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Abstract 

Background 

 

This study analyses multiple spike trains (MST) data, defines its functional connectivity and 

subsequently visualises an accurate diagram of connections. This is a challenging problem. For 

example, it is difficult to distinguish the common input and the direct functional connection of 

two spike trains. 



2 

 

 

New method 

 

The new method presented in this paper is based on the traditional pairwise cross-correlation 

function (CCF) and a new combination of statistical techniques. First, the CCF is used to create 

the Advanced Correlation Grid (ACG) correlation where both the significant peak of the CCF 

and the corresponding time delay are used for detailed analysis of connectivity. Second, these 

two features of functional connectivity are used to classify connections. Finally, the 

visualization technique is used to represent the topology of functional connections. 

 

Results 

 

Examples are presented in the paper to demonstrate the new Advanced Correlation Grid 

method and to show how it enables discrimination between (i) influence from one spike train 

to another through an intermediate spike train and (ii) influence from one common spike train 

to another pair of analysed spike trains. 

 

Comparison with existing methods 

 

The ACG method enables scientists to automatically distinguish between direct connections 

from spurious connections such as common source connection and indirect connection whereas 

existing methods require in-depth analysis to identify such connections. 

Conclusions 

The ACG is a new and effective method for studying functional connectivity of multiple spike 

trains. This method can identify accurately all the direct connections and can distinguish 

common source and indirect connections automatically. 

 

Keywords: Functional connectivity, Correlation, Analysis, Visualisation 

1 Introduction 

The brain receives, processes, and transmits information regarding a particular stimulus 

through stereotyped electrical discharges called action potentials, or spikes. The signals which 

come from the stimulus, are transformed into sequences of spikes, at an early stage of 

processing within the central nervous system. Spike trains are the starting point for most of the 

processing performed by the brain (Kandel, 2000; Dayan & Abbott, 2001). Characterizing the 

relationship between the stimulus and the spike trains is an important issue in Neuroscience as 
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it underpins how the brain works in response to the stimulus. Many studies have been 

performed into this relationship between stimulus and spike trains (Espinosa & Gerstein, 1988; 

Gerstein & Kirkland, 2001; Gochin et al., 1990, 1991; Eggermont, 1991; Lindsey et al., 1992c; 

Vaadia et al., 1995; Wilson & McNaughton, 1994; Skaggs & McNaughton, 1996; Li et al., 

1999; Shannon et al., 2000; Louie & Wilson, 2001; Pillow et al., 2008).  

 

In addition to the relationship between stimulus and spike trains, it is also important to 

understand the functional connectivity between spike trains in response to a particular stimulus. 

This is another challenging problem within Neuroscience which could benefit from statistical 

methods to analyse multiple spike trains (Brown et al., 2004; Haslinger et al., 2013). In order 

to study the functional connectivity of the spike trains, it is essential to assess the spiking 

activity of multiple single neurons recorded simultaneously.  

In Neuroscience, the Cross-Correlation Function (CCF) is a widely used measure of functional 

connectivity between spike trains (Perkel et al., 1967). The CCF has been applied to many 

neural systems in order to make powerful inferences about functional connectivity. 

Fundamentally, it is a statistical technique used to test the independence of two spike trains 

using the theory of stochastic point processes. This technique is also applied to assess 

oscillation, propagation delay, effective connection strength, synchronization, and the 

spatiotemporal structure of a network (Konig et al., 1995; Brown et al., 2004; Pillow et al., 

2008; Nicolic et al., 2012 ).  

In order to make inferences from the CCF, Brillinger (1976) introduced a normalization 

technique for the CCF using a confidence interval. Thus, peaks exceeding the confidence 

interval of the CCF are considered to be significant. A peak in a CCF indicates that there is a 

high probability that a spike in one spike train is caused by a spike in another spike train with 

some time delay involved. The significant peak in the CCF indicates that the null hypothesis 

on independence of two spike trains is not supported by the data and should be rejected. 

Consequently, there is an influence from one spike train to another. However, the interpretation 

of this influence, in terms of functional connectivity, is challenging. This is due to the fact that 

this influence can be considered to be (i) a direct connection between two spike trains, (ii) the 

result of some common source to both spike trains or (iii) an indirect connection, defined as a 

connection via some intermediate neuron.  
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There are several methods in the literature for the analysis of multiple spike trains (for example, 

Pillow et al., 2008; Stevenson, 2008; Grün & Rotter, 2010; Kriener et al., 2009; Masud & 

Borisyuk, 2011; Reimer et al., 2012;  Jovanović & Rotter, 2016). One such method is the 

correlation grid (Stuart et al., 2005). The correlation grid is a visualization technique used to 

analyse the synchronous firings of simultaneously recorded multiple spike trains. The 

fundamental idea of this technique is to arrange spike trains into clusters that are functionally 

connected and display them in a symmetrical grid. A measure of distance, based on normalized 

CCF of two spike trains is used to perform the cluster analysis.  

The correlation grid has been successfully used for the study of functional connectivity. 

However, the correlation grid cannot automatically distinguish between direct and spurious 

(both indirect and common source) connections. The aim of this paper is to present a statistical 

method called the ‘Advanced Correlation Grid (ACG)’ to analyse the functional connectivity 

of a large number of spike trains (15 – 1000 spike trains) using the CCF. The main advantage 

of the ACG method is that ACG makes it possible to define an accurate diagram of functional 

connections. More specifically, the ACG method can reliably differentiate direct connections 

from spurious (indirect and common source) connections using an automatic algorithm. 

 

Section 2 of this paper describes the CCF in detail. Then Section 3 reviews the original 

correlation grid. Following this, Section 4 describes functional connectivity and Section 5 

describes the ACG in detail. Sections 6 and 0 present case studies to report the operational of 

the ACG in detail. The case studies use data generated by ELIF (Enhanced Leaky Integrate and 

Fire) model (Borisyuk, 2002). The first case study consists of a small set of fifteen spike trains. 

In this set, all the connections have medium strength of influence with one exception, a single 

connection with very strong influence. The second case study consist of a large set of fifty 

spike trains in which all the connection strengths are of medium influence. The effectiveness 

of the ACG method is presented in Section 8. In order to study the accuracy of the method 

different scenarios of spike train data set such as same strength of influence, low noise and high 

noise are considered. In this section, the result of the functional connectivity obtained by the 

AVG method is compared to an existing called the Cox method. Section 9 presents the 

application of ACG to the experimental data recorded from the visual cortex of the cat. 

Conclusions of the work are presented in Section 10. Finally, Section 11 presents the 

description, dynamics and the parameter values for the ELIF generator.  
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2 Cross Correlation Function  

The CCF algorithm (Masud et al., 2011) is applied to a pair of spike trains A and B where it is 

assumed that these spike trains are stationary. One spike train is arbitrarily assigned to be the 

target spike train and the other becomes the reference spike train. A correlation window is 

defined as (2 ∗ 𝑢 + 1) bins of short time intervals h, where both h and u are values selected by 

the investigator. For each spike, on the reference spike train, the correlation window is 

positioned such that its centre is directly aligned with the current spike. Thus, there are u bins 

to the left and right of the current spike; the correlation window is effectively centred over that 

spike. Refer to Figure 1, where h = 1ms and u = 2 for the purpose of presenting the algorithm 

only. For each spike on the reference spike train (B), the counting function 𝑛𝐴𝐵(𝑣) counts and 

accumulates the number of times that spikes on the target train (A) coincide with the current 

reference spike. Thus, the counting function 𝑛𝐴𝐵(𝑣) is calculated over the recording time T. 

In order to test the independence of two spike trains, Brillinger (1976) proposed the 

estimate �̂�𝐴𝐵(𝑣) = √�̂�𝐴𝐵(𝑣) �̂�𝐴�̂�𝐵⁄ , where �̂�𝐴𝐵(𝑣) = 𝑛𝐴𝐵(𝑣) 2ℎ𝑇⁄ , �̂�𝐴 = 𝑛𝐴 𝑇⁄  and 

�̂�𝐵 =  𝑛𝐵 𝑇⁄ . This normalises the counting function 𝑛𝐴𝐵(𝑣)  accordingly. Here, 𝑛𝐴 𝑎𝑛𝑑 𝑛𝐵 

denote the number of spikes in the spike trains A and B, respectively.   

 

Figure 1: Visual representation of the CCF algorithm for two spike trains A (the target spike train) and B (the 

reference spike train). The correlation count function denotes the summation of coincident spikes for reference 

spikes n and n+1 only 

For a large sample size the random variables  �̂�𝐴𝐵(𝑣) are independent and their distribution is 

the normal with mean 𝑚 = √�̂�𝐴𝐵(𝑣) �̂�𝐴�̂�𝐵⁄  and standard deviation 𝑠 = 1 (2√2ℎ𝑇�̂�𝐴�̂�𝐵)⁄ . 
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Thus, when spike trains A and B are independent, the mean of  �̂�𝐴𝐵(𝑣) is equal to one, since 

�̂�𝐴𝐵(𝑣) =  �̂�𝐴�̂�𝐵).  

 

Figure 2: A sample cross-correlation function of two spike trains which depicts the confidence interval, 

significant peak and time delay (∆). 

 

The null hypothesis 𝐻0  states that the two spike trains are independent. An alternative 

hypothesis 𝐻1 is that there is dependence, at least for some time shift (bin), between spike 

trains. To test this hypothesis, the CCF values for all bins are considered. If these values are 

sufficiently small (inside the confidence interval) then the data does not contradict the 𝐻0 

hypothesis. The method used to calculate the confidence interval for testing this hypothesis 

was defined by Brillinger (1979). The boundaries of the confidence interval at the significance 

level 𝛼 are plotted by two horizontal lines at levels 1 ± 𝑄𝑐𝑟
𝛼 /(2√2ℎ𝑇�̂�𝐴�̂�𝐵) , where 𝑄𝑐𝑟

𝛼   is the 

critical value of the normal distribution corresponding to the significance level 𝛼. If 𝐻0  is 

correct then all values of the CCF should fall inside the confidence interval and the estimated 

value of the CCF (�̂�𝐴𝐵(𝑣)) must be zero. If some value of the CCF exceeds the upper boundary 

of the confidence interval, then the null hypothesis 𝐻0 must be rejected. Thus, it is concluded 

that the two spike trains are not independent. The peak is defined by the values of the 

normalised CCFs which lie outside the confidence interval. Each of these peaks is characterised 

by the corresponding bin which defines the position of the peak. The bin is selected in order to 

maximise deviation from the upper boundary of the significance interval. This peak is referred 
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to as the significant peak. Note that if there is more than one significant peak in the cross-

correlation function, then the highest significant peak is considered to be the main peak. 

A sample cross-correlation function of two spike trains is shown in Figure 3. The highest value 

of the CCF, which exceeds the upper boundary of the confidence interval, is assessed as being 

a measure of the strength of influence that is exerted from spike train A onto spike train B. 

Furthermore, the corresponding time shift is assessed as being a time delay (∆)  in the 

propagation of the spike from A to B (Nikolić, 2007). Note that the value of the main peak in 

the CCF is subsequently used to (i) quantify the distance between pairs of spike trains in a 

clustering algorithm and (ii) represent the density of shading in the corresponding cell of the 

correlation grid. 

3 The Correlation Grid 

The Correlation Grid (Stuart et al., 2005) was developed to provide an organised yet abstract 

overview of a large number of CCFs. Each of the underlying CCFs represents the synchrony 

of a pair of spike trains during a specific time period. Therefore, the Grid provides an overview 

using a simple two dimensional grid which enables investigators to identify groups of 

“associated” neurons. Associated neurons are those which have a high probability of generating 

spikes, approximately simultaneously or within a constant time delay, of each other. 

3.1 Creating the Correlation Grid 

For a given dataset, of n spike trains, all pair wise CCFs are generated and normalised using 

the Brillinger method, and the main peaks 𝑐𝑖,𝑗(𝑖 = 1, ⋯ , 𝑛, 𝑗 = 1, ⋯ , 𝑛) are calculated for all 

pairs. Finally, the results are displayed as an n-by-n symmetrical grid of grey scale cells, 

representing the strength of influence between all pairs of spike trains (Figure 3). Thus, the 

magnitudes of main peaks are encoded from white, representing a non-significant peak, to 

black, representing the largest peak in the grid. The user has the flexibility to view ‘all peaks’ 

or solely significant peaks. Significant peaks are those that exceed the higher bound of the 

confidence interval.  
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Figure 3: A typical Correlation Grid where the number of spike trains n is 10. In this example, only significant 

peaks are represented (encoded by the depth of grey scale) in the display. The highlighted portion of the display 

(shown in orange) shows the CCF of spike trains 3 and 6. Note that the grid has been reordered correlation 

grid. Note that all CCF’s were generated using a bin size of 1millisecond and a window size of 100ms. 

 

Additionally, it is useful to reorder the correlation grid in order to highlight the inherent 

relationships between multiple spike trains. The method used to accomplish this reordering is 

the furthest neighbour cluster analysis. A detailed description of the creation of the Correlation 

Grid and the clustering algorithm is available in the original paper (Stuart et. al, 2005).  

4 Functional connectivity 

It has been established (Brown et al., 2004) that identifying the connectivity between neurons 

is crucial to our understanding of how the brain works. It is useful to distinguish the structural 

(physical) connection between two neurons (electrical gap junction or synaptic connection) 

from the functional connection which means that there is a relationship (statistical 

dependence/correlation) between spiking activities of these neurons (Sporns, 2007). This paper 

concentrates on functional connectivity of multiple spike trains. The goal is to develop an 

effective statistical method for finding functional connections (statistical dependencies) and 

visualisation of the resulting connection diagram. This approach is based on using the 

traditional cross correlation function. Although the CCF has been successfully used to identify 

functional connectivity in neuronal assemblies (Stuart et al., 2005), these investigations were 

mostly limited to a small group of neurons. The subsequent introduction of the Correlation 

Grid enabled investigators to manage larger numbers of neurons. However, as the scale of 

investigations increased, it became increasing difficult to distinguish between different types 

of connections (Dahlhaus et al., 1997; Eichler et al., 2003; Makarov et al., 2005; Nykamp, 

2005; Stevenson et al., 2008; Park et al., 2008; Nedungadi et al., 2009). The three different 
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types of connection between two spike trains are defined as (i) a direct connection (ii) an 

indirect connection and (iii) a ‘common source’ connection. A ‘direct connection’ is a 

connection whereby one neuron modulates the firing pattern of another neuron directly. An 

‘indirect connection’ is defined as a spurious functional connection due to connectivity via an 

additional intermediate neuron. Finally, a ‘common source’ connection is defined as a spurious 

connection due to an influence from the common source to both neurons in a pair. In order to 

derive the accurate topology of functional connections between a group of neurons (spike 

trains), in addition to direct connections it is essential that all spurious connections, both 

common source and indirect connections, are identified. The remainder of this paper presents 

a new combination of statistical techniques for the automated statistical solution to this 

problem. 

4.1 Classification of functional connection 

When there are no significant peaks in a CCF, it is simple to deduce that there is no connection 

between the two neurons. Alternatively, when a CCF has a significant peak, then its 

interpretation is more complicated. When a peak exists, it can be deduced that there is some 

influence from one neuron to another. It is unclear whether this influence is the result of direct 

coupling or spurious connectivity. Historically, breakthroughs have shown that two additional 

measurements from the CCF can be used to distinguish between direct and spurious 

connections. These are (i) the height of the highest significant peak (𝜌) (Aertsen et al., 1989) 

and (ii) the corresponding time delay (∆)  (Nikolić, 2007).  The three different types of 

connection are shown in Figure 4.  

 

Figure 4:  Schematic diagram of (i) Direct connection where neuron A is directly connected to neuron B, 

(ii) Indirect connection where neuron A is connected to neuron C through neuron B and, (iii) Common Source 

connectivity, where neuron A is connected to both neuron B and C. 

Figure 4(i) shows an example of a direct connection from neuron A to neuron B. This 

connection has a delay of 11 milliseconds in spike propagation. Figure 4(ii) shows an example 

of an indirect connection from neuron A to neuron B with a delay of 11 milliseconds. 

Additionally, it shows a time delay of spike propagation from neuron B to neuron C which is 

12 milliseconds. Note that in this case, an indirect connection exists from neuron A to neuron 
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C with a delay of 23 milliseconds. When compared to direct connections, a relatively lower 

value for the significant peak and a relatively longer value for the time delay are important 

characteristics for identifying indirect connections.  

Figure 4(iii) shows a ‘common source’ connectivity diagram of 3 neurons. Neuron A influences 

both neurons B and C, with a delay in spike propagation of 11 and 14 milliseconds, 

respectively. Note that in this case, a common source connection exists from neuron B to 

neuron C with a delay of 3 milliseconds. When compared to direct connections, a relatively 

lower value for the significant peak and a relatively shorter  value for the time delay are 

important characteristics for identifying ‘common source’ connections. 

5 Description of ACG  

The Advanced Correlation Grid (ACG) is a modification to the original correlation grid aimed 

at differentiating between direct connections and spurious (indirect and common source) 

connections. This advanced functionality is achieved using an automated algorithm. Each of 

the five steps of ACG is described in detail. 

5.1 Step 1 - Calculation of the CCF 

Let us consider n simultaneously recorded neurons and 𝑘 = (𝑛2 − 𝑛) 2⁄  is the number of 

CCFs. To test the hypothesis of independence of two spike trains, k independent tests are run 

for the n spike trains. However, note that in statistics a multiple comparison problem occurs 

when a set of simultaneous statistical tests are performed. This problem occurs when all the 

tests are considered as a family and the significance level 𝛼 is set for the entire family of 

statistical tests. For this reason, the error of incorrectly rejecting the null hypothesis is more 

likely to occur. Nevertheless, several statistical techniques have been developed to overcome 

this known problem.  

The Bonferroni correction (Abdi, 2007) is one such method that can be used to address the 

problem. The Bonferroni correction is based on the idea that when testing a set of dependent 

or independent hypotheses, the significance level 𝛼 should be adjusted according to the number 

of tests performed. Thus, if the significance level for a set of k simultaneous tests is considered 

to be 𝛼, the significance level for each individual test will be 𝛼 𝑘⁄ .  

When applying the Bonferroni correction to the k pairwise CCFs, the upper and lower 

boundaries of the confidence interval are calculated for each pairwise CCF. Any peak that 

exceeds the upper boundary of the confidence interval is considered to be significant. 
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Significant peaks can be found on both the positive and negative side of the CCF. Here, a 

significant peak on the positive side of the CCF is considered to be a measure of the dependence 

of one spike train on another. If there are several significant peaks, then the highest significant 

peak is considered to be the measure of influence strength. Subsequently, all of the highest 

significant peaks 𝜌𝑖𝑗  (𝑖, 𝑗 = 1,2, ⋯ ⋯ , 𝑛), 𝑖 ≠ 𝑗 and the corresponding time delays ∆𝑖𝑗 (𝑖, 𝑗 =

1,2, ⋯ ⋯ , 𝑛), 𝑖 ≠ 𝑗 are calculated for n spike trains. Non-significant peaks 𝜌𝑖𝑗 of the pairwise 

CCF support the null hypothesis (namely that the spike trains are independent). Therefore, 

there is no connection from neuron i to neuron j and so 𝜌𝑖𝑗 is not distinguishable from zero. 

These non significant peaks are not included in the analysis. 

5.2 Step 2 – Detection of Outliers 

In order to detect direct connections within the neuronal assembles, it is necessary to 

distinguish these connections from the spurious connections (common source and indirect). To 

achieve this goal three groups (direct, common source and indirect connection) are identified 

using cluster analysis. In the cluster analysis two measurements are considered namely 

significant peak and time shift obtained from the CCF’s. Within neuronal assemblies, some 

very strong synaptic connections may exist between neurons. The corresponding CCFs may 

show some very large significant peaks which can be considered to be outliers as they deviate 

significantly from the other significant peaks. These “outlier connections” can be ascribed to 

come from direct connections.  

When outliers are present, cluster analysis may lead to an incorrect conclusion. For example, 

cluster analysis produces three clusters: (i) significant peaks having outlier with moderate time 

shifts (ii) significant peaks with moderate and small time shifts (ii) significant peaks with either 

small or large time shifts. The problem here is that cluster analysis may result in some direct 

connections being wrongly classified as either common source or indirect connections. To 

avoid this misleading conclusion, outlier connections are identified first and classified as direct 

connections. The remaining significant peaks associated with time shifts are used to classify 

the cluster of direct, the cluster of common source and the cluster of indirect connections. Note 

that whilst these outlier connections are not used in step 3 of this process, they are crucial to 

step 4, when the topology of the neuronal assembly is verified. 

5.2.1 The Z-score   

Among several outlier labelling methods, a commonly used method is the Z-score. The Z-score 

is defined as 
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𝑍𝑖 =
𝑥𝑖 − �̅�

𝑠𝑑
 

where 𝑋𝑖~𝑁(𝜇, 𝜎2), that is 𝑋𝑖 is normally distributed with mean 𝜇 and variance  𝜎2 and �̅�, and 

sd, are the sample mean and sample standard deviation of data, respectively. The basic idea of 

the Z-score rule is that if X follows a normal distribution with mean 𝜇 and variance 𝜎2, then Z 

follows a standard normal distribution with a mean of zero and a variance of one. Any Z-scores 

that exceed three (in absolute values) are generally considered to be outliers. According to 

Schiffler (1988), a maximum Z-score is dependent on the sample size, and it is computed as 

(𝑛 − 1)/√𝑛, where n is the sample size . Since no Z-score exceeds 3 in a sample size less than 

or equal to 10, the Z-score method is not very good for outlier labelling, particularly in small 

data sets (Iglewicz and Hoaglin, 1993). Another limitation of the Z-score rule is that the 

standard deviation can be inflated by a few or even a single observation having an outlier value. 

Thus, it can cause a masking problem. 

Two estimators are used in the Z-Score, the sample mean and sample standard deviation. These 

estimators can be affected by a few outlier values or by even a single outlier value. To avoid 

this problem, another outlier labelling method known as modified Z-score can be used. 

5.2.2 The modified Z-score 

In the modified Z-score, the absolute deviations of the sample observations from the median, 

are calculated. The median of these deviations (MAD) is used instead of the standard deviation 

and the median is used instead of mean of the sample, respectively (Iglewicz and Hoaglin, 

1993), such that  

𝑀𝐴𝐷 = 𝑚𝑒𝑑𝑖𝑎𝑛{|𝑥𝑖 − �̃�|} 

where �̃� is the sample median. The modified Z-Score (𝑀𝑖) is computed as 

𝑀𝑖 =
0.6745(𝑥𝑖 − �̃�)

𝑀𝐴𝐷
 

where E(MAD) = 0.6745 𝜎  for large data. Iglewicz and Hoaglin (1993) suggested that 

observations are labelled as outliers when |𝑀𝑖| > 3.5. Applying the modified Z-score to the 

significant peaks 𝜌𝑖𝑗 , obtained from the pairwise cross-correlation function, identifies any 

outliers that exist. Within the scope of this study, only outliers above the upper boundary were 

investigated. Only the outliers that lie above the upper boundary are of interest as they represent 

outliers with very strong connections which can be considered to be direct connections. For 

this reason, significant peaks are labelled outliers when 𝑀𝑖 > 3.5.  

5.3 Step 3 - Hierarchical Cluster analysis 
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All of the non-outlier significant peaks 𝜌𝑖𝑗 and the corresponding time delays ∆𝑖𝑗 are used to 

classify functional connections. For a set of significant peaks 𝜌𝑖𝑗 , that do not have outliers with 

corresponding delays ∆𝑖𝑗, the typical scatter plot is shown in Figure 5.  

 

Figure 5: An example of a typical scatter plot of a set of significant peaks ρ_ij and the time delays ∆_ij where 

the classification of direct connection, indirect connection and common source are indicated by circles. 

From this figure, it can be deduced that the direct connections are identified as the group of 

peaks with high significant peak and moderate time delay. Common source connections can be 

identified as those with low significant peaks and short time delays. Finally, indirect 

connections are characterised by low significant peak and large time delay. A hierarchical 

clustering algorithm is applied to classify the set of significant peaks 𝜌𝑖𝑗 and time delays ∆𝑖𝑗. 

The hierarchical clustering algorithm is used to find clusters of similar objects within a data 

set. A hierarchical cluster analysis begins by calculating the “mathematical” distances among 

objects in the data set. A variety of measures can be used to calculate the distance between 

significant peaks in the CCF. Note that for data that exhibits linear relationships, the Euclidean 

distance is a widely adopted measure. Initially, each object is in a cluster of its own. Clustering 

begins by finding the two clusters which are most similar i.e. closest, based on the Euclidean 

distance between them. Once these two clusters are identified, they are merged into a single 

cluster. Note that the characteristics of this new cluster are based on a combination of the 

objects in the cluster.  
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This procedure, of combining two clusters and merging their characteristics, is repeated until 

all the objects have been merged into a single large cluster. The results of hierarchical clustering 

are typically displayed in the form of a two dimensional diagram known as a dendrogram (or 

tree diagram). Within the dendrogram, branches in the tree represent clusters. A variety of 

linkage methods can be used to determine the order in which clusters merge together such as 

single linkage, complete linkage and average linkage. 

 

To apply cluster analysis to the set of significant peaks 𝜌𝑖𝑗  and time delays ∆𝑖𝑗 , both 

measurements need to be normalized, so that the values of significant peaks and time delays 

are in the range between 0 and 1. This normalization is carried out to ensure that the values of 

significant peaks and time delays are not affected by differences in the scales of measurement. 

A clustering algorithm is applied to these normalized significant peaks and time delays. In the 

clustering algorithm, the distance between pairs of observations is calculated using the 

Euclidean distance and the average linkage is used for calculating the distance between two 

clusters. The average linkage is used due to its reduced sensitivity to outliers. The aim of the 

clustering algorithm is to divide the connections into three clusters: direct connections, 

common source and indirect connections. Note that for a data set with two or more variables, 

distances are significantly affected by differences in the scales of measurement used. 

Therefore, it is good practice to transform each of the variables to ensure their scales are similar. 

 

5.4 Step 4 – Verifying the classification of connections 

At this stage in the process, the CCF of each neuron pair is available. The CCF has been used 

to ascertain whether a significant peak exists and if it does, to quantify any time delay. Each 

significant peak is characterised by the size of the peak (𝜌)  and the time delay (∆) . 

Subsequently, outliers are detected in the resultant set of significant peaks with associated time 

delays. Recall that these outliers are ascribed to direct connections and so they are crucial to 

this part of the process. It is both these outlier connections in conjunction with the cluster of 

direct connections that are used to restructure the neural assembly. The final assembly is 

displayed using an n-by-n matrix of functional connectivity. In this matrix of functional 

connectivity, each row represents the target neuron and each column represents the reference 

neuron.  
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Figure 6: (a) Connection scheme of the ten neurons. (b) An example of a direct functional connectivity matrix of 

these ten neurons obtained by CCF. 

Figure 6(a) shows a sample topology for a data set of ten neurons generated by ELIF model 

(see Appendix 1). Figure 6(b) depicts the corresponding matrix of functional connectivity, also 

known as the Advanced Correlation Grid (ACG). In this grid, a circle in the cell (𝑖, 𝑗) indicates 

that there is a direct connection from neuron j to neuron i. Additionally, the radius of the circle 

represents the normalized strength of connection between this pair of neurons, which is 

proportional to the height of the significant peak in the corresponding CCF. From this grid, it 

is clear that ten direct functional connections exist.  

In the final step of the ACG algorithm, all of the significant connections in the common source 

cluster are investigated in detail. This is to verify that these connections are the result of 

common sources of input. Full details of this verification are given in Appendix 1. Once 

verification of the common source connections is complete, verification of the indirect 

connections is performed. Full details of this verification are given in Section 5.4.2. Note for 

clarity, let us refer to a group of three neurons as a triplet. 

5.4.1 Common source connections 

Initially, a common source connection is selected and then assessed. The aim of this assessment 

is to verify that a common source connection exists from neuron 𝑖 to neuron 𝑗. Whilst neurons 

𝑖 and 𝑗 remain fixed, all possible triplets (𝑖, 𝑗, 𝑘),   𝑘 =  1,2, ⋯ , 𝑛  are identified. Additionally, 

the corresponding triplet time delays (∆𝑖𝑗, ∆𝑘𝑖, ∆𝑘𝑗) are calculated from the CCF. As shown 

in Figure 7, time delays (∆𝑘𝑖, ∆𝑘𝑗) indicate the delay of a direct connection from neuron 𝑘 to 

neurons 𝑖 and 𝑗, respectively. 
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Figure 7: Triple t(i,j,k) denotes three neurons i, j and k and their connectivity. The connection (i,j) represents 

the possibility of a common source connection existing between i and j. 

The time delay ∆𝑖𝑗  indicates the delay of the connection from neuron 𝑖  to neuron 𝑗 . The 

connection from neuron 𝑖 to neuron 𝑗 is considered to be a common source connection if it 

satisfies the following criteria: 

∆𝑖𝑗= |∆𝑘𝑖 − ∆𝑘𝑗|                                                          (1) 

This verification procedure is repeated for all of the significant connections in the common 

source cluster. 

5.4.2 Indirect connections 

Initially, an indirect connection is selected and assessed. The aim of this assessment is to verify 

that an indirect connection exists from neuron 𝑖 to neuron 𝑗.  

 

Figure 8: Triple t(i,j,k) denotes three neurons i, j and k and their connectivity. The connection (i,j) represents 

the possibility of an indirect connection existing between i and j. 

Whilst neurons 𝑖  and 𝑗  remain fixed, all possible triplets (𝑖, 𝑗, 𝑘),   𝑘 =  1,2, ⋯ , 𝑛  are 

identified. Additionally, the corresponding triplet time delays (∆𝑖𝑗, ∆𝑘𝑖, ∆𝑘𝑗) are calculated 

from the CCF (see Figure 13). The connection from neuron 𝑖 to neuron 𝑗 is considered to be an 

indirect connection if it satisfies the following criteria: 

∆𝑖𝑗= ∆𝑖𝑘 + ∆𝑘𝑗                                                          (2) 

This verification procedure is repeated for all of the significant connections in the indirect 

connections cluster. 

5.4.3 Tolerance limits 

To assess the prescribed tolerance (𝜖) in time delays (given in milliseconds), the common 

source connections  criteria (1) and the indirect connections criteria (2) can be rewritten as 

shown in (3) and (4): 

|∆𝑘𝑖 − ∆𝑘𝑗| − 𝜖 ≤ ∆𝑖𝑗≤ |∆𝑘𝑖 − ∆𝑘𝑗| + 𝜖                                       (3) 
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and 

∆𝑖𝑘 + ∆𝑘𝑗 − 𝜖 ≤ ∆𝑖𝑗≤ ∆𝑖𝑘 + ∆𝑘𝑗 + 𝜖                                            (4) 

Note that both the verified common source and indirect connections obtained from (3) and (4) 

are subsequently displayed in the Advance Correlation Grid. The assumptions which have been 

formulated here are in line with current presented (Nikolić 2007). Note that these connections 

are encoded using a different colour (see Figure 12) so they can be easily distinguished. 

6 Case Study 1 - functional connectivity of fifteen neurons 

This case study uses a data set generated using the ELIF model. The dataset is made up of 

fifteen neurons, generated over a period of 30,000 milliseconds using the connection 

architecture shown in Figure 9(a) with the connection strengths visualised in Figure 9(b). From 

this figure, it is clear that a total of sixteen connections exist between all of the neurons. Note 

that the connection from neuron #5 to neuron #13 has the greatest strength. Figure 10 depicts 

the raster plot of spiking activity. The purpose of this case study is to illustrate the effectiveness 

of ACG and to demonstrate how it can be used to derive topologies based solely on spike train 

data sets. It is crucial to reiterate that only the spike trains are made available; the schemes of 

connections as well as all neuron characteristics are hidden. Note that in this research, self-

coupling is not used to deduce functional connectivity of the fifteen spike trains.  

 

Figure 9: (a) Connection scheme of fifteen neurons. There are sixteen non zero connections which are shown by 

arrows. (b) Actual connection strengths of the sixteen non zero connections in the matrix format. 
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Figure 10: Raster plot of the fifteen spike trains, generated over a period of 30,000 milliseconds, with the 

connection architecture shown in Figure 9(a). 

6.1 Calculation of CCF 

For this study made up of fifteen spike trains, a total of (152 − 15)/2 = 105 pairwise CCFs 

are calculated. A bin size of 1 millisecond and a correlation window of 100 milliseconds are 

used. In order to test the independence of the pairwise spike trains, the level of significance 

𝛼 = 0.05 is used alongside the Bonferroni correction. Thus, a connection is deemed to be 

significant if a peak in the CCF exceeds the upper boundary of the confidence interval. At this 

stage in the process, a total of 25 significant connections are identified for all fifteen spike 

trains (refer to Table 1). 

Reference 1 1 1 2 2 2 3 3 5 6 

Target 6 8 12 3 11 14 11 14 13 8 

Peak 4.37 4.57 3.05 3.50 1.64 3.26 2.73 3.23 6.52 2.44 

Time delay 13 15 11 12 27 14 12 12 12 2 

 

Reference 7 7 9 10 10 11 12 12 12 14 

Target 4 9 4 4 9 2 4 6 8 11 

Peak 1.72 3.57 3.27 1.74 3.46 2.57 1.69 1.90 1.92 2.98 

Time delay 23 11 12 25 13 13 23 2 4 13 

 

Reference 14 15 15 15 15 

Target 15 2 3 11 14 

Peak 1.73 2.71 3.57 3.73 2.14 

Time delay 40 12 14 11 26 
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Table 1: Significant connections of the fifteen neurons with peak and time delay. Connections are indicated 

from reference spike train to the target spike train.  

 

Figure 11: (a) Significant connections obtained from pairwise CCF analysis. A total of 25 significant 

connections are obtained from the fifteen neurons. (b) Scatter plot of these 25 significant connections showing 

the significant peak with corresponding time delay. 

Table 1 shows all the significant connections of the fifteen neurons alongside their 

corresponding peak heights and time delays. The height of significant peaks ranges from 1.64 

to 6.52. The time delay ranges from 2 milliseconds to 40 milliseconds. These significant 

connections are also visualised in Figure 11(a) where each significant connection is represented 

by a filled, circular “icon”. The direction of the significant connection is deduced to be from 

the reference spike train to target spike train. For example, in Figure 11(a), neuron #1 has 

significant connections to neurons #6, #8, and #12 as shown by the three icons in the first 

column.  

6.2 Outlier detection (step 2)  

An outlier connection is easily identified from neuron #5 to neuron #13. In Table 1, the peak 

of this connection is given as 6.52 with a time delay is 12 milliseconds. Therefore, this is 

ascribed to be a direct connection. Figure 11(b) shows a scatter plot of all 25 significant 

connections including the single outlier at the top of the plot. 

6.3 Cluster analysis (step 3) 

At this stage, the clustering algorithm is applied to the remaining 24 significant connections in 

order to distinguish between direct, indirect and common source connections. 

Reference 1 1 1 2 2 2 3 3 6 7 

Target 6 8 12 3 11 14 11 14 8 4 
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Peak 4.37 4.57 3.05 3.50 1.64 3.26 2.73 3.23 2.44 1.72 

Time delay 13 15 11 12 27 14 12 12 2 23 

Type D D D D I D D D CS I 

 

Reference 7 9 10 10 11 12 12 12 14 14 

Target 9 4 4 9 2 4 6 8 11 15 

Peak 3.57 3.27 1.74 3.46 2.57 1.69 1.90 1.92 2.98 1.73 

Time delay 11 12 25 13 13 23 2 4 13 40 

Type D D I D D I CS CS D I 

 

Reference 15 15 15 15 

Target 2 3 11 14 

Peak 2.71 3.57 3.73 2.14 

Time delay 12 14 11 26 

Type D D D I 

Table 2: Classification of the remaining 24 significant connections of fifteen neuron where D denotes direct 

connections, I denotes indirect connections and CS denotes common source connections. 

All the remaining 24 significant peaks and corresponding time delays are normalized (within 

the range 0 and 1) and clustering is applied to these normalized values.  
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Figure 12: Dendrogram of 24 significant connections. Three clusters are indicated by different colours with the 

connection labels. The grey colour indicates direct connection, the blue colour indicates common source and 

red colour indicates indirect connection. 

Since the goal is the identification of direct connections, indirect connections and common 

source connections, a vertical line is drawn on the dendrogram (Figure 12) in such a way that 

it clearly distinguishes the three clusters. With reference to Table 2, it can be deduced that 

connections within Cluster #1 have high significant peaks and moderate time delays so they 

are considered to be direct connections. Additionally, connections within Cluster #2 have low 

significant peaks and short time delays so they are ascribed as being the result of a common 

source. Finally, the connections in Cluster #3 have low significant peaks and longer time delays 

and so it is deduced that they are the result of indirect connections. 

6.4 Verification of connections (step 4) 

6.4.1 Common source connections 

In order to verify the common source connections of Cluster #2, all relevant “three neuron” 

groups are identified. Relevant groups are defined as those that exhibit the architecture of 

common source connections as well as including a connection from either (i) neuron #6 to 

neuron #8, or (ii) neuron #12 to neuron #6 or (iii) neuron #12 to neuron #8 (refer to Figure 12 

for those connections within Cluster #2). 
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To clarify this part of the process, let us identify the first relevant group given in Table 2. The 

first connection is from neuron #1 to neuron #6. The second is from neuron #1 to neuron #8. 

Since, the input to both neuron #6 and neuron #8 are from neuron #1, this neuron group (1, 6, 

8), also known as a triplet, is potentially relevant. Subsequently, its relevance is confirmed 

since the common source connection from neuron #6 to neuron #8 is one of the three 

connections in Cluster #2. In the relevant triplet (1, 6, 8), neuron #1 influences both neurons 

#8 and #6 with corresponding time delays 15 milliseconds and 13 milliseconds. Thus, using 

equation (1), the connection from neuron #8 to neuron #6 is identified as a common source 

connection since the time delay for this connection is 2 milliseconds. Recall that a short delay 

characterises common source connections. 

Similarly, the triplet (1, 8, 12) is the next potentially relevant group. Given that the connection 

from neuron #8 to neuron #12 is one of the three connections in Cluster #2, this group is 

relevant. Thus, the connection from neuron #12 to neuron #8 is a common source connection 

since the time delay is only 4 milliseconds.  

Triplet (1, 6, 12) is relevant so relevant delays are assessed. The connection from neuron #6 to 

neuron #12 is a common source connection since the time delay is only 2 milliseconds. 
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Figure 13: (a) All common source connections (blue) obtained from the common source cluster in Table 2, (b) 

Some of the Indirect connections (red) obtained from the cluster of indirect connections in Table 2. 

Note that the next connection in the table is from neuron #2 to neuron #3. As this does not 

overlap with any previous connections, the next connection, from neuron #2 to neuron #11, is 

assessed. Since, the input to both neuron #3 and neuron #11 are from neuron #2, this triplet (2, 
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3, 11) is again potentially relevant. However, in this case, its relevance is not confirmed as the 

connection from neuron #3 to neuron #11 is not one of the connections in Cluster #2.  

Since all three common source connections have been identified, this part of the process is 

complete. This resultant data is visualised in Figure 13. In the figure the blue lines indicate the 

common source connection and the red lines indicate the indirect connections. These two 

colours are used throughout this paper to understand the common source and indirect 

connections. 

6.4.2 Indirect connections 

All connections within Cluster #3, the cluster of indirect connections, need to be verified. A 

similar procedure is adopted where every relevant triplet is assessed. Relevant groups are 

defined as those that (i) exhibit the architecture of indirect connections and (ii) include a 

connection that is within the group of indirect connections, Cluster #3. Again, once a relevant 

group is identified, delays are investigated to verify the connection as indirect. 

It transpires that Cluster #3, actually incorporates four correctly classified connections as well 

as two incorrectly classified connections. Initially, let us focus on the four correctly classified 

indirect connections, refer to Figure 13(b). These indirect connections are from neuron #2 to 

neuron #11, neurons #7, #10 and #12 to neuron #4, neuron #14 to neuron #15 and neuron #15 

to neuron #14 (Table 2). Investigation of Figure 13(b) reveals the triplets (#2, #3, #11), (#4, 

#7, #9), (#4, #9, #10) and (#3, #14, #15).   

In the triplet (#2, #3, #11), neuron #2 influences neuron #3 with a delay 12 milliseconds and 

neuron #3 influences neuron #11 with a delay 12 milliseconds. Based on Equation 2, the 

connection from neuron #2 to neuron #11 is an indirect connection with neuron #3 defined as 

the intermediate neuron since the delay for the connection from neuron #2 to propagate to 

neuron #11 is 27 milliseconds which is relatively long. Connections from neuron #7 to neuron 

#4 and connection from neuron #10 to neuron #4 have already been deduced to be indirect. For 

both these connections neuron #9 acts as an intermediate neuron. Similarly, connection from 

neuron #15 to neuron #14 is indirect. For this connection neuron #3 acts as an intermediate 

neuron. More importantly, all these three indirect connections have long time delays: 23 

milliseconds, 25 milliseconds and 26 milliseconds, respectively.  

Now, focus on the two connections incorrectly classified as indirect connections from 

(i) neuron #12 to neuron #4, and, (ii) neuron #14 to neuron #15. These two connections lie 
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within the indirect cluster of indirect connections. Investigation of Figure 13(b) shows that by 

trialling an indirect connection from neuron #12 to neuron #4, there is no possible triplet to 

which this indirect connection could belong, as neuron #12 is otherwise unconnected. 

Therefore, this connection cannot be verified as indirect. 

Further, to verify the connection from neuron #14 to neuron #15, a triplet (#3, #14 and #15) 

must exist. In this case, such a triplet does indeed exist. However, it does not exhibit the 

required architecture of an indirect connection from neuron #14 to neuron #15. Therefore, this 

connection cannot be verified as indirect. From these two incorrectly classified indirect 

connections, it can be concluded that initially the connections are classified as indirect, based 

on their peaks and time delays. However, for a connection to be classified as indirect, the 

architecture must also exhibit the classical architecture for an indirect connection, as shown in 

Figure 4(ii). Therefore, before a connection is verified as being indirect, its architecture must 

also be assessed to ensure it meets the architectural criteria. This is also true for common source 

connection. 

6.4.3 The Advanced Correlation Grid 

Classifying all the significant connections into direct, indirect and common source connections, 

the functional connectivity of the fifteen neurons is derived. This connectivity is automated 

and more clearly visualised using the Advanced Correlation Grid, shown in Figure 14. 

 

Figure 14: (a) Direct connections obtained from the ACG which is identical to the connection scheme shown in 

Figure 9(a). (b) A single grid showing the Direct connection (grey), the common source (blue) and indirect 

(red) connections. The radius of the circle shows the strength of connection.  
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The grid in Figure 14(b) shows the functional connectivity of the direct connections (shown in 

grey). This succinctly reveals the correct connectivity of the diagram used to generate the 

fifteen neurons (Figure 9(a) with corresponding connection strengths Figure 9(b)). It also 

shows the connections which are not present in the connectivity diagram but are due to common 

source or indirect coupling. More importantly, the common source and indirect connections 

have relatively small radii compared to the radius of the direct connections shown in grey.   

7 Case Study 2 - functional connectivity of fifty neurons 

Section 6 demonstrates that in the case of very strong connections and a small set of neurons, 

the ACG is effective for identifying functional connectivity. In this section, the ACG is further 

tested using a data set with a large number of neurons with connections of medium strength. 

Thus, a set of fifty neurons is generated for a period of 20,000 milliseconds using the 

connection architecture shown in Figure 15 with the connection strengths shown in Figure 16: 

Connection strengths of the fifty non zero connections in the matrix format. There are a total 

of fifty connections throughout the data set and all connections have medium strength.  

 
Figure 15: Connection scheme of 50 neurons with 50 connections which are shown by arrows 



26 

 

 
Figure 16: Connection strengths of the fifty non zero connections in the matrix format. 

7.1 Calculation of CCFs (step 1) 

A total of (502 − 50)/2 = 1225 pairwise CCF are calculated with a bin size of 1 millisecond 

and a correlation window of 100 milliseconds.  

  

Figure 17: Significant connections obtained from pairwise cross-correlation analysis 
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To test the independence of the pairwise spike trains the level of significance 𝛼 = 0.05 is applied with the 

Bonferroni correction. Subsequently, a total of 60 significant connections are identified as shown in Figure 17.  

In this figure, significant connections are denoted using a filled, circular “icon” and the 

direction of connection is designated as being from the reference spike train to the target spike 

train.  

7.2 Outlier detection (step 2) 

Step 2 is applied. In this case, no outliers are identified.  

7.3 Cluster analysis (step 3) 

Step 3 is applied. The results of cluster analysis are shown in Figure 18. Please refer to Table 

3 in Appendix 2 for full results of this analysis. 

 
Figure 18: Dendrogram of 60 significant connections. Three clusters are indicated by different colours. 
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7.4 Verification of connections (step 4) 

7.4.1 Verification of common source connections 

Step 4 identifies the four connections: neuron #13 to neuron #30, neuron #19 to neuron #35, 

neuron #27 to neuron #17 and neuron #28 to neuron #34. Table 3 shows that all these four 

connections are common source connections. 

7.4.2 Verification of indirect connections 

Investigation of Table 3 reveals that all these six connections are verified as indirect 

connections. 

7.4.3 Conclusions 

Classification and subsequent verification of all significant connections into direct, indirect and 

common source clusters has been achieved.  

 

Figure 19: Direct connections which are exactly the same as at the connection scheme shown in Figure 15. 

Radius of the circle shows the strength of connection estimated from CCF and is proportional to the strength of 

connection in Figure 16. 

The resultant functional connectivity of the fifty neurons is visualised using two grids (Figure 

19 and Figure 20). The first grid reveals the correct connectivity used to generate the fifty 

neurons (Figure 15) with corresponding connection strengths (Figure 16). Note that the radii 

of the circles depict the estimated strength of connections.  



29 

 

This is very similar to the radii of the circles in the diagram of connections (Figure 16). The 

other grid in Figure 20, shows the connections which are not present in the connectivity 

diagram but are due to common source or indirect coupling. Moreover, the common source 

and indirect connections have small radii relative to the direct connections; this means that they 

are spurious connections.  

 

Figure 20: Common source (blue) and indirect (red)connections. Radius of the circle shows the strength of 

connection and the connections are small relative to the direct connection. 

8 Effectiveness of the method 

In this section, the ACG method is compared to an existing technique of functional 

connectivity. Comparisons of the two techniques are made as the data set is varied.  

8.1 Comparison of ACG and Cox method 

To evaluate the performance of the ACG method, it is compared with an existing method called 

the Cox method (Masud et al., 2011). The Cox method was selected as it is an effective 
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technique for identifying functional connectivity. This method provides statistical estimates 

which measure the influence strengths and their confidence intervals from multiple reference 

spike trains to the selected target spike train. If any confidence interval contains zero, then it is 

deduced that there is no functional connectivity from that reference spike train to the target 

spike train. Otherwise, it is deduced that there is functional connectivity from that reference 

spike train to the target spike train. Selecting another target spike train and repeating the 

calculation of the influence strengths from the reference spike trains enables researchers to find 

all functional connections among multiple spike trains. 

A data set consisting of fifteen neurons was generated over a period of 20,000 milliseconds, 

was generated using the ELIF model. It used the connection architecture shown in Figure 21(a) 

with the connection strengths visualised in Figure 21(b). From these figures, it is clear that 

fifteen connections exist. 

11

4

5

14

10

12

13

9
8

7

6

1 2
315

(a)
 

Figure 21: (a) Connection scheme of fifteen neurons. There are fifteen non zero connections which are shown 

by arrows. (b) Connection strengths of the fifteen non zero connections in the matrix format. 

 

The functional connectivity of these fifteen spike trains was evaluated using both 

methods (results shown in Figure 22). From the figure, it is clear that the direct connections 

identified by both the ACG method (Figure 24(a)) and the Cox method (Figure 24(b)) were 

correct when compared to the connection scheme (Figure 21(b)). However, in addition, the 

ACG method identified six connections as indirect connections (Figure 22(c)). Though both 

methods find functional connectivity correctly, the ACG method demonstrates some 

advantages over the Cox method. Firstly, the connection strengths calculated using the ACG 

method are more accurate than the connection strengths obtained using the Cox method. For 
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example, the strength of the connection from neuron#12 to neuron#2, neuron#14 to neuron#2 

and neuron#15 to neuron#3 obtained by the ACG method are more accurate than the strengths 

of connection obtained by the Cox method in comparison to the connection strengths used in 

the connection scheme. Secondly, the ACG method is easier to apply than the Cox method. 

The Cox method requires the manual selection of the correct influence function and then 

analysis to decide the characteristic times of decay and rise of the postsynaptic potential. As a 

result of this, the ACG method requires less time to identify functional connectivity than the 

Cox method. Due to this speedup, the ACG method can be more effectively employed as a 

screening method for data. 

 
Figure 22: (a) Direct connections obtained from ACG method. (b) Connections obtained from the Cox method. 

(c) Common source and indirect connections obtained from ACG method.  

8.2 Investigations using high and low noise levels 

The final investigations reported in this paper relate to variations in the levels of noise in the 

data sets. In order to assess the ACG method, a random noise component was added to the 

membrane potential in the ELIF model. Two sets of spike trains were generated for a period of 

20000 milliseconds using the same connection architecture as shown in Figure 21(a). In the 
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first, and second, data set the average amplitude of the noise was 5.1 (high noise), and 3.1(low 

noise), respectively. The average value of the threshold is 14.2, therefore high noise is 

characterised by 36.1% of threshold variation and the low noise is characterised by only 22.0%. 

 
Figure 23: Functional connections of 15 spike trains with high and low noise levels (a) Direct connections 

obtained from ACG method using the high noise data set (b)Common source and indirect connections obtained 

from the ACG method using the high noise data set (c)  Direct connections obtained from ACG method using 

the low noise dataset (d)Common source and indirect connections obtained from ACG method using the low 

noise data set. 

 

Figure 23 shows the functional connectivity of the 15 spike trains obtained by the ACG method 

for high and low noise. The ACG method accurately identified all the direct connections in 

both the data set with high levels of noise (Figure 23(a)) and the one with low levels of noise 

(Figure 23(c), refer to Figure 21(a)). In the case of high noise, the ACG method identified six 

connections as indirect as shown in Figure 23(b) and for low noise it identified 12 indirect 
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connections and 1 common source connection (Figure 23(d)). The indirect connections 

obtained in high and low noise are the same although there are extra indirect connections in the 

low noise condition. The overall conclusion is that the ACG method is sufficient to manage  

high and low levels of noise. Based on the Researcher’s experience of analysing spike trains 

with both the ACG and Cox methods, both of these methods work well for high levels of noise 

and the breaking values of noise amplitude are approximately the same. 

The final investigation assessed the effectiveness of the ACG method when the standard 

deviation of the noise was varied. For this purpose, multiple data sets of spike trains were 

generated. The data sets all had the same mean but different standard deviation of noise over 

the period of 20000 milliseconds and the same connection architecture as shown in Figure 

21(a). Results showed that increasing the standard deviation of the noise resulted in fewer 

direction connections being identified by the ACG method. Further research into this is 

underway.  

9 Deriving functional connectivity from experimental data 

To identify the functional connectivity of multiple spike trains, the ACG method is applied to 

a set of experimental data recorded from the visual cortex of the cat (Nikolić, 2007; Schneider 

et al., 2006). The experimental condition includes application of six different stimuli (different 

orientations of the moving grid). Each stimulus is repeated 20 times resulting in 120 

applications of all stimuli. The order of stimuli presentations is random. Thus for 120 stimuli 

the spiking activity of 32 channels is recorded. From each channel one spike train is selected – 

the one with a medium firing rate. This spike train is used to prepare six spike trains 

corresponding to six stimuli. The twenty time intervals (each of six seconds duration), where 

the stimulus 1 is presented, have been selected to represent a total interval (120 seconds) of the 

application of stimulus 1. All spikes from this interval are considered continuously despite the 

gaps between the intervals of stimulus 1 representation. There are 32 channels in the 

experiment which results in 32 spike trains for this stimulus. The same operation has been 

repeated for stimulus 2: all subintervals of six seconds corresponding to application of stimulus 

2 have been selected, considered continuously and all spikes have been taken for analysis of 

the functional connectivity. The same selection is done for each channel and 32 spike trains 

have been constructed for stimulus 2. Repeating this operation for other stimuli, six sets of 32 

simultaneous spike trains were constructed. Each set corresponds to application of one 

stimulus.  
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For the application of ACG only, the second stimulus (chosen randomly) consists of 32 spike 

trains. The raster plot of the 32 spike trains, shown in Figure 24, reveals that three spike trains 

(#4, #5 and #29) have significantly higher spiking rates than the other spike trains. These higher 

rates are outside the physiological range and they probably appear due to some damage of 

neurons by inserted electrodes. To maintain similarity in terms of spiking rate of the spike 

trains, these three spike trains are excluded from analysis. All the remaining 29 spike trains 

have similar spiking patterns. Note that the spiking rates of these 29 spike trains are high over 

time interval 78000ms - 95000ms.  

 

Figure 24: Raster plot of 32 spike trains of stimulus 1. Spike trains #4, #5 and #29 have high spiking rates and 

are not considered for analysing functional connectivity. 

 

Figure 25: Direct connections obtained by the ACG method for the real data are denoted by the arrows. 
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For this set of 29 spike trains, a total of (292 − 29)/2 = 406 pairwise CCF were calculated 

with a bin size of 1ms and a correlation window of 100 milliseconds. A clustering algorithm is 

applied to the significant connections obtained by the CCF in order to distinguish direct 

connections from spurious ones (i.e., indirect connections and common source). After 

clustering, 442 connections are identified as direct connections. These direct connections are 

shown by arrows (Figure 25) and matrix format (Figure 26).  

 

Figure 26: Direct connections obtained using the ACG method applied to real data are shown using a matrix 

format 

Among the 442 connections, 16 connections have relatively strong connection strengths. These 

connections are mostly related to spike train #7; the incoming and outgoing connections of 

spike trains #7 are relatively high. Spike train #26 has 21 outgoing connections and spike train 

#27 has 21 incoming connections which are the highest among 29 spike trains. All other 

connections have medium strength. There are 208 pairs of connections where both spike trains 

have functional connectivity to each other. For example the pair (#7, #13); where there is a 

connection from spike train #7 to spike train #13 and vice versa. 
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Figure 27: Indirect connections identified by the ACG method applied to real data are indicated by the arrows. 

 

Figure 28: Common source and indirect connections obtained using the ACG method applied to real data are 

shown using a matrix format. 
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There are 150 indirect connections and 7 common source connections in the real data set of 

spike trains. These indirect connections are shown by the arrows in Figure 27. Both the 

common source and indirect connections are shown in Figure 28. Observe that the common 

source connections have higher strengths of influence compared to the indirect connections. 

Spike train #8 has 10 outgoing indirect connections and spike train #2 has 10 incoming indirect 

connections which are the highest among 29 spike trains. There are 81 pairs of indirect 

connections where the two spike trains have functional connectivity to each other. 

The main goal of this example is to illustrate how the ACG method can be used for analysing 

simultaneously recorded spike trains in real experiments under variable stimulation. These 

results are very promising; they confirm that the method can identify both direct and indirect 

connections. For example, we can speculate that spike train #7 plays a key role of the most 

influential hub in this neural circuit. 

An additional set of results, which will be reported in a separate publication, relates to a study 

on how the diagram of identified connections for some stimulus will change under stimulation 

by another stimulus. Assuming that the anatomical connections are the same under different 

stimulation protocols, it is possible to identify how the functional connectivity changes under 

the application of different stimuli. It is anticipated that combining the results of the ACG 

method, for finding diagrams of functional connectivity, with the calculation of an established 

structural graph theory measure (e.g. distributions of in- and out-degrees) will enable 

Researchers to reveal details of stimulation mechanism in neuronal circuits.  

10 Conclusions 

The Advanced Correlation Grid is an innovative technique for studying functional connectivity 

of multiple neurons. This technique can be used to identify the unknown structure of functional 

connectivity between neurons. When compared to the original correlation grid (Stuart et al., 

2005), the ACG has the advantage that it can automatically distinguish between direct 

functional connectivity and spurious connections (common source and indirect connections). 

This method can also identify the direction of functional connectivity, another limitation of 

correlation grid, where the connections are considered as symmetric connections. This method 

is also less computer-intense and it can be applied to a large set of neurons with diverse 

connections strengths. 
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Application of this method is shown for two sets of neurons: a small set of fifteen neurons with 

a very strong strength of influence and a large set of fifty neurons with medium strength of 

influence. Note that prior to analysis, the functional connectivity is unknown.  

The subsequent use of the ACG, was successful in the derivation of an accurate assembly of 

neurons. This method accurately identified all the direct connections as well as the connection 

strengths. At the same time this method can distinguish correctly the common source and 

indirect connections, thus proving, that this is a very effective method for identifying functional 

connectivity. 

Another possible application of the ACG method relates to finding brain motifs (Sporns and 

Koetter 2004). For example, in the analysis of motifs including three elements (i.e. three spike 

trains), it is important to distinguish between (i) the motif with common input from one 

elements to two others from (ii) the motif where the common input connections also include a 

direct connection between elements receiving common input. Our study shows that the ACG 

method is well positioned for reliable distinguishing between different motifs. 

 

Although we have demonstrated here that the ACG method has several important advantages, 

obviously there are still some drawbacks. For example, despite the fact that the CCF can detect 

negative connectivity, the ACG method cannot analyze this case as yet. Therefore the use of 

the ACG method is limited to the case of excitatory connections only. Such drawbacks are 

under investigation. For example, some obvious improvement in calculation of the cross-

correlation function, similar to the method published in paper (Nikolić et al., 2012) could help 

improve the analysis of spike trains with a strong regular spiking component. Another example 

for further development of the ACG method relates to using more advanced statistical 

techniques for improved measurements of statistical significance. For example, using the 

method of false discoveries (Benjamini and Hochberg, 1995) could also prove to be highly 

beneficial. 

As any other numerical technique, the ACG method is based on some assumptions. For 

example, using this method, it is assumed that all essential spike trains have been recorded and 

are part of the analysis process. From a neurobiological point of view, in the case of a 

microelectrode array recording, this assumption can be considered to be valid. Of course, it is 

true that there are cases where unrecorded neurons, with powerful influences upon the recorded 

spike trains, can change the result of analysis.   
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Appendix 1  

Enhanced Leaky Integrate and Fire model 

The description of the Enhanced Leaky Integrate and Fire (ELIF) model follows the paper by 

Borisyuk (2002). A discrete-time version of the model neuron is used with the time increment 

set equal to 1 millisecond. The state of each neuron at the time 𝑡 is characterised by both a 

threshold and the total potential, which is the sum of postsynaptic potentials and the noise. 

When the value of the total potential reaches the threshold, the neuron generates a spike. 

Subsequently, the spike propagates to other neurons with a time delay. The diagram of 

connection should be defined as well as connection strengths, time delays, and time decays of 

postsynaptic potentials. When the spike reaches another neuron, the postsynaptic potential 

sharply increases up, or down, depending on whether the spike is from an excitatory neuron, 

or inhibitory neuron, respectively. The value of the connection strength defines the magnitude 

of this increase. If there are no incoming spikes, the postsynaptic potential exponentially decays 

to the resting potential. After spike generation, the neuron is unable to generate another spike 

during an absolute refractory period. When this period expires, the threshold gets the highest 

value and then exponentially decays to the asymptotic threshold value. This decay is used to 

model a relative refractory period. To model spontaneous background activity, random noise 

is added to the membrane potential. The amplitude of the noise decays exponentially over time. 

A normally distributed random variable, with zero mean and a fixed variance, is added to the 

noise at each time step. The noise is an independent random process for each element. If the 

amplitude of noise is large enough, then the element can be spontaneously active even without 

influences from other neurons.  

Dynamics of the ELIF model 

The dynamics of the ELIF are governed by the following equations: 

a) The threshold: 

𝑟(𝑡 + 1) = (𝑟𝑚𝑎𝑥 − 𝑟∞)𝑒𝑥𝑝(−(𝑡 − 𝑡𝑠𝑝)/𝛼𝑡ℎ) + 𝑟∞ 

where 𝑟𝑚𝑎𝑥 is the maximum value of the threshold 

𝑟∞ is the asymptotic threshold value when 𝑡 → ∞ 

𝛼𝑡ℎ is the threshold decay rate 

𝑡𝑠𝑝 is the last spike time before t. 

b) The post-synaptic potential for the input of the neuron: 
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𝑃𝑆𝑃𝑗(𝑡 + 1) = 𝑃𝑆𝑃𝑗(𝑡)𝑒𝑥𝑝(− 1 𝛼𝑃𝑆𝑃
𝑗⁄ ) + 𝑎, 

𝑎 = {
𝑤𝑗 , 𝑖𝑓 𝑡𝑠𝑝

𝑗
+ 𝜏𝑗 = 𝑡 + 1

0,                𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

where 𝑤𝑗 is the connection strength, which is positive for the excitatory connections and 

negative for the inhibitory connections 

 𝜏𝑗 is the time delay 

𝛼𝑃𝑆𝑃
𝑗

 is the PSP decay rate of the jth neuron 

𝑡𝑠𝑝
𝑗

 is the time of last spike of the jth neuron before t. 

c) The noise: 

𝑁(𝑡 + 1) = 𝑁(𝑡) exp(− 1 𝛼𝑁⁄ ) + 𝜉,   𝜉 ∈ 𝑁(0, 𝜎) 

where 𝛼𝑁 is the decay rate of noise 

𝜉 is a random variable which exhibits a normal distribution 

d) The soma’s membrane potential: 

𝑉(𝑡 + 1) = 𝑉𝐴𝐻𝑃𝑒𝑥𝑝(−(𝑡 − 𝑡𝑠𝑝)/𝛼𝑉) 

where 𝑉𝐴𝐻𝑃 is the value of hyperpolarization after a spike  

𝛼𝑉 is the decay rate of the soma’s membrane potential  

𝑡𝑠𝑝 is the time of the last spike before t. 

e) The total potential: 

𝑃(𝑡 + 1) = ∑ 𝑃𝑆𝑃𝑗(𝑡 + 1)

𝑗

+ 𝑁(𝑡 + 1) + 𝑉(𝑡 + 1) + 𝐼𝑒𝑥𝑡(𝑡 + 1) 

where 𝐼𝑒𝑥𝑡 is the value of the external input. 

f) Spike generation: 

If  𝑃(𝑡 + 1) > 𝑟(𝑡 + 1), then 𝑡𝑠𝑝 = 𝑡 + 1. 

g) The absolute refractory period: 

There is no spike generation for the time interval 𝑡 ∈ (𝑡𝑠𝑝, 𝑡𝑠𝑝 + 𝑟𝑒𝑓).  

Parameters for spike train generation by ELIF model 

An ELIF model can be simulated using software freely available from the following website: 

http://www.tech.plymouth.ac.uk/infovis. To run the simulation, the parameters of ELIF 

neurons and their coupling should be specified.  

Neural parameters describe the parameters of each neuron. The parameters are: a) Maximum 

value of the threshold, b) Threshold decay rate, c) Asymptotic threshold value, d) Amplitude 
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of the noise (i.e. the standard deviation of the normally distributed random variable), e) Noise 

decay rate, f) Initial value of after spike hyperpolarisation, g) Soma’s membrane potential 

decay rate, h) External input, i) Absolute refractory period,  and j) Type of the neuron since 

this software generates activities for both types of neurons (0- non-pacemaker, 1 – pacemaker).  

Connection parameters contain the parameters describing non-zero connections between 

neurons. The parameters are: a ) List of the numbers of those neurons which send their 

connections to the current neuron, b) Connection strengths for these connections (positive for 

excitatory connection and negative for inhibitory), c) Decay rates of postsynaptic potential for 

each connection respectively and d) Time lag of spike propagation for each incoming 

connection (milliseconds). 

11 Appendix 2 

Table 3 shows the 60 significant connections of the 50 neurons alongside their corresponding 

peaks and time delays. The peaks of the significant connections range from 1.93 to 4.58 and 

the time delays range from 1 to 30 milliseconds 

Connection serial 1 2 3 4 5 6 7 8 9 10 

Reference 1 1 3 3 4 4 5 5 5 10 

Target 18 49 28 34 17 19 15 19 35 13 

Peak 3.90 3.99 3.69 3.47 2.10 3.70 2.90 3.37 4.03 3.09 

Time delay 13 13 13 15 29 14 15 12 18 14 

 

Connection serial 11 12 13 14 15 16 17 18 19 20 

Reference 11 11 11 12 13 13 14 14 14 16 

Target 9 33 45 24 30 39 25 37 41 20 

Peak 1.93 3.24 4.09 3.81 2.05 3.75 4.55 3.29 3.68 4.36 

Time delay 26 17 13 13 1 13 16 18 16 18 

 

Connection serial 21 22 23 24 25 26 27 28 29 30 

Reference 16 17 18 19 19 19 19 19 20 21 

Target 48 47 40 15 17 27 35 47 8 13 

Peak 3.36 3.92 3.60 3.48 3.88 3.38 2.50 2.19 3.18 3.99 

Time delay 14 15 13 15 15 11 6 30 17 17 

 

Connection serial 31 32 33 34 35 36 37 38 39 40 

Reference 21 22 22 23 24 24 25 27 28 28 
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Target 30 17 44 34 1 49 31 17 17 34 

Peak 3.98 3.59 3.87 3.60 4.58 2.20 3.64 2.05 3.08 2.05 

Time delay 18 16 16 18 15 28 15 4 18 2 

 

Connection serial 41 42 43 44 45 46 47 48 49 50 

Reference 30 30 30 31 32 32 36 36 36 39 

Target 4 11 19 3 8 9 23 39 44 6 

Peak 3.31 3.19 2.07 3.78 3.93 3.12 3.02 3.72 3.40 6 

Time delay 11 14 25 14 18 16 11 13 16 16 

 

Connection serial 51 52 53 54 55 56 57 58 59 60 

Reference 40 41 43 44 45 45 45 45 46 48 

Target 10 38 22 33 9 14 25 29 49 37 

Peak 3.79 3.56 2.92 2.87 3.49 3.83 2.32 3.60 3.79 3.57 

Time delay 15 13 11 12 13 14 30 13 12 16 

 

 

Table 3: This table specifies the entire set of 60 significant connections alongside their peaks and delays. These 

60 significant connections are the results of analysing the spike trains from the original assembly of fifty 

neurons. Connections are directed from the reference spike train to the target spike train. 
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