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Abstract— We consider object recognition in the context of
lifelong learning, where a robotic agent learns to discriminate
between a growing number of object classes as it accumulates
experience about the environment. We propose an incremental
variant of the Regularized Least Squares for Classification
(RLSC) algorithm, and exploit its structure to seamlessly add
new classes to the learned model. The presented algorithm
addresses the problem of having an unbalanced proportion of
training examples per class, which occurs when new objects
are presented to the system for the first time.

We evaluate our algorithm on both a machine learning
benchmark dataset and two challenging object recognition tasks
in a robotic setting. Empirical evidence shows that our approach
achieves comparable or higher classification performance than
its batch counterpart when classes are unbalanced, while being
significantly faster.

I. INTRODUCTION

In order for autonomous robots to operate in unstructured
environments, several perceptual capabilities are required.
Most of these skills cannot be hard-coded in the system
beforehand, but need to be developed and learned over time
as the agent explores and acquires novel experience. As a
prototypical example of this setting, in this work we consider
the task of visual object recognition in robotics: Images
depicting different objects are received one frame at a time,
and the system needs to incrementally update the internal
model of known objects as new examples are gathered.

In the last few years, machine learning has achieved re-
markable results in a variety of applications for robotics and
computer vision [1], [2], [3]. However, most of these methods
have been developed for off-line (or “batch”) settings, where
the entire training set is available beforehand. The problem
of updating a learned model online has been addressed in
the literature [4], [5], [6], [7], but most algorithms proposed
in this context do not take into account challenges that
are characteristic of realistic lifelong learning applications.
Specifically, in online classification settings, a major chal-
lenge is to cope with the situation in which a novel class
is added to the model. Indeed, 1) most learning algorithms
require the number of classes to be known beforehand and
not grow indefinitely, and 2) the imbalance between the few
examples of the new class (potentially just one) and the
many examples of previously learned classes can lead to
unexpected and undesired behaviors [8]. More precisely, in
this work we theoretically and empirically observe that the
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new and under-represented class is likely to be ignored by
the learned model in favor of classes for which more training
examples have already been observed, until a sufficient
number of examples are provided also for such class.

Several methods have been proposed in the literature
to deal with class imbalance in the batch setting by “re-
balancing” the misclassification errors accordingly [8], [9],
[10]. However, as we point out in this work, rebalancing
cannot be applied to the online setting without re-training
the entire model from scratch every time a new example is
acquired. This would incur in computational learning times
that increase at least linearly in the number of examples,
which is clearly not feasible in scenarios in which training
data grows indefinitely.

In this work we propose a novel method that learns
incrementally both with respect to the number of examples
and classes, and accounts for potential class unbalance. Our
algorithm builds on a recursive version of Regularized Least
Squares for Classification (RLSC) [11], [12] to achieve fixed
incremental learning times when adding new examples to
the model, while efficiently dealing with imbalance between
classes. We evaluate our approach on a standard machine
learning benchmark for classification and two challenging
visual object recognition datasets for robotics. Our results
highlight the clear advantages of our approach when classes
are learned incrementally.

The paper is organized as follows: Sec. II overviews
related work on incremental learning and class imbalance.
In Sec. III we introduce the learning setting, discussing the
impact of class imbalance and presenting two approaches that
have been adopted in the literature to deal with this problem.
Sec. IV reviews the recursive RLSC algorithm. In Sec. V we
build on previous Sec. III and IV to derive the approach
proposed in this work, which extends recursive RLSC to
allow for the addition of new classes with fixed update time,
while dealing with class imbalance. In Sec. VI we report on
the empirical evaluation of our method, concluding the paper
in Sec. VII.

II. RELATED WORK

Incremental Learning. The problem of learning from a
continuous stream of data has been addressed in the literature
from multiple perspectives. The simplest strategy is to re-
train the system on the updated training set, whenever a new
example is received [13], [14]. The model from the previous
iteration can be used as an initialization to learn the new
predictor, reducing training time. These approaches require
to store all the training data, and to retrain over all the points
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at each iteration. Their computational complexity increases
at least linearly with the number of examples.

Incremental approaches that do not require to keep previ-
ous data in memory can be divided in stochastic and recur-
sive methods. Stochastic techniques assume training data to
be randomly sampled from an unknown distribution and offer
asymptotic convergence guarantees to the ideal predictor [6].
However, it has been empirically observed that these methods
do not perform well when seeing each training point only
once, hence requiring to perform “multiple passes” over
the data [15], [16]. This problem has been referred to as
the “catastrophic effect of forgetting” [4], which occurs
when training a stochastic model only on new examples
while ignoring previous ones, and has recently attracted the
attention of the Neural Networks literature [17], [7].

Recursive techniques are based, as the name suggests, on
a recursive formulation of batch learning algorithms. Such
formulation typically allows to compute the current model
in closed form (or with few operations independent of the
number of examples) as a combination of the previous model
and the new observed example [5], [18]. As we discuss in
more detail in Sec. IV, the algorithm proposed in this work
is based on a recursive method.

Learning with an Increasing Number of Classes. Most
classification algorithms have been developed for batch set-
tings and therefore require the number of classes to be
known a priori. However, this assumption is often broken
in incremental settings, since new examples could belong to
previously unknown classes. The problem of dealing with
an increasing number of classes has been addressed in the
contexts of transfer learning or learning to learn [19]. These
settings consider a scenario where T linear predictors have
been learned to model T classes. Then, when a new class is
observed, the associated predictor is learned with the require-
ment of being “close” to a linear combination of the previous
ones [20], [21], [22]. Other approaches have been recently
proposed where a class hierarchy is built incrementally as
new classes are observed, allowing to create a taxonomy
and exploit possible similarities among different classes [13],
[23]. However, all these methods are not incremental in the
number of examples and require to retrain the system every
time a new point is received.

Class Imbalance. The problems related to class imbalance
were previously studied in the literature [8], [10], [9] and
are addressed in Sec. III. Methods to tackle this issue have
been proposed, typically re-weighting the misclassification
loss [20] to account for class imbalance. However, as we
discuss in Sec. V-B for the case of the square loss, these
methods cannot be implemented incrementally. This is prob-
lematic, since imbalance among multiple classes often arises
in online settings, even if temporarily, for instance when
examples of a new class are observed for the first time.

III. CLASSIFICATION SETTING AND THE EFFECT OF
CLASS IMBALANCE

In this section, we introduce the learning framework
adopted in this work and describe the disrupting effect of

imbalance among class labels. For simplicity, in the follow-
ing we consider a binary classification setting, postponing
the extension to multiclass classification to the end of the
section. We refer the reader to [9] for more details about the
Statistical Learning Theory for classification.

A. Optimal Bayes Classifier and its Least Squares Surrogate
Let us consider a binary classification problem where

input-output examples are sampled randomly according to
a distribution ρ over X × {−1, 1}. The goal is to learn a
function b∗ : X → {−1, 1} minimizing the overall expected
classification error

b∗ = argmin
b:X→{−1,1}

∫
X×{−1,1}

1(b(x)− y) dρ(x, y), (1)

given a finite set of observations {xi, yi}ni=1, xi ∈ X , yi ∈
{−1, 1} randomly sampled from ρ. Here 1(s) : R→ {0, 1}
denotes the binary function taking value 0 if s = 0 and 1
otherwise. The solution to Eq. (1) is called the optimal Bayes
classifier and it can be shown to satisfy the equation

b∗(x) =

{
1 if ρ(1|x) > ρ(−1|x)
−1 otherwise , (2)

for all x ∈ X . Here we have denoted by ρ(y|x) the
conditional distribution of y given x and in this work we
will denote by ρ(x) the marginal distribution of x, such
that by Bayes’ rule ρ(x, y) = ρ(y|x)ρ(x). Computing good
estimates of ρ(y|x) typically requires large training datasets
and is often unfeasible in practice. Therefore, a so-called
surrogate problem (see [9], [24]) is usually adopted to sim-
plify the optimization problem at Eq. (1) and asymptotically
recover the optimal Bayes classifier. In this sense, one well-
known surrogate approach is to consider the least squares
expected risk minimization

f∗ = argmin
f :X→R

∫
X×{−1,1}

(y − f(x))2 dρ(x, y). (3)

The solution to Eq. (3) allows to recover the optimal Bayes
classifier. Indeed, for any f : X → R we have∫

(y − f(x))2dρ(x, y) =

∫ ∫
(y − f(x))2dρ(y|x)dρ(x)

=

∫ [
(1− f(x))2ρ(1|x) + (f(x) + 1)2ρ(−1|x)

]
dρ(x),

which implies that the minimizer of Eq. (3) satisfies

f∗(x) = 2ρ(1|x)− 1 = ρ(1|x)− ρ(−1|x) (4)

for all x ∈ X . The optimal Bayes classifier can be recovered
from f∗ by taking its sign: b∗(x) = sign(f∗(x)). Indeed,
f∗(x) > 0 if and only if ρ(1|x) > ρ(−1|x).

Empirical Setting. When solving the problem in practice,
we are provided with a finite set {xi, yi}ni=1 of training
examples. In these settings the typical approach is to find an
estimator f̂ of f∗ by minimizing the regularized empirical
risk

f̂ = argmin
f :X→R

1

n

n∑
i=1

(yi − f(xi))
2 +R(f), (5)



where R is a so-called regularizer preventing the solution
f̂ to overfit. Indeed, it can be shown [9], [25] that, under
mild assumptions on the distribution ρ, it is possible for f̂
to converge in probability to the ideal f∗ as the number of
training points grows indefinitely. In Sec. IV we review a
method to compute f̂ in practice, both in the batch and in
the online settings.

B. The Effect of Unbalanced Data

The classification rule at Eq. (2) associates every x ∈ X
to the class y with highest likelihood ρ(y|x). However, in
settings where the two classes are not balanced this approach
could lead to unexpected and undesired behaviors. To see
this, let us denote γ = ρ(y = 1) =

∫
X dρ(y = 1, x) and

notice that, by Eq. (2) and the Bayes’ rule, an example x is
labeled y = 1 whenever

ρ(x|1) > ρ(x| − 1)
(1− γ)

γ
. (6)

Hence, when γ is close to one of its extremal values 0 or
1 (i.e. ρ(y = 1) � ρ(y = −1) or vice-versa), one class
becomes clearly preferred with respect to the other and is
almost always selected.

In Fig. 1 we report an example of the effect of unbalanced
data by showing how the decision boundary (white dashed
curve) of the optimal Bayes classifier from Eq. (2) varies as γ
takes values from 0.5 (balanced case) to 0.9 (very unbalanced
case). As it can be noticed, while the classes maintain the
same shape, the decision boundary is remarkably affected by
the value of γ.

Clearly, in an online robotics setting this effect could be
critically suboptimal for two reasons: 1) We would like the
robot to recognize with high accuracy even objects that are
less common to be seen. 2) In incremental settings, whenever
a novel object is observed for the first time, only few training
examples are available (in the extreme case, just one) and we
need a loss weighting fairly also underrepresented classes.

C. Rebalancing the Loss

In this paper, we consider a general approach to “rebalanc-
ing” the classification loss of the standard learning problem
of Eq. (1), similar to the ones in [8], [9]. We begin by
noticing that in the balanced setting, namely for γ = 0.5,
the classification rule at Eq. (6) is equivalent to assigning
class 1 whenever ρ(x|1) > ρ(x|−1) and vice-versa. Here we
want to slightly modify the misclassification loss in Eq. (1)
to recover this same rule also in unbalanced settings. To do
so, we propose to apply a weight w(y) ∈ R to the loss
1(b(x)− y), obtaining the problem

b∗w = argmin
b:X→{−1,1}

∫
X×{−1,1}

w(y)1(b(x)− y) dρ(x, y).

Analogously to the non-weighted case, the solution to this
problem is

b∗w(x) =

{
1 if ρ(1|x)w(1) > ρ(−1|x)w(−1)
−1 otherwise . (7)

Fig. 1: Bayes decision boundaries for standard (dashed white
line) and rebalanced (dashed black line) binary classification
loss for multiple values of γ = ρ(y = 1) from 0.5 to
0.9. Data are sampled according to a Gaussian ρ(x|y) ∼
N (µy, σy) with µ1 = (−1, 0)>, µ−1 = (1, 0)>, σ1 = 1 and
σ−1 = 0.3. The boundaries coincide when γ = 0.5 (balanced
data), while they separate as γ increases.

In this work we take the weights w to be w(1) = 1/γ
and w(−1) = 1

1−γ . Indeed, from the fact that ρ(y|x) =
ρ(x|y)(ρ(y)/ρ(x)) we have that the rule at Eq. (7) is
equivalent to

b∗w(x) =

{
1 if ρ(x|1) > ρ(x| − 1)
−1 otherwise , (8)

which corresponds to the (unbalanced) optimal Bayes clas-
sifier in the case γ = 0.5, as desired.

Fig. 1 compares the unbalanced and rebalanced optimal
Bayes classifiers for different values of γ. Notice that rebal-
ancing leads to solutions that are invariant to the value of γ
(compare the black decision boundary with the white one).

D. Rebalancing and Recoding the Least Squares Loss

Interestingly, the strategy of changing the weight of the
classification error loss can be naturally extended to the least
squares surrogate. If we consider the weighted least squares
problem,

f∗w = argmin
f :X→R

∫
X×{−1,1}

w(y)(y − f(x))2dρ(x, y), (9)

we can again recover the (weighted) rule b∗w(x) =
sign(f∗w(x)) like in the non-weighted setting. Indeed, by
direct calculation it follows that Eq. (9) has solution

fw∗ (x) =
ρ(1|x)w(1)− ρ(−1|x)w(−1)

ρ(1|x)w(1) + ρ(−1|x)w(−1)
. (10)

If we assume w(1) > 0 and w(−1) > 0 (as in
this work), the denominator of Eq. (10) is always
positive and therefore sign(f∗w(x)) > 0 if and only if
ρ(1|x)w(1) > ρ(−1|x)w(−1), as desired.

Coding. An alternative approach to recover the rebalanced
optimal Bayes classifier via least squares surrogate is to apply
a suitable coding function to the class labels y = {−1, 1},
namely

f∗c = argmin
f :X→R

∫
X×{−1,1}

(c(y)− f(x))2dρ(x, y), (11)



where c : {−1, 1} → R maps the labels y into scalar codes
c(y) ∈ R. Analogously to the unbalanced (and uncoded)
case, the solution to Eq. (11) is

f∗c (x) = c(1)ρ(1|x)− c(−1)ρ(−1|x), (12)

which, for c(y) = w(y), corresponds to the numerator
of Eq. (10). Therefore, the optimal (rebalanced) Bayes
classifier is recovered again by b∗w(x) = sign(f∗c (x)).

E. Multiclass Rebalancing and Recoding

In the multiclass setting, the optimal Bayes decision
rule corresponds to the function b∗ : X → {1, . . . , T},
assigning a label t ∈ {1, . . . , T} to x ∈ X when ρ(t|x) >
ρ(s|x) ∀s 6= t, with t, s ∈ {1, . . . , T}. Consequently, the
rebalanced decision rule would assign class t, whenever
ρ(y = t|x)w(t) > ρ(y = s|x)w(s) ∀s 6= t, where the
function w : {1, . . . , T} → R assigns a weight to each class.
Generalizing the binary case, in this work we set w(t) =
1/ρ(y = t), where we denote ρ(y = t) =

∫
X dρ(t, x), for

each t ∈ {1, . . . , T}.
In multiclass settings, the surrogate least squares classifi-

cation approach is recovered by adopting a 1-vs-all strategy,
formulated as the vector-valued problem

f∗ = argmin
f :X→RT

∫
X×{1,...,T}

‖ey − f(x)‖2dρ(x, y), (13)

where et ∈ RT is a vector of the canonical basis
{e1, . . . , eT } of RT (with the t-th coordinate equal to 1 and
the remaining 0). Analogously to the derivation of Eq. (4), it
can be shown that the solution to this problem corresponds
to f∗(x) = (ρ(1|x), . . . , ρ(T |x))> ∈ RT for all x ∈ X .
Consequently, we recover the optimal Bayes classifier by

b∗(x) = argmax
t=1,...,T

f(x)t, (14)

where f(x)t denotes the t-th entry of the vector f(x) ∈ RT .
The extensions of recoding and rebalancing approaches

to this setting follow analogously to the binary setting
discussed in Sec. III-D. In particular, the coding function
c : {e1, . . . , eT } → R consists in mapping a vector of the
basis et to c(et) = et/ρ(y = t).

Note. In previous sections we presented the analysis on
the binary case by considering a {−1, 1} coding for class
labels. This was done to offer a clear introduction to the
classification problem, since we need to solve a single least
squares problem to recover the optimal Bayes classifier. Al-
ternatively, we could have followed the approach introduced
in this section where classes have labels y = {1, 2} and adopt
surrogate labels e1 = [1, 0]> and e2 = [0, 1]>. This would
have led to training two distinct classifiers and choosing the
predicted class as the argmax of their scores, according to
Eq. (14). The two approaches are clearly equivalent since the
Bayes classifier corresponds respectively to the inequalities
ρ(1|x) > ρ(−1|x) or ρ(1|x) > ρ(2|x).

IV. RLSC AND RECURSIVE FORMULATION

In this section we review the standard algorithm for
Regularized Least Squares Classification (RLSC) and its
recursive formulation used for incremental updates.

A. Regularized Least Squares for Classification

We address the problem of solving the empirical risk
minimization introduced in Eq. (5) in the multiclass setting.
Let {xi, yi}ni=1 be a finite training set, with inputs xi ∈ X =
Rd and labels yi ∈ {1, . . . , T}. In this work, we will assume
a linear model for the classifier f̂ , namely f(x) = W>x,
with W a matrix in Rd×T . We can rewrite Eq. (5) in matrix
notation as

Ŵ = argmin
W∈Rd×T

‖Y −XW‖2F + λ‖W‖2F (15)

with λ > 0 the regularization parameter and X ∈ Rn×d
and Y ∈ Rn×T the matrices whose i-th rows correspond
respectively to xi ∈ Rd and eyi ∈ RT . We denote by ‖ · ‖2F
the squared Frobenius norm of a matrix (i.e. the sum of its
squared entries).

The solution to Eq. (15) is

Ŵ = (X>X + λId)
−1X>Y ∈ Rd×T , (16)

where Id is the d× d identity matrix (see for instance [26]).

Prediction. According to the rule introduced in Sec. III-E,
a given x ∈ Rd is classified according to

b̂(x) = argmax
i=1,...,T

f̂(x)i = argmax
i=1,...,T

(Ŵ (i))>x, (17)

with Ŵ (i) ∈ Rd denoting the i-th column of Ŵ .

B. Recursive Formulation

The closed form for the solution at Eq. (16) allows to
derive a recursive formulation to incrementally update Ŵ
in fixed time as new training examples are observed [5].
Consider a learning process where training data are provided
to the system one at a time. At iteration k we need to compute
Wk = (X>k Xk+λId)

−1X>k Yk, where Xk ∈ Rk×d and Yk ∈
Rk×T are the matrices whose rows correspond to the first k
training examples. The computational cost for evaluating Wk

according to Eq. (16) is O(kd2) (for the matrix products) and
O(d3) (for the inversion). This is undesirable in an online
setting where k can grow indefinitely. To this end, we now
review how Wk can be computed incrementally from Wk−1
in O(Td2). To see this, first notice that, by construction,

Xk = [X>k−1, xk]> Yk = [Y >k−1, eyk ]>,

and therefore, if we denote Ak = X>k Xk + λId and bk =
X>k Yk, we obtain the recursive formulations

Ak = X>k Xk + λId

= X>k−1Xk−1 + x>k xk + λId

= Ak−1 + x>k xk + λId (18)



and

bk = X>k Yk = X>k−1Yk−1 + xke
>
yk

= bk−1 + xke
>
yk
. (19)

Computing bk from bk−1 requires O(d) operations (since
eyk has all zero entries but one). Computing Ak from Ak−1
requires O(d2), while the inversion A−1k requires O(d3). To
reduce the cost of the (incremental) inversion, we recall that
for a positive definite matrix Ak for which its Cholesky de-
composition Ak = R>k Rk is known (with Rk ∈ Rd×d upper
triangular), the inversion A−1k can be computed in O(d2)
[27]. In principle, computing the Cholesky decomposition of
Ak still requires O(d3), but we can apply a rank-one update
to the Cholesky decomposition at the previous step, namely
Ak = R>k Rk = R>k−1Rk−1 +xkx

>
k = Ak−1 +xkx

>
k , which

is known to require O(d2) [28]. Several implementations
are available for the Cholesky rank-one updates; in our
experiments we used the MATLAB routine CHOLUPDATE.

Therefore, the update Wk from Wk−1 can be computed in
O(Td2), since the most expensive operation is the multipli-
cation A−1k bk. In particular, this computation is independent
of the current number k of training examples seen so far,
making this algorithm suited for online settings.

V. INCREMENTAL RLSC WITH CLASS EXTENSION AND
RECODING

In this Section, we present our approach to incremental
multiclass classification where we account for the possibility
to extend the number of classes incrementally and apply the
recoding approach introduced in Sec. III. The algorithm is
reported in Alg. 1.

A. Class Extension
We propose a modification of recursive RLSC, allowing

to extend the number of classes in constant time with respect
to the number of examples seen so far. Let Tk denote the
number of classes seen up to iteration k. We have two
possibilities:

1) The new example (xk, yk) belongs to one of the known
classes, i.e. eyk ∈ RTk−1 , with Tk = Tk−1.

2) (xk, yk) belongs to a new class, implying that yk =
Tk = Tk−1 + 1.

In the first case, the update rules for Ak, bk and Wk

explained in Section IV-B can be directly applied. In the
second case, the update rule for Ak remains unchanged,
while the update of bk needs to account for the increase
in size (since bk ∈ Rk×(Tk−1+1)). However, we can modify
the update rule for bk without increasing its computational
cost by first adding a new column of zeros 0 ∈ Rd to bk−1,
namely

bk = [bk−1,0] + x>k eyk , (20)

which requires O(d) operations. Therefore, with the strat-
egy described above it is indeed possible to extend the
classification capabilities of the incremental learner during
online operation, without re-training it from scratch. In the
following, we address the problem of dealing with class
imbalance during incremental updates by performing incre-
mental recoding.

Algorithm 1: Incremental RLSC with Class Recoding

Input: Hyperparameters λ > 0, α ∈ [0, 1]
Output: Learned weights Wk at each iteration
Initialize: R0 ←

√
λId, b0 ← ∅, γ0 ← ∅, T ← 0

Increment: Observe input xk ∈ Rd and output label yk:
if (yk = T + 1) then

T ← T + 1
γk−1 ← [γ>k−1, 0]>

bk−1 ← [bk−1,0], with 0 ∈ Rd
end if
γk ← γk−1 + eyk
Γk ← k · diag(γk)−1

bk ← bk−1 + x>k eyk
Rk ← CHOLESKYUPDATE(Rk−1, xk)
Wk ← R−1k (R>k )−1bk(Γk)α

return Wk

B. Incremental Recoding

The main algorithmic difference between standard RLSC
and the variant with recoding is in the matrix Y containing
output training examples. Indeed, according to the recoding
strategy, the vector eyk associated to an output label yk is
coded into c(eyk) = eyk/ρ(y = yk). In the batch setting,
this can be formulated in matrix notation as

W = (X>X + λId)
−1X>Y Γ,

where the original output matrix is replaced by its encoded
version Y (c) = Y Γ ∈ Rn×T , with Γ the T × T diagonal
matrix whose t-th diagonal element is Γtt = 1/ρ(y = t).
Clearly, in practice the ρ(y = t) are estimated empirically
(e.g. by ρ̂(y = t) = nt/n, the ratio between the number
nt of training examples belonging to class t and the total
number n of examples).

The above formulation is favorable for the online setting.
Indeed, we have

X>k YkΓk = bkΓk = (bk−1 + x>k yk)Γk, (21)

where Γk is the diagonal matrix of the (inverse) class
distribution estimators ρ̂ up to iteration k. Γk can be
computed incrementally in O(T ) by keeping track of the
number kt of examples belonging to t and then computing
ρ̂k(y = t) = kt/k (see Alg.1 for how this update was
implemented in our experiments). Note that the above step
requires O(dT ), since updating the (uncoded) bk from bk−1
requires O(d) and multiplying bk by a diagonal matrix
requires O(dT ). All the above computations are dominated
by the product A−1k bk, which requires O(Td2). Therefore,
our algorithm is computationally equivalent to the standard
incremental RLSC approach.

Coding as a Regularization Parameter. Depending on the
amount of training examples seen so far, the estimator kt/k
could happen to not approximate ρ(y = t) well. In order



to mitigate this issue, we propose to introduce a parameter
α ∈ [0, 1] and raise Γk element-wise to the power of α
(indicated by (Γk)α). Indeed, it can be noticed that for
α = 0 we recover the (uncoded) standard RLSC, since
(Γk)0 = IT , while α = 1 applies full recoding. In Sec. VI-C
we discuss an efficient heuristic to find α in practice.

Incremental Rebalancing. Note that the loss-rebalancing
algorithm (Sec. III-D) cannot be implemented incrementally.
Indeed, the solution of the rebalanced empirical RLSC is

Wk = (X>k ΣkXk + λId)
−1X>k ΣKYk, (22)

with Σk a diagonal matrix whose i-th entry is equal to
(Σk)ii = 1/ρ̂(y = ti), with ti the class of the i-th training
example. Since Σk changes at every iteration, it is not possi-
ble to derive a rank-one update rule for (X>k ΣkXk+λId)

−1

as for the standard RLSC.

VI. EXPERIMENTS

We empirically assessed the performance of Alg.1 on a
standard benchmark for machine learning and on two visual
recognition tasks in robotics. To evaluate the improvement
provided by the incremental recoding when classes are im-
balanced, we compared the accuracy of the proposed method
with the standard recursive RLSC presented in Sec. IV-B.
As a competitor in terms of accuracy, we also considered
the rebalanced approach presented in Eq. (22) (which, we
recall, cannot be implemented incrementally).

A. Experimental Protocol

We adopted the following experimental protocol1:
1) Given a dataset with T classes, we simulated a scenario

where a new class is observed by selecting T − 1 of
them to be “balanced” and the remaining one to be
under-represented.

2) We trained a classifier on the balanced classes, using
a randomly sampled dataset containing nbal examples
per class (specified below for each dataset). We sam-
pled a validation set with nbal/5 examples per class.

3) We incrementally trained the classifier from the pre-
vious step by sampling online nimb examples for
the T -th class. Model selection was performed using
exclusively the validation set of the balanced classes,
following the strategy described in Sec. VI-C.

4) To measure performance, we sampled a separate test
set containing ntest examples per class (both balanced
and under-represented) and we measured the accuracy
of the algorithms on the test set while they were trained
incrementally.

For each dataset, we averaged results over multiple in-
dependent trials randomly sampling the validation set. In
Table I we report the test accuracy on the imbalanced class
and on the entire test set.

1Code available at https://github.com/LCSL/incremental_
multiclass_RLSC

B. Datasets

MNIST [29] is a benchmark composed of 60K 28 × 28
greyscale pictures of digits from 0 to 9. We addressed the
10-class digit recognition problem usually considered in the
literature, but using nbal = 1000 training images per class.
The test set was obtained by sampling ntest = 200 images
per class. We used the raw pixels of the images as inputs for
the linear classifier.

iCubWorld28 [30] is a dataset for visual object recog-
nition in robotics, collected during a series of sessions
where a human teacher showed different objects to the iCub
humanoid robot [31]. We addressed the task of discriminat-
ing between the 28 objects instances in the dataset, using
all available acquisition sessions per object and randomly
sampling nbal = 700 and ntest = 700 examples per class.
We performed feature extraction as specified in [30], i.e.
by taking the activations of the fc7 layer of the CAFFENET
Convolutional Neural Network [32].

RGB-D Washington [33] is a visual object recognition
dataset comprising 300 objects belonging to 51 categories,
acquired by recording image sequences of each object while
rotating on a turntable. We addressed the 51-class object
categorization task, averaging results over the ten splits
specified in [33] (where, for each category, a random instance
is left out for testing). We subsampled one cropped RGB
frame every five from the full dataset, following the standard
procedure. We sampled nbal = 500 and ntest = 400 images
per class and performed feature extraction analogously to
iCubWorld28, using the output of CAFFENET’s fc6 layer.

C. Model Selection

In traditional batch learning settings for RLSC, model
selection for the hyperparameter λ is typically performed
via hold-out, k-fold or similar cross-validation techniques.
In the incremental setting these strategies cannot be directly
applied since examples are observed online, but a simple
approach to create a validation set is to hold out every i-th
example without using it for training (e.g., we set i = 6).
At each iteration, multiple candidate models are trained
incrementally, each for a different value of λ, and the one
with highest validation accuracy is selected for prediction.

However, following the same argument of Sec. III, in
presence of class imbalance this strategy would often select
classifiers that ignore the under-represented class. Rebalanc-
ing the validation loss (see Sec. III) does not necessarily
solve the issue, but could rather lead to overfitting the under-
represented class, degrading the accuracy on other classes
since errors count less on them. Motivated by the empirical
evidence discussed below, in this work we have adopted a
model selection heuristic for λ and α in Alg. 1, which guar-
antees to not degrade accuracy on well-represented classes,
while at the same time achieving higher or equal accuracy
on the under-represented one.

Our strategy evaluates the accuracy of the candidate mod-
els on the incremental validation set, but only for classes
that have a sufficient number of examples (e.g., classes with
fewer examples than a pre-defined threshold are not used

https://github.com/LCSL/incremental_multiclass_RLSC
https://github.com/LCSL/incremental_multiclass_RLSC
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Fig. 2: Classification accuracy on iCubWorld28 imbalanced
(Top) and balanced (Bottom) test classes for models trained
according to Alg.1 with varying α and best λ within a pre-
defined range (chosen at each iteration and for each α).
Growing α from 0 to 1 allows to find a model that maintains
the same performance on known classes while improving on
the under-represented one.

for validation). Then, we choose the model with largest
α ∈ [0, 1] for which such accuracy is higher or equal to the
one measured for α = 0, namely without coding. Indeed,
as can be seen in Fig. 2 for validation experiments on
iCubWorld28, as α grows from 0 to 1, the classification
accuracy on the under-represented class increases, Fig. 2
(Top), while it decreases on the remaining ones, Fig. 2
(Bottom). Our heuristic chooses the best trade-off for α such
that performance does not degrade on well-known classes,
but at the same time it will often improve on the under-
represented one.

D. Results

In Table I we report the results of the three methods
on MNIST, iCubWorld28 and RGB-D for a single under-
represented class (digit “8”, class 28 and tomato, respec-
tively). We observed a similar behaviour for other classes.
We show both the accuracy on all classes (Total Acc., Left)
and on the under-represented one (Imbalanced Acc., Right).
We note that, on the under-represented class, Alg. 1 (RC)
consistently outperforms the RLSC baseline (N), which does
not account for class imbalance and learns models that ignore
the class. Also the total accuracy of RC results higher.
Interestingly, on the two robotics tasks, RC outperforms the
loss rebalancing approach (RB), particularly when very few
examples of the under-represented class are available. This is
favorable since, as we said, the rebalancing approach cannot
be implemented incrementally (Sec. V-B).

To offer a clear intuition of the improvement provided by
our method, in Fig. 3 we show the accuracy of Naı̈ve RLSC

TABLE I: Incremental classification accuracy for Naı̈ve (N)
RLSC, Rebalanced (RB) and Recoding (RC) (see Alg. 1).
Following the procedure described in Sec. VI-C, we set α =
0.7 for MNIST, α = 0.6 for iCubWorld28 and α = 0.7 for
RGB-D.

Dataset nimb
Total Acc. (%) Imbalanced Acc. (%)

N RB RC N RB RC

MNIST
nbal
=

1000

1 79.2 ± 0.3 79.7 ± 0.4 79.7 ± 0.6 0.0 ± 0.0 7.4 ± 7.7 9.5 ± 4.9
5 79.1 ± 0.3 82.5 ± 0.7 80.3 ± 0.6 0.0 ± 0.0 39.6 ± 6.2 17.5 ± 6.6
10 79.2 ± 0.3 83.6 ± 0.7 81.0 ± 0.6 0.0 ± 0.0 49.5 ± 5.7 25.1 ± 5.3
50 79.2 ± 0.3 85.5 ± 0.3 83.9 ± 0.5 0.0 ± 0.0 73.5 ± 3.3 49.1 ± 3.5

100 79.2 ± 0.4 85.9 ± 0.4 85.1 ± 0.5 2.0 ± 0.9 75.5 ± 2.7 62.7 ± 2.9
500 85.5 ± 0.3 86.2 ± 0.3 86.1 ± 0.3 66.9 ± 1.1 78.5 ± 0.9 77.8 ± 1.1

iCub
nbal
=
700

1 77.6 ± 0.3 76.8 ± 0.1 77.7 ± 0.3 0.0 ± 0.0 0.4 ± 0.6 8.0 ± 11.4
5 77.6 ± 0.3 77.9 ± 0.1 78.6 ± 0.3 0.0 ± 0.0 8.1 ± 3.9 38.5 ± 9.7
10 77.6 ± 0.3 78.3 ± 0.4 78.9 ± 0.2 0.0 ± 0.0 23.7 ± 10.8 49.6 ± 5.6
50 77.7 ± 0.2 80.0 ± 0.2 80.0 ± 0.1 5.4 ± 4.1 73.9 ± 7.3 75.0 ± 5.5

100 78.6 ± 0.1 80.2 ± 0.1 80.1 ± 0.2 39.1 ± 3.6 85.9 ± 4.0 86.5 ± 3.0
500 80.2 ± 0.2 80.1 ± 0.1 80.1 ± 0.2 89.3 ± 2.5 93.8 ± 2.0 94.8 ± 1.9

RGB-D
nbal
=
500

1 80.4 ± 2.2 78.6 ± 3.2 83.3 ± 3.2 0.0 ± 0.0 62.0 ± 42.1 72.2 ± 26.3
5 80.4 ± 2.2 83.0 ± 2.1 83.9 ± 2.6 0.0 ± 0.0 91.7 ± 12.8 99.9 ± 0.3
10 80.4 ± 2.2 83.8 ± 1.8 83.6 ± 2.6 2.8 ± 2.4 94.7 ± 8.4 100.0 ± 0.0
50 82.3 ± 2.2 84.3 ± 1.9 83.5 ± 2.9 96.6 ± 3.7 100.0± 0.0 100.0 ± 0.0

100 82.4 ± 2.1 84.4 ± 2.0 83.5 ± 2.8 100.0 ± 0.0 100.0 ± 0.0 100.0 ± 0.0
500 82.3 ± 2.1 84.1 ± 2.0 84.1 ± 2.8 100.0 ± 0.0 100.0 ± 0.0 100.0 ± 0.0

(Red) and Alg. 1 (Blue), separately on the under-represented
class (Top), the balanced classes (Middle), and all classes
(Bottom), as they are trained on new examples. For this ex-
periment we let each class be under-represented and averaged
the results. It can be noticed that Alg. 1 is much better on the
imbalanced class, while being comparable on the balanced
ones, resulting in overall improved performance.

We point out that the total accuracy on all datasets for
nimb = 500 is comparable with the state of the art. Indeed,
on MNIST we achieve ∼ 86% accuracy, which is slightly
lower than the one reported in [29] for a linear classifier
on top of raw pixels (this is reasonable, since we are using
much fewer training examples). The total accuracy of Alg. 1
on RGB-D is approximately 84%, which is comparable with
the state of the art on this dataset [3]. On the iCubWorld28
dataset we achieve ∼ 80% accuracy, which is in line with the
results reported in Fig. 8 of [34] (extended version of [30]).

VII. CONCLUSION

In this paper we addressed the problem of learning online
with an increasing number of classes. Motivated by the visual
recognition scenario in lifelong robot learning, we focused
on issues related to class imbalance, which naturally arises
when a new object/category is observed for the first time.
To address this problem, we proposed a variant of the re-
cursive Regularized Least Squares for Classification (RLSC)
algorithm that (i) incorporates new classes incrementally and
(ii) dynamically applies class recoding when new examples
are observed. Updates are performed in constant time with
respect to the growing number of training examples. We eval-
uated the proposed algorithm on a standard machine learning
benchmark and on two datasets for visual recognition in
robotics, showing that our approach is indeed favorable in
online settings when classes are imbalanced.

We note that, in principle, for the experiments where we
used features extracted from a Convolutional Neural Net-
work, we could have also directly trained the network online,
by Stochastic Gradient Descent (backpropagation). While
works empirically investigating this end-to-end approach in
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Fig. 3: Average test classification accuracy of the standard
incremental RLSC (Red) and the variant proposed in this
work (Blue) over the imbalanced (Top), balanced (Middle)
and all (Bottom) classes. The models are incrementally
trained as nimb grows, as described in Sec. VI-A.

settings where new classes are to be progressively included
into the model exist [35], this is still a largely unexplored
field, the study of which is not in the scope of this work.
The method we propose allows to update a predictor without
using training data from previous classes in a fast and stable
way, and, by relying on rich deep representations learned
offline, is proven to be competitive with the state of the art,
while being more suitable for online applications.

Future research will focus on strategies to exploit knowl-
edge of known classes to improve classification accuracy on
new ones, following recent work [20], [21], [22], [23].
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