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Abstract

We investigate the use of phonetic motor invariants (MIs), that is, recurring kinematic patterns of the human phonetic
articulators, to improve automatic phoneme discrimination. Using a multi-subject database of synchronized speech and
lips/tongue trajectories, we first identify MIs commonly associated with bilabial and dental consonants, and use them to
simultaneously segment speech and motor signals. We then build a simple neural network-based regression schema (called
Audio-Motor Map, AMM) mapping audio features of these segments to the corresponding MIs. Extensive experimental
results show that (a) a small set of features extracted from the MIs, as originally gathered from articulatory sensors, are
dramatically more effective than a large, state-of-the-art set of audio features, in automatically discriminating bilabials from
dentals; (b) the same features, extracted from AMM-reconstructed MIs, are as effective as or better than the audio features,
when testing across speakers and coarticulating phonemes; and dramatically better as noise is added to the speech signal.
These results seem to support some of the claims of the motor theory of speech perception and add experimental evidence
of the actual usefulness of MIs in the more general framework of automated speech recognition.
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Introduction

Motivation
Automatic speech recognition (ASR) is the ability of a machine

to convert human speech, coded as an audio signal, into words.

Potential applications of ASR range from human-computer

interfaces to informatics for the disabled to data mining in large

speech corpora. While human beings show an excellent ability to

understand one another’s speech, independently of the speaker,

the accent, the noise, etc., the robustness to speech variability of

state-of-the-art ASR systems is still an active research topic.

Recent neuroscientific evidence indicates that the brain motor

areas responsible for producing bilabial and dental phonemes are

also involved in their perception, at least when speech is noisy.

D’Ausilio et al. [1] show that in a noisy discrimination task of /b/

and /p/ versus /d/ and /t/, trans-cranial magnetic stimulation of

the lips and tongue motor areas improves the perception of bilabials,

and similarly, stimulation of the tongue favors dentals. This

suggests that motor information may be paramount for speech

understanding in humans.

Inspired by these findings, in this paper we investigate whether

knowledge of speech production in humans, integrated into an

automatic phone classifier, can improve the classification of /b/,

/p/ versus /d/,/t/, in various conditions of noise and with

different restrictions on the training set. To this end, we focus on

the ‘‘artificial version’’ of the problem tackled in D’Ausilio et al.’s

work, i.e., we perform the same classification task using

computational models that combine auditory and motor informa-

tion. For each consonant, a corresponding typical phonetic motor

invariant (MI) is identified according to the basic physiology of

speech; e.g., a fast opening (plosion) of the lips for /b/ and /p/

and of the tongue against the upper teeth for /d/ and /t/. MIs are

then used to semi-automatically segment the audio/motor data

found in a database of speech/motor trajectories recorded from 6
subjects.

Subsequently, a simple regression method (namely, a feed-

forward neural network) is employed to build an Audio-Motor

Map (AMM), which converts audio features of the isolated

segment to features of the related MI. At an abstract level, the

AMM is a mathematical proxy of a mirror structure [2,3],

reconstructing the distal speaker’s speech act while listening to the

related fragment of speech. According to a widely accepted

account on the dorsal-ventral partitioning of the brain auditory

system [4,5] the AMM would be located in the dorsal stream,

receiving input from the superior temporal gyrus (STG) projecting

to the posterior parietal cortex and then to frontal regions (e.g.,

Broca’s area) (note that the localization of the AMM in the brain

does not necessarly imply a critical role of the AMM in speech

perception, it might be critical for the speech learning phase only

[5,6]).

To test the approach, we devised three experiments involving a

classifier in the form of a Support Vector Machine [7]. The main

question is: can the use of MI-based features, either those recorded

in the database (the ‘‘real’’ motor features) or the AMM-
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reconstructed ones (a more ecological scenario), improve the

classifier’s performance?

Related Work
In the ASR community, the combination of explicit speech

production knowledge and audio features has already been

proposed (see, e.g., [8] for a review) as an alternative to the

classic approach, in which speech production variability (e.g., due

to speaking rate) and coarticulation (the phenomenon by which

the phonetic realization of a phoneme is affected by its phonemic

context) are directly and implicitly modeled in the acoustic

domain. Here we restrict our investigation to the task of

discriminating two bilabial from two dental consonants, so that

we can lift a number of working assumptions and technical

difficulties that have so far hampered a satisfactory integration of

motor information into ASR systems.

Additionally, in previous work it is not possible to properly

identify which aspects of the recognition process benefit from

motor information. For example, motor knowledge may improve

the modeling (and so the identification) of coarticulation effects

that are seen in the training data set, but not necessarily improve

the recognition of phonemes in unseen contexts, i.e., it may not

necessarily improve the generalization ability of the ASR system.

The experimental setup we have designed has the main goal of

investigating whether and when motor information improves the

generalization ability of a phoneme classifier.

It is known since the Sixties [9] that the audio signal of speech

cannot be effectively segmented down to the level of the single

phoneme, especially as far as stop consonants such as bilabial

plosives are concerned; in particular, their representations in the

audio domain are radically different according to the phoneme

which immediately follows. It remains an open question then, how

humans can distinctly perceive a common phoneme, e.g., /b/, in

both /ba/ and /bi/, since they have access to the speaker’s audio

signal only. The explanation put forward by the Motor Theory of

Speech Perception (MTS, [10]) is that, while perceiving sounds,

humans reconstruct phonetic gestures, the physical acts that produce

the phonemes, as they were trained since birth to associate

articulatory gestures to the sounds they heard.

However, even ignoring the MTS, a very controversial theory

indeed, recently reviewed and revised [11,12], the use of speech

production knowledge in speech recognition is appealing, in that

the coupling of articulatory and audio streams allows for explicit

models of the effects of speech production phenomena on the

acoustic domain. In general, when the phonetic stream is directly

mapped onto the acoustic dimension as in the standard approach

to ASR, these effects cannot be precisely modeled, or cannot even

be modeled at all. When exactly does /a/ affect the phonetic

realization of /b/ in /ba/? What happens in the acoustic domain

when /o/ is uttered with an exaggeratedly open jaw?

Different solutions have been proposed to integrate speech

production knowledge into an ASR system and different types of

speech production information have been used, ranging from

articulatory measurements [13–15] to symbolic non-measured

representations of articulatory gestures that ‘‘replicate’’ a symbolic

phoneme into all its possible articulatory configurations [16,17].

Although increased word recognition accuracy is sometimes

reported when speech production knowledge is included in ASR, it

is commonly held that the potential of speech production

knowledge is far from being exhaustively exploited. Limits of

current approaches include, e.g., the use of the phoneme as a basic

unit (as opposed to articulatory configuration) which appears to be

too coarse, especially in the context of spontaneous spoken speech,

and the lack of a mechanism accounting for the different

importance of articulators in the realization of a given phoneme

(e.g., in the production of bilabials the lips are critical whereas the

tongue is not).

As well, the traditional approach in which the speech signal is

represented as a concatenation of phones (the ‘‘beads on a string’’

approach [18]) poses a number of problems to an accurate

modeling of spontaneous speech, in which coarticulation phe-

nomena such as phone deletion or assimilation (where a phone

assimilates some articulatory gestures of the preceding/following

phone), distorting the acoustic appearance of phonemes, are

frequent and not always predictable. These problems call for finer-

grained basic units. To partly compensate for such a limitation we

propose an alternative approach where the audio signal is

segmented using phone-specific articulatory patterns, expectedly

more distinctive and stable than acoustic features.

During recognition, articulatory gestures have to be recovered

from audio information as audio is the only signal available.

Reconstruction of articulatory features has been attempted for a

long time, but in most cases it is not derived from articulatory data

gathered from human subjects. One pioneering case is that of

Papcun et al. [19] where the AMM is carried out by a Multilayer

Perceptron. Our procedure for building the AMM is deeply

inspired by this work. The Multilayer Perceptron attempts the best

recovery of all articulators giving equal importance to all of them;

this could be, in general, problematic, since non-critical articula-

tors will have high variance during the utterance of unrelated

consonants [19,20]. For example, the tongue position is expected

to exhibit high variance while, e.g., velar plosives such as /k/ and

/g/ are uttered. This is the main reason why an AMM is in

general a one-to-many mapping: different articulatory configura-

tions result in the same acoustic realization. Solutions to properly

address the ill-posedness of the AMM have been proposed by

Richmond et al. [21] and Toda et al. [22]; here we do not address

the issue directly; rather, we consider two articulators only,

therefore alleviating the problem.

Interestingly, the idea of using information about the mecha-

nisms involved in the production of a human action to improve its

classification/recognition (in a domain different from the produc-

tion domain) has not only been applied in the context of speech

recognition. For example Metta et al. [23] and Hinton [24] have

shown that articulatory data can improve accuracy in automated

hand action classification.

Materials and Methods

Data Set
Subjects and Set-up. Six female Italian native speakers were

recorded while uttering Italian words and pseudo-words. Words

were mainly stress-initial, e.g., ‘‘matto’’, ‘‘nome’’, ‘‘strada’’ (mad,

name, road), and were chosen in order to have consonants both at

the beginning and in the middle of words, followed by different

vowels and consonants. The data recording setup included a

Laryngograph Microprocessor device (Laryngograph Ltd., London,

www.laryngograph.com) which gathers a speech audio signal

and an electroglottographic (EGG) signal at 16 KHz sampling

rate; and an AG500 electromagnetic articulograph (Carstens

Medizinelektronik GmbH, Germany, www.articulograph.de) that

records the 3D positions of a set of sensors glued on the tongue,

lips and front teeth during speech production at a sampling rate of

200 Hz. A full description of the acquisition set-up and the

obtained database can be found in [25].

The subset used in this work comprises the 77 words in the

database which contain /b/, /p/, /d/ or /t/. This includes

utterings from each of the 6 subjects; consonants are found both at
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the beginning of the word or in the middle; and they are followed

by either /a/,/e/,/i/,/o/,/u/,/r/ or /s/.

MI-Based Signal Segmentation. We define the length of a

phone in terms of the MI underlying its production; the audio

signal is, therefore, segmented according to it. A qualitative

examination of the synchronized audio and motor signals obtained

from utterances of /b/, /p/, /d/ and /t/ by different speakers

indicates that common patterns can actually be found in the

behavior of the related articulators. For instance, as is apparent

from Figure 1, recurring shapes of the lips opening velocity and

acceleration appear when both /ba/ and /bufalo/ are considered,

even when uttered by different speakers. The same patterns can be

observed and are qualitatively clear when other words containing

/b/ and /p/ are considered, both when the phoneme appears at

the beginning or inside a word, and regardless of the coarticulating

phoneme.

These observations visually confirm the basic taxonomy of stop

consonants as found in any linguistics textbook. In particular, all

considered consonants are plosives, i.e., consonants that involve a

complete blockage of the oral cavity followed by a fast release of

air. /b/ and /p/ are bilabials (blockage produced using the upper

and lower lips) while /d/ and /t/ are dentals (blockage produced

using the tongue tip and the upper teeth). The following motor

invariants are then defined and associated with the consonants

under examination:

N Let s1(t) and s2(t) be the signals associated with sensors placed

on two phonetic actuators (e.g., the upper and lower lips), and

d(t)~jjs1(t){s2(t)jj be their Euclidean distance. Then, a

plosion is defined as the interval between two instants tstart and

tend such that _dd(tstart)~0 and €dd tstartð Þw0, and _dd(tend )w0 and
€dd(tend )~0.

N For /b/ and /p/, the sensors on the upper and lower lip are

considered for s1(t) and s2(t), whereas for /d/ and /t/ those

on the tongue tip and upper teeth are. In turn, the associated

distances will be denoted as lio (lips opening) and ttu (tongue

tip - upper teeth distance). As well, the respective velocities and

accelerations will be denoted by vlio, vttu, alio, attu.

The first condition physically defines a plosion, e.g., considering

lio, tstart marks the onset of the act of opening the lips (null

velocity, positive acceleration) while tend is found at the instant of

maximum opening velocity and zero acceleration. The choice of

cutting the signals at tend rather than, say, when the lips are still

and lio is maximum is motivated by the need to capture the

plosion only, with as little as possible of the following phone. By

manual (audio) inspection of the audio segments so obtained, we

could actually verify that only a tiny fraction of the coarticulating

phone could be heard at the end of the uttering.

The second condition then selects an appropriate pair of

articulators needed for the phoneme under consideration. This

schema matches the above-mentioned taxonomy. In Figure 1 the

gray zone indicates the detected interval of time using conditions 1
and 2. We expect that the same schema could be used to identify

relevant MIs for other consonants, e.g., a velar plosion for /k/ and

/g/ and so on – of course, suitable sensors must have been in place

in that case.

The segmentation is carried out semi-automatically: for each

utterance, all sequences matching the above conditions are

displayed and the associated speech is played, so that the

experimenter can choose whether the sequence is a correct guess

or it is a false positive. In this experiment we only monitor lio and

ttu, so that false positives appear, e.g., when considering /ts/ and

/dz/. This is why, at this stage, a completely automatic

segmentation cannot be enforced. If the sequence is accepted, it

is labeled with the associated consonant, the speaker, and the

coarticulating phoneme. For example, from the word /bronzo/

(bronze) a /b/ sequence is extracted, and the letter ‘‘r’’ is stored as

the coarticulating phoneme. This way, from the original 77 words

and pseudowords, a total of 1157 audio/motor sequences are

extracted, with a length of 122+41:2 milliseconds (mean + one

standard deviation), minimum length 50 milliseconds, maximum

length 335 milliseconds.

Training the Audio-Motor-Map
The procedure for building the AMM closely follows that

outlined in previous literature [19,21,26] where a multi-layer

perceptron neural network was employed to reconstruct articula-

tors’ positions from an audio stream. More in detail, the speech

spectrogram was there used to predict, instant by instant, the

position of the articulators of interest. Here we apply a similar

approach to reconstruct the velocity and accelerations of lio and

ttu, in order to avoid as much as possible taking into account

physical differences among subjects (e.g., the width of the mouth,

etc.).

For each of the 1157 audio sequences, the spectrogram is

evaluated over 20-milliseconds long Hamming windows (slices),

using a 20-filter Mel-scale filterbank between 20 Hz and 2 KHz.

Each slice overlaps by 10 milliseconds with the preceding slice.

Each single sample of vlio, alio, vttu and attu is then associated to

Figure 1. Speech signal and motor trajectories. The speech signal and motor trajectories (smoothed using a moving average filter) of lips
opening velocity (vlio) and acceleration (alio) during utterances containing /b/. Left to right: /ba/, subject 5; /ba/, subject 2; and /bufalo/, subject 5.
The gray zone denotes the detected start and ending of the plosion. All signals are normalized over the indicated time frame, for visualization
purposes.
doi:10.1371/journal.pone.0024055.g001
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19 surrounding spectrogram slices, covering about

200 milliseconds of speech and centered around the sample itself.

With this ‘‘sliding spectrogram window’’ method, the four

trajectories are completely reconstructed. The Mel filters, the

spectrogram and (later on) the cepstral coefficients of the audio

signal are extracted using the off-the-shelf speech recognition

Matlab package Voicebox [27].

About 15000 samples are extracted from the original 1157
audio/motor sequences; each input sample consists of 19:20~380
real numbers, while the output space is given by the 4 trajectory

points of the motor signals (see Figure 2). A feed-forward neural

network is set up in order to build the AMM, with 380 input units,

one hidden layer with 15 units and 4 output units; the net is

trained via the Scaled Conjugate Gradient Descent method [28]

and the activation is a logistic sigmoidal function.

Training is done via early stopping on the appropriate

validation set (see the ‘‘Evaluation setting’’ section for details).

This procedure is repeated over 10 random restarts, and then the

network with best average performance over the 4 output

dimensions is stored. The performance measure is Matlab’s

embedded mean-square-error with regularization function, in

which after some initial experiments we set the regularization

parameter at 0:714. This value, as well as all other parameters,

have been found in an initial experimentation phase, by slightly

altering values suggested in literature and/or in the Matlab

manual.

No sample normalization is performed, in order to preserve the

time structure of the spectrogram windows. Targets are normal-

ized in order to lie within the range ½0:1,0:9�, since the logistic

activation function has asymptotic values of 0 and 1.

Phone classifiers
The phone classifiers are binary classifiers, the two classes are

bilabial (/b/ and /p/) and dental (/d/ and /t/) plosive

consonants.

Feature sets. Four different feature sets (one per each phone

classifier) were compared.

‘‘Audio’’ is a set of 390 cepstral coefficients extracted from the

audio signal as follows. We consider a set of 25-milliseconds long

‘‘time slices’’ of the signal. From each slice 13 cepstral coefficients,

plus their first- and second-order derivatives, are evaluated using a

Mel-scale filterbank comprising 29 filters in the bandwidth from

20 Hz to 2 KHz; this results in 39 coefficients for each slice. This

is a state-of-the-art set of features according to recent literature

[29,30] in which the single slices are classified as belonging to a

phoneme or another with a certain probability, and then a time-

sequence probabilistic method (typically, a Hidden Markov

Model) is used. In our case, a whole variable-length sequence

Figure 2. From speech signal to reconstructed motor information. The AMM is first trained on training speech data and then used, during
testing, to reconstruct motor information from the testing speech data. To reconstruct a single sample of vlio, alio, vttu and attu at time ti the
spectrogram of nineteen 20-millisecond long Hamming windows is evaluated. One window is centered at time ti , 9 windows precede it and 9
windows follow it. Each window overlaps by 10 milliseconds with the preceding window. The spectrogram is computed by using a 20-filter Mel-scale
filterbank.
doi:10.1371/journal.pone.0024055.g002
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must be classified, so we consider 10 slices uniformly distributed

across the sequence itself in order to cover it completely. In case

the sequence is shorter than 250 milliseconds, the slices are

allowed to overlap, whereas in the opposite case there are gaps

between them.

‘‘Real motor’’ is a set of 16 coefficients evaluated as follows: for

each signal considered (vlio, alio, vttu and attu), a least-squares

piecewise Hermite cubic interpolation is generated over the

sequence. This results in 4 real numbers per signal (constant, I-, II-

and III-order coefficient of the cubic interpolant). The choice of

interpolating the signal trajectories is motivated by the need to

capture the qualitative (plosive, in this case) behavior of the sensors

abstracting away from, e.g., the length of the plosion, and to

compactly represent it. Preliminary manual inspection of the

trajectories has convinced us that a cubic fit would adequately

capture their shapes.

‘‘Reconstructed motor’’ refers to the same procedure as above,

but applied to the AMM-reconstructed signal curves.

Lastly, ‘‘Joint’’ denotes a decision procedure obtained by

averaging out the label probabilities obtained from the best

classifiers for the audio and reconstructed motor features, and then

using a threshold at 0:5.

Support Vector Machine-based classifiers. The classifiers

are all based on a Support Vector Machine [7] with Gaussian

kernel and hyperparameters C,s found by grid-search. Samples

are normalized by subtracting the mean values and dividing by the

standard deviations, dimension-wise, in the real motor and

reconstructed motor cases, while no normalization is applied to

the audio features. The off-the-shelf SVM package libsvm [31] has

been used.

Support Vector Machines output decisions but not the

probabilities of their decisions, i.e., the posterior probabilities.

Only approximate estimations of the posterior probabilities can be

computed. The libsvm implementation provides these estimations

that are necessary for the ‘‘Joint’’ feature set based classifier.

Results

We first describe the evaluation setting and then show the

performance of the AMM and the accuracy of several phone

classifiers in three experimental scenarios.

Evaluation setting
As is standard practice in machine learning, the obtained

dataset was divided into splits to perform cross-validation (CV). Six

CV schemas were devised in order to assess the overall accuracy of

the phone classifier and its sensitivity to the factors causing speech

variability (e.g., coarticulation). The 6 CV schemas are the

following:

N overall The dataset is divided into 10 equally sized random

disjoint sets. For each split (i.e., training/testing set pair) the

training set contains 9 of these sets and the testing set contains

the remaining set.

N spk5vs1 The training sets contain samples uttered by 5 speakers

while the testing set is uttered by the remaining speaker; this

gives us 6 splits.

N spk3vs3 Likewise, but training on 3 speakers and testing on the

other 3. This results in
3

6

� �
~20 splits.

N spk1vs5 Likewise, but training on 1 speaker and testing on the

other 5, resulting in 6 splits.

N coart4vs1 The training sets contain samples with 4 coarticulat-

ing vowels (i.e., vowels that follow the plosive), whereas the

testing sets contain samples with the remaining two, plus /r/

and /s/. This gives us 5 splits.

N coart3vs2 Likewise, but training on 3 coarticulating vowels and

testing on the remaining 2 plus /r/ and /s/. This gives us
3

5

� �
~10 splits.

AMM evaluation
Figure 3 shows a quantitative assessment of the performance of

the AMM. The measure of performance is the NRMSE

(Normalized Root Mean Square Error), where the normalisation

is over the range of each testing data set. The NRMSE ranges

from 16:17%+0:79% (vlio, coart4vs1) to 8:22%+0:58% (vttu,

spk1vs5). Regression upon vlio shows the largest error overall.

Moreover, the error is on average larger for the per-coarticulation

CV schemas.

Although these figures do not really indicate whether AMM-

reconstructed MIs will be effective in phoneme discrimination,

they show that the error rate in regression has limited magnitude

and does not differ dramatically across CV schemas and output

signals. Qualitative inspection of the results (one example is given

in Figure 4) shows that the AMM-reconstructed motor signals are

on average rather similar to the real ones, at least as far as the

range of values is concerned.

A definite trend is apparent, favoring the reconstruction of vlio

over vttu when bilabials are presented to the AMM and vice-versa;

the trend is numerically confirmed by checking the Pearson

correlation coefficient between AMM-reconstructed and real MIs

according to whether labials (/b/,/p/) or dentals (/d/,/t/) are

presented as input to the AMM. As one can see in Figure 5, when

the overall CV schema is used, a ‘‘double dissociation’’ pattern

appears when comparing the correlation coefficients of vlio and

vttu AMM-reconstructed from labials or dentals (0:8869+0:0113
versus 0:5523+0:0240 with Student’s t-test pv0:01 for vlio, and

0:9276+0:0096 versus 0:3307+0:0278, pv0:01, for vttu). In

other words, when the AMM ‘‘hears’’ /b/ or /p/, it effectively

reconstructs the trajectory of the lips, but less reliably that of the

tongue tip; and dually, it reconstructs better the latter one when

presented with /d/ or /t/. This pattern is repeated to an almost

uniform extent when the other CV schemas are used, and also

when alio and attu are checked.

Phoneme discrimination
Each classifier uses one of the following feature sets: ‘‘Audio’’,

‘‘Real Motor’’, ‘‘Reconstructed Motor’’ and ‘‘Joint’’.
Experiment 1. In the first experiment the performance of the

phone classifiers is evaluated according to the overall CV schema

using four different sets of features as input. Figure 6 (leftmost

column) shows the results. The balanced error rate is shown as a

comparative measure of performance. (This error rate is defined in

our case as the average of the ratios of correctly predicted bilabials

and dentals. With respect to the more popular standard error rate,

i.e., the overall ratio of correctly guessed labels, it has the

advantage of favoring models that can correctly guess both the

bilabials and the dentals.)

The error rates obtained are, in turn, 5:73%+0:74% (mean +
one standard error of the mean), 0:97%+0:36%, 7:75%+0:48%
and 4:03%+0:46%. Student’s two-tailed t-test shows pv0:01
between real motor features and all the others, while in all other

cases p denotes weak statistical difference (e.g., p~0:057 between

audio and joint features). Together with the error rate values, this

lets us claim that there is a marginal advantage in using joint

features over audio only, but that a large and evident advantage is

found using the real motor features over all the others.

Using Motor Information in Phone Classification
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Experiment 2. Experiment 2 replicates Experiment 1 using

the remaining CV schemas. Figure 6 (from column spk5vs1 to

column coart3vs2) shows the results. Consider the per-speaker

schemas, i.e., spk5vs1, spk3vs3 and spk1vs5. The real motor features

are, again, strikingly (and significantly, pv0:01) better than all

others, with increasing error rates of 1:65%+0:49%,

2:62%+0:26% and 7:27%+1:32% for spk5vs1, spk3vs3 and

spk1vs5 in turn. Increasing (and larger) error rates are found

when using audio and reconstructed motor features in all schemas,

with no significant statistical difference. Significantly different

performances are obtained with the joint features in the spk3vs3

and spk1vs5 schemas (pv0:01 with error rates, in turn, of

7:8%+0:41% and 12:24%+0:79%).

In the per-coarticulation cases, the error rate is generally high

(between 32% and 38% where chance level is 50%). It is

statistically similar (pw0:05) among audio, reconstructed motor

and joint features in the coart4vs1 schema, whereas in the coart3vs2

schema there are significant differences (pv0:05) between audio

and joint features, and audio and reconstructed motor features.

The real motor features, again, perform dramatically better

(6:41%+1:19% and 6:37%+0:99% for coart4vs1 and coart3vs2

respectively).

In general, it is when the classification task becomes more

difficult (i.e., decreased speech variability in the training data and

increased speech variability in the testing data) that the

reconstructed motor features lead to significant improvements,

either when combined with the audio features (as in the spk3vs3

and spk1vs5 schemas) or alone (as in the coart3vs2 schema).

Experiment 3. Lastly, in Experiment 3 the comparison

among feature sets is evaluated with the overall CV schema

(which gives the best results in Experiment 2), as white noise is

added to the audio signal. The intensity of noise is changed from

Figure 3. Quantitative performance of the AMM. For each cross-validation schema (overall, etc.) and output signal (vlio, etc.) the NRMSE
average value and standard error of the mean are reported.
doi:10.1371/journal.pone.0024055.g003

Figure 4. Real and AMM-reconstructed motor features. Real and AMM-reconstructed vlio and vttu for subject 6 uttering the /t/ in accento?
(accent). Notice the apparent gap in the quality of the reconstruction, favoring in this case the labiodental trajectory (vttu).
doi:10.1371/journal.pone.0024055.g004
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10% to 150% of the standard deviation of each utterance

considered; for each sequence, 10 noisy ones are generated, in

order to obtain a larger statistical basis. Figure 7 shows the results.

The real motor features, not affected by noise, are shown as

comparison, and stay at the above mentioned error rate (see

Experiment 1) of 0:97%. The error rate of the other sets of

features, when noise is at 10%, is only slightly worse than that of

Experiment 1 (the same case with no noise): namely,

7:49%+0:25%, 5:84%+0:19% and 4:95%+0:16% for audio,

reconstructed motor and joint features in turn. As the level of noise

is increased though, the audio features’ error rate increases

superlinearly until it reaches about 45% when the noise is at a 70%
level, going then asymptotically to chance level. As opposed to

that, the reconstructed motor features exhibit a much higher

resilience to noise, increasing the error rate only linearly and

reaching, e.g., 19:23%+0:41% when the noise is at 70%. At the

maximum level of noise, 150%, the reconstructed motor features

still keep the error rate at 32:3%+0:61% while the audio features

essentially reach chance level. Actually, we ourselves checked how

some of the phones sound when the noise is so high, and found

them very hard to understand.

Lastly, the joint features perform better (or as well as) the

reconstructed motor features at low levels of noise (until 30%),

while they then become less useful than the reconstructed motor

alone. This is obviously due to the weak performance of the audio

features. The t-test reveals statistically different mean error rates

(pv0:01) for all levels of noise, except for reconstructed motor and

joint when the noise is at 20% and 30%.

Discussion

Do Motor Features Help?
The experimental results presented in the previous section

clearly prove that, at least in the cases examined, and with the set

Figure 5. Double dissociation. Double dissociation of correlation between real and AMM-reconstructed MI (mean and standard error of the
mean). Mean coefficients are significantly higher for vlio when ‘‘listening’’ to labials than dentals and vice-versa. The overall CV schema is used.
doi:10.1371/journal.pone.0024055.g005

Figure 6. Results of experiment 1 and 2. Balanced error rate in classification of bilabials and dentals for each CV schema.
doi:10.1371/journal.pone.0024055.g006
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of employed machine learning techniques, the answer to the

question posed in the introduction, ‘‘can the use of MI-based

features improve a phoneme classifier’s performance?’’ is ‘‘yes’’.

Overall, 16 features extracted from motor invariants detected

with an articulograph (what we have called real motor features)

exhibit dramatically better error rates than 390 state-of-the-art

audio features in an automated discrimination task between two

bilabial and two dental consonants. Since the discrimination is

performed using an absolutely standard classifier (and, according

to the literature, a good one), that is, a Support Vector Machine

with Gaussian kernel whose hyperparameters are found via grid-

search, this result should have a somehow more general validity

than what is shown in this paper.

The performance gap is apparent and statistically significant in

all our experiments. It increases as the training sets are restricted,

for example when per-subject (i.e., training on some subjects,

testing on the others) or per-coarticulation (i.e., training on some

coarticulating phonemes and testing on others) tests are conduct-

ed. This clearly indicates that MI-based features are somehow

‘‘more invariant’’ than audio-based ones across subjects and

coarticulation – a quantitative confirmation of a basic intuition,

almost common-sensical: to produce, e.g., a bilabial, the act of the

labial plosion is common to all human beings and is not affected

by coarticulation. This is one more hint at the fact that the use of

motor features could be a great leap forward in ASR.

Now obviously, knowing that motor information is useful to

improve ASR is just half of the story, since the problem of gathering

it during speech recognition is still unexplored – one cannot expect

the standard user of an ASR system to wear an articulograph

while, e.g., dictating. Here the MTS and the theory of mirror

neurons inspire us to build an AMM, that is, to try and reconstruct

the distal speech acts from the audio signal alone. All in all, not

even humans have access to the distal speaker’s motor data, and

recent studies, among which D’Ausilio et al.’s [1], indicate that

they might be reconstructing it while hearing the sound of speech;

and that this mechanism is activated mainly in hostile conditions

(e.g., in the presence of noise).

Our Audio-Motor-Map, this one too built using a standard

machine learning method (namely, a feed-forward neural

network), is able to reconstruct the MIs to such a degree of

precision that the same 16 motor features, extracted from these

reconstructed trajectories, exhibit comparable or better error rates

than those found with the audio features when the training sets are

restricted (Experiments 1 and 2); and they boost a largely and

significantly better performance than the audio ones, as noise is

added to the audio signal (Experiment 3). This latter result seems

to be somehow in agreement with what D’Ausilio et al. have found

using TMS on humans.

Note that in the most critical cases (i.e., when the training data

sets are extremely restricted) of Experiments 1 and 2 the

reconstructed motor features outperform the audio features. These

results and the results of Experiment 3 suggest that when the

difficulty of the classification task increases (because of an

increased ratio between speech variability in the testing data and

speech variability in the training data) the reconstructed motor

features become more and more useful for the task.

Lastly, when audio and reconstructed motor features are joined

using a simple probabilistic schema, the error rates are sometimes

significantly better than when the feature sets are used indepen-

dently. When one set of features is obviously far worse than the

other, such a joint model performs in-between (e.g., consider

Experiment 3 when noise is higher than 50%); a more interesting

case is that found in Experiment 2, CV schemas spk3vs3 and

spk1vs5, where no clear advantage is seen when using either the

audio or the reconstructed motor features alone, while the joint

models perform significantly better. This means that the MI-based

models are correctly classifying with high probability some

consonants that the audio-based models moderately misclassify;

and vice-versa. Sometimes the audio features help, sometimes the

MI-based features do.

This indicates that motor features, even when the audio signal is

the only source of information available (a realistic scenario) can

improve the discrimination of phonemes.

Further Remarks
The experiments presented in this paper are inspired by the

intuition that the proficiency of humans in speech recognition is

grounded in the interaction between production and understand-

ing of speech in the human brain. Alvin Liberman’s motor theory

of speech perception, although controversial and recently reviewed

and revised [9–12], provides a theoretical framework to this

intuition, which recent neurological evidence [1] supports even

further; our findings seem to support the claim of MTS, but clearly

Figure 7. Results of experiment 3. Balanced error rate in classification of bilabials and dentals for the overall CV schema as noise is added.
doi:10.1371/journal.pone.0024055.g007
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more experiments are required, with larger data sets, e.g., more

words, more subjects and more sensors.

In this work, also a novel way of segmenting the speech signal is

introduced. The traditional equal-length segmentation, carried out

using acoustic properties only, has strong limitations mainly due to

intra-speaker speech variability and to coarticulation. Here we

propose to segment the audio signal using the articulators’

trajectories to detect the beginning and end of phonemes. The

choice of the articulators and the conditions on the trajectories are

established according to basic rules of the phonetic production; for

example, /b/s are identified using the beginning and end of a

bilabial plosion. With respect to the traditional speech segmenta-

tion, this approach focuses on the act that produced the sound. To

capture this act, we use the coefficients of a cubic fit of the motor

trajectories, so to obtain a qualitative representation of it.

About the AMM: from an information-theoretical point of view,

AMM-reconstructed motor features do not carry more informa-

tion than what already is in the speech signal. The AMM is a

function, so one could see this technique as ‘‘just a better way of

extracting ASR features from speech’’. The main advantage in

using it is that it is highly bio-inspired, having been trained to

associated human speech data to motor data. The double

dissociation observed (see Figure 5) reflects the rather predictable

phenomenon that consonant-critical articulators exhibit less

variance than non-critical ones (e.g., when a /b/ uttered the

labial trajectory is highly constrained, as opposed to the tongue-

dental trajectory). This results in a better prediction of bilabial

(dental) trajectories when the AMM is presented with a bilabial

(dental) consonant.

Lastly, notice that in Experiment 2 the AMM-reconstructed

motor features perform, in general, as well as the audio features,

while the real motor features are by far better. So, at first sight, one

could be tempted to think that a better reconstruction should

achieve better error rates, getting close to those of the real motor

features; but on the other hand, the AMM uses the speech signal

too, so it is not clear whether a much better reconstruction can be

achieved in our case at all. A larger training database and more

extensive experiments could shed light on this still open point.
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