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Abstract— Developing applications considering reactiveness,
scalability and re–usability has always been at the center of
attention of robotic researchers. Behavior–based architectures
have been proposed as a programming paradigm to develop
robust and complex behaviors as integration of simpler modules
whose activities are directly modulated by sensory feedback or
input from other models. The design of behavior based systems,
however, becomes increasingly difficult as the complexity of
the application grows. This article proposes an approach for
modeling and coordinating behaviors in distributed archi-
tectures based on port arbitration which clearly separates
representation of the behaviors from the composition of the
software components. Therefore, based on different behavioral
descriptions, the same software components can be reused to
implement different applications.

I. INTRODUCTION

Behavior–based systems (BBSs) have been devised to
program robot applications that do not rely on models of the
environment and for which reaction to sensory feedback is
crucial. However, BBSs are difficult to design when the task
involves interaction of large number of software components.
Perhaps, this is one of the reasons why behavior–based
approaches are not widely applied to the complex robotic
applications. The crucial problem is to represent behaviors
and components separately so that the latter can be reused
more freely. Best practices in robotics [1] promotes the idea
that composition and coordination of software component
should be separated during the software development life–
cycle. Moreover, a proper abstract representation of the
behaviors is crucial for the development of complex robotic
application. In modern robotic middlewares, coordination
of software modules is more difficult since components
run asynchronously and are distributed across a network of
computers.

We introduce a mechanism for modeling and coordination
of behaviors based on port arbitration [2]. Coordination
between modules is achieved by defining a set of rules that
specify how to arbitrate conflicts between modules that run
concurrently and compete for the same resources. In our
approach, building an application out of reusable software
is done in two phases (Figure 1). First, software components
are configured and interconnected in the (distributed) system.
Second, a behavioral model is developed which describes the
desired behavior of the system. Coordination is then defined
by extracting a set of rules from the behavioral model. These
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Fig. 1. Application generation from behavioral description.

rules determine how data is allowed to travel across the
network of components and therefore implicitly define which
components are inhibited or free to run. Based on different
behavioral description, the same software components can
be reused to implement different robotic applications.

II. RELATED WORK

Our proposed idea has some similarities with the coordi-
nation models and languages which are originated from the
work of Gelernter and Carriero [3]. A coordination model
provides a framework in which the interaction of active and
independent entities can be expressed using a specific lan-
guage. An example of coordination languages is Linda [4].
This language defines a mechanism to coordinate concurrent
computations by means of messages which are formated in
tuple structure and can be added to the computation environ-
ment. It has been argued that coordination models similar to
Linda 1 have the fundamental drawback of intermixing com-
putation with coordination [5]. In contrast to Linda which
requires computations to make use of specific primitives for
coordination, Reo [6] provides a paradigm for composition
of distributed software components and services based on the
notion of connectors. Reo enforces an exogenous channel–
based coordination model that defines how designers can
build connectors, out of simpler ones. Application designers
can use Reo for compositional construction of connectors
that coordinate the cooperative behavior of components in
a component–based system. A comprehensive and detailed
survey of coordination languages is also given in [5].

Despite coordination languages have had a large devel-
opment in the context of parallel and distributed system
during the last two decades, to our knowledge, there have not
been enough workaround for their realization over available
robotic frameworks or study of the required component

1also known as endogenous languages
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models for their implementation. In contrast, our proposed
coordination model exploits component data–flow ports and
the connections among the components which commonly can
be found in every nowadays robotic frameworks.

III. PORT-ARBITRATED COORDINATION

The idea of the port arbitration and its applications
in robotics has already been discussed in our previous
works [2], [7] and [8]. However, in the following, we shortly
describe the concept of component coordination using port
arbitration mechanism.

A simple software component can be seen as a computa-
tional unit with a set of data–flow ports for communication.
It has a set of input ports to receive information from other
components and a set of output ports to stream out the
data. A component checks for the condition in which to
become active (e.g. upon receiving data), processes and sends
the results through its output ports. We make the following
assumptions for each component:

• The preconditions in which a component gets activated
are local to the component itself and they are not visible
to other modules. In other words components cannot
directly activate or deactivate others.

• Data is streamed out if and only if the component is
active. For example, an object detector sends object
position information through its output port only if the
object has been detected.

We focus on the typical scenario of a publish–subscribe
architecture. The output of a component can be connected to
one or more input ports of other component. Interestingly it is
also possible to connect multiple outputs to the same input of
a component. In the example from Figure 2, Object Detector
is a component which processes the streamed images from
the robot camera and produces the 3D position of the object
when detected. Its output is connected to Gaze Control
which receives a 3D position in the robot root frame and
controls the head of the robot to gaze at the target point.
The output port of Object Detector is also connected to the
Arm Control component which moves the robot arm’s end-
effector to reach the target point received from its input port.
A crucial aspect is that multiple outputs can be connected to
the input port of a component. Without proper coordination
among the components, data from different components can
be delivered to an input port at any time, potentially causing
conflicts. For example, the outputs of Object Detector and
Rest Arm are both connected to the input port of Arm
Control. These components conflict when they are both
active and concurrently send position data to Arm Control.
To solve this problem, every input port has an arbitrator
which can be configured with a set of rules to properly
arbitrate the data received from multiple sources. We propose
a mechanism to describe the behavioral model of the task.
This model allows to derive the necessary rules that properly
configure the arbitrators to implement the task. We define
the ingredients of our port-arbitrated coordination system as
follow:
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Fig. 2. An example of different components and the connections among
them. The shaded box represents how an arbitrator is employed in the input
port of a component to select between multiple connections to the same
port.

• A pair of source and destination names which identifies
the connection from an input port to an output port (e.g.
{/Face/pos:o, /Gaze/pos:i}).

• An active connection is a connection which has recently
delivered data. When data arrives to an input port from a
connection, the latter becomes active and remains active
for a constant time T . The connection will be inactive
if no more data arrives within time T . Notice that the
activation of a connection is defined solely in terms of
the data it delivers to the port and irrespectively of the
result of the arbitration.

A. What are the rules and how they are used in arbitrator?

Each input port has an arbitrator which selects a single
connection among the ones that are active at each time. This
“winner” connection delivers data to the component whereas
data from the other connections gets discarded. This concept
is drawn in Figure 2 for the case of three connections. As
it is shown in the figure (shaded part), the port arbitrator is
implemented as a multiplexer that let, at most, one active
connection deliver its data to the component at each time. In
Figure 2, Rest Arm periodically sends the resting position
of the arm through RestArm/pos:o to Arm Control.
This causes the robot to park and keep the arm in the
resting position. To grasp an object we want to hand over
control of the arm to another component, Object Detector,
that sends the position of the object to be grasped to Arm
Control. This can be done by inhibiting the connection from
/RestArm/pos:o to /Arm/pos:i in the arbitrator of
/Arm/pos:i. In other words we want to specify a rule so
that the connection {/RestArm/pos:o, /Arm/pos:i}
can be selected only if connection {/Object/pos:o,



/Arm/pos:i} is inactive, formally:

/RestArm/pos : o ∧ ¬/Object/pos : o
⇒ Select(/RestArm/pos : o)

Suppose now we add another component which is re-
sponsible for stopping the the arm upon collision. This
component is called Collision Detector in Figure 2 and it
sends status messages through the port /collision:o
when it detects that the arm collides with an object (e.g.
using tactile or torque sensors). The desired behavior can be
achieved by adding rules in /Arm/pos:i so that activation
of /RestArm/pos:o and /Object/pos:o is inhibited
by /collision:o, i.e.:

/RestArm/pos : o ∧ ¬/Object/pos : o
∧ ¬/collision : o⇒ Select(/RestArm/pos : o)

/Object/pos : o ∧ ¬/collision : o
⇒ Select(/Object/pos : o)

Notice that if no rules specifically select a connection,
the latter can never deliver data to the component. In our
example, no rule is written for /collision:o in Arm
Control; so Collision Detector will never deliver data to this
component. As it is, its activation state is only used in the
evaluation of the rules of other connections.

When data arrives from a connection to an input port,
the corresponding arbitrator has to decide whether to ac-
cept or discard it. First the port updates the state of each
connection (i.e. active or inactive). Based on the activation
states, the required Boolean inputs for the arbitrator are
generated (i.e. True for the active and False for the inactive
connections). The rules are structured in Binary Decision
Diagrams (BDD) [9] in the arbitrator. By reasoning on
the BDD, the arbitrator evaluates whether the connection
discards or delivers data to the component.

IV. MODELING THE BEHAVIORS

In general, behavior-based robotic controllers consist in
a collection of behaviors and are implemented as control
laws to achieve and/or maintain goals [10]. In our approach,
behaviors can be described as a set of rules for the port
arbitrators. In Figure 2, Face Detector sends the position of
the detected face to Gaze Control to follow it. In other words,
to implement a behavior called Follow Face, the connection
/Face/pos:o to /Gaze/pos:i should exist and be
selected by the port arbitrator in /Gaze/pos:i. To imple-
ment another behavior we call Look Around, the connection
{/RandomLook/pos:o, /Gaze/pos:i} should be se-
lected by the port arbitrator in /Gaze/pos:i to deliver the
random position data generated by Random Look to the Gaze
Control. Desired behaviors, therefore, can be implemented
by selecting connections which are required to deliver data
among specific components. At the behavioral description
level, we concentrate only on the connections among the
components and the necessary rules that select these con-
nections in the arbitrators. The rules can be provided by
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Fig. 3. An example of the behavioral model that uses the components
from Figure 2 to implement the behavior Search and Track. This behavior
allows the robot to look around in search for a face or an object. When
the robot detects a face it tracks it with the gaze. When it detects an
objects it follows it with the gaze and reaches for it. The overall behavior
is implemented by coordinating simpler behaviors. Correct coordination is
implemented by inhibitions among behaviors (red arrows). E.g., the red
arrow from Follow Face to Look around gives higher priority to the first
behavior whose activation inhibits the second. See also the description in
the text.

specifying configuration of the connections required for im-
plementing the behavior, under which condition the behavior
can be activated and the list of behaviors it should inhibit.

In Figure 2 we have shown an example of the composition
of some components and their connections. Based on them,
in Figure 3 we depict an example of behavioral description
for a task in which the robot searches around, follows
human faces and tracks an object with the hand. In the
figure, Follow Face, Look Around, Rest Arm and Track
Object represent behaviors. Follow Face and Look Around
are grouped together to describe, by composition, another
(meta behavior) behavior called Be Curious. Be Curious
implements a behavior that let the robot randomly look
around or follow a human face if a person appears in the
scene. The red arrow from Follow Face to Look around gives
higher priority to the first behavior whose activation inhibits
the second. Rest Arm describes a behavior that keeps the arm
in the resting position. Track Object implements tracking of
an object with the gaze and reaching for it with the hand. It
also inhibits Rest Arm and the meta behavior Be Curious to
prevent them from interfering during tracking. The condition
“¬ /collision” in Track Object implies that robot can
track an object only in absence of collisions. Track Object,
Rest Arm and Be curious are further grouped to describe
another meta behavior we called Search and Track.



A. Behavior Specification

A behavior (or a meta behavior) has the following prop-
erties:

Configuration of a behavior is the list of connections
which should be selected by the port arbitrators to implement
the behavior. For meta-behaviors, configuration is as a list of
behaviors or other meta-behaviors. For example, in Figure 3,
the configuration property of Track Object implies that to
follow an object with the head, /Object/pos:o should
feed data to Gaze Control at /Gaze/pos:i. Tracking with
the hand is achieved by sending /Object/pos:o to Arm
Control at /Arm/pos:i. Notice that here we focus only
on the connections which define the behavior of the system,
but other connections are required for proper functioning
of some modules (e.g. Face Detector and Object Detector
require connections from the robot cameras) For simplicity
we do not consider these connections here.

Condition is an optional property which specifies in, first–
order logic, a constraint that should be verified for the
behavior to be activated. The condition ¬ /collision : o
of Track Object requires that all the connections specified
in its Configuration should be selected only if the port
/collision:o is inactive (i.e. it is not sending messages).
In a meta-behavior the Condition affects all its child be-
haviors, i.e. conditions from all parent meta-behaviors in a
hierarchy are conjuncted and inherited by all child behaviors.

Inhibition, specifies inhibitions between behaviors or
meta-behaviors. Specifying inhibitions allows coordinating
behaviors that are competing for the same resources. In
Figure 3 we define the behavior Look Around which is
implemented by connecting ports of Random Look to Gaze
Control. We also define Follow Face and Track Object. These
behaviors compete to control the gaze of the robot by sending
commands to Gaze Control at /Gaze/pos:i. Conflicts are
avoided by further specifying the overall behavior of the
robot and assigning inhibitions. In Figure 3 Follow Face in-
hibits Look Around. In more details this tells the arbitrator in
/Gaze/pos:i that connection {/RandomLook/pos:o,
/Gaze/pos:i} should not be selected when connec-
tion {/Face/pos:o, /Gaze/pos:i} is active, because
Face Detector is sending data to Gaze Control. A behavior
can also inhibits a meta-behavior. In this case, the behavior
inhibits all the behaviors in the meta-behavior. In Figure 3,
Track Object inhibits Be Curious, i.e. it inhibits Follow Face
and Look around. In practice this corresponds to assigning
decreasing priorities to Track Object, Follow Face and Look
around to avoid conflicts in Gaze Control. Similar rules
are applied if a meta-behavior inhibits another behavior
or another meta-behavior. For the sake of modularity and
reusability, behaviors can only inhibit other behaviors within
the same meta-behavior. For example in Figure 3, Follow
Face is not allowed to inhibit Rest Arm.

V. EXTRACTING RULES FROM BEHAVIORAL MODEL

In the previous section we have described how behaviors
are modeled using connections between ports. In this section
we explain how the necessary rules for the arbitrators are

extracted from the behavioral model. Every behavior has a
list of connections specified by its Configuration property.
The properties Conditions and Inhibition determine an extra
set of constraints that are applied to the port arbitrators of
its connections.

For example in Figure 3, Look Around is inhibited
by Follow Face. Both behaviors have a connection to
/Gaze/pos:i; Thus the following rule is added to the
port arbitrator in /Gaze/pos:i:

/RandomLook/pos : o ∧ ¬/Face/pos : o
⇒ Select(/RandomLook/pos : o)

Look Around is also inhibited by Track Object (through
the inhibition to Be Curious). Therefore the previous rule
is updated with “¬/Object/pos : o” to reflect the new
constraint:

/RandomLook/pos : o ∧ ¬/Face/pos : o
∧ ¬/Object/pos : o ⇒ Select(/RandomLook/pos : o)

A behavior’s Condition and the conditions that are inher-
ited from the parent groups are also added in the same way to
the port arbitrators of all of the connections specified in Con-
figuration. For example, the constraint “¬/collision : o” is
added to the rules for /Object/pos:o in the arbitrators
at /Gaze/pos:i and /Arm/pos:i.

To summarize, the algorithm to extract the arbitration
rules from the behavior model is easily done in two steps
for each behavior i in the model. First: the Condition of
i is updated with all the conditions it inherits from the
parent meta-behaviors. This condition is added as an extra
constraint to the port arbitrators of all the connections
specified in Configuration. Second: further conditions are
extracted from all inhibitors of i and added to the rules of
the corresponding port arbitrators.

<define name="gaze"> /Gaze/pos:i </define>

<meta_behavior name="Be Curious">
<behavior>Look Around</behavior>
<behavior>Follow Face</behavior>
<condition></condition>
<inhibition></inhibition>

</meta_behavior>

<behavior name="Look Around">
<config at="${gaze}">/RandomLook/pos:o</config>
<condition></condition>
<inhibition></inhibition>

</behavior>

<behavior name="Follow Face">
<config at="${gaze}">/Face/pos:o</config>
<condition></condition>
<inhibition>Look Around</inhibition>

</behavior>

Listing 1. The representation of "Be Curious" behavior in XML format.

The behavioral model can be represented using Extensible
Markup Language (XML). Listings 1 illustrates the repre-
sentation of Be Curious behavior in the XML format. The
model are used by a third–party tool from the YARP [11]



robotic framework to extract the arbitration rules and up-
date the configuration of connections. The concept is also
illustrated in Figure 1. YARP offers a method to describe
the configuration of components and their connections in
XML format which known as application description file. In
short, an application description file contains all the required
modules, their configuration (i.e., parameters), the way they
are interconnected, and the necessary information for their
deployment. The required information for orchestration (co-
ordination) of these modules can be represented in another
XML file (similar to Listing 1) using our behavioral model
based on port–arbitrated mechanism. The final application,
can be generated by extracting the arbitration rules from
the behavioral description file and using them to configure
the component connections from the application description
file. Therefore, based on different behavioral model, the
same components the their configuration can be used for
the development of different robotic applications.

VI. DISCUSSIONS

Different behavior selection mechanisms are compared
in [12], [13] and [14]. An alternative approach to compet-
itive action selection is a cooperative mechanism in which
recommendations from multiple behaviors are combined to
form a control action that represents their consensus. An
example of this type of mechanism is DAMN [15]. It
uses a centralized arbitrator to fuse the collected commands
from different behaviors and select the action which best
satisfies the prioritized goals of the system. Nowadays, due to
heterogeneity of data types and the complexity of the control
systems, the proposed methodology is practically limited
to low-level control. However, in our approach, behaviors
can also help each other to become active by enabling the
relevant connections. This has already been discussed in
detail in [2].

Even though coordination based on port arbitration can
cover a wide variety of robotic applications, we have experi-
enced certain limitations in the system. First, since arbitration
is usually done on the data from unidirectional connection to
an input port, it cannot be easily used in a service–oriented
system where interactions between modules are bidirectional
and done using blocking remote procedure calls. Moreover, a
robotic task might require performing a sequence of actions
synchronized with the internal state of components. This can
be also made using port arbitration, nevertheless, delegating
this responsibility to a dedicated, external component can be
preferable in favor of simplicity and performance.

VII. CONCLUSION

This work–in–progress article has introduced a mechanism
based on port arbitration for modeling and coordination of
robotic behaviors. We have shown how robotics tasks can
be represented using our behavioral description model and
coordinated in a distributed component–based framework
using port–arbitrated mechanism and without using any
central coordinator. Remarkably, We demonstrated that in our

framework, based on different behavioral descriptions, sev-
eral robotic applications can be hierarchically implemented
using the same reusable software components.

Future works will involve investigating proper methods for
the validation of the model and checking the consistency of
the rules which are extracted from the behavioral description
during the development of the tasks.
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