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Abstract

Background

This study analyses multiple spike trains (MST) data, defines its functional connectivity and
subsequently visualises an accurate diagram of connections. This is a challenging problem. For
example, it is difficult to distinguish the common input and the direct functional connection of

two spike trains.
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New method

The new method presented in this paper is based on the traditional pairwise cross-correlation
function (CCF) and a new combination of statistical techniques. First, the CCF is used to create
the Advanced Correlation Grid (ACG) correlation where both the significant peak of the CCF
and the corresponding time delay are used for detailed analysis of connectivity. Second, these
two features of functional connectivity are used to classify connections. Finally, the
visualization technique is used to represent the topology of functional connections.

Results

Examples are presented in the paper to demonstrate the new Advanced Correlation Grid
method and to show how it enables discrimination between (i) influence from one spike train
to another through an intermediate spike train and (ii) influence from one common spike train

to another pair of analysed spike trains.

Comparison with existing methods

The ACG method enables scientists to automatically distinguish between direct connections
from spurious connections such as common source connection and indirect connection whereas
existing methods require in-depth analysis to identify such connections.

Conclusions

The ACG is a new and effective method for studying functional connectivity of multiple spike
trains. This method can identify accurately all the direct connections and can distinguish

common source and indirect connections automatically.

Keywords: Functional connectivity, Correlation, Analysis, Visualisation

1 Introduction

The brain receives, processes, and transmits information regarding a particular stimulus
through stereotyped electrical discharges called action potentials, or spikes. The signals which
come from the stimulus, are transformed into sequences of spikes, at an early stage of
processing within the central nervous system. Spike trains are the starting point for most of the
processing performed by the brain (Kandel, 2000; Dayan & Abbott, 2001). Characterizing the
relationship between the stimulus and the spike trains is an important issue in Neuroscience as
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it underpins how the brain works in response to the stimulus. Many studies have been
performed into this relationship between stimulus and spike trains (Espinosa & Gerstein, 1988;
Gerstein & Kirkland, 2001; Gochin et al., 1990, 1991; Eggermont, 1991; Lindsey et al., 1992c;
Vaadia et al., 1995; Wilson & McNaughton, 1994; Skaggs & McNaughton, 1996; Li et al.,
1999; Shannon et al., 2000; Louie & Wilson, 2001; Pillow et al., 2008).

In addition to the relationship between stimulus and spike trains, it is also important to
understand the functional connectivity between spike trains in response to a particular stimulus.
This is another challenging problem within Neuroscience which could benefit from statistical
methods to analyse multiple spike trains (Brown et al., 2004; Haslinger et al., 2013). In order
to study the functional connectivity of the spike trains, it is essential to assess the spiking

activity of multiple single neurons recorded simultaneously.

In Neuroscience, the Cross-Correlation Function (CCF) is a widely used measure of functional
connectivity between spike trains (Perkel et al., 1967). The CCF has been applied to many
neural systems in order to make powerful inferences about functional connectivity.
Fundamentally, it is a statistical technique used to test the independence of two spike trains
using the theory of stochastic point processes. This technique is also applied to assess
oscillation, propagation delay, effective connection strength, synchronization, and the
spatiotemporal structure of a network (Konig et al., 1995; Brown et al., 2004; Pillow et al.,
2008; Nicolic et al., 2012 ).

In order to make inferences from the CCF, Brillinger (1976) introduced a normalization
technique for the CCF using a confidence interval. Thus, peaks exceeding the confidence
interval of the CCF are considered to be significant. A peak in a CCF indicates that there is a
high probability that a spike in one spike train is caused by a spike in another spike train with
some time delay involved. The significant peak in the CCF indicates that the null hypothesis
on independence of two spike trains is not supported by the data and should be rejected.
Consequently, there is an influence from one spike train to another. However, the interpretation
of this influence, in terms of functional connectivity, is challenging. This is due to the fact that
this influence can be considered to be (i) a direct connection between two spike trains, (ii) the
result of some common source to both spike trains or (iii) an indirect connection, defined as a

connection via some intermediate neuron.



There are several methods in the literature for the analysis of multiple spike trains (for example,
Pillow et al., 2008; Stevenson, 2008; Griin & Rotter, 2010; Kriener et al., 2009; Masud &
Borisyuk, 2011; Reimer et al., 2012; Jovanovi¢ & Rotter, 2016). One such method is the
correlation grid (Stuart et al., 2005). The correlation grid is a visualization technique used to
analyse the synchronous firings of simultaneously recorded multiple spike trains. The
fundamental idea of this technique is to arrange spike trains into clusters that are functionally
connected and display them in a symmetrical grid. A measure of distance, based on normalized

CCF of two spike trains is used to perform the cluster analysis.

The correlation grid has been successfully used for the study of functional connectivity.
However, the correlation grid cannot automatically distinguish between direct and spurious
(both indirect and common source) connections. The aim of this paper is to present a statistical
method called the ‘Advanced Correlation Grid (ACG)’ to analyse the functional connectivity
of a large number of spike trains (15 — 1000 spike trains) using the CCF. The main advantage
of the ACG method is that ACG makes it possible to define an accurate diagram of functional
connections. More specifically, the ACG method can reliably differentiate direct connections

from spurious (indirect and common source) connections using an automatic algorithm.

Section 2 of this paper describes the CCF in detail. Then Section 3 reviews the original
correlation grid. Following this, Section 4 describes functional connectivity and Section 5
describes the ACG in detail. Sections 6 and 0 present case studies to report the operational of
the ACG in detail. The case studies use data generated by ELIF (Enhanced Leaky Integrate and
Fire) model (Borisyuk, 2002). The first case study consists of a small set of fifteen spike trains.
In this set, all the connections have medium strength of influence with one exception, a single
connection with very strong influence. The second case study consist of a large set of fifty
spike trains in which all the connection strengths are of medium influence. The effectiveness
of the ACG method is presented in Section 8. In order to study the accuracy of the method
different scenarios of spike train data set such as same strength of influence, low noise and high
noise are considered. In this section, the result of the functional connectivity obtained by the
AVG method is compared to an existing called the Cox method. Section 9 presents the
application of ACG to the experimental data recorded from the visual cortex of the cat.
Conclusions of the work are presented in Section 10. Finally, Section 11 presents the

description, dynamics and the parameter values for the ELIF generator.



2 Cross Correlation Function

The CCF algorithm (Masud et al., 2011) is applied to a pair of spike trains A and B where it is
assumed that these spike trains are stationary. One spike train is arbitrarily assigned to be the
target spike train and the other becomes the reference spike train. A correlation window is
defined as (2 * u + 1) bins of short time intervals h, where both h and u are values selected by
the investigator. For each spike, on the reference spike train, the correlation window is
positioned such that its centre is directly aligned with the current spike. Thus, there are u bins
to the left and right of the current spike; the correlation window is effectively centred over that
spike. Refer to Figure 1, where h = 1ms and u = 2 for the purpose of presenting the algorithm
only. For each spike on the reference spike train (B), the counting function n,z (v) counts and
accumulates the number of times that spikes on the target train (A) coincide with the current

reference spike. Thus, the counting function nyg (v) is calculated over the recording time T.

In order to test the independence of two spike trains, Brillinger (1976) proposed the

estimate Pup(v) = \Pag(V)/DPabp , Where pnp(v) = nyg(v)/2hT , Py =mn4/T and
pg = ng/T. This normalises the counting function n,z(v) accordingly. Here, n, and ng

denote the number of spikes in the spike trains A and B, respectively.
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Figure 1: Visual representation of the CCF algorithm for two spike trains A (the target spike train) and B (the
reference spike train). The correlation count function denotes the summation of coincident spikes for reference
spikes n and n+1 only

For a large sample size the random variables p,5z(v) are independent and their distribution is

the normal with mean m = /p4p(v) /P 4Pp and standard deviation s = 1/(2/2hTP,P5).



Thus, when spike trains A and B are independent, the mean of p,5(v) is equal to one, since
Pap(V) = Pabp)-
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Figure 2: A sample cross-correlation function of two spike trains which depicts the confidence interval,
significant peak and time delay (A).

The null hypothesis H, states that the two spike trains are independent. An alternative
hypothesis H, is that there is dependence, at least for some time shift (bin), between spike
trains. To test this hypothesis, the CCF values for all bins are considered. If these values are
sufficiently small (inside the confidence interval) then the data does not contradict the H,
hypothesis. The method used to calculate the confidence interval for testing this hypothesis

was defined by Brillinger (1979). The boundaries of the confidence interval at the significance

level a are plotted by two horizontal lines at levels 1 + Q& /(2/2hTp,pg) , where QZ. is the
critical value of the normal distribution corresponding to the significance level a. If Hy is
correct then all values of the CCF should fall inside the confidence interval and the estimated
value of the CCF (p,5(v)) must be zero. If some value of the CCF exceeds the upper boundary
of the confidence interval, then the null hypothesis H, must be rejected. Thus, it is concluded
that the two spike trains are not independent. The peak is defined by the values of the
normalised CCFs which lie outside the confidence interval. Each of these peaks is characterised
by the corresponding bin which defines the position of the peak. The bin is selected in order to

maximise deviation from the upper boundary of the significance interval. This peak is referred



to as the significant peak. Note that if there is more than one significant peak in the cross-

correlation function, then the highest significant peak is considered to be the main peak.

A sample cross-correlation function of two spike trains is shown in Figure 3. The highest value
of the CCF, which exceeds the upper boundary of the confidence interval, is assessed as being
a measure of the strength of influence that is exerted from spike train A onto spike train B.
Furthermore, the corresponding time shift is assessed as being a time delay (A) in the
propagation of the spike from A to B (Nikoli¢, 2007). Note that the value of the main peak in
the CCF is subsequently used to (i) quantify the distance between pairs of spike trains in a
clustering algorithm and (ii) represent the density of shading in the corresponding cell of the

correlation grid.

3 The Correlation Grid

The Correlation Grid (Stuart et al., 2005) was developed to provide an organised yet abstract
overview of a large number of CCFs. Each of the underlying CCFs represents the synchrony
of a pair of spike trains during a specific time period. Therefore, the Grid provides an overview
using a simple two dimensional grid which enables investigators to identify groups of
“associated” neurons. Associated neurons are those which have a high probability of generating

spikes, approximately simultaneously or within a constant time delay, of each other.

3.1 Creating the Correlation Grid

For a given dataset, of n spike trains, all pair wise CCFs are generated and normalised using
the Brillinger method, and the main peaks ¢; j(i = 1,---,n, j = 1,---,n) are calculated for all
pairs. Finally, the results are displayed as an n-by-n symmetrical grid of grey scale cells,
representing the strength of influence between all pairs of spike trains (Figure 3). Thus, the
magnitudes of main peaks are encoded from white, representing a non-significant peak, to
black, representing the largest peak in the grid. The user has the flexibility to view ‘all peaks’
or solely significant peaks. Significant peaks are those that exceed the higher bound of the

confidence interval.



-
-

CCF

[

W i s 0

~L -50 -4 0 10
-~ bins (ms)

~N e RN WO =
’

=
(=]

Figure 3: A typical Correlation Grid where the number of spike trains n is 10. In this example, only significant
peaks are represented (encoded by the depth of grey scale) in the display. The highlighted portion of the display
(shown in orange) shows the CCF of spike trains 3 and 6. Note that the grid has been reordered correlation
grid. Note that all CCF’s were generated using a bin size of Imillisecond and a window size of 100ms.

Additionally, it is useful to reorder the correlation grid in order to highlight the inherent
relationships between multiple spike trains. The method used to accomplish this reordering is
the furthest neighbour cluster analysis. A detailed description of the creation of the Correlation

Grid and the clustering algorithm is available in the original paper (Stuart et. al, 2005).

4 Functional connectivity

It has been established (Brown et al., 2004) that identifying the connectivity between neurons
is crucial to our understanding of how the brain works. It is useful to distinguish the structural
(physical) connection between two neurons (electrical gap junction or synaptic connection)
from the functional connection which means that there is a relationship (statistical
dependence/correlation) between spiking activities of these neurons (Sporns, 2007). This paper
concentrates on functional connectivity of multiple spike trains. The goal is to develop an
effective statistical method for finding functional connections (statistical dependencies) and
visualisation of the resulting connection diagram. This approach is based on using the
traditional cross correlation function. Although the CCF has been successfully used to identify
functional connectivity in neuronal assemblies (Stuart et al., 2005), these investigations were
mostly limited to a small group of neurons. The subsequent introduction of the Correlation
Grid enabled investigators to manage larger numbers of neurons. However, as the scale of
investigations increased, it became increasing difficult to distinguish between different types
of connections (Dahlhaus et al., 1997; Eichler et al., 2003; Makarov et al., 2005; Nykamp,
2005; Stevenson et al., 2008; Park et al., 2008; Nedungadi et al., 2009). The three different



types of connection between two spike trains are defined as (i) a direct connection (ii) an
indirect connection and (iii) a ‘common source’ connection. A ‘direct connection’ is a
connection whereby one neuron modulates the firing pattern of another neuron directly. An
‘indirect connection’ is defined as a spurious functional connection due to connectivity via an
additional intermediate neuron. Finally, a ‘common source’ connection is defined as a spurious
connection due to an influence from the common source to both neurons in a pair. In order to
derive the accurate topology of functional connections between a group of neurons (spike
trains), in addition to direct connections it is essential that all spurious connections, both
common source and indirect connections, are identified. The remainder of this paper presents
a new combination of statistical techniques for the automated statistical solution to this

problem.

4.1 Classification of functional connection

When there are no significant peaks in a CCF, it is simple to deduce that there is no connection
between the two neurons. Alternatively, when a CCF has a significant peak, then its
interpretation is more complicated. When a peak exists, it can be deduced that there is some
influence from one neuron to another. It is unclear whether this influence is the result of direct
coupling or spurious connectivity. Historically, breakthroughs have shown that two additional
measurements from the CCF can be used to distinguish between direct and spurious
connections. These are (i) the height of the highest significant peak (p) (Aertsen et al., 1989)
and (ii) the corresponding time delay (A) (Nikoli¢, 2007). The three different types of

connection are shown in Figure 4.

(i) direct (i) indirect (iii) common source
11 ms 12 ms 11 ms 14 ms
11 ms

23 ms

Figure 4: Schematic diagram of (i) Direct connection where neuron A is directly connected to neuron B,
(ii) Indirect connection where neuron A is connected to neuron C through neuron B and, (iii) Common Source
connectivity, where neuron A is connected to both neuron B and C.

Figure 4(i) shows an example of a direct connection from neuron A to neuron B. This
connection has a delay of 11 milliseconds in spike propagation. Figure 4(ii) shows an example
of an indirect connection from neuron A to neuron B with a delay of 11 milliseconds.
Additionally, it shows a time delay of spike propagation from neuron B to neuron C which is

12 milliseconds. Note that in this case, an indirect connection exists from neuron A to neuron
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C with a delay of 23 milliseconds. When compared to direct connections, a relatively lower
value for the significant peak and a relatively longer value for the time delay are important
characteristics for identifying indirect connections.

Figure 4(iii) shows a ‘common source’ connectivity diagram of 3 neurons. Neuron A influences
both neurons B and C, with a delay in spike propagation of 11 and 14 milliseconds,
respectively. Note that in this case, a common source connection exists from neuron B to
neuron C with a delay of 3 milliseconds. When compared to direct connections, a relatively
lower value for the significant peak and a relatively shorter value for the time delay are

important characteristics for identifying ‘common source’ connections.

5 Description of ACG

The Advanced Correlation Grid (ACG) is a modification to the original correlation grid aimed
at differentiating between direct connections and spurious (indirect and common source)
connections. This advanced functionality is achieved using an automated algorithm. Each of
the five steps of ACG is described in detail.

5.1 Step 1- Calculation of the CCF

Let us consider n simultaneously recorded neurons and k = (n? —n)/2 is the number of
CCFs. To test the hypothesis of independence of two spike trains, k independent tests are run
for the n spike trains. However, note that in statistics a multiple comparison problem occurs
when a set of simultaneous statistical tests are performed. This problem occurs when all the
tests are considered as a family and the significance level « is set for the entire family of
statistical tests. For this reason, the error of incorrectly rejecting the null hypothesis is more
likely to occur. Nevertheless, several statistical techniques have been developed to overcome

this known problem.

The Bonferroni correction (Abdi, 2007) is one such method that can be used to address the
problem. The Bonferroni correction is based on the idea that when testing a set of dependent
or independent hypotheses, the significance level a should be adjusted according to the number
of tests performed. Thus, if the significance level for a set of k simultaneous tests is considered

to be a, the significance level for each individual test will be a/k.

When applying the Bonferroni correction to the k pairwise CCFs, the upper and lower
boundaries of the confidence interval are calculated for each pairwise CCF. Any peak that
exceeds the upper boundary of the confidence interval is considered to be significant.
10



Significant peaks can be found on both the positive and negative side of the CCF. Here, a
significant peak on the positive side of the CCF is considered to be a measure of the dependence
of one spike train on another. If there are several significant peaks, then the highest significant
peak is considered to be the measure of influence strength. Subsequently, all of the highest

significant peaks p;; (i,j = 1,2, ,n), i # jand the corresponding time delays A;; (i,j =

CCF support the null hypothesis (namely that the spike trains are independent). Therefore,
there is no connection from neuron i to neuron j and so p;; is not distinguishable from zero.

These non significant peaks are not included in the analysis.

5.2 Step 2 - Detection of Outliers

In order to detect direct connections within the neuronal assembles, it is necessary to
distinguish these connections from the spurious connections (common source and indirect). To
achieve this goal three groups (direct, common source and indirect connection) are identified
using cluster analysis. In the cluster analysis two measurements are considered namely
significant peak and time shift obtained from the CCF’s. Within neuronal assemblies, some
very strong synaptic connections may exist between neurons. The corresponding CCFs may
show some very large significant peaks which can be considered to be outliers as they deviate
significantly from the other significant peaks. These “outlier connections” can be ascribed to

come from direct connections.

When outliers are present, cluster analysis may lead to an incorrect conclusion. For example,
cluster analysis produces three clusters: (i) significant peaks having outlier with moderate time
shifts (ii) significant peaks with moderate and small time shifts (ii) significant peaks with either
small or large time shifts. The problem here is that cluster analysis may result in some direct
connections being wrongly classified as either common source or indirect connections. To
avoid this misleading conclusion, outlier connections are identified first and classified as direct
connections. The remaining significant peaks associated with time shifts are used to classify
the cluster of direct, the cluster of common source and the cluster of indirect connections. Note
that whilst these outlier connections are not used in step 3 of this process, they are crucial to

step 4, when the topology of the neuronal assembly is verified.

5.2.1 The Z-score
Among several outlier labelling methods, a commonly used method is the Z-score. The Z-score

is defined as
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X; — X
YT sd
where X;~N (u, 62), that is X; is normally distributed with mean u and variance ¢ and x, and

sd, are the sample mean and sample standard deviation of data, respectively. The basic idea of
the Z-score rule is that if X follows a normal distribution with mean u and variance 2, then Z
follows a standard normal distribution with a mean of zero and a variance of one. Any Z-scores
that exceed three (in absolute values) are generally considered to be outliers. According to
Schiffler (1988), a maximum Z-score is dependent on the sample size, and it is computed as
(n — 1) /+/n, where n is the sample size . Since no Z-score exceeds 3 in a sample size less than
or equal to 10, the Z-score method is not very good for outlier labelling, particularly in small
data sets (Iglewicz and Hoaglin, 1993). Another limitation of the Z-score rule is that the
standard deviation can be inflated by a few or even a single observation having an outlier value.

Thus, it can cause a masking problem.

Two estimators are used in the Z-Score, the sample mean and sample standard deviation. These
estimators can be affected by a few outlier values or by even a single outlier value. To avoid

this problem, another outlier labelling method known as modified Z-score can be used.

5.2.2 The modified Z-score
In the modified Z-score, the absolute deviations of the sample observations from the median,

are calculated. The median of these deviations (MAD) is used instead of the standard deviation
and the median is used instead of mean of the sample, respectively (Iglewicz and Hoaglin,
1993), such that
MAD = median{|x; — X|}
where % is the sample median. The modified Z-Score (M;) is computed as
_ 0.6745(x; — %)
L MAD
where E(MAD) = 0.6745¢ for large data. Iglewicz and Hoaglin (1993) suggested that

observations are labelled as outliers when |M;| > 3.5. Applying the modified Z-score to the
significant peaks p;;, obtained from the pairwise cross-correlation function, identifies any
outliers that exist. Within the scope of this study, only outliers above the upper boundary were
investigated. Only the outliers that lie above the upper boundary are of interest as they represent
outliers with very strong connections which can be considered to be direct connections. For
this reason, significant peaks are labelled outliers when M; > 3.5.

5.3 Step 3 - Hierarchical Cluster analysis
12



All of the non-outlier significant peaks p;; and the corresponding time delays A;; are used to
classify functional connections. For a set of significant peaks p;; , that do not have outliers with

corresponding delays 4;;, the typical scatter plot is shown in Figure 5.
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Figure 5: An example of a typical scatter plot of a set of significant peaks p_ij and the time delays A_ij where
the classification of direct connection, indirect connection and common source are indicated by circles.

From this figure, it can be deduced that the direct connections are identified as the group of
peaks with high significant peak and moderate time delay. Common source connections can be
identified as those with low significant peaks and short time delays. Finally, indirect
connections are characterised by low significant peak and large time delay. A hierarchical

clustering algorithm is applied to classify the set of significant peaks p;; and time delays A;;.

The hierarchical clustering algorithm is used to find clusters of similar objects within a data
set. A hierarchical cluster analysis begins by calculating the “mathematical” distances among
objects in the data set. A variety of measures can be used to calculate the distance between
significant peaks in the CCF. Note that for data that exhibits linear relationships, the Euclidean
distance is a widely adopted measure. Initially, each object is in a cluster of its own. Clustering
begins by finding the two clusters which are most similar i.e. closest, based on the Euclidean
distance between them. Once these two clusters are identified, they are merged into a single
cluster. Note that the characteristics of this new cluster are based on a combination of the

objects in the cluster.
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This procedure, of combining two clusters and merging their characteristics, is repeated until
all the objects have been merged into a single large cluster. The results of hierarchical clustering
are typically displayed in the form of a two dimensional diagram known as a dendrogram (or
tree diagram). Within the dendrogram, branches in the tree represent clusters. A variety of
linkage methods can be used to determine the order in which clusters merge together such as

single linkage, complete linkage and average linkage.

To apply cluster analysis to the set of significant peaks p;; and time delays 4;;, both
measurements need to be normalized, so that the values of significant peaks and time delays
are in the range between 0 and 1. This normalization is carried out to ensure that the values of
significant peaks and time delays are not affected by differences in the scales of measurement.
A clustering algorithm is applied to these normalized significant peaks and time delays. In the
clustering algorithm, the distance between pairs of observations is calculated using the
Euclidean distance and the average linkage is used for calculating the distance between two
clusters. The average linkage is used due to its reduced sensitivity to outliers. The aim of the
clustering algorithm is to divide the connections into three clusters: direct connections,
common source and indirect connections. Note that for a data set with two or more variables,
distances are significantly affected by differences in the scales of measurement used.

Therefore, it is good practice to transform each of the variables to ensure their scales are similar.

5.4 Step 4 - Verifying the classification of connections

At this stage in the process, the CCF of each neuron pair is available. The CCF has been used
to ascertain whether a significant peak exists and if it does, to quantify any time delay. Each
significant peak is characterised by the size of the peak (p) and the time delay (A).
Subsequently, outliers are detected in the resultant set of significant peaks with associated time
delays. Recall that these outliers are ascribed to direct connections and so they are crucial to
this part of the process. It is both these outlier connections in conjunction with the cluster of
direct connections that are used to restructure the neural assembly. The final assembly is
displayed using an n-by-n matrix of functional connectivity. In this matrix of functional
connectivity, each row represents the target neuron and each column represents the reference

neuron.
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Figure 6: (a) Connection scheme of the ten neurons. (b) An example of a direct functional connectivity matrix of
these ten neurons obtained by CCF.

Figure 6(a) shows a sample topology for a data set of ten neurons generated by ELIF model
(see Appendix 1). Figure 6(b) depicts the corresponding matrix of functional connectivity, also
known as the Advanced Correlation Grid (ACG). In this grid, a circle in the cell (i, j) indicates
that there is a direct connection from neuron j to neuron i. Additionally, the radius of the circle
represents the normalized strength of connection between this pair of neurons, which is
proportional to the height of the significant peak in the corresponding CCF. From this grid, it
is clear that ten direct functional connections exist.

In the final step o