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Playing Anonymous Games using Simple Strategies

Yu Cheng∗ Ilias Diakonikolas† Alistair Stewart‡

Abstract
We investigate the complexity of computing approxi-
mate Nash equilibria in anonymous games. Our main
algorithmic result is the following: For any n-player
anonymous game with a bounded number of strategies
and any constant δ > 0, an O(1/n1−δ)-approximate
Nash equilibrium can be computed in polynomial time.
Complementing this positive result, we show that if
there exists any constant δ > 0 such that an O

(
1/n1+δ)-

approximate equilibrium can be computed in polyno-
mial time, then there is a fully polynomial-time approx-
imation scheme (FPTAS) for this problem.

We also present a faster algorithm that, for
any n-player k-strategy anonymous game, runs in
time Õ

(
(n+ k)knk

)
and computes an Õ

(
n−1/3k11/3)-

approximate equilibrium. This algorithm follows from
the existence of simple approximate equilibria of anony-
mous games, where each player plays one strategy with
probability 1− δ, for some small δ, and plays uniformly
at random with probability δ.

Our approach exploits the connection between Nash
equilibria in anonymous games and Poisson multino-
mial distributions (PMDs). Specifically, we prove a
new probabilistic lemma establishing the following: Two
PMDs, with large variance in each direction, whose first
few moments are approximately matching are close in
total variation distance. Our structural result strength-
ens previous work by providing a smooth tradeoff be-
tween the variance bound and the number of matching
moments.

1 Introduction
Anonymous games are multiplayer games in which the
utility of each player depends on her own strategy, as
well as the number (as opposed to the identity) of other
players who play each of the strategies. Anonymous
games comprise an important class of succinct games
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— well-studied in the economics literature (see, e.g.,
[Mil96, Blo99, Blo05]) — capturing a wide range of
phenomena that frequently arise in practice, including
congestion games, voting systems, and auctions.

In recent years, anonymous games have attracted
significant attention in TCS [DP07, DP08, DP09, DP15,
GT15, CDO15, DDKT16, DKS16a], with a focus on
understanding the computational complexity of their
(approximate) Nash equilibria. Consider the family of
anonymous games where the number of players, n, is
large and the number of strategies, k, is bounded. It was
recently shown by Chen et al. [CDO15] that computing
an ε-approximate Nash equilibrium of these games is
PPAD-Complete when ε is exponentially small, even for
anonymous games with 5 strategies1.

On the algorithmic side, Daskalakis and Papadim-
itriou [DP07, DP08] presented the first polynomial-time
approximation scheme (PTAS) for this problem with
running time n(1/ε)Ω(k) . For the case of 2-strategies,
this bound was improved [DP09, DDS12, DP15] to
poly(n) · (1/ε)O(log2(1/ε)), and subsequently sharpened
to poly(n) · (1/ε)O(log(1/ε)) in [DKS16b]).

In recent work, Daskalakis et al. [DDKT16] and Di-
akonikolas et al. [DKS16a] generalized the aforemen-
tioned results [DP15, DKS16b] to any fixed number
k of strategies, obtaining algorithms for computing
ε-well-supported equilibria with runtime of the form
npoly(k) · (1/ε)k log(1/ε)O(k) . That is, the problem of
computing approximate Nash equilibria in anonymous
games with a fixed number of strategies admits an effi-
cient polynomial-time approximation scheme (EPTAS).
Moreover, the dependence of the running time on the
parameter 1/ε is quasi-polynomial – as opposed to ex-
ponential.

We note that all the aforementioned algorithmic re-
sults are obtained by exploiting a connection between
Nash equilibria in anonymous games and Poisson multi-
nomial distributions (PMDs). This connection – formal-
ized in [DP07, DP08] – translates constructive upper
bounds on ε-covers for PMDs to upper bounds on com-

1[CDO15] showed that computing an equilibrium of 7-strategy
anonymous games is PPAD-Complete, but 3 of the 7 strategies
in their construction can be merged, resulting in a 5-strategy
anonymous game.



puting ε-Nash equilibria in anonymous games (see Sec-
tion 2 for formal definitions). Unfortunately, as shown
in [DDKT16, DKS16a], this “cover-based” approach
cannot lead to qualitatively faster algorithms, due to
a matching existential lower bound on the size of the
corresponding ε-covers. In a related algorithmic work,
Goldberg and Turchetta [GT15] studied two-strategy
anonymous games (k = 2) and designed a polynomial-
time algorithm that computes an ε-approximate Nash
equilibria for ε = Ω(n−1/4).

The aforementioned discussion prompts the follow-
ing natural question: What is the precise approximabil-
ity of computing Nash equilibria in anonymous games?
In this paper, we make progress on this question by
establishing the following result: For any δ > 0, and
any n-player anonymous game with a constant num-
ber of strategies, there exists a polyδ(n) time algorithm
that computes an ε-approximate Nash equilibrium of
the game, for ε = 1/n1−δ. 2 Moreover, we show that the
existence of a polynomial-time algorithm that computes
an ε-approximate Nash equilibrium for ε = 1/n1+δ, for
any small constant δ > 0 – i.e., slightly better than
the approximation guarantee of our algorithm – would
imply the existence of a fully polynomial-time approx-
imation scheme (FPTAS) for the problem. That is, we
essentially show that the value ε = 1/n is the threshold
for the polynomial-time approximability of Nash equi-
libria in anonymous games, unless there is an FPTAS.
In the following subsection, we describe our results in
detail and provide an overview of our techniques.

1.1 Our Results and Techniques We study the
following question:

For n-player k-strategy anonymous games,
how small can ε be (as a function of n), so
that an ε-approximate Nash equilibrium can be
computed in polynomial time?

Upper Bounds. We present two different algo-
rithms (Theorems 1.1 and 1.2) for computing approx-
imate Nash equilibria in anonymous games. Both
algorithms run in polynomial time and compute ε-
approximate equilibria for an inverse polynomial ε above
a certain threshold.

Theorem 1.1. (Main) For any δ > 0, and any n-
player k-strategy anonymous game, there is a polyδ,k(n)
time algorithm that computes an (1/n1−δ)-approximate
equilibrium of the game.

2The runtime of our algorithm depends exponentially in 1/δ.
We remind the reader that the algorithms of [DDKT16, DKS16a]
run in quasi-polynomial time for any value of ε inverse polynomial
in n.

Theorem 1.2. For any n-player k-strategy anonymous
game, we can compute an Õ

(
n−1/3k11/3)-approximate

equilibrium in time Õ
(
(n+ k)knk

)
.

Prior to our work, for k > 2, no polynomial time ε-
approximation was known for any inverse polynomial ε.
For k = 2, the best previous result is due to [GT15] who
gave a polynomial-time algorithm for ε = Ω(n−1/4).

Overview of Techniques. The high-level idea of our
approach is this: If the desired accuracy ε is above a
certain threshold, we do not need to enumerate over
an ε-cover for the set of all PMDs. Our approach is
in part inspired by [GT15], who design an algorithm
(for k = 2 and ε = Ω(n−1/4)) in which all players use
one of the two pre-selected mixed strategies. We note
that for k = 2, PMDs are tantamount to Poisson Bi-
nomial distributions (PBDs), i.e., sums of independent
Bernoulli random variables. The [GT15] algorithm can
be equivalently interpreted as guessing a PBD from an
appropriately small set. One reason this idea succeeds
is the following: If every player randomizes, then the
variance of the resulting PBD must be relatively high,
and (as a result) the corresponding subset of PBDs has
a smaller cover.

Our quantitative improvement for the k = 2 case
is obtained as follows: Instead of enforcing players
to selected specific mixed strategies – as in [GT15]
– we show that there always exists an ε-approximate
equilibrium where the associated PBD has variance at
least Θ(nε). When ε = n−c for some c < 1, the variance
is polynomial in n. We then construct a polynomial-size
ε-cover for the subset of PBDs with variance at least
this much, which leads to a polynomial-time algorithm
for computing ε-approximate equilibria in 2-strategy
anonymous games.

The idea for the general case of k > 2 is simi-
lar, but the details are more elaborate, since the struc-
ture of PMDs is more complicated for k > 2. We
proceed as follows: We start by showing that there
is an ε-approximate equilibrium whose corresponding
PMD has a large variance in each direction. Our main
structural result is a robust moment-matching lemma
(Lemma 3.3), which states that the closeness in low-
degree moments of two PMDs, with large variance in
each direction, implies their closeness in total variation
distance. The proof of this lemma uses Fourier ana-
lytic techniques, building on and strengthening previ-
ous work [DKS16a]. As a consequence of our moment-
matching lemma, we can construct a polynomial-size
(ε/5)-cover for PMDs with such large variance. We then
iterate through this cover to find an ε-approximate equi-
librium, using a dynamic programming approach similar
to the one in [DP15].



We now provide a brief intuition of our moment-
matching lemma. Intuitively, if the two PMDs in ques-
tion are both very close to discrete Gaussians, then the
closeness in the first two moments is sufficient. Lemma
3.3 can be viewed as a generalization of this intuition,
which gives a quantitative tradeoff between the number
of moments we need to approximately match and the
size of the variance. The proof of Lemma 3.3 exploits
the sparsity of the Fourier transform of our PMDs, and
the fact that higher variance allows us to take fewer
terms in the Taylor expansion when we use moments to
approximate the logarithmic Fourier transform. This
completes the proof sketch of Theorem 1.1.

Our second algorithm (Theorem 1.2) addresses the
need to play simple strategies. Players tend to favor
simple strategies which are easier to learn and imple-
ment, even if these strategies might have slightly sub-
optimal payoffs [Sim82]. In addition, our algorithm is
significantly faster in this case. We build on the idea
of [GT15] to “smooth” an anonymous game by forcing
all the players to randomize. We prove that the per-
turbed game is Lipschitz and therefore admits a pure
Nash equilibrium, which corresponds to simple approx-
imate equilibria of a specific form in the original game:
Each player plays one strategy with probability 1 − δ
for some small δ, and plays other strategies uniformly
at random with probability δ. To prove that the per-
turbed game is Lipschitz, we make essential use of the
recently established multivariate central limit theorem
(CLT) in Daskalakis et al. [DDKT16] and Diakonikolas,
Kane and Stewart [DKS16a] to show that if we add more
noise (corresponding to δ = Θ(n−1/3)), the associated
PMD is sufficiently close to a discrete Gaussian.

Lower Bounds. When ε = 1/n, we can show
that there is an ε-approximate equilibrium where the
associated PMD has a variance at least 1/k in every
direction. Unfortunately, the PMDs in the explicit
quasi-polynomial-size lower bounds given in [DDKT16,
DKS16a] satisfy this property. Thus, we need a different
approach to get a polynomial-time algorithm for ε =
1/n or smaller.

In fact, we prove the following results, which states
that even a slight improvement of our upper bound in
Theorem 1.1 would imply an FPTAS for computing
Nash equilibria in anonymous games. It is important
to note that Theorem 1.3 applies to all algorithms, not
only the ones that leverage the structure of PMDs.

Theorem 1.3. For n-player k-strategy anonymous
games with k = O(1), if we can compute an O(n−c)-
approximate equilibrium in polynomial time for some
constant c > 1, then there is an FPTAS 3 for comput-

3A fully polynomial-time approximation scheme (FPTAS) is

ing (well-supported) Nash equilibria of k-strategy anony-
mous games.

Remark. As observed in [DDKT16], because there is
a quasi-polynomial time algorithm for computing an
(n−c)-approximate equilibrium in anonymous games,
the problem cannot be PPAD-Complete unless PPAD ⊆
Quasi-PTIME. On the other hand, we do not know how
to improve the quasi-polynomial-time upper bounds of
[DDKT16, DKS16a] when ε < 1/n.

Recall that computing an ε-approximate equilib-
rium of a two-player general-sum n×n game (2-NASH)
for constant ε also admits a quasi-polynomial-time al-
gorithm [LMM03]. Very recently, Rubinstein [Rub16]
showed that, assuming the exponential time hypothesis
(ETH) for PPAD, for some sufficiently small universal
constant ε > 0, quasi-polynomial-time is necessary to
compute an ε-approximate equilibrium of 2-NASH. It
is a plausible conjecture that quasi-polynomial-time is
also required for ε-Nash equilibria in anonymous games,
when ε = n−c for some constant c > 1. In particular,
this would imply that there is no FPTAS for comput-
ing approximate Nash equilibria in anonymous games,
and consequently the upper bound of Theorem 1.1 is
essentially tight.

2 Notation and Background
Anonymous Games. We study anonymous

games (n, k, {uia}i∈[n],a∈[k]) with n players labeled by
[n] = {1, . . . , n}, and k common strategies labeled by
[k] for each player. The payoff of a player depends on
her own strategy, and how many of her peers choose
which strategy, but not on their identities. When player
i ∈ [n] plays strategy a ∈ [k], her payoffs are given by a
function uia that maps the possible outcomes (partitions
of all other players) Πk

n−1 to the interval [0, 1], where
Πk
n−1 = {(x1, . . . , xk) | xj ∈ Z+ ∧

∑k
j=1 xj = n− 1}.

Approximate Equilibria. We denote by ∆S a
distribution on the set S. A mixed strategy is an element
of ∆[k], and a mixed strategy profile s = (s1, . . . , sn)
maps every player i to her mixed strategy si ∈ ∆[k].
We use s−i to denote the strategies of players other
than i in s.

A mixed strategy profile s is an ε-approximate Nash
equilibrium for some ε ≥ 0 iff ∀i ∈ [n],∀a′ ∈ [k],

E
x∼s−i

[
uia′(x)

]
≤ E
x∼s−i,a∼si

[
uia(x)

]
+ ε,

where x ∈ Πk
n−1 is the partition formed by n − 1 ran-

dom samples (independently) drawn from [k] according

an algorithm that runs in time poly(n, 1/ε) and returns an ε-
optimal solution, or in our context, returns an ε-approximate Nash
equilibrium.



to the distributions s−i. Note that given a mixed strat-
egy profile s, we can compute a player’s expected payoff
to precision ε in time poly(nk log(1/ε)) by straightfor-
ward dynamic programming, and hence throughout this
paper we assume that we can compute players’ payoffs
exactly given their mixed strategies.

Poisson Multinomial Distributions. A k-
Categorical Random Variable (k-CRV) is a vector ran-
dom variable supported on the set of k-dimensional ba-
sis vectors {e1, . . . , ek}. A k-CRV is i-maximal if ei is
its most likely outcome (break ties by taking the small-
est index i). A k-Poisson Multinomial Distribution of
order n, or an (n, k)-PMD, is a vector random variable
of the form X =

∑n
i=1Xi where the Xi’s are indepen-

dent k-CRVs. The case of k = 2 is usually referred to
as Poisson Binomial Distribution (PBD).

Note that a mixed strategy profile s = (s1, . . . , sn)
of an n-player k-strategy anonymous game corresponds
to the k-CRVs {X1, . . . , Xn} where Pr[Xi = ea] = si(a).
The expected payoff of player i ∈ [n] for playing pure
strategy a ∈ [k] can also be written as E

[
uia(X−i)

]
=

E
[
uia

(∑
j 6=i,j∈[n]Xj

)]
.

Let X =
∑n
i=1Xi be an (n, k)-PMD such that for

i ∈ [n] and j ∈ [k] we denote pi,j = Pr[Xi = ej ], where∑k
j=1 pi,j = 1. For m = (m1, . . . ,mk) ∈ Zk+, we define

the mth-parameter moments of X to be Mm(X) def=∑n
i=1
∏k
j=1 p

mj
i,j . We refer to ‖m‖1 =

∑k
j=1mj as the

degree of the parameter moment Mm(X).
Total Variation Distance and Covers.

The total variation distance between two distri-
butions P and Q supported on a finite domain A is
dTV(P,Q) def= maxS⊆A |P (S)−Q(S)| = (1/2)‖P −Q‖1.

If X and Y are two random variables ranging over
a finite set, their total variation distance dTV(X,Y ) is
defined as the total variation distance between their
distributions. For convenience, we will often blur
the distinction between a random variable and its
distribution.

Let (X , d) be a metric space. Given ε > 0, a subset
Y ⊆ X is said to be a proper ε-cover of X with respect to
the metric d : X 2 → R+, if for every X ∈ X there exists
some Y ∈ Y such that d(X,Y ) ≤ ε. In this work, we will
be interested in constructing ε-covers for high-variance
PMDs under the total variation distance metric.

Multidimensional Fourier Transform. For x ∈
R, we will denote e(x) def= exp(−2πix). The (continu-
ous) Fourier Transform of a function F : Z → C is the
function F̂ : [0, 1]k → C defined as F̂ (ξ) =

∑
x∈Zk e(ξ ·

x)F (x). For the case that F is a probability mass func-
tion, we can equivalently write F̂ (ξ) = Ex∼F [e(ξ · x)].

Let X =
∑n
i=1Xi be an (n, k)-PMD with pi,j

def=

Pr[Xi = ej ]. To avoid clutter in the notation, we will use
the symbol X to denote the corresponding probability
mass function. With this convention, we can write that
X̂(ξ) =

∏n
i=1 X̂i(ξ) =

∏n
i=1
∑k
j=1 e(ξj)pi,j .

3 Searching Fewer Moments: Theorem 1.1
In this section, we present a polynomial-time algorithm
that, for n-player anonymous games with bounded num-
ber of strategies, computes an ε-approximate equilib-
rium with ε = n−c for any constant c < 1. As a warm
up, we start by describing the simpler setting of two-
strategy anonymous games (k = 2). The main results
of this section is Theorem 1.1 that applies to general
k-strategy anonymous games for any constant k ≥ 2.

At a high level, we first prove the existence of ε-
approximate Nash equilibria in which the corresponding
PMDs have high variance and every player randomizes
(Lemma 3.1). We then use our robust moment matching
lemma (Lemma 3.3) to show that when two PMDs
have high variances, the closeness in their constant-
degree parameter moments implies their closeness in
total variation distance. The fact that matching the
constant-degree moments suffices allows us to construct
a polynomial-size (ε/5)-cover for set subset of all PMDs
with large variance. We then iterate through this cover
to find an ε-approximate equilibrium (Algorithm 2).

Lemma 3.1. For an n-player k-strategy anonymous
game, there always exists an ε-approximate equilibrium
where every player plays each strategy with probability
at least ε

k−1 .

Proof. Given an anonymous game G =
(n, k, {uia}i∈[n],a∈[k]), we smooth players’ utility
functions by requiring every player to randomize. Fix
ε > 0, we define an ε-perturbed game Gε as follows.
When a player plays some pure strategy a ∈ [k] in Gε,
we map it back to the original game as if she plays
strategy j with probability 1− ε, and plays some other
strategy a′ 6= a uniformly at random (i.e., she plays a′
with probability ε

k−1 ). Her payoff in Gε also accounts
for such perturbation, and is defined to be her expected
payoff given that all the players (including herself)
would deviate to other strategies uniformly at random
with probability ε.

Formally, let Xε(ej) denote the k-CRV that takes
value ej with probability 1− ε, and takes value ej′ with
probability ε

k−1 for each j′ 6= j. The payoff structure of
Gε is given by

u′ia (x) = (1− ε)E
[
uia(Mε(x))

]
+ ε

k−1

∑
a′ 6=a

E
[
uia′(Mε(x))

]
∀i ∈ [n], a ∈ [k], x ∈ Πk

n−1,



where Mε(x) =
∑
j∈[k] xjXε(ej) is an (n − 1, k)-PMD

that corresponds to the perturbed outcome of the
partition x ∈ Πk

n−1 of all other players.
Let s′ = (s′1, . . . , s′n) denote any exact Nash equi-

librium of Gε. We can interpret this mixed strategy
profile in G equivalently as s = (s1, . . . , sn), where
si = (1− kε

k−1 )s′i+ ε
k−11, where 1 = (1, . . . , 1). We know

that under s each player has no incentive to deviate to
the mixed strategies Xε(ej) for all j ∈ [k], therefore a
player can gain at most ε by deviating to pure strate-
gies in G, so s is an ε-approximate equilibrium with
si(j) ≥ ε

k−1 for all i ∈ [n], j ∈ [k].

Warm-up: The Case of k = 2 Strategies. For
two-strategy anonymous games (k = 2), if all the players
put at least ε probability mass on both strategies, the
resulting PBD is going to have variance at least nε(1−ε).
When ε = n−c for some constant c < 1, the variance is
at least Θ

(
n1−c) = nΘ(1). We can now use the following

lemma from [DKS16c], which states that if two PBDs
P and Q are close in the first few moments, then P
and Q are ε-close in total variation distance. Note that
without any assumption on the variance of the PBDs,
we would need to check the first O(log(1/ε)) moments,
but when the variance is nΩ(1), which is the case in our
application, we only need the first constant number of
moments to match.

Lemma 3.2. ([DKS16c]) Let ε > 0. Let P and Q
be n-PBDs with P having parameters p1, . . . , ps ≤
1/2 and p′1, . . . , p

′
s′ > 1/2, and Q having parameters

q1, . . . , qs ≤ 1/2 and q′1, . . . , q
′
s′ > 1/2. Suppose that

V = Var[P ] + 1 = Θ(Var[Q] + 1) and let C > 0 be
a sufficiently large constant. Suppose furthermore that
for A = C

√
log(1/ε)/V and for all positive integers ` it

holds

A`

(∣∣∣∣∣
s∑
i=1

p`i −
s∑
i=1

q`i

∣∣∣∣∣
+

∣∣∣∣∣∣
s′∑
i=1

(1− p′i)` −
s′∑
i=1

(1− q′i)`
∣∣∣∣∣∣
 <

ε

C log(1/ε)

(3.1)

Then dTV(P,Q) < ε.

Let ε = n−c. For Lemma 3.2 we have V ≥ nε(1− ε)

and A = Θ
(√

log(1/ε)/V
)

= O

(√
logn
n1−c

)
. The

difference in the moments of parameters of P and Q in
Equation (3.1) is bounded from above by n, so whenever
` > 2+2c

1−c , the condition in Lemma 3.2 is automatically
satisfied for sufficiently large n because

A`n = O

(
log`/2 n
n(1−c)`/2n

)
<

1
C · nc · c logn = ε

C log(1/ε) .

So it is enough to search over the first ` = Θ
(

1
1−c

)
moments when each player put probability at least
Ω(n−c) on both strategies. The algorithm for finding
such an ε-approximate equilibrium uses moment search
and dynamic programming, and is given for the case of
general k in the remainder of this section.

The General Case: k Strategies. We now
present our algorithm for n-player anonymous games
with k > 2 strategies and prove Theorem 1.1. The in-
tuition of the k = 2 case carries over to the general
case, but the details are more elaborate. First, we show
(Claim 3.1) that there exists an ε-approximate equilib-
rium whose corresponding PMD has variance (nε/k) in
all directions orthogonal to the vector 1 = (1, . . . , 1).
Then, we prove (Lemma 3.3) that when two PMDs
have such high variances, the closeness in their constant-
degree parameter moments translates to their closeness
in total variation distance. This structural result al-
lows us to build a polynomial-size cover for all PMDs
with high variance, which leads to a polynomial-time
algorithm for computing ε-approximate Nash equilibria
(Algorithm 2).

We first prove that when all the players put proba-
bility at least ε

k−1 on each strategy, the covariance ma-
trix of the resulting PMD has relatively large eigenval-
ues, except the zero eigenvalue associated with the all-
one eigenvector. The all-one eigenvector has eigenvalue
zero because the coordinates of X always sum to n.

Claim 3.1. Let X =
∑n
i=1Xi be an (n, k)-PMD and

let Σ be the covariance matrix of X. If pi,j = Pr[Xi =
ej ] ≥ ε

k−1 for all i ∈ [n] and j ∈ [k], then all eigenvalues
of Σ but one are at least nε

k−1 .

Proof. For any unit vector v ∈ Rk that is orthogonal
to the all-one vector 1, i.e.,

∑
j vj = 0 and

∑
j v

2
j = 1,

combining this with the assumption that pi,j ≥ ε
k−1 we

have,

Var[vTXi] = E
[(
vTXi − E

[
(vTXi)

])2]
=

n∑
j=1

pi,j

vj − n∑
j′=1

pi,j′vj′

2

≥ min
j
{pi,j} ·

1 + n

 n∑
j′=1

pi,j′vj′

2


≥ ε

k − 1 .

Therefore,

vTΣv = Var[vTX] =
n∑
i=1

Var[vTXi] ≥
nε

k − 1 .



So, for all eigenvectors v orthogonal to 1, we have
vTΣv = λvT v = λ ≥ nε

k−1 as claimed.

The following robust moment-matching lemma pro-
vides a bound on how close degree ` moments need to be
so that two (n, k)-PMDs are ε-close to each other, under
the assumption that n � k (the anonymous game has
many players and few strategies) and pi,j ≥ ε

k−1 (ev-
ery player randomizes). Lemma 3.3 allows us to build
a polynomial-size (ε/5)-cover for PMDs with high vari-
ance, and since we know that there is an ε-approximate
equilibrium with a high variance, we are guaranteed to
find one in our cover.

Lemma 3.3. Fix 0 < c < 1 and let ε = n−c. Assume
that n ≥ kΘ(k) for some sufficiently large constant in the
exponent. Let X, Y be (n, k)-PMDs with X =

∑k
i=1X

i,
Y =

∑k
i=1 Y

i where each Xi, Y i is an i-maximal PMD.
Let Σ and Σ′ denote the covariance matrices of X and
Y respectively. If all eigenvalues of Σ,Σ′ but one are at
least εn/k, and for ` ≤ 2+2c

1−c all the parameter moments
m of degree ` satisfy that∣∣Mm(Xi)−Mm(Y i)

∣∣ ≤ n−c.
Then, we have that dTV(X,Y ) ≤ ε.

Lemma 3.3 follows from the next proposition whose
proof is given in the following subsection.

Proposition 3.1. Let ε > 0. Let X, Y be (n, k)-
PMDs with X =

∑k
i=1X

i, Y =
∑k
i=1 Y

i where each
Xi, Y i is an i-maximal PMD. Let Σ and Σ′ denote the
covariance matrices of X and Y respectively, where all
eigenvalues of Σ and Σ′ but one are at least σ2, where
σ ≥ poly(k log(1/ε)). Suppose that for 1 ≤ i ≤ k, ` ≥ 1,
and for all moments m of degree ` with mi = 0, the
following holds for a sufficiently large constant C ′,∣∣Mm(Xi)−Mm(Y i)

∣∣ ≤ ε · σ`

C ′k+` · k3`/2+1 · logk+`/2(1/ε)

Then dTV (X,Y ) ≤ ε.

The proof of Proposition 3.1 exploits the sparsity of
the continuous Fourier transform of our PMDs, as well
as careful Taylor approximations of the logarithm of the
Fourier transform.

Proof. [Proof of Lemma 3.3 from Proposition 3.1] In
order to guarantee that dTV(X,Y ) ≤ ε, Proposition 3.1
requires the following condition to hold for a sufficiently
large constant C ′:

∀i ∈ [k], ` ≥ 1,
∣∣Mm(Xi)−Mm(Y i)

∣∣
≤ ε

k(C ′ log(1/ε))k ·
( √

εn/k

C ′k3/2 log1/2(1/ε)

)`
.

(3.2)

To prove the lemma, we use the fact that n � k and
essentially ignore all the terms except polynomials of n.
Formally, we first need to show that

ε

k(C ′ log(1/ε))k ·
( √

εn/k

C ′k3/2 log1/2(1/ε)

)`
≥ n−c, ∀` ≥ 1,

under the assumption that c < 1, ε = n−c and
n ≥ kO(k/(1−c)). After substituting ε = n−c, observe
that n1−c ≥ C ′2k4 logn, so the term inside the `-
th power is greater than 1. Thus, we only need to
check this inequality for ` = 1, which simplifies to
n1−c ≥ C ′2k+2k6(logn)2k and holds true.

In addition, we need to show that condition (3.2)
holds automatically for ` > 2+2c

1−c . This follows from the
fact that the difference in parameter moments is at most
n and n� k,

∀` > 2 + 2c
1− c ,

∣∣Mm(Xi)−Mm(Y i)
∣∣ ≤ n

≤ ε

k(C ′ log(1/ε))k

( √
εn/k

C ′k3/2 log1/2(1/ε)

)`
.

We recall some of the notations for readability
before we describe the construction of our ε-cover of
high-variance PMDs. We use X to denote a generic
(`, k)-PMD for some ` ∈ [n], and we denote pi,j =
Pr[Xi = ej ]. We use At ⊆ [`] to denote the set of
t-maximal CRVs in X, where a k-CRV is t-maximal
if et is its most likely outcome, and we use Xt =∑
i∈At Xi to denote the t-maximal component PMD

of X. For a vector m = (m1, . . . ,mk) ∈ Zk+, we
define mth parameter moment of Xt to be Mm(Xt) =∑
i∈At

∏k
j=1 p

mj
i,j . We refer to ‖m‖1 =

∑k
j=1mj as the

degree of Mm(X). We use S to denote the set of all
k-CRVs whose probabilities are multiples of ε

20kn .
Lemma 3.3 states that the high-degree parameter

moments match automatically, which allows us to im-
pose an appropriate grid on the low-degree moments to
cover the set of high-variance PMDs. The size of this
cover can be bounded by a simple counting argument:
We have at most kO( 1

1−c ) moments with degree at most
O( 1

1−c ), and we need to approximate these moments
for each t-maximal component PMDs, so there are at
most k · kO( 1

1−c ) = kO( 1
1−c ) moments Mm(Xt) that we

care about. We approximate these moments to preci-
sion n−c, and the moments are at most n, so the size of

the cover is
(
n
n−c

)kO( 1
1−c )

= nk
O(1/1−c) .

We define this grid on low-degree moments formally
in the following lemma. For every (`, k)-PMD X with
` ∈ [n], we associate some data D(X) with X, which
is a vector of the approximate values of the low-degree
moments Mm(Xt) of X.



Algorithm 1: GenerateData
Input : {Si}ni=1, ε > 0.
Output: The set of all possible data D of

(n, k)-PMDs X =
∑n
i=1Xi where

Xi ∈ Si.
D0 = {0};
for ` = 1 . . . n do

forall the D ∈ D`−1 do
forall the W ∈ S` do

Add D +D(W ) to D` if it is not in
D` already;
Keep track of an (`, k)-PMD whose
data is D +D(W );

end
end

end
return D = Dn;

Lemma 3.4. Fix 0 < c < 1 and let ε = n−c. Assume
that n ≥ kΘ(k) for some sufficiently large constant in the
exponent. The data D(W ) of a k-CRV W as follows:

D(W )m,t =


Mm(W ) rounded to

the nearest integer
multiple of n−c/n,

if W is
t-maximal.

0, otherwise.

For ` ∈ [n], we define the data of an (`, k)-PMD
X =

∑`
i=1Xi to be the sum of the data of its k-CRVs:

D(X) =
∑`
i=1D(Xi). The data D(X) satisfies two

important properties:

1. (Representative) If D(X) = D(Y ) for two (n, k)-
PMDs (or two (n − 1, k)-PMDs) X and Y , then
dTV(X,Y ) ≤ ε.

2. (Extensible) For independent PMDs X and Y , we
have that D(X + Y ) = D(X) +D(Y ).

Proof. The extensible property follows directly from the
definition of D(X). To see the representative property,
note that we round Mm(W ) to the nearest integer
multiple of n−c/n, so the error in the moments of W
is at most n−c/(2n). When we add up the data of an
(n, k)-PMD or (n−1, k)-PMD, the error in the moments
of each t-maximal component PMDs is at most n−c/2.
So if two PMDs X and Y have the same data, their
low-degree moments differ by at most n−c, and then by
Lemma 3.3 we have dTV(X,Y ) ≤ ε.

Our algorithm (Algorithm 2) for computing ap-
proximate equilibria is similar to the approach used

Algorithm 2: Moment Search
Input : An n-player k-strategy anonymous

game G, ε = n−c for some c < 1.
Output: An ε-approximate equilibrium of G.
Dn = GenerateData({Si = S}ni=1, ε/5);
Dn−1 = GenerateData({Si = S}n−1

i=1 , ε/5);
forall the D ∈ Dn do

Set Si = ∅ for all i;
forall the Xi ∈ S do

Let D−i = D −D(Xi);
if ∃YD−i ∈ Dn−1 with D(YD−i) = D−i
and Xi is a (3ε/5)-best response to YD−i
then

Add Xi to Si;
end

end
D′n = GenerateData({Si}ni=1, ε/5);
if D ∈ D′n then

return (X1, . . . , Xn) in D′n with
D (
∑n
i=1Xi) = D;

end
end

in [DP15] and [DKS16a]. We start by constructing
a polynomial-sized (ε/5)-cover of high-variance PMDs
(Algorithm 1), and then iterate over this cover. For each
element in the cover, we compute the set of (3ε/5)-best-
responses for each player, and then run the cover con-
struction algorithm again, but this time we only allow
each player to choose from her (3ε/5)-best-responses. If
we could reconstruct a PMD whose moments are close
enough to the one we started with, then we have found
an ε-approximate Nash equilibrium.

Recall that a mixed strategy profile for a k-strategy
anonymous game can be represented as a list of k-
CRVs (X1, . . . , Xn), where Xi describes the mixed
strategy of player i. Recall that (X1, . . . , Xn) is an ε-
approximate Nash equilibrium if for each player i we
have E

[
uiXi(X−i)

]
≥ E

[
uia(X−i)

]
− ε for all a ∈ [k],

where X−i =
∑
j 6=iXj is the distribution of the sum of

other players strategies.

Lemma 3.5. Fix an anonymous game G =
(n, k, {uia}i∈[n],a∈[k]) with payoffs normalized to
[0, 1]. Let (X1, . . . , Xn) and (Y1, . . . , Yn) be two lists
of k-CRVs. If Xi is a δ-best response to X−i, and
dTV(X−i, Y−i) ≤ ε, then Xi is a (δ + 2ε)-best response
to Y−i. Moreover, if (X1, . . . , Xn) is a δ-approximate
equilibrium, and dTV(Xi, Yi) + dTV(X−i, Y−i) ≤ ε for
all i ∈ [n], then (Y1, . . . , Yn) is a (δ + 2ε)-approximate
equilibrium.



Proof. Since uia(x) ∈ [0, 1] for all a ∈ [k] and x ∈ Πk
n−1,

we have that ∀i ∈ [n], a ∈ [k],∣∣E[uia(X−i)
]
− E

[
uia(Y−i)

]∣∣ ≤ dTV(X−i, Y−i).

Therefore, if dTV(X−i, Y−i) ≤ ε, and player i cannot
deviate and gain more than δ when other players play
X−i, then she cannot gain more than (δ + 2ε) when
other players play Y−i instead of X−i. The second
claim combines the inequality above with the fact that,
if player i plays Yi instead ofXi and the mixed strategies
of other players remain the same, her payoff changes by
at most dTV(Xi, Yi). Formally,∣∣E[uiXi(Z−i)]− E

[
uiYi(Z−i)

]∣∣ ≤ dTV(Xi, Yi),
∀k-CRV Xi, Yi,∀(n− 1, k)-PMD Z−i.

The next lemma states that by rounding an (ε/10)-
approximate equilibrium, we can obtain an (ε/5)-
approximate equilibrium where all the probabilities are
integer multiples of ε

20kn .

Claim 3.2. There is an (ε/5)-approximate Nash equi-
librium (X1, . . . , Xn), such that for all i ∈ [n] and
j ∈ [k], the probabilities pi,j = Pr[Xi = ej ] are mul-
tiples of ε

20kn , and also pi,j ≥ ε
10k .

Proof. We start with an (ε/10)-approximate Nash equi-
librium (Y1, . . . , Yn) from Lemma 3.1 with pi,j ≥ ε

10k ,
and then round the probabilities to integer multiples
of ε

10kn . We construct Xi from Yi as follows: for ev-
ery j < k, we set Pr[Xi = ej ] to be Pr[Yi = ej ]
rounded down to a multiple of ε

20kn and we set Pr[Xi =
ek] = 1 −

∑
j<k Pr[Xi = ej ] so the probabilities sum

to 1. By triangle inequality of total variation dis-
tance, for every i we have dTV(Xi, Yi) ≤ ε

20n and
dTV(X−i, Y−i) ≤ ε(n−1)

20n . An application of Lemma 3.5
shows that (X1, . . . , Xn) is an (ε/5)-approximate equi-
librium.

We are now ready to prove Theorem 1.1.

Proof. [Proof of Theorem 1.1] We show that for any n-
player k-strategy anonymous game, if both c > 0 and
k are constants, then there is a poly(n) time algorithm
that computes an ε-approximate equilibrium for ε =
1/n1−c. If n = kO(k) = O(1), we use the algorithm in
[DP07] which runs in time n(1/ε)Ω(k) = O(1). So for the
rest of the proof, we assume that n ≥ kΘ(k) as required
in Lemma 3.3 and 3.4, and prove that Algorithm 2
always outputs an ε-approximate Nash equilibrium, and
bound the running time.

We first show that the output (X1, . . . , Xn) is an
ε-approximate equilibrium. Recall that S is the set of

all k-CRVs whose probabilities are multiples of ε
20kn ,

and Si ⊆ S is the set of approximate best-responses
of player i. When we put Xi in Si, we checked
that Xi is a (3ε/5)-best response to YD−i , note that
D(YD−i) = D − D(Xi) = D(X−i), so by Lemma 3.4
dTV

(
X−i, YD−i

)
≤ ε/5 for all i. By Lemma 3.5, Xi is

indeed an ε-best response to X−i for all i.
Next we show the algorithm must always out-

put something. By Claim 3.2 there exists an (ε/5)-
approximate equilibrium X ′i with each X ′i ∈ S. If the al-
gorithm does not terminate successfully first, it eventu-
ally considersD(X ′). BecauseX ′−i is an (n−1, k)-PMD,
the algorithm can find some YD−i with D(YD−i) =
D(X ′)−D(X ′i) = D(X ′−i), and by Lemma 3.4 we have
dTV

(
X ′−i, YD−i

)
≤ ε/5 for all i. Since X ′i is an (ε/5)-

best response to X ′−i, Lemma 3.5 yields that X ′i is a
(3ε/5)-best response to YD−i , so we would add each X ′i
to Si. Then our cover construction algorithm is guaran-
teed to generate a set of data that includes D(X ′), and
Algorithm 2 would produce an output.

Finally, we bound the running time of Algorithm
2. Let N = O

(
nk

O(1/1−c)
)

denote the size of the (ε/5)-
cover for the high-variance PMDs. The cover can be
constructed in time O(n ·N · |S|) as we try to add one
k-CRV from S in each step. We iterate through the
cover, and for each element in the cover, we need to
find the subset Si ⊆ S of (3ε/5)-best responses for
player i, and then run the cover construction algorithm
again using only the best responses {Si}ni=1. So the
overall running time of the algorithm is O(nN |S|) ·(
poly(nk)|S|+O(nN |S|)

)
= nk

O(1/1−c) . When both
0 < c < 1 and k are constants, the running time is
polynomial in n.

3.1 Proof of Proposition 3.1 This subsection is
devoted to the proof of Proposition 3.1. For two
(n, k)-PMDs with variance at least σ2 in each direction,
Proposition 3.1 gives a quantitative bound on how close
degree ` moments need to be (as a function of ε, σ, k
and `, but independent of n), in order for the two PMDs
to be ε-close in total variation distance.

The proof of Proposition 3.1 exploits the sparsity
of the continuous Fourier transforms of our PMDs, as
well as careful Taylor approximations of the logarithm
of the Fourier transform. The fact that our PMDs have
large variance enables us to take fewer low-degree terms
in the Taylor approximation. For technical reasons, we
split our PMD as the sum of k independent component
PMDs, X =

∑k
i=1X

i, where all the k-CRVs in the
component PMD Xi is i-maximal. Because the Fourier
transform of X is the product of the Fourier transform
of Xi, we can just bound the pointwise difference



between the logarithm of Fourier transform of each
component PMD. One technicality is that since we have
no assumption on the variances of the component PMDs
Xi, their Fourier transforms may not be sparse, so it
is crucial that we bound this difference only on the
effective support of the Fourier transform of the entire
PMD.

We start by considering a set S that includes the
effective support of X (and Y when we show that the
means are close):

Lemma 3.6. Let X be an (n, k)-PMD with mean µ
and covariance matrix Σ, such that all the non-zero
eigenvalues of Σ is at least σ2 where σ ≥ poly(1/ε).
Let S be the set of points x ∈ Zk where (x − µ)T1 = 0
and

(x− µ)T (Σ + I)−1(x− µ) ≤ (Ck log(1/ε)) ,

for some sufficiently large constant C. Then, X ∈ S
with probability at least 1− ε/2, and

|S| =
√

det(Σ + I) ·O(log(1/ε))k/2.

Proof. Applying Lemma 5.2 of [DKS16a], we have
that (X − µ)T (Σ + I)−1(X − µ) = O(k log(k/ε))
with probability at least 1 − ε. The set of in-
teger coordinate points in this ellipsoid is the set
S. Note that |S| is equal to the volume of S′ ={
y ∈ Rk : ∃x ∈ S with ‖y − x‖∞ ≤ 1/2

}
, because S′

is the disjoint union of cubes of volume 1, one for each
integer point. But S′ is again contained in an ellip-
soid with (y − µ)T (Σ + I)−1(y − µ) = O(k log(k/ε)), so
|S| = Vol(S′) =

√
det(Σ + I) ·O(log(1/ε))k/2.

Next we show that X̂, the Fourier transform of X,
has a relatively small effective support. We fold the
effective support onto [0, 1]k to obtain the set T . We
use [x] to denote the additive distance of x ∈ R to the
closest integer, i.e., [x] = minx′∈Z |x− x′|.

Lemma 3.7. Let X be an (n, k)-PMD with mean
µ and covariance matrix Σ, such that all the
non-zero eigenvalues of Σ are at least σ2 where
σ ≥ poly(k log(1/ε)). Let S be as above. Let
X̂ be the Fourier transform of X. Let T

def={
ξ ∈ [0, 1]k : ∃ξ′ ∈ ξ + Zk with ξ′TΣξ′ ≤ Ck log(1/ε)

}
,

for some sufficiently large constant C. Then, we have
that

(i) For ξ ∈ T , and for all 1 ≤ i, j ≤ k, [ξi − ξj ] ≤
2
√
Ck log(1/ε)/σ.

(ii) Vol(T )|S| = O(C log(1/ε))k.

(iii)
∫

[0,1]k\T

∣∣∣X̂(ξ)
∣∣∣ dξ ≤ ε/(2|S|).

Lemma 3.7 is a technical generalization of Lemma
5.5 of [DKS16a]. Its proof is deferred to Appendix A.
This lemma establishes that the contribution to the
Fourier transform X̂ coming from points outside of T
is negligibly small. We then use the sparsity of the
Fourier transform to show that, if two PMDs have
Fourier transforms that are pointwise sufficiently close
within the effective support T , then the two PMDs are
close in total variation distance.

Lemma 3.8. Let X, Y , S, T be as above. If∣∣∣X̂(ξ)− Ŷ (ξ)
∣∣∣ ≤ ε(C ′ log(1/ε))−k for all ξ ∈ T and a

sufficiently large constant C ′, then dTV (X,Y ) ≤ ε.

Proof. For any x ∈ Zk, taking the inverse Fourier
transform, we have that Pr[X = x] =

∫
ξ∈[0,1]k e(−ξ ·

x)X̂(ξ)dξ and similarly Pr[Y = x] =
∫
ξ∈[0,1]k e(−ξ ·

x)Ŷ (ξ)dξ. Thus,

|Pr[X = x]− Pr[Y = x]|

=

∣∣∣∣∣
∫
ξ∈[0,1]k

e(−ξ · x)
(
X̂(ξ)− Ŷ (ξ)

)
dξ

∣∣∣∣∣
≤
∫
ξ∈[0,1]k

∣∣∣X̂(ξ)− Ŷ (ξ)
∣∣∣ dξ

=
∫
ξ∈T

∣∣∣X̂(ξ)− Ŷ (ξ)
∣∣∣ dξ +

∫
ξ∈[0,1]k\T

∣∣∣X̂(ξ)− Ŷ (ξ)
∣∣∣ dξ

≤ Vol(T ) · ε(C ′ log(1/ε))−k + ε

2|S|

≤ O(C log(1/ε))k

|S|
· ε(C ′ log(1/ε))−k + ε

2|S|

≤ ε

|S|
.

Since X and Y are outside of S each with probabil-
ity less than ε/2, we have that dTV (X,Y ) ≤ ε/2 +
1
2
∑
x∈S |Pr[X = x]− Pr[Y = x]| ≤ ε.

We now have all the ingredients to prove Propo-
sition 3.1. For two PMDs X and Y that are close in
their low-degree moments, we show that their Fourier
transforms X̂ and Ŷ are pointwise close on T , and then
by Lemma 3.8, X and Y are close in total variation
distance.

Proof. [Proof of Proposition 3.1] Let X, Y , S, T be as
above. Given Lemma 3.8, we only need to show that
∀ξ ∈ T ,

∣∣∣X̂(ξ)− Ŷ (ξ)
∣∣∣ ≤ ε(C ′ log(1/ε))−k.

Fix ξ ∈ T . We first examine, without loss of
generality, the Fourier transform X̂k of the k-maximal



component PMD. Let Ak ⊆ [n] denote the set of k-
maximal CRVs.

X̂k(ξ) =
∏

i∈Ak

k∑
j=1

e(ξj)pi,j

= e(|Ak|ξk)
∏

i∈Ak

(
1−

k−1∑
j=1

(1− e(ξj − ξk))pi,j)

)
= e(|Ak|ξk)

exp

(∑
i∈Ak

log

(
1−

k−1∑
j=1

(1− e(ξj − ξk))pi,j)

))
= e(|Ak|ξk)

exp

(
−
∑
i∈Ak

∞∑
`=1

1
`

(
k−1∑
j=1

(1− e(ξj − ξk))pi,j)

))
= e(|Ak|ξk) · exp− ∑

m∈Zk−1
+

(
‖m‖1
m

)
1
‖m‖1

Mm(Xk)
k−1∏
j=1

(1− e(ξj − ξk))mj



(3.3)

For notational convenience, we use Ψk
X to denote the

expression inside exp(·) on the last line of Equation
(3.3). A similar formula holds for the Fourier transform
X̂i and Ŷ i of other i-maximal PMDs, and we use
Ψi
X and Ψi

Y to denote the corresponding expressions
inside exp(·). Since the Fourier transform of a PMD is
the product of the Fourier transform of its component
PMDs, we have

∣∣∣X̂(ξ) − Ŷ (ξ)
∣∣∣ =

∣∣∣∣∣
k∏
t=1

X̂t(ξ)−
k∏
t=1

Ŷ t(ξ)

∣∣∣∣∣
=

∣∣∣∣∣e
(

k∑
t=1
|At|ξt

)
k∏
t=1

(
exp

(
Ψt
X

)
− exp

(
Ψt
Y

))∣∣∣∣∣
≤ 2π

k∑
t=1

∣∣Ψt
X −Ψt

Y

∣∣ ,
where the last inequality is due to e(

∑k
t=1 |At|ξt) = 1,

and |exp(a)− exp(b)| ≤ |a− b| if the real parts of a and
b satisfy Re(a),Re(b) ≤ 0.

So to prove that X̂(ξ) and Ŷ (ξ) are pointwise
close for all ξ ∈ T , it is enough to bound from
above 2π

∑k
t=1 |Ψt

X −Ψt
Y |. We use the fact that

|1− e(ξj − ξk)| = O([ξj − ξk]), and recall that [ξi−ξj ] ≤
2
√
Ck log(1/ε)/σ by Lemma 3.7. We also use the multi-

nomial identity
∑
m∈Zk−1

+ ,‖m‖1=`
(
`
m

)
= (k − 1)`. When

C ′ is a sufficiently large constant, we have∣∣∣X̂(ξ) − Ŷ (ξ)
∣∣∣

≤ 2π
k∑
t=1

∣∣Ψt
X −Ψt

Y

∣∣
= 2π

k∑
t=1

∑
m∈Zk−1

+

(‖m‖1
m

)
1
‖m‖1

∣∣Mm(Xt)−Mm(Y t)
∣∣ k−1∏
j=1

(1− e(ξj − ξk))mj


≤ 2π
∞∑
`=1

 (k − 1)`

`

(
O

(√
k log(1/ε)
σ

))`
·

k∑
t=1

max
m∈Zk−1

+ ,‖m‖1=`

∣∣Mm(Xt)−Mm(Y t)
∣∣

≤
∞∑
`=1

k`(C ′√k log(1/ε)
2σ

)`
k ·

εσ`

C ′k+` · k3`/2+1 · logk+`/2(1/ε)


=
∞∑
`=1

2−`ε(C ′ log(1/ε))−k

= ε(C ′ log(1/ε))−k.

4 Reductions: Proof of Theorem 1.3
In this section, we show that even a slight improvement
of our upper bound would imply an FPTAS for com-
puting (well-supported) Nash equilibria in anonymous
games (Theorem 1.3). It is a plausible conjecture that
assuming ETH for PPAD, there is no such FPTAS, in
which case our upper bound (Theorem 1.1) is essentially
tight.

Theorem 1.3 follows directly from the following two
lemmas. Lemma 4.1 converts an ε2

4n -approximate Nash
equilibrium into an ε-well-supported Nash equilibrium4,
by reallocating each player’s probabilities on strategies
with low expected payoffs to the best-response strategy
(first observed in [DGP09]). Lemma 4.2 then uses a
padding argument to show that, for ε-well-supported
Nash equilibrium, the question of whether there is a

4A mixed strategy profile s is a well-supported Nash equi-
librium iff ∀i ∈ [n], ∀a, a′ ∈ [k], we have Ex∼s−i

[
ui

a(x)
]
>

Ex∼s−i

[
ui

a′ (x)
]

+ ε =⇒ si(a′) = 0, i.e., players can only put
non-zero probability on ε-best-response strategies.



polynomial-time algorithm for ε = n−c is equivalent for
all constants c > 0.

Lemma 4.1. For any n-player game whose payoffs are
normalized to be between [0, 1], if we have an oracle for
computing players’ payoffs, we can efficiently convert
an ε2

4n -approximate equilibrium into an ε-well-supported
equilibrium.

Proof. Take an ε2

4n -approximate equilibrium of the
game. We call a strategy “good” for a player if the
strategy is an ε

2 -best response for the player, and we
call it “bad” otherwise. A player can put at most prob-
ability ε

2n on the “bad” strategies without violating the
ε2

4n -approximate equilibrium condition. We move all
the probabilities on “bad” strategies for all players to
(any one of) their best responses simultaneously. After
moving the probabilities, every player assigns non-zero
probabilities only to the “good” strategies. Since the
total probability we moved is at most ε

2 and the pay-
offs are in [0, 1], the previously “good” strategies ( ε2 -best
responses) are now ε-best responses.

Lemma 4.2. For n-player k-strategy anonymous games
with k = O(1), if an 1

nγ -well-supported equilibrium can
be computed in time O(nd) for constants γ, d > 0, then
there is an FPTAS for computing approximate-well-
supported Nash equilibria in anonymous games.

Proof. Let ε be the desired quality of the well-supported
equilibrium. If 1

nγ ≤ ε we are done, so we assume
n is smaller. We set n′ = (1/ε)1/γ , so that 1

n′γ = ε.
Given an n-player anonymous game G, we build an n′-
player anonymous game G′ as follows: we add n′ − n
dummy players, and give the dummy players utility 1
on strategy 1, and 0 on any other strategies so in any ε-
well-supported equilibria, the dummy player must all
play strategy 1 with probability 1. (Note that this
is only true for ε-well-supported Nash equilibrium; in
an ε-approximate Nash equilibrium, the dummy players
can put ε probability elsewhere.) We shift the utility
function of the actual players to ignore the dummy
players on strategy 1. Formally, the payoff structure
of G′ is given by:

• For each i > n,

u′ia (x) =
{

1 if a = 1
0 otherwise

• For each i ≤ n, we subtract the number of players
on strategy 1 by n′−n and then apply the original
utility function. We define φ : Zk → Zk as

φ(x1, . . . , xk) = (x1 − (n′ − n), x2, . . . , xk),

u′ia (x) =
{
uia(φ(x)) if x1 ≥ n′ − n
0 otherwise

Since ε = 1
n′γ , by assumption we can compute an ε-

well-supported equilibrium of G′ in time O(n′d), and
we can simply remove the dummy players to obtain an
ε-equilibrium of the original game G. The running time
is O(n′d) = poly(n, 1/ε) when γ = Θ(1).

Proof. [Proof of Theorem 1.3] Assume that we can com-
pute an O(n−c)-approximate equilibrium in polynomial
time for some constant c > 1. Let γ = c− 1, so we can
compute an O

( 1
n1+γ

)
-approximate equilibrium in poly-

nomial time. By Lemma 4.1, we can convert it into an
O
( 1
nγ/2

)
-well-supported equilibrium. Lemma 4.2 then

states that any polynomial-time algorithm that com-
putes a well-supported Nash equilibrium of an inverse
polynomial precision gives an FPTAS for computing
well-supported Nash equilibria in anonymous games.

5 Proof of Theorem 1.2
In this section, we present a faster algorithm that com-
putes an Õ

(
n−1/3k11/3)-approximate Nash equilibrium

in n player k strategy anonymous games. Note that this
algorithm always runs in polynomial time in the input
size, without assuming any relationship between n and
k.

Our approach builds on the idea of [GT15] to
“smooth” an anonymous game by forcing all the players
to randomize. We prove that the perturbed game is
Lipschitz and therefore admits a pure Nash equilibrium
(Lemma 5.1), which corresponds to simple approximate
equilibria of a specific form in the original game: Each
player plays one strategy with probability 1−δ for some
small δ, and plays other strategies uniformly at random
with probability δ. To prove the perturbed game is
Lipschitz (Proposition 5.1), we rely on the recently
established multivariate central limit theorem (CLT)
of [DDKT16, DKS16a] to show that for δ = Ω(n−1/3)
the associated PMD is close to a discrete Gaussian.

Recall that an anonymous game G =
(n, k, {uia}i∈[n],a∈[k]) is λ-Lipschitz if∣∣uia(x)− uia(y)

∣∣ ≤ λ‖x− y‖1,
∀i ∈ [n],∀a ∈ [k], ∀x, y ∈ Πk

n−1.

An approximate pure Nash equilibrium always exists in
Lipschitz anonymous games.

Lemma 5.1. ([DP15, AS13]) Every λ-Lipschitz
anonymous game with k strategies admits a (2kλ)-
approximate pure Nash equilibrium. Moreover, such an



approximate equilibrium can be found in time Õ(n+ k)
times the description size of the game.

We perturb the input game G to get another game
Gδ as follows. Let Xδ(ej) denote the k-CRV that takes
value ej with probability 1− δ, and takes value ej′ with
probability δ

k−1 for all other j′ 6= j. When a player plays
the strategy j in the perturbed game Gδ, it is as if she
is playing Xδ(ej) in the original game G. For example,
the strategy (1, 0, . . . , 0) in Gδ maps back to the mixed
strategy (1− δ, δ

k−1 , . . . ,
δ

k−1 ) in G.
By forcing all players to randomize, we increase

the uncertainty in the outcome of the game (i.e., the
variance of the resulting PMD), and thus making the
game “smoother”. As we will prove later, the perturbed
game Gδ is λ-Lipschitz for λ = Õ

(
k9/2
√
nδ

)
. It then follows

from Lemma 5.1 that there exists a (2kλ)-pure Nash
equilibrium of Gδ, which is a (δ + 2kλ)-mixed Nash
equilibrium of G. The next proposition formally defines
the payoff structure of Gδ, and bounds its Lipschitz
constant.

Proposition 5.1. Given an anonymous game
G = (n, k, {uia}i∈[n],a∈[k]) with payoffs normal-
ized to [0, 1], we define an anonymous game
Gδ = (n, k, {u′ia}i∈[n],a∈[k]) as follows,

∀i ∈ [n], a ∈ [k], x ∈ Πk
n−1,

u′ia (x) def= (1− δ) E
x′∼Mδ(x)

[
uia(x′)

]
+ δ

k − 1
∑
a′ 6=a

E
x′∼Mδ(x)

[
uia′(x′)

]
,

where Mδ(x) =
∑
j∈[k] xjXδ(ej) is an (n − 1, k)-PMD

that corresponds to the perturbed outcome of the parti-
tion x ∈ Πk

n−1. Then Gδ is Õ
(
k9/2
√
nδ

)
-Lipschitz.

We defer the proof of Proposition 5.1 to the next
subsection. We now show how Theorem 1.2 follows from
Proposition 5.1.

Proof. [Proof of Theorem 1.2] Proposition 5.1 shows
that Gδ is Õ

(
k9/2
√
nδ

)
-Lipschitz. By Lemma 5.1, there ex-

ists a (2kλ)-approximate pure Nash equilibrium in Gδ,
and as noted in [DP15], such an approximate equilib-
rium can be found in total number of bit operations that
is Õ(n+ k) times the description size of Gδ, by enumer-
ating pure strategy profiles and solving maximum flows
to match players to mixed strategies. Since we can com-
pute the payoff structure of Gδ in polynomial-time given
the input game G, the overall running time is polyno-
mial in the input size.

We now bound the quality of the approximate Nash
equilibrium. Note that a (2kλ)-pure equilibrium of Gδ
is a (δ + 2kλ)-mixed Nash equilibrium of G, since an ε-
equilibrium in Gδ means that players cannot gain more
than ε by deviating to the mixed strategies of the form
Xδ(ej) = (1− δ)ej + δ

k−1 (1− ej), so they gain at most
(δ + 2kλ) by deviating to any ej . Because changing
what a player is doing δ fraction of the time can change
her payoff by at most δ. Therefore, we can compute
an (δ+ 2kλ) = Õ

(
δ + k11/2

√
nδ

)
-equilibrium of the original

game G in polynomial-time for any δ > 0. Finally,
setting δ = k11/3

n1/3 , we get an Õ
(
k11/3

n1/3

)
-approximate

Nash equilibrium.

5.1 Proof of Proposition 5.1 This section is de-
voted to the proof of Proposition 5.1. We will make use
of the following two results. The first lemma is the mul-
tivariate central limit theorem from [DKS16a], which
states that if an (n, k)-PMD X has high variance in all
directions orthogonal to the all ones vector 1 (its vari-
ance along 1 is 0), then the projection of X on the first
(k − 1) coordinates is close to a discretized Gaussian
distribution with the same mean vector and covariance
matrix.

Lemma 5.2. ([DKS16a]) Let X be an (n, k)-PMD,
and X ′ be a (k−1)-dimensional random variable that is
the projection of X onto its first k − 1 coordinates. Let
Σ′ be the covariance matrix of X ′. Suppose that Σ′ has
no eigenvectors with eigenvalue less than σ′2. Let G′ be
the distribution obtained by sampling from N (E[X ′] ,Σ′)
and rounding to the nearest point in Zk. Then, we have
that

dTV(X ′, G′) ≤ O
(
k7/2

√
log3(σ′)/σ′

)
.

The second simple lemma states that if two k-
dimensional Gaussian distributions have similar mean
vectors and variances (in all directions), then they are
close in total variation distance.

Lemma 5.3. ([DDKT16]) For two k-dimensional
Gaussians X ∼ N (µ1,Σ1) and Y ∼ N (µ2,Σ2), such
that for all unit vector v,

∣∣vT (µ1 − µ2)
∣∣ ≤ εsv, and

∣∣vT (Σ1 − Σ2)v
∣∣ ≤ εs2

v

2
√
k
,

where s2
v = max{vTΣ1v, v

TΣ2v}. Then dTV(X,Y ) ≤ ε.

Proof. [Proof of Proposition 5.1] To prove the game Gδ



is λ-Lipschitz, we need to show that

∀i ∈ [n],∀a ∈ [k], ∀x, y ∈ Πk
n−1,∣∣∣∣ E

x′∼Mδ(x)

[
uia(x′)

]
− E
y′∼Mδ(y)

[
uia(y′)

]∣∣∣∣ ≤ λ‖x− y‖1.
In fact, because the payoff entries are normalized in
[0, 1], it is sufficient to show that the total variation
distance between the (n−1, k)-PMDs Mδ(x) and Mδ(y)
is small, namely

∀x, y ∈ Πk
n−1, dTV(Mδ(x),Mδ(y)) ≤ λ‖x− y‖1.

Let M ′δ(x) and M ′δ(y) be the distributions Mδ(x) and
Mδ(y) projected onto their first k − 1 coordinates.
Note that since all coordinates must sum to n, the kth
coordinate is redundant and so dTV(Mδ(x),Mδ(y)) =
dTV(M ′δ(x),M ′δ(y)). To show that M ′δ(x) and M ′δ(y)
are close in total variation distance, we first prove that
the covariance matrix of M ′δ(x) has high variance in
all directions, which allows us to use the multivariate
central limit theorem (Lemma 5.2) to conclude that
both M ′δ(x) and M ′δ(y) are close to the (discretized)
Gaussian distributions with the same mean vectors and
covariance matrices respectively. We then bound from
above the total variation distance between two high-
variance k-dimensional Gaussian distributions whose
mean vectors are essentially x and y.

Recall that Mδ(x) is the sum of n− 1 independent
k-CRVs, and let Σ1 denote the covariance matrix of
Mδ(x). For any unit vector v ∈ Rk that is orthogonal
to the all-one vector, we have

Var[vTXδ(ej)]

= E
[(
vTXδ(ej)

)2]− (E[vTXδ(ej)
])2

= (1− δ)v2
j + δ

k − 1
∑
j′ 6=j

v2
j′

−

(1− δ)vj + δ

k − 1
∑
j′ 6=j

vj′

2

= (1− δ)v2
j + δ

k − 1(1− v2
j )

−
(

(1− δ)vj −
δ

k − 1vj
)2

≥ δ

k − 1 ,

where we simplify the expression using the fact that∑
j vj = 0 and

∑
j v

2
j = 1, and then take derivative

to minimize it. Therefore, for any unit vector v,
vTΣ1v = Var[vTMδ(x)] =

∑
j∈[k] xj Var[vTXδ(ej)] ≥

(n−1)δ
k−1 , which implies that Σ1 has no eigenvalues less

than (n−1)δ
k−1 (except the one associated with 1). We

then use the following lemma to bound from below the
eigenvalues of Σ′1:

Lemma 5.4. Suppose that Σ is a positive semidefinite
matrix with Σ1 = 0 and that all other eigenvalues of
Σ are at least σ2. Then for all vectors w ∈ Rk with
wk = 0, we have that

wTΣw
wTw

≥ σ2/k.

Proof. Let w be a vector that minimizes wTΣw
wTw

over
w ∈ Rk with wk = 0. Then v = w − wT 1

k 1 has vT1 = 0
and so vTΣv ≥ σ2vT v. We have vTΣv = wTΣw since
v − w is a multiple of 1, and we have

vT v =
(
w − wT1

k
1
)T (

w − wT1
k

1
)

= wTw + (wT1)2/k − 2(wT1)2/k

= ‖w‖22 − ‖w‖21/k
≥ wTw/k ,

where the last line follows from the inequality ‖w‖1 ≤√
k − 1‖w‖2. Thus, we have that

wTΣw
wTw

≥ vTΣv
kvT v

≥ σ2/k.

Since all except one eigenvalues of each of Σ1 and Σ2
are at least (n−1)δ

(k−1) , the minimum eigenvalues of Σ′1 and
Σ′2 are at least (n−1)δ

k2 . Let Z(µ,Σ) be the discretized
Gaussian obtained by rounding N (µ,Σ) to the nearest
integer in every coordinate. Then, by Lemma 5.2, we
have

dTV(M ′δ(x),Z(µ′1,Σ′1)) ≤ Õ
(
k9/2
√
nδ

)
dTV(M ′δ(y),Z(µ′2,Σ′2)) ≤ Õ

(
k9/2
√
nδ

)
.

(5.4)

Next, we use Lemma 5.3 to bound the total variation
distance between the k-dimensional Gaussian distribu-
tions N (µ′1,Σ′1) and N (µ′2,Σ′2). Let µ1, µ2 and Σ1,Σ2
be the mean vectors and the covariance matrices of
Mδ(x) and Mδ(y) respectively. Observe that

µ1 =
(

1− kδ

k − 1

)
x+ δ1.



So, for any unit vector v ∈ Rk,

s2
v = max{vTΣ1v, v

TΣ2v} ≥
(n− 1)δ
k − 1 ,∣∣vT (µ1 − µ2)

∣∣
=
∣∣∣∣vT ((1− kδ

k − 1

)
x−

(
1− kδ

k − 1

)
y

)∣∣∣∣
≤
(

1− kδ

k − 1

)
‖x− y‖1 ≤ ‖x− y‖1.

If the unit vector v is orthogonal to 1, we can use
the expression for vTΣ1v we had earlier. Taking
derivative with respect to vj shows that Var[vTXδ(ej)]
is maximized at v = ±ej . Hence, we can write∣∣vT (Σ1 − Σ2)v

∣∣ =
∑
j∈[k]

(xj − yj) Var[vTXδ(ej)]

≤ ‖x− y‖1 max
j

Var[vTXδ(ej)]

≤ ‖x− y‖1

[
(1− δ)−

(
1− kδ

k − 1

)2
]

= k − 1
k + 1δ‖x− y‖1 ≤ δ‖x− y‖1.

To see that the upper bound on
∣∣vT (Σ1 − Σ2)v

∣∣ holds
for all unit vectors, observe that for both covariance
matrices it holds Σ11 = Σ21 = 0. For any unit
vector v′, we can take its projection onto the subspace
orthogonal to 1, and write v′ as a linear combination
αv + β1, for some α < 1 and a unit vector v that is
orthogonal to 1. That is,∣∣v′T (Σ1 − Σ2)v′

∣∣ =
∣∣(αv + β1)T (Σ1 − Σ2)(αv + β1)

∣∣
=
∣∣α2vT (Σ1 − Σ2)v

∣∣ ≤ ∣∣vT (Σ1 − Σ2)v
∣∣ .

Thus, for all unit vectors v ∈ Rk, we have∣∣vT (µ1 − µ2)
∣∣ ≤ ‖x− y‖1 and

∣∣vT (Σ1 − Σ2)v
∣∣ ≤

δ‖x− y‖1. In particular, this holds for vectors with
kth coordinate 0. Hence, for all v ∈ Rk−1, we
have

∣∣vT (µ′1 − µ′2)
∣∣ ≤ ‖x− y‖1 and

∣∣vT (Σ′1 − Σ′2)v
∣∣ ≤

δ‖x− y‖1.
Finally, we set ε = O

( √
k√
nδ

+ k3/2

n

)
‖x− y‖1 to

satisfy the requirements of Lemma 5.3, and therefore
dTV(N (µ′1,Σ′1),N (µ′2,Σ′2)) ≤ ε. By the data processing
inequality, rounding both distributions to the nearest in-
teger coordinates does not increase their total variation
distance, therefore

dTV(Z(µ′1,Σ′1),Z(µ′2,Σ′2)) ≤ ε.(5.5)

By the triangle inequality, Equations (5.4) and (5.5)

yield

dTV(Mδ(x),Mδ(y))
= dTV(M ′δ(x),M ′δ(y))
≤ dTV(M ′δ(x),Z(µ′1,Σ′1))

+ dTV(Z(µ′1,Σ′1),Z(µ′2,Σ′2))
+ dTV(Z(µ′2,Σ′2),M ′δ(y))

≤ Õ
(
k9/2
√
nδ

)
+O

( √
k√
nδ

+ k3/2

n

)
‖x− y‖1

≤ Õ
(
k9/2
√
nδ

)
‖x− y‖1.

The last inequality holds because Mδ(x) = Mδ(y) when
x = y, so we can assume that ‖x− y‖1 ≥ 1. This
concludes the proof that Gδ is λ-Lipschitz for λ =
Õ
(
k9/2
√
nδ

)
.
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Appendix
A Proof of Lemma 3.7
This lemma is a generalization of Lemma 5.5 of
[DKS16a], which assumes that ε = Õk(1/σ). Thus, we
need to be careful about where this relation was used in
the proof.

Note that for a fixed ξ, if ξ′ satisfies
ξ′ ∈ ξ + Zk and ξ′TΣξ′ ≤ Ck log(1/ε), then so
does ξ + i1 for all i ∈ Z. We define T ′ as T ′

def={
ξ′ ∈ Rk : ξ′TΣξ′ ≤ Ck log(1/ε) and 0 ≤ ξ′ · 1 ≤ k

}
.

Then, ξ ∈ T if and only if there is a ξ′ ∈ T ′ with

ξ − ξ′ ∈ Zk.

(i) Because ξ − ξ′ ∈ Zk, we have [ξi − ξj ] ≤
∣∣ξ′i − ξ′j∣∣.

So to prove (i), we need to show that
∣∣ξ′i − ξ′j∣∣ ≤

2
√
Ck log(1/ε)/σ for all ξ′ ∈ T ′, i and j.

Fix ξ′ ∈ T ′, we define ξ̃′ to be the projection of
ξ′ onto the subspace orthogonal to 1, i.e., ξ̃′ =
ξ′ − ξ′·1

k 1. Since Σ1 = 0 and all other eigenvalues
of Σ are at least σ2, for all i, j we have∣∣ξ′i − ξ′j∣∣ =

∣∣∣ξ̃′i − ξ̃′j∣∣∣ ≤ 2‖ξ̃′‖∞ ≤ 2‖ξ̃′‖2

≤ 2
√
ξ′TΣξ′/σ2 ≤ 2

√
Ck log(1/ε)/σ.

This proves (i).

(ii) Next we consider Vol(T ′). If ξ′ ∈ T ′, we know
that ‖ξ′ − (ξ′ · 1/k)1‖22 ≤ Ck log(1/ε)/σ2. Also
0 ≤ ξ′ · 1 ≤ k implies that ‖(ξ′ · 1/k)1‖22 ≤ k.
Because these two vectors are orthogonal, we can
write

‖ξ′‖22 =
∥∥∥∥ξ′ − ξ′ · 1

k
1
∥∥∥∥2

2
+
∥∥∥∥ξ′ · 1k 1

∥∥∥∥2

2

≤ Ck log(1/ε)/σ2 + k ≤ 2Ck log(1/ε),

where the last inequality holds by the assumption
that σ ≥ 1. Thus,

ξ′T (Σ + I)ξ′ = ξ′TΣξ′ + ‖ξ′‖22 ≤ 3Ck log(1/ε).

By Claim 5.4 of [DKS16a], we get that

Vol(T ′) ≤ det(Σ + I)−1/2O(C log(1/ε))k/2.

It then follows from Lemma 3.6 that Vol(T ′)|S| =
O(C log(1/ε))k.
To show (ii), we need to show that Vol(T ) ≤
Vol(T ′). Note that T ′ is a disjoint union of its
intersections with unit cubes with integer corners,
and so

Vol(T ′) =
∑
b∈Zk

Vol
(
T ′ ∩

k∏
i=1

[bi, bi + 1)
)
.

On the other hand, T is the union of translations
of these sets

T =
⋃
b∈Zk
{ξ′ − b : ξ ∈ T ′ ∩

k∏
i=1

[bi, bi + 1)} ,

so Vol(T ) ≤ Vol(T ′).



(iii) By the pigeonhole principle, for every ξ ∈ Rk, there
is an interval Iξ of length k

k+1 such that there exists
ξ′ ∈ ξ + Zk where all the coordinates of ξ′ are in
Iξ. We define Tm to be

Tm
def=
{
ξ ∈ [0, 1]k : ∃ξ′ ∈

(
ξ + Zk

)
∩ Ikξ and

2mCk log(σ) ≤ ξ′TΣξ′ ≤ 2m+1Ck log(σ)
}
.

Then, we have that T ∪ (
⋃∞
m=0 Tm) = [0, 1]k,

although these sets need not be disjoint. Thus,
[0, 1]k/T ⊆

⋃∞
m=0 Tm and so∫

[0,1]k/T

∣∣∣X̂(ξ)
∣∣∣ dξ ≤ ∞∑

m=0
Vol(Tm) sup

ξ∈Tm
|X̂(ξ)|.

If we apply (ii) of this lemma with 2m+1C in-
stead of C, the resulting set T would be a su-
perset of Tm. Thus, we have that Vol(Tm) ≤
O
(
2m+1C log(1/ε)

)k
/|S|. To show (iii), we bound

supξ∈Tm |X̂(ξ)| using the following claim, which
gives a “Gaussian decay” upper bound on the mag-
nitude of the Fourier transform.

Claim A.1. For ξ ∈ Tm, it holds
|X̂(ξ)| ≤ exp(−Ω(C2m log(1/ε)/k)). If ad-
ditionally we have m ≤ 3 log2 k, then
|X̂(ξ)| = exp(−Ω(C2mk log(1/ε))).

Proof. We take ξ′ ∈
(
ξ + Zk

)
∩ Ikξ as in the

definition of Tm. Lemma 3.10 of [DKS16a] gives
that if the coordinates of ξ′ lie in an interval of
length 1− δ, then

|X̂(ξ)| = |X̂(ξ′)| ≤ exp(−Ω(δ2ξ′T · Σ · ξ′))
= exp(−Ω(C2mk log(1/ε)δ2)).

By the definition of Tm, we take δ = 1
k+1 to get the

bound |X̂(ξ)| ≤ exp(−Ω(C2m log(1/ε)/k)).

To get the stronger bound, we need to show that
when m is small all coordinates of ξ′ are in a
shorter interval. This is because, if we apply (i)
of this lemma with 2m+1C instead of C, we have
|ξ′i−ξ′j | ≤

√
2m+3Ck log(1/ε)/σ for any i, j. When

m ≤ log2(σ/(Ck log(1/ε)))−4, we can take δ = 1/2
and obtain the stronger bound of the claim.

This is where we use our assumption that σ ≥
poly(k log(1/ε)). We need m ≤ 3 log2 k ≤
log2(σ/(Ck log(1/ε))) − 4, which holds when σ ≥
16Ck4 log(1/ε).

Finally, for (iii) we can write∫
[0,1]k/T

∣∣∣X̂(ξ)
∣∣∣ dξ

≤
∞∑
m=0

Vol(Tm) sup
ξ∈Tm

|X̂(ξ)|

≤
∞∑
m=0

O
(
2m+1C log(1/ε)

)k sup
ξ∈Tm

|X̂(ξ)|

≤ O(C log(1/ε))k

|S|

∞∑
m=0

2mk sup
ξ∈Tm

|X̂(ξ)| .

We divide this sum into two pieces:

3 log2 k∑
m=0

2mk sup
ξ∈Tm

|X̂(ξ)|

≤
3 log2 k∑
m=0

2mk exp(−Ω(C2mk log(1/ε)))

≤
3 log2 k∑
m=0

exp(−Ω(C(2m −m)k log(1/ε)))

≤
3 log2 k∑
m=0

2−m exp(−Ω(Ck log(1/ε)))

≤ exp(−Ω(Ck log(1/ε))) = εΩ(Ck)

and
∞∑

m=3 log2 k

2mk sup
ξ∈Tm

|X̂(ξ)|

≤
∞∑

m=3 log2 k

2mk exp(−Ω(C2m log(1/ε)/k))

≤
∞∑

m=3 log2 k

exp(−Ω(C(2m −mk2) log(1/ε)/k))

≤
∞∑

m=3 log2 k

exp(−Ω(C(k2 +mk) log(1/ε)/k))

≤
∞∑

m=3 log2 k

2−m exp(−Ω(Ck log(1/ε))) ≤ εΩ(Ck) .

We thus have∫
[0,1]k\T

|X̂(ξ)|dξ ≤ O(C log(1/ε))kεΩ(Ck)/|S|

≤ ε/(2|S|).


