View metadata, citation and similar papers at core.ac.uk brought to you by fCORE

provided by Open Research Online

iversity

The Open

Un

Open Research Online

The Open University's repository of research publications
and other research outputs

A Classification of Countable Lower 1-transitive Linear
Orders

Journal ltem

How to cite:

Barbina, Silvia and Chicot, Katie (2018). A Classification of Countable Lower 1-transitive Linear Orders. Order, 35(2)
pp. 215-231.

For guidance on citations see FAQs.

(© 2017 The Authors
Version: Version of Record

Link(s) to article on publisher’s website:
http://dx.doi.org/doi:10.1007 /s11083-017-9427-2

Copyright and Moral Rights for the articles on this site are retained by the individual authors and/or other copyright
owners. For more information on Open Research Online’s data |policy on reuse of materials please consult the policies

page.

oro.open.ac.uk

https://core.ac.uk/display/83955661?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://oro.open.ac.uk/help/helpfaq.html
http://dx.doi.org/doi:10.1007/s11083-017-9427-2
http://oro.open.ac.uk/policies.html

&
Order @ CrossMark
DOI 10.1007/s11083-017-9427-2

A Classification of Countable Lower 1-transitive Linear
Orders

Silvia Barbina! - Katie Chicot!

Received: 8 November 2015 / Accepted: 28 April 2017
© The Author(s) 2017. This article is an open access publication

Abstract This paper contains a classification of countable lower 1-transitive linear orders.
This is the first step in the classification of countable 1-transitive trees given in Chicot and
Truss (2009): the notion of lower 1-transitivity generalises that of 1-transitivity for linear
orders, and it is essential for the structure theory of 1-transitive trees. The classification is
given in terms of coding trees, which describe how a linear order is fabricated from simpler
pieces using concatenations, lexicographic products and other kinds of construction. We
define coding trees and show that a coding tree can be constructed from a lower 1-transitive
linear order (X, <) by examining all the invariant partitions on X. Then we show that a
lower 1-transitive linear order can be recovered from a coding tree up to isomorphism.

Keywords Countable linear order - Transitive tree - Lower 1-transitivity - Classification

1 Introduction

This paper extends a body of classification results for countably infinite ordered structures,
under various homogeneity assumptions. As background we mention that Morel [7] clas-
sified the countable 1-transitive linear orders, of which there are 8|, Campero-Arena and
Truss [2] extended this classification to coloured countable 1-transitive linear orders, and

The results in this paper form part of the second author’s PhD thesis at the University of Leeds,
which was supported by EPSRC grant EP/H00677X/1.

P4 Katie Chicot
k.m.chicot@open.ac.uk

Silvia Barbina
silvia.barbina@open.ac.uk

' School of Mathematics and Statistics, The Open University, Walton Hall, Milton Keynes MK7
6AA, UK

Published online: 27 June 2017 &\ Springer

http://crossmark.crossref.org/dialog/?doi=10.1007/s11083-017-9427-2&domain=pdf
mailto:k.m.chicot@open.ac.uk
mailto:silvia.barbina@open.ac.uk

Order

Droste [5] classified the countable 2-transitive trees. The work of Droste was later gener-
alised by Droste, Holland and Macpherson [6] to a classification of all countable ‘weakly
2-transitive’ trees — there are 2™ non-isomorphic such trees. The goal of this paper, and
of [3], is to extend this last classification result to a considerably richer class, by working
under a much weaker symmetry hypothesis, namely 1-transitivity.

We first define the terminology used above and later. A tree is a partial order in which
any two elements have a common upper bound and the upper bounds of any element are
linearly ordered. A relational structure is said to be k-transitive if for any two isomorphic
k-element substructures there is an automorphism taking the first to the second. For partial
orders, there is a notion, called weak 2-transitivity, that generalises that of 2-transitivity: a
partial order is weakly 2-transitive if for any two 2-element chains there is an automorphism
taking the first to the second (but not necessarily for 2-element antichains).

A weaker notion still is that of I-transitivity, often called, more simply, transitivity. The
classification of countable 1-transitive trees is considerably more involved than that of the
weakly-2-transitive trees, and it rests on the classification of countable lower 1-transitive
linear orders — the subject of this paper.

Definition 1.1 A linear order (X, <) is lower 1-transitive if

Va,be X){xeX:x<a}=E{xeX:x<b}.

An example of a lower l-transitive, not 1-transitive linear order is w*, (that is,
reversed). It is easy to see that any branch (that is, maximal chain) of a 1-transitive tree must
be lower 1-transitive, though it is not necessarily 1-transitive.

The natural relation of equivalence between lower 1-transitive linear orders is lower
isomorphism, rather than isomorphism.

Definition 1.2 Two linear orders, (X, <) and (Y, <) are lower isomorphic if
NMaeX)VbeY){xeX:x<a}={yeY : :y<b}

When this happens, we write (X, <) = (Y, <).

We shall use standard interval notation from now on where appropriate, for example

(—o0,a]l :={xe X:x<a},
(a,b] = {xeX:a<x<b},
[a,b] = {xeX:a<x<b}.

With this notation, the isomorphisms in the above definitions may then be written more
succinctly as (—oo, a] = (—o0, b].

The classification of countable lower 1-transitive linear orders is rather involved and so
the current paper is devoted entirely to this, and the resultant classification of countable
1-transitive trees is deferred to [3].

A principal feature of the classifications of coloured 1-transitive countable linear orders
([1, 2]) and of 1-transitive trees [3], is the use of coding trees to describe the construction of
the orderings. In these papers, and in what follows, coding trees play a totally different role
from that of the 1-transitive trees which are classified in [3]: they are classifiers, rather than
structures being classified. Section 2 of this paper contains the definition of coding tree and
related notions. The main work of the paper is in Section 3, where we show how to construct
a coding tree from a linear order. Section 4 then describes how to recover a linear order from

@ Springer

Order

a coding tree. The main theorem is Theorem 3.7, which, in conjunction with Theorems 4.2
and 4.3, gives our classification.

In order to give the flavour of the classification, we conclude this introduction with
some examples of lower 1-transitive linear orders. First, some notation and terminology are
needed.

Let (A, <), (B, <) be linear orders; for convenience, we often omit the order symbol.
Then A.B denotes the lexicographic product of A and B, where for (a, b), (a’,b’) € Ax B,
(a,b) < (d,b)ifandonly ifa < a’,ora = a’ and b < b'. Also, A + B denotes A
followed by B, that is, the disjoint union of A and B witha < b foralla € A and b € B.
We write Q for Q4 {4o00}. If A is a linear order, then A* denotes the ordering with the same
domain and the reverse order. If n € N U {Rg}, then Q,, is the Fraissé generic n-coloured
linear order, that is, the countable dense linear order coloured by n colours co, ..., ¢y—1
and such that between any two distinct points there is a point of each colour. Likewise,
Qn is Q, + {400}, where the point +o00 is also coloured by any of the ¢;, or indeed any
other colour. If Yy, ..., Y, are linear orders, then Q, (Yy, ..., Y,—1) denotes the ordering
obtained by replacing each point of Q,, coloured ¢; by a convex copy of ¥; (with the natural
induced ordering). We say that Q, (Yo, ..., Y;—1) is the Q,-combination of Yy, ..., Y,. If
n = Rg, we write Qg, (Yo, Y1, ...).

The simplest countable lower 1-transitive linear orders are singletons, then w* and Z
(which are lower isomorphic), and Q and Q (which are also lower isomorphic). These orders
are the basic building blocks for our constructions. We obtain new lower 1-transitive linear
orders by concatenating and taking lexicographic products of existing ones. More precisely,
Theorem 4.3 implies that if A and B are any lower 1-transitive linear orders which are lower
isomorphic, then @*.A + B is lower 1-transitive.

For example, the lower isomorphism class of Z.Z (that is, the class of linear orders
that are lower isomorphic to Z.Z) consists of Z.Z, which by convention we write as 72,
w*.7Z + 7Z and w*.Z + w*. Note that we can concatenate w*.Z with either Z or ™ and the
resulting linear order will still be lower 1-transitive. This is because w* has a right-hand
endpoint and because Z and w* are lower isomorphic. Also note that 0*.A+ A = w*.A. We
use the former form to streamline subsequent definitions in the paper. A yet more complex
lower isomorphism class is that of 73, which includes w*.Z2 + 72, *.7* + »*.7Z + 7 and
0* 7* + 0* 7 + o*.

Theorem 4.3 gives another construction of lower 1-transitive linear orders from existing
ones. This construction involves the building block Q: the linear order Q, (Yo, ..., Y,—1)
(possibly with n = Rp) is lower 1-transitive provided the Y; are lower isomorphic to each
other. Moreover, as above, Q, (Yo, ..., ¥Y,—1) + Y is lower 1-transitive provided Y and the
Y; are all lower isomorphic to each other. A simple example is X = Qz(w*, Z), which is
countable and lower 1-transitive. Its lower isomorphism class also includes Qy(w*, Z) + Z
and Q» (0™*, Z) + w*.

2 Coding Trees

This section introduces coding trees, which carry all the relevant information about lower
1-transitive linear orders.

First, recall that a tree (7, <) is Dedekind-MacNeille complete if its maximal chains
are Dedekind-complete in the usual sense, and if any two incomparable elements have a
least upper bound. In fact, this is a special case of a general notion for partial orders, and
the basics are given, for example, in Chapter 7 of [4]. Any tree (7, <) has a unique (up

@ Springer

Order

to isomorphism over 7)) Dedekind-MacNeille completion, that is, a minimal Dedekind-
MacNeille complete tree containing it, which is obtained as follows. If A € T then A"
denotes the set of upper bounds of A and Al the set of lower bounds, that is,

AY:={xeT:(Vae€ A (x >a)}, and
Al'={xeT:(VaeA) (x <a)
A subset A # f is an ideal of T if (AY)! = A. If x is any vertex of T, then the set
I(x) :={y € T : y < x} is an ideal of T. The Dedekind-MacNeille completion of T is the

set I (T) of the ideals of T ordered by inclusion. It is easy to see that 7 embeds in 1°(T)
via the map which takes x € T to I(x) € IP(T).

Definition 2.1 If (T, <) is a tree and x € T, then a child of x is some y such that y < x
and there isno z € T with y < z < x. If x is a child of y then y is a parent of x. We write
child(x) for the set of children of x. A leaf of (7', <) is some x € T such that there is no
y € T with y < x. We write leaf(T") for the set of leaves of (7, <).

Alevelled tree is a tree (7', <) together with a partition, 7, of 7' into maximal antichains,
called levels, such that

(i) o is linearly ordered by « so that x < y in T implies that the level containing x is
below the level containing y in the < ordering;
@ii)) if x and y are both children of z, then x ~, y.

A leaf-branch B of a (levelled) tree (7', <) is a maximal chain of T which contains a
leaf.

The supremum of two incomparable points (which exists in the Dedekind-MacNeille
completion of 7', even if not in 7T itself) is called a ramification point.

If x € T then the relation <, on{y € T : y < x} given by

a =<, b ifthereisc € T suchthata,b <c < x

is an equivalence relation. The equivalence classes are called cones at x.

Deﬁnitipn 2.2 A tree is labelled if each vertex is labelled by one of the symbols Z, w*, Q,
Q, Qu, Q (for2 < n < Rp), {1} (singleton), or lim.

Isomorphisms between labelled trees are required to preserve the labelling.

Definition 2.3 Let (7, <) be a levelled tree. Let x € T and let < be a linear order on
child(x). If x is labelled by one of w*, Q and Qn, the right child of x is the child which is
greatest under the < ordering. All the remaining children are left children. If x is labelled
by one of Z, Q or Q,,, we consider all its children to be left children.

A left tree of a vertex is a partially ordered set consisting of a left child of the given
vertex together with the descendants of the left child, with the induced structure of levels
and labels. The left forest of a vertex is the partially ordered set consisting of the left trees
of that vertex.

Two forests are isomorphic provided the subtrees rooted at the greatest elements in each
forest can be put into one-to-one correspondence in such a way that they are isomorphic as
labelled trees.

Thus, an isomorphism between two forests preserves the levelling and the labelling, but it
is not required to preserve the < ordering among children.

@ Springer

Order

Definition 2.4 A coding tree has the form (7', <, <, ¢, <) where

L.

A

10.

T is a levelled tree with a greatest element, the root. The tree ordering is <, < is a
linear ordering on the set of children of each parent and < is the ordering of the levels.
There are countably many leaves.

Every vertex is a leaf or is above a leaf.

T is Dedekind-MacNeille complete.

The vertices are labelled by ¢, the labelling function, which assigns to the vertices one
of the following labels: Z, o*, Q, Q, Q,, Q, (for 2 < n < Rg), {1} (singleton), or lim.
For any two vertices x; and x; on the same level, ¢ (x;) is lower-isomorphic to ¢ (x;)
or ¢(x;) = ¢(x;) = lim.

If x and y are not siblings, then they are <-incomparable.

For any vertex x of the tree:

— if ¢(x) = Z or Q then x has exactly one child;

— if ¢(x) = w* or Q) then x has two children;

— if ¢(x) = Q, then x has n children;

- ifg(x) = Qn then x has n + 1 children;

— if ¢(x) = {1} then x is a leaf and has no children;

— if ¢(x) = lim then there is only one cone at x (so x is not a leaf and has no
children).

At each given level of T, the left forests of vertices at that level are all isomorphic in
the sense of Definition 2.3.

If x is a parent vertex and yp, y; are two of its left children, then the subtrees with
roots yop, y1 are not isomorphic.

We illustrate Definition 2.4 in Fig. 1, where we give the coding trees for the lower 1-
transitive linear orders in the lower isomorphism class of 73, that is, Z3, o*.Z? + 72,
w* 7?4+ 0* 7+ 7 and 0*.7* 4+ 0*. 7 + o*.

A

full explanation of how to recover a linear order from a coding tree is given in

Section 4. However, in finite cases, such as those illustrated in Fig. 1, it is possible to give an
informal description of how to read a linear order off its coding tree: we can start at the root
and proceed recursively through the tree. When at a vertex with label Z or Q, we take the
lexicographic product of the label with the linear order encoded by the subtree rooted at the

child

{1}

73

Fig. 1

of the vertex. When at a vertex labelled w*, respectively Q, we take the lexicographic

{1} {1} {1} {1 {1} {1y {13{1}

w*.72 + 72 w* 72 +wr 2+ 7 w*. 72 + w*. 7 + w*

Coding trees for lower 1-transitive linear orders in the lower isomorphism class of Z>

@ Springer

Order

product of w*, respectively Q, and the linear encoded by the subtree rooted at the left child
of the vertex and we concatenate this with the linear order encoded by the subtree rooted at
the right child. When the vertex is labelled Q,, or Qn, we take Q,,-combination of the linear
orders encoded by the subtrees rooted at the left children of the vertex, and in the case of
Q, we additionally concatenate this with the linear order encoded by the tree rooted at the
right child.

In general, however, the linear order cannot be recovered from its coding tree in a recur-
sive way, because Definition 2.4 does not imply that the levels of a coding tree are well
ordered or conversely well ordered. Consider the example in Fig. 2.

In this tree, there are countably many levels of vertices labelled Q. The leaf-branches
are maximal chains which eventually constantly descend through the right children of Qz,
that is, they only contain finitely many vertices that are left children. No other branches are
leaf-branches. In order for this tree to be a coding tree, we need that for every parent vertex
with left children yy and y;, the subtrees rooted at yy and y; are not isomorphic. This is
the case if there are non-isomorphic linear orders below the level labelled lim, while 8 in
Definition 2.4 is still satisfied. Under these assumptions, this tree is a coding tree, yet it is
neither well founded nor conversely well founded.

To help understand the linear orders represented by coding trees of this form, consider
the example where the non-isomorphic linear orders below the level labelled lim are all
lower-isomorphic to Z“. One way to think of such linear orders is as having the form

Q(0,) +0
where each argument is obtained by iterating the construction
Q(0, 0)+¢

countably many times, and where the third arguments in the construction (the orders that
are concatenated at the end) are lower-isomorphic to Z*.

Examples of this kind are the reason why we need expanded coding trees to recover a
lower 1-transitive linear order from a coding tree.

Expanded coding trees are closely related to coding trees and they are defined next. In
place of a labelling function on vertices, expanded coding trees carry, as part of the structure,
a total ordering on the set of children of each vertex. In general, a coding tree and the
corresponding expanded coding tree do not have the same vertex set. For instance, a point
of the expanded coding tree corresponding to a point labelled Qin the coding tree will have
infinitely many children in the expanded coding tree. All the children but the last one are
associated with the left child in the coding tree. The idea is that a lower 1-transitive linear
order (X, <) lives on the set of leaves of the expanded coding tree, so the expanded coding
tree facilitates the transition between coding tree and encoded order.

The labels on these levels are all QQ

L
o-—-o
°-—-e
°-—-o
°---e
L
°---e
L

+ The labels on this level are all lim
* The labels on this level are all {1}

Fig. 2 A coding tree that is neither well founded nor conversely well founded

@ Springer

Order

Definition 2.5 An expanded coding tree is a structure of the form (E, <, <, <) where:

1. E is alevelled tree with a greatest element, the root, denoted by r. The tree ordering is
<, K is the ordering of the levels and < is the ordering on the children of each parent
vertex.

2. (E,<) is a partial ordering consisting of a disjoint union of chains of the form

(child(x), <) for some x € T. Moreover, if x < y, then x is level with y.

(E, <) has at most countably many leaves.

Every vertex of (E, <) is a leaf or is above a leaf.

(E, <) is Dedekind-MacNeille complete.

If a vertex has any children, then their <-order type is one of Z, w*, Q, Q Qy or Qn for

2 <n < N

7. Any two vertices x and x’ on the same level are either both parent vertices, or they are
both leaves, or they both have exactly one cone below them. If x and x’ are both parent
vertices, then (child(x), <) =; (child(x’), <.

8. For any parent vertex x of the tree, one of the following holds:

A

(i) the <-order type of child(x) is Z, Q, w* or Q and the left trees rooted at the
children of x are all isomorphic, or
(i) the children of x are densely ordered by < and the trees rooted at the children of
x fall into n > 2 isomorphism classes and this makes them isomorphic to Q,, (for
2 < n < Rp), or
(iii) the left children are as in (ii) above, and x has a right child and this makes
(child(x), <) order-isomorphic to Qn.

9. At each given level of E the left forests (see Definition 2.3) from that level are order-
isomorphic (meaning that <, <« and < are preserved).

In 8(ii), we mean that if the elements of child(x) are coloured according to the isomorphism
type of the trees below them, then the corresponding coloured linear order (with respect to
<) is isomorphic to Q,,; likewise in 8(iii).

As in [2], we define a map which associates an expanded coding tree to a coding tree.

Definition 2.6 Let (7, <, ¢, <, <) be a coding tree, and (E, <, <, <) be an expanded cod-
ing tree. We say that E is associated with T via ¢ if there is a function ¢ : E — T which
takes the root of E to the root of 7', each leaf of E to some leaf of T, and such that

H v < = ¢@) < P(v2),
(ii)) ¢ induces an order-isomorphism from the set of levels of E (ordered by «) to the
set of levels of T'.
(iii) for each vertex v of E, ¢ maps {u € E : u < vionto{u € T : u < ¢(v)}, and for
any leaf / of E, ¢ maps [/, r] onto [¢ ([), ¢ (r)],
(iv) for each parent vertex v of E, one of the following holds:

- ¢clpW) =7Z, v*, Q, Q, and this is the order type of the children of v under <;

- <c(p)) =Qy, Qn (for 2 < n < Ry) and for any left children u, u’ of v, if the
trees rooted at « and u’ are isomorphic then ¢ (1) = ¢ (u');

— ¢(¢(v)) = lim if v is neither a parent nor a leaf (in which case v has just one
cone);

- ¢(¢p(v)) = {1}if vis aleaf.

The map ¢ is said to be an association map between 7 and E.

@ Springer

Order

We are now in a position to say explicitly how a tree encodes a linear order. If E is an
expanded coding tree, there is a natural linear order on leaf(E), which we denote by <*,
defined as follows: if x, y are leaves, then x <* y if there are x’, y/ € E withx < x/, y </,
and x" <y,

Definition 2.7 The coding tree (7, <, ¢, <, <) encodes the linear order (X, <) if there is
an expanded coding tree E associated with 7" such that X is order-isomorphic to the set of
leaves of E ordered by <*, that is (X, <) = (leaf(E), <*).

3 Construction of a Coding Tree from a Linear Order

In this section we show that any countable and lower 1-transitive (X, <) is encoded by a
suitable coding tree. We first define the tree I of invariant partitions of (X, <) (see Defi-
nition 3.1 below) and we show that [is in fact an expanded coding tree. We then define a
coding tree to which [is associated and that encodes (X, <).

Definition 3.1 An invariant partition of X is a partition 7 that partitions X into convex
subsets, called parts, which is invariant under lower isomorphisms of (X, <) into itself.
That is, for any a, b € X, any order isomorphism f : (—o0,a] — (—o0, b], and any
X,y <a,

X~z y &= f@x)~z f(¥).
The proof of the next lemma is left to the reader.

Lemma 3.2 If (X, <) is a countable lower 1-transitive linear order and m is an invari-
ant partition of X, then X/~ is also a countable lower I-transitive linear order with the
ordering induced by (X, <).

Definition 3.3 Let m;, 7r; be invariant partitions of (X, <). We say that 7; is a refinement
of 7r; if every element of 7r; is a union of members of ;.

Lemma 3.4 Given any two nontrivial distinct invariant partitions w1, wy of X into convex
subsets of X, one is a refinement of the other, and moreover | and 7y have no part in common.

Proof Let ~1, ~> be the equivalence relations defining 1, 7, respectively. We want to
show that

Vx,ye X)x~y=>x~my) V¥, ye X)(x ~y=x~1y).
Suppose both disjuncts are false. Then there are x, y, u, v such that

— x~jpyandx »y y,and
— u~jvandu ~p v.

We may assume that x < yandu < v.Let f : (—o0, y] — (—o0, v] be an isomorphism.
Then f(x) < v and f(x) ~; v. Moreover, we must have u < f(x), otherwise u ~1 v by
convexity. So u < f(x) < v, and therefore f(x) ~» v by convexity. However, x ~; y
implies f(x) »; v, which is a contradiction.

Without loss of generality, assume that ; is a refinement of 7. We want to show that
w1 Ny = . So suppose for a contradiction that there is p € w1 Nmp, and let x, y € X

@ Springer

Order

be such that x ~~; y and x ~, y. Pick z € pandlet g : (—oo,y] — (—00,z] be an
isomorphism. Then g(x) ~7 z, and since p € | Ny, we have g(x) ~ g(y), contradicting
our choice of x and y. O

The family 7 of all parts of invariant partitions of X is partially ordered by inclusion.
This allows us to define a levelled tree structure on /.

Definition 3.5 For a lower 1-transitive linear order (X, <), the invariant tree associated
with X is the levelled tree I whose vertices are parts in the invariant partitions of X ordered
by C in such a way that

(i) each level is an invariant partition of X
(i) the leaves are the singletons {x} for x € X
(iii) every invariant partition of X into convex subsets of X is represented by a level of
vertices in /.

Lemmas 3.2 and 3.4 ensure that for any countable, lower 1-transitive linear order, the family
I is a levelled tree, thereby justifying the description the invariant tree. We remark that /
has a root since X is itself lower 1-transitive and a convex subset of X. Moreover, the parts
of any invariant partition of X are lower isomorphic and lower 1-transitive.

Lemma 3.6 The invariant tree I of a lower I-transitive linear order (X, <) is Dedekind-
MacNeille complete.

Proof We need to show that

(i) the supremum of any two vertices in / is also a vertex in /,
(ii) every descending chain of vertices in the tree which is bounded below has an infimum
in the tree, and
(iii) every ascending chain of vertices in the tree which is bounded above has a supremum
in the tree.

To show (i), consider two vertices pj, po € I that are parts of two partitions 7wy, 72,
respectively. Without loss of generality, assume that ; refines m>. Then either p; € p»
(and p; is the supremum of p; and py) or p; C p), where p) is an element of 7, different
from p». So this problem reduces to showing that the supremum of any two vertices on the
same level is in /.

We know that p, pf € p with p € m, for some 7 € I which coarsens 7, — for
instance {X} itself. Let ~; be the equivalence relation corresponding to . Then a ~, b
fora, b € ps, p), respectively.

Consider the partitions 7’ that refine 7 for which a ~,/ b, where ~, is the corre-
sponding equivalence relation, and then consider the set P of parts in this set that contain
both a and b. By Lemma 3.4, the set P is a descending chain in /. Let g be such that
P2, 05 < g < p.Then g € P, soif P has an infimum, then ps, p} have a supremum. So
the verification of (i) reduces to that of (ii).

For (ii), consider a descending chain of vertices p,, that are parts of a descending chain
of partitions 7, bounded below by some p € I. Let ~,, be the equivalence relation corre-
sponding to 7,,. Then define x ~ y if x ~, y for all y. Let f be a lower isomorphism of
(X, <). Then x ~ y implies f(x) ~, f(y) forall y because each of the ~, is an invariant
relation. Hence f(x) ~ f(y) and so ~ is an invariant relation. If 7 is the corresponding
partition, then 7 is a partition into lower 1-transitive, lower isomorphic convex subsets of

@ Springer

Order

X, and so its parts are vertices in 1. Then p is contained in some member of p’ of 7, and 7’
is the infimum of the p,,.

The proof that an ascending chain that is bounded above has a supremum is similar,
except that we take x ~ y if x ~, y for some y. O

Theorem 3.7 The invariant tree I of a lower I-transitive linear order (X, <) is an
expanded coding tree whose leaves are order-isomorphic to (X, <).

Proof Firstly, the leaves of I are singletons containing the elements of X, and so they are
isomorphic to X.

Definition 3.5 ensures that / is a levelled tree whose root is X. The tree ordering is
containment, the ordering of the levels is the one induced by C on the set of invariant
partitions of X, and the ordering of the children of a parent vertex is the one induced by the
linear order on X. Since X is countable, / has countably many leaves. It is clear that every
vertex of [is a leaf or is above a leaf. So conditions 1 to 4 of Definition 2.5 are satisfied.
Moreover, I is Dedekind-MacNeille complete by Lemma 3.6.

In order to verify condition 6 of Definition 2.5, we need to show that the order type of
the children of a parent vertex in [is one of Z, w*, Q, Q, Qy or Q,, (for2 < n < Ny).
Consider a successor level ;41 of I, so m; is the predecessor. Let p € ;1. Then p is
lower 1-transitive, and the children of p are those elements of 77; which are convex subsets
of p. These children are lower 1-transitive linear orders and are lower isomorphic to each
other. Let ~,, be the equivalence relation that defines ;. Then, by Lemma 3.2, p/ ~,
is also lower 1-transitive, and the order type of p/ ~, tells us how the children of p are
ordered. In order to describe the possible order types, we look at the structure forced by a
specific invariant equivalence relation, namely, the relation ~, that identifies points that
are finitely far apart, defined by

x ~gn y iff x <y and[x, y] is finite, or y < x and [y, x] is finite.

For any linear order, the equivalence classes of ~f, must be either finite, w, w* or Z. If
(X, <) is lower 1-transitive, the equivalence classes of this form are either singletons, w*,
or Z. If one equivalence class is a singleton, then they all are, and then the ordering is dense
with no least endpoint. Hence it is isomorphic to Q or Q

Since p/ ~y,; is a lower 1-transitive linear order, we can take its quotient by ~f;,. There
are two cases.

Case 1: the equivalence classes of (p/ ~x;)/ ~fin are non-trivial. Then, since every
invariant partition is contained in / and we have assumed that 7; is a successor level, there
can be only one equivalence class, that is, p/ ~, itself. If there is no last child, then p is
equal to Z copies of its children; otherwise, the order type of p/ ~, is w*.

Case 2: the equivalence classes of (p/ ~x,)/ ~fin are trivial. Then the parts of 7; are
dense within p. We aim to show that p/ ~, is a Q, Q Q or Qn combination of its
children.

If all the subtrees rooted at a left child of p are isomorphic, then child(p) is isomorphic
to Q, or Q if the right child exists.

If not all the left children of p are isomorphic, then we show that child(p) is isomorphic
to Q,, or Qn if p has a right child, where the set I" of (colour, order-)isomorphism types
of the left children of p has size n. Suppose, for a contradiction, that p is not the Q-
combination of its children. Then there are two elements of I" such that not all other elements
of I occur between them in p. Let ¥ be a member of I which does not occur between all
pairs, and let us define ~ on w by y ~ z if y = z, or if no point of [y, z] (or [z, y] if

@ Springer

Order

z < y) has the same isomorphism type as y. This is an invariant partition of 7 into convex
pieces, and is proper and non-trivial, which contradicts 7r; and ;4 being on consecutive
levels.

This verifies condition 6 of Definition 2.5 for a parent vertex on a successor level of the
invariant tree /.

Now consider the levels which are not successor levels. Firstly, this includes the trivial
partition, g, given by the relation x ~5, y <= x = y. These vertices are leaves.

There remains the case of vertices which do not have children in /. If one part of an
invariant partition does not have a child then, since parts in a same partition are lower-
isomorphic to each other, none of them do. Since I contains all the invariant partitions, these
vertices have one cone below them: let p be a vertex with no children, and let p1, p» < p.
We claim there is ¢ < p such that pj, p» < c. Suppose for a contradiction that for all
¢ = p1,if ¢ = pr then ¢ = p. Let { pil} be the set of elements of / strictly below p and
containing pp. Then U{ pl.l} is a part of an invariant equivalent relation, so, by maximality
of I, U{pl.l} € I. Similarly, there is U{pl.z} € [which is above p; and strictly below p. If
U{ pil} # U{ pl.z}, then U{ pil} and U{ piz} are two distinct children of p, contradicting that p
has no children.

For condition 7, let x and x’ be two vertices of I on the same level. Then x, x’ are parts
of an invariant partition, so either they are both parents, or they are both leaves, or both are
neither of these, in which case they have a single cone below them. Moreover, if x, x’ are
both parent vertices, then (child(x), <) is lower-isomorphic to (child(x"), <), since (X, <)
is lower 1-transitive and x and x’ are parts of an invariant partition.

For condition 8, let x € I be a parent vertex. Suppose that (child(x), <) = Q, (@, Qy, or
Qn. Here two children vertices a, b have the same colour when they are isomorphic. This
isomorphism induces an isomorphism on the trees rooted at a, b. If (child(x), <) = Z, we
wish to show the children of x are all isomorphic, and hence the trees below the children are
isomorphic. Now, the children of x are all a finite distance apart. In particular, each child has
a successor and a predecessor. If a and b are children of x, the existence of an isomorphism
from the successor of a to the successor of b implies that a and b are isomorphic. The
argument in the case (child(x), <) = w* is similar.

Finally we show [satisfies condition 9 of Definition 2.5.

Let x and y be distinct vertices on the same level. If x and y have no children, the
condition holds trivially. So suppose that x and y are parent vertices and leta € x and b € y.
By lower 1-transitivity, there is an isomorphism ¢ : (—o0, a] — (—0o0, b] which induces
an isomorphism between (—oo, a] N x and (—oo, b] N y. Let x4, yp be the children of x, y
containing a, b respectively. Then (—oo, a]Nx, and (—oo, b]Ny;, are isomorphic. Consider
the sets [y, I'j, of children of x, y to the left of x,, y, respectively. Since ¢(I';) = I'p, the
left forests of x and y are isomorphic. Since a, b are arbitrary, I', and I';, can contain any
particular left children of x and y. O

We now show how to construct a coding tree to which the invariant tree of the linear
order (X, <) is associated, and we give an inverse association map. Informally, the coding
tree is obtained from / by identifying left children who are siblings and whose trees of
descendants are isomorphic. The parent vertex is then labelled according to the order type
of its children in /.

For each level s of I we define a relation >~ on I that tells us which vertices to identify:

x 2 y if there arex” D x, y’ D y such that

(i) there exists a {<, </}-isomorphism 6 : IS 5 Sy

@ Springer

Order

(ii) x’, y’ are left children of a vertex z and lie on level s, or x’ = y’
(i) 6(x) = y.

The isomorphism in (i) will be made explicit in the proof of Lemma 3.8 below. Note that
these clauses guarantee that x, y are level. Now we define a relation ~ on the whole of E
as follows:

Xy <<= 3x=xp, ..., x, =y, where foreachi=0, ..., n—1 thereis s; with x; >~ x;41.

The relation =~ is an equivalence relation on /, and 7 is then the set of equivalence classes
on /, labelled as described above. We denote an element of T by [x], where x € I. The next
lemma ensures that the ordering on / induces one on 7T'.

Lemma 3.8 Ler [x], [y] € T be such that x < y (in I), and let x' € [x]. Then there is
Y € [y] such that x’ < y'.

Proof Let x, y and x’ be as in the statement. Since x” € [x], there are u, v and w in I such
that u, v are left children of w and x < u, x’ < v. Moreover, the tree of descendants of u is
isomorphic to the tree of descendants of v by an isomorphism 6 such that 6(x) = x’. Now,
eithery > wory < w.If y > wthen x’ < w < y, so y is the required y'. If y < w,
then y < u. Then x’ = 0(x) < 6(y) and, since 8(y) < v, this implies that x’ < v. But
0(y) € [y] because of the way = is defined, so 0(y) is the required y’. O

Theorem 3.9 The set of ~-classes on the invariant tree of (X, <) is a coding tree.

Proof Let T be the family of ~-equivalence classes on /. Let [x], [y] € T and define
I <[] &= @ elxDEY elyD&' <y) (inl).

Lemma 3.8 ensures that < is well defined and transitive, so < is an order.

Since < is the order induced by that on I, T is a tree with root [r] and, since =~ is
level preserving, T is a levelled tree. Moreover, T is countable, and every vertex of T is a
leaf or is above a leaf. We verify Dedekind-MacNeille completeness. Firstly note that all
leaf-branches of T are isomorphic to some leaf-branch of I and so the leaf-branches of T
are Dedekind complete. We must now show that the least upper bound of any two vertices
[x],[y] € T isin T. Since I is Dedekind-MacNeille complete, any x” € [x] and y" € [y]
have a least upper bound in /. Let

I' = {z € I : z is the least upper bound of x" and y’ for some x’ € [x], ¥ € [v]}.

If z € T, then [x'] = [x] < [z] and [y'] = [y] < [z] for some x’, ¥, and so [z] is an upper
bound for [x] and [y]. Now let " = {[z] : z € T'}. Since '’ contains the upper bounds of
[x] and [y], it is linearly ordered. Moreover, it is bounded above by [r] and below by [x].
Let I' be the chain

clzenl z o2 el 2zl 2 [zal 2

By Lemma 3.8, for any u € [z;+] there is v € [z;] such that u < v. Hence we can construct
a corresponding chain of vertices in /. If the [z;] do not have an infimum, then there is a
chain of vertices in / bounded below by x € [x] and without an infimum. This contradicts
the Dedekind-MacNeille completeness of 1. Then the infimum of I' is the least upper bound
of [x] and [y].

Next we examine the labelling. Suppose x € I is a parent vertex. Then [x] € T is also
a parent vertex and we let ¢([x]) = (child(x), <), the order type of the children of x in I.

@ Springer

Order

This is well defined, as x =~ y implies that x and y are isomorphic and hence the sets of
their children have the same order type. Now, since (child(x), <) is one of Z, 0*, Q, (@, Q.
Qn (for 2 < n < Ry), it follows that ¢ ([x]) is also one of the above.

If x is neither a parent nor a leaf, then neither is [x]. Hence we label [x] by lim. The
leaves are labelled {1}.

Let [x],[y] € T be level parent vertices and let x, y € I be representatives. Then
s([xD =i ¢([y]) follows from the fact that (child(x), <) =; (child(y), <).

When [x], [y] € T are level but neither parent vertices nor leaves (if [x] is not a parent
vertex and [x] are [y] level, then [y] is not a parent vertex), both are labelled lim, as remarked
earlier. Hence ¢ ([x]) = ¢([y]) as required. The case when [x], [y] € T are leaves is similar.

We now show that T fulfils condition 7 of Definiton 2.4. The number of children of
[x] € T is the number of equivalence classes of the children of vertices x” € [x] in I. We
consider various cases.

Case 1: (child(x), <) = Z,Q

All the children of x are left children. We have also seen that they are all isomorphic and
hence they are all ~~-equivalent. Therefore there is one equivalence class below [x].

Case 2: (child(x), <) = w*, Q

Again all the left children of x are isomorphic and hence they are all ~-equivalent. A
right child of x forms its own equivalence class under ~. In these cases [x] has two children.

Case 3. (child(x), <) = Qy, Q.

The ‘colours’ are the isomorphism types of the children of x in /. There are n iso-
morphism types amongst the left children. The left children which are isomorphic are also
~-equivalent. Hence there are n (n + 1 in the case of Q,,) ~-classes below [x].

Clause 8 of Definition 2.4 follows from the corresponding fact about the expanded coding
tree. Given two order isomorphic forests in the expanded coding tree, clearly the ~-classes
on two such forests are also isomorphic.

Finally, since =~ identifies isomorphic trees of descendants of sibling left vertices, the
tree of descendants of two sibling vertices in the resulting 7" will not be isomorphic. O

We now need to show that the coding tree that we have obtained in Theorem 3.9 does
encode (X, <).

Theorem 3.10 The coding tree (T, <, <, ¢, K) obtained from the invariant tree of (X, <)
encodes (X, <) in the sense of Definition 2.7.

Proof Firstly we show that the expanded coding tree I of invariant partitions of X is asso-
ciated with T in the sense of Definition 2.6. The association function ¢ — T is defined by
¢(x) = [x], and the labelling function on T is defined as follows:

(i) if x is a parent vertex, the label of ¢ (x) is equal to (child(x), <), the (coloured) order
type of the children of x in 7,
(i) if x is neither a parent nor a leaf, the label of ¢ (x) is lim,
(iii) if x is a leaf, the label of ¢ (x) is {1}.

As remarked in the proof of Theorem 3.9, this labelling is well defined. Moreover, the
labels satisfy condition (iv) of Definition 2.6. By the way T is constructed, it is clear that ¢
preserves levels. Moreover, the ordering on 7 is such that x < y in [implies that ¢ (x) <
¢ (y) in T. This ensures that conditions (i), (ii) and (iii) of Definition 2.6 are satisfied.

The construction of I ensures that (X, <) is order-isomorphic to the set of leaves of /.
Therefore T encodes the linear order X in the sense of Definition 2.7, as required. O

@ Springer

Order

Theorem 3.10 concludes our construction of a coding tree from a lower 1-transitive linear
order. The next section describes the converse construction of a lower 1-transitive linear
order from a coding tree, which will give our classification.

4 Construction of a Linear Order from a Coding Tree

In Theorem 4.2 below, we show how to recover a linear order from a coding tree, and in
Theorem 4.3 we show that a linear order obtained in this way is in fact lower 1-transitive.

In order to do this, we need to define certain functions called decoding functions, whose
domains are the leaf-branches of a given coding tree and which take a vertex x to an element
of the ordered set ¢ (x). To cut down to a countable set of functions, even when the coding
tree is not well founded or conversely well founded, we choose arbitrary default values for
each of the labels.

Definition 4.1 Given a coding tree T, we choose default values for its labels as follows:
for each of Z and Q, we pick one default value. For w* and Q, we pick two default val-
ues, one for the end point and one other. For QQ,,, we pick n default values, one of each
‘colour’, and for Qn we pick the same default values as for QQ,,, plus an additional one for the
endpoint.

Then a decoding function is a function f from a leaf-branch B of T to w* UZ U Q U
Q uQ,uU Qn U {lim} and such that

1. the set of non-default values taken by f is finite;

2. foreach x € B with ¢(x) # lim, f(x) € ¢(x);

3. if x is a parent vertex and a left child of x is in dom f, then f(x) # d,, where d, is the
default value for the endpoint;

4. if x is a parent vertex and the right child of x is in dom f, then f(x) = d,;

5. ifc(x) =Qpor Qn and dom f contains a left child of x with ‘colour’ m, then f(x) has
the colour m;

6. if ¢(x) = lim, then f(x) = lim.

Theorem 4.2 Every coding tree encodes a linear order that is unique up to isomorphism.

Proof We proceed as in [2]. Given a coding tree T, we construct an expanded coding tree
which is associated with T as in Definition 2.6.
Let X7 be the set of decoding functions on 7. For f, g € X7, define

f < g if f(xo) < g(xp), where x is the greatest point for which f(x) # g(x).

We show that < is a linear ordering. Let f and g be decoding functions such that f #
g. We want to show that if f # g then there is a greatest xo € T such that f(xg) #
g(x0). Suppose that dom(f) # dom(g). Then, since all coding trees are Dedekind-MacNeill
complete, the supremum of the symmetric difference of dom(f) and dom(g) exists. We
call this supremum s. Since dom(f) \ dom(g) and dom(g) \ dom(f) must lie in different
cones of s, the label of s cannot be lim, and s has children. This means that dom(f) and
dom(g) contain different children of s and so f(s) # g(s). Therefore if f # g then f and
g disagree on dom(f) Ndom(g). They can only disagree finitely often, so there is a greatest
xo such that f(xg) # g(xp).

Then f(xp) < g(xo) = f < g and f(xp) > g(xo) = f > g. Itis clear this relation is
irreflexive and transitive, hence (X7, <) is a linear order.

@ Springer

Order

In order for T to encode (X7, <) according to Definition 2.7, we must produce an
expanded coding tree associated with T'. Such a tree is given by

E={x,f1]&7r]):fe€Zr, xedomf}.

The tree ordering is given by letting (x, f [(x,r]) < (v, f [(y,r])ifx <y € dom f. In
addition (v, f | (v, r]) is level with (va, g | (v2, r]) if and only if vy is level with vo. It
is now clear that E is a levelled tree. Its root is (r, @). Also, any (x, f | (x, r]) lies above a
leaf (I, f | (I, r]) where [/ is a leaf in dom f.

Each leaf-branch of E is isomorphic to a leaf-branch of T, and so it is Dedekind com-
plete. Furthermore, since T contains all its ramification points, so does E, and therefore E
is Dedekind-MacNeille complete.

We define an order on the children of a parent vertex (x, f [(x,r]) in E that depends
on the label of x in T. The children of (x, f [(x, r]) have the form (y, g | (y, r]), where
y € child(x) € T and g is any decoding function such that x € dom(g) and f | (x,r] =
g | (x,r]. Since for such a g we have that g [(y,r] = g | [x, r], the order type of the
children of (x, f [(x, r]) is determined by

{g(x): g € Zr, x edomg, f [(x,r]=¢ [(x,r]}.

Since x is a parent vertex, g(x) € ¢(x). Hence the label of x in T induces an order on the
children of (x, f | (x, r]). In the case of ¢c(x) = Q, or Qn we may say that the ‘coloured’
order type of the children in E is Q, or Q.

If (x, f | (x, r]) is neither a parent vertex nor a leaf, then x is neither a parent nor a leaf,
and so x is labelled lim.

The association mapping ¢ is given by ¢ ((x, f [(x, r])) = x. This preserves root, leaves
and, as we have just seen, it preserves the relation between labels of vertices in 7' and the
(coloured) order type of the children of those vertices in E. Alsox <y = ¢(x) < ¢(y),
and it is clear that for each vertex x of E, ¢ maps{u € E :u < x}onto{u € T : u < ¢ (x)}
and for any leaf / of E, ¢ maps [I, r] onto [¢(I), ¢ (r)]. Therefore E is associated with T,
and X7 is order isomorphic to the set of leaves of E. Hence T encodes X7.

A back-and-forth argument shows that any two countable linear orders encoded by the
same coding tree (7', <, ¢, <, <) are isomorphic. O

Theorem 4.3 The ordering Y1 encoded by the coding tree (T, <, ¢, <, <) is countable
and lower 1-transitive.

Proof The way in which X7 has been defined ensures that it is countable.

We now show that Xr is lower 1-transitive. Take any f, g € X7 and consider the initial
segments (—oo, f]and (—oo, g]. We need to show that (—oo, f] = (—o0, g].

Now, X7 is defined to be the set of all functions on the leaf-branches of T which take a
default value at all but finitely many points. By definition of the ordering on X7, an initial
segment of X7 at f can be written as

(=00, fI={f1U{p € Xr : 3x e dom f)(p(x) < f(x) A ¥y > x)(p(y) = f(yY)}.

Let L; be the ith level of the tree and let xl:f denote the element of dom f on the level L;.
Then define

I/ ={pe(—c0, f1: px/) < r) A 0y > xH(p(y) = FOI),

that is, the set of elements of X7 such that the greatest point on which they differ with f is
on level i.

@ Springer

Order

Then, by definition of the < - ordering of the levels, it is .clear that (—oo, f] is the
disjoint union of all the Fl:f , and furthermore that i < j = I‘l.f > F]f (where this means

that every element of Fif s greater than every element of F]f..). Since the same holds for
(—o00, g] and the Ff, to show that (—oo, f] = (—o0, g], it suffices to show that there are

(<, ¢, K)-isomorphisms ®; : Fif = Fig for each i. We then define the desired isomorphism
from (—oo, f]to (—o0, g] to be | J; ;.

If g(xl:f) = lim, we have I lf = . The label lim is not a linear order, so by condition 3
of Definition 2.4, if a vertex on level i is labelled lim, then all vertices on level i are labelled
lim. This shows that when i is a level with vertices labelled lim, we have I‘if = Ff.

We now consider the cases where the vertices on level i are not labelled lim. Since

xl:f and xig are level, we have g(xl:f) & g(xf), and so there is an isomorphism ¢ from

(—o0, f(xl-f)] N g(xif) to (—oo, g(xf)] N g(xf). Moreover, there is an isomorphism
between the left forests at the points xif and xig .Forp e l“l.f , let x; be the member of dom p
at the level L ;. We now define

\%

gy ifj >
Qi (P) (Y (xj) = @(plx))) if j =i
px;) if j <i.

We must now show that Fif is mapped 1-1 into Fig by ®;. This gives our result. We have
that ®; (p) € X7, because all such ®;(p) are defined on leaf-branches of 7' and they take
a default value at all but finitely many points, since both g(xf) and p(x;) take the default
value at all but finitely many points (possibly with ¢ (p(x;)) in addition).

It is easy to see that ®; is surjective. For injectivity, suppose ®;(p1) = ®;(p2). Then,
since p1, p2 € I“l:f, we have p1(x;) = p2(x;) = f(x'jf) forall j > i and pi(x;) = pa(x;)
for j < i by the definition of ®;. Since ¢ is an isomorphism, ¢(p1(x;)) = @(p2(x;))
implies that py(x;) = p2(x;). Hence p1(x;) = pa(x;) forall j. O

Theorems 4.2 and 4.3 conclude our classification of countable lower 1-transitive linear
orders. The classification is involved and coding trees are a complicated classifier. However,
the class of lower 1-transitive linear orders is wild, and the relationship between the classi-
fier and the classified is descriptive and robust. The classification in this paper is crucial for
that of countable 1-transitive trees [3]. The classification of colour lower 1-transitive linear
orders is a natural extension of this work and a partial result in this direction also appears
in [3].

Acknowledgments The authors wish to thank John Truss and Dugald Macpherson for their extensive help.
We are also grateful to the anonymous referees for thorough and thoughtful comments.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 Inter-
national License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons license, and indicate if changes were made.

References

1. Campero-Arena, G.: Transitivity properties of countable coloured orderings. Ph.D. thesis, Department of
Pure Mathematics, University of Leeds (2002)

@ Springer

http://creativecommons.org/licenses/by/4.0/

Order

2. Campero-Arena, G., Truss, J.: Countable 1-transitive coloured linear orderings II. Fund. Math. 183, 185-
213 (2004)

3. Chicot, K., Truss, J.: Countable 1-transitive trees. In: Droste, M., Fuchs, L., Goldsmith, B., Striingmann,
L. (eds.) Groups, Modules and Model Theory - Surveys and Recent Developments, in Memory of Riidiger
Gobel. Springer (2009). To appear

4. Davey, B., Priestley, H.: Introduction to lattices and order. Cambridge University Press, Cambridge (2002)

5. Droste, M.: Structure of partially ordered sets with transitive automorphism groups. Mem. Amer. Math.
Soc. 57(334), (1985)

6. Droste, M., Holland, W., Macpherson, H.: Automorphism groups of infinite semilinear orders (I and II).
Proc. Lond. Math. Soc. 58, 454494 (1989)

7. Morel, A.: A class of relation types isomorphic to the ordinals. The Michigan Mathematical Journal 12,
203-215 (1965)

@ Springer

	A Classification of Countable Lower 1-transitive Linear Orders
	Abstract
	Introduction
	Coding Trees
	Construction of a Coding Tree from a Linear Order
	Construction of a Linear Order from a Coding Tree
	Acknowledgments
	Open Access
	References

