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Abstract

We introduce a new approach to unsupervised
estimation of feature-rich semantic role la-
beling models. Our model consists of two
components: (1) an encoding component: a
semantic role labeling model which predicts
roles given a rich set of syntactic and lexi-
cal features; (2) a reconstruction component:
a tensor factorization model which relies on
roles to predict argument fillers. When the
components are estimated jointly to minimize
errors in argument reconstruction, the induced
roles largely correspond to roles defined in an-
notated resources. Our method performs on
par with most accurate role induction methods
on English and German, even though, unlike
these previous approaches, we do not incorpo-
rate any prior linguistic knowledge about the
languages.

1 Introduction

Shallow semantic representations, and semantic role
labels in particular, have a long history in linguis-
tics (Fillmore, 1968). More recently, with an emer-
gence of large annotated resources such as Prop-
Bank (Palmer et al., 2005) and FrameNet (Baker et
al., 1998), automatic semantic role labeling (SRL)
has attracted a lot of attention (Gildea and Jurafsky,
2002; Carreras and Màrquez, 2005; Surdeanu et al.,
2008; Hajič et al., 2009; Das et al., 2010).

Semantic role representations encode the under-
lying predicate-argument structure of sentences, or,
more specifically, for every predicate in a sentence
they identify a set of arguments and associate each
argument with an underlying semantic role, such

as an agent (an initiator or doer of the action) or
a patient (an affected entity). Semantic roles have
many potential applications in NLP and have been
shown to benefit question answering (Shen and Lap-
ata, 2007; Kaisser and Webber, 2007), textual entail-
ment (Sammons et al., 2009), machine translation
(Wu and Fung, 2009; Liu and Gildea, 2010; Wu et
al., 2011; Gao and Vogel, 2011), and dialogue sys-
tems (Basili et al., 2009; van der Plas et al., 2009),
among others.

Most current statistical approaches to SRL are su-
pervised, requiring large quantities of human an-
notated data to estimate model parameters. How-
ever, such resources are expensive to create and only
available for a small number of languages. More-
over, when moved to a new domain (e.g., from news
corpora to blogs or biomedical texts), the perfor-
mance of these models tends to degrade substan-
tially (Pradhan et al., 2008). The scarcity of an-
notated data has motivated the research into unsu-
pervised learning of semantic representations (Swier
and Stevenson, 2004; Grenager and Manning, 2006;
Lang and Lapata, 2010; Lang and Lapata, 2011a;
Lang and Lapata, 2011b; Titov and Klementiev,
2012a; Fürstenau and Rambow, 2012; Garg and
Henderson, 2012). The existing methods have a
number of serious shortcomings. First, they make
very strong assumptions, for example, assuming that
arguments are conditionally independent of each
other given the predicate. Second, unlike state-of-
the-art supervised parsers, they rely on a very sim-
plistic set of features of a sentence. These fac-
tors lead to models being insufficiently expressive to
capture the syntax-semantics interface, inadequate
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handling of language ambiguity and, overall, in-
troduces a restrictive upper bound on their perfor-
mance. Moreover, these approaches are especially
problematic for languages with freer word order
than English, where richer features are necessary
to account for interactions between surface realiza-
tions, syntax and semantics. For example, the two
most accurate previous models (Titov and Klemen-
tiev, 2012a; Lang and Lapata, 2011a) both treat the
role induction task as clustering of argument signa-
tures: an argument signature encodes key syntactic
properties of an argument realization and consists of
a syntactic function of an argument along with ad-
ditional information such as an argument position
with respect to the predicate. Though it is possible
to design signatures which mostly map to a single
role, this set-up limits oracle performance even for
English, and can be quite restrictive for languages
with freer word order. These shortcomings are in-
herent limitations of the modeling frameworks used
in previous work (primarily generative modeling or
agglomerative clustering), and cannot be addressed
by simply incorporating more features or relaxing
some of the modeling assumptions.

In this work, we propose a method for effective
unsupervised estimation of feature-rich models of
semantic roles. We demonstrate that reconstruction-
error objectives, which have been shown to be effec-
tive primarily for training neural networks, are well
suited for inducing feature-rich log-linear models of
semantics. Our model consists of two components:
a log-linear feature-rich semantic role labeler and
a tensor-factorization model which captures inter-
action between semantic roles and argument fillers.
When estimated jointly on unlabeled data, roles in-
duced by the model mostly corresponds to roles de-
fined in existing resources by annotators.

Our method rivals the most accurate semantic
role induction methods on English and German
(Titov and Klementiev, 2012a; Lang and Lapata,
2011a). Importantly, no prior knowledge about
the languages was incorporated in our feature-rich
model, whereas the clustering counterparts relied
on language-specific argument signatures. These
languages-specific priors were crucial for their suc-
cess. For example, using English-specific argument
signatures for German with the Bayesian model of
Titov and Klementiev (2012a) results in a drop of

performance from clustering F1 of 80.9% to consid-
erably lower 78.3% (our model yields 81.4%). This
confirms the intuition that using richer features helps
to capture the syntax-semantics interface in multi-
lingual settings, reducing the need for language-
specific model engineering, as is highly desirable in
unsupervised learning.

The rest of the paper is structured as follows. Sec-
tion 2 begins with a definition of the semantic role
labeling task and discusses some specifics of the un-
supervised setting. In Section 3, we describe our ap-
proach, starting with a general motivation and pro-
ceeding to technical details of the model (Section
3.3) and the learning procedure (Section 3.4). Sec-
tion 4 provides both evaluation and analysis. Finally,
additional related work is presented in Section 5.

2 Task Definition

The SRL task involves prediction of predicate argu-
ment structure, i.e. both identification of arguments
and assignment of labels according to their under-
lying semantic role. For example, in the following
sentences:

(a) [Agent Mary] opened [Patient the door].

(b) [Patient The door] opened.

(c) [Patient The door] was opened [Agent by Mary].

Mary always takes an agent role for the predicate
open, and door is always a patient.

In this work we focus on the labeling stage of
semantic role labeling. Identification, though an
important problem, can be tackled with heuris-
tics (Lang and Lapata, 2011a; Grenager and Man-
ning, 2006; de Marneffe et al., 2006), with unsuper-
vised techniques (Abend et al., 2009) or potentially
by using a supervised classifier trained on a small
amount of data.

3 Approach

At the core of our approach is a statistical model en-
coding an interdependence between a semantic role
structure and its realization in a sentence. In the un-
supervised learning setting, sentences, their syntac-
tic representations and argument positions (denoted
by x) are observable whereas the associated seman-
tic roles r are latent and need to be induced by the
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model. The idea which underlines much of latent
variable modeling is that a good latent representa-
tion is the one which helps us to reconstruct x. In
practice, we are not interested in predicting x, as x
is observable, but rather interested in inducing ap-
propriate latent representations (i.e. r). Thus, it
is crucial to design the model in such a way that
the good r (the one predictive of x) indeed encodes
roles, rather than some other form of abstraction.

In what follows, we will refer to roles using
their names, though, in the unsupervised setting, our
method, as any other latent variable model, will not
yield human-interpretable labels for them. We will
use the following sentence as a motivating example
in our discussion of the model:

[Agent The police] charged [Patient the
demonstrators] [Instrument with batons].

The model consists of two components. The first
component is responsible for prediction of argument
tuples based on roles and the predicate. In our exper-
iments, in this component, we represent arguments
as lemmas of their lexical heads (e.g., baton instead
of with batons). We also restrict ourselves to only
verbal predicates. Intuitively, we can think of pre-
dicting one argument at a time (see Figure 1(b)):
an argument (e.g., demonstrator in our example) is
predicted based on the predicate lemma (charge),
the role assigned to this argument (i.e. Patient)
and other role-argument pairs ((Agent, police) and
(Instrument, baton)). While learning to predict
arguments, the inference algorithm will search for
role assignments which simplify this prediction task
as much as possible. Our hypothesis is that these
assignments will correspond to roles accepted in lin-
guistic theories (or, more importantly, useful in prac-
tical applications). Why is this hypothesis plausi-
ble? Primarily because these semantic representa-
tions were introduced as an abstraction capturing the
essence of a situation (or a event). And the underly-
ing situation and participant roles in this situation
(rather than surface linguistic details like argument
order or syntactic functions) are precisely what im-
pose constraints on admissible argument tuples.

The reconstruction component is not the only part
of the model. Crucially, what we referred to above
as ‘searching for role assignments to simplify ar-
gument prediction’ would actually correspond to

learning another component: a semantic role labeler
which predicts roles relying on a rich set of sentence
features. These two components will be estimated
jointly in such a way as to minimize errors in recov-
ering arguments. The role labeler will be the end-
product of learning: it will be used to process new
sentences, and it will be compared to existing meth-
ods in our evaluation.

3.1 Shortcomings of generative modeling

The above paragraph can be regarded as our desider-
ata; now we discuss how to achieve them. The stan-
dard way to approach latent variable modeling is
to use the generative framework: that is to define
a family of joint models p(x, y|θ) and estimate the
parameters θ by, for example, maximizing the likeli-
hood. Generative models of semantics (Titov and
Klementiev, 2012a; Titov and Klementiev, 2011;
Modi et al., 2012; O’Connor, 2013; Kawahara et al.,
2014) necessarily make very strong independence
assumptions (e.g., arguments are conditionally inde-
pendent of each other given the predicate) and use
simplistic features of x and y. Thus, they cannot
meet the desiderata stated above. Importantly, they
are also much more simplistic in their assumptions
than state-of-the-art supervised role labelers (Erk
and Pado, 2006; Johansson and Nugues, 2008; Das
et al., 2010).

3.2 Reconstruction error minimization

Generative modeling is not the only way to learn la-
tent representations. One alternative, popular in the
neural network community, is to instead use autoen-
coders and optimize the reconstruction error (Hin-
ton, 1989; Vincent et al., 2008). In autoencoders,
a latent representation y (their hidden layer) is pre-
dicted from x by an encoding model and then this y
is used to recover x̃with a reconstruction model (see
Figure 1(a)). Parameters of the encoding and recon-
struction components are chosen so as to minimize
some form of the reconstruction error, for example,
the Euclidean distance ∆(x, x̃) = ||x−x̃||2. Though
currently popular only within the deep learning com-
munity, latent variable models other than neural net-
works can also be trained this way, moreover:

• the encoding and reconstruction models can be-
long to different model families;
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Figure 1: (a) An autoencoder from Rm to Rp (typically p < m). (b) Modeling roles within the reconstruction-error
minimization framework.

• the reconstruction component may be focused
on recovering a part of x rather than the entire
x, and, in doing so, can rely not only on y but
on the remaining part of x.

These observations are crucial as they allow us to
implement our desiderata. More specifically, the en-
coding model will be a feature-rich classifier which
predicts semantic roles for a sentence, and the re-
construction model is the model which predicts an
argument given its role, and given the rest of the ar-
guments and their roles. The idea of training linear
models by minimizing the reconstruction error was
previously explored by Daumé (2009) and very re-
cently by Ammar et al. (2014).

3.3 Modeling semantics within the
reconstruction-error framework

There are several possible ways to translate the ideas
above into a specific method, and we consider one
of the simplest instantiations. For simplicity, in the
discussion (but not in our experiments), we assume
that exactly one predicate is realized in each sen-
tence x. As we mentioned above, we focus only
on argument labeling: we assume that arguments
a = (a1, . . . , aN ), ai ∈ A, are known, and only
their roles r = (r1, . . . , rN ), ri ∈ R need to be
induced. For the encoder (i.e. the semantic role la-
beler), we use a log-linear model:

p(r|x,w) ∝ exp(wTg(x, r)),

where g(x, r) is a feature vector encoding interac-
tions between sentence x and the semantic role rep-

resentation r. Any model can be used here as long
as the posterior distributions of roles ri can be effi-
ciently computed or approximated (we will see why
in Section 3.4). In our experiments, we used a model
which factorizes over individual arguments (i.e. a set
of independent logistic regression classifiers).

The reconstruction component predicts an argu-
ment (e.g., the ith argument ai) given the seman-
tic roles r, the predicate v and other arguments
a−i = (a1, . . . , ai−1, ai+1, . . . , aN ) with a bilinear
softmax model:

p(ai|a−i, r,v,C,u)=

exp(uT
ai
CT

v,ri

∑
j 6=iCv,rjuaj)

Z(r, v, i)
, (1)

ua ∈ Rd (for every a ∈ A) and Cv,r ∈ Rk×d (for
every verb v and every role r ∈ R) are model pa-
rameters, Z(r, v, i) is the partition function ensur-
ing that the probabilities sum to one. Intuitively,
embeddings ua, when learned from data, will en-
code semantic properties of an argument: for ex-
ample, embeddings for the words demonstrator and
protestor should be somewhere near each other in
Rd space, and further away from that for the word
cat. The product Cv,rua is a k-dimensional vec-
tor encoding beliefs about other arguments based on
the argument-role pair (a, r). For example, seeing
the argument demonstrator in the Patient posi-
tion for the predicate charge, one would predict that
the Agent is perhaps the word police, and the role
Instrument is filled by the word baton or perhaps
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(a water) cannon. On the contrary, if the Patient
is cat then the Agent is more likely to be dog than
police. In turn, the dot product (Cv,riuai)

TCv,rjuaj

is large if these expectations are met for the argu-
ment pair (ai, aj), and small otherwise. Intuitively,
this objective corresponds to scoring argument tu-
ples according to

h(a, r, v, C,u) =
∑
i 6=j

uT
ai
CT

v,ri
Cv,rjuaj , (2)

hinting at connections to (coupled) tensor and matrix
factorization methods (Nickel et al., 2011; Yılmaz
et al., 2011; Bordes et al., 2011; Riedel et al., 2013)
and distributional semantics (Mikolov et al., 2013;
Pennington et al., 2014). Note also that the recon-
struction model does not have access to any fea-
tures of the sentence (e.g., argument order or syn-
tax), forcing the roles to convey all the necessary
information.

This factorization can be thought of as a general-
ization of the notion of selection preferences. Selec-
tional preferences characterize the set of arguments
licensed for a given role of a given predicate: for ex-
ample, Agent for the predicate charge can be police
or dog but not table or idea. In our generalization,
we model soft restrictions imposed not only by the
role itself but also by other arguments and their as-
signment to roles.

In practice, we extend the model slightly: (1) we
introduce a word-specific bias (a scalar ba for ev-
ery a ∈ A) in the argument prediction model (equa-
tion (1)); (2) we smooth the model by using a sum
of predicate-specific and cross-predicate projection
matrices (Cv,r + Cr) instead of just Cv,r.

3.4 Learning
Parameters of both model components (w, u and C)
are learned jointly: the natural objective associated
with every sentence would be the following:

N∑
i=1

log
∑
r

p(ai|a−i, r, v, C,u)p(r|x,w). (3)

However optimizing this objective is not practical
in its exact form for two reasons: (1) marginaliza-
tion over r is exponential in the number of argu-
ments; (2) the partition function Z(r, v, i) requires
summation over the entire set of potential argument

lemmas. We use existing techniques to address both
challenges.

In order to deal with the first challenge, we use
a basic mean-field approximation. Namely, instead
of computing an expectation of p(ai|a−i, r,v,C,u)
under p(r|x,w), as in (3), we use the posterior dis-
tributions µis = p(ri = s|x,w) and score the argu-
ment predictions as

p(ai|a−i,µ,v,C,u) =
exp (φi(ai,a−i))

Z(µ, v, i)
(4)

φi(ai,a−i) = uT
ai

(
∑

s

µisCv,s)T

×
∑
j 6=i

(
∑

s

µjsCv,s)uaj ,

where µ are the posteriors for all the arguments,
and φi(a,a−i) is the score associated with predict-
ing lemma a for the argument i.

In order to address the second problem, the com-
putation of Z(µ, v, i), we use a negative sampling
technique (see, e.g., Mikolov et al. (2013)). More
specfically, we get rid of the softmax in equation (4)
and optimize the following sentence-level objective:

N∑
i=1

[log σ(φi(ai,a−i))

−
∑
a′∈S

log σ(φi(a′,a−i))], (5)

where S is a random sample of n elements from the
unigram distribution of lemmas, and σ is the logistic
sigmoid function.

Assuming that the posteriors µ can be derived in
a closed form, the gradients of the objective (5) with
respect to parameters of both the encoding compo-
nent (w) and the reconstruction component (C, u
and b) can be computed using back propagation.
In our experiments, we used the AdaGrad algo-
rithm (Duchi et al., 2011) to perform the optimiza-
tion.

The learning algorithm is quite efficient, as the
reconstruction computation is bilinear, whereas the
computation of the posteriors µ (and the computa-
tion of their gradients) from the semantic roler la-
beling component (encoder) is not much more ex-
pensive than discriminative supervised learning of
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the role labeler. Moreover, the computations can
be sped up substantially by observing that the sum∑

s µisCv,s in expression (4) can be precomputed
for all i, and reused across predictions of different
arguments of the same predicate. At test time, only
the linear semantic role labeler is used, so the infer-
ence is straightforward.

4 Experiments

4.1 Data and evaluation metrics

We considered English and German in our experi-
ments. For each language, we replicated experimen-
tal set-ups used in previous work.

For English, we followed Lang and Lap-
ata (2010) and used the dependency version of Prop-
Bank (Palmer et al., 2005) released for the CoNLL
2008 shared task (Surdeanu et al., 2008). The
dataset is divided into three segments. As in the pre-
vious work on unsupervised role labeling, we used
the largest segment (the original CoNLL training set,
sections 2-21) both for evaluation and learning. This
is permissible as unsupervised models do not use
gold labels in training. The two small segments (sec-
tions 22 and 23) were used for model development.
In our experiments, we relied on gold standard syn-
tax and gold standard argument identification, as this
set-up allows us to evaluate against much of the pre-
vious work. We refer the reader to Lang and Lap-
ata (2010) for details of the experimental set-up.

There has not been much work on unsupervised
induction of roles for languages other than English,
perhaps primarily because of the above-mentioned
model limitations. For German, we replicate the
set-up considered in Titov and Klementiev (2012b).
They used the CoNLL 2009 version (Hajič et al.,
2009) of the SALSA corpus (Burchardt et al., 2006).
Instead of using syntactic parses provided in the
CoNLL dataset, they re-parsed it with the MALT
dependency parser (Nivre et al., 2004). Similarly,
rather than relying on gold standard annotations for
argument identification, they used a supervised clas-
sifier to predict argument positions. Details of the
preprocessing can be found in Titov and Klemen-
tiev (2012b).

As in most previous work on unsupervised SRL,
we evaluate our model using purity, collocation and
their harmonic mean F1. Purity (PU) measures the

average number of arguments with the same gold
role label in each cluster, collocation (CO) measures
to what extent a specific gold role is represented by
a single cluster. More formally:

PU =
1
N

∑
i

max
j
|Gj ∩ Ci|

where if Ci is the set of arguments in the i-th in-
duced cluster, Gj is the set of arguments in the jth
gold cluster, andN is the total number of arguments.
Similarly, for collocation:

CO =
1
N

∑
j

max
i
|Gj ∩ Ci|

We compute the aggregate PU, CO, and F1 scores
over all predicates in the same way as Lang and La-
pata (2010): we weight the scores for each predi-
cate by the number of times its arguments occur and
compute the weighted average.

4.2 Parameters and features

For the semantic role labeling (encoding) compo-
nent, we relied on 14 feature patterns used for ar-
gument labeling in a popular supervised role la-
beler (Johansson and Nugues, 2008). These patterns
include non-trivial syntactic features, such as a de-
pendency path between the target predicate and the
considered argument. The resulting feature space
is quite large (49,474 feature instantiations for our
English dataset) and arguably sufficient to accu-
rately capture syntax-semantics interface for most
languages. We refer the reader to the original publi-
cation for details (Johansson and Nugues, 2008: Ta-
ble 2). Importantly, the dimensionality of the fea-
ture space is very different from the one used typi-
cally in unsupervised SRL. In principle, any features
could be used here but we chose these 14 feature pat-
terns, as they all are fairly simple and generic. They
can also be easily extracted from any treebank. We
used the same feature patterns both for English and
German. However, there is little doubt that some
language-specific feature engineering and the use
of language-specific priors or constraints (e.g., pos-
terior regularization (Ganchev et al., 2010)) would
benefit the performance. Faithful to our goal of con-
structing the simplest possible feature-rich model,

6



we use logistic classifiers independently predicting
role distribution for every argument.

For the reconstruction component, both for En-
glish and German, we set the embedding dimension-
ality d, the projection dimensionality k and the num-
ber of negative samples n to 30, 15 and 20, respec-
tively. The model was not sensitive to the parameter
|R|, defining the number of roles as long it was large
enough (see Section 4.3 for more discussion). For
training, we used uniform random initialization and
AdaGrad (Duchi et al., 2011). Any model selections
(e.g., choosing the number of epochs) was done on
the basis of the respective held-out set.

4.3 Results

4.3.1 English

Table 1 summarizes the results of our method, as
well as those of alternative approaches and base-
lines.

Following (Lang and Lapata, 2010), we use a
baseline (SyntF) which simply clusters predicate ar-
guments according to the dependency relation to
their head. A separate cluster is allocated for each
of 20 most frequent relations in the dataset and an
additional cluster is used for all other relations. As
observed in the previous work (Lang and Lapata,
2011a), this is a hard baseline to beat.

We also compare with previous approaches: the
latent logistic classification model (Lang and La-
pata, 2010) (labeled LLogistic), the agglomerative
clustering method (Lang and Lapata, 2011a) (Ag-
glom), the graph partitioning approach (Lang and
Lapata, 2011b) (GraphPart), the global role order-
ing model (Garg and Henderson, 2012) (RoleOrder-
ing). We also report results of an improved ver-
sion of Agglom, recently reported by Lang and La-
pata (2014) (Agglom+). The strongest previous
model is Bayes: Bayes is the most accurate (‘cou-
pled’) version of the Bayesian model of Titov and
Klementiev (2012a), estimated from the CoNLL
dataset without relying on any external data. Titov
and Klementiev (2012a) also showed that using
Brown clusters induced from a large external cor-
pus resulted in an 0.5% improvement in F1 but that
version is not entirely comparable to other systems
induced solely from the CoNLL text.

Our model outperforms or performs on par with

PU CO F1
Our Model 79.7 86.2 82.8
Bayes 89.3 76.6 82.5
Agglom+ 87.9 75.6 81.3
RoleOrdering 83.5 78.5 80.9
Agglom 88.7 73.0 80.1
GraphPart 88.6 70.7 78.6
LLogistic 79.5 76.5 78.0
SyntF 81.6 77.5 79.5

Table 1: Results on English (PropBank / CoNLL 2008).

best previous models in terms of F1. Interestingly,
the purity and collocation balance is very different
for our model and for the rest of the systems. In
fact, our model induces at most 4-6 roles (even if
|R| is much larger). On the contrary, Bayes predicts
more than 30 roles for the majority of frequent pred-
icates (e.g., 43 roles for the predicate include or 35
for say). Though this tendency reduces the purity
scores for our model, this also means that our roles
are more human interpretable. For example, agents
and patients are clearly identifiable in the model pre-
dictions. Our model has similar purity to the syntac-
tic baseline but outperforms it vastly according to
the collocation metric, suggesting that we go sub-
stantially beyond recovering syntactic relations.

In additional experiments, we observed that our
model, in some regimes, starts to induce roles spe-
cific to individual verb senses or specific to groups of
semantically similar predicates. This suggests that
adding a latent variable capturing predicate senses
and conditioning the reconstruction component on
this variable may not only result in a more infor-
mative semantic representation (i.e. include verb
senses) but also improve the role induction perfor-
mance. We leave this exploration for future work.

4.3.2 German

For German, we replicate the experimental set-up
previously used by Titov and Klementiev (2012b).
As for English, we report results of the syntactic
baseline (SyntF). The results for all approaches are
presented in Table 2. We compare against Bayes
(De) – the Bayes model with argument signatures
specialized for German (as reported in Titov and
Klementiev (2012b)). We also consider the original
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PU CO F1
Our Model 76.4 87.0 81.4
Bayes (De) 86.8 75.7 80.9
Bayes (En) 80.6 76.0 78.3
SyntF 83.1 79.3 81.2

Table 2: Results on German (SALSA / CoNLL 2009).

version of the Bayes model (denoted as Bayes (En)).
Recently, Lang and Lapata (2014) evaluated their

Agglom+ on a version of the same German SALSA
dataset. Their best result is F1 of 79.2%, however,
this score and our results are not directly compara-
ble. Instead of using the CoNLL dataset, they pro-
cessed the corpus themselves. They also relied on
syntactic features from a constituent parser whereas
we used dependency representations.

The overall picture for German closely resembles
the one for English. Our method achieves results
comparable to the best method evaluated in this set-
ting. Importantly, parameters and features of our
model for German and English are identical. On
the contrary, one can see that specialization of argu-
ment signatures was crucial for the Bayesian model.
Also, similarly to English, our method induces less
fine-grain sets of semantic roles but achieves much
higher collocation scores.

5 Additional Related Work

In recent years, unsupervised approaches to seman-
tic role induction have attracted considerable atten-
tion. However, there exist other ways to address
lack of coverage provided by existing semantically-
annotated resources.

One natural direction is semi-supervised role
labeling, where both annotated and unannotated
data is used to estimate a model. Previous semi-
supervised approaches to SRL can be mostly re-
garded as extensions to supervised learning by ei-
ther incorporating word features induced from un-
nannoted texts (Collobert and Weston, 2008; De-
schacht and Moens, 2009) or creating some form
of ‘surrogate’ supervision (He and Gildea, 2006;
Fürstenau and Lapata, 2009). Benefits from using
unlabeled data were moderate, and more significant
for the harder SRL version, frame-semantic pars-
ing (Das and Smith, 2011).

Another important direction includes cross-
lingual approaches (Pado and Lapata, 2009; van der
Plas et al., 2011; Kozhevnikov and Titov, 2013)
which leverage resources from resource-rich lan-
guages, as well as parallel data, to produce anno-
tation or models for resource-poor languages. How-
ever, both translation shifts and noise in word align-
ments harm the performance of cross-lingual meth-
ods. Nevertheless, even joint unsupervised induc-
tion across languages appears to be beneficial (Titov
and Klementiev, 2012b).

Unsupervised learning has also been one of the
central paradigms for the closely-related area of
relation extraction (RE), where several techniques
have been proposed to cluster semantically similar
verbalizations of relations (Lin and Pantel, 2001;
Banko et al., 2007; Yao et al., 2011). Similarly to
SRL, unsupervised methods for RE mostly rely on
generative modeling and agglomerative clustering.

From the learning perspective, methods which use
the reconstruction-error objective to estimate linear
models (Ammar et al., 2014; Daumé III, 2009) are
certainly related. However, they do not consider
learning factorization models, and they also do not
deal with semantics. Tensor factorization methods
used in the context of modeling knoweldge bases
(e.g., (Bordes et al., 2011)) are also close in spirit.
However, they do not deal with inducing semantics
but rather factorize existing relations (i.e. rely on
semantics).

6 Conclusions and Discussion

This work introduces a method for inducing feature-
rich semantic role labelers from unannoated text. In
our approach, we view a semantic role representa-
tion as an encoding of a latent relation between a
predicate and a tuple of its arguments. We capture
this relation with a probabilistic tensor factorization
model. The factorization model (relying on seman-
tic roles) and a feature-rich model (predicting the
roles) are jointly estimated by optimizing an objec-
tive which favours accurate reconstruction of argu-
ments given the latent semantic representation (and
other arguments). Our estimation method yields a
semantic role labeler which achieves state-of-the-art
results both on English and German.

Unlike previous work on role induction, in our

8



approach, virtually any computationally tractable
structured model can be used as a role labeler, in-
cluding almost any semantic role labeler introduced
in the context of supervised SRL (see, e.g., CoNLL
shared tasks (Carreras and Màrquez, 2005; Sur-
deanu et al., 2008; Hajič et al., 2009)). This opens
interesting possibilities to extend our approach to
the semi-supervised setting. Previous unsupervised
SRL models make too strong assumption and use too
limited features to effectively exploit labeled data.
For our model, the reconstruction objective can be
easily combined with the likelihood objective, yield-
ing a potentially powerful semi-supervised method.
We leave this direction for future work.
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