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Abstract – Ultrasonic oscillating temperature sensors 

(UOTSes), in distinction to conventional temperature 

sensors, feature almost negligible settling time. This 

property can be useful for detecting malfunctions, failures 

and misuses of heat exchangers. However, most exchangers 

handle substantial thermal masses, which obscure the 

detection of any temperature changes. 

We compared the responsiveness of conventional 

DS18B20 sensors and an UOTS to the change in the 

temperature gradient of over 3.5 kg of water using a 

posteriori records. Temperature inflection points were 

estimated by extending the curves for separate distinct 

heating and cooling intervals that fit best and finding their 

interception. For the UOTS, the interception occurred about 

100 seconds sooner, making it a potential candidate for 

detecting heat exchangers’ irregularities. 
Keywords – temperature sensing, ultrasonic oscillating 

temperature sensors, detecting temperature inflection points 

I. INTRODUCTION  

Sensing temperature is essential for the appropriate 
control of industrial processes in many industries (e.g., in 
the food and petrochemical industries) and domestic 
appliances (e.g., domestic heaters and refrigerators). The 
world market of temperature sensors was estimated to be 
worth over US $5 billion in 2016 [1]. Conventional 
sensors consist of an encased sensing element that needs 
to be brought to thermal equilibrium with the environment 
before taking any measurements. The typical settling 
times of these sensors are in the range of several seconds, 
which introduces unwelcome lag when monitoring 
processes of interest. By their very operating principle, 
conventional sensors sense temperature at a single point 
only. For this reason, many sensors need to be procured, 
installed, wired, serviced, and interrogated if the average 
temperature in a process vessel or industrial freezer is to 
be controlled or maintained. 

In contrast, UOTSes sense temperatures based on the 
fact that the velocity of ultrasound depends upon the 
temperature in the medium of interest. This velocity 
ranges from hundreds of meters per second for gases to  

several kilometres per second for liquids and solids, 
making it possible to interrogate substantial ultrasound 
pathways at once with no settling time at all. 

We are developing UOTSes that can be realised at a 
cost commensurate with the cost of conventional sensors 
(Table I, [10]).  

 
TABLE I 

PREVIOUS UOTS DEVELOPMENT 

Refe
-

rence 

UOTS 
center 
fre-

quency 

Approx
i-mate 
sensiti-

vity 

Length 
of the 
path-
way  

Comments 

[2] 
 

330 
kHz 

280 
Hz/K 

0.03 m Consistency of UOTS 
output frequencies vs. 

temperature at decreasing 
temperatures was reported 

[3] 
 

25 kHz 40 
Hz/K 

0.19 m Different start up 
frequencies from the same 

UOTS in different 
experiments were observed 

[4] 
 

29 kHz Tilt 
sensor 

0.05 m Reliable way to measure 
UOTS output frequency  

with any required 
resolution was presented 

[5] 
 

22 kHz 50 
Hz/K 

0.1 m Implementation options for 
the electronic driver 

(including PSoC1*) were 
discussed 

[6] 
 

25 kHz 25 
Hz/K 

0.1 m Comparison of ultrasonic 
thermometer architectures 

was conducted 

[7] 
 

46 kHz 60 
Hz/K 

0.1 m Use of a UOTS for 
overnight measurements 
and observed hysteresis 

were reported 

[8] 
 

25 kHz 20 
Hz/K 

0.1 m Simultaneous use of two 
UOTS for the same 

process, modular design of 
the electronic driver, and 
thermal hysteresis for the 

recorded data were 
discussed 

[9] 
 

27 kHz 30 
Hz/K 

0.1 m Differential temperature 
measurement using two 

UOTS was reported 

*PSoC1 refers to the programmable systems on chip series 1 device, 
which is a highly versatile electronic part manufactured by Cypress 
Semiconductor. 



 

 

UOTSes consist of a pair of ultrasonic transducers 
placed inside a positive feedback loop (Fig.1). 

 
Practical temperature control of most heat exchangers 

is complicated by their substantial thermal mass. For this 
reason, a heater, after being switched off, will continue to 
heat the reservoir for some time until it reaches thermal 
equilibrium with the reservoir. Detecting the heater’s 
failure is only possible after some time lag that might 
depend on the operating principle of the temperature 
sensors used. 

In this paper, we compare the responsiveness of 
conventional DS18B20 sensors to a temperature inflection 
point to the responsiveness of an UOTS, assessed from a 

posteriori experimental data. 

II. EXPERIMENTAL SETUP AND PROCEDURE 

The experiment was conducted by heating/cooling a 
plastic cylinder containing over 3.5 kg of water through 
air convection. This cylinder was equipped with six 
DS18B20 and one UOTS. First, the cylinder was placed 
into a thermal chamber with a heater that was turned on 
for a period of time (heating stage) and then was switched 
off (cooling stage). During the heating stage, the thermal 
chamber gained the same amount of energy over the same 
period of time, which should be possible to approximate 
by determining the linear dependence of the temperature 
versus time. At the second stage of the experiment, natural 
cooling should have obeyed Newton's law of cooling [11], 
and the chamber's temperature would be expected to 
exponentially decrease over time. After recording readings 
from all the sensors over the course of the experiment, we 
approximated these sensor readings separately for the 
heating and cooling stages by best fit curves. The 

interceptions of the best fit curves gave estimates for the 
temperature inflection points. 

Fig. 2, left, presents the average temperature readings 
from the conventional sensors. The recorded output UOTS 
frequencies are plotted in Fig. 3, left. These frequencies 
were further processed to eliminate the intermittent 
deviations of the output frequency from the smooth, long-
term curve as shown in the centre of Fig. 2. 

III. ESTIMATION OF THE TEMPERATURE INFLECTION 

POINTS FORM THE RECORDED DATA 

Suitable heating and cooling intervals, where the 
readings of all the sensors changed steadily, were selected 
first. Because ultrasonic and temperature data were 
collected at different sampling rates, these intervals differ 
slightly as shown in the centre graphs of Fig.2 and Fig.3. 
These differences should not have notably affected the 
curves, as they are fitted over substantial time intervals. 
The parameters of the best fit curves for both the heating 
and cooling stages were independently calculated using 
the function fit of MATLAB. 

The best fit interpolation curves for the average 
temperature were found to be linear (heating) and 
exponential (cooling) ones as expected.  When plotted, 
these curves matched the corresponding average 
temperature curve segments well (Fig. 2, centre), and 
their extensions intersected at around t=2955 s (Fig. 2, 
right). 

Approximating the UOTS output frequency curves 
required some additional considerations. An oscillator 
sustains steady state oscillations if it satisfies the 
Barkhausen criterion [12]: an UOTS must compensate for 
all the signal loop losses and provide zero end-to-end 
phase shift. The latter condition depends on the 
ultrasound TOF between the transducers (hence on the 
ultrasound velocity which depends on the temperature), 
making the UOTS feasible. Fig. 1 presents a block 
diagram for a UOTS, showing both the ultrasonic and 
electronic devices and the signal pathways relevant to the 
sensor’s operation. The phase condition can be written as 
follows: 
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where � is the ultrasound wavelength, 
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, c is the 

ultrasound velocity, l is the distance between the 
ultrasonic transducers, f is the UOTS output frequency 
and is the overall phase shift in the positive feedback 
loop.  

Assuming that, as the first order approximation, G, l, 
and � are all independent of the ambient temperature and 
the UOTS output frequency, the wavelength of the 
standing wave between the transducers should remain 
unchanged, despite any changes in the ultrasound 
velocity caused by the temperature. Hence, if the velocity 
changed by ��  due to some temperature change, the 



 

 

corresponding change in the UOTS frequency �� should 
satisfy the following relations: 
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The derivative can be estimated by using either seminal 

Del Grosso and Mader fifth order polynomial 
approximation [13] or the  considerably lighter limited 
applicability second order approximation proposed by 
Lubers and Graaff [14], 
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where T is expressed in degrees Celsius. 

The second order approximation seems appropriate here 
because of the temperature range of interest and the 
consideration of the electronic and mechanical 
components of the UOTS as being ideal. It follows that  
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Equation (4) stipulates that the UOTS output 

frequency depends on the temperature in a non-linear 
fashion, and the UOTS sensitivity depends on the ambient 
temperature and nominal UOTS operating frequency. 
Both of these conclusions were observed experimentally. 
The experimental UOTS output frequencies, recorded at 
the heating stage, were best approximated by a second 
order polynomial, while the output frequencies at the 
cooling states were best fit with an exponential curve. 
These curves intersected at around t = 2852 s (Fig. 3, 
right). Therefore, the UOTS data allowed for detecting the 
inflection point at approximately 100 s faster than the 
conventional sensor data a posteriori. 

IV. SUMMARY AND CONCLUSIONS 

Detecting heat exchanger irregularities can be 
complicated by the substantial thermal masses involved in 
the exchange process. We estimated the location of the 
detected temperature inflection points using a posteriori 

data recorded by both conventional temperature sensors 
and an UOTS. Suitable curves were fitted to distinct 
intervals of data related to the heating and cooling stages, 
and the curves’ interceptions were used to locate the 

temperature inflections. The temperature inflection point, 
estimated from the conventional sensors’ data, lagged by 
around 100 seconds compared to the point estimated from 
the UOTS data. This result supports the case for the 
application of UOTS for failure/malfunction/misuse 
detection in heat exchangers. 
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