise
approach views each single object (query-document pair) as
the learning instance. Examples of point-wise approach are
Linear Regression (LR) [28], Boosting [8], Gradient Boosted
Regression Trees (GBRT or MART) [9, 21] and Random
Forests [2]. The pair-wise approach views the pair of ob-
jects (two query-document pairs for the same query) as the
learning instance. Examples of the pair-wise approach are
RankNET (Rank Neural Net) [3], RankBoost and RankSVM
(Rank Support Vector Machine) [15]. The list-wise approach
takes the entire retrieved list of objects (the list of query-
document pairs for each query) as the learning instance. Ex-
amples of the list-wise approach are ListNET (Listwise Neu-
ral Net) [5], RankGP [17], Coordinate Ascent [20], AdaRank
[27] and RankGPES [12]. The proposed ES-Rank method
described later in this paper is a list-wise approach because
this type has been shown to perform better than point-wise
and pair-wise approaches [5].

Due to the need for increasing the performance of LTR ap-
proaches, researchers have proposed hybrid techniques by
combining methods from the three LTR categories. Sculley
[24] proposed an approach (CoRR) combining LR (point-
wise approach) with Support Vector Machine (pair-wise ap-
proach). This approach is implemented in the Sofia-ml pack-
age [24] and it has reasonable computational run-time. How-
ever, its performance in terms of NDCG and MAP is lim-
ited. In order to achieve better NDCG, Mohan et al. [21]
proposed a hybrid machine learning approach for initializ-
ing GBRT using RF. However, experiments show that this
approach consumes too much computational run-time com-
pared to other approaches from the literature [7, 15]. On the
other hand, two proposed hybrid approaches called Lamb-
daRank and LambdaMART combine pair-wise with list-wise
approaches [4]. LambdaMART is the boosted tree from

LambdaRank which is based on RankNET. Both Lamb-
daMART and LambdaRank have shown better performance
than the method by Mohan et. al. on the Yahoo! Learning
to Rank Challenge [6]. Overall, all these approaches have a
limitation on the computational run-time or the evaluation
accuracy of the predictive results. For example, the com-
putational training time of IGBRT or Coordinate Ascent
in Ranklib package among other methods on the MSLR-
WEB10K fold is more than 7 hours. The RankGPES method
also proposed by Islam [12] combining Genetic Programming
with Evolutionary Strategy consumed significant computa-
tional time on the LETOR 3 datasets [18]. The consumed
training time by the method was between 30 and 40 minutes
on the Ohsumed dataset and between 1-2 hours on each .Gov
dataset. It is noted that LETOR 3 is smaller than MSLR-
WEB10K and other machine learning methods consumed
less computational run-time than RankGPES.

4. THE PROPOSED ES-RANK METHOD
Given the limitations in respect of computation time and
accuracy of results observed in existing LTR methods as
discussed above, the proposal here is to use an Evolutionary
Strategy (ES) [10] to tackle the learning to Rank (LTR)
problem. The technique developed here is called Evolu-
tion Strategy Ranking (ES-Rank). The reason for choosing
an ES is their capability for convergence towards a good-
quality solution in fast computational run-time. In addi-
tion, as mentioned above, list-wise LTR approaches have
shown better performance in terms of Mean Average Pre-
cision (MAP) and Normalized Discounted Cumulative Gain
(NDCG) against pair-wise and point-wise approaches [5].

Algorithm 1 outlines the proposed ES-Rank. This approach
is essentially a (1+1)-Evolutionary Strategy that evolves a
single vector over a number of generations. The input is the
training set of query-document pairs or feature vectors and
the output is a linear ranking function. The chromosome
ParentCh is a vector of M genes, where each gene is a real
number representing the importance of the corresponding
feature for ranking the document. Steps 1 to 4 initialise
the chromosome vector by setting each gene to a value of
0. The Boolean variable Good, used to indicate whether
repeating the mutation process from the previous genera-
tion, is set to FALSE in Step 5. A copy of ParentCh is
made into OffspringCh in step 6. The evolution process for
MaxGenerations generations (MaxGenerations = 1300 in
this paper) starts in Step 7 and ends in Step 24. Steps
8 to 16 show the strategy to control the mutation process
by choosing the number of genes to mutate (R), the actual
genes to mutate and the mutation step. The mutation step
is determined using equation 1 where Gaussian(0,1): is a
random Gaussian number with 0 mean and 1 standard devi-
ation, and Cauchy(0,1): is a cumulative distributed Cauchy
random number with value between 0 and 1.

Mutated Gene i = Gene i + Gaussian(0, 1) ∗
exp(Cauchy(0, 1)) (1)

The mutation step defined by equation (1) was chosen based
on preliminary experiments in which several ways of com-

bining the Gaussian and Cauchy numbers were tried. The
combinations tried involved adding, subtracting and multi-
plying these numbers. Both random and probabilistic muta-
tion rates were tried in the preliminary experiments. Among
the various combinations tried, the one expressed by equa-
tion (1) provided the best performance for ES-Rank. A mu-
tation process that is successful (produces a better offspring)
in generation (G− 1) is replicated in generation G as shown
in Step 9. Otherwise the parameters of the mutation pro-
cess are reset as shown in Steps 11 to 15. Steps 17 to 23
select between the ParentCh and the OffspringCh accord-
ing to their fitness function values measured using MAP or
NDCG (see subsection 5.2). Finally, ES-Rank returns the
ranking function in Step 25, defined by the transpose of the
evolved vector of feature weights and the query-document
pairs.

Algorithm 1: ES-Rank: (1+1)-Evolutionary Strategy
Ranking Approach

Input : A training set φ(q, d) of query-document pairs of feature
vectors.

Output: A linear ranking function F (q, d) that assigns a weight for
every query-document pair indicating its relevancy degree.

1 Initialization
2 for (Geni ∈ ParentCh) do
3 Geni = 0.0;
4 end
5 Good=FALSE;
6 OffspringCh = ParentCh;
7 for G = 1 to MaxGenerations do
8 if (Good==TRUE) then
9 Use the same mutation process of generation (G− 1) on

OffspringCh to mutate OffspringCh, that is, mutate
the same R genes using the same MutationStep;

10 else
11 Choose R at random, the number of genes to mutate;
12 for j = 1 to R do
13 Choose at random, Geni in OffSpringCh for

mutation;
14 Mutate Genei using MutationStep according to

equation (1)
15 end

16 end
17 if (Fitness(ParentCh,φ(q, d)) <Fitness(OffspringCh,φ(q, d)))

then
18 ParentCh = OffspringCh;
19 Good=TRUE;

20 else
21 OffspringCh = ParentCh;
22 Good=FALSE ;

23 end

24 end
25 return the linear ranking function

F (q, d) = ParentChT • φ(q, d) = WT • φ(q, d), that is ParentCh
at the end of the G generations contains the evolved vector W of
feature weights, T indicates the transpose

Then, in order to apply the proposed LTR approach, the first
step is to obtain the datasets which contain the training,
validation and test benchmarks. Next, the proposed ES-
Rank algorithm is applied to the training set in order to
evolve a linear ranking function. Then, the performance
of the evolved linear ranking function is assessed using the
test set to get the predictive performance of the learning
algorithm. The link for ESRank library is: http://www.cs.
nott.ac.uk/˜psxoi/ESRank.zip.

5. EXPERIMENTAL RESULTS
This section first describes the three datasets from the LETOR

http://www.cs.nott.ac.uk/~psxoi/ESRank.zip
http://www.cs.nott.ac.uk/~psxoi/ESRank.zip

benchmark collection used to test the proposed ES-Rank. It
then describes the metrics MAP and NDCG used for assess
the fitness of the evolved vector and also for evaluation in the
tests. Finally, the section presents the experimental results
in which fourteen other LTR methods from the literature
are considered.

5.1 Benchmark Datasets
For the experiments, the three most recent datasets from the
LETOR datasets were used: MSLR-WEB10K and LETOR
4 (MQ2007 and MQ2008) [22, 23]. Table 2 summarizes the
properties of these datasets. The numbers of features vary
in these datasets. In MQ2007 and MQ2008, the number
of features is 46, while MSLR-WEB10K contains 136 fea-
tures. The largest number of queries is in MSLR-WEB10K
with 10000 unique queries. On the other hand, MQ2007 and
MQ2008 contain 1692 and 784 unique queries respectively.

Table 2: Properties of Datasets Used in Experi-
ments

Dataset Queries
Query-
URL
Pairs

Features
Relevance
Labels

No. of
Folds

MQ2007 1692 69623 46 {0,1,2} 5

MQ2008 784 15211 46 {0,1,2} 5

MSLR-
WEB10K

10000 1200192 136 {0,1,2,3,4} 5

5.2 Fitness and Evaluation Metrics
In this study, the Mean Average Precision (MAP), and the
Normalized Discounted Cumulative Gain (NDCG) were used
[1, 14, 3] as two separate fitness functions on the training
sets. They also were used as the evaluation metrics for the
ranking functions on the test sets.

These metrics are defined as follows. Let d1, d2, ..., dD denote
the ranked documents by decreasing order of relevance based
on the ranking model, where D is the number of query-
document pairs retrieved responding to user’s query. The
function r(di) gives the relevance label of a query-document
pair di. It returns 1 in binary relevance judgement if di
is relevant, and 0 otherwise. The precision per query q,
denoted P (q), is defined as follows.

P (q) =
1

D
ΣD

i=1 r(di) . ΣD
j=1

1

j
(2)

Then, the MAP for a set of queries is the mean of the av-
erage precision values over all queries. This is given by the
following equation where Q is the number of queries.

MAP =
ΣQ

q=1 P (q)

Q
(3)

The NDCG of the top-k documents retrieved (NDCG@k)
can be calculated by the following equation where IDCG@k
is the ideal (maximum) discounted cumulative gain of the
top-k documents retrieved.

NDCG@k =
1

IDCG@k
∗ Σk

i=1
2r(di) − 1

log2(i + 1)
(4)

The Discounted Cumulative Gain of the top-k documents re-
trieved (DCG@k) can be calculated by the following equa-
tion where r(di) returns the relevance label value of the
query-document pair in the ranked retrieved list (see table 2
for the relevance label values). In binary relevance judgment
labels, r(di) returns 1 if the document (di) is relevant for the
query in the query-document pair, and returns 0 otherwise.

DCG@k = Σk
i=1

2r(di) − 1

log2(i + 1)
(5)

If all top-k documents retrieved are relevant, the DCG@k
will be equal to IDCG@k.

5.3 Results
The performance of the proposed ES-Rank is compared to
that of fourteen machine learning and computational intel-
ligence techniques from the literature. Figures 2 and 3 show
the overall results and lists the fourteen methods tested.
These are implemented in the packages RankLib [7], rt-Rank
[21], Sofia-ml [24], SVMRank [13] and Layered Genetic Pro-
gramming for Learning to Rank (RankGP) [16]. The pa-
rameter values used for the fourteen approaches are the de-
fault settings in these packages. Those settings produced the
shortest computational run time for each approach. The
experimental results presented in Figures 2 and 3 are the
average scores of ten runs on 5-folds cross validation. Each
dataset fold consists of a training, a validation and a testing
data. The number of genes in the chromosome of ES-Rank is
equal to the number of features existing in the dataset. For
example, the length of the chromosome for the evolved LTR
function vector in dataset MSLR-WEB10K is 136 which is
the number of features (see table 2).

Table 3: Statistical Summary of the Experimental
Results

Algorithms Mean SD
SE
(Mean)

CV

AdaRank 0.4605 0.0758 0.0138 0.1646

CoRR 0.4318 0.0406 0.0074 0.0941

Coordinate
Ascent

0.4776 0.0638 0.0116 0.1330

ES-Rank 0.4779 0.0596 0.0109 0.1247

IGBRT 0.4565 0.0563 0.0145 0.1234

LambdaMART 0.4774 0.0634 0.0116 0.1328

LambdaRank 0.3247 0.0939 0.0171 0.2892

LR 0.4425 0.0527 0.0096 0.1192

ListNET 0.4099 0.1034 0.0189 0.2522

MART 0.4750 0.0624 0.0114 0.1313

RF 0.4771 0.0661 0.0121 0.1384

RankBoost 0.4621 0.0770 0.0141 0.1666

RankGP 0.4197 0.0372 0.0068 0.0887

RankNET 0.4143 0.1060 0.0194 0.2559

RankSVM 0.4043 0.0707 0.0129 0.1748

The results shown in Figures 2 and 3 correspond to the
predictive values of the best performance by the tested ap-
proaches. For each dataset in the horizontal axis, a dif-
ferent color point represents the performance of one of the

Figure 2: Performance of LTR Algorithms Including the Proposed ES-Rank When Applied to MSLR-
WEB10K, MQ2008 and MQ2007 Datasets Using MAP as Fitness and Evaluation Metric.

Figure 3: Performance of LTR Algorithms Including the Proposed ES-Rank When Applied to MSLR-
WEB10K, MQ2008 and MQ2007 Datasets Using NDCG as Fitness and Evaluation Metric.

Table 4: Average Computational Run-time of the Algorithms in Seconds When Applied to MSLR-WEB10K,
MQ2008 and MQ2007 Datasets

Algorithm MSLR-WEB10K MQ2008 MQ2007 Average Time

RankBoost 3720 15 74 1269.667

RankSVM 32409 19 23 10817

ListNET 18005 45 95 6048.333

AdaRank 3600 11 20 1210.333

MART 1200 8 11 406.3333

Coordinate Ascent 25200 37 240 8492.333

LambdaMART 3720 9 11 1246.667

RankNET 10800 33 96 3643

Random Forest 3660 27 55 1247.333

Linear Regression 157 2 3 54

RankGP 26020 375 390 8928.333

CoRR 10803 42 51 3632

LambdaRank 18015 46 142 6067.667

IGBRT 36750 274 253 12425.67

ES-Rank 1800 35 51 628.6667

approaches. As mentioned above, the performance is mea-
sured with the evaluation metrics MAP and NDCG@10.
From these results, it can be seen that ES-Rank is generally
the best approach producing the best performance among
all methods in 11 out of 30 data fold-metric combinations.
From the MAP results in Figure 2, ES-Rank outperforms
the other approaches in 7 data folds, while Random Forest
outperforms the other approaches in 5 data folds. AdaRank
is the third best approach by outperforming the other ap-
proaches in 2 data folds, where RankSVM outperforms other
approaches in only 1 data folds. From the NDCG@10 re-
sults in Figure 3, the best approach is Coordinate Ascent,
producing the best performance in 5 out of 15 data folds,
while ES-Rank is the second best approach that has the
best performance in 4 out of 15 data folds. IGBRT comes in
the third position with 3 out of 15, while LambdaMART is
the fourth with 2 out of 15. The Random Forest approach
is in the fifth position with 1 out of 15 best performance
in the data folds. The statistical summary of the results
is in table 3. This table shows the mean, standard devia-
tion (SD), standard error mean (SE Mean) and coefficient
of variation (CV) of the results on the 30 fold-metric combi-
nations. From this table, we can conclude that the ES-Rank
has the highest mean value at 0.4779, while the Coordinate
Ascent mean value is 0.4776. Furthermore, the standard
error mean, standard deviation and coefficient of variation
of ES-Rank are competitive values compared with IGBRT.
The values of standard error mean, standard deviation and
coefficient of variation of ES-Rank are 0.0109, 0.0596 and
0.1247, while these values in IGBRT are 0.0145, 0.0563 and
0.1234. In terms of computational run-time, ES-Rank used
30 minutes on MSLR-WEB10K fold, 35 seconds on MQ2008
fold and 51 seconds on MQ2007 fold. The detailed compu-
tational run-times of the approaches are shown in table 4.

These experiments were conducted on a 3.60 GHz Intel (R)
core(TM) i7-3820 CPU and the implementation was in Java
NetBeans under Windows 7 Enterprise Edition.

6. CONCLUSION AND FUTURE WORK
This paper presented a new LTR approach called ES-Rank
which is based on a (1+1) Evolutionary Strategy with a tai-
lored mutation process. The performance of the proposed
approach was compared to that of fourteen machine learn-
ing and computational intelligence approaches from the lit-
erature. The metrics Mean Average Precision (MAP) and
Normalized Discounted Cumulative Gain (NDCG) were used
for fitness evaluation within ES-Rank and also for evaluating
the performance of the LTR approaches in the comparison.
These datasets used here are MSLR-WEB10K (Microsoft
ten thousand web queries) dataset, MQ2008 and MQ2007
(TREC Million queries datasets for years 2008 and 2007).

From the experimental results, in general ES-Rank exhib-
ited an overall better performance than the other fourteen
methods tested, achieving the best performance in 10 out
of 30 data fold-metric. Thus, ES-Rank is a competitive ap-
proach to tackle the LTR problem. Given the good results
achieved with a (1+1) Evolutionary Strategy in this work.
Future research will be focused on improving the approach
by investigating its combination with machine learning tech-
niques. Moreover, future work will also consider applying
the technique to LETOR 3 datasets (.Gov and Ohsumed
datasets) and use three other fitness functions, Reciprocal
Rank, Precision and Error Rate.

7. REFERENCES
[1] R. A. Baeza-Yates and B. A. Ribeiro-Neto. Modern

Information Retrieval - the concepts and technology
behind search. Pearson Education Ltd., Harlow,
England, 2nd edition edition, 2011.

[2] L. Breiman. Random forests. Machine Learning,
45(1):5–32, 2001.

[3] C. Burges, T. Shaked, E. Renshaw, A. Lazier,
M. Deeds, N. Hamilton, and G. Hullender. Learning to
rank using gradient descent. In Proceedings of the
22Nd International Conference on Machine Learning,
ICML ’05, pages 89–96, New York, NY, USA, 2005.
ACM.

[4] C. J. C. Burges. From RankNet to LambdaRank to
LambdaMART: An overview. Technical report,
Microsoft Research, 2010.

[5] Z. Cao, T. Qin, T.-Y. Liu, M.-F. Tsai, and H. Li.
Learning to rank: from pairwise approach to listwise
approach. In Proceedings of the 24th international
conference on Machine learning, ICML ’07, pages
129–136, New York, NY, USA, 2007. ACM.

[6] O. Chapelle and Y. Chang. Yahoo! learning to rank
challenge overview. In Proceedings of the Yahoo!
Learning to Rank Challenge, held at ICML 2010,
Haifa, Israel, June 25, 2010, pages 1–24, 2011.

[7] V. Dang. RankLib,
http://www.cs.umass.edu/ṽdang/ranklib.html, 2016.

[8] Y. Freund, R. Iyer, R. E. Schapire, and Y. Singer. An
efficient boosting algorithm for combining preferences.
Journal of Machine Learning Research, 4:933–969,
Dec. 2003.

[9] J. H. Friedman. Greedy function approximation: A
gradient boosting machine. The Annals of Statistics,
29(5):1189–1232, 2001.

[10] H. georg Beyer and H. paul Schwefel. Evolution
strategies - A comprehensive introduction. Natural
Computing, 1:3–52, 2002.

[11] O. A. S. Ibrahim and D. Landa-Silva. Term frequency
with average term occurrences for textual information
retrieval. Soft Computing, 20(8):3045–3061, 2016.

[12] M. A. Islam. Rankgpes: Learning to rank for
information retrieval using a hybrid genetic
programming with evolutionary strategies. Master’s
thesis, Computer Science, University of Windsor,
Toronto, Canada, 2013.

[13] T. Joachims. SVM-rank: Support Vector Machine for
Ranking, Accessed online (2016).

[14] K. L. Kwok. Comparing representations in Chinese
information retrieval. In SIGIR ’97 Proceedings of the
20th annual international ACM SIGIR conference on
Research and development in information retrieval,
pages 34–41, New York, NY, USA, 1997. ACM.

[15] H. Li. Learning to Rank for Information Retrieval and
Natural Language Processing, Second Edition. Morgan
& Claypool Publishers, 2014.

[16] J.-Y. Lin, H.-R. Ke, B.-C. Chien, and W.-P. Yang.
Designing a classifier by a layered multi-population
genetic programming approach. Pattern Recognition,
40(8):2211–2225, 2007.

[17] J. Y. Lin, J. Y. Yeh, and C. C. Liu. Learning to rank
for information retrieval using layered
multi-population genetic programming. In

Computational Intelligence and Cybernetics
(CyberneticsCom), 2012 IEEE International
Conference on, pages 45–49, July 2012.

[18] T.-Y. Liu. Learning to rank for information retrieval.
Foundation Trends of Information Retrieval,
3(3):225–331, Mar. 2009.

[19] C. D. Manning, P. Raghavan, and H. Schütze.
Introduction to Information Retrieval. Cambridge
University Press, New York, NY, USA, 2008.

[20] D. Metzler and W. Bruce Croft. Linear feature-based
models for information retrieval. Information
Retrieval, 10(3):257–274, 2007.

[21] A. Mohan, Z. Chen, and K. Weinberger. Web-search
ranking with initialized gradient boosted regression
trees. In Journal of Machine Learning Research,
Workshop and Conference Proceedings, volume 14,
pages 77–89, 2011.

[22] T. Qin and T. Liu. Introducing LETOR 4.0 datasets.
CoRR, abs/1306.2597, 2013.

[23] T. Qin, T.-Y. Liu, J. Xu, and H. Li. Letor: A
benchmark collection for research on learning to rank
for information retrieval. Information Retrieval,
13(4):346–374, 2010.

[24] D. Sculley. Combined regression and ranking. In
Proceedings of the 16th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining,
KDD ’10, pages 979–988, New York, NY, USA, 2010.
ACM.

[25] A. Tonon, G. Demartini, and P. Cudre-Mauroux.
Pooling-based continuous evaluation of information
retrieval systems. Information Retrieval Journal,
18(5):445–472, 2015.

[26] J. Urbano. Test collection reliability: a study of bias
and robustness to statistical assumptions via
stochastic simulation. Information Retrieval Journal,
19(3):313–350, 2016.

[27] J. Xu and H. Li. Adarank: A boosting algorithm for
information retrieval. In Proceedings of the 30th
Annual International ACM SIGIR Conference on
Research and Development in Information Retrieval,
SIGIR ’07, pages 391–398, New York, NY, USA, 2007.
ACM.

[28] X. Yan and X. G. Su. Linear Regression Analysis:
Theory and Computing. World Scientific Publishing
Co., Inc., River Edge, NJ, USA, 2009.

	Introduction
	Background
	Related Work
	The Proposed ES-Rank Method
	Experimental Results
	Benchmark Datasets
	Fitness and Evaluation Metrics
	Results

	Conclusion and Future Work
	References

