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Abstract

Head pose estimation is an old problem that is recently receiving new attention
because of possible applications in human-robot interaction, augmented reality
and driving assistance. However, most of the existing work has been tested in
controlled environments and is not robust enough for real-world applications.
In order to handle these limitations we propose an approach based on Convolu-
tional Neural Networks (CNNs) supplemented with the most recent techniques
adopted from the deep learning community. We evaluate the performance of
four architectures on recently released in-the-wild datasets. Moreover, we inves-
tigate the use of dropout and adaptive gradient methods giving a contribution
to their ongoing validation. The results show that joining CNNs and adap-
tive gradient methods leads to the state-of-the-art in unconstrained head pose
estimation.

Keywords: convolutional neural networks, head pose estimation, adaptive
gradient, deep learning

1. Introduction

In the last few years major advancements in robotics, augmented reality and
driving assistance have highlighted the need for robust methods to estimate the
head pose in real-world scenarios. For instance, robots are gradually leaving
factories and becoming part of our lives as companions and as assistants. It has5

been shown that in human-robot interaction a coarse pose estimation of the head
is a fundamental prerequisite for building trust with users during joint-attention
tasks [1]. In the context of autonomous cars a driving assistance system could
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take advantage of head pose estimation for decelerating the car when pedes-
trians do not notice the presence of the vehicle [2]. Moreover a similar system10

can be installed inside the vehicle and used to monitor the driver’s awareness.
The need of a robust head pose estimation is not limited to these domains.
There have been significant applications in surveillance and anomaly detection,
human-computer interaction and crowd behavioural dynamics analysis [3]. All
of these unconstrained scenarios need an estimator which is resistant to vari-15

able environmental conditions, and which can evaluate the focus of attention
in absence of more accurate information such as the gaze. Here it is necessary
to specify what we consider as a wild environment. We define as taken in a
wild environment those face images exhibiting a large variety in appearance
(pose, expression, ethnicity, age, gender, etc), environmental conditions (artifi-20

cial light, shadows, etc), and containing relevant occlusions (sunglasses, masks,
scarves, etc). We will show how Convolutional Neural Networks (CNNs) can be
considered one of the best algorithms for robust head pose estimation in a wild
environment.

We can summarise the main contribution of our work in three points:25

1. As far as we know this is the first work that has deeply investigated the
use of CNNs in head pose estimation. Our main contribution is a rigorous
evaluation of multiple CNN models and factors. The results are compared
with other algorithms, and show how an approach based on CNNs, dropout
and adaptive gradient methods represents the state of the art in head pose30

estimation.

2. Deep learning is a rapidly growing field, which is bringing new techniques
that can significantly improve the performance of CNNs. Because these
techniques have been released in the last few years, there is still a valida-
tion process for establishing their cross-domain usefulness. We explored the35

role of adaptive gradient methods and we gave a valuable contribution to
their ongoing validation.

3. The results obtained in this work have been used to implement a Python li-
brary called Deepgaze. The library includes pre-trained CNNs based on Ten-
sorflow [4] which can run in real-time on GPUs and mobile devices. Deepgaze40

is released under an open-source license and is available for both academic
and commercial purposes. The software is available on the author’s reposi-
tory 1.

2. Related Work

The head pose estimation problem has been investigated from different45

points of view and with different techniques. Devices such as laser pointers,
camera arrays, stereo-cameras, magnetic and inertial sensors, have been used
to get a stable estimation in controlled situations [5]. More recently some good

1https://github.com/mpatacchiola/deepgaze
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results have been obtained with commercial depth cameras [6]. However the use
of these devices is not always feasible due to space constraints and to technical50

problems when operating outdoors. Our work made use of RGB images taken
from monocular cameras which permits the greatest portability in real-world
applications, given the proliferation of such cameras in mobile phones and lap-
tops. This introduction is thus limited to this kind of approach. A complete
description of all the methods available is out of the scope of this article so we55

refer the reader to a recent survey [5].
The main branches of a functional taxonomy in head pose estimation can

be considered to be appearance-based methods, model-based methods, mani-
fold embedding methods and nonlinear regression methods. Appearance-based
methods compare the view of a person’s head with discrete models which rep-60

resent pose labels [7, 8]. With different kinds of template matching techniques
it is possible to evaluate the similarity of the input features with the exemplar
set. Appearance-based methods are quite simple to implement but suffer from
some serious limitations. For instance, they cannot estimate discrete pose loca-
tions without using interpolation methods. They assume that there is a close65

similarity between the image and the pose space, and they can easily associate
a pose based on the resemblance with a wrong model. A common solution to
compensate these errors is to filter and convolve the models [9]. The effect of
these manipulations is to highlight some features (e.g. vertical and horizontal
lines) and to remove part of the variations across the models. However this70

solution is expensive because it requires to manually find the right filters and
to test the effects on the pose estimation. For all these limitations the use of
appearance-based algorithms has been decreasing over time.

Model-based methods use geometric information, non-rigid facial models
or landmark locations to estimate the head pose. The most common model-75

based approach consists in finding coplanar facial key-points and to estimate
the distance from a reference coordinate system [10]. This method requires
high precision and does not work for certain degenerative angles. Another com-
mon approach consists in evaluating the position of multiple non-coplanar key-
points. The head pose is estimated assuming fixed geometric relationships be-80

tween the landmarks and comparing the position of the points with an average
mask obtained through anthropometric measurements [11]. Although there have
been improvements in key-points detection and tracking in real world conditions
[12, 13], the landmarks detection is the major limitation of this approach. In
general we can say that the accuracy of model-based methods is correlated with85

the quality and quantity of the geometric cues extrapolated from the image.
In real world scenarios occlusions can often obscure facial landmarks having a
negative effect on the head pose prediction.

Manifold embedding methods consider an high-dimensional image to be con-
strained in a low-dimensional manifold in which the head pose is estimated.90

Dimensionality reduction techniques can be considered as part of the manifold
embedding category. In the standard approach principal component analysis
(PCA) is used in order to project the input images in a subspace and compare
them to the models [14]. The main problem of manifold embedding is that the
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pose must be recovered across multiple sources of variation. In this sense, other95

manifold embedding techniques have recently shown to be promising. In [15]
the problem of the source variation has been tackled learning a similarity kernel
through geometric invariant features. This method showed a good reliability on
benchmark datasets. However further research is needed in order to reach state
of the art performances.100

Nonlinear regression methods use a labelled training set to create a nonlin-
ear mapping from images to poses. We can consider CNNs as part of these
methods. Nonlinear methods have many advantages. These algorithms work
properly with high and low resolution images, and they have demonstrated their
representational ability in tolerating systematic errors in the training set data.105

For instance, an approach based on a multilayer perceptron [16] had for long
time the lowest reported mean angular error on the Prima head pose dataset
[5]. The main disadvantages of these methods are two. The first is the need of
a consistent dataset in order to train the parameters. The second is the need
of a precise head localisation before the pose estimation step. The first issue110

can be overcome thanks to recently released datasets containing a large number
of images. The second issue can be attenuated using CNNs instead of multi
layer perceptrons which guarantee a good shift and distortion invariance. In
this sense CNNs could be the elective technique for mastering the head pose
estimation problem, since recent advances in deep learning made possible to115

easily train complex CNNs on large datasets. Despite their potential, the use of
CNNs for head pose estimation has been sporadic. An approach based on CNNs
and energy-based models has been proposed for simultaneous face detection and
pose estimation [17]. The authors trained the model on a dataset containing
images taken in laboratory conditions, and validated it on datasets containing120

frontal faces with in-plane rotations and faces in profile. The prediction of the
network was limited to two degrees of freedom. This work is valuable but it is
ten years old and at that time advanced techniques for training deep networks
were not available. Moreover the results relative to the head pose estimation
accuracy were not included. A more recent work investigated the use of CNNs125

with low-resolution images from monocular cameras [18], obtaining the best re-
ported result on the Biwi Kinect Head Pose dataset [19]. The authors did not
use any of the most recent techniques available such as dropout or adaptive
methods, and their results have been validated on a single dataset that does not
contain in-the-wild images. However the results obtained confirm the validity130

of CNNs in head pose estimation. In [20] CNNs have been used for monitoring
the driver alertness. The authors used a six-layer CNN to classify five discrete
head poses: left, right, up, down and frontal. Because of the limits implicit in
a discrete classification with only five poses we cannot compare this work with
the others presented here. In [21] the authors used deep convolutional networks135

to estimate the head pose in multimodal RGB-D videos. Depth information is
not always available due to space constraints and to problems operating out-
doors. The authors did not test the effect of different numbers of layers or
parameters, moreover they did not use any kind of adaptive gradient method
or regularisation to improve the performance of the network.140
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Given the lack of satisfying work we wanted to add something more com-
plete and modern to the existing literature. In the next sections we shortly
explain how CNNs work and how dropout and adaptive gradient methods can
boost their performance. The next section is not intended to be an exhaustive
description of the mechanics behind CNNs, instead it is a way to introduce some145

key concepts and to define the notation used in the rest of the article.

3. Convolutional Neural Networks

In recent years deep convolutional networks have showed their strength in nu-
merous pattern recognition contests. Some remarkable achievements have been
recently obtained in object detection [22], facial expression recognition [23] and150

scene classification [24]. This technology is increasingly used in commercial ap-
plications such as content filtering in social networks, recommendation systems
in e-commerce websites or image classifiers in web-search engines. The deep
learning revolution has been driven by the diffusion of cheap graphics process-
ing units (GPUs), originally used for video games. The use of GPUs speeds155

up matrix and vector multiplications, which are the core operations in neural
network training. Because the general introduction of CNNs is well established
by now, we will not extend this section any further. Instead we refer the reader
to the following article [25]. In the next section we give a brief description of
the main building blocks of a CNN, introducing the notation used in the rest of160

the article.

3.1. Notation

We define a CNN as an ensemble of many single units grouped in three-
dimensional layers. The units inside a layer are connected to a small region of the
layer before it with connections called kernels (or filters, weights, parameters).165

The input to a CNN is a matrix X of dimension m×m×r, where m is the height
and width of the matrix and r is the number of channels. The convolutional
layer has k kernels of size n× n× q, where n < m and q ≤ r. The convolution
multiplies each element of X with its local neighbours, weighted by the kernel
W , generating k feature maps of size m − n + 1. The convolutional layer is170

often followed by a mean or max pooling layer which permits subsampling the
maps over a p × p local region, with 2 ≤ p ≤ 5. During the training phase the
kernels are adjusted following a well-known algorithm called backpropagation
[26]. The backpropagation minimises a loss (or error) function J(w) with an
iterative process of gradient descent that updates w at t+ 1 using the gradient175

information at t, as expressed in the following equation:

wt+1 = wt − α∇E|J(wt)|+ µvt (1)

The expectation is approximated with the cost and gradient over the full
training set. The value α is called learning rate and corresponds to the step
taken by the algorithm in the direction of the gradient. The value µ ∈ [0, 1]
is called momentum and is a technique for accumulating a velocity vector v180
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in the direction of persistent reduction of the loss function. A variation of
the standard gradient descent is called Stochastic Gradient Descent (SGD).
The SGD computes the gradient using a few training examples or mini-batches
instead of the whole training set. Using the stochastic approach the variance is
reduced leading to a more stable convergence.185

There are different kinds of loss functions. In our experiments we used the
sum of squares of the differences between the target value y and the estimated
value ŷ:

J(w) =

N∑
n=1

(yn − ŷn)2 + λ

L∑
l=1

w2
l (2)

The additive factor λ is an L2 regularisation term, used in each hidden layer
l to prevent a very large growth of the parameters during the minimisation190

process.
In the next sections we will focus on some recent techniques developed by the

deep learning community in the very last few years, which made the training of
deep architectures more manageable leading to better results. These techniques
are dropout and adaptive gradient methods.195

3.2. Dropout

In networks with a large number of parameters the generalisation on a new
set of data can be compromised due to memorisation of the training set which
leads to overfitting. Dropout [27] addresses this problem by randomly dropping
units and connections during the training phase, preventing co-adaptation. We200

can summarise the operations involved in dropout in a few lines. Let’s define r
as a vector of Bernoulli random variables, where each variable has probability p
of being 1 and a probability 1− p of being 0. For each hidden layer l the vector
r is sampled and then multiplied elementwise with y the output vector of that
layer. The result is a thinned vector ỹ:205

r(l) ∼ Bernoulli(p)
ỹ(l) = r(l) ◦ y(l)

(3)

Experimental evidence shows how dropout introduces noise in the gradients
and produces a cancellation effect [27]. To deal with this issue it is recommended
to use a higher learning rate and momentum. In order to use a higher learning
rate without a very large growth of the weights, another form of regularization
can be used at the same time, such as L2 or max-norm. The probability p210

is another hyperparameter to tune. However numerous experimental results
suggest that a value of p = 0.5 produces the best performance [27], so we used
this value in our experiments. A graphical representation of dropout is presented
in Fig. 1.
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Figure 1: Graphical representation of the dropout process. The figure on the left represents a
generic neural network composed of three layers. The figure on the right represents the same
network after applying the dropout with 50% probability of keeping a unit.

3.3. Adaptive Gradient Methods215

Neural networks are not off-the-shelf algorithms, and generally the research
of the best hyperparameters can be extremely time consuming. One of the most
important parameters is the learning rate. When the learning rate is too high
the optimisation can diverge, on the contrary if it is too low the optimisation
can be slow.To solve these problems some adaptive gradient methods have been220

proposed recently. Adaptive gradient methods use first order information to
approximate second order information and then find an optimal step size.

One of the best adaptive methods introduced recently is Adagrad [28]. This
optimiser incorporates information about the features to control the gradient
step. The procedure associates a low learning rate with frequently occurring fea-225

tures and high learning rate with infrequent features. Therefore, the adaptation
facilitates identifying the most predictive features and it is well suited for sparse
data. The authors tested the algorithm on different image and text databases
[28], showing how it outperforms the non-adaptive counterpart. The updating
rule for the weights w following the Adagrad algorithm can be expressed with230

the following equation:

wt+1 = wt −
α√
Gt + ε

� gt (4)

The matrix G is a diagonal matrix where each entry in the main diagonal is
the sum of the squares of the previous gradients up to time t. The value ε is a
small value used to avoid division by zero. The symbol � represent a matrix-
vector multiplication. The main problem with Adagrad is the accumulation of235

squared gradients in G that lead to an infinitesimally small learning rate α and
then to a loss in knowledge accumulation.

To solve the problem related with Adagrad an extension called Adadelta [29]
has been proposed. Adadelta does not accumulate all the past gradients but it
constrains the window to a fixed interval. The denominator of the Equation 4 is240

then replaced by a moving average E[g2] which represents all the past squared
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gradients. The advantage of this solution is that the moving average depends
only on the previous average and the current gradient, as follows:

wt+1 = wt −
α√

E[g2]t + ε
gt (5)

As experimentally shown in [29] Adadelta is particularly robust and it guar-
antees convergence with different learning rate values. Another effective method245

to solve the Adagrad issue is an unpublished algorithm called RMSProp [30].
RMSProp has an updating rule which is similar to Equation 5 with the only
difference being that it introduces a decaying value γ which specifies how long
the old gradients in E[g2] are kept. The value E[g2] at time t is then updated
in this way:250

E[g2]t = γE[g2]t−1 + g2t (6)

The authors suggest some default values for the learning rate and the decay-
ing value which should be closer to α = 0.001 and γ = 0.9. In our experiments
we used this configuration.

Finally we want to introduce another method called Adaptive Moment Es-
timation (Adam) [31]. Like Adadelta and RMSProp, Adam stores a decaying255

average of past gradients and squared gradients. The two decaying averages are
then used to estimate m1 and m2 which are the first and second moment (mean
and variance) of the gradient. The updating rule for Adam can be expressed as
follows:

wt+1 = wt −
α

√
m2 + ε

m1 (7)

The two moments m1 and m2 are taken at time t and before the weights260

update they are corrected to limit a bias toward zero during the first steps. The
moments are regulated by two decaying factors β1 and β2. The authors suggest
to initialise these parameters to standard values β1 = 0.9 and β2 = 0.999. We
used these values in our experiments.

4. Experiments265

In this section we report the results obtained using CNNs, dropout and adap-
tive gradient methods on three public datasets: the Prima head-pose dataset
[32], the Annotated Facial Landmarks in the Wild (AFLW) dataset [33], and the
Annotated Face in the Wild (AFW) dataset [34]. The former is a well-known
dataset which has been around for more than ten years, and it is considered a270

classic benchmark for head pose algorithms. The second is a recently released
in-the-wild dataset, and it has the largest number of annotated poses currently
available. The third is a small in-the-wild dataset used mainly for benchmarks.
Other details about these datasets are available in Sec. 4.1, 4.2 and 4.3.

In these experiments we used a total of four networks: A, B, C, D. The275

architecture A is a standard LeNet-5 [35] and with six layers and 4.3 × 106
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Figure 2: Grapichal representation of a Convolutional Neural Network with two convolutional
(C1 and C2), two subsampling (P1 and P2) and two fully connected (D1 and D2) layers. The
label above each layer specifies number of elements and size (rows × columns) of the future
maps. For the dense layers we reported the number of units. We used the following colour
convention to identify the different layers: green for convolution, orange for subsampling, and
red for dense layers.

parameters. The graphical representation of this architecture is presented in
Fig. 2. The architecture B has one more convolutional layer and one more
pooling layer. The number of parameters is slightly higher (4.6 × 106). The
idea is to keep the architectures as similar as possible to isolate the effect of280

the additional layers. It is hard to define a priori how many parameters lead to
a good performance, for this reason the third and fourth networks have more
weights. The architecture C has a high number of parameters (8.5× 106). The
fourth architecture (D) is similar to a standard AlexNet [22] and it has a total
of 9.0 × 106 parameters. A graphical comparison of the four architectures is285

reported in Fig. 3.
The approach we used is based on a divide-and-conquer strategy. We trained

different CNNs for each degree of freedom. This kind of strategy has the advan-
tage of splitting the main problem into different sub-problems which are easier
to manage. Having a specialised network for roll, pitch and yaw, permits fine290

tuning the network for a specific degree of freedom without losing the predictive
power obtained on another one. Our methodology consisted of two parts. First,
we evaluate which optimiser was better suited to a specific dataset. Second, we
tested CNNs with a variable number of layers and parameters to understand
the impact of deeper architectures. As discussed in [5] the Mean Absolute Error295

(MAE) and the Standard Deviation (STD) are the best metric of accuracy in
head pose datasets with discrete or continuous labels. We report both MAE and
STD and we use them for comparing results. In all of the experiments we used
the same hardware configuration: a multi-core workstation with 32 GB of RAM
and a GPU NVIDIA Tesla K-40. The experiments have been implemented in300

Python using the TensorFlow library [4].

4.1. Prima head-pose dataset

This dataset consists of 2790 monocular face images of 15 subjects. The
subjects range in age from 20 to 40 years old, five possessing facial hair and
seven wearing glasses. Pitch and yaw angles are in the range [−90◦, 90◦] for305

a total of 93 discrete poses for each person (Fig. 4). Two series of pictures
with different lighting conditions are provided increasing the total number of
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Figure 3: Comparison of the four architectures used in our experiments. The label below
each layer represents the number and size (rows × columns) of the future maps. For the
dense layers we reported only the number of units. The networks are organised in order of
complexity, on the left there is the network with less parameters and on the right the network
with more. Network A has 4.3× 106 parameters, whereas network B has two more layers and
a total of 4.6 × 106. Network C has 8.5 × 106 parameters, whereas network D has two more
layers for a total of 9.0× 106 parameters. We used the following colour convention to identify
the different layers: green for convolution, orange for subsampling, and red for dense layers.

available pictures to 186 per person. The head pose is estimated by directional
evaluation, as a result this dataset is extremely challenging because the predictor
must deal with substantial errors and poor uniformity between subjects.310

Many different methods have been tested on the Prima dataset. In [14] a per-
formance comparison is made between high-order Singular Value Decomposition
(SVD), Principal Component Analysis (PCA) and locally embedded analysis.
Neural networks-based methods have been tested in [36] and [16]. This dataset
is the only one in which the human performance has been measured [32].315

4.1.1. Methods

This experiment investigated the influence of three factors (network type,
optimiser, dropout) and it consisted of two phases:

1. Optimiser selection. In the first phase we used a standard network to select
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Figure 4: This figure represents a collection of images taken from the Prima dataset as they
appear after cropping and scaling.

the best optimiser for this dataset. The standard network used is LeNet-320

5 [35] shown in Figure 2. The optimisers used were the four described in
Section 3.3 plus SGD and SGD with momentum.

2. Network selection. In the second phase we used the best optimiser selected
previously for finding the best architecture for each degree of freedom.

In this experiment we used the sigmoid activation function which produced325

a continuous output in the range [0, 1]. As a loss function we used the sum of
squares of the differences between the target value y and the estimated value
ŷ, reported in Eq. 2, with λ = 5 × 10−4. We trained the networks for 20000
epochs, using mini-batches of size 64. The network weights were sampled from
a Gaussian distribution (µ = 0, σ = 0.1), and any values that had a magnitude330

more than two standard deviations from the mean were dropped and re-sampled.
The weights were updated using Eq. 1. For each optimiser we used the learning
rate value recommended by the authors (see Sec. 3.3). When the authors did
not suggest any standard value or when the recommended values did not lead to
convergence we used a grid-search procedure. Starting from α = 0.1 we observed335

the loss function in the first 1000 epochs. In case of divergence the learning rate
was divided by 2 and the procedure repeated. The value which permitted the
fastest convergence was then selected and used for the training. Because we
used dropout we set the value of the momentum to 0.95 as recommended in
[27]. The faces were isolated using the bounding boxes included in the dataset340

and then resized to 64× 64 pixels.
Two kinds of cross-validation tests were applied to this dataset, in accor-

dance with the procedures reported in [37]. Testing on known faces was done
by dividing the images per series into two separate folds. The two folds con-
tained images of the same subjects taken under different lighting conditions.345

Testing on unknown faces is done using the Jack-Knife (leave-one-out) proce-
dure, which consists of training the algorithm on all the subjects but one, which
is used for testing. The procedure was repeated fifteen times, leaving out each
subject. The mean value of all the measurements is considered to be the final
score. We used the leave-one-out procedure to select the best optimiser and the350

best network. In a second moment the best configuration was tested with the
known-subjects procedure. During the training we did not use any kind of early
stopping technique. The use of the early stopping requires to monitor the error
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on a validation set taken from the test set, but the standard procedure reported
in [37] does not take it into account. Considering that the other methods used355

the standard procedure, we decided to keep the test set unchanged in order to
have a fair comparison. However the observation of the error can be useful for
understanding if there is overfitting. For this reason, in a separate phase, we
generated a validation set randomly picking 50% of the images contained in the
test set. We observed the root mean square error (RMSE) for both training and360

validation set.
Training the architecture A for 20000 epochs on the two-fold dataset took

4.2 hours, while training it on the fifteen-fold dataset took 18.75 hours.

4.1.2. Results

The results in term of MAE for the first phase (optimiser selection) are365

reported in Table 1. We analysed the convergence speed, observing the loss
value during each of the 20000 epochs. For each optimiser we considered the
loss values obtained from the mean of the 15 subject in the leave-one-out test,
and we plotted the resulting graphs for both pitch (Fig. 5) and yaw (Fig. 6).
The Adam optimiser had the lowest MAEs for both pitch and yaw (10.71 ±370

11.04, 7.74 ± 8.03). A similar performance has been obtained with RMSProp
(10.75± 10.51, 8.3± 8.17).

In the second phase (network selection) we used Adam to train the four
architectures shown in Figure 3. The best performances for both pitch and yaw
are obtained with the architecture A (10.71± 11.04, 7.74± 8.03). A comparison375

of the four architectures is shown in Figure 7. Mapping the continuous output
in 9 discrete categories for pitch and 13 discrete categories for yaw, we were
able to interpret the results in terms of classification. The best architecture (A)
have an accuracy of 60.93% (pitch) and 62.33% (yaw) on unknown subjects.
The accuracy is even higher on known subjects where it reaches 69.26% (pitch)380

and 67.61% (yaw). The normalised confusion tables for the best architecture
are reported in form of heatmaps in Figure 8.

We used the best architecture also for the know-subjects test. We obtained
a MAE of 8.06 ± 8.88 for the pitch estimation (accuracy 73.91%), and a MAE
of 6.93± 7.32 for the yaw estimation (accuracy 66.6%).385

To investigate the presence of overfitting, we trained the best architecture
using the Adam optimiser on the unknown-subjects test and we generated a val-
idation set randomly picking 50% of the images from the test set. We monitored
the RMSE for both training and validation set. The results for the pitch and
yaw estimation are reported in Figure 9 and 10 and represent the mean RMSE390

for each one of the 15 subjects considered in the leave-one-out procedure.
We did some experiments to check if data augmentation of the images (hor-

izontal flip) had an impact on the final score. We did not notice any significant
improvement.

The best results on the Prima dataset have been obtained with the small-395

est network (A). However it is possible that networks with less parameters
could perform better than our best architecture. This conclusion is reason-
able since the Prima datasets contains a few thousands images and overfitting
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problems could deteriorate the performances of larger networks. To further in-
vestigate this hypothesis we used the Adam optimiser to train two networks.400

The networks were similar to LeNet-5 [35] with six layers organised as in Fig-
ure 2. The first network had 2.1 × 106 parameters and the following architec-
ture: C1=32(64×64), P1=32(32×32), C2=64(32×32), P2=64(16×16), D1=128,
D2=1. The second network had 0.5×106 parameters and the following architec-
ture: C1=16(64×64), P1=16(32×32), C2=32(32×32), P2=32(16×16), D1=64,405

D2=1. The results did not show any major improvement except for the first
architecture that got a slightly lower MAE (10.57± 10.78) and an higher accu-
racy (61.4%) for the pitch estimation on unknown subjects. The same network
had a worse performance in yaw estimation with an MAE of 8.36 ± 8.42 and
accuracy of 57.67%. The network with 0.5× 106 parameters reported a score of410

11.14±11.24 (accuracy 58.02%) for pitch and 8.38±8.57 (accuracy 57.53%) for
yaw, which is significantly below the score obtained with architecture A. Also
in the known-subjects test we did not observe any major improvement. The
network with 2.1 × 106 parameters obtained an MAE of 8.24 ± 9.81 (accuracy
71.15%) for pitch and 7.23±7.43 (accuracy 64.51%) for yaw. The network with415

0.5 × 106 parameters obtained an MAE of 8.9 ± 10.35 (accuracy 70.82%) for
pitch and 7.23± 7.42 (accuracy 64.19%) for yaw. We hypothesise that the use
of dropout and L2 regularization helped to prevent overfitting in larger archi-
tectures leading to stabler solutions.

The comparison between our approach and other methods is reported in Tab.420

2. CNNs perform better than any other methods on the two-fold test for known
subjects and in the leave-one-out test for unknown subjects. The comparison in
terms of MAE between human and our method shows how CNNs outperform
naive humans in both pitch and yaw, and pre-trained humans only for the yaw
estimation. The comparison in terms of accuracy (Tab. 2) shows that our425

method has the best reported scores for tests on known and unknown subjects.
In this case the performance of pre-trained humans for pitch estimation on
unknown subjects (59%) is lower than our score (60.93%).

4.2. Annotated Facial Landmarks in the Wild

The AFLW dataset [33] provides a collection of 21997 annotated images430

gathered from an image hosting website. The dataset contains a large variety of
appearances (age, ethnicity, occlusions, expressions, etc), lighting and environ-
mental conditions for both genders (56% female, 44% male). Images compatible
with the datasets are shown in Figure 11. As reported by the authors the ratio
of non-frontal faces (66%) is higher than in other databases. The head pose is435

estimated from 21 manually annotated landmarks using the POSIT algorithm
[38].

Different methods have been tested on this dataset [39, 40, 15, 41, 34]. To
compare our work with the others we used the data reported in [15], where
the authors describe the performance in terms of MAE for all of these methods,440

although limited to the yaw angle. The accuracy has been measured by dividing
the range [−90◦, 90◦] into steps of 15◦, and it is intended as the percentage of
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Figure 5: Comparison of different optimisers (trained on network A) for the estimation of the
pitch angle on the Prima dataset.

Figure 6: Comparison of different optimisers (trained on network A) for the estimation of the
yaw angle on the Prima dataset.
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Figure 7: Comparison of the performances of the four networks trained with the Adam opti-
miser in pitch and yaw estimation of unknown subjects (Prima dataset). The STD has been
shrunk by a factor of two for graphical reason.

Figure 8: Representation of the confusion tables for pitch (left) yaw angle (right) of the best
architecture (A) on unknown subjects (Prima dataset). Each row of the tables represents the
instances in a predicted class while each column represents the instances in an actual class.
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Figure 9: Performance of the best architecture (A) in terms of RMSE (degrees) on the training
and validation set for the estimation of the pitch angle on the Prima dataset (unknown subjects
test).

Figure 10: Performance of the best architecture (A) in terms of RMSE (degrees) on the
training and validation set for the estimation of the yaw angle on the Prima dataset (unknown
subjects test).
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Figure 11: This figure represents a collection of images which are compatible with the AFLW
and the AFW datasets (the licenses do not allow publishing the original images). The AFLW
and the AFW datasets contain a large variety of appearances (age, ethnicity, occlusions,
expressions, etc), lighting and environmental conditions for both genders.

images within ±15 degrees of error. In our measurement of the yaw accuracy
we used the same metric to enable a comparison with these works.

4.2.1. Methods445

In this experiment we manipulated two factors: network type and optimiser.
The experiment was divided into two phases:

1. Optimiser selection. In the first phase we used a standard network to select
the best optimiser for this dataset. We trained the LeNet-5 [35] using the
four optimisers described in Section 3.3 plus SGD and SGD with momentum.450

2. Network selection. In the second phase we used the optimiser selected pre-
viously for finding the best architecture among the four previously described
(Fig. 3).

The AFLW dataset is extremely challenging because the distribution of poses
is not uniform. Roll has a mean and standard deviation of 1.07± 14.04 degrees,455

pitch −8.1 ± 13.4 degrees, and yaw 1.91 ± 41.8 degrees. Because of this asym-
metrical distribution it is difficult to uniformly map the angles in a continuous
interval without losing precision. For this reason we decided to take only images
above and below 2.698 standard deviations (1.5 the interquartile range of the
lower and higher quartile). The final distribution contained poses in the follow-460

ing ranges: roll=[−25◦, 25◦], pitch=[−45◦, 45◦], yaw=[−100◦, 100◦]. To further
compensate for the high variability in the angle distribution, we decided to use
the hyperbolic tangent activation function. Using the hyperbolic function the
output of the networks was constrained to within the range [−1, 1] instead of
[0, 1]. We considered only faces with a bounding box greater or equal to 64×64465

pixels. In total we discarded very few images (less than 5%) because the mean
and standard deviation of the bounding boxes was 300 ± 343 pixels, with 84%
of the samples distributed between 110 and 647 pixels. In the first phase we
trained the networks for 20000 epochs and in the second phase for 30000 (mini-
batches of size 64). In both phases we used dropout whit p = 0.5. In the second470

phase we decided to extend the number of epochs to 30000 because the training
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was much faster compared to the Prima dataset (e.g. 8.0 vs 18.75 hours for
network A). Training the network for more epochs generally leads to stabler
solutions and it is recommended when using dropout without time constraint
[22].475

We applied a five-fold cross-validation procedure to test our networks on
the dataset. After randomly dividing the dataset into five folds, we trained the
models on four of the five folds and we tested them on the remaining one. The
procedure was repeated five times, independently testing the model on each
one of the five folds. The mean of the five tests was considered to be the final480

score. The total number of images included in each one of the five folds was
16696, whereas the number of images left for the test was 4173. To test the
classification accuracy we split the yaw poses range [−100◦, 100◦] into different
categories using steps of 15◦. The accuracy is intended as the percentage of
images with ±15 degrees error. This measure is in line with the one used in485

[15] and makes it possible to compare the results obtained with the different
methods reported in that article. To have more reliable results we took the
mean of the five folds.

The hyper-parameters selection followed the same methodology described
in Section 4.1.1. The training of roll, pitch and yaw for a single experimental490

condition (20000 epochs) took 8.0 hours on the smallest architecture (A) and
9.8 hours on the largest architecture (D).

4.2.2. Results

The results for the first phase (optimiser selection) are reported in Table
3. The results show that the RMSProp had the lowest reported MAE for roll,495

pitch and yaw (4.4 ± 4.35, 7.15 ± 6.0, 11.04 ± 10.86). As it is possible to see
in Figure 12 the RMSProp had the fastest convergence rate and it reached the
lowest loss values.

The results for the second phase (network selection) are reported in Figure
13. The architecture B had the lowest MAE (4.15±3.87, 6.8±5.64, 9.51±9.21).500

Mapping the continuous output in three discrete categories for roll, nine for
pitch and 13 for yaw, we were able to interpret the results in terms of classifi-
cation. The accuracy for roll, pitch and yaw was originally 76.55%, 57.68% and
48.55%. If we consider an error of ±15◦ the accuracy drastically increases to
99.66%, 97.24% and 92.47%. To better visualise the accuracy we report in Fig-505

ure 14 the confusion table of the best network (second architecture, RMSProp
optimiser) for roll, pitch and yaw classification.

Similarly to what we did for the Prima dataset, we investigated the presence
of overfitting in a separate phase. We trained the best architecture using RM-
SProp on the five-fold test and we generated a validation set randomly picking510

50% of the images from the test fold. We monitored the RMSE for both training
and validation set. The results for the yaw estimation are reported in Figure 15
and represent the mean RMSE for each one of the five folds in 20000 epochs.

The comparison with other methods (Tab. 4) shows that CNNs perform
better than any other algorithm in terms of MAE and accuracy.515
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Figure 12: Comparison of the convergence speed between the six optimisers used to train
architecture A for yaw estimation on the AFLW dataset. The loss values are the mean of the
five fold.

Figure 13: Comparison in term of MAE between four architectures for roll pitch and yaw
using the RMSProp optimiser on the AFLW dataset. The STD has been shrunk by a factor
of two for graphical reason.
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Figure 14: Representation of the confusion tables for roll (left), pitch (centre) and yaw (right)
of the best architecture (B) trained with the RMSProp optimiser on the AFLW dataset. Each
row of the tables represents the instances in a predicted class while each column represents
the instances in an actual class.

Figure 15: Performance of the best architecture (A) in terms of RMSE (degrees) on the
training and validation set for the estimation of the yaw angle on the AFLW dataset.
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4.3. Annotated Face in the Wild

The AFW dataset is a benchmark proposed in [34] to test the performance
of face detection and head pose estimation methods. Similarly to the AFLW
dataset, the AFW is composed of images sampled from social networks. It
contains 205 images with 468 faces. Most of the images contain cluttered back-520

grounds with large variations in both face viewpoint and appearance (age, oc-
clusion, expression, etc). Each face is labeled with a bounding box, 13 discrete
viewpoints (range [−90◦, 90◦]) along pitch and yaw directions, and three discrete
viewpoints along the roll direction (left, centre, right). This dataset differs from
similar collections in its annotation of multiple, non-frontal faces in a single525

image. Pictures compatible with this dataset are shown in Figure 11. Given
the low number of images this dataset is generally used only for testing [15, 34].
In our case we used the AFW dataset to test the best architectures trained on
the AFLW dataset. In this way we have one more in-the-wild benchmark for
comparing our work with other approaches.530

4.3.1. Methods

In this experiment we used the whole AFLW dataset (20869 faces) to train
the architecture B. The network was trained for 30000 epochs. We used the
RMSProp optimiser with the same hyper-parameters as used in the previous
experiment: α = 0.001 and γ = 0.9. Each face presented in the images was535

cropped and resized to 64× 64 pixels. We removed smaller images (only five in
total). The trained network was tested on the AFW dataset. To measure the
network performance we used the average of five learning cycles. The CNN was
initialised five times with random weights, trained on the AFLW dataset and
tested on the AFW dataset. The average of the five MAEs has been used as540

the final score.

4.3.2. Results

We obtained an MAE and STD of 16.73± 17.17 and an accuracy of 32.96%
which reaches 75.29% when considering an error of ±15◦. This is the best score
ever reported on this dataset. The comparison of CNNs with other methods is545

reported in Table 4. We did some additional tests augmenting the data in the
AFLW dataset by horizontal flipping. These experiments did not lead to any
major improvement in the final performance.

4.4. Discussion

We now detail the results achieved. The first phase of each experiment550

consisted of the optimiser selection. The results on the Prima dataset show the
superiority of Adam on the other methods. The use of adaptive methods has
been extremely important also for in-the-wild datasets where they significantly
outperform SGD. In the AFLW dataset the RMSProp had the lowest reported
MAE and the highest accuracy. It must be pointed out that in the last epochs555

the SGD with momentum reaches similar loss values of Adam and RMSProp,
however the results in terms of MAE are higher. We hypothesise that the
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flexibility of Adam and RMSProp allowed exploring the space better than SGD
with momentum, especially because of the high variability of the input features.
Another advantage of the adaptive methods is the convergence speed. As it is560

possible to observe from Figures 5, 6 and 12, Adam and RMSProp converge to
a very low loss value during the first epochs.

The second phase of the experiments consisted of the architecture selection.
In the Prima dataset, comparing architecture A and its deeper counterpart (B)
we see that the second architecture had an highest MAE for pitch (+0.92◦) and565

yaw (+0.66◦) estimation. The same effect has been observed between network
C and D (+2.54◦,+0.81◦). We can conclude that adding another convolutional
layer or adding more parameters did not lead to any improvement. The reasons
could be the small size of the Prima dataset and the controlled environment
where the pictures have been taken. In the AFLW dataset, comparing architec-570

ture A with architecture B we can see that the second architecture had lowest
MAEs for roll, pitch and yaw (−0.15◦,−0.18◦,−1.38◦). Augmenting the num-
ber of parameters did not lead to any improvement. In this case having an
additional convolutional layer made a significant difference, and we can con-
clude that estimating the head pose in unconstrained datasets requires more575

complex architectures.
In a separate phase we investigated the presence of overfitting during the

training. In the Prima dataset we monitored the RMSE of the best architecture
trained with the Adam optimiser for pitch (Fig. 9) and yaw (Fig. 10). In both
cases the RMSE on the validation set decreased stably without significantly580

diverging from the training error. This result seems to indicate that there is an
extremely low overfitting and that the CNN has a good generalisation ability
for unknown subjects. In the AFLW dataset we observed the RMSE of the
best architecture for the yaw prediction 15. Also in this case the validation
error decreased stably in accordance with the training curve meaning that the585

network could effectively generalise to unseen data. Comparing the RMSE of
the Prima and AFLW datasets it is possible to notice that in the AFLW the
gap between training and validation is reduced thanks to the large amount of
images available.

We stated in the introduction that the use of nonlinear regression methods590

can tolerate systematic errors in the training set. Our experimental results
confirm this statement. The accuracy of CNNs is higher than any other method
meaning that the networks can grab the general rules and are not heavily affected
by mislabelling. To visualise the accuracy we reported the confusion tables as
heatmaps for both Prima (Fig. 8) and AFLW (Fig. 14) datasets. The darker595

cells are disposed along the main diagonal, meaning that the prediction has a
high accuracy with false positives constrained to within the proximity of the
correct category. The main difference between Prima and AFLW is in the
prediction of values which are close to ±90◦. The reason for this difference is
the AFLW dataset does not have a uniform distribution and values distant from600

the mean are very limited.
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5. Conclusions

In this article we introduced the use of dropout and adaptive gradient meth-
ods for head pose estimation with CNNs. Our approach is significantly different
from previous research [18, 20, 21, 17], and show how using the most recent605

deep learning techniques leads to the state-of-the-art in constrained and un-
constrained datasets. Our method should be considered as part of a broader
system, in particular it can be used in conjunction with a face detector. We
implemented the system in Python using TenworFlow [4] and OpenCV [42]. We
used the Viola-Jones object detection framework [43] as a face detector and two610

CNNs of type B trained on the AFLW dataset as head pose estimator (pitch and
yaw). We acquired camera frames with a resolution of 640×480 from a commer-
cial webcam, and then we isolated the faces using the Viola-Jones algorithm.
Finally we gave as input the isolated faces to the CNNs obtaining the head pose.
The whole system runs at 15 frames per second on a standard laptop (intel core615

i5, 8 GB RAM) without the use of a GPU. It must be pointed out that an
inadequate face detector can be a significant bottleneck. In our case removing
the face detector from the loop allows executing the head pose estimation at 20
frames per second. Going to the real-world is not straightforward and different
problems can arise. The major problem we experienced during our tests was620

the increasing in pose estimation errors when the face detector returned a frame
which was not well centred on the subjects face. In this case we found useful to
train the networks on an augmented version of the AFLW dataset, where the
centre of the frame was randomly shifted in one of four directions.

Although our approach is highly competitive, it can be further improved.625

Other factors can play an important role as pointed out by recent literature. In
our opinion future research should particularly focus on the impact of weight
initialization [44] and sample selection [45]. Moreover the results can be further
improved once in-the-wild datasets with more images and an extended range of
poses are available.630
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Table 1: In this table we report the results obtained on the Prima dataset for leave-one-out
(unknown subjects) test using different optimisers. These results have been obtained training
the architecture A for 20000 epochs (18.75 hours). The results are in terms of MAE (accuracy)
with MAE expressed in degrees and Accuracy expressed in percentage. The best scores are
in bold.

Optimiser Pitch Yaw
Adadelta [29] 20.71(35.3) 13.7(35.23)
Adagrad [28] 12.57(53.69) 9.23(54.73)

Adam [31] 10.71(60.93) 7.74(62.33)
RMSProp [30] 10.75(57.67) 8.30(58.92)

SGD 12.87(52.11) 9.06(56.06)
SGD (Momentum) 13.26(49.35) 8.66(56.81)

Table 2: In this table we compare the results of our method with the result obtained by
other authors on the Prima head pose dataset. These results have been obtained training
architecture A for 20000 epochs on both unknown (18.75 hours) and know (4.2 hours) test
with the Adam optimiser. The results are in term of MAE(accuracy), with MAE expressed
in degrees and Accuracy expressed in percentage. The best scores are in bold.

Unknown Subjects Known Subjects
Method Pitch Yaw Pitch Yaw

Human Performance [37] 12.6(48) 11.9(42.4) − −
Human Performance (training) [37] 9.4(59) 11.8(40.7) − −

Locally Embedded Analysis [14] − − 17.44(50.61) 15.88(45.16)
High-order SVD [14] − − 17.97(54.84) 12.9(49.25)

PCA [14] − − 14.98(57.99) 14.11(55.2)
Neural Network [36] − − 12.77(52.1) 12.3(41.8)

Large Margin Likelihoods [46] − − 10.5 9.1
Associative Memories [37] 15.9(43.9) 10.3(50.04) 10.1(61.7) 8.5(60.8)

Steerable Filters [47] 13.8 11.0 12.4 9.6
Steerable Filters (manual) [47] 11.4 9.97 10.1 8.7

CNNs [our] 10.57(61.4) 7.74(62.33) 8.06(73.91) 6.93(66.6)

Table 3: In this table we report the results obtained on the AFLW dataset for the five-fold
cross validation test. These results have been obtained training the architecture A for 30000
epochs (14.6 hours). The results are in terms of MAE(accuracy). MAE is expressed in degrees
and Accuracy is expressed in percentage. The best scores are in bold.

Optimiser Roll Pitch Yaw
Adadelta [29] 6.26(22.2) 9.98(42.67) 21.87(22.19)
Adagrad [28] 5.27(69.23) 8.24(51.29) 17.83(28.8)

Adam [31] 4.81(72.41) 7.78(53.49) 13.5(38.56)
RMSProp [30] 4.4(75.14) 7.15(55.98) 11.04(44.54)

SGD 7.0(58.64) 9.89(42.15) 22.98(22.23)
SGD momentum 6.17(63.19) 10.3(42.37) 21.31(22.52)
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Table 4: In this table we report the results in term of MAE (degrees) and accuracy (percentage)
obtained with different methods for the yaw estimation on the AFLW and the AFW datasets.
Our results have been obtained training the architecture B for 30000 epochs (14.6 hours)
with the RMSProp optimiser. MAE is expressed in degrees and Accuracy is expressed in
percentage. The best scores are in bold.

Method AFLW AFW
Mixture of trees [34] 46.54(15.72) 40.17(26.07)

Patch Based [39] 38.39(23.87) 41.67(21.36)
Feature Embedding [41] 33.01(32.82) 28.15(40.38)
Learning Manifold [40] 16.31(63.13) 18.26(58.33)

Approximate View Manifold [15] 17.48(58.05) 17.2(58.33)
CNNs [our] 9.51(92.47) 16.73(75.29)
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