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Abstract. In this paper we aim for the replication of a state of the
art architecture for recognition of human actions using skeleton poses
obtained from a depth sensor. We review the usefulness of accurate
human action recognition in the field of robotic elderly care, focusing
on fall detection. We attempt fall recognition using a chained Growing
When Required neural gas classifier that is fed only skeleton joints data.
We test this architecture against Recurrent SOMs (RSOMs) to classify
the TST Fall detection database ver. 2, a specialised dataset for fall
sequences. We also introduce a simplified mathematical model of falls
for easier and faster bench-testing of classification algorithms for fall
detection.

The outcome of classifying falls from our mathematical model was
successful with an accuracy of 97.12 ± 1.65 % and from the TST Fall
detection database ver. 2 with an accuracy of 90.2± 2.68 % when a filter
was added.

Keywords: Action recognition · Falls · Neural networks · Neural gas ·
Topological classifiers · Socially assistive robotics

1 Introduction

In the field of robotics, activity detection [11] is a fundamental concept if the
robots are used in a setting where they are expected to cooperate with humans.
The initial approaches to the detection of human actions involved the processing
of RGB images, and as such were proven to be a hard problem due to the
difficulty in segmenting the human body from the background and accurately
processing pose information. Recently however this task was made considerably
easier with the introduction of skeleton tracking based on depth-sensing cameras
as implemented by the Microsoft Kinect and as it steadily improves, it also allows
for more serious tasks that depend on activity recognition to be tackled, such
as activity detection. We will focus on its use in the context of socially assistive
robotics for social elderly care.
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1.1 Ageing Population

With the ageing of populations around the world, elderly care is a field of grow-
ing concern. Many different technological aids [3] are being developed specifically
for this population and robotics has emerged as a possible solution as the mobil-
isation of human caretakers for such a large amount of persons seems infeasible.
While robots in regards to human-robot-interaction are yet to find a particular
field in which it is undeniably useful, an interesting approach [18] to their use is
finding newer areas in which they can nothing but excel, simply because there
are no persons nor other technology available to perform that task. One of such
tasks is around the clock health monitoring for independent living.

1.2 Our Task of Interest: Fall Detection

It is medical fact [9] that diseases that can present themselves as a loss of con-
sciousness, such as strokes and heart infarctions - those two, the leading causes
of death world wide - can have excellent prognosis if treated within 3 h. Particu-
larly cardiac arrests present a survival rate of about one in each three subjects,
if CPR and defibrillation are initiated in less than 5 min, whereas the probabil-
ity of survival without any help is virtually zero [19]. Also other diseases such
as pneumonia or COPD exacerbations do tend to have better prognosis [20] if
treated promptly. One must take care as to not make bold assumptions, even
more under the light that major reviews [5] are yet to reveal clear benefits of
telemedicine, but some interesting recent results [4,8] demonstrate COPD as a
likely candidate to benefit from remote monitoring.

The specific task of fall detection has recently attracted a lot of research, with
a primary focus on smart home environments. In fact most fall detection sys-
tems [21] involve wearing special sensors device with accelerometers or detectors
built on the floor or a combination of video and wearable devices with a sen-
sor fusion approach in order to increase the accuracy of detection even further.
These approaches although more simple (and therefore robust) have however the
limitation of needing either a sensor to be worn at all times, or that the person’s
house to be adapted for this, which in practice will vastly limit its adherence. We
see coding fall detection into some sort of a multi-functional robotic companion-
that could have as one of its many functionalities: fall detection-as a reasonable
solution to this problem. A robot can follow the user in different environment,
position itself in order to prevent image occlusion and we avoid the need to
renovate someone’s house or remember always to wear a sensor.

1.3 Our Approach: Use the Parisi’s Multilayer GWR Classifier

Using an unsupervised method for topological description [6] of tasks is not
a new idea, since these methods have many possible advantages such as the
ability to “operate autonomously, on-line or life-long, and in a non-stationary
environment”. We chose to replicate the infrastructure implemented by [15] for
it’s overall performance in the CAD60 database and the theoretical generality of
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the method. In this paper we describe our implementation of a classifier based
on an unsupervised Growing When Required Neural Gas with a sliding window
scheme for time integration and chained in multiple layers to implement noise
removal.

Source code (available in www.github.com/frederico-klein/ICONIP2016) of
the Growing When Required Neural Gas implementation (in Matlab and Julia) is
provided, as well as the full classification architecture and the inverted pendulum
model (only in Matlab).

2 Materials and Methods

2.1 Justification for the Chosen Architecture: A Chained GWR
Sliding Window Topological Classifier

A detailed discussion of different types of neural gases is outside of the scope
of this text. For a more in depth understanding one should probably first refer
to Martinetz’s paper [12] that implemented the first neural gas and later to
Marsland’s paper [13], that implemented the Growing When Required neural gas
(GWR). The justification of using multiple chained gases (as opposed to one)
is, first the biological plausibility reviewed extensively by Parisi but secondly
probably due to necessity regarding the way too long execution time of a gas
with a high number of dimensions. Finally one must add that, although neural
gases, due to their nature, adjust to data that changes over time, this feature
does not seem useful in tracking movement. For this function a sliding window
scheme was used.

The dataset we chose to test our implementation was the TST v2 dataset
contains skeleton positions Microsoft Kinect v2 and IMU data for 11 subjects
performing either ADLs (activities daily living) and simulated falls. The sub-
jects were between 22 and 39 years old, with different height (1.62–1.97 m) and
build. Each of the two main groups (ADLs or Falls) contains 4 activities that
are repeated three times by each subject [7]. For our present study only the
skeleton joints in depth and skeleton space and time information were used. The
accelerometer, as well as other data, were not used for our algorithm.

In addition to the real dataset a simplified stick model was developed to test
the ability of a Growing When Required multilayer with a sliding window classi-
fier to discriminate between action sequences that included a fall. We modelled
2 different activities, a fall and a walk as the movement of a stick in a 3D space
and then simply substituted the stick for a typical skeleton.

Fall. We simulated fall of a person by a free falling inverted pendulum rod
with a random initial pitch angular velocity θ and perfect slippage. It can be
shown [16] that the kinematics differential equations that describe angle and
position changes for a rod are:

− mg
L

2
cosθ =

(
Ic +

mL2

4
cos2θ

)
θ̈ − mL2

4
cosθsinθ̇2 (1)
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(a) (b) (c) (d)

Fig. 1. (a) A typical fall from TST v2 dataset. (b) one of the ADLs from the TST v2
dataset, a walk. (c) a typical fall from our model. (d) a “walk” from our model.

0 = mẍc (2)

And, approximating a person by a slender rod, one has Ic = mL2

3 . The model
also was given simulation parameters to add random noise in the variables of
height (1.6–1.9 m), initial position (within a square area) and any initial yaw
angle.

Walk. The simulation of a person’s walk was done by simply doing a linear
space of displacements inside the area that would be covered by the Kinect
sensor, with random initial positions and walking angle (Fig. 1).AQ2

2.2 Skeleton Data

The algorithm presented uses skeleton data and not RGB-D raw images. A more
thorough descriptions [17] of the data obtained from the depth sensor should be
referenced, but in short it is a set of J points (where J is the number of joints) with
x, y and z coordinates, each representing a landmark on the body in time [10] in
a 3D space. We represent thus a particular pose as the concatenation of these J
points, such as that for each time frame k we have a pose p represented by the
matrix:

p(k) =

⎡
⎢⎢⎣

j1x(k) j1y(k) j1z(k)
j2x(k) j2y(k) j2z(k)

. . .
jJx(k) jJy(k) jJz(k)

⎤
⎥⎥⎦ (3)

An action sequence represented on discrete time steps 1...K could therefore rep-
resented as the multidimensional array resulting of the sequential concatenation
of the k-th pose matrices. To use the pose information with a gas we change the
representation of the pose matrix p(k) into a vector size 3 ∗ J and the action
sequence is the horizontal concatenation of the all the k-th, p(k) matrices. One
may thus understand the pose vector as a single point in a high dimensional space
and an action sequence as a necessarily continuous trajectory in that space.
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2.3 Construction and Randomisation of Training and Validation
Sets

The dataset was separated into training and validation sets containing 80 % and
20 % of data respectively, before each training similarly to a repeated learning-
testing method [1,2]. They were separated by subject, so that each subject had
all of its actions belonging exclusively to one set. This was done to describe a
more realistic testing scenario, in which the subject performing the activities is
completely new having no activity data of himself in the training set, preventing
bias in accuracy estimation due to overfitting the training set.

2.4 Preconditioning

The GWR algorithm is not translation invariant, so the first action performed
on the data was to select a joint - based on our reference algorithm we used the
hips and subtracted the offset from the hips joint in both the z and x coordinates
from all other joint vectors. Secondly, we normalised (scaled) the data so that
after scaling variance of the data would be equal to 1. The final step was to
implement a centroid generating function, so to generate a smaller dimensionality
representation of the skeleton poses, in a similar fashion to the function tested
by Parisi. We created a model of 3 centroids that were the average position of
the skeleton points such that the upper centroid was composed by the joints:
head, neck, left shoulder, right shoulder, left elbow, right elbow; middle centroid
corresponded to torso and lower centroid: left knee, right knee, left hip, right
hip. Many other preconditioning functions are available on the supplied code
and maybe be tried by the interested reader.

2.5 Classifier Architecture

The classifier was implemented as a serial chaining of gas subunits. This was done
to enable different structures to be tried with minimal effort. All classification
attempts in this text were done using 5 gas subunits linked in manner as to
implement the architecture in Parisi’s [15] paper (see Fig. 2), that is, 2 parallel
sets of 2 gas subunits in series, each stream dealing with either pose positions
or pose velocities and a last gas that integrates both.

Fig. 2. Diagram of the classifier architecture.
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For each gas subunit there are 5 main chained elements that are responsible
for implementation estimation and classification:

– Sliding Window: implements the temporal concatenation of sample (also
implements concatenation of multiple streams in case they exist).

– Gas Creator: receives data samples p(k) or concatenated poses Wl(k) and
implements the learning algorithm for either the Growing When Required
neural gas or the Growing Neural Gas.

– Mapping: finds the best matching pose from the nodes matrix A corresponding
to each sample from the dataset.

– Labeller: simple labelling function that assigns the label of estimated concate-
nated pose as the same as the label of the pose to which it best matches.

– Activation checker: during training, checks to see if points are able to be well
represented by the gas, and if not removes them from the sample.

3 Results and Discussion

For all the results here presented, the simulation parameters for the GWR neural
gas are the same as in our reference paper [15].

3.1 Cornell CAD60 Dataset

As a means of comparing our implementation with that of Parisi, we also tested
our architecture on the CAD60 dataset. Apparently our implementation does
a lot of overfitting, as it reaches 99.6 % accuracy on the training set (average:
99.38 ± 0.2% for 8 trials) but only reaches 71.7 % on the validation set. We
noticed however that misclassifications were limited to some specific actions,
with most having the same accuracy (greater than 90 %) in both sets. It is our
conjecture that this difference reflects that the CAD60 dataset is too small to
allow our stricter cross-validation method to produce generalization.

3.2 Falling Stick Model

Our algorithm, even with a much smaller network (100 nodes), seems to be quite
consistently capable of classifying our faux fall/walk model. We simulated 20
subjects performing either a fall or a walk. The peak accuracy on the validation
set of our implementation was 98.33 % (average: 97.12 ± 1.65 % for 8 trials).

3.3 TST Fall Detection ver.2 Dataset

Learning Across Layers. In order to understand how learning happens across
layers we analyse the output classification from 5 gases with 1000 nodes run over
10 epochs (see Table 1) the results reflect what we would expect: there is a steady
increase as we progress through the layers and there is a gain in accuracy.
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Table 1. Progression of classification accuracy within different layers for chained GWR
Neural Gas classifier with 1000 nodes and run over 10 epochs (for 8 trials).

Gas element Validation set Training set

GWR gas 1 Pos 67.69 ± 0.73 % 93.04 ± 0.12 %

GWR gas 2 Vel 64.80 ± 0.93 % 69.43 ± 0.66 %

GWR gas 3 Pos 66.93 ± 1.02 % 90.45 ± 0.18 %

GWR gas 4 Vel 65.14 ± 0.77 % 70.66 ± 0.65 %

GWR gas 5 STS 73.99 ± 1.16 % 88.35 ± 0.41 %

Mode Filter. With the intention of performing some sort of temporal filtering,
we implemented a moving mode filter. The moving mode filter had an important
positive effect on the classification results of the TST v2 database (see Table 2).
Highest classification accuracy achieved (See Table 3) was 94.2 % on the valida-
tion set by 3rd gas with 1000 nodes and 10 epochs with mode filter length of 35
data samples. One must note that adding a moving mode filter of size 35 means
a delay of 11.67 s (since we need (9 + 1) ∗ 35 samples @30 Hz) much more than
the 0.6 s Parisi reported.

Table 2. Accuracies (in %) after applying the moving mode filter on classification
results of the final gas unit of the classifier (for 8, 8 and 1 trials respectively).

Epochs 10 20 30

Filter length Val Train Val Train Val Train

5 81.25 ± 1.44 95.05 ± 0.69 79.72 ± 2.09 79.72 ± 2.09 82.7 94.9

10 85.95 ± 2.13 95.74 ± 0.54 83.87 ± 2.93 96.00 ± 0.38 86.9 95.5

15 88.57 ± 2.48 95.31 ± 0.36 85.91 ± 2.93 95.46 ± 0.30 88.6 97.0

20 89.95 ± 2.36 95.34 ± 0.23 86.70 ± 4.08 95.26 ± 0.31 88.6 95.0

25 90.16 ± 2.28 94.32 ± 0.27 87.37 ± 3.79 94.47 ± 0.25 89.2 95.4

35 90.20 ± 2.68 92.29 ± 0.37 88.49 ± 3.83 92.44 ± 0.38 91.5 93.3

40 89.28 ± 2.68 91.23 ± 0.32 87.75 ± 3.82 91.33 ± 0.35 91.5 92.2

50 87.39 ± 2.06 88.84 ± 0.33 85.35 ± 3.39 88.80 ± 0.49 91.3 89.9

Comparison with RSOM. As a means of comparing the performance of our
implementation, we also classified the TST v2 dataset using an RSOM imple-
mentation. The RSOM used the same preconditioning as we did for the chained
gas classifier and a set of 3 consecutive poses (p(k), p(k − 1), p(k − 2)). The sim-
ulation parameters were: 900 nodes, 30 epochs, method ‘RSOMHebbV01’. The
peak accuracy on the validation set of the RSOM with these parameters was
78.76 % (average: 77.67 ± 0.77% for 5 trials).
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Table 3. Confusion matrix for our most accurate gas classifier. The calculated accuracy
for the validation set is 94.2 %, higher than the 92.0 % training set.

Validation set Target Training set Target

1 2 1 2

Output 1 1532 36 Output 1 4006 258

2 124 1054 2 328 2746

4 Conclusion

The resulting classification scheme does the task which we want, that is, dis-
criminate falls within the TST v2 dataset, it does it better than the RSOM and
it does it consistently with around 90.2 ± 2.68% accuracy while using the mode
filter. We believed we achieved our goal and we have now a classifier of falls
with openly accessible code that will hopefully encourage persons into designing
experiments using fall detection or using neural gases for classification of hard
to classify data.
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